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ALEXANDROV SPACES WITH MAXIMAL RADIUS

KARSTEN GROVE AND PETER PETERSEN

Abstract. In this paper we prove several rigidity theorems related to and
including Lytchak’s problem. The focus is on Alexandrov spaces with curv ≥ 1,
nonempty boundary, and maximal radius π

2
. We exhibit many such spaces that

indicate that this class is remarkably flexible. Nevertheless, we also show that
when the boundary is either geometrically or topologically spherical, then it
is possible to obtain strong rigidity results. In contrast to this one can show
that with general lower curvature bounds and strictly convex boundary only
cones can have maximal radius. We also mention some connections between
our problems and the positive mass conjectures. This paper is an expanded
version and replacement of [14].

Introduction

It is a basic fact that any Alexandrov space X with lower curvature bound 1,
curvX ≥ 1, has diameter, diamX ≤ π and hence radius, radX ≤ π. Moreover, in
case of equality X is a spherical suspension in the first case and the unit sphere in
the second. With a non-positive lower curvature bound k ≤ 0 no such upper bounds
for diameter or radius exist in general. When X has non-empty boundary ∂X and
curvX ≥ 1, then its radius is further restricted to radX ≤ π

2 . In fact, if radX > π
2 ,

then X is homeomorphic to a sphere [13], [26, Corollary 5.2.2]. Again, in the case
of lower curvature bound k ≤ 0, there are no such bounds. It is, however, possible
to control the radius when the boundary is λ-convex. In this case we will see that
indeed there is an r = r(k, λ) such that radX ≤ r (k, λ), where r(1, λ) ր π

2 as
λց 0.

Our aim is to establish rigidity theorems for Alexandrov spaces with boundary
and maximal radius in the situations described above.

The most diverse case is when curvX ≥ 1 and radX = π
2 . The simplest examples

are spherical joins E ∗ S, where E and S are Alexandrov spaces with curv ≥ 1,
radE ≥ π

2 , and ∂S 6= ∅. A special case is when S is a point and E ∗ S becomes
the spherical cone over E. However, there are many more examples. They will
be classified in dimensions at most four in corollary 5.12 using the Topological
Regularity Theorem below.

In general dimensions the following result is very useful for establishing several
interesting rigidity theorems. Recall that when X has curv ≥ 1 and and boundary
∂X 6= ∅, then there is a unique point s at maximal distance ≤ π

2 from ∂X , called the
soul point of X . Also, a point is called regular when its tangent cone is Euclidean.

Theorem (Inner Regularity). Let X be an n-dimensional Alexandrov space with
curv ≥ 1 and ∂X 6= ∅. If radX = π

2 and the soul of X is a regular point, then X
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ALEXANDROV SPACES WITH MAXIMAL RADIUS 2

is isometric to a spherical join Sk (1) ∗ S , where S is an (n− k − 1)-dimensional
Alexandrov space with curv ≥ 1, nonempty boundary, and radS < π

2 .

A natural problem raised by Lytchak asks whether an n-dimensional Alexan-
drov space with curvature ≥ 1 has the property that its boundary has volume
≤ volSn−1 (1). Petrunin answered this in the affirmative in [26, section 3.3.5].
Lytchak further asked what happens when the boundary has maximal volume [21].
Obviously the hemisphere is an example, but so is the intersection of two hemi-
spheres making an angle α < π. We refer to this as an Alexandrov lens and denote
it by Ln

α (note that Ln
π is the hemisphere). The above result can be used to prove

that these exhaust all possibilities.

Theorem (Maximal Volume). Let X be an n-dimensional Alexandrov space with
curv ≥ 1 and ∂X 6= ∅. If vol∂X = volSn−1 (1), then X is isometric to Ln

α for
some 0 < α ≤ π.

This theorem shows that ∂X with its induced inner metric is isometric to the
unit sphere Sn−1. In the special case where X is a leaf space, this result was proved
in [15] and played a key role in confirming the boundary conjecture for Alexandrov
spaces that happen to be leaf spaces as well.

The Inner Regularity Theorem can with the help of [27] be extended in several
ways. First we have a version with slightly more flexibility than the above join
examples and with purely topological assumptions about the boundary.

Theorem (Topological Regularity). Let Xn be an Alexandrov space with curv ≥ 1,
∂X 6= ∅, and radX = π

2 . If ∂X is a topological manifold and a Z2-homology sphere,
then the double is a finite quotient of a join: D (X) = (A ∗B) /G. Here G is a
finite group acting effectively and isometrically on both A and B whose action is
extended to the spherical join A ∗B.

Since ∂X and the space of directions at the soul, SsX , are homeomorphic we
could, like in the Inner Regularity case, have made the topological restrictions on
SsX instead. This helps us show that all examples in dimensions ≤ 4, in fact,
satisfy the conclusion of this theorem even though not all satisfy the topological
assumption. This theorem also suggests that weaker geometric assumptions than
those from the Inner Regularity Theorem might be used to obtain rigidity. The
next result offers a very general geometric condition that guarantees that the space
is a spherical join.

Theorem (Weak Inner Regularity). Let Xn be an Alexandrov space with curv ≥ 1,

∂X 6= ∅, and radX = π
2 . If radSsX > π

2 , then X = Ê ∗ Ŝ, where rad Ê > π
2 and

radSsŜ >
π
2 .

Remark. Note that the concluding geometric restrictions imply that Ê is topologi-
cally a sphere and that Ŝ is topologically a closed disk.

We now turn to the case where curvX ≥ k, in particular allowing k ≤ 0. As
already mentioned this does not yield an upper bound on the radius of X . However,
when the boundary is strictly convex in the sense studied [1], such a bound does
exist. Specifically, one can quantify convexity of the boundary of an Alexandrov
by comparing with strictly convex model spaces. The closed r0-ball B̄k (r0) in the
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simply connected space form of constant curvature k has a boundary that is totally
umbilic: II∂B = λ0g∂B, where λ0 = λ0 (r0, k). Specifically:

λ0 (r0, 0) =
1

r0
,

λ0 (r0, 1) = cot r0,

λ0 (r0,−1) = coth r0.

Definition. We say that an Alexandrov space X has λ0-convex boundary, where
λ0 > 0, provided: for each x ∈ intX and p ∈ ∂X with |xp| = |x∂X | we have

|pq| cos (∠ (−→px,−→pq))−
λ0
2

|pq|2 ≥ o
(

|pq|2
)

for all q ∈ ∂X sufficiently near p.

Here −→pq ∈ SpX denotes the direction at p of a minimal geodesic from p to q and
of length |pq|. The law of cosines shows that B̄k (r0) has λ0-convex boundary in
this sense.

This type of quantified convexity was studied in detail in [1]. We shall use it to
solve the analogue of Lytchak’s problem for a general lower curvature bound and
strictly convex boundary. This was also done with slightly different techniques in
[8] assuming that k ≥ 0.

Theorem. Let X be an Alexandrov space with curvature ≥ k and λ0-convex bound-
ary, where λ20 > max {−k, 0}. If r0 is defined by λ0 (r0, k) = λ0, then radX ≤ r0
and vol∂X ≤ vol∂B̄k (r0). Moreover, if radX = r0, then X is isometric to a
cone CkY with constant radial curvature k; and if vol∂X = vol∂B̄k (r0), then X
is isometric to B̄k (r0).

The questions discussed so far are related to another circle of ideas that come
from the positive mass conjectures. The original general version first formulated
and proved by Miao in [22] is similar to the theorem just mentioned above.

Conjecture. If (M, g) is a Riemannian n-manifold with scal ≥ 0, ∂M = Sn−1(1),
and Π∂M ≥ g∂B(0,1), then M = B(0, 1) ⊂ Rn.

Min-Oo in [23] established the hyperbolic equivalent and also proposed a version
for positive curvature.

Conjecture (Min-Oo [23]). If (M, g) is a Riemannian n-manifold with scal ≥
n(n− 1), ∂M = Sn−1(1), and Π∂M ≥ 0, then M is a hemisphere.

Brendle, Marques, and Neves in [2], however, found a counter example to this
conjecture. But just prior to this example Hang and Wang in [16] proved the
following version.

Theorem. If the scalar curvature assumption is replaced with the stronger condi-
tion: Ric ≥ n− 1, then the conclusion of Min-Oo’s conjecture holds.

It is worth noting that this theorem is indeed extremely sensitive to the condition
that the boundary be smooth. Even with the much stronger condition that sec ≥ 1
the Alexandrov lens Ln

α is an example whose boundary is intrinsically isometric to
Sn−1 (1). Note, however, that the boundary is only convex, not strictly convex in
the sense studied above. Nevertheless, it is not clear if something like Lytchak’s
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problem is true for Riemannian n-manifolds with Ric ≥ n−1 and nonempty convex
boundary.

The proofs employ several important techniques from the theory of Alexandrov
spaces that are explained in section 1. It is interesting to note that some of these
concepts appear to be necessary even when the interiors of the spaces are Riemann-
ian manifolds. Section 2 contains some preliminary results for Alexandrov spaces
with positive curvature and maximal radius. In section 3 we offer several examples
that indicate how intricate and complex such spaces can be. Section 4 includes the
proof of the Inner Regularity Theorem. This is used to resolve Lytchak’s problem
as well as another result related to the main focus of [9]. Section 5 is focused on
establishing the Topological Regularity Theorem, which in turn is used to estab-
lish the Weak Inner Regularity Theorem and a complete classification of positively
curved spaces with maximal radius in low dimensions. Section 6 contains a short
account of the last theorem about Alexandrov spaces with strictly convex boundary.

It is worth pointing out that it is unknown whether the boundary of an Alexan-
drov space is a priori an Alexandrov space, so some care must be taken when
working with conditions that pertain to the boundary.

The authors would like to thank Alexander Lytchak for several helpful comments
on the previous version of this paper, [14], and Vitali Kapovitch for offering a very
efficient proof of theorem 1.1.

1. Alexandrov Geometry Preliminaries

In this section we establish notation and explain the important constructions
from Alexandrov geometry that are needed. The book [3] explains all of the ba-
sic notions and the survey article [26] covers a number of more advanced topics
including the gradient exponential map.

The distance between points p, q in a metric space X is denoted |pq|, or |pq|X if
confusion is possible. In our case this will always be an intrinsic or inner distance
that measures the length of a shortest path joining the points. For an Alexandrov
space TpX denotes the tangent cone at p ∈ X and SpX ⊂ TpX the space of (unit)
directions. Our geodesics and quasi-geodesics are always parametrized by arclength.

The notation
−→
pq ∈ SpX refers to the direction of a minimal geodesic from p to q

and
=⇒
pq ⊂ SpX is the space of all such directions.

If Y is an Alexandrov space with curv Y ≥ 1, then the curvature k cone over
Y , denoted CkY , is the cone Y × [0,∞)/(Y × {0}) (with ∞ replaced by π

2
√
k

when

k > 0) equipped with the metric where |(y, t)(y, s)| = |t − s| and |(y1, t)(y2, s)|
is the distance in the curvature k plane between the end points of a hinge with
angle |y1y2|Y and side lengths t and s. CkY is an Alexandrov space with curvature
bounded below by k. Note that when k > 0 it is possible to define the cone on
Y × [0, π√

k
)/(Y × {0}), but this space is not complete or geodesically convex.

The spherical suspension Σ1Y of Y is simply the double of the spherical cone.
It is also the space of directions of C0Y ×R (equipped with the product metric) at
(c, 0) where c is the cone point of C0Y .

In general, given two Alexandrov spaces X and Y with curv ≥ 1 the metric
product C0X × C0Y is an Alexandrov space with non-negative curvature and its
space of directions at the cone point (c1, c2) is the spherical join X ∗ Y . The
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distances are given by

cos |(x1, r1, y1)(x2, r2, y2)| = cos(r1) cos(r2) cos(|x1x2|) + sin(r1) sin(r2) cos(|y1y2|).

Note that Σ1Y = {0, π} ∗ Y .

Let X be a compact Alexandrov space with curv ≥ k. The gradient exponential
map at p ∈ X

gexpp (k; ·) : TpX → X

is defined on the tangent cone when k ≤ 0 and on the closed ball B̄
(

op,
π

2
√
k

)

⊂ TpX

when k > 0. We can identify this domain with the cone Ck(SpX). With this new
metric the gradient curves can be reparametrized so that gexpp (k; ·) : Ck(SpX) →
X becomes distance nonincreasing.

Along a radial curve in TpX the gradient exponential map follows the direction
of maximal increase for the distance to p. Thus, it follows minimal geodesics until
they hit cut points. In general, it moves in the direction of a point in SqX that is

at maximal distance from
=⇒
qp and at a rate that is specified by both |pq| and how

far
=⇒
qp spreads out. Flow lines terminate at critical points q, i.e., when

=⇒
qp forms a

π
2 -net in SqX . Finally, the gradient exponential map is distance nonincreasing and

gexpp
(

k; B̄ (op, r)
)

= B̄ (p, r)

for all r with the caveat that r ≤ π

2
√
k

when k > 0.

We shall also be using quasi-geodesics. They have several nice properties. Unlike
geodesics they can be defined for all time and there is a quasi-geodesic in each
direction of the space.

The left and right derivatives of a unit speed curve, if they exist, are defined as

ċ+ (t0) = lim
t→t+

0

−−−−−−→
c (t0) c (t)

ċ− (t0) = lim
t→t−

0

−−−−−−→
c (t0) c (t)

Note that even for a differentiable curve in a manifold they point in opposite direc-
tions. Quasi-geodesics always have right and left derivatives.

Functions similarly can have right and left derivatives when restricted to curves.
Moreover, when a distance function is evaluated on a unit speed curve then the left
and right derivatives are always defined.

Perel’man’s stability theorem also gives us the following result for Alexandrov
spaces with boundary.

Theorem 1.1. Consider a compact Alexandrov space X with ∂X 6= ∅. If the
distance r (x) = |x∂X | has a unique maximum at a soul s ∈ X and no other
critical points, then SsX and ∂X are homeomorphic.

Proof by V. Kapovitch. From [18, lemmas 4.7 and 5.2] one obtains a strictly concave
function g near s which has unique maxium at s and whose rescaled level sets are
homeomorphic to SsX . On the other hand by Perel’man’s fibration theorem (see
[19] and [26, section 8 property 7]) we have that the level sets of r that are near
the soul are homeomorphic to ∂X . The interpolated functions rǫ = (1− ǫ) r + ǫg
are also strictly concave near s with a unique maximum at s for all ǫ ∈ [0, 1].
This is a continuous family in ǫ so by Perel’man’s fibration theorem applied to
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(x, ǫ) 7→ (rǫ (x) , ǫ) the level sets are homeomorphic for all ǫ. Considering ǫ = 0, 1
we see that the level sets of r near s are homeomorphic to SsX . �

2. Basic structure

Except for section 6 we will only consider Alexandrov spaces X with curvature
≥ 1. In this section we list some basic properties for such spaces when they have
rad ≥ π

2 .

Proposition 2.1. If radX ≥ π
2 and curvX ≥ 1, then either radSxX ≥ π

2 for all
x ∈ X or X = Σ1SpX, where radSpX < π

2 .

Proof. Assume radSpX < π
2 and select a quasi-geodesic c : [0, π] → X such that

c (0) = p and ∠ (ċ (0) , w) < π
2 for all w ∈ SpX . Let q = c

(

π
2

)

. Then |xq| < π
2

unless |px| = 0, π. In the latter case we are finished. So if no such x exists then
p is the one and only point at distance π

2 from q. This shows that X − B (p, t) ⊂

B̄
(

c (t) , π2 − δ (t)
)

for t < π
2 and t near π

2 . As c :
[

0, π2
]

→ X is now a geodesic
and ∠ (ċ (0) , w) < π

2 , for all w ∈ SpX , it follows from Toponogov comparison that

B̄ (p, t) ⊂ B̄
(

c (t) , π2 − ǫ (t)
)

for t < π
2 . This shows that X ⊂ B

(

c (t) , π2
)

for some
t < π

2 and contradicts that radX ≥ π
2 . �

A set C ⊂ Y in an Alexandrov space is π-convex if any geodesic of length < π
and whose end points lie in C is entirely contained in C. This notion of convexity
should not be confused with the definition of boundary convexity discussed in the
introduction and section 6.

In case X has boundary it will have a unique soul s ∈ X at maximal distance
from the boundary and well known comparison arguments imply that X ⊂ B̄

(

s, π2
)

(see also [26]). This shows that gexps (1; ·) : C1 (SsX) → X is onto. Since this map
is also distance nonincreasing it follows that radSsX ≥ π

2 when radX = π
2 (see

also proposition 2.1).
In the extreme case where radX = π

2 we define the edge of X to be the dual set
to s:

E =
{

x ∈ X | |xs| =
π

2

}

.

It has the following important property.

Proposition 2.2. If X has boundary and radX = π
2 , then s is at maximal distance

from E.

Proof. We first show that when s is a critical point for the distance to E, then s is in
fact at maximal distance from E. To see this select x ∈ X and a geodesic direction
−→sx ∈ SsX . If s is critical for E, then there is a geodesic direction −→se ∈ SsX with
e ∈ E such that ∠ (−→sx,−→se) ≤ π

2 . Toponogov comparison then implies that |xe| ≤ π
2

as |xs| , |es| ≤ π
2 .

Thus we need to show that when s is not critical, then radX < π
2 . For that

choose a unit speed geodesic c (t) such that ċ (0) ∈ SsX forms an angle < π
2 − ǫ

with every direction −→se ∈ SsX and e ∈ E. We can now find an open neighborhood
U ⊃ E such that the directions U ′ ⊂ SsX for minimal geodesics from s to points
in U also form an angle < π

2 − ǫ with ċ (0). By compactness there exists δ > 0 such

that |sz| ≤ π
2 −δ for all z /∈ U . So we can in addition fix t such that |c (t) z| ≤ π

2 −
δ
2
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for all z /∈ U . On the other hand if −→sy ∈ SxX denotes a direction to a y ∈ U , then
Toponogov comparison implies

cos |c (t) y| ≥ cos t cos |sy|+ sin t sin |sy| cos
(π

2
− ǫ

)

.

Here the left-hand side is uniformly positive for any fixed small t, so there is an
ǫ1 > 0, such that |c (t) y| ≤ π

2 − ǫ1 for all y ∈ U . This shows that radX < π
2 . �

We can now define the spine as the dual set to E by

S =
{

x ∈ X | |xE| =
π

2

}

.

By standard comparison, the complement of any open π
2 ball in an Alexandrov space

X with curvX ≥ 1 is π-convex (even relative to ∂X if contained in there, since
geodesics in the boundary are quasi-geodesics in X). Moreover, another simple
comparison argument shows that the distance functions to E and to S have no
critical points in X − (E ∪ S). In summary

Proposition 2.3. Assume that X has curv ≥ 1, nonempty boundary and radX =
π
2 . It follows that

(1) E ⊂ X is closed and π-convex in both X and ∂X.
(2) S is closed, π-convex in X, and radS < π

2 .
(3) E, respectively S, is a deformation retract of X − S, respectively of X −E
(4) E, respectively S∩∂X, is a deformation retract of ∂X−S∩∂X, respectively

of ∂X − E

Concrete deformations are provided by the gradient flows for the distance functions
to S and E respectively, preserving the extremal set ∂X.

We will now see that E 6= ∂X if and only if dimS > 0, in which case ∂S 6= ∅.

Lemma 2.4. Assume that X has curv ≥ 1, nonempty boundary, and radX = π
2 .

If E 6= ∂X, x ∈ S, and q ∈ ∂X is closest to x, then q ∈ S. In particular, ∂S 6= ∅.

Proof. By the choice of q, ∠ (−→qx,−→qe) ≤ π
2 for any −→qe, e ∈ E. As |xe| = π

2 and
|xq| < π

2 , this implies |eq| = π
2 . Thus q ∈ S. In particular, the closest points in ∂X

to the soul s lie in S and hence in ∂S. �

Remark 2.5. This shows that S ∩ ∂X is nonempty provided E 6= ∂X but not that
∂S ⊂ ∂X . We will construct examples (3.6, 3.9, 3.10) where the soul s ∈ ∂S. In
particular, s need not be the soul of S.

In any case, the distance function to ∂X restricted to S agrees with the distance
function in S to S ∩ ∂X . Thus

Proposition 2.6. The distance function to S ∩ ∂X on S is strictly concave and
has its maximum at s. In particular, S is homeomorphic to the cone on S ∩ ∂X.
Moreover, s is the soul of S if and only if S ∩ ∂X = ∂S, and if not s ∈ ∂S.

Remark 2.7. When S ∩ ∂X 6= ∂S, then ∂S = (S ∩ ∂X)∪ (∂S ∩ intX). In this case,
S ∩ ∂X is a face of the boundary ∂S, and s is the soul point of S relative to this
face.

We have one more simple general observation about S.

Proposition 2.8. When dimS = 0, then E = ∂X and X = C1E = C1∂X.
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Proof. Proposition 2.3 shows that any gradient curve for E ends in S. If we start
in a direction of ∂X , then the gradient curve will stay in the extremal set ∂X .
Therefore, it ends in a point ∂X ∩ S. This is clearly not possible when S = {s}, so
it follows that E = ∂X .

Next we give the details of the rigidity statement along the same lines as in
the proof of theorem 6.7. Consider f∂ (x) = sin |x∂X | and f1 (x) = 1 − cos |xs|.

These functions satisfy f̈∂ (x) ≤ − sin |x∂X | (see [26, theorem 3.3.1]) and f̈1 (x) ≤
cos |xs|. Since every point on the boundary is at distance π

2 from s, it follows that
|x∂X |+ |xs| ≥ π

2 . Hence,

f̈∂ (x) + f̈1 (x) ≤ − sin |x∂X |+ cos |xs|

≤ − sin |x∂X |+ cos
(π

2
− |x∂X |

)

= 0.

On the other hand

f∂ (x) + f1 (x) = sin |x∂X |+ 1− cos |xs|

≥ sin |x∂X |+ 1− cos
(π

2
− |x∂X |

)

= 1

with equality holding for any x that lies on a geodesic from s to ∂X . The minimum
principle then shows that f∂ + f1 = 1 on all of X . This shows that the gradient
exponential map gexps (1; ·) : C1 (SsX) → X is an isometry. �

Proposition 2.9. Let X be an Alexandrov space with curv ≥ 1, nonempty bound-
ary, and rad = π/2. It follows that

(1) the gradient curves for r (x) = |x∂X | that start in E are minimal geodesics
from E to s,

(2) radE ≥ π
2 .

Proof. Let c : [0, L] → X be a gradient curve for r reparametrized by arclength
with c (0) ∈ ∂X and c (L) = s. We will use comparison along this gradient curve
as in [26, lemma 2.1.3]. To that end consider f (t) = sin (r ◦ c) and note that c is

clearly also a gradient curve for f . This implies f̈ + f ≤ 0 in the support sense.
Since f (0) = 0 this shows that f (t) ≤ ḟ (0) sin t. As f ≥ 0, this implies that L ≤ π.
Define g (τ) = f (L− τ) and note that also g̈ + g ≤ 0 in the support sense. This
time

g (τ) ≤ g (0) cos τ + ġ (0) sin τ.

At τ = L this becomes

0 ≤ g (0) cos (L) + ġ (0) sin (L) ,

where g (0) > 0 and ġ (0) ≤ 0 as r, f , and hence g are maximal at s. Since
L ≤ π, this forces L ≤ π

2 . On the other hand we always have L ≥ |s c (0)| so when
c (0) = e ∈ E this shows that L = π

2 and that the gradient curve must be a minimal
geodesic from e to s. This proves (1).

For (2) we use that E consists of all points at distance π
2 from s. Moreover,

by (1) of Proposition 2.3 intrinsic distances in E are the same as the extrinsic
distances in X . Assume that B (E, ǫ) ⊂ B

(

e, π2
)

. In (1) we saw that there is a

minimal geodesic c :
[

0, π2
]

→ X from s to e which is a reparametrized gradient
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curve for r. We first claim that −→es = ċ−
(

π
2

)

∈ SeX is the soul. In fact, by first
variation, der (ξ), ξ ∈ SeX is maximal when ξ is the soul of SeX (see [26, definition
1.3.2 ]). Thus, ∠ (w,−→es) ≤ π

2 for all w ∈ SeX and by Toponogov comparison

B (E, ǫ) ⊂ B
(

c (t) , π2
)

for all t > 0. However, also X − B (E, ǫ) ⊂ B
(

c (t) , π2
)

for
sufficiently small t. This shows that radX < π

2 . �

As an immediate consequence we have

Corollary 2.10. When dimE = 0, then X = Σ1S.

Proof. Since E is π-convex and has rad ≥ π
2 it follows that E = {0, π}. Thus

diamX = diamE = π and the result follows. �

Define E′ ⊂ SsX as the directions −→se, e ∈ E, that correspond to the gradient
curves for r as in part (1) of proposition 2.9. Note that we have not excluded the
possibility that there might be other minimal geodesics from s to points in E that
do not correspond to such gradient curves.

Lemma 2.11. E′ and E are isometric via the spherical gradient exponential map.
Consequently, E′ ⊂ SsX is closed, convex, and radE′ ≥ π

2 .

Proof. The goal is to show that the reparametrized gradient curves for r that start
in E and end in s form rigid constant curvature 1 triangles along minimal geodesics
in E. As these curves are minimal geodesics it follows that they are also gradient
curves for the distance to s. This will show that the gradient exponential map
yields an isometry from E′ to E.

The proof uses the parallel translation construction from [25]. Consider a mini-
mal geodesic c (τ) : [0, b] → E and fix a gradient curve reparametrized by arclength
from c (τ0) to s for some τ0 ∈ (0, b). As c is at constant distance π

2 from s, there

must be a rigid geodesic triangle c (τ, t) : [0, b]×
[

0, π2
]

→ X , where t 7→ c (τ, t) is
a unit speed geodesic from c (τ) to s and t 7→ c (τ0, t) is the given reparametrized
gradient curve for r (see [12]). There are choices involved in the construction of par-
allel translation, however, inside the rigid triangle the field dc

dt (τ, 0) is intrinsically
parallel. Therefore, regardless of other choices, we can always start by declaring
that the constructions in [25] map dc

dt (τ1, 0) to dc
dt (τ2, 0) for τ1,2 ∈ (0, b). Thus

we can assume that parallel translations Pτ : Sc(τ0)X → Sc(τ)X preserve the rigid
triangle for all τ ∈ (0, b). As Pτ is also an isometry it follows that it must map
the soul dc

dt (τ0, 0) ∈ Sc(τ0)X to the soul of Sc(τ)X . This shows that the direction
dc
dt (τ, 0) ∈ Sc(τ)X is the soul for any τ ∈ (0, b) and that t 7→ c (τ, t) is in fact the
gradient curve from c (τ) to s. By continuity of gradient curves this will also be the
case for τ = 0, b. This proves the claim. �

This lemma immediately tells us that

diamE′ = diamE ≤ diamX.

This will be crucial for the proof of the Interior Regularity and Maximal Volume
Theorems.

Before turning to the proofs of the theorems in the introduction we present
examples that illustrate various phenomena discussed up till now.
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3. Examples

The first result gives an easy way of checking that that the radius of the examples
below indeed are π

2 .

Proposition 3.1. Assume that A,B ⊂ X are convex subsets such that

|ab| =
π

2
and |Ax|+ |xB| =

π

2

for all a ∈ A, b ∈ B, and x ∈ X. If radB ≤ π
2 and radA ≥ π

2 , then radX = π
2 .

Proof. Clearly X ⊂ B̄
(

b, π2
)

for any b ∈ B. We claim that for each x ∈ X , there

exists a ∈ A with |xa| = π
2 . By assumption there is a geodesic c :

[

0, π2
]

→ X such

that c (0) ∈ A, c
(

π
2

)

∈ B, and x = c (t) for some t. Let a ∈ A be chosen so that

|a c (0)| = π
2 . Since A is at constant distance π

2 from c
(

π
2

)

we obtain totally geodesic
triangles that contain c and a. In each of these triangles the intrinsic distance from
x to a is π

2 . These triangles are uniquely determined by a minimal geodesic from
x to an interior point on a geodesic from c (0) to a (see [12]). If we select the point
very close to a, then we obtain a contradiction provided |xa| < π

2 . �

Remark 3.2. Note that any spherical join A ∗ B with radB ≤ π
2 and radA ≥

π
2 satisfies the conditions of the proposition. Below we give examples which are
quotients of such joins but not themselves spherical joins. Moreover, in the special
case of a join the conditions are necessary in the sense that when radA, radB < π

2 ,

then radA ∗B < π
2 . The sphere of radius 1

2 , X = S
n
(

1
2

)

, with A,B being a pair of
antipodal points is an example that has radX = π

2 ; satisfies the first condition in
proposition 3.1; while radA = radB = 0.

We start with a simple example to show that one cannot always expect to obtain
a submetry X →

[

0, π2
]

when curv ≥ 1 and diam = π
2 .

Example 3.3. Consider an ellipse X given by

x2

a2
+
y2

b2
+
z2

c2
= 1,

where 1 > a > b > c > 0. The smallest curvature is obtained at z = ±c and is
given by c2

a2b2 . We select c = 1
4 and b = 1

3 . In order to have curvature ≥ 1 we then

need a < 3
4 . The diameter of the ellipse is the distance between the two points

x = ±a. This distance is half the perimeter of the ellipse

x2

a2
+
z2

c2
= 1

and can be estimated by

π

2
(a+ c) < diamX < 2 (a+ c) .

When a = 3
4 we obtain diamX > π

2 , while a = 1
3 gives diamX < 7

6 <
π
2 . So for

some a ∈
(

1
3 ,

4
3

)

we obtain an ellipse with curv ≥ 1 and diam = π
2 . This gives an

example where there is no submetry X →
[

0, π2
]

.

The remainder of the section contains various examples of Alexandrov spaces
with nonempty boundary, curv ≥ 1, and rad = π

2 .
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Example 3.4. The most basic construction is a spherical join S ∗E, where S has
curv ≥ 1, ∂S 6= ∅, radS < π

2 ; and E has curv ≥ 1, ∂E = ∅, radE ≥ π
2 . To see

how we might obtain such a decomposition consider a spherical join [0, π] ∗ [0, π]
where both factors have boundary and radius π

2 . This space has radius π
2 and can

be rewritten as follows:

[0, π] ∗ [0, π] = [0, π] ∗
({π

2

}

∗ {0, π}
)

=
(

[0, π] ∗
{π

2

})

∗ {0, π}

=
([

0,
π

2

]

∗ {0, π}
)

∗ {0, π}

=
[

0,
π

2

]

∗ ({0, π} ∗ {0, π})

=
[

0,
π

2

]

∗ S1 (1) .

Similarly, we have

[0, α] ∗ [0, π] =
(

[0, α] ∗
{π

2

})

∗ {0, π}

= Σ1

(

[0, α] ∗
{π

2

})

.

Example 3.5. Assume we have an example X = S ∗ E as above and a compact
group G that acts isometrically and effectively on S and E. This action is naturally
extended to S ∗E in such a way that it preserves the slices S×{t}×E at constant
distance from S and E. On these slices it is the diagonal action by G on S × E.
This leads to a new Alexandrov space X/G. Note that G preserves ∂X and ∂S
and consequently also the common soul of both spaces. In particular, E/G ⊂
(∂X) /G is at maximal distance π

2 from the soul and E/G and S/G are dual sets
in X/G. It follows from proposition 3.1 that radX/G ≥ π

2 provided radE/G ≥ π
2 .

Topologically, S ∗ E is a cone over ∂X = (∂S) ∗ E, where the action fixes the
soul and preserves the boundary. The quotient is likewise a topological cone over
(∂X) /G.

Below we offer some concrete examples of this construction.

Example 3.6 (Projective Lenses). Consider E = {0, π} and S = [−α, α] , α < π
2 .

Let G = Z2 be the natural reflection on both spaces. Note that S∗E = Σ1 [−α, α] =
L2
2α looks topologically like a hemisphere. The action fixes 0 ∈ [−α, α] and acts

like the antipodal map on ∂ (S ∗ E) = Σ1 {−α, α} = S1 (1). The quotient looks
topologically like a cone with vertex 0. The boundary has one point at distance π

2
from 0. The issue is that rad (E/G) < π

2 and rad (X/G) < π
2 .

More generally one can consider the Z2 quotient of the Alexandrov lens Ln
2α =

Sn−2 (1) ∗ [−α, α] (cf. also [9]). When n > 2, this space will have rad = π
2 and

boundary isometric to RPn−1.

Example 3.7 (Edge with Nonempty Boundary). Consider S = (Σ1 [−α, α]) /Z2

as above and define X = S1 (r) ∗ S, where r ∈
[

1
2 , 1

]

. The soul of X is the soul of

S and E = C1S
1 (r). This is an example where E has nonempty boundary.

Further examples that indicate the complexities in trying to classify spaces with
maximal radius can be obtained as follows:
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Example 3.8 (Higher Dimensional Spines). Select E = S1 (1) and S = B (p, r) ⊂
S2 (1), where r < π

2 . Let G = Z2 be a rotation by π on both S and E. This gives

a 4-dimensional example where the boundary is homeomorphic to RP3. The same
can be done with E = Sn (1) and S = B (p, r) ⊂ Sm (1), and G = Z2 the antipodal
map on both S and E, giving an n +m + 1-dimensional example with boundary
homeomorphic to RPn+m.

Example 3.9 (Spines with Soul on Boundary). Select E = S1 (1) and S =
B (p, r) ⊂ S2 (1), where r < π

2 . Let G = Z2 be a rotation by π on E and a reflection
on S. This gives a 4-dimensional example where the boundary of S/Z2 is connected
and contains the soul. The boundary is homeomorphic to a suspension ΣRP2. As
in the previous example we can choose E = Sn (1) and S = B (p, r) ⊂ Sm (1),
with G = Z2 action on E as the antipodal map and on S as a reflection (or any
other isometric involution). The resulting example is n +m + 1-dimensional with
boundary homeomorphic to Σm−1RPn+1.

In both of these examples the key is that S is an Alexandrov space with curvature
at least 1, non-empty boundary and radius r < π

2 , and with an isometric involution.

In corollary 5.12 we will show that above examples exhaust all the possibilities
in dimensions ≤ 4, while the next examples shows that one can have more complex
behavior in dimensions ≥ 5.

Example 3.10 (Dual Pairs of Nonmaximal Dimension). Select E = S3 (1) and
S = B (p, r) ⊂ S2 (1), where r < π

2 . Let G = S1 be the Hopf action on E and
rotation around p on S. This gives a 5-dimensional example that is not a finite
quotient of a spherical join and with boundary homeomorphic to CP2.

4. Interior regularity and Lytchak’s problem

We need the following result for convex subsets of the standard sphere.

Proposition 4.1. If A ⊂ Sn−1 (1) is closed, convex and has radA ≥ π
2 , then

diamA = π.

Proof. In case ∂A = ∅, the radius condition is redundant and A is totally geodesic
unit sphere or two antipodal points.

In general note that radA < π
2 is equivalent to A lying in an open hemi-

sphere. Since A is convex we have that it lies in a closed hemisphere H . In
case rad (A ∩ ∂H) < π

2 it follows that we can move H so that A lies in an open
hemisphere. In this way we obtain a convex subset A ∩ ∂H ⊂ ∂H inside a lower
dimensional sphere with radius ≥ π

2 . This ultimately reduces the problem to the

trivial case: A ⊂ S
0 (1), where the radius condition forces A = S

0 (1). �

Corollary 4.2. If SsX = Sn−1 (1), then diamE′ = π.

Proof. As E′ ⊂ S
n−1 (1) is closed, radE′ ≥ π

2 , and convex, the result follows from
the previous proposition. �

We are now ready to complete the proof of the Interior Regularity Theorem from
the introduction.

Theorem 4.3. Let X be an n-dimensional Alexandrov space with curv ≥ 1 and
∂X 6= ∅. If radX = π

2 and the soul of X is a regular point, then X is isometric

to a spherical join Sk (1) ∗ S , where S is an (n− k − 1)-dimensional Alexandrov
space with curv ≥ 1, ∂S 6= ∅, and radS < π

2 .
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Proof. The assumption that the soul is regular means that SsX = Sn−1 (1). From
the preceding corollary we know that X = Σ1SpX for some p ∈ E ⊂ ∂X . Further
note that the soul s lies in the slice

{

π
2

}

×SpX and also corresponds to the soul of
SpX . Moreover as

S
n−1 (1) = SsX = SsΣ1SpX = Σ1SsSpX

it follows that SpX also has the property that its soul is a regular point. When
radSpX < π

2 we have obtained the desired decomposition, otherwise the construc-
tion can be iterated until one reaches the desired decomposition. �

From this we deduce the rigidity part of Lytchak’s problem by first observing
the following reformulation of the results in [26, 3.3.5].

Proposition 4.4. Let X be an n-dimensional Alexandrov space with curv ≥ 1,
∂X 6= ∅, and s the soul of X. If voln−1 ∂X = voln−1 S

n−1 (1), then radX = π
2 ,

X = B̄
(

s, π2
)

,

gexps (1;SsX) = ∂X = ∂B̄
(

s,
π

2

)

,

and SsX is isometric to Sn−1 (1).

Proof. It follows from Petrunin’s solution to Lytchak’s problem [26, 3.3.5] that
radX ≤ π

2 . Similarly, if r ≤ π
2 and X = B̄ (p, r) for some p ∈ M , then ∂X ⊂

gexpp
(

1; ∂B̄ (p, r)
)

. In particular, as gexpp (1; ·) is distance nonincreasing:

voln−1 (∂X) ≤ voln−1

(

gexpp
(

1; ∂B̄ (op, r)
))

≤ voln−1

(

∂B̄ (op, r)
)

≤ voln−1 S
n−1 (1) .

Here equality can only hold when r = π
2 and in that case we can use X = B̄

(

s, π2
)

.

Moreover, ∂X = gexps
(

1; ∂B̄
(

s, π2
))

as otherwise ∂B̄
(

os,
π
2

)

∩ gexp−1
s (intX) is a

nonempty open set and that forces voln−1 (∂X) < voln−1

(

gexps
(

1; ∂B̄
(

os,
π
2

)))

.

Finally, we know that SsX = ∂B̄
(

os,
π
2

)

also has maximal volume, showing that

SsX is isometric to Sn−1 (1). �

From 4.3 it follows that when voln−1 ∂X = voln−1 S
n−1 (1), then ∂X is isomet-

ric to Sk (1) ∗ ∂S , where S is an (n− k − 1)-dimensional Alexandrov space with
curv ≥ 1. This is isometric to Sn−1 (1) if and only if S = [0, α]. Consequently,
we have answered Lytchak’s problem as in the Maximal Volume Theorem from the
introduction.

Corollary 4.5. Let X be an n-dimensional Alexandrov space with curv ≥ 1 and
nonempty boundary. If vol∂X = volSn−1 (1), then X is isometric to Ln

α for some
0 < α ≤ π.

These results can be used to complement (if not complete) the main theorem in
[9].

Proposition 4.6. If Xn is an Alexandrov space with curv ≥ 1, radX = π
2 , and

boundary ∂X = M that is a Riemannian manifold and a topological sphere with
sec ≥ 1, then M = S

n−1 (1). Consequently, X is an Alexandrov lens.
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Proof. Suppose ∂E 6= ∅. Since E is a π-convex subset of M with radE ≥ π
2 it must

have radius π
2 and by the Regularity Theorem 4.3 E becomes a join with a unit

sphere. In particular,
π = diamE ≤ diamM

and by Toponogovs maximal diameter theorem M = Sn−1 (1).
It remains to consider the case where E is a smooth totally geodesic submanifold

of M with rad ≥ π
2 . Now M ∩ S is a π-convex subset of M and dual to E in

the sense of [11]. The arguments in [11] show that M ∩ S is a smooth totally
geodesic submanifold of M without boundary. Since M is topologically a sphere
with nontrivial dual submanifolds it follows again from [11] that all points in M −
(E ∪ (S ∩ M)) lie on a unique minimal geodesic of length π

2 from E to S ∩M .
Further, for each x ∈ S ∩M the corresponding map from the normal sphere to
S ∩M at x to E is a Riemannian submersion (and likewise for points in E). The
classification of Riemannian submersions from spheres (cf. [11, 29]) and the fact
that M is a topological sphere implies that M = Sn−1 (1). �

5. Rigidity from Topology

In this section we discuss several more general results for Alexandrov spaces
Xn with curv ≥ 1, ∂X 6= ∅, and maximal radius rad = π

2 . These include the
generalizations to the inner regularity theorem mentioned in the introduction and
lead to a classification in dimensions ≤ 4.

For the purposes of this section we shall need an improved dual set decomposition
of X .

Proposition 5.1. For an Alexandrov space Xn with curv ≥ 1, ∂X 6= ∅, and
radX = π

2 there exists a dual space decomposition Ê, Ŝ ⊂ X with the properties

that Ê ⊂ E, ∂Ê = ∅, rad Ê ≥ π
2 , S ⊂ Ŝ, and ∂Ŝ 6= ∅.

Proof. When ∂E = ∅ there is nothing to prove. Otherwise we have radE = π
2

and E itself admits a dual space decomposition E1 ⊂ ∂E, S1/2 ⊂ E. Define

S1 =
{

x ∈ X | |xE1| ≥
π
2

}

. Note that S, S1/2 ⊂ S1. Thus any point at distance π
2

from S1 must lie in E and hence also in E1. This shows that E1, S1 ⊂ X are dual
to each other. By construction radE1 ≥ π

2 and S1 ∩∂X 6= ∅. We can now continue
this procedure until the desired decomposition is reached. �

Remark 5.2. Note that we haven’t claimed rad Ŝ < π
2 .

Our rigidity results depend on the following version of Lefschetz duality.

Theorem 5.3. Assume Z is a compact connected ANR that is a Z2-homology
sphere, and A,B ⊂ Z are disjoint, compact, connected, and ANR. If B ⊂ Z −A is
a deformation retract and Z −A is a topological n-manifold, then

Hq (B;R) ≃ Hn−1−q (A;R) , q = 1, ..., n− 2.

Proof. It follows from Lefschetz duality and the fact that A and Z are ANRs that
for all q

Hq (Z −A;Z2) ≃ Hn−q (Z,A;Z2) .

The fact that Hp (Z;Z2) = 0 for p = 1, ..., n− 1 shows, via the long exact sequence
for relative cohomology, that

Hn−q (Z,A;Z2) ≃ Hn−1−q (A;Z2) , q = 1, ..., n− 2.
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The fact that B ⊂ Z −A is a deformation retract then implies the claim. �

We require some extra notation. For a convex subset A ⊂ X of an Alexandrov
space we define the normal space at a ∈ A as

NaA =
{

v ∈ SaX | ∠ (v, w) ≥
π

2
for all w ∈ SaA

}

.

By first variation any unit speed geodesic that starts in a and minimizes the distance
to A has initial velocity that lies in NaA.

Lemma 5.4. Assume Z = Z̄/H is an Alexandrov space with curv ≥ 1 and ∂Z = ∅,
where H is a finite group of isometries, Z̄ is a closed topological n-manifold that
is a Z2-homology sphere, and an Alexandrov space with curv ≥ 1. If A,B ⊂ Z
form a dual pair and ∂A = ∅, then there exists x ∈ B, y ∈ A and finite group,
G, that acts effectively and isometrically on both NxB and NyA, such that Z =
(NxB ∗NyA) /G.

Proof. The goal is to prove that

dimA+ dimB = n− 1

and that no points in B have distance > π
2 to A and vice versa. This allows us

to use [27, theorem A] when ∂B = ∅ and otherwise [27, theorem B] to reach the
conclusion of the lemma.

We lift the situation to Ā, B̄ ⊂ Z̄. In case Ā (or B̄) is not connected the
components must be distance π apart as Ā is π-convex. This forces Ā to consist
of two points and Z̄ to be a suspension with B̄ = SaX , a ∈ Ā. So we can assume
that dim Ā = p > 0. Since Ā, B̄ form a dual pair it follows that each of these sets
contains the set of critical points for the distance function to the other set. The
gradient flow then shows that Z̄ − Ā deformation retracts to B̄. From ∂Ā = ∅ we
conclude that Hp

(

Ā,Z2

)

= Z2. By Alexander duality we can then conclude that

Hq

(

B̄,Z2

)

= Z2 for p = n− 1− q. This shows that

dim Ā+ dim B̄ ≥ n− 1.

Since B̄ ⊂ Z̄ is convex it follows that ∂B̄ = ∅ as it would otherwise be contractible.
Frankel’s theorem for Alexandrov spaces (see [25]) then shows that

dim Ā+ dim B̄ ≤ n− 1.

Moreover, points in B̄ cannot have distance > π
2 from Ā and vice versa. This

finishes the proof. �

Remark 5.5. It is in general not possible to conclude that Z̄ in lemma 5.4 is a join.
The icosahedral group G acts freely on S3 (1) and hence on S3 (1) ∗ S3 (1) = S7 (1).
While the quotient S7 (1) /G is clearly a homology sphere it is not a join as it is a
space form that is not homeomorphic to a sphere.

Remark 5.6. Note that from the classification obtained in [10] any positively curved
Alexandrov space of dimension ≤ 3 and empty boundary is of the form Z = Z̄/H
where Z̄ is homeomorphic to a sphere. If in addition diamZ = π

2 , then we obtain
two dual sets A,B ⊂ Z. If both of these have boundary, then Z is topologically a
suspension and therefore topologically a sphere or ΣRP2. Otherwise we can apply
the lemma.

We can now prove the Topological Regularity Theorem from the introduction.
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Theorem 5.7. Let Xn be an Alexandrov space with curv ≥ 1, ∂X 6= ∅, and
radX = π

2 . If ∂X is a topological manifold and a Z2-homology sphere, then
D (X) = (X1 ∗X2) /G. Here G is a finite group acting effectively and isometri-
cally on both X1 and X2 whose action is extended to the spherical join X1 ∗X2.

Proof. The idea is simply to apply lemma 5.4 to the double. This requires a few
minor adjustments. We use the dual decomposition for D (X) that consists of

D
(

Ŝ
)

and the copy of F ⊂ D (X) that corresponds to Ê ⊂ ∂X . Here D
(

Ŝ
)

will turn out to be the double of Ŝ, but for now it is simply the preimage of Ŝ.
Note that inside X the gradient flows for Ŝ and Ê preserve ∂X . Thus we obtain

deformation retractions of D (X)−D
(

Ŝ
)

to F and D (X)− F to D
(

Ŝ
)

relative

to ∂X as in proposition 2.3. Moreover, as X is homeomorphic to the cone over the

boundary it follows that D (X)−D
(

Ŝ
)

is a topological n-manifold. Additionally,

D (X) is a Z2-homology sphere by Meyer-Vietoris. This again shows that

Hq (F ;Z2) ≃ Hn−1−q
(

D
(

Ŝ
)

;Z2

)

, q = 1, ..., n− 2.

We can then argue as in the proof of lemma 5.4 that ∂D
(

Ŝ
)

= ∅ and that we

obtain the desired decomposition for D (X). �

Remark 5.8. Note that NxF ⊂ SxD (X) is the double of NxÊ ⊂ SxX . This shows

that NxF , and thus also NyD
(

Ŝ
)

∗ NxF , come with a natural reflection whose

quotient is NxÊ, respectively, NyD
(

Ŝ
)

∗NxÊ. Let R be the natural reflection on

both NxF and D
(

Ŝ
)

= NxF/G. This results in a commutative diagram

NxF
R
→ NxF

↓ ↓

D
(

Ŝ
)

R
→ D

(

Ŝ
)

.

In case G commutes with R on NxF it follows that G will also act on NxÊ. Conse-

quently, also X becomes the quotient of a join: X =
(

NxÊ ∗NyŜ
)

/G. It is not, in

general, clear whether R and G will commute. However, in the case where G = 〈I〉,
I2 = id this is automatically true. To see this assume x, Ix ∈ D (Z) are mapped

to s ∈ D
(

Ŝ
)

. Then Rx,RIx are both mapped to Rs, but the preimage of Rs also

consists of the two points Rx, IRx, this shows that IR = RI.

Next we establish the Weak Inner Regularity Theorem from the introduction.

Theorem 5.9. Let Xn be an Alexandrov space with curv ≥ 1, ∂X 6= ∅, and
radX = π

2 . If radSsX > π
2 , then X = Ê ∗ Ŝ, where rad Ê > π

2 and radSsŜ >
π
2 .

Proof. The radius assumption on the space of directions is first used to see that X is
a topological manifold near the soul. Since X is homeomorphic to a cone it follows
that it is a topological manifold with boundary. Finally, the space of directions is
homeomorphic to a sphere and thus ∂X is also homeomorphic to a sphere. This
shows that we can apply theorem 5.7.

Next we can use it in combination with the following fact: If G is a compact group
acting by isometries on an Alexandrov space Y with curv Y ≥ 1, then rad (Y/G) ≤
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π
2 unless the action is trivial. Moreover, if the action is free, then diamY/G ≤ π

2 .
This is obvious when dimY = 1 and follows in general from an induction argument.
To see this, first note that when diam (Y/G) > π

2 , then there are two orbits that
are at distance > π

2 from each other. Thus one orbit is forced to lie in a π-convex
set that is at distance > π

2 from some point. The action must then have a fixed
point y in this set. It now follows from induction that when the action is nontrivial,
then rad (SyY/G) ≤

π
2 , and hence that rad (Y/G) ≤ π

2 (see e.g. [26, lemma 5.2.1]).

With notation as in the proof of theorem 5.7 we show that D (X) = F ∗D
(

Ŝ
)

.

Let s ∈ D (X) be fixed to be one of the two soul points and note that SsŜ =

SsD
(

Ŝ
)

and SsX = SsD (X).

We first show that Ê′ = NsŜ. Observe that as Ê′ ⊂ NsŜ we have:

dimNsŜ + dimSsŜ ≥ dim Ê + dim Ŝ − 1 = n− 2.

On the other hand as ∂SsŜ = ∅ it follows from [27, theorem A, part (A1)] that

dimNsŜ + dimSsŜ ≤ n− 2.

Thus dim Ê′ = dimNsŜ. In case both spaces are 0-dimensional they will both
consist of two points at distance π apart. This is because both spaces have curv ≥ 1
and rad Ê′ ≥ π

2 while NsŜ ⊂ SsX is π-convex. When both spaces have dimension

> 0, we know that NsŜ is connected as it is π-convex. Since dim Ê′ = dimNsŜ
and ∂Ê′ = ∅ it follows that Ê′ ⊂ NsŜ is an open and closed subset and hence that
Ê′ = NsŜ.

This shows that only one “point” s̄ ∈ NxF ⊂ NyD
(

Ŝ
)

∗ NxF is mapped to

s ∈ D
(

Ŝ
)

⊂ D (X) and hence that s̄ is a fixed point for the isometric action

of G on NyD
(

Ŝ
)

∗ NxF . In particular, G preserves Ss̄

(

NyD
(

Ŝ
)

∗NxF
)

and

SsX =
(

Ss̄

(

NyD
(

Ŝ
)

∗NxF
))

/G. However, this can only happen if G acts

trivially on Ss̄

(

NyD
(

Ŝ
)

∗NxF
)

as radSsX > π
2 . In conclusion, G acts trivially

on NyD
(

Ŝ
)

∗NxF and D (X) is a spherical join. This shows that SsX = Ê′ ∗SsŜ

and rad Ê > π
2 and radSsŜ >

π
2 .

Finally note that the natural reflection on D (X) = D
(

Ŝ
)

∗ F fixes F and has

orbit space X . Thus also X = Ŝ ∗ Ê. �

Remark 5.10. In the context of this result it is worth noting that the icosahedral
group I acts on S5 (1) = S1 (1) ∗ S3 (1) with a quotient S1 (1) ∗

(

S3 (1) /I
)

that is a
topological sphere (see e.g., [5]). This quotient also shows that one can not expect
to use general position or transversality arguments for Alexandrov spaces that are
topological manifolds.

Based on lemma 5.4 we obtain the following generalization of theorem 5.7.

Corollary 5.11. Let Xn be an Alexandrov space with curv ≥ 1, ∂X 6= ∅, and
radX = π

2 . If SsX is a topological manifold that is covered by a Z2-homology

sphere or SsX is homeomorphic to ΣRP2 = S3/Z2, then D (X) = (X1 ∗X2) /G.
Here G is a finite group acting effectively and isometrically on both X1 and X2

whose action is extended to the spherical join X1 ∗X2.
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Proof. The goal is to find a suitable ramified or branched cover of X . In all cases
these will in fact be good orbifold covers. Specifically, for a given Alexandrov space
X we seek an Alexandrov space Y , with the same lower curvature bound, and a
finite group G acting by isometries on Y such that X = Y/G. The relevant results
are established in [17, Theorem A] and [6, Subsection 2.2]. The main technical
tools for showing that Y has the desired properties are proven in [20]. We only
need these covers for positively curved spaces with boundary, i.e., for spaces that
are homeomorphic to cones over the space of directions at the soul X ≃ C1SsX .
This means that the cover Y ≃ C1Ss̄Y and (Ss̄Y ) /G = SsX since G is forced to fix
s̄. Here Ss̄Y is either a covering space over SsX or a good orbifold cover of SsX .

When SsX has a covering space there is only one isolated branch point and the
complement of the soul is convex. This means we can use exactly the same strategy
as in [6, Subsection 2.2] to create the Alexandrov space structure on Y . When SsX
is homeomorphic to ΣRP2 it follows that X is not orientable as it does not have a
local orientation at the soul. This means that we can use the orientation covering
as in [17, Theorem A] as Y .

The assumptions of the corollary now show that Y exists and is a topological
manifold. We can then apply lemma 5.4 to finish the proof. �

Corollary 5.12. When dimX ≤ 4, then X is either isometric to a join or a Z2

quotient of a join, where Z2 acts effectively on both factors of the join.

Proof. Note that when dimX ≤ 2, then either dimE = 0 or dimS = 0. Thus the
result follows from propositions 2.10 and 2.8. Similarly, in higher dimensions we
can assume that both Ŝ and Ê have positive dimensions.

In case dimX = 3, 4 we need to use corollary 5.11 and remark 5.8. First observe
that when dimX = 3, it follows that SsX is homeomorphic to S2 or RP2, while
when dimX = 4 we can use the classification from [10] to conclude that SsX is
homeomorphic to a spherical space form or the suspension over the real projective
plane. This places us in a position where we can use corollary 5.11.

We assume that D (X) = X1 ∗ X2/G, with X1/G = D
(

Ŝ
)

and X2/G = F .

When G is trivial there is nothing to prove so we also assume |G| ≥ 2.
As radF ≥ π

2 we note that when dimX2 = 1 we have G = Z2 and acting as the
antipodal map since ∂F = ∅.

Assume that dimX2 = 2. When diamF = π we obtain a dimension reduction.
In case diamF ∈

(

π
2 , π

)

it follows as in the proof of theorem 5.9 that G has
two fixed points x, y ∈ X2 with |xy| = diamX2. We then have that Sx,yF =

(Sx,yX2) /G = S1
(

1
|G|

)

. Let z ∈ F be any point with |zx| = |zy| < π
2 . The radius

assumption shows that there is z̄ ∈ F with |zz̄| = π
2 . Consider a hinge with vertex

at x (or y). Since diamSx,yF ≤ π
2 the angle of the hinge is ≤ π

2 . But this leads
to a contradiction as either |xz̄| < π

2 or |yz̄| < π
2 which by Toponogov comparison

implies |zz̄| < π
2 . This shows that this situation is impossible.

Finally we consider the case when diamF = radF = π
2 . This allows us to obtain

dual sets A,B ⊂ F where, say, dimA = 0. By lemma 5.4 F = (NxB ∗NyA) /Γ,
where Γ acts effectively on NxB and NyA. Since dimNxB = 0 this implies that
either NxB is a point and Γ is trivial or NxB consists of two points distance π apart
and Γ = Z2. In the former case F = {0} ∗ S1

(

1
2

)

which is impossible as ∂F = ∅.

In the latter case F =
(

Σ1S
1 (r)

)

/ 〈I〉, r ∈
[

1
2 , 1

]

, where I interchanges the two
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suspension points and is an involution on S1 (r). Such an involution is either the
antipodal map or a reflection. When I is a reflection it fixes two points at distance
πr apart which implies that diamF = πr and consequently r = 1

2 . In F consider
two points e, f that form an angle θ at A. By Toponogov comparison

cos |ef | ≥ cos |Ae| cos |Af |+ sin |Ae| sin |Af | cos θ.

So when θ ≤ π
2 and |Ae| , |Af | ∈

(

0, π2
)

we have |ef | < π
2 . This shows that radF <

π
2 , when I is a reflection and r = 1

2 . When I is an antipodal map we must have

θ = πr to obtain maximal distance between e and f . So when |Ae| , |Af | ∈
(

0, π2
)

and r < 1 we have |ef | < |Ae| + |Af | as well as |ef | ≤ π − |Ae| − |Af | when we
measure the distance through B. But this also forces |ef | < π

2 . Thus F is isometric

to RP2 (1). This also forces X2 = S2 (1) with G acting as the antipodal map.
We can now use remark 5.8 to conclude that either X = (X1/ 〈R〉) ∗ X2 or

X = ((X1/ 〈R〉) ∗X2) /Z2. �

Remark 5.13. If we combine the constructions in the proof and remark 5.6, then it
is possible to obtain a classification for Alexandrov spaces with curv ≥ 1, rad ≥ π

2 ,
and dimension 1, 2, 3. It would be interesting to investigate what results one can
obtain for such spaces in higher dimension when they are not finite quotients of
spheres. Do they, e.g., admit submetries onto

[

0, π2
]

.

6. Quantified Convexity

The main theorem about the rigidity of lenses and hemispheres has counter parts
for all convex balls in space forms. To understand this better we introduce some
specially tailored modified distance functions for the distance to the boundary.
As mentioned in the introduction the results here have appeared in [8] for lower
curvature bounds ≥ 0, but as we use slightly different modified distance functions
we thought it useful to include our proofs.

Consider the metric ball B̄k (r0) of radius r0 in the space form of curvature k,
when k > 0 we assume that r0 <

π
2
√
k

so as to only consider strictly convex balls.

The boundary of this ball is totally umbilic and when using the outward pointing
normal the eigenvalue of the shape operator is denoted λ0 > 0. However, it is more
natural to consider the inward pointing normal as that is also the gradient for the
distance to ∂B̄k (r0) inside B̄k (r0). This means that the eigenvalue becomes −λ0.
The specific formula for λ0 in terms of r0 and k will be given below. Evidently λ0
is a measure of the convexity of the boundary.

Let r (x) =
∣

∣x∂B̄k (r0)
∣

∣ be the distance to the boundary inside B̄k (r0) and
consider the concentric ball of radius r0 − r that consists of points at distance ≥ r
from the boundary. Denote by λ (r) < 0 the eigenvalue of the shape operator of this
smaller ball for the inward pointing normal. It is not hard to see that λ satisfies
the Riccati equation:

λ̇+ λ2 = −k, λ (0) = −λ0.

The related function φ coming from:

φ̈+ kφ = −λ0, φ (0) = 0, φ̇ (0) = 1,

also satisfies λφ̇ = φ̈ and can be used to create a suitable modified distance function
f = φ ◦ r satisfying

Hessf + kf = −λ0.



ALEXANDROV SPACES WITH MAXIMAL RADIUS 20

Below we give explicit formulas for λ and φ when k = 0,±1. With that infor-
mation it is fairly easy to prove that λ and f satisfy the above equations:

Example 6.1. When k = 0 it follows that r0λ0 = 1 and

λ (r) =
1

r − r0
=

λ0
λ0r − 1

,

φ (r) = r −
λ0
2
r2.

Example 6.2. When k = 1 it follows that λ0 = cot (r0) and

λ = cot (r − r0) =
λ0 cot r + 1

λ0 − cot r
,

φ = sin r + λ0 cos r − λ0.

Example 6.3. When k = −1 and there are no restrictions on λ0 we have

λ =











tanh (r − r0) , 1 > λ0 = tanh r0,

−1, 1 = λ0,

coth (r − r0) , 1 < λ0 = coth r0.

Here only the last case leads to a ball of finite radius. In all three cases

φ = sinh r − λ0 cosh r + λ0.

We say that the boundary in a Riemannian manifold M is λ0-convex, when all
eigenvalues for the shape operator are ≤ −λ0 with respect to the inward normal.
When λ20 > −k there exists a metric ball B̄k (r0) as above with λ0-convex boundary.
This will be our comparion model space when M has sectional curvature ≥ k.

If r (x) = |x∂M | and the boundary is λ0-convex, then standard Riccati compar-
ison shows that the super level sets {x ∈M | r (x) ≥ r} have −λ (r)-convex bound-
ary at points where r is smooth, here λ (r) is given by

λ̇+ λ2 = −k, λ (0) = −λ0.

This in turn imples that the modified distance function f = φ ◦ r satisfies

Hessf + kf ≤ −λ0

in the support sense everywhere.
In the case of Alexandrov spaces there are several interesting model spaces aside

from the constant curvature balls B̄k (r0).

Example 6.4. Let Y be an Alexandrov space with curvature ≥ 1 and consider the
cone of radius r0:

C = Ck (Y ) (r0) = {(t, y) | y ∈ Y, t ∈ [0, r0] , (0, y0) ∼ (0, y1)}

with constant radial curvature k. The distance between points (t0, y0) and (t1, y1)
is determined by the law of cosines in constant curvature k with the understanding
that (ti, yi) is distance ti from the cone point (0, y) and that the angle between
(t0, y0) and (t1, y1) at the cone point is given by |y0y1|Y . When k > 0 we also assume
that r0 ≤ π

2
√
k

in order for this to become an Alexandrov space with curvature ≥ k.

These cones have the same convexity properties as our model space B̄k (r0).
Specifically, if f (r (x)) = φ (|x∂C|) and c (t) is any quasi-geodesic, then f (t) =
f ◦ c (t) satisfies

f̈ + kf = −λ0.
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Further observe that since the distance to the cone point is d (t, y) = t, we have
d+ r = r0 everywhere on C and the standard modified distance h (x) = ψ (d (x)),

where ψ̈ + kψ = 1, ψ (0) = 0, ψ̇ (0) = 0 satisfies

ḧ+ kh = 1

along all quasi-geodesics.

It follows from [1, Theorem 1.8 (a)] that the metric definition of convexity given
in the introduction implies the following theorem.

Theorem 6.5. Let X be an Alexandrov space with curvature ≥ k and boundary
that is λ0-convex. The radius of X is ≤ r0 and the modified distance function
f = φ ◦ r ◦ γ satisfies f̈ + kf ≤ −λ0 in the support sense along all (quasi)-geodesics
γ in X.

This shows in particular that

Corollary 6.6. For any (quasi)-geodesic c (t) in X with curvature ≥ k and λ0-
convex boundary we have that f (t) = φ ◦ r ◦ c (t) satisfies

f (t) ≤ f̄ (t)

for all t ≥ 0 where f̄ ≥ 0 and f̄ is the unique solution to:

¨̄f + kf̄ = −λ0, f̄ (0) = f (0) , ˙̄f (0) = ḟ+ (0) .

The second theorem in the introduction can now be proven as follows.

Theorem 6.7. Let X be an Alexandrov space with curvature ≥ k and boundary
that is λ0-convex, where λ20 > max {−k, 0}. The radius satisfies radX ≤ r0 with
equality only when X is isometric to the cone Ck (SsX) (r0) for a suitable s ∈ X.

Proof. It follows from [1, Cor 1.9 (1)] that r (x) ≤ r0 for all x, i.e., the inradius is
≤ r0. This in turn implies that f is strictly concave (see also [1, Thm 1.8 (a)]). For

our modified distance functions this is obvious when k ≥ 0 as we have f̈ ≤ −kf−λ0.
When k = −1 this also shows:

f̈ ≤ f − λ0 = sinh r − coth r0 cosh r = −
cosh (r − r0)

sinh r0
.

This shows that X has a unique point soul s ∈ X at maximal distance r1 ≤ r0
from the boundary. Consider a quasi-geodesic c : [0, b] → X with c (0) = s and the
function f (t) = f ◦ c. This function satisfies

f̈ + kf ≤ −λ0, f (0) = φ (r1) , ḟ (0) ≤ 0.

By proposition 6.6 f ≤ f̄ , where

¨̄f + kf̄ = −λ0, f̄ (0) = φ (r1) ,
˙̄f (0) = 0.

The explicit form of f̄ is as follows

f̄ =











− cot r0 + (sin r1 + cot r0 cos r1) cos t, k = 1,

r1 −
r21
2r0

− t2

2r0
, k = 0,

coth r0 − (sinh r1 − coth r0 cosh r1) cosh t, k = −1.

These expressions imply that f̄ (r0) ≤ 0, and that f̄ (r0) = 0 only occurs when
r1 = r0. This shows that b ≤ r0 and consequently that the radius is ≤ r0. Moreover,
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equality can only happen when r1 = r0, i.e., the boundary is at constant distance
from the soul.

The remainder of the proof is along the same lines as the rigidity statement in
proposition 2.8. If we assume that r1 = r0, then this shows more generally that
any quasi-geodesic emanating from the soul must hit the boundary precisely when
t = b = r0. Since this agrees with the distance to any point on the boundary any
such quasi-geodesic is a minimal geodesic. In particular, any point in X lies on a
minimal geodesic from the soul to the boundary and d (x)+r (x) = |xs|+|x∂X | = r0
for all x ∈ X . This shows that ḋ = −ṙ and r̈ = −d̈ along any geodesic in X . As
both d and r have natural upper bounds on these second derivatives they also have
the same natural lower bounds. For example when k = 0 we have

d̈ ≤
1− ḋ2

d
and

r̈ ≤
1− ṙ2

r − r0
= −

1− ḋ2

d
.

In particular, r̈ = λ (r) and f̈ + kf = −λ0. Moreover, with notation as in example

6.4 the modified distance function h = ψ ◦ d, satisfies ḧ+ kh = 1. This shows that
X is isometric to the cone C = Ck (SsX) (r0) via the gradient exponential map
gexps (k; ·) : C → X . Specifically, in both cases the gradient flow for h from the
center is a flow along minimal geodesics and the distance between points on these
radial geodesics is governed by the equation ḧ + kh = 1 (see also [26, Section 2,
esp. Thm 2.3.1]). �

Remark 6.8. The rigidity aspect of this proof can also be found in [1, Cor 1.10 (1)]
where the authors establish rigidity for spaces X with curvature ≥ k, λ0-convex
boundary, and maximal inradius, i.e., the maximal distance to the boundary is r0.
Note that while the radius of the lens Ln

α is π
2 , its inradius is α

2 .

Corollary 6.9. Let X be an Alexandrov space with curvature ≥ k and boundary
that is λ0-convex, where λ20 > max {−k, 0}. If voln−1 ∂X = voln−1 ∂B̄k (r0), then
X is isometric to B̄k (r0).

Proof. First observe that for any Alexandrov space with curvature ≥ k and rad ≤ r
we can use Petrunin’s solution of Lytchak’s problem (see [26, 3.3.5]) to show
that voln−1 ∂X ≤ vol∂Ck (SpX) (r). In particular, if radX < r0, then it fol-
lows that voln−1 ∂X < voln−1 ∂B̄k (r0). In particular, the condition voln−1 ∂X =
voln−1 ∂B̄k (r0) implies that radX = r0 and the above theorem thatX = Ck (SsX) (r0).
Finally, voln−1 (∂Ck (SsX) (r0)) = voln−1 ∂B̄k (r0) only when SsX = Sn−1 (1).
This shows that

X = Ck (SsX) (r0) = Ck

(

Sn−1 (1)
)

(r0) = B̄k (r0) .

�
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