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This study presents a hybrid (Bayesian-frequentist) approach to sample size
re-estimation (SSRE) for cluster randomised trials with continuous outcome
data, allowing for uncertainty in the intra-cluster correlation (ICC). In the hybrid
framework, pre-trial knowledge about the ICC is captured by placing a Trun-
cated Normal prior on it, which is then updated at an interim analysis using
the study data, and used in expected power control. On average, both the hybrid
and frequentist approaches mitigate against the implications of misspecifying
the ICC at the trial’s design stage. In addition, both frameworks lead to SSRE
designs with approximate control of the type I error-rate at the desired level.
It is clearly demonstrated how the hybrid approach is able to reduce the high
variability in the re-estimated sample size observed within the frequentist frame-
work, based on the informativeness of the prior. However, misspecification of
a highly informative prior can cause significant power loss. In conclusion, a
hybrid approach could offer advantages to cluster randomised trials using SSRE.
Specifically, when there is available data or expert opinion to help guide the
choice of prior for the ICC, the hybrid approach can reduce the variance of the
re-estimated required sample size compared to a frequentist approach. As SSRE
is unlikely to be employed when there is substantial amounts of such data avail-
able (ie, when a constructed prior is highly informative), the greatest utility of a
hybrid approach to SSRE likely lies when there is low-quality evidence available
to guide the choice of prior.

K E Y W O R D S

adaptive design, Bayesian-frequentist, expected power, hybrid design, interim analysis, internal
pilot, intra-class correlation

1 INTRODUCTION

Estimation of the required sample size is one of a trial’s most important, but challenging, aspects. This is because sample
size estimation typically depends on foreknowledge of nuisance parameters that are difficult to stipulate at the design
stage.1 In cluster randomised trials (CRTs), where the unit of randomisation is a cluster (or group, eg, hospital, school),
one such nuisance parameter is the intra-cluster correlation (ICC), which measures the correlation between outcomes
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from different individuals within a cluster. Several authors have discussed the difficulty in obtaining reliable estimates of
the ICC,2,3 and the implications of its misspecification on the statistical power of a trial.4,5

To mitigate against misspecification of the ICC, previous studies have established the usefulness of allowing for uncer-
tainty in the ICC within the sample size calculation.6,7 Specifically, some authors have encouraged the application of
confidence interval techniques,2,8 Bayesian methods,9,10 and hybrid11 (Bayesian-frequentist) approaches to account for
the uncertainty in the ICC. In the hybrid framework, a prior is placed on the ICC with quantities such as statistical assur-
ance,12,13 probability of success (PoS), or expected power (EP)14 then controlled in the sample size calculation in place of
the conventional frequentist power. A limitation of approaches of this kind is that their utility can be highly dependent
on the choice of prior, with the possibility always present that it may poorly reflect the data from the intended trial.

In theory, this limitation could be addressed by sample size re-estimation (SSRE), an adaptive design that uses study
data gathered during the trial to re-estimate nuisance parameter(s) at an interim analysis.15 Since a portion of the trial data
is used to compute these parameter estimates at the interim analysis, they may be expected to provide a better estimate of
their actual values than any pre-trial ‘guess’, even guesses that account for uncertainty such as those represented through
a prior in a hybrid approach.16

Previous works have investigated the potential of SSRE within the context of CRTs in the parallel-group16,17 (PG) and
stepped-wedge domains.15 Methods proposed in these publications re-estimated the total outcome variance, the ICC, the
target effect powered for, or some subset of these parameters. The investigations were frequentist in nature, meaning
the re-estimation used interim point estimates of the nuisance parameters to update the required sample size. Though
the methods performed well on average, the variability in their re-estimated required sample size could undermine their
utility in practice.18 This is a consequence of challenges with the precision of estimation in CRTs, particularly in relation
to estimating the ICC, which can be difficult to estimate even on the completion of a large trial. That is, existing frequentist
methods for SSRE in CRTs neglect any uncertainty in the interim point estimates of the nuisance parameters. Sarkodie
et al11 recently demonstrated that the hybrid approach may provide utility at the design stage of a CRT. However, this
proposed approach provides no flexibility to evaluate the selected prior at the design stage based on data from an interim
analysis for potential adjustment in the final sample size. Thus, a natural question of interest is whether a hybrid approach
could also be useful for SSRE.

Consequently, in this paper, we develop a hybrid approach to SSRE for PG-CRTs. This is achieved by assuming a
prior for the ICC at the design stage of the trial. This prior is then updated at an interim analysis, to a posterior, based
on available data. The posterior is then used in determining the re-estimated required sample size to control the EP to a
desired level, following the approach described for pre-trial EP control described by Sarkodie et al.11 Following accrual of
the re-estimated sample size, the final analysis uses all available data in a conventional frequentist analysis to determine
whether the null hypothesis can be rejected. Such a hybrid approach to SSRE seems intuitively appealing, as it may directly
account for uncertainty in the ICC through both a pre-trial prior and also by considering the variability of the interim
ICC estimate. To ascertain whether this approach is useful in practice, we explore both blinded and unblinded methods
of SSRE, and perform a comparison between the existing frequentist and our proposed hybrid approach.

2 METHODS

First, we describe how SSRE can be performed in both the frequentist and hybrid frameworks. For brevity, the method-
ology focuses on interim updating of the required number of clusters throughout, as increasing the number of clusters
typically has a bigger impact on power than increasing the cluster size.7 However, we provide an example of updating the
required cluster size in the Supplementary Material, demonstrating that the underlying methodology for updating the
cluster size is similar to that which follows for re-estimating the required number of clusters.

2.1 Setting and notation

We consider the case of a PG-CRT where clusters are randomised to receive an experimental or a control treatment.
We assume the primary outcome is continuous and normally distributed with variance 𝜎2. Accordingly, let Yij be the
outcome from patient i = 1, … ,nj in cluster j = 1, … ,C. While we acknowledge that sample sizes can vary between
clusters, we restrict our attention to having the same number of participants per cluster, and thus assume nj = n for all
j. Furthermore, for simplicity, we assume equal allocation of clusters to the experimental and control treatments. Given
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the (likely) non-independence in the data, one possible approach is to fit a linear mixed model to the data at both interim
and final analyses. At the final analysis, and at the interim analysis in unblinded SSRE procedures, the model is assumed
to be:

Yij = 𝜃 + Xj𝜇 + cj + eij. (1)

Here, 𝜃 is an intercept term (the mean in the control arm), Xj = 1 if cluster j is allocated to the experimental arm and
Xj = 0 otherwise, cj ∼ N(0, 𝜎2

c ) is a random effect for cluster j, and eij ∼ N(0, 𝜎2
e ) is the individual-level error. Note that

𝜎
2 = 𝜎2

c + 𝜎2
e , and that the ICC 𝜌 = 𝜎2

c ∕𝜎2. Then, 𝜇 is the treatment effect of interest and we specify our one-sided null
hypothesis as H0 ∶ 𝜇 ≤ 0. The test statistic for H0 is:

t = 𝜇̂

√
var(𝜇̂)

,

which can be computed using, for example, REML estimation. The degrees of freedom for the test statistic will always be
assumed to be that in a corresponding balanced ANOVA analysis. That is, df = nC − C − 1. Therefore, for a target type
I error of 𝛼, H0 will be rejected if t is greater than t1−𝛼,df , the (1 − 𝛼)-quantile of a central t distribution on df degrees of
freedom.

At the interim analysis in blinded SSRE procedures, where cluster assignment is unknown, the model fitted is instead:

Yij = 𝜃 + cj + eij.

A blinded procedure in this context implies that the treatment status of an observation is undisclosed, but there is
awareness of which observations belong to the same cluster.15

In either case, the interim analysis results in estimates 𝜎̂2
c,int and 𝜎̂2

e,int which can be combined into an interim estimate
of the ICC 𝜌̂int = 𝜎̂2

c,int∕
(
𝜎̂

2
c,int + 𝜎̂

2
e,int

)
.

2.2 Sample size re-estimation procedure

A high-level summary of how SSRE functions in both frequentist and hybrid frameworks is as follows.
First, a sample size is chosen for when the interim analysis will occur. As we assume n is fixed, this corresponds to

selecting a certain number of clusters, Cint, from which data will have been collected at the interim analysis. This could be
achieved by utilising some proportion of an initially calculated sample size based on assumed values for required param-
eters. Alternatively, a pragmatic sample size could be selected, for example, based on the number of clusters required to
make a sufficiently precise estimate of the ICC.

The trial is then conducted until the interim required sample size is achieved, and the ICC estimated (ie, 𝜌̂int is com-
puted). Given the value of 𝜌̂int (and using other selected design parameters, eg, the target type I error rate), the required
sample size is re-estimated. That is, a value for the final target number of clusters, Creest is computed. It is the interim
estimation of 𝜌 (blinded or unblinded) and the method of utilising 𝜌̂int to compute Creest (frequentist or hybrid) that will
differ between the compared methods.

Next, if Creest ≤ Cint, the study terminates and the final analysis is conducted. Otherwise, the trial continues until
data from Creest clusters has been accrued, with the final analysis then conducted using data from both stages. This final
analysis is conducted using the approach outlined above (ie, without adjustment for the inclusion of the interim analysis);
thus consideration of the potential for type I error inflation will be important.

2.3 Sample size re-estimation in the frequentist framework

The classical method of sample size estimation for a PG-CRT in the frequentist framework is to first calculate the sample
size required for a corresponding individually randomised trial (IRT), and then multiply it by a ‘design effect’ (or ‘variance
inflation factor’) to account for clustering. The sample size for the IRT (NIRT), assuming power of 1 − 𝛽 is desired when
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SARKODIE et al. 4739

𝜇 = 𝛿 > 0, is obtained as:

NIRT =
4(z1−𝛼 + z1−𝛽)2𝜎2

𝛿
2 .

Then, the design effect for the considered type of PG-CRT is given by:

DE(𝜌) = 1 + (n − 1)𝜌.

Hence, if there are n measurements per cluster, the required number of clusters is, for a particular value of 𝜌:

C(𝜌) = NIRTDE(𝜌)∕n. (2)

In SSRE within the frequentist framework, the interim estimated ICC (𝜌̂int) is simply inserted into Equation (2). That
is, the method sets Creest = C(𝜌̂int).

2.4 Sample size re-estimation in the hybrid framework

Sample size calculation in the hybrid framework amounts to averaging the frequentist power over any uncertainty in
nuisance parameters by placing priors on these parameters. In this framework, two quantities are commonly used for
sample size determination: the EP and the PoS. In this work, where a prior is placed only on the ICC, the standard
definitions of the PoS and EP become equivalent11 and can be expressed as:

EP(𝜓, 𝜇,C) =
∫

1

0
P(𝜇,n,C, 𝛼, 𝜎, 𝜌)𝜓(𝜌|𝜃) d𝜌,

where P(𝜇,n,C, 𝛼, 𝜎, 𝜌) is the probability of rejecting H0 under a PG-CRT design, equal to

Φ
[
𝜇

√
Cn

4{1 + (n − 1)𝜌}𝜎2 − Φ
−1(1 − 𝛼)

]
,

whereΦ(⋅) is the CDF of the standard normal distribution and 𝜓(𝜌|𝜃) is the prior density for an ICC of 𝜌, which is depen-
dent on parameters 𝜃. Assuming EP of 1 − 𝛾 is then desired when 𝜇 = 𝛿 > 0, sample size calculation is then performed by
numerically searching for the minimal C such that EP(𝜓, 𝛿,C) ≥ 1 − 𝛾 . In practice, 𝛾 is often set to be equal to the value
of 𝛽 from the frequentist framework.

Since the ICC (typically) ranges between 0 and 1, we select a prior distribution with support on [0,1]. Note that for
simplicity and efficiency, a conjugate prior distribution may be desirable. However, conjugacy cannot be achieved in this
study since the likelihood for the ICC is complex: this necessitates approximation using MCMC to make sampling from
the non-conjugate posterior distribution possible. We achieve this through the rjags package in R. We select a Truncated
Normal distribution, truncated on [0,1], as the prior for this study. We acknowledge that other distributions, such as the
Beta distribution, could similarly be used. Nonetheless, an evaluation of alternative priors by Sarkodie et al11 revealed no
significant sensitivity to the exact choice of prior, given they held (approximately) the same mean and variance. Therefore,
for simplicity, we consider only a Truncated Normal prior and denote the choice by TN(0, 1,m, s), where m and s are the
mean and standard deviation (SD) parameters of the Normal distribution before truncation.

For Normally distributed outcome data, Ukoumunne8 proposed an approximation for the variance of an ICC estimate
using Fisher’s method.19 Using this, it is assumed that:

𝜌̂ ∼ N
[
𝜌,

2(1 − 𝜌)2[(1 + (n − 1)𝜌]2

n(n − 1)C

]
.

Adopting this as the likelihood, the posterior for 𝜌 can be determined at the interim analysis. Consequently, on calculating
𝜌̂int at the interim analysis, the prior TN(0, 1,m, s) can then be updated to a posterior that is a function of 𝜌̂int,n,Cint,m,
and s, which we denote for brevity as 𝜓̂(𝜌|m, s, 𝜌̂int).
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4740 SARKODIE et al.

The posterior is then substituted into the EP to update the sample size. That is, the method sets Creest as the minimal
value such that EP(𝜓̂ , 𝛿,Creest) ≥ 1 − 𝛾 .

2.5 Simulation study

The parameters for our simulation study are motivated by the study of Hankonen et al20 which sought to reduce adoles-
cent sedentary behaviour by improving physical activity. The interim estimate of the ICC for this study was 𝜌̂int = 0.059.
An internal pilot of 25 clusters with an average cluster size of 17 was used to estimate the ICC at this interim analysis.
Accordingly, we set Cint = 26 (to allow equal allocation of clusters to the control and experimental treatments) and n = 17.
The study desired 80% power (𝛽 = 0.2) to detect a difference of 𝛿 = 0.3 for an SD of 𝜎 = 1.3 and 𝛼 = 0.025.

To evaluate the performance of the SSRE techniques, we conducted a thorough simulation study. Specifically, we
wanted to evaluate how varied values of the prior parameters m and s impacted the operating characteristics. We consider
m = 0.01, 0.059, 0.10 and s = 0.01, 0.1, 1.00, to give a range of possible concordances of the prior densities in relation to
the value of 𝜌̂int. These priors are shown in Figure 1.

We consider the performance of the hybrid approach for these m and s, alongside the performance of the frequentist
method, for both blinded and unblinded SSRE, for a range of possible values of 𝜌. We also complete this work under the
null (𝜇 = 0) and the alternative (𝜇 = 𝛿), in order to empirically estimate the type I error rates and power of the various
SSRE procedures. For simplicity, we follow previous works in setting 𝛾 = 𝛽.

In all simulations, data is generated using Equation (1); the value of 𝜌, combined with the fixed assumption 𝜎 = 1.3,
sets the assumptions required regarding 𝜎c and 𝜎e. Further, 𝜇 was set to either 0 or 𝛿 according to whether the interest
was the type I error rate or power. Finally, 𝜃 was set to 0 without loss of generality and the Xj were arbitrarily set to imply
balance in allocation between the arms.

For each combination of assumed parameters and particular SSRE approach, we then empirically compute several
measures to assess performance, based on the results of 10,000 simulation runs. Firstly, the probability of rejecting H0 is
estimated. If the computed test statistic at the final analysis in simulation replicate i is ti, and the final number of clusters
is C(reest,i), this probability is:

P(Reject H0) =
1

10,000

10,000∑

i=1
I(ti > t1−𝛼,dfi ),

dfi = nC(reest,i) − C(reest,i) − 1.

Large prior mean (m =0.1) Moderate prior mean (m =0.059) Small prior mean (m =0.01)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

10

20

30

40

ρ

ψ I
C

C
(ρ

|m
,s

)

s = 0.01 s = 0.1 s = 1.00

F I G U R E 1 Plot of utilised truncated normal prior distributions. Plots are faceted by the use of m = 0.01, 0.059, 0.10 and all
combinations of s = 0.01, 0.10, 1.00 are considered.
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SARKODIE et al. 4741

Our other two metrics relate to the ability of the SSRE procedures to specify the ‘correct’ required number of clusters
reliably. That is, we think of the goal of each SSRE procedure as being to ‘estimate’ the sample size that would have
been used if the true values of the design parameters were known. Thus we consider the re-estimated sample size as
an estimator, with the target estimand being the ‘oracle’ sample size that would have been chosen in the frequentist
framework if all parameters were known. Natural measures of the performance of these estimators are then its bias and
mean square error (MSE); these are also computed. A SSRE that performs well will have a bias close to 0 and a low MSE.
The bias and MSE are given by:

Bias = 1
10,000

10,000∑

i=1
C(reest,i) − C(𝜌),

MSE = 1
10,000

10,000∑

i=1
[C(reest,i) − C(𝜌)]2.

Here, C(𝜌) is the ‘oracle’ required number of clusters for the particular value of 𝜌 assumed in the simulations that generated
C(reest,1), … ,C(reest,10,000).

Another important performance measure that is considered in this paper is the proportion of trials where the SSRE
procedure underestimates (underpowered), overestimates (overpowered), or correctly estimates the required sample size.
As noted above, if C(𝜌) is the ‘oracle’ required number of clusters for a particular value of 𝜌, then we define a single trial
as correctly powered if its sample size falls within ±10% of the oracle sample size, that is, if 0.9C(𝜌) ≤ C(reest,i) ≤ 1.1C(𝜌).
By contrast trial is considered underpowered if C(reest,i) < 0.9C(𝜌) and overpowered if C(reest,i) > 1.1C(𝜌). To estimate the
proportion of cases where the trial is correctly estimated, underestimated, or overestimated, we use:

P(Correctly powered) = 1
10,000

10,000∑

i=1
I{0.9C(𝜌) ≤ C(reest,i) ≤ 1.1C(𝜌)},

P(Underpowered) = 1
10,000

10,000∑

i=1
I{C(reest,i) < 0.9C(𝜌)},

P(Overpowered) = 1
10,000

10,000∑

i=1
I{C(reest,i) > 1.1C(𝜌)}.

The code to reproduce the results in this paper is available from https://github.com/sks2023/article_codes.

3 RESULTS

3.1 Practical updating of the required number of clusters based on interim ICC
estimate

To provide some intuition on how the choice of prior can influence the re-estimated required number of clusters in the
hybrid framework, we present a plot of posterior modes in Figure 2, that is, modal values of 𝜓(𝜌|m, s, 𝜌̂int), over 𝜌 ∈ [0, 1],
are given as a function of m, s, and 𝜌̂int.

Figure 2 shows the interplay between 𝜌̂int, the posterior mode, and the re-estimated required number of clusters, given
the prior mean and SD. Generally, as the interim estimate of the ICC increases, a monotonic relationship between the
variables is observed where larger prior mean and SD values result in a larger posterior mode, consequently resulting in
a larger number of required clusters. A caveat to this is that when 𝜌̂int takes smaller values (approximately 𝜌̂int < 0.13), a
highly informative prior (s = 0.01) can result in a larger required number of clusters.

Note that the impact of m on the posterior mode and the number of required clusters diminishes as s becomes large.
That is, the final sample size is not heavily dependent on the prior mean when the prior is non-informative and vice versa.
Put differently, an inaccurate prior mean will have less impact on the final sample size if the prior is non-informative.
Note also that although the three curves for the ‘weakly’ informative prior (s = 0.1) are evidently distinct, they are not as
widely separated as for the informative priors (s = 0.01).

According to the study by Hankonen et al, the estimated ICC at the interim analysis was 0.059. If we were to use this
information in frequentist re-estimation we would need 68 clusters. However, within the hybrid framework, it is observed

 10970258, 2024, 24, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10205 by Sam
uel Sarkodie - U

niversity O
f C

alifornia , W
iley O

nline L
ibrary on [06/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/sks2023/article_codes
https://github.com/sks2023/article_codes


4742 SARKODIE et al.

0.00

0.25

0.50

0.75

1.00

00.157.005.052.000.0

ρ̂ int

M
o

d
e{

ψ I
C

C
(ρ

 | 
m

, s
, ρ̂

in
t)}

s = 0.01 s = 0.10 s = 1.00 m = 0.010 m = 0.059 m = 0.100

A

200

400

600

00.157.005.052.000.0

ρ̂ int

C
re

es
t
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B

F I G U R E 2 Plots of 𝜌̂int against the posterior mode (A) and the re-estimated required number of clusters (B), given the prior mean (m)
and SD (s) are shown, for all combinations of m = 0.01, 0.059, 0.10 and s = 0.01, 0.10, 1.00. The re-estimated required number of clusters for
the frequentist design is also shown in B.

from Figure 2B that the required number of clusters ranges from 46 to 88, depending on the prior mean and standard
deviation. We refer the reader to the Supplementary Material for a more focused plot in which this result is clearer.

Importantly, it is also observed from Figure 2B that, as would be expected, leveraging a highly informative prior results
in a more constant re-estimated required number of clusters across 𝜌̂int. By contrast, the frequentist framework, or the use
of a weakly or non-informative prior results in a clear relationship where the re-estimated required number of clusters
can increase rapidly in 𝜌̂int.

Of course, the superiority of one method’s re-estimated required number of clusters over another depends on the
(unknown) true value of the ICC. For this reason, we now present the results of our simulation study evaluating the
average performance of the various SSRE procedures.

3.2 Re-estimated sample size, power, and type I error rates for correctly specified priors

In what follows, we evaluate the distribution of the re-estimated number of clusters, the power, and the type I error rate,
for selected priors in the hybrid framework. Specifically, we assume that 𝜌 = 0.059, and the priors are ‘correctly specified’
(ie, m = 𝜌). Then, we explore how on average, a highly informative prior, a weakly informative prior, and a
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SARKODIE et al. 4743

non-informative prior impact the performance of the SSRE procedure in the hybrid framework. Our results are stratified
by the use of blinded or unblinded SSRE, and are also compared to the performance of the frequentist approach. A sum-
mary of the performance measures for the SSRE procedures is given in Table 1, while the distribution of the re-estimated
required number of clusters is presented in more detail in Figure 3. Recall that for the parameters from the motivating
example, when 𝜌 = 0.059, 68 clusters are required for a frequentist power of ∼ 80%.

On average, both the hybrid and frequentist approaches can mitigate against the implications of misspecifying the ICC
at the trial’s design stage, as indicated by their mean values of Creest. Note that the interim estimate of the ICC is dependent
only on the interim model (ie, blinded or unblinded) and the value of 𝜇. In the blinded model, the average value of 𝜌̂int
is 0.0711 when 𝜇 = 𝛿 and 0.0583 when 𝜇 = 𝛿. In the unblinded model, 𝜌̂int is always 0.0583 on average regardless of the
value of 𝜇. As the SSRE technique leverages the interim estimate of the ICC to make a final determination on the sample
size, the likelihood of obtaining an accurate sample size is dependent on the closeness of the interim estimate to the truth.
However, unlike the frequentist approach whose final sample size is dependent only on 𝜌̂int, the final sample size in the
hybrid framework is a function of 𝜌̂int and other parameters which include the prior SD. Thus, although the frequentist
and hybrid approaches may compute the same interim ICC estimate, their final average re-estimated required number of
cluster sample sizes may differ.

As a result of the patterns observed in Figure 2, the average re-estimated required number of clusters in the hybrid
framework increases as s increases. For s = 1.00, as seen in Table 1, the difference in sample sizes between the hybrid
and frequentist frameworks is relatively small, with this phenomenon expected based on previous studies.11 Explicitly, a
maximum increase of 10% in average sample size is observed between the frequentist approach and the hybrid approach
with a non-informative prior. In this setting, this small increase in average sample size may be considered beneficial if it
translates into power more reliably above the desired level. Of importance in the SSRE procedures is the control of the
type I error rate, which appears similar in both frameworks with the small observed differences attributed to simulation
error. We note that the results for the type I error rate were similar across all additional simulation scenarios and thus are
not presented below, that is, in general, some small inflation was observed.

In both frameworks, the interim ICC estimates from the blinded model are biased when there is a non-zero treatment
effect (ie, for 𝜇 = 𝛿). Thus, the model overestimates the interim ICC on average and re-estimates a larger required sample
size. Although regulatory agencies prefer blinded models,1,21 this may be less necessary in CRTs as cluster allocations are
not always blinded. We comment further on this in the Discussion.

Having established from Table 1 that there is no considerable difference in the average value of Creest across the frame-
works, we next examine the variability in this quantity. Particularly, our interest lies in whether the hybrid framework
has less variability than the frequentist framework, which is known to have high variability in terms of the re-estimated
required sample size. For the hybrid framework, we again evaluate how the selected prior SD impacts the performance.
The findings are shown in Figure 3.

In comparison to the hybrid approach, the frequentist approach results in higher variability in the re-estimated
required number of clusters. This is evidenced by the lower variance and lower interquartile ranges recorded in the hybrid
framework compared to the frequentist. Furthermore, the variability is significantly lower for a highly informative prior,

T A B L E 1 A summary of the performance of the cluster size re-estimation procedures is shown for the case where m = 𝜌 = 0.059.

Mean of Creest

Interim model Framework s 𝝁 = 0 𝝁 = 𝜹 Power Type I error rate

Blinded Frequentist N/A 68 75 0.80 0.029

Blinded Hybrid 0.01 68 69 0.80 0.026

Blinded Hybrid 0.10 73 79 0.83 0.026

Blinded Hybrid 1.00 75 82 0.84 0.026

Unblinded Frequentist N/A 68 68 0.80 0.033

Unblinded Hybrid 0.01 68 68 0.80 0.027

Unblinded Hybrid 0.10 73 73 0.83 0.031

Unblinded Hybrid 1.00 75 75 0.84 0.030

Note: For all hybrid designs, the assume prior 𝜓 is of the form TN(0, 1, 0.059, s) for given s.
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F I G U R E 3 Violin and boxplots showing the variability in the re-estimated sample sizes (Creest) for the frequentist and hybrid methods
(s = 0.01, 0.1, 1.00), with the respective variances (Var(Creest)) and a horizontal dashed line indicating the oracle sample size is also displayed.
Results are faceted by blinded versus unblinded sample size re-estimation and the value of the treatment effect. In all cases, m = 𝜌 = 0.059 is
assumed.

T A B L E 2 Proportion of cases where the SSRE procedure underestimates (underpowered), overestimates (overpowered), or correctly
estimates the required sample size.

Interim model Framework 𝝁 Correct (%) Underpowered (%) Overpowered (%)

Blinded Frequentist 0 28.3 39.0 32.7

Blinded Frequentist 𝛿 27.9 39.4 32.7

Blinded Hybrid (s = 0.01) 0 100.0 0.0 0.0

Blinded Hybrid (s = 0.10) 0 37.3 23.1 39.6

Blinded Hybrid (s = 1.00) 0 33.1 22.3 44.6

Blinded Hybrid (s = 0.01) 𝛿 99.6 0.0 0.4

Blinded Hybrid (s = 0.10) 𝛿 31.9 13.1 55.0

Blinded Hybrid (s = 1.00) 𝛿 27.6 12.6 59.8

Unblinded Frequentist 0 26.7 25.6 47.7

Unblinded Frequentist 𝛿 27.9 39.4 32.7

Unblinded Hybrid (s = 0.01) 0 99.9 0.0 0.1

Unblinded Hybrid (s = 0.10) 0 36.6 23.6 39.7

Unblinded Hybrid (s = 1.00) 0 32.4 22.8 44.8

Unblinded Hybrid (s = 0.01) 𝛿 99.9 0.0 0.1

Unblinded Hybrid (s = 0.10) 𝛿 36.7 23.6 39.7

Unblinded Hybrid (s = 1.00) 𝛿 32.4 22.9 44.7

Note: Here, m = 𝜌 = 0.059 is assumed.
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SARKODIE et al. 4745

increasing as the prior becomes non-informative. Despite the relative variability increase that results from a large prior
SD, the variability in these scenarios is still lower than in the corresponding frequentist approach. The horizontal dashed
line representing the oracle sample size illustrates that as the prior becomes less informative, the hybrid framework tends
to more often overestimate the required sample size. This could be a possible utility of the hybrid framework, as most
people favour trials with higher-than-required sample sizes over those with insufficient sample sizes, though this would
depend on the degree of overestimation. We elaborate on the proportion of trials for which the sample sizes are correctly
estimated, overestimated or underestimated in the next section.

3.3 Proportion of correctly powered, underpowered, and overpowered trials
for correctly specified priors

In this section, we evaluate the performance of the SSRE procedures based on the proportion of trials that were correctly
powered, overpowered, or underpowered. Again, we focus on the case where m = 𝜌. The results presented in Table 2
indicate that in the frequentist framework, trials are often either underpowered or overpowered, with approximately
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F I G U R E 4 The bias, mean square error (MSE), and power of the frequentist and hybrid methods are shown as a function of the
intra-cluster correlation (𝜌). Results are faceted by the use of blinded versus unblinded sample size re-estimation. For the hybrid approach, all
combinations of m = 0.01, 0.059, 0.1 and s = 0.01 are considered.
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4746 SARKODIE et al.

only 28% of trials correctly powered. In the hybrid framework, employing a highly informative prior unsurprisingly leads
to correctly powered trials almost 100% of the time. However, for weakly and non-informative priors, trials are most
often overpowered for the considered scenarios. Significantly, depending on the interim model, we observe around a 10%
increase in the proportion of correctly powered trials when using the weakly informative prior compared to the frequentist
approach. The proportion of correctly powered trials tends to be similar to that of the frequentist framework when using
non-informative priors, although some marginal gains are noted.

3.4 Impact of prior misspecification on SSRE performance

The results from Table 2 correspond to when m = 𝜌. In practice, this is unlikely to be the case as SSRE is specifically
utilised in scenarios where the ICC is subject to considerable uncertainty. Accordingly, in what follows, we evaluate the
performance of a range of SSRE methods across possible values of the ICC, specifically 𝜌 ∈ [0.01, 0.2]. A framework is
considered efficient if it has a low (preferably positive) bias and MSE. Given that a low bias may still be associated with
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F I G U R E 5 The bias, mean square error (MSE), and power of the frequentist and hybrid methods are shown as a function of the
intra-cluster correlation (𝜌). Results are faceted by the use of blinded versus unblinded sample size re-estimation. For the hybrid approach, all
combinations of m = 0.01, 0.059, 0.1 and s = 0.10 are considered.
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F I G U R E 6 The bias, mean square error (MSE), and power of the frequentist and hybrid methods are shown as a function of the
intra-cluster correlation (𝜌). Results are faceted by the use of blinded versus unblinded sample size re-estimation. For the hybrid approach, all
combinations of m = 0.01, 0.059, 0.1 and s = 1.00 are considered.

high variability in the re-estimated sample size, we place a higher emphasis on frameworks with low MSE. Recall a
design exhibits zero bias if the re-estimated sample size is equal to the Oracle sample size on average. Note that in the
Supplementary Material, we further demonstrate the effect of prior misspecification on SSRE performance by examining
the proportions of correctly powered, underpowered, and overpowered trials, as defined in Section 3.3. The results for the
bias, MSE, and power are presented in Figures 4,5 and 6.

The frequentist framework seems relatively stable in terms of the performance measures across the considered values
of 𝜌. As expected, the final sample sizes in the frequentist approach are unbiased for the unblinded model, and subject
only to small bias for the blinded model.

For highly informative priors, the hybrid approach is only approximately unbiased in terms of the re-estimated sample
size when the prior mean is equal to 𝜌, for both blinded and unblinded models. Thus, the final sample size in the hybrid
SSRE is considerably underestimated when the value of the ICC is larger than the prior mean. Given that an underesti-
mated sample size results in an underpowered trial and vice versa, the negative relationship between the bias and ICC
is also observed in the power. When compared to the frequentist, the hybrid techniques offer a lower MSE if the ICC is
within a specific range, with the range dependent on the values of m. For example, when m = 0.01, the hybrid method has
a lower MSE if the ICC is less than 0.05 for both blinded and unblinded models. Whereas, when m = 0.059, a lower MSE
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4748 SARKODIE et al.

is observed in the hybrid framework if 𝜌 ∈ [0.03, 0.12] in the blinded model and if 𝜌 ∈ [0.03, 0.1] in the unblinded model.
When m = 0.1, the hybrid method can reduce the MSE if 𝜌 ∈ [0.06, 0.17] in the blinded model and if 𝜌 ∈ [0.06, 0.15] in
the unblinded model.

When using weakly informative priors, the interplay between bias and power is also exhibited in the same way as
when using highly informative priors. However, the power curves for weakly informative priors are less steep, provided
the ICC is not very small. As a result, there is approximately a 5% loss or gain in power compared to the desired power
over a wide range of ICCs, specifically, when 𝜌 ∈ [0.025, 0.2]. Concerning the MSE, when m = 0.01, the hybrid framework
performs better when 𝜌 ≥ 0.03 in the blinded model and when 𝜌 ≥ 0.025 in the unblinded model. With m = 0.059, the
hybrid framework is better than the frequentist in terms of MSE when 𝜌 ≥ 0.05 in the blinded model and when 𝜌 ≥ 0.03
in the unblinded model. When a larger prior mean is selected (m = 0.1), the hybrid method becomes more powerful
when the ICC is greater than 0.07 in the blinded model and greater than 0.05 in the unblinded model. We note that when
using weakly informative priors, the unblinded approaches do indeed overestimate the required number of clusters when
𝜌 = m. This is a consequence of (a) the weight still given to larger values of the ICC in the posterior distribution for 𝜌 and
(b) the differences induced by placing a requirement on expected power versus frequentist power. This bias is a fact that
should be noted when choosing a suitable design, but in general it appears small. We note also that as a consequence
of the discretization of the number of required clusters, it is possible to have a small negative bias and still achieve the
desired power.

For non-informative priors, the MSE aligns closely with the frequentist approach in the unblinded model and exhibits
a slightly worse performance in the blinded model for hybrid designs when compared to the frequentist approach.
Observed gains over the frequentist approach in terms of power are a result of an increased positive bias in the hybrid
approach. As noted in Figure 2, the prior means have less impact on the final sample size if the prior is non-informative,
evidenced by the lack of differentiation in the hybrid lines in Figure 6.

4 DISCUSSION

SSRE using a frequentist approach mostly abates the difficulties of obtaining precise estimates of the ICC during the
trial design stage; yet, it has some practical issues. Notable among these issues is a large variation in the re-estimated
sample size, a consequence of variability around the re-estimated ICC.18 In this paper, we have demonstrated how a hybrid
approach to SSRE could address this issue whilst effectively controlling the type I error rate.

Previous studies have demonstrated that the ICC is often low. Sarkodie et al,11 based on 34 trials, found that assumed
ICCs were positively skewed on the interval [0.002, 0.5], with a median value of 0.05. Similarly, Offorha et al,22 in their
analysis of 86 trials in health services research, reported that the observed ICC for the primary outcome had a mean of
0.06 and an IQR of (0.001 − 0.060). Given this evidence, priors that assign low weights to large ICC values may often be
considered highly plausible in CRT settings. According to Figure 1, both highly and weakly informative priors become
candidates for use in practice as they eliminate what may likely be an over-reaction at the re-estimation point from the
observation of an extremely large ICC value. However, the use of highly informative priors is discouraged as it defeats
the purpose of the SSRE procedure, with the re-estimated number of clusters approximately constant regardless of the
interim data. As expected, the use of a non-informative prior results in a design that performs similarly to a frequentist
approach. Therefore, we propose that the use of a weakly informative prior in practice may result in a SSRE procedure
with advantageous performance. Indeed, such weakly informative priors were demonstrated to be robust in terms of the
MSE over a wide range of ICC values commonly observed in practice.

The finding that a weakly informative prior effectively facilitates the SSRE process is an important benefit of the hybrid
technique since some information (eg, in the form of routinely gathered data or expert opinion) may often exist in practice
for prior construction. Nonetheless, it is important to note that the low MSE from the use of the weakly informative prior
can come at the cost of requiring more clusters than necessary (equivalently, at the cost of more power than was desired).
Since higher power isn’t necessarily always optimal (given, eg, financial considerations), it is imperative to determine
through simulation the optimal re-estimation procedure for a given trial. This procedure should aim to achieve the desired
power while maintaining a very low MSE. One possible way of striking a balance between the MSE and power in practice
could be to set the EP requirement to a value lower than that of the frequentist power requirement. This approach may
increase the likelihood of achieving an efficient MSE across a wide range of 𝜌 while maintaining a power similar to that
of the frequentist SSRE procedure.
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SARKODIE et al. 4749

The results also show that in both frameworks, the interim ICC estimates from the blinded model are biased (over-
estimated) when there is a non-zero treatment effect (𝜇 = 𝛿). Previous studies have proposed methods to adjust for this
bias. Specifically, available methods to remove this bias include (a) using block randomisation, but this approach has been
demonstrated to introduce large variability in the re-estimated sample size, which directly contradicts the problem we
aim to address in this paper or (b) ‘guessing’ the treatment effect and subtracting the bias under this effect. This approach
only removes the bias in the situation where the stated effect is correctly guessed, and has actually been argued to be dis-
advantageous as a small positive bias in the estimated variance parameters can help the re-estimation procedure achieve
the desired power. See Friede and Kieser for further details.1 For this reason, we did not consider attempting to adjust for
the bias in the interim ICC estimate under the blinded model. Similarly, we did not modify the final analysis to account
for the interim analysis as the observed type I error rate inflation was small.

A practical consideration for SSRE designs is the choice of sample size for the interim analysis. Studies have shown that
estimates from pilot studies, which typically employ small sample sizes are frequently imprecise.3,23 To some researchers,
40 clusters are inadequate to yield precise estimates of the ICC in the frequentist framework.24 When there is such uncer-
tainty around the assumed ICC, the hybrid approach should be preferred over the frequentist. This is because even if the
best guess estimate (m) based on existing data is inaccurate, a weakly informative prior may often still be advantageous
since the performance of the SSRE procedure does not depend heavily on the accuracy of the prior mean.

This study has some limitations. First, the use of a truncated normal prior makes it challenging to target small values
of 𝜌 when s is fixed in a way that renders the prior weakly informative or non-informative. As noted previously, this can
lead to an overestimation of the sample size on average for small values of 𝜌, regardless of the chosen value of m in such
scenarios. In this study, we have employed the truncated normal prior without adjusting for these biases as a proof of
concept. In practice, trial designers might consider varying both s and m if they believe 𝜌 is sufficiently small or consider
using a different prior altogether. While we believe that an extension of this approach to different priors and outcome
data might yield similar results, future studies detailing the results and complexities of such models could be helpful.
While we believe that an extension of this approach to different priors and outcome data might yield similar results,
future studies detailing the results and complexities of such models could be helpful. Another limitation was the consid-
eration of only one CRT design (the parallel group). Hence, inferences from this study cannot be generalised to other CRT
designs.

Additionally, though some studies have defined SSRE in the context of updating cluster sizes,18 we have focused on
updating the number of clusters instead, as this generally has a higher impact on power. This is consistent with several
previous studies which sought increases in power through increasing the number of clusters.25-27 However, we acknowl-
edge that due to logistical constraints, it may in some instances be more difficult to add more clusters than to increase
the number of participants per cluster.27 In such scenarios, the methods discussed here could be readily extended to
re-estimate the cluster size; we illustrate how this can be achieved in the Supplementary Material. Whilst the method-
ology can be easily extended, we note though that due to the diminishing returns in the power gain from increasing the
cluster sizes, it may not always be possible even under re-estimation to achieve the desired power.

Another limitation of the proposed methodology is the assumption of a normal outcome with Fisher’s formula then
used to estimate the variance of the ICC estimate. Nevertheless, as highlighted by Turner et al,9 this method for estimating
the variance of the ICC can be extended to, for example, binary outcomes. This would facilitate performing re-estimation
for a trial that assumes a binary outcome. Additionally, we assumed a linear mixed model. Nonetheless, we see no com-
pelling rationale for why the results would differ greatly if, for example, a Generalized Estimating Equation based analysis
was assumed.

In conclusion, the MSE of the hybrid approach becomes similar to the frequentist approach when using a completely
uninformative prior, whereas a highly informative prior does better if the prior is correct (and is poor otherwise). Utilising
a weakly informative prior performs well, demonstrating robustness in terms of the MSE over a wide range of ICC values
typically observed in practice. A simulation study can be useful to assess when a hybrid approach may offer utility in
terms of overcoming known issues with the frequentist SSRE approach.
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