
UC San Diego
Technical Reports

Title
Experience Report: an AP CS Principles University Pilot

Permalink
https://escholarship.org/uc/item/5754j51b

Authors
Simon, Beth
Esper, Sarah
Quintin, Cutts

Publication Date
2011-03-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5754j51b
https://escholarship.org
http://www.cdlib.org/

Experience Report: an AP CS Principles University Pilot
Beth Simon, Sarah Esper

Computer Science and Engr. Dept.

University of California, San Diego

La Jolla, CA USA
+1 858 534 5419

{bsimon, sesper}@cs.ucsd.edu

Quintin Cutts
School of Computing Science

University of Glasgow

Glasgow, Scotland
+44 141 330 5619

quintin.cutts@glasgow.ac.uk

ABSTRACT

We report on the development and deployment of a pilot of the

new Advanced Placement CS Principles course in the United

States. The course is designed to introduce core computational

concepts and instill computational thinking practices. We report

on an initial offering with 571 university students, mostly non-CS

majors taking the course as a general education requirement. We

discuss the instructional design supporting the course, describe

how the various components were implemented, and review

student work and valuation of the course. Though the course

appears to “teach programming” in Alice, students reported

gaining significant analysis and communication skills they could

use in their daily life. We reflect on how instructional design

decisions are likely to have supported this experience and

consider the implications for other K-12 computing/IT education

efforts as well as for regular CS1 courses.

Categories and Subject Descriptors

K.3.2 [Computer Science Education].

General Terms

Human Factors

Keywords

CS0, peer instruction, clickers, Alice, computational thinking.

1. INTRODUCTION
There is a world-wide effort to expand computing education and

specifically computational thinking skills to secondary schooling.

In the 20
th

 century, the three competencies deemed essential for

the development of an educated populace capable of meeting

societal needs were reading, writing and arithmetic. With the

penetration of ever cheaper and more powerful computers, 21
st

century competencies will need to include understanding of the

basics of how computers work and the power and processes of

computation. Future professionals in any arena will need

significant analytical and communication skills to support their

workplace technology use. Here, we report on a course designed

to meet these needs. Specifically, we describe a) the instructional

design and implementation and b) the student experience of a

general-education computing course at the University of

California, San Diego.

The instructional design of this course is critical. The usual

designs for computing course must be reconsidered in light of:

• a different student population (e.g., a required course for

(potentially) non-interested students)

• markedly different desired learning outcomes (e.g., not

preparing students for a specific next course, but providing

students with skills necessary to support their life-long needs)

We view student experience in this course as more important than

typical narrow definitions of student success. Our metric is not

simply “can they write programs.” Rather, we seek to know how

their experience of reading, analyzing, writing, debugging and

discussing programs have changed them. How are they prepared

to understand, work effectively with, and continue to expand their

computational experiences? From this pilot offering, we report

ad-hoc analysis with the intention of describing the breadth and

variation of student experiences. Rigorous analysis is beyond the

scope of this paper, and is the subject of future work.

2. BACKGROUND
CSE3: Fluency in Information Technology is a UCSD course

developed in 2002, originally following Larry Snyder’s text of the

same name. It serves as a general education requirement for ~800

UCSD undergraduates per year, and also a departmental

requirement for psychology majors (~300 per year). In 2008 a

multi-departmental committee reviewed the curriculum resulting

in recommendations to focus on a) computational concepts (over

skills) and b) problem-solving, specifically employing

programming with a contextualized approach. A quarter-term

syllabus was proposed featuring 7 weeks of Alice and 2 weeks of

Excel content (with 1 week of open topics).

Concurrently, Dr. Simon was invited to pilot a proposed

Advanced Placement CS Principles course. CSE3’s syllabus

provided significant coverage of CS Principles learning goals.

During the development of materials, Dr. Simon mostly followed

the UCSD committee’s recommendations, but kept the six CS

Principles computational thinking practices firmly in mind. They

are:

1. Analyzing effects of computation

2. Creating computational artifacts

3. Using abstractions and models

4. Analyzing problems and artifacts

5. Communicating processes and results

6. Working effectively in teams

3. INSTRUCTIONAL DESIGN
The instructional design of the course was strongly influenced by

logistical factors including: the need to deliver the course to large

numbers of students per term (>500), the existing 2-hour “closed”

lab component, and the common use of many undergraduate

tutors in support of the course. Although the course was taught

simultaneously in three rooms by video feed, this wasn’t a strong

factor in course design. The design was also critically and

positively influenced by the arrival of Dr. Quintin Cutts as a

sabbatical visiting researcher. Dr. Cutts’ research interests

include PI, learning to program, and the development of school

computing curricula.

3.1 Overarching Needs/Decisions
The course is designed around Peer Instruction (PI), an

instructional technique well-documented to show increased

learning. The most noted research has occurred in physics where

both a large study of 6,000 students and a controlled study by Eric

Mazur showed at least a 2-fold increase in student learning when

PI was used in place of a “standard” lecture [1, 2]. Dr. Simon’s

success in adopting PI in introductory computing [5] prompted its

adoption here. Crucially, PI engages the students in lecture –

often to the extent where they spend 75% of class time in the

process of problem solving.

In the standard PI model, before class, students gain preparatory

knowledge (e.g. through reading the textbook) and complete a

pre-lecture quiz on the material. During class, lecture can be

interspersed with or largely replaced by a series of multiple choice

questions (MCQs) designed to engage students in deepening their

understanding of the material. MCQs often focus on deep

conceptual issues or common student misconceptions or

problems. This is instantiated via a 4-part process:

1. Students individually consider a question and select an answer

(typically reporting it via use of a clicker).

2. Students discuss in pre-assigned groups (note: they have not

been shown the class-wide results of the first “vote”).

3. Students vote again on the same question.

4. Class-wide discussion follows led by student explanations and

instructor lecture/modeling of the problem solving process.

Dr. Cutts raised concern over the pre-reading and quiz not

adequately preparing students for lecture and Dr. Simon agreed

that her previous experiences in developing reading quiz questions

devolved into factual recall questions. At issue is the need for

students to be engaged with programming concepts and this is

unlikely to happen with reading alone. In response, we developed

new “exploratory homework” that leverages Alice’s support for

“learn by playing”. This is described in detail below.

Another pedagogical goal was to provide opportunity for spaced

(rather than massed) learning of concepts [4]. Research in

educational psychology has clearly shown that greater learning (or

reduced time to learn) is achieved when that learning is spaced out

over time. The flow of this course supports learning over a

minimum of 5 periods for each “week”. Every week there is a 4

part series of homework->lecture->homework->lecture spread

over two lecture periods. The last learning period occurs the

following week, with a closed lab exercise on the previous week’s

material. The schedule of topics is shown in Table 1.

Table 1. Course Topics Schedule

Wk Tuesday Thursday

1 Introduction Sequential Execution

2 Static Methods, Parameters Parameters and Methods

3 Methods, Special Effects Interactive programs,events

4 Expressions, If statements If statements

5 If statements, randomness Counted loops

6 Conditional loops Midterm

7 Lists/Arrays Lists/Arrays

8 Excel: Formulas, Functions Excel: Large Datasets

9 Excel: Explore / Visualize

Data with Pivot Tables

Revisit Alice Lists and

Searching

10 Material of Student Choice Alice Project Show

3.2 Course Components
Here we review the various course components, giving examples
of and rationale for them.

3.2.1 Exploratory Homework
The goals of the homework are:

• Embed introductory understanding of new topics such that it

can be meaningfully tested and deepened in class.

• Develop an appreciation of and skill-set for independent study

appropriate to the computing context.

These goals are realized in four (somewhat interwoven) steps:

• Students are introduced to new material, by reading sections

of the textbook.

• Students are led through practical activities, either described

in the text book or in supplementary notes, to develop their

understanding of the reading material.

• Students are encouraged to practice "playing around" with the

code they've just developed.

• Between 4 and 6 quiz questions are provided at the end of the

homework so that students can self-check their understanding.

The homework description is only a few short paragraphs of text,

since most of the instruction is in the book. Crucially, reading is

not enough to get a working understanding of the concepts, hence

the inclusion of the practical activity in the preparation work.

We view learning to "play around" as an essential part of picking

up new languages and systems. We are not referring to unguided

"guess and see" tactics for getting code to work; instead, we aim

to improve student skills in developing small experiments to

deepen their understanding of different concepts. This usually

takes the form of questions asking students to make predictions:

• What do you think would happen if you don't specify

"penguin" as a parameter where necessary? Try it out.

• If you hit "Play" now do you think anything will happen?

3.2.2 Quiz
Each lecture started with an assessed quiz, acting as an

inducement to do the homework: the value of the class sessions is

otherwise diminished as unprepared students are unable to engage

at an appropriate level during their PI discussions. To further

encourage the students to prepare thoroughly, at least one of the

quiz questions was drawn from the end-of-homework questions.

3.2.3 Discussion Questions/Lecture
The activities in lecture were designed to engage students in

testing and deepening their understanding, while gaining

proficiency in effective analysis skills. Clicker questions were

developed by going through the day's homework looking for

challenging issues, then developing examples where students

would select a line of code, predict what code did, or pick a

rationale for a provided decision. An example might ask: “The

best rationale for why we want to use a function to control a loop

is” (for more on PI use in computing see [3,5]).

The process used in class is described in section 3.1 with the

modification that one undergraduate tutor was assigned to each

group of ~30 students in the lecture halls (engaging them during

discussions). This provided more individual attention to students

and facilitated effective discussions in our large class. Time spent

per question varied, but small group discussions lasted 5-7

minutes each. Sometimes, for challenging concepts, the instructor

extended discussion into a mini-lecture or live programming

demo. Here, timing is critical. The lecture or demo comes when

students are primed to incorporate new knowledge into their

existing understanding. Students gained credit for responding, not

for correctness. To promote group engagement, students were

assigned to groups of three, and their group was required to reach

consensus and vote the same answer for the “group” votes.

3.2.4 Labs
Students went to 2-hour closed labs weekly. In introductory

programming courses in the US, the work required of students in

“closed” lab sessions often represents their first real engagement

with new topics. Prior to this, students will usually have only

attended lecture or read sections from a textbook. In contrast,

students here have already had significant engagement with and

feedback on new topics via homework and in-class discussions.

Furthermore, as is typical in skill development, we can expect the

students to be progressing at different rates as they work through

these developmental exercises – while we expect all students to be

able to complete the course; we acknowledge that learning

breakthroughs are made at different times for different students.

The Alice labs were designed to address both these aspects of

student learning. First, since the students are expected to be well-

acquainted with the new topics, the lab is an assessment of their

mastery of these topics. Second, students choose one of two

options for their lab work. The first option, for more confident

students, specifies simply the number and type of Alice constructs

that must be used in the development of an Alice world, but

leaves the scenario up to the student. The simpler option requires

the student to create an Alice world from a more detailed

specification. However, after the first couple of weeks, these

specifications were more like vague suggestions rather than

specific directions (e.g. “one function should check if a fish is

“too close” to the pollution).

Excel labs (2) involved data analysis of real world datasets (from

the web) and visualization with graphing. The CMU Data and

Story Library provided interesting larger datasets amenable to

“open-ended” student exploration
1
.

1
 Reference thanks to Julian Parris, UCSD.

2
 Adapted by permission from Susan Rodgers, Duke Univ.

“Open” lab hours (where tutors were available for drop in

assistance) were offered extensively (both in the departmental lab

and directly in the study rooms of the dorms). However, both saw

very little use. Anecdotally, students would get help from each

other as 60% of them lived in the same set of co-located dorms.

3.2.5 Exams
For the in-class final exam, all but two questions were multiple-

choice. They were generated by listing the key concepts in the

course, then by developing questions to test understanding via

three cognitive skills: code reading and explanation, code writing

(select code to complete), and rationale (questions seeking to

ascertain appropriate thinking about a concept). The final also

included one open-ended question involving code writing

(requiring an if statement with compound Boolean expression
2
),

and another asking students to analyze a piece of code and “talk

me through” what it will do. An out-of-class final was required

involving questions on students’ perceptions and skills of

computing as well as short open-ended reflection questions

regarding their role as a student in this course, and their

appreciation of computing concepts in everyday software.

3.2.6 Alice Programming Project
For an end of term project students were directed to Make a

digital contribution to communicate your views on an issue facing

society. You will do this by creating an animation or game that

illustrates, educates and/or prompts viewers to think about the

issue and your perspective on the issue. The project was

organized into 3 deliverables, primarily to reduce procrastination.

Students had the option to submit to a last-day-of-class “Alice

Project of the Stars” competition (voting with clickers). The final

deliverable included a reflection where students described what

was most challenging about the project and how their experience

designing software may have changed their experiences with

software, specifically handling software problems.

4. RESULTS

Defining a measurement of results in a general education course

of this nature deserves some consideration. Certainly, culturally

and logistically, a grade must be assigned reflecting the quality of

students’ work and their ability to perform certain tasks. In line

with many US university courses, 50% of the course grade was

derived from performance on exams (midterm and final).

However, we did harbor the elusive goal of developing “life-long

learning” skills and changed attitudes regarding computing. We

were teaching Alice and Excel, but hoped these would impart

some of the key computational thinking competencies. This led

us to include some assessments where students reflected (openly)

on their perception of what value components of the course had

been or would be for them in the future. Here we generally report

ad-hoc analysis in order to give a feel for the breadth and variation

of student experiences. We characterize common themes from the

dataset. We seek to show the potential impact of the course, not

necessarily the percentage of students with specific experiences.

4.1 Exam Performance

The mean on the in-class final exam was 80% with a standard

deviation of 11%. On the code writing question 16% scored

perfectly and a total of 40% scored at a level we felt matched a

good ability to program (>=6/8). 18% show little ability to write

2
 Adapted by permission from Susan Rodgers, Duke Univ.

code on paper (<=2/8). The average on the code analysis question

of a faulty piece of code was much better at 80%. 64% of

students scored perfectly which indicated they described the error

and how to fix it. 75% of students at least described the error.

4.2 How will computing concepts help you?
One of our first hints that students were getting much more from

the course than “just programming” came from a reflection

required in the last Alice programming lab. We asked them to tell

us the ways in which the computing concepts learned in Alice

might help them in the future (acknowledging that knowledge of

Alice itself was unlikely to be beneficial). Via an ad-hoc review

of answers we found five general areas of interest in students’

answers (and we readily admit that a few students answered in

uninspired ways: “I could use my knowledge from cse3 to make

more creative presentations in a job I might have.”). In future
work we will perform a more extensive analysis of this data.

• Confidence: It has given me confidence that I’m able to

figure things out on a computer that I never would have
thought that I could do.

• Changed Views of Technology: Now, every time I find myself

playing a video game, I actually understand what makes it

work. That these games are not magically produced, that it

takes time, skill, and sufficient funds to create these games. I
appreciate these games more than before taking this class.

• Analysis Skills: Programming allows a person to think more

logically, thinking in order and debugging allows the user to

gain valuable problem solving skills. Aspiring to go to law

school, thinking logically is extremely important and I think
this has helped.

• Communication Skills: In today’s technologically-centered

world, using a program like Alice gives us valuable exposure

to discussing things technically with other people and
explaining clearly what we are trying to do.

• Organization Skills: I think that some of these concepts will

help me organize my life better. After all, life is a series of

choices modeled by if-else statements. If only I do one thing,

I gain access to another thing ... These decisions which used

to be in the greyish region for me have suddenly become

black-and-white.

4.3 Alice Project and the Impact on Students’

General Software Experiences
Programming skills, as evidenced by the Alice project, varied

greatly. While the average grade was 85% with a st. dev. of 17%,

some students' work was simply superb and others' work showed

lack of ability to implement (without direction) basic concepts.

However, driven by the desire to determine the potential long-

lasting impact of the experience on students, we asked them to

reflect on how they now dealt with software problems in light of

their experience as software developers. We asked: Now that you

have designed and developed your own piece of software, how do

you react to problems in software you use? How do you feel

about encountering those problems? How do you deal with those

problems? You may find it helpful to pick a particular experience

you have had, and talk about that.

• Troubleshooting: This class in general has helped me learn

how to troubleshoot a lot more and try to figure out a

problem on my own before anything else. Just the other day

my older brother was working with excel and he had to count

the amount of numbers within different age ranges and he

was coming up short by one number every time, so I showed

him how to use the filter so he could count it easier.

• Understanding: I now understand some of error messages

that my software gives me. Such as when it tells me

something was set to false. Coincidentally, my laptop

completely crashed recently and when I was running a

diagnostic check on it, I was able to read some of the error

script it gave me, such as the location, duration, and what

happened (like if something was set to false).

• New skills because of increased confidence: Software is

completely a different world from what I've come to know…

In a way, I feel like the computational reality makes one feel

completely empowered; always in control.

Now I try to find the root of my software issues rather than

throwing my hands up and determining that it's just a system

error that I can't beat. I feel a lot more confident in my

interaction with software and can definitely see myself

finding more solutions than just "hit restart."

• Seeing concepts in real world: Now I can think about

software [sic] has a logic-based system that will usually

work provided that all of its "If"s are satisfied. When I start

to think that way, I can properly analyze the conditions that

might not be met instead of assuming that someone

programmed it wrong.

• Respect for field: I now see problems in software to be more

expected. After having to build a world and having to go

through hours of trial and error, I see how easy it is for

software to malfunction or simply not work as expected.

I am now slightly more aware of how difficult programming

is, and I hope never again to take for granted all the great

technology I am surrounded by.

4.4 Impact of Instructional Design
The instructional design of the course was seemingly integral in

students’ development of analysis and communication skills.

However, its tenets and expectations of students’ involvement are

likely to be a grand departure from the expected student

experience. How did they experience this? We asked the

following: Compare and contrast your role in *this* course's

lecture with other "standard" university lectures. That is, what are
you here to do in this lecture? In other lectures?

An ad-hoc analysis found students speaking about doing at least

one of the following things: participating actively in the course,

sharing perspectives/learning/insights with others, studying ahead

of time, thinking about and understanding the material, teaching

myself/others, listening carefully and focusing, applying
knowledge learned earlier, and (a few of) sleeping/being bored.

Some students were quite fantastically impressed with the

instructional design and its positive impact and 77% of students

would recommend other instructors use this approach in
computing courses.

• Through this course, I was able to learn much more than

expected, solely due to the strong emphasis on required

participation and gradual development. The constant testing

of clicker questions and applied knowledge in the labs

requires a steady engagement with the subject, making it

much easier to retain the topics learned.

• I have not yet encountered a class that encouraged such

interest in the subject matter.

• At the time I may not have liked this teaching strategy, but

now I look back I am thankful because I really did learn.

5. DISCUSSION
Although the course curriculum of CSE3 had been somewhat pre-

defined based on local needs of the university, it was a “good fit”

with the stated curriculum/claims of the CS Principles course.

This led the instructor to focus on how CSE3 should be defining a

general requirement for all (university) students. That is, this

would be like “English 101” or “College Algebra” – which in the

US are each part of the general educational requirements in almost

any university, regardless of student major. From that point of

view, the course must focus on a set of long-lasting skills that are

likely to transfer or propagate into future computing and

technology uses. Of the six computational thinking skills

defined for CS Principles it is then clear that analyzing problems

and artifacts and communicating processes and results are key.

The exciting finding through offering the course is that this can

(perhaps even must) be done through “teaching programming”.

It is the predictable, simple interface afforded by Alice that is

necessary to let students get a handle on and experience the logic

of the computer through analysis. It makes clear the level of

specificity and detail at which computers work. However,

especially when considering the traditional university-style

course, it was an instructional design focused on PI that led

students to develop those skills. Indeed, students claim these

skills are the primary outcome of the course, not an ability to

write programs, usually seen as the main outcome of a

programming course.

5.1 CSE3 within the Community
In considering the range of courses in the CS community that fall

into CS0 or other non-“university majors” courses, we define

three variations we’ve seen – as a starting point for discussing the
course reported here:

1. Computing for All: What all humans need to understand

regarding the basics of how computers work in order to

effectively support the further development of society.

2. Introduction to the Field of Computer Science: A conceptual

introduction to the range of areas within computing, as a taster

for further study in the field.

3. Preparation in Programming: A course designed to give

students the flavor of programming and provide a preparation

for a standard CS1 programming course.

From the available literature and our own involvement with this

area, these define a range of common learning goals along with a

varying target audience (all educated people, or interested career

pursuers). In this schema, the original local intention of the

course was evenly split between 1 and 3. While we were more

focused on core computational thinking skills and access to

technology, there was also a need to provide a specific skill (e.g.

programming in Alice) that could be leveraged in subsequent

(non-computing) courses. Additionally, as a pilot of the CS

Principles course, this split across 1 and 3 reflects clearly the 6

computational thinking practices.

However, upon teaching the course (preparation of materials,

interaction with students, etc.), the instructor became aware that

the ability to program itself was of lesser importance. Partially

guided by student reflections, it became evident that the analysis

and communication skills they reported gaining really defined

how one hopes students would grow in such a course. Having a

student make a claim like now when something goes wrong on the

computer, I just work at it and logic it out is clearly a more

satisfying result than I can make an Alice world that tells a story,
especially for those who may never take another CS course.

The truly surprising and exciting result is that these analysis and

communication skills can be developed through the process of

“teaching people to program” – as long as it is embedded in a

supportive instructional design, as used here. This finding makes

a significant contribution to the overall discussion of who should

know what about computing and in what order. Certainly it is

commonly believed that non-programming activities like those

found in CS Unplugged and other similar programmes are good

for students as an introduction to computing. However, this

experience report suggests that the community discuss the benefits

of including programming in curriculum with the scaffolds

described here much earlier – with courses supporting course 2 to

follow on after that. Additionally, we are led to wonder if this

course can actually fully meet the demands of course 1 and 3. We

look forward with interest to following the persistence and

success of students in this course who go on to take our CS1

course in future terms.

6. CONCLUSIONS
We report on the experience of designing and delivering a pilot

AP CS Principles course. The course strives to develop core

computational thinking and skills to benefit all 21st century

citizens – regardless of profession. From our experience, we posit

that, of the six CS Principles computational thinking skills,

analyzing problems and artifacts and communicating processes

and results are key. The exciting finding is that this can (and

perhaps even must) be done through “teaching programming”.

7. ACKNOWLEDGEMENTS
This work was supported by NSF CNS-0938336 and the UK HE

Academy – Information and Computer Sciences.

8. REFERENCES
[1] Crouch, C. H., Mazur, E. Peer instruction: Ten years of

experience and results. Am. J. of Physics 69 (9), 970–977.

[2] Hake, R.R. Interactive-engagement versus traditional

methods: A six-thousand-student survey of mechanics test

data for introductory physics courses. Am J. of Physics 66
(1), 64-74.

[3] Porter, L., Bailey-Lee, C., Simon, B., Cutts, Q., Zingaro, D.

Experience Report: A Multi-classroom Report on the Value
of Peer Instruction, submitted for publication.

[4] Roediger, H.L., Karpicke, J.D.. The power of testing

memory: Basic research and implications for educational
practice. Perspectives on Psychological Science, 1, 181-210.

[5] Simon, B., Kohanfars, M., Lee, J., Tamayo, K., Cutts, Q.

Experience report: peer instruction in introductory
computing, SIGCSE (2010).

