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ABSTRACT OF THE DISSERTATION

On the Dynamical Evolution of Alfvénic Turbulence in the Inner Heliosphere

by

Nikolaos Sioulas

Doctor of Philosophy in Geophysics and Space Physics

University of California, Los Angeles, 2024

Professor Marco C.M. Velli, Chair

As the solar wind expands into the interplanetary medium, its turbulent nature changes

dramatically. The synergy of the Parker Solar Probe, Solar Orbiter, and WIND missions is

enabling hitherto impossible studies of plasma turbulence throughout the inner heliosphere,

ranging from within the Alfvén region out to Earth’s orbit at 1 astronomical unit (AU).

Understanding the dynamic evolution and transport of turbulent fluctuations from the

corona into the heliosphere is fundamental to heliospheric science and can offer insights

into several important unresolved problems in the field, including the coronal heating

mechanism, the acceleration and non-adiabatic expansion of the solar wind, and the

scattering and acceleration of energetic particles by turbulent fluctuations. The principal

scientific aim of this thesis is to harness these observations and provide robust observational

constraints on theoretical models and numerical simulations of Alfvńic turbulence by

offering insights into the statistical signatures of 3-D anisotropic MHD turbulence in the

solar wind. Emphasis is placed on testing homogeneous phenomenological models of MHD

turbulence informed by the principles of critical balance and dynamic alignment and

assessing the extent to which the conjectures and predictions made by these models align

with in-situ observations. By comparing our observations with the model predictions, we

aim to understand how effects not accounted for in these models, but present in the solar

wind—namely, inhomogeneity induced by the radial expansion, imbalance in the fluxes of

counterpropagating wave packets, compressibility, and the spherically polarized nature of

the magnetic field fluctuations—can affect the statistical properties of MHD turbulence.

ii



In parallel, our study dissects the dynamics and radial evolution of coherent magnetic

structures, elucidating their role in magnetic energy dissipation and the ensuing heating

of the solar wind.
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CHAPTER 1

Introduction

Plasma permeates the cosmos, constituting the predominant form of visible matter

scattered across the vast expanses of space. Occupying the cores of stars, weaving through

nebulae, spiraling within galactic arms, and enveloping planetary environments, plasma

stands apart from the solid, liquid, and gaseous states by virtue of its ionization. This

so-called fourth state of matter is characterized by a sea of freely moving electrons and

ions, which endows it with extraordinary electrical conductivity, magneto-responsive

behavior, and the capacity to generate and interact with electromagnetic fields.

The behavior of astrophysical and space plasmas is often examined through the lens

of magnetohydrodynamics (MHD). MHD merges fluid mechanics with electromagnetism,

treating plasma as a magnetofluid governed by both hydrodynamic and electromagnetic

forces.

At the heart of astrophysical plasma dynamics lies MHD turbulence, a state of plasma

defined by the chaotic, nonlinear interactions between magnetic fields and plasma flows.

MHD turbulence drives complex energy transport and dissipation mechanisms, linking

large-scale astrophysical phenomena with microscopic processes. A deeper understanding

of MHD turbulence is crucial for explaining various unresolved astrophysical problems,

such as the heating of stellar coronae, the generation of stellar winds, the acceleration

of cosmic rays, and star formation. These insights offer a deeper understanding of the

mechanisms that govern the universe’s most energetic events and the evolution of cosmic

structures.

The solar wind, a continuous stream of plasma emanating from the Sun, provides an

accessible laboratory for studying MHD turbulence. Direct, in situ observations of the
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solar wind allow for the testing and refinement of MHD theories. Insights from solar

wind studies can be extrapolated to broader astrophysical contexts (Matthaeus and Velli,

2011).

A comprehensive understanding of the statistical properties of MHD turbulence is

essential for elucidating a wide range of astrophysical phenomena. Significant theoretical

progress in recent decades has aimed to align MHD turbulence theories with observa-

tional and numerical evidence (see reviews by Schekochihin et al., 2009a; Bruno and

Carbone, 2013; Beresnyak, 2019; Schekochihin, 2022, and references therein). Nonetheless,

many aspects of MHD turbulence remain to be explored (Chen, 2016a). For instance,

much of our theoretical framework is based on homogeneous turbulence, which involves

nonlinear interactions between small-amplitude, shear alfvénic wave packets traveling

in (anti)parallel directions relative to a large-scale background magnetic field. These

interactions lead to the fragmentation of wave packets and the cascading of energy to-

ward larger perpendicular wavenumbers. However, these assumptions often fall short

in the radially expanding solar wind, which is dominated by outgoing large-amplitude

wave packets exhibiting characteristics similar to spherically polarized Alfvénic modes.

Therefore, in situ observations that account for and quantify these effects are crucial for

the development and refinement of theoretical models.

Recent observations from the Parker Solar Probe (PSP, Fox et al., 2016) mission

offer an opportunity to test turbulence theory predictions through in-situ observations of

pristine turbulence in the vicinity of the solar wind sources. Integrating these findings

with data from spacecraft like Solar Orbiter (Solo, Müller et al., 2020), Wind (Wind,

Lepping et al., 1995), will facilitate investigations into the dynamic radial evolution of

turbulence within the inner heliosphere.

Through this thesis our aim is not only to enhance our understanding of solar wind

dynamics but also to provide solid observational constraints for MHD turbulence theories

and to elucidate the processes governing magnetic energy dissipation and plasma heating.

The outline of the thesis is as follows:
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Before delving into MHD and MHD turbulence, Section 1.1 discusses some basic

concepts underlying the dynamics of fluids and introduces fundamental ideas of the

hydrodynamic turbulent cascade.

To explore MHD turbulence, it is essential to understand some fundamental concepts of

plasma physics. Therefore, Section 1.2 provides an overview of key properties essential for

characterizing laboratory and astrophysical plasmas. Following this, Section 1.3 presents

an introductory discussion on the framework of homogeneous Magnetohydrodynamic

turbulence. A brief review of in-situ turbulence observations is provided in Section 1.4.

The research objectives and scope of thise thesis are summarized in Section1.5.

The novel results of this thesis are presented in Chapters 3 through 5. A summary of

our results and a brief discussion of ongoing and future work are provided in Chapter 6.
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1.1 Hydrodynamic Turbulence

To delve into the complex dynamics of turbulent plasmas, it is crucial to first understand

the foundational principles of hydrodynamics. In this chapter, we will start by examining

the fundamental equations governing fluid dynamics, focusing specifically on the Navier-

Stokes equations

We will then explore how different flow regimes emerge based on the relative importance

of nonlinear advection and viscous terms. Laminar flow is characterized by smooth, orderly

motion, while turbulent flow exhibits chaotic, eddying behavior. Understanding these

regimes is crucial for interpreting the various states fluids can exhibit under different

physical conditions.

Finally, we will delve into the principles underlying turbulent flows. Our discussion

will adopt a phenomenological perspective, drawing extensively from the Kolmogorov

framework (Kolmogorov, 1941). This framework provides a statistical approach to

understanding turbulence, emphasizing the energy cascade process and scale invariance.

1.1.1 Governing Equations

Hydrodynamics pertains to the study of fluid motion and the forces that both influence and

result from such dynamics. It employs mathematical models that build upon principles

from kinetic theory, which models fluids as assemblies of numerous interacting particles.

Each particle population in a fluid is described by a distribution function fj(r,v, t) that

describes the probability of finding a particle in a differential element at position r to

r + dr and velocity v to v + dv at time t. The distribution function for each particle

type must satisfy the normalization condition:

∫
fj(r,v, t) d

3r d3v = Nj, (1.1)

where Nj is the total number of particles of type j.

Under the assumptions that the number of particles within the system remains con-
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served, Liouville’s theorem—which states the conservation of phase space volume—leads

to the Vlasov equation:

∂fj
∂t

+ v · ∇rfj + a · ∇vfj = 0, (1.2)

where a is the acceleration on each of the particles due to the forces acting on those

particles. This differential equation governs the evolution of the distribution function in

regimes where collisions are rare or negligible, we have thus dropped the collision term,

( δfc
δt

)c.

The transition from a kinetic to a hydrodynamic description involves taking statistical

moments of the distribution function fj(r,v, t) over velocity space. The j-th moment

tensor J i
j (r, t) is defined by:

J i
j (r, t) =

∫
vifj(r,v, t) d

3v. (1.3)

From these moments, one can derive macroscopic fluid properties, such as the number

density nj and mean velocity uj for each particle type:

nj =

∫
fj d

3v, njuj =

∫
vfj d

3v. (1.4)

Application of these moment definitions to the Vlasov equation yields a set of con-

servation equations. The zeroth-order moment leads to the continuity equation, which

reflects mass conservation:
∂nj
∂t

+ ∇ · (njuj) = 0, (1.5)

and the first-order moment results in the momentum equation for an inviscid fluid,

typically expressed in Eulerian form:

∂uj
∂t

+ (uj · ∇)uj =
∇ · P j

mjnj
+ Fj, (1.6)
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where Fj represents external forces per unit mass and assuming isotropic pressure and

and incompressible flow, see 1.1.2, we can decompose the pressure tensor as P j =

mj

∫
(v− v)(v− v)f(r, (v− v), t) d3v = −Ip+ ν∇v, the latter term is the stress tensor,

containing the off-diagonal terms.

A significant challenge arises because any given n-order moment depends on the

n+ 1-order moment. This means that a complete description of system would require an

infinite number of moment equations to be derived from the Vlasov equation. For practical

calculations a closure assumption is usually implemented. One common approach is to

truncate the hierarchy by assuming that all moments J i
j = 0 for i exceeding a certain

order. A widely used closure model employs a polytropic equation of state, typically

defined by pρ−γ = const, where γ is the polytropic index.

1.1.2 Incompressible flows & the Reynolds number

For an incompressible fluid, the density ρ is constant, leading to the simplification that

its time derivative is zero:

dρ

dt
= 0, (1.7)

where dψ
dt

= ∂ψ
∂t

+u ·∇ψ, is the material derivative, and u the flow speed. Substituting

this condition into the continuity equation we can obtain a condition for incompressibility:

∇ · v = 0 (1.8)

In this case the Navier-Stokes equations for an incompressible fluid can thus be written

as:
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∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v, (1.9)

∇ · v = 0, (1.10)

where ν = µ/ρ represents the kinematic viscosity.

To gain a deeper understanding of different flow regimes we can render the Navier-

Stokes equations nondimensional. We introduce characteristic length and velocity scales,

L and U , respectively. We define the nondimensional variables:

v′ =
v

U
, t′ =

tU

L
, r′ =

r

L
, p′ =

p

ρU2
(1.11)

Substituting these into the Navier-Stokes equations and simplifying, we find that the

terms involving the viscosity becomes:

µ

ρLU
∇2v (1.12)

The coefficient of the viscous term, µ/ρLU , can be rewritten as:

1

Re
=

µ

ρLU
(1.13)

The Reynolds (1883) number contrasts inertial forces against viscous forces within

the fluid flow. Alternatively, Re can be estimated as the ratio between the nonlinear

advection and the viscous terms in Equation 1.9, |(v · ∇)v|/|ν∇2v|. Low Re indicates

laminar flow, which is smooth and ordered, while high Re signifies turbulent flow, marked

by chaotic and stochastic fluid motion.

Turbulent dynamics pose a significant challenge in our understanding of fluid dynam-

ics1. A field that interects disciplines of theoretical physics, applied mathematics, and

1Chaos and turbulence share similar properties of unpredictability, but chaos is usually used as a term
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Figure 1.1: The Lorenz Attractor and Divergence of Trajectories. Panel (left) illustrates
the two-dimensional projection of the Lorenz attractor, showing Trajectory A (solid
line) and the perturbed Trajectory B (dashed line) in the X-Z plane, highlighting the
sensitivity to initial conditions. THe right panel presents the logarithmic divergence
of the z component between the two trajectories over time, exemplifying the ’butterfly
effect’ where small differences in starting conditions lead to exponential separation, a
characteristic feature of chaotic systems.

engineering. In contrast to laminar flow, where fluid particles trace smooth, predictable

trajectories, turbulent flow is marked by erratic and seemingly random movements. This

unpredictability is not just a theoretical concern but also has significant practical im-

plications, for example, in meteorology. The difficulty in precisely predicting weather

patterns, particularly severe storms, highlights the challenges posed by turbulence. Even

minor changes in initial conditions can lead to widely divergent outcomes, illustrating the

so-called butterfly effect within chaotic systems, see e.g., Figure 1.4.

1.1.3 Stationarity, Ergodicity & the Power Spectral Tensor

The complexity of turbulence arises from its highly irregular, chaotic, and multiscale nature,

involving a vast range of interacting eddies and vortices. This inherent complexity makes

it nearly impossible to derive exact analytical solutions for turbulent flows. Consequently,

to describe a nonlinear system without too many degrees of freedom. Turbulence on the other hand has
many degrees of freedom.
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physicists resort to statistical descriptions, which allow them to characterize the average

properties and probabilistic behavior of turbulence, thereby providing meaningful insights

into its dynamics despite the absence of precise deterministic solutions.

An ensemble, denoted as z(t), consists of various outcomes zj(t) of a random process,

where j = 1, 2, . . . ,M . The properties of the random process are discerned by averaging

over the entire ensemble of M possible functions zj(t). For a specific time t0, the mean

value µz, i.e., the first moment of the probability density function, is defined as

µz(t0) = ⟨z(t0)⟩ = lim
M→∞

1

M

M∑
j=1

zj(t0), (1.14)

while the autocorrelation function Rz is given by

Rz(t0, t0 + τ) = ⟨z(t0)z(t0 + τ)⟩ = lim
M→∞

1

M

M∑
j=1

zj(t0) · zj(t0 + τ), (1.15)

where the ⟨. . .⟩ operator denotes the ensemble average.

The sample function z(t) is referred to as weakly stationary when both µz(t0) and

Rz(t0, t0 + τ) remain independent of time, i.e., µz(t0) = µz and Rz(t0, t0 + τ) = Rz(τ).

Strong stationarity, however, requires all higher-order moments and joint moments to

also remain constant over time (Frisch, 1995). It is important to point out that if the

sample function z(t) is characterized by a Gaussian distribution, its higher-order odd

moments vanish, while even moments are completely described by second-order moments.

Therefore, in Gaussian processes, weak stationarity naturally implies strong stationarity,

with the first moment and autocorrelation function fully characterizing the process.

Typically, conditions are imposed ensuring the equality between different averages,

formally known as ergodicity. Ergodicity is a fundamental concept that allows a time

average over a single sample function zj(t) to serve as an ensemble average over all states

in phase space for a stationary process. This implies that all statistical information can

be derived from one function. This property is particularly advantageous for experimental

data collection, as it allows for adequate sampling of a stationary random process through
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averaging over a single time series. In the solar wind, for example, Matthaeus and Goldstein

(1982) have demonstrated that magnetic field fluctuations often exhibit characteristics

of weakly stationary and ergodic processes, provided one accounts for intermittency by

excluding coherent structures. They observed that the mean and autocorrelation function

computed over a sub-interval converge to the values estimated for the entire interval after

a few correlation times τc.

The two-point autocorrelation tensor for the velocity field is expressed as (Frisch,

1995):

Rmn
v (r) = ⟨vm(x) · vn(x+ r)⟩, (1.16)

where indices m,n = 1, 2, 3 represent the different components of v. In conditions of

weak homogeneity where the mean field v0 = ⟨v(x)⟩ = 0, Rmn
v (r) becomes independent

of the position, x. Therefore, Rmn
v (r) characterizes the structural correlation between

different components of v as a function of distance r, averaged over an ensemble of two

spatial points. Similarly, the velocity cross-correlation tensor is defined as:

Ruv
mn(r) =

1

2
(⟨um(x) · vn(x+ r)⟩ + ⟨vm(x) · un(x+ r)⟩) . (1.17)

The connection between autocorrelation tensor Rmn(r) and the power spectral tensor

Smn(k) is established by the one-dimensional Wiener-Khinchin theorem, stating that for

a stationary process:

Ẽmn(k) =

∫∫∫
Rmn(r) exp(−i · k · r)d3r. (1.18)

For instance, the velocity field power spectral tensor is expressed as:

Ẽv
mn(k) = ⟨ṽ∗m(k) · ṽn(k)⟩, (1.19)

where the asterisk denotes the complex conjugate, ṽ∗m(k) = ṽm(−k). The power-spectra
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Figure 1.2: Representation of the energy spectrum in turbulent flows. The graph shows
the distribution of energy across different scales of turbulence represented by wave number
k. The peak at l−1

in marks the energy injection scale, where energy is fed into the largest
eddies. The −5/3 slope in the inertial subrange indicates the energy cascade due to
the Kolmogorov spectrum, where energy transfers from larger to smaller eddies without
significant loss until it reaches the dissipation scale at ℓ−1

d . The visual insert of eddies
demonstrates the process of energy transfer from larger to progressively smaller eddies,
typical in turbulent flow.

can be obtained directly from the trace of the power spectral tensor, Tr{Ẽv
mn(k)} ≡ ∑

i Ẽii.

1.1.4 Phenomenology of the Inertial Range Turbulent Cascade

A hallmark of fully developed turbulence is an energy spectrum that spans a broad

range of scales. We conceptualize a scenario in which physical quantities like energy are

continuously injected at a large energy injection scale ℓin ∼ 1/k ≈ kin, with an injection

rate ϵin. Through nonlinear, energy-conserving interactions, this energy is transferred

across the spectrum towards smaller spatial scales at a rate ϵt, culminating in dissipation

at the dissipation scale k ≈ kd, where energy is transformed into heat at a rate ϵd. In
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steady-state turbulence, these rates of energy flux are equated. The scales between

injection and dissipation are defined as:

ℓin ≫ ℓ≫ ℓd. (1.20)

In this range, eddies are too large for viscosity to significantly influence and too small

to be affected by large-scale inhomogeneities. This process is typically referred to as a

direct cascade. However, under specific conditions, such as in purely 2D fluid turbulence,

the cascade can reverse direction—from smaller to larger scales, a phenomenon known as

an inverse cascade.

An important dynamical timescale in this system is the nonlinear eddy turnover time,

τnl ∼
ℓm
δvn

, (1.21)

defined as the time required for energy to transfer between consecutive scales ℓm and

ℓm+1, with δvn representing the velocity fluctuation amplitude at scale ℓm. For analytical

purposes, we discretize the inertial range into logarithmically spaced scales:

ℓ0 > ℓ1 > · · · > ℓm, and thus k0 < k1 < · · · < kN , (1.22)

where ℓm = 2−n=mℓ0, and ℓ0 is approximately equal to the system’s largest scale L.

Kolmogorov proposed that the cascade process is complex enough for eddies to lose

all memory of their past, and that their properties after each cascade step are random.

A universal probability density function (PDF), P (δu, ℓ), is postulated to emerge over

the inertial range. The velocity difference between non-proximate points is modeled

as the sum of velocity differences over subintervals, supporting a Gaussian distribution

assumption based on the central limit theorem. The validity of this assumption relies

on the mutual independence among summands and comparable finite variances in the

subinterval probability distributions (Feller, 1968).
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Considering a global transfer energy rate ϵ that is independent of scale,

ϵ ∼ δv3n
ℓm

, (1.23)

leads to the scaling relationship:

δvn ∼ ϵ1/3ℓ1/3m . (1.24)

Utilizing statistical moments of the PDFs, structure functions (SF n):

SF n
i (ℓ) =

∫ ∞

−∞
(δui)

nP (δui, ℓ)d(δui), (1.25)

where δui denotes longitudinal velocity increments, δui = Vi(r + ℓ) − Vi(r), Kol-

mogorov’s similarity hypothesis yields:

SF n
i (ℓ) ∼ ϵn/3ℓζ

K41(n), (1.26)

where ζK41(n) = n/3, implying global scale invariance (self-similarity) of the fluctua-

tions.

In addition, we derive the energy spectrum for isotropic turbulence, assuming a scalar

wavenumber k =
√
k2x + k2y + k2z , and define the angle-integrated spectra as:

E =

∫ ∞

0

k Ek. (1.27)

Equating the kinetic energy of eddies to the band-integrated Fourier spectrum gives:

δv2n ∼ knEkn , (1.28)

from which we estimate:
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Ek ∼ ϵ2/3 k−5/3. (1.29)

Finally, the dissipation scale within this framework, ℓd, can be identified as the point

where nonlinear terms equate with diffusion terms, leading to ℓdvν ≈ ν, similar to the

reasoning used in defining the Reynolds number, Re. Given that vk ∼ ϵ1/3k−1/3, it follows

that

ℓd ∼ ν3/4ϵ−1/4. (1.30)

It is crucial to understand that this introduction is limited to incompressible hydrody-

namics. The subsequent chapters will extend these concepts to address the generalizations

necessary for anisotropic magnetohydrodynamic turbulence.
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1.2 Basics of Plasmas

A notable feature of plasma is the significant mass difference between its components.

Protons, the lightest ions, are nearly 2000 times heavier than electrons. This mass

disparity profoundly influences the dynamics of plasma particles, which can exhibit a

wide range of behaviors across different temporal and spatial scales. Understanding these

dynamics requires the use of specific metrics, referred to as plasma parameters. In this

section, I provide an overview of the fundamental concepts in plasma physics pertinent

to the study of the solar wind and the subsequent research presented in this thesis. The

discussion starts with the definition of plasma and the identification of its characteristic

time and length scales.

Similar to hydrodynamics, modeling plasma dynamics often involves grappling with

the intricacies of kinetic theory. This approach requires computing individual particle

interactions, which is challenging due to the complexity of solving the Boltzmann or Vlasov

equations analytically and numerically. Kinetic theory demands significant computational

resources and sophisticated algorithms to account for the detailed behavior and interactions

of particles.

To handle this complexity, the method of moments of the distribution functions is

employed. This approach simplifies the microscopic specifics of individual particle states

into macroscopic, measurable quantities like density, velocity, and pressure. This transition

facilitates the use of fluid equations .

Even with this simplification, the resultant fluid models, such as the two-fluid model

that distinguishes between ions and electrons, still embody a considerable degree of

complexity. Within this framework, Magnetohydrodynamics (MHD) offers a further

simplification by assuming nearly equal temperatures for ions and electrons and treating

them as a single ”fictitious” fluid. This approximation enables MHD to effectively integrate

electromagnetic effects into fluid dynamics, creating a powerful tool for describing a broad

spectrum of plasma behaviors across various conditions. Despite its simplifications, MHD

remains highly effective in capturing a wide array of plasma dynamics, proving essential
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for analyzing classical plasma regimes.

The derivation of MHD equations from kinetic theory requires an in-depth engagement

with statistical mechanics and electromagnetic theory. This topic, while rich and expansive,

is beyond the scope of this introductory section. Our objective in this section is to lay a

foundational understanding that supports our study. This approach provides an accessible

entry point into the complexities of MHD turbulence, tailored to our research needs. For

those interested in a more thorough discussion, (Biskamp, 2003; Chiuderi and Velli, 2015)

offer extensive insights into the subject.

1.2.1 Plasma parameters

The term ”plasma” is derived from the Greek word πλάσμα, meaning a substance that

can be molded or shaped, was introduced in the scientific literature by Langmuir (1928)

to describe ion and electron-rich regions around electrodes in equilibrium. Known as the

”fourth state of matter,” plasma forms under conditions conducive to the ionization of

gases, a process triggered by energy input sufficient to overcome the electron binding

energy, thus ionizing atoms. Such conditions are prevalent in various environments,

including the cores of stars, Earth’s ionosphere, and in controlled environments like

tokamaks or other laboratory experiments.

Objects with mass, including charged particles in a plasma, follow Newton’s laws of

motion. When these particles travel at velocities significantly less than the speed of light,

c, their dynamics are described by:

F total =
dP

dt
= m

d2r

dt2
, (1.31)

where F total denotes the total external force, P is momentum.

Charged particles moving with velocity v, are subject to the Lorentz force:

F EM = q(E + v ×B). (1.32)
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where E and magnetic field B are the macroscopic electric and magnetic fields that

arise from possible external sources as well as from the presence and motions of all other

particles. Therefore, while plasmas resemble neutral gases macroscopically, they differ

microscopically due to the effects of these long-range interactions among the particles,

leading to the collective behavior of the particles constituting the plasma. Quasineutrality

is expressed as:

∑
j

njqj ≈ 0 (1.33)

where qj denotes the charge states of species j. This state is maintained by the

long-range Coulomb force, ensuring global charge equilibrium which is crucial for the

plasma’s stability and unique properties.

The electric potential ϕ within plasmas is described by Poisson’s equation:

∇2ϕ = − ρ

ε0
, (1.34)

with, ε0, permittivity of free space, ρ, the charge density, comprising mainly free

electrons and ions, and defined as ρ = e(ni − ne). Assuming ions form a quasi-static

background due to their significantly greater mass (ni = n0), the introduction of a test

charge qi perturbs the plasma, modeled by ρtest = qiδ(r).

At thermal equilibrium, the electron density’s response to electrostatic potential follows

the Boltzmann relation:

ne = n0 exp

(
− eϕ

kBTe

)
, (1.35)

which simplifies to ne ≈ n0

(
1 − eϕ

kBTe

)
under the condition eϕ ≪ kBTe. This linear

approximation, when inserted into Poisson’s equation alongside the test charge term,

yields:
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∇2ϕ ≈ e2n0

ε0kBTe
ϕ+

qiδ(r)

ε0
. (1.36)

This leads to the identification of the Debye length λD, given by:

λD =

(
ε0kBTe
e2n0

)1/2

, (1.37)

signifying the characteristic distance over which electric potentials are screened or

attenuated in the plasma. Here ε0 is the permittivity of free space, kB the Boltzmann

constant, Te is the electron temperature in Kelvin.This naturally introduces the concept of

the Debye sphere, a virtual sphere with a radius equal to the Debye length. Within this

sphere, the electrostatic potential of a charged particle influences other charges, leading

to a net screening effect. A collection of particles can be deemed a plasma if the particle

count within a Debye sphere is substantially large. This can be quantified using the

plasma parameter,

Λ = neλ
3
D ≫ 1 (1.38)

In this thesis, our primary discussion revolves around collisionless plasmas, where

the Coulomb collision time, denoted as τc = 1
νc

, νc the frequency of collisions among

the particles, is considerably longer than any other typical temporal variation within the

plasma.

In plasma physics, multiple characteristic frequencies are observed. The most funda-

mental frequency, indicating the oscillation frequency of a column of particles of a species,

against the background plasma comprised of all other species, is the plasma frequency

for a species s, expressed as:

ωps =

(
njq

2
s

mjϵ0

) 1
2

. (1.39)

The plasma frequency not only establishes a characteristic time scale (τp = 1/ωp) that
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differentiates plasma from neutral gases but also underscores the rapidity with which

plasma responds to external disturbances, a fundamental aspect in the study of wave

propagation and stability within plasma.

The Lorentz force leads to gyration motions, quantified by the gyroradius (rL) and

gyrofrequency (ωc), which are critical for understanding particle confinement and the

influence of magnetic fields on plasma behavior:

rL =
mv⊥
|q|B , (1.40)

ωc =
|q|B
m

, (1.41)

emphasizing how particle energy and magnetic field orientation affect charged particle

dynamics.

The ion inertial length, di, is given by

di =
c

ωpi
, (1.42)

The ion inertial length characterizes the scale in plasma at which ions’ inertia prevents

them from reacting quickly to changes in the electric field, leading to their decoupling

from the electrons. It marks the threshold below which the motion of electrons and

magnetic field lines can be considered independent of ion motion.

We conclude by defining a critical parameter in plasma physics known as the plasma

beta, β, which is the ratio of the thermal energy density to the magnetic energy density.

It is given by:

β =
nkBT

B2/(2µ0)
(1.43)

The value of β serves as an indicator of the dominant forces within the plasma. A

β ≫ 1 implies that thermal pressure is the dominating force over magnetic fields in
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influencing plasma dynamics.

1.2.2 Difficulties of Resorting to Kinetic Theory

The Vlasov equation, see Section 1.1.1,

∂fj
∂t

+ v · ∂fj
∂r

+
qj
mj

(E + v ×B) · ∂fj
∂v

= 0, (1.44)

,

where we have subsituted the acceleration term using Equation 1.32 in tandem with

Maxwell’s equations:

∇ ·E =
ρ

ϵ0
, (Gauss’s law) (1.45)

∇ ·B = 0, (Solenoidal constraint) (1.46)

∇×E = −∂B
∂t

, (Faraday’s law) (1.47)

∇×B = µ0J +
1

c2
∂E

∂t
, (modified Ampére’s law) (1.48)

consitute the Maxwell-Vlasov equations providing a complete system description of

collisionless plasma dynamics. Here

ρ =
∑
j

qj

∫
fj d

3v (1.49)

is charge density, and

J =
∑
j

qj

∫
vfj d

3v, (1.50)

the current density.

While an idealized approach would involve tracking the motion and interactions of
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each particle, considering both the external and self-generated electromagnetic fields, the

complexity of such a task is prohibitive due to the vast number of particles typically present

in a plasma. For instance, in a typical laboratory plasma, the number of particles can

exceed 1018 per cubic meter, each interacting with one another through electromagnetic

forces that vary both spatially and temporally.

Given this complexity and the significant computational resources required for a

particle-by-particle simulation, plasma physicists often resort to more manageable sta-

tistical or fluid-like models. These models, such as Magnetohydrodynamics (MHD),

treat plasma as a continuous fluid influenced by magnetic fields, providing practical yet

insightful ways to study plasma dynamics. These approximations, while less precise than

a fully kinetic description, still offer significant predictive power and understanding of

plasma phenomena in a variety of settings.

1.2.3 Conditions for MHD Applicability and Limitations

The MHD equations integrate the principles of fluid dynamics with electromagnetic theory.

They include the Navier-Stokes equations, modified for conductive fluids, Maxwell’s

equations for describing electromagnetic fields, and an equation of state that defines the

system. These equations characterize the fluid’s velocity vector v, thermodynamic pressure

p, and magnetic field vector B. Within the framework of the single-fluid approximation,

the plasma is considered a continuous medium. The utility of this approach is contingent

upon several specific conditions, which are detailed as follows:

Even though the plasma that is macroscopically neutral we can still have currents J

as long as the electrons move at an average velocity v− that is different than the average

velocities v+ of the ions,

−J = n+e+v+ + n−e−v− = −n−e−v+n−e−v−, (1.51)

and subsequently,

J = n−e−(v− − v+) = n−e−v′rel, (1.52)
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where v′rel is the relative velocity of the electrons compared to the ions.

However, the relative velocity v′rel of the electrons with respect to the ions is usually

very small and therefore, in a first approximation, the plasma motion can be considered as

the motion of a neutral fluid which due to of electrical neutrality and because m− << m+

is described by the following macroscopic parameters:

V elocity : v =
n+m+v+ + n−m−v−

n+m+ + n−m− =
m+v+ +m−v−

m+ +m− ≈ v+,

Density : ρ = n+m+ + n−m− = n−(m+ +m−) ≈ n+m+ = nm,

Pressure : P = P+ + P− = 2nkT and Temperature : T =
T+ + T−

2
.

This simplifies the problem, since we do not have to write separate equations for the

ions and electrons.

In the ion frame of reference, the equation of motion of the electrons is written to a

first approximation,

dv′

dt
= −e

(
E′ +

v′

c
×B′

)
−mev

′ ν
′

νc
, (1.53)

where νc is the collision frequency of electrons with ions, while in the system of moving

ions the fields are denoted are denoted with a prime. Assuming that the speed of the

electrons is constant, v′rel ≈ const., we have a balance between the Lorentz force and the

frictional force in the system of moving ions. For non-relativistic velocities V/c << 1,

v′rel ≈ − eE′

meνc
, (1.54)

and consequently,

J ′ = −enev′ = σE′, (1.55)
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where the electrical conductivity is,

σ ≈ nee
2

meνc
. (1.56)

Finally, by substituting the expressions into the Ohm’s law for non-relativistic velocities,

we have

J ′ = J , B′ ≈ B, E′ ≈
(
E +

v

c
×B

)
. (1.57)

The basic physical assumptions of underlying the magnetohydrodynamic framework

are:

1. Low-Frequency, Long-Wavelength Approximation: MHD is predicated on the

assumption that the phenomena of interest manifest at frequencies and wavelengths

satisfying

ω ≪ Ωci, λ≫ ρi, (1.58)

where ω denotes the phenomena’s frequency, Ωci the ion cyclotron frequency, and ρi

the ion gyroradius. This allows MHD to eschew kinetic effects, concentrating on

the fluid and electromagnetic dynamics.

2. Quasi-Neutrality: MHD assumes quasi-neutrality, positing that the plasma

remains neutral on average, with electron and ion densities (ne and ni, respectively)

being approximately equal over scales much larger than the Debye length λD, the

characteristic length for charge separation:

L≫ λD. (1.59)

3. Collisionality: The approximation presupposes sufficient collisionality to sustain

a Maxwellian distribution, enabling electron and ion temperatures to equilibrate

(Ti = Te). This reflects a regime where energy exchange among particles is frequent,
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justifying the application of fluid equations to describe plasma behavior.

4. Neglect of Displacement Current: Within the MHD context, Ampére’s law

often disregards the displacement current due to the non-relativistic velocities

involved (V 2 ≪ c2), rendering this term insignificant for the dynamics at hand.

These conditions delineate MHD’s domain of applicability By adhering to these

assumptions, MHD offers a computationally viable and powerful approach for investigating

a variety of plasma phenomena.

1.2.4 The ideal MHD Equations

Ideal MHD simplifies the dynamics of electrically conducting fluids under magnetic

fields by assuming infinite electrical conductivity (σ → ∞). This assumption leads to

two primary simplifications: the electric field within the fluid is negated, implying that

magnetic field lines move with the fluid (the ”frozen-in” condition), and resistive effects

are omitted, preventing magnetic field diffusion through the plasma. Additionally, Ideal

MHD disregards viscous dissipation and thermal conduction, eliminating internal frictional

forces and conductive heat transfer from the equations of motion and energy conservation,

respectively.

The Continuity Equation already defined in Section 1.1.1. The Momentum

Equation, a modification of the Navier-Stokes equation presented in Section 1.1.1

enriched by the Lorentz force term. It describes the forces acting on the fluid, accounting

for both electromagnetic and hydrodynamic forces:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ J ×B, (1.60)

where p is the pressure, J is the current density, and B is the magnetic field. This

equation underscores the direct coupling between fluid motion and electromagnetic fields.

The relationship between the electric field E and the current density J is described

by Ohm’s Law, given by:
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J = σE′, (1.61)

where σ represents the electrical conductivity of the fluid, and E′ denotes the electric

field as perceived in the fluid’s comoving frame. If the fluid parcel is moving with velocity

v, applying the Lorentz transformation yields E′ = E + v ×B. In scenarios where the

conductivity is infinite (σ → ∞), this simplifies to E = −v ×B.

By employing Faraday’s equation, see Eq. 1.47, we derive the Induction Equation

of ideal MHD:

∂B

∂t
= ∇× (v ×B). (1.62)

This equation reveals that in a perfectly conducting plasma, magnetic field lines behave

as if they are frozen, permitting unobstructed flow along the magnetic field B, whereas

any flow perpendicular to B results in the displacement of these lines. Importantly, by

taking it’s divergence

∂

∂t
∇ ·B = 0 (1.63)

therefore the induction equation inherently incorporates the divergence-free condition

of the magnetic field (∇ ·B = 0).

In addition, the current density J needs to be expressed in terms of the magnetic field

B. Utilizing the modified form of Ampére’s law and incorporating Ohm’s Law leads to

an approximation of the electric field as E ≈ v0B, where v0 represents a typical velocity

scale of the process. Considering the magnitudes of the terms in the Ampére’s law, ∇×B
and 1

c2
∂E
∂t

, with the former proportional to B
l0

and the latter to E
c2t0

, where l0 and t0 are

characteristic spatial and temporal scales of the process, respectively. For non-relativistic

processes where v0 ≪ c, the first term is significantly greater than the latter, leading to a
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simplified form:

J =
1

µ0

∇×B. (1.64)

However, to fully solve the system of MHD equations, a closure condition, such as

an equation of state, is required to link the thermodynamic variables like pressure and

temperature with the density and other state variables. This approach effectively models

conducting fluids across a variety of astrophysical and laboratory scenarios, providing a

robust framework for investigating fundamental plasma dynamics without the prohibitive

complexity of a complete kinetic description.

Closure the ideal MHD equations typically involves an equation of state (EOS) that

relates the plasma pressure to other macroscopic quantities like density and temperature.

The most common choice for the EOS is the adiabatic or polytropic equation of state,

which assumes that the process is reversible and no heat is exchanged with the environment,

thus conserving entropy along fluid lines. This assumption leads to a relation of the form:

d

dt

(
p

ργ

)
= 0, (1.65)

where γ = Cp/Cv is the adiabatic index (ratio of specific heats).

In deriving ideal MHD equations, the plasma is treated as a fluid under the assumption

of sufficient collisionality to maintain local thermodynamic equilibrium (LTE), ensuring

well-defined macroscopic quantities like pressure and temperature. However, this fluid

description falls short in non-collisional or weakly collisional plasmas, common in many

astrophysical settings, where particle mean free paths can be extensive.

To model these plasmas formally, one must resort to kinetic treatments (see e.g.,

Schekochihin et al., 2009b; Klein, 2013). Nevertheless, in a strongly magnetized plasma,

the magnetic field exerts a dominant influence over the charged particles’ motion. Charged

particles gyrate around magnetic field lines with a characteristic radius known as the

Larmor radius, ρl. This gyro-motion effectively restricts the particles in the direction

perpendicular to the magnetic field, analogous to collisions, thereby contributing to a sort
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of “magnetic collisionality.

This effect allows for a partial closure of the MHD equations. The analysis often

employs an asymptotic expansion in terms of the small parameter ρl/L, where L is a

characteristic scale length of the system, such as the length over which the magnetic field

significantly changes. The assumption ρl ≪ L allows for a separation of scales between

the microscopic motion of the particles (gyromotion) and the macroscopic (fluid-like)

dynamics of the plasma.

Perpendicular dynamics are dominated by Alfvén waves, propagating through oscil-

lations of the magnetic field lines without compressing the plasma. Conversely, parallel

dynamics, unconfined by magnetic effects, resemble a traditional fluid with prominent

sound wave activity.

In strongly magnetized plasmas (β ≪ 1), where magnetic fields dominate collision-

less dynamics along the field, incompressible MHD theory often provides an adequate

description of the dynamics, even in low collisionality scenarios.

In summary, the complete set of ideal MHD equations can be succinctly expressed as

follows:

∂ρ

∂t
= −∇ · (ρv), (Mass Continuity) (1.66)

ρ
dv

dt
= −∇p−∇ B2

2µ0

+
1

µ0

B · ∇B, (Momentum) (1.67)

d

dt

(
p

ργ

)
= 0, (Energy) (1.68)

∂B

∂t
= (B · ∇)v − (v · ∇)B. (Induction) (1.69)

In the momentum equation, the Lorentz force is separated into pressure and tension

components using the relation (∇×B)×B = −∇B2

2
+B ·∇B. This separation highlights

the magnetic influences through an isotropic pressure term and a field line tension part.
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It is important to note that while the Lorentz force is inherently perpendicular to B,

both terms may still have components aligned with B. This occurs because the parallel

component of the tension term cancels out the parallel component of the magnetic pressure

term. Additionally, we utilize the substitution ∇× (v ×B) = (B · ∇)v − (v · ∇)B. For

further exploration and detailed derivations beyond this section, readers are referred to

seminal texts such as Biskamp (2003); Chiuderi and Velli (2015).

1.2.5 MHD Waves

In this section, we delve into the propagation characteristics of fundamental MHD modes,

which are crucial for understanding the dynamics of plasmas. The study of MHD waves is

pivotal as they manifest the system’s response to small perturbations, offering insights into

how disturbances propagate through a plasma medium. Each wave type is characterized

by a specific restoring force; in plasma environments, these forces are primarily derived

from magnetic fields and thermal pressure. The different combinations of these restoring

forces give rise to a diverse array of wave phenomena. Moreover, the nonlinear coupling

of these modes can initiate a cascade of energy, transferring disturbances from larger to

smaller scales. This energy cascade is essential for the redistribution of energy within the

plasma, influencing both local and global plasma behaviors and playing a critical role in

the overall stability and evolution of plasma systems.

We begin our analysis by linearizing the governing ideal MHD equations around a

stationary, uniform background state. We introduce small sinusoidal perturbations of the

form ei(k·x−ωt), denoted by lowercase letters (e.g., δρ, δp, δv, δb). These perturbations

are assumed to be significantly smaller than their respective unperturbed background

values, indicated with a subscript zero. All nonlinearities are neglected in this linear

approximation. The background magnetic field is assumed to be aligned along the

z-direction, represented as B0 = B0ẑ. In addition we assume that there is no large

scale-flow, V0 = 0. We replace spatial and temporal derivatives with wave number and

frequency respectively:
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∇ → ik,
∂

∂t
→ −iω, (1.70)

The linearized MHD equations then take the form:

ωδρ = ρ0k · δv, (1.71)

ωδp = c2sρ0k · δv, (1.72)

ωδv = k⊥(
δp

ρ0
+
B0 · δb
2µ0ρ0

) − B0 · k
µ0ρ0

δb (1.73)

ωδb = B0(k · δv) − (B0 · k)δv, (1.74)

here we have implicitly projected our equations along and transverse to B0, k =

k⊥ê⊥ + k||êz, k⊥ = (k2x + k2y)
1/2. Solving these equations leads to the eigenvalue problem,

formulated from the characteristic matrix I:

I ·


δvx

δvy

δvz

 = 0, (1.75)

where, I is defined as:

I =


ω2 − k2∥V

2
a 0 0

0 ω2 − k2⊥c
2
s − k2V 2

a −k⊥k∥c2s
0 −k⊥k∥c2s ω2 − k2∥c

2
s

 (1.76)

Existence of non-trivial solutions requires the determinant of the matrix in question

to vanish. This condition yields the following dispersion relation:

[ω2 − k2V 2
a cos

2θ]
[
ω4 − ω2(c2s + V 2

a )k2 + k4c2sV
2
a cos

2θ
]

= 0, (1.77)
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θ is the angle between the wave vector k and the magnetic field B0.

By analyzing the number of equations containing time derivatives, we deduce that

the system typically exhibits seven modes. The entropy mode, a trivial solution, is

characterized by

ω = 0, δρ ̸= 0, δv = (0, 0, 0). (1.78)

Since ω = 0, the phase speed u = ω/k also vanishes, indicating that the entropy mode

does not propagate and remains stationary within the plasma. Contact discontinuities,

for example, can be viewed as nonlinear manifestations of the entropy mode in MHD.

In considering the limit cs → ∞ within the incompressible framework, the term

enclosed in parentheses on the left-hand side of Equation 1.2.5 must vanish. This leads to

the derivation of the following dispersion relation:

ω2 = k2v2A cos2 θ

for the so-called Alfvén (1942) waves. To determine the eigenvectors associated with

these eigenvalues, we revisit our system of linearized equations. The equations of motion

and induction are decomposed into their respective components:
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ρ
∂δvx
∂t

= −∂δp
∂x

+
B0

4π

(
∂δbx
∂z

− ∂δbz
∂x

)
, (1.79)

∂δvz
∂t

= −∂δp
∂z

, (1.80)

∂δvy
∂t

=
B0

4π

∂δby
∂z

, (1.81)

∂δbx
∂t

= B0
∂δvx
∂z

, (1.82)

∂δbz
∂t

= −B0
∂δvx
∂x

, (1.83)

∂δby
∂t

= B0
∂δvy
∂z

, (1.84)

highlighting that the y components of velocity and magnetic field are decoupled from

the other components. It is thus possible to set δvx = δvz = δbx = δbz = δp = δρ = 0 and

still achieve a nontrivial solution for δvy and δby. By combining the equations involving

the y components, we derive the following equation:

(
∂2

∂t2
− v2A

∂2

∂z2

)
(δby, δvy) = 0, (1.85)

This equation signifies the presence of an incompressible transverse wave mode that

propagates along B0 at the Alfvén speed. The oscillations occur perpendicular to both

the magnetic field and the direction of wave propagation, with the magnetic tension acting

as the restoring force. Consequently, we can express:

δv · k = 0, δv ·B0 = 0, δv = (0, δvy, 0),
δby
B0

= ±δvy
vA

. (1.86)

The latter relationship indicates an equipartition between kinetic and magnetic energy

densities:

δb2y
8π

=
1

2
ρδv2y, (1.87)
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Returning now to the rest of the solutions, we utilize the phase speed to reformulate

the term in the brackets on the left-hand side of Equation 1.2.5:

u4 − u2(c2s + v2A) + c2sv
2
A cos2 θ = 0. (1.88)

It is convenient to introduce the normalized speed:

ũ =
u√
csvA

, (1.89)

which simplifies the quartic equation to:

ũ4 −
(
cs
vA

+
vA
cs

)
ũ2 + cos2 θ = 0. (1.90)

The resulting dispersion relation for these solutions is:

u2 =
(ω
k

)2

=
1

2
(c2s + v2A)

[
1 ±

(
1 − 4

cos2 θ

b2

)1/2
]
, (1.91)

where b = cs
vA

+ vA
cs

≥ 2.

These solutions characterize magnetosonic waves, which bear similarities to sound

waves. They may be considered a natural extension of classical sound waves in a magnetized

medium. In the absence of a magnetic field, they revert to isotropic sound waves. Unlike

regular sound waves, however, the phase speed of magnetosonic waves depends on vA, cs,

and θ, rendering them anisotropic due to the angular dependence of the phase velocity.

The mode associated with the branch of the solution with the positive sign is termed

the fast magnetosonic wave, or more simply, the fast wave, while the second mode is

known as the slow magnetosonic wave, or the slow wave. Substituting these solutions

into Eq. 1.2.5, it follows that δuy = 0, implying that the eigenvectors for these waves are

(δux, 0, δuz). Moreover, for these waves, δv · k ̸= 0 and δv ·B0 ̸= 0. Consequently, these

waves are linked with non-zero perturbations in both density and pressure of the plasma

and longitudinal, involving both vertical and parallel motion relative to the original
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Figure 1.3: Friedrichs Diagrams, showing the phase speed plotted as a function of distance
from the origin. These figures illustrate the relationship between the wave vector k and
the magnetic field B0 by the angle with respect to the y-axis. In this representation, the
parameter β is defined as β = (cs/vA)2, where cs is the sound speed, black dots, and vA
is the Alfvén speed, red dots.

magnetic field direction.

The difference between slow and fast waves can be better understood if we compare

the signs of the perturbations in the gas pressure and the magnetic field. From the z

component of the linearized momentum equation we have that perturbation in pressure is

related to the speed of a magnetosonic wave as,

ωρ0vz = kP cos θ. (1.92)

It follows that the dispersion in the magnetic field is,

δ

(
B2

0

8π

)
=
B0 · δb

4π
=

(k · δv)B2 − (k ·B0)(B0 · δv)

4πω
. (1.93)

Using the system of equation defined above we get:

B0 · δb
4π

= ρV 2
a − k2V 2

a cos2 θ

ω2
δp = ρV 2

a

(
1 − k2C2

s cos2 θ

ω2

)
δp. (1.94)

Thus, we see that δp, (B0 · δb/4π), have the same sign if v > cs cos θ , and opposite

sign if v < cs cos θ, where v = ω
k

is the phase velocity. It can easily be shown that

vf > cs cos θ and vs < cs cos θ. So we conclude that in the fast magnetosonic wave the

fluctuations of the thermal pressure of the gas and the magnetic pressure reinforce each
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other. Whereas, in the slow magnetosonic wave, these fluctuations are opposed to each

other, having opposite phases.

Finally, it is evident from Figure 1.2.5 that the behavior of the magnetosonic wave

varies significantly depending on the plasma β regime and the wave vector k under

consideration.

1.2.6 Incompressible MHD

In the preceding analysis, we have demonstrated that MHD facilitates the propagation

of various modes, specifically shear Alfvén waves and compressible magnetosonic waves.

For the remainder of this thesis, our primary focus will be on the Alfvén mode and its

nonlinear generalizations. The dynamics of shear Alfvén waves are often analyzed within

the framework of incompressible MHD theory (Biskamp, 2003).

To derive the incompressible MHD equations, we revisit the system of Equations 1.66 -

1.69. We enforce incompressibility in the system, as discussed in Section 1.1.1. Additionally,

we introduce the total pressure, Π = p+ B2

2µ0
, and disregard dissipative terms, based on

the assumption that dissipation occurs predominantly at smaller spatial scales. Under

these conditions, the ideal MHD equations simplify to:

∂v

∂t
= −v · ∇v − 1

ρ0
∇Π +

1

µ0ρ0
B · ∇B, (1.95)

∇ · v = 0, (1.96)

∂B

∂t
= (B · ∇)v − (v · ∇)B. , (1.97)

∇ ·B = 0. (1.98)

It was Elssäser in 1950 who introduced a method to simplify these equations by

defining the (Elsasser, 1950) variables
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z± ≡ v ± 1√
µ0ρ0

B, (1.99)

which represent eigenfunctions of (Alfvén, 1942) waves propagating (anti)parallel to

the background magnetic field (B0) at the Alfvén speed, V a. The governing equations

for z± are then:

∂z+

∂t
= −z− · ∇z+ − ∇Π

ρ0
, (1.100)

∂z−

∂t
= −z+ · ∇z− − ∇Π

ρ0
, (1.101)

∇ · z± = 0. (1.102)

Note that the total pressure Π is related to the z± fields by incompressibility through:

∇2Π = −
3∑

i,j=1

(∂iz
−
j )(∂jz

+
i ) (1.103)

This formulation of the incompressible MHD equations is advantageous for its symmet-

ric nature. This form of the governing equations allows to generalize insights from linear

waves to nonlinear wavepacket behavior, which prominently appear in MHD turbulence

theories.

1.2.7 Alfvénic Wavepackets & the Alfvén Effect

Nonlinearities, as illustrated by the first term on the right-hand side of Equation 1.100,

arise solely from interactions between oscillation modes with opposing cross-helicity signs

(i.e., between z+ and z−). This feature permits a nonlinear extension of the linear Alfvén

waves described by Equation (1.100). To facilitate this analysis, we consider a scenario

where even in the nonlinear regime, a uniform background field, constant in space and time

and placed be along the z-direction, can be identified by averaging out the fluctuations.
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δz− = 0⇒ δv = −δb δz+ = 0⇒ δv = δb

δz+ = δv − δb δz− = δv + δb

Figure 1.4: Arbitrary form wave packets propagating without distortion parallel and
antiparallel to the local magnetic field B0, at the Alfvén speed, V a.

In addition we asume no fluid motions. We thus have:

B0 = B0ẑ, v0 = 0 (1.104)

Contrary to the linear analysis in Section 1.2.5, the fluctuations here are considered

to be of arbitrary magnitude and perturbations in the Elsässer fields can be expressed as:

z± = z±0 ± δz±1 , (1.105)

where z±0 = ±vAẑ. The governing equations, in terms of the new variables, become

δz∓1 · ∇z±1 ± vA
∂δz±1
∂z

= δz∓1 · ∇δz±1 − ∇Π

ρ0
, (1.106)

∇ · δz1± = 0. (1.107)

These nonlinear extensions of the Alfvén wave represent Alfvén wave packets of
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arbitrary form propagating nondispersively (anti)parallel to B0, provided that the right-

hand side (RHS) of the Equation 1.106 vanishes. As already discussed this happens when

only unidirectional wave packets are present, for example, when δz+1 = 0, indicating no

spatial overlap between oppositely moving packets. In this case, the nonlinear cross-term

(δz+1 · ∇)δz−1 vanishes and the equations simplify to:

∂δz−1
∂t

− vA
∂δz−1
∂z

= 0, (1.108)

0 = ∇ ·Π. (1.109)

It is evident that if at a given time, t = t′, δz±1 = 0 and δz∓1 = f(x, y, z) are present,

the solution is given by δz∓1 = f(x, y, z ∓ vAt) and δz+1 = 0. The coupling of small-scale

velocity and magnetic fluctuations by the large-scale background magnetic field, B0,

underpins the Alfvén effect.

Conversely, inertial or energy-conserving interactions2 between counterpropagating

wave packets activate the nonlinear terms in Equation 1.106. This leads to the fragmenta-

tion of the wave packets and drives the energies E+ and E− toward smaller, perpendicular

scales (Iroshnikov, 1963; Kraichnan, 1965). As the cascade reaches ion scales, energy is

converted into heat through collisionless dissipation mechanisms.

We conclude this section by discussing two fundamental conservation laws relevant to

ideal incompressible MHD.

Taking the inner product of the momentum equation with ρv and combining it with

the induction equation, after considering the inner product of the latter with B/µ0, we

can establish the conservation law for the total energy density, E = ρ0v2

2
+ B2

2µ0
. This is

expressed through the following equation:

2In the absence of viscoresistive effects, collisions between two oppositely traveling wave packets are
elastic; they do not result in an energy exchange. While their shape may become elongated along B0 due
to shearing, the energy content of each packet remains constant.
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∂

∂t
E + ∇ ·

[(
ρ0v

2

2
+ p

)
v +

1

µ0

(B × (v ×B))

]
= 0. (1.110)

The energy flux within this equation incorporates the advected energy flux, in addition

to the Poynting flux, E ×B/µ0. This conservation law indicates that the total energy

integrated over the plasma volume remains constant under ideal conditions.

Additionally, the conservation of cross-helicity, H, represented by the volume integral

H =
∫
v ·B dx, is considered. This quantity, conserved in ideal MHD, emerges by taking

the dot product of the momentum equation with B and combining it with the dot product

of the induction equation with v. Combining the two equations, we get:

∂(v ·B)

∂t
+ ∇ ·

[
(v ·B)v +

B2v

2µ0

− (v · v)B

2

]
= 0. (1.111)

Overall, the total energy

E = E+ + E− =

∫
ρ

( |v|2 + |b|2
2

)
d3x, (1.112)

and cross-helicity

H = E+ − E− =

∫
ρv · b d3x, (1.113)

expressed in terms of the energy associated with fluctuations in z±, E± = ⟨|δz±|2⟩/4,

are ideal (i.e., with zero viscosity and resistivity) invariants of the incompressible MHD

equations. The ratio of these two ideal invariants defines the normalized cross-helicity

σc =
H
E . (1.114)

When the energy fluxes, denoted as ϵ±, in wave packets traveling in opposite directions

differ, indicated by ϵ+/ϵ− ̸= 1, the MHD system is imbalanced, σc ≠ 0. This condition is

very typical in the solar wind, where outwardly propagating modes usually dominate over
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inwardly propagating ones.

It is evident that, in contrast to the energies of magnetic and velocity fields, the energy

associated with each Elsässer field undergoes a conservative cascade. For this reason, the

Elsässer fields are regarded as the fundamental variables in MHD.
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1.3 MHD Turbulence

Space and astrophysical plasmas are typically magnetized and turbulent, exhibiting

fluctuations across a broad range of scales where the energy spectrum adheres to a power-

law scaling. Understanding the dynamics of these astrophysical systems necessitates

comprehending the long-term behavior of wavepacket interactions, particularly their role

in facilitating turbulent energy cascades and subsequent energy dissipation at the smallest

scales. The slope of the turbulent energy spectrum, which emerges from these interactions,

provides valuable insights into the physical mechanisms driving the turbulent cascade.

In recent years, there has been a shift towards phenomenological models of MHD

turbulence. These models incorporate various assumptions about the physical mechanisms

underlying the turbulent cascade to provide inertial-range scaling predictions consistent

with numerical simulations and solar wind observations.

This section introduces the basic principles underlying our theoretical understanding

of Alfvénic MHD turbulence. We outline the fundamental ideas behind state-of-the-art

models and review the scaling theories of MHD turbulence from a historical perspective.

1.3.1 Isotropic MHD Turbulence: The Iroshnikov-Kraichnan Model

IK introduced a phenomenological model based on the coupling of small-scale velocity

and magnetic fluctuations by the large-scale background magnetic field, B0. Based on

the observation that non-linearities only arise between counterpropagating wavepackets

Kraichnan posited that their interactions are weakened since the mean field transports

the two modes away from each other in the linear propagation (or collision) time,

τA =
λ

vA
. (1.115)

Whereas distortions to the z± fluctuations occur on the dynamical time it takes for a

turbulent perturbation of size λ to break up nonlinearly,
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τλ =
λ

δzλ
(1.116)

The ratio of this two dynamical timescales defines the nonlinearity parameter, χ ≡
τA/τλ. Kraichnan argued that the non-linear interactions are weak such that χ≪ 1, and

that the resulting energy transfer rate at a given scale ϵ is limited by the linear time.

This implies ϵ ∝ τl.

In the limit of weak turbulence, χ ≪ 1, energy transfer to smaller scales occurs

fractionally upon each collision, with weak nonlinear effects accumulating over timescales

significantly longer than the wave period. As a result of a single collision, the change in

amplitude is proportional to the interaction time, ∆δzλ/δzλ ∼ χ≪ 1. Successive collisions

are uncorrelated, limited to the duration of the interactions, and add up with random

phases. Under the assumption that collisions accumulate in a manner akin to a standard

random walk, we can estimate the number of collisions for the small perturbations to

build up to order unity as nλ ∼ (δzλ/∆δzλ)2 ∼ (τλ/τA)2 ≫ 1. As a result the cascade

time is given by:

τc ∼ nλτA ∼ (τλ)2

τA
. (1.117)

We can understand that when compared to the hydrodynamic phenomenological model

of K41, the spectral transfer in this framework is reduced by a factor of τA/τλ owing

to the limited strength of the interaction exhibited by Alfvén waves. Therefore, we can

estimate the spectral energy flux as

ϵ ∼ δz4λ τA
λ2

. (1.118)

Similar to the K41 phenomenology, we can obtain the Iroshnikov-Kraichnan (IK)

spectrum through δz2λ ∼ k Ek (where k ∼ λ−1),
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Ek ∼ (ϵ vA)1/2 k−3/2. (1.119)

1.3.2 Weak Anisotropic MHD Turbulence

While isotropy is normally justified in HD, a background magnetic field is usually present

in most astrophysical and space plasmas. In fact the guide field need not be an external

static field, but can also be the field in the large-scale energy-containing eddies. As

opposed to mean velocity fields, V 0, magnetic fields cannot be eliminated via Galilean

transformations of the MHD equations resulting in strongly anisotropic turbulent dynamics

(Montgomery and Turner, 1981) (see also reviews by Schekochihin et al., 2009a; Chen,

2016a, and references therein). In particular, conservation of energy and momentum

during three wave resonant interactions

p+ q = k,

ωp + ωq = ωk ⇒ −p∥ + q∥ = k∥ ⇒ q∥ = k∥, p∥ = 0,

more specifically, a wave - 2D perturbation interaction, (see, Montgomery and

Matthaeus, 1995), allows power to cascade down to smaller scales perpendicular to

B0, resulting in a two-dimensionalization of the turbulence spectrum in a plane transverse

to the locally dominant magnetic field while at the same time inhibiting spectral energy

transfer along the direction parallel to the field making the turbulence cascade anisotropic

(Shebalin et al., 1983).

A multitude of observational and numerical studies have investigated the manifestations

of anisotropy in the presence of an energetically significant mean magnetic field e.g.,

(Belcher and Davis Jr., 1971; Matthaeus et al., 1990; Bieber et al., 1996; Maron and

Goldreich, 2001; Weygand et al., 2009; Beresnyak and Lazarian, 2010; Osman et al., 2012;

Wicks et al., 2013a; Chandran and Perez, 2019; Pine et al., 2020; Bandyopadhyay and
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McComas, 2021; Zank et al., 2022; Sioulas et al., 2022b; Chhiber, 2022; Dong et al., 2022).

A comprehensive overview of the various forms of anisotropy can be found in (Horbury

et al., 2012).

To derive the anisotropic version of the IK we would thus have to account for the

fact that the cascade is inhibited parallel cascade along the B0. Other than that, the

assumptions made in the Section 1.3.1 hold. More specifically, we consider a system that

is excited at the scale l in a statistically steady and isotropic fashion such that δzl ≪ vA

in the weak turbulence regime, χ≪ 1, in the limit of balanced turbulence. Once again,

collisions, are uncorellated, adding up with random phases, limited to the duration of the

interactions and accumulate in a random-walk fashion. While the definition of the eddy

turnover time, Eq. 1.116 holds, the absence of cascade along z, implies that the Alfvén

time is scale-independent and should be redefined:

τA =
l

vA
. (1.120)

Since we are in the χ ≪ 1 regime, non-linear effects accumulate slowly and the

deformation during a single collision is given by

∆δzλ
δzλ

∼ χ≪ 1. (1.121)

Thus, following the same process described is Sec. 1.3.1, we can estimate, based on

the equation for the energy flux

δzλ ∼
(ϵvA
l

) 1
4
λ

1
2 (1.122)

which yields an inertial-range energy spectrum of

Ek⊥ ∼
(ϵvA
l

) 1
2
k−2
⊥ , (1.123)
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1.3.3 Strong MHD Turbulence: Critical Balance

An initial state of globally weak turbulence is often unstable, and the intrinsic anisotropy

of the energy cascade inevitably develops smaller perpendicular scales that are strongly

turbulent with nonlinear effects present at the leading order. More specifically, the number

of collisions required for ∆δzλ/δzλ ∼ 1, decreases as the cascade proceeds to smaller scales

nλ ∼
λ

l

(
vA
δzl

)2

. (1.124)

This implies that the turbulent cascade progressively strengthens towards smaller

scales. The weak turbulence cascade, while transferring energy to smaller scales, where

τnl is shorter, saws the seeds of its own destruction. At sufficiently small scales the

assumptions required for the weak turnulence regime to hold will no longer be satisfied.

More specifically, at sufficiently small scales, χ ∼ 1, and only a small number of the

order of nλ ∼ 1 collisions with another wave packet of comparable size will be required

for a fractional change in wave amplitude ∆δzλ ∼ δzλ. This limits he spectral range

in which the spectrum Ek⊥ ∼ k−2
⊥ applies. Such a transition was observed in balanced

MHD shell-model simulations (Verdini and Grappin, 2012) and 3D incompressible MHD

simulations (Meyrand et al., 2016).

The case of strong turbulence was addressed by (Higdon, 1984) and (Goldreich and

Sridhar, 1995), hereafter GS95. GS95 expanded upon the idea that fluctuations in any two

planes perpendicular to the mean field can remain correlated only if an Alfvén wave can

propagate between them in less time than their perpendicular decorrelation time (see also,

Maron and Goldreich, 2001; Schekochihin et al., 2009b). This leads to the implication

that the dynamics of the inertial range in incompressible MHD turbulence are governed

by wavevector modes in a “critical balance” (CB) state, i.e., characterized by a near-equal

balance between the two dynamically important timescales, essentially achieving χ ∼ 1.

Since the perturbation frequency ω has a lower bound due to an uncertainty relation

ωτc > 1, the cascade is forced to remain in the χ ∼ 1 regime.
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Under the assumption of negligible cross helicity, which suggests identical statisti-

cal properties for counterpropagating wavepackets, this implies that the parallel and

perpendicular wavevectors follow the scaling law

k∥ ∼
ϵ1/3

vA
k
2/3
⊥ ∼ k

2/3
⊥ , (1.125)

Defining an anisotropic energy spectrum E(k∥, k⊥), the fluctuation amplitude at a

scale is given by

δz2k⊥ ∼ k
−2/3
⊥ ∼ k−1

∥ ∼
∫ ∞

k

E(k∥, k⊥)k⊥ dk⊥ dk∥ (1.126)

for which one-dimensional power spectra for total energy scale can be shown to scale

as

E(k||) ∝ k−2
|| (1.127)

along the background magnetic field

E(k⊥) ∝ k
−5/3
⊥ (1.128)

across the background magnetic field.

At this point it is important to stress that the causality argument used to justify the

long parallel coherence lengths hinges on the ability of Alfvenic perturbations to propagate

along the magnetic field. However, anisotropy in turbulence represents a local property

that relies on both the position and scale. The turbulent fluctuations at a given scale

ℓ are greatly influenced by the local mean magnetic field of a size that ranges between

3 − 5ℓ (Cho and Vishniac, 2000; Podesta, 2009; Gerick et al., 2017). More specifically,

a wavepacket at perpendicular scale λ cannot distinguish between a larger wavepacket

of size few times its scale, and the static background magentic field field B0. Thus, it

will propagate along the local field, thereby Bℓ and so it is along the local field that the
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Figure 1.5: Power spectra for the perpendicular (black lines, θV B ≥ 80◦) and parallel
(red lines, θV B ≤ 10◦) components of the magnetic field time series reproduced from
(Horbury et al., 2008) shown in panel (a), and from (Wicks et al., 2010) shown in panel
(b). In both cases, the inertial range scalings are in good agreement with the predictions
of the CB model of balanced MHD turbulence. To estimate the anisotropic spectra a
scale-dependent background magnetic field is first estimated, allowing estimate of the
scale-dependent angle between the magnetic field and velocity timeseries to be calculated.
Through conditional averaging, the wavelet spectra are then estimated in the two limiting
cases.

arguments based on this propagation will apply. In assessing the dominant scale of the

background magnetic field, two methodologies are predominantly employed, utilizing the

global and local frames (Cho and Vishniac, 2000; Maron and Goldreich, 2001). For a

detailed exploration of the consequences associated with defining the magnetic field either

globally, thereby B0, or locally, denoted as Bℓ, interested readers are encouraged to refer

to (Chen et al., 2011; Matthaeus et al., 2012; Gerick et al., 2017).

The GS95 model is directly applicable to the Reduced MHD approximation (RMHD),

where the background magnetic field B0 is significantly stronger than the fluctuating

amplitudes (Kadomtsev and Pogutse, 1967; Strauss, 1976; Oughton et al., 2017). The

latter are restricted to a plane orthogonal to B0. Despite δb⊥ ≪ B0, nonlinear effects are

retained at the leading order. This is achieved by excluding all high-frequency fluctuations

τa ≤ τnl. Consequently, fluctuations within the RMHD approximation inherently satisfy

the condition χ ≥ 1 (Oughton and Matthaeus, 2020). In this case, nonlinear interactions

along the mean field may be completely neglected, allowing the nonlinear evolution to
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Figure 1.6: Eddies consistent with (left) the GS95, (right) 3D-anisotropic eddies consistent
with the B06 model. In this case coherence lengths in the three physicaly important
directions are characterized by ℓ|| ≫ ξ ≫ λ, where, λ/ξ ∼ sin θub⊥ . Here, ξ represents the
coherence length in the fluctuations direction, δb. This figure is adapted from (Boldyrev,
2006) [reprinted with permission from (Boldyrev, 2006), copyright (2006) by the American
Physical Society

adhere to the 2D incompressible MHD equations in planes orthogonal to B0
3.

1.3.4 Strong MHD Turbulence: Scale Dependent Dynamic Alignment

While the core principle of the GS95 model, namely CB, was shown to be consistent with

numerical simulations of homogeneous, (in)compressible MHD turbulence, the inertial

range scaling perpendicular to Bℓ was observed to be closer to -3/2 (Maron and Goldreich,

2001; Müller et al., 2003; Müller and Grappin, 2005)4. Additionally, numerical simulations

revealed a tendency for magnetic and velocity fluctuations in the field-perpendicular plane

to align with each other within a small, scale-dependent angle (Beresnyak and Lazarian,

2006a).

To reconcile the noted discrepancy, (Boldyrev, 2005, 2006), henceforth B06, proposed

3Note, however, that the RMHD approximation encompasses essential elements of the physics of
three-dimensional incompressible MHD (Dmitruk et al., 2005; Oughton et al., 2017)

4Recent higher resolution simulations further support this finding (Perez et al., 2012; Verdini and
Grappin, 2015; Mallet et al., 2016; Dong et al., 2022; Shi et al., 2023a)
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a phenomenological model linking the emergence of local imbalance (Dobrowolny et al.,

1980; Matthaeus et al., 2008a) with the scale-dependent dynamic alignment (SDDA) in

the polarizations of δb⊥ and δv⊥, towards smaller scales, θub⊥ ∼ δb/vA ∝ λ1/4. Drawing on

geometrical considerations, B06 suggests that the observed increase in alignment at smaller

scales is linked to both a depletion of nonlinearities and simultaneous development of

local anisotropy in the plane perpendicular to Bℓ. In this framework turbulent eddies are

identified as 3D-anisotropic structures, characterized by ℓ|| ≫ ξ ≫ λ, where, λ/ξ ∼ sin θub⊥ .

Here, ξ represents the coherence length in the direction of δb. B06 predicts three distinct

scaling laws in the inertial range: E(kξ) ∝ k
−5/3
ξ , E(kλ) ∝ k

−3/2
λ , and E(kℓ||) ∝ k−2

ℓ||
.

A substantial body of numerical studies on homogeneous MHD turbulence has provided

evidence supporting the scale-dependence of certain alignment measures across a sizable

portion of the inertial range (Mason et al., 2006; Perez et al., 2012, 2014; Mallet et al.,

2015; Chandran et al., 2015; Cerri et al., 2022). However, concerns have been raised

suggesting that the observed alignment may be a finite-range effect intrinsically linked to

dynamics occurring at the outer scale (Beresnyak, 2012). For instance, Beresnyak (2012)

interpret these signatures based on the idea that MHD turbulence is much less local in

k-space compared to hydrodynamic turbulence (see, e.g., Beresnyak, 2011; Schekochihin,

2022). Consequently, the driving mechanism does not fully replicate the properties of

the inertial range, and the transition to asymptotic statistics is broad, causing many

quantities to appear scale-dependent as they adjust to the asymptotic regime. Moreover,

the B06 model has faced criticism for violating the rescaling symmetry of the RMHD

equations (Beresnyak, 2012). As a result, an ongoing debate persists regarding whether

this numerical evidence accurately reflects the scale-dependent dynamic alignment angle

in the asymptotic state of the inertial range (Beresnyak, 2012; Perez et al., 2014).

1.3.5 Intermittency

The fundamental building blocks of turbulence are fluctuations or eddies, which undergo

a cascade process, successively splitting into smaller structures. This cascade facilitates
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the transfer of energy from large, outer scales to smaller scales until it is ultimately

dissipated as heat at the smallest scales. A critical question is how the fluctuating energy

is distributed among these spatial scales within this turbulent cascade.

The phenomenological models discussed thus far are anisotropic but retain elements of

an idealized Richardson cascade, implicitly assuming that the number of eddies created at

each stage of the cascade is sufficient to fill the system’s volume uniformly. In a self-similar

system, the statistical properties of turbulent fluctuations are invariant across different

scales within the inertial range. However, this idealized view of self-similarity does not

fully capture the complexities observed in real-world turbulent flows. For example, it is

impossible to obtain a true power law distribution for the energy spectra over all scales,

as the total energy

E =

∫ ∞

0

Ck−α dk = Ck1−α
∣∣∣∣∞
0

(1.129)

must necessarily diverge at small k for α > 1 and large k for α < 1 (Frisch, 1995).

Early studies of (M)HD turbulence revealed that probability density functions (PDFs)

of fluctuations tend to display increasingly non-Gaussian behavior at progressively smaller

scales (Batchelor et al., 1949; Burlaga, 1991; Sorriso-Valvo et al., 1999). Moreover, the

spatial inhomogeneity of energy dissipation is expected to alter the scaling exponents

of field increments with respect to length scales ℓ. While the fundamental approach to

studying intermittency involves examining the PDFs of the dissipation rate, based on

Kolmogorov’s refined similarity hypothesis (KRSH) (Kolmogorov, 1962), local averages

of dissipation rate are related to the scale-dependent increments of the velocity field.

Thus, intermittency is reflected in the PDFs of field increments, showing an increasing

divergence from a Gaussian distribution (i.e., PDFs display fatter tails) as smaller scales

are involved (Castaing et al., 1990; Frisch, 1995). This behavior, often referred to as

multifractal, violates the concept of global scale invariance, a key assumption of the K41

theory.

For increment scale ℓ, the highr-order moments of the field fluctuations are expected
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to display a power-law dependence, Sqψ(ℓ) ∝ ℓζ(q). Thus, after the moments are calculated,

power-law fits may be applied on the curves over different ranges of spatial scales to obtain

the scaling exponents ζq of the structure functions. Based upon the assumptions that

the statistical properties of the turbulent fields are locally homogeneous and isotropic,

i.e., the energy dissipation rate within the inertial range is constant on average, both the

K41 theory (Kolmogorov, 1941) in hydrodynamics, as well as, the Iroshnikov-Kraichnan

(Iroshnikov, 1963) model for MHD turbulence predict a linear scaling of ζ(q) with order q

in the fully developed regime, where ζq = q/3, and ζq = q/4 respectively.

However, as denoted by Landau (Oboukhov, 1962; Kolmogorov, 1962), irregularity of

energy dissipation is expected to alter the scaling exponents of field increments with ℓ.

More specifically, in the case where ϵ statistically depends on scale due to the mechanism

that transfers energy from larger to smaller eddies, ϵ should be replaced by ϵℓ and Equation

2.0.8 should be recast to

Sqψ ∼ ⟨ϵq/3ℓ ⟩ℓq/3. (1.130)

Expressing ϵ
q/3
ℓ via a scaling relation with ℓ we obtain

⟨ϵq/3ℓ ⟩ ∼ ℓτq/3 (1.131)

and thus

Sqψ ∼ ℓζ(q), (1.132)

where, ζ(q) = q/3 + τq/3 is generally a nonlinear function of q. Thus, when the

scaling exponents ζq of the structure functions are considered, the different local subsets

of fractal dimension within a turbulent field are reflected on the departures from the

linear scaling. This departure implies a process characterized by “multifractal” statistics

and intermittency, i.e., the concentration of the energy into smaller volumes of space at

smaller scales (Frisch, 1995).

Another way understand intermittency, is to model the turbulent cascade as an effort
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of the system to approach thermal equilibrium (Matthaeus et al., 2015). At shorter time

scales, local turbulent relaxation may occur, giving rise to local correlations in MHD. The

borders of such regions will typically not be relaxed but rather remain in a dynamic state,

leading to local nonlinear interactions and processes such as magnetic reconnection or

various types of instabilities. These boundaries correspond to coherent structures (CSs)

, which in the case of the solar wind, could be either of coronal origin being passively

advected by the SW (Borovsky, 2021), or generated locally as an intrinsic feature of the

ongoing nonlinear turbulent relaxation process (Matthaeus and Montgomery, 1980; Veltri,

1999; Greco et al., 2010; Matthaeus and Velli, 2011; Matthaeus et al., 2015; Chandran et al.,

2015; Howes, 2015). Intermittency is associated with a fractally distributed population

of small-scale CSs, superposed on a background of random fluctuations (Isliker et al.,

2019; Chhiber et al., 2020b; Sioulas et al., 2020a). Even though CS represent a minor

fraction of the entire dataset (Osman et al., 2012; Sioulas et al., 2022), CSs account

for a disproportionate amount of magnetic energy dissipation, and have been shown to

strongly influence the heating and acceleration of charged particles (Karimabadi et al.,

2013; Osman et al., 2012; Tessein et al., 2013a; Bandyopadhyay et al., 2020; Qudsi et al.,

2020; Lemoine, 2021; Sioulas et al., 2022c).

Over the past few decades several authors have put forward theoretical arguments to

account for the intermittency effect (Gurland and Tripathi, 1971a; Frisch et al., 1978; She

and Leveque, 1994; Grauer et al., 1994; Politano and Pouquet, 1995; Ruzmaikin et al.,

1995; Horbury and Balogh, 1997a; Müller and Biskamp, 2000; Boldyrev, 2002).

1.3.6 SDDA as an Intermittency Effect

The theory of SDDA has been advanced by Chandran et al. (2015, hereafter, CSM15),

refining it in a manner that aligns SDDA with the rescaling symmetry of RMHD. In

their interpretation, alignment emerges as an intermittency effect, resulting from the

mutual shearing of Elsässer fields during the imbalanced collisions (δz± ≫ δz∓) of

counterpropagating wave packets. In formulating the model, they proposed two archetypal
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types of alfvénic interactions: imbalanced (δz± ≫ δz∓) and balanced (δz± ∼ δz∓). The

first involves occasional “balanced” interactions, δz− ≈ δz+, where the amplitude of the

wavepackets is reduced by a factor of 0 ≤ β ≤ 1, yet their length scale remains unchanged.

Consequently, the amplitude of a fluctuation at scale λ resulting from such balanced

collisions can be expressed as follows:

δz±λ = δz̄βq. (1.133)

Here, δz̄ is the initial fluctuation amplitude at the injection scale L, and q is the

number of balanced collisions expected as the fluctuation evolves from scale L to λ. The

value of q is presumed to follow a Poisson distribution:

P (q) =
e−µµq

q!
, (1.134)

where µ is the scale-dependent mean value of q. The “typical” fluctuation amplitude

that best characterizes the bulk of the volume is

δz∗λ = δz̄. (1.135)

On the contrary, for “imbalanced”, δz± ≫ δz∓, collisions, the amplitudes of the

fluctuations remain constant while the mutual shearing of the interacting wave packets

leads to the rapid cascading of the subdominant field to smaller scales. This occurs as it

rotates into alignment with the dominant field, notably without distorting their amplitudes.

As a result, the sub-dominant field is sheared into alignment and its perpendicular scale

λ reduces.

Assuming that the most intense coherent structures in MHD turbulence –specifically,

those with q = 0– are 3D anisotropic current sheets with a volume filling factor fcs ∝ λ,

this leads to a straightforward relation for the scaling exponents:
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ζCSM15(n) = 1 − βn. (1.136)

Consequently, at any given scale, wave packets subjected to fewer balanced collisions are

characterized by larger amplitudes, resembling three-dimensional anisotropic current sheet

structures (see also Howes, 2015; Mallet and Schekochihin, 2017). With the incorporation

of SDDA, the nonlinear timescale is defined as τ±nl ∼ λ/(δz∓ sin θz), wherein θz denotes

the angle between the fluctuations of the Elsässer variables in the plane perpendicular to

the magnetic field, δz±⊥ . By focusing solely on the scenario of zero cross helicity, CSM15

deduce a value for β ≈ 0.691. This implies that ζn → 1 as n→ ∞.

(Mallet and Schekochihin, 2017) (hereafter, MS17) formulated a statistical model

of RMHD turbulence grounded in three principal concepts: critical balance, dynamic

alignment, and intermittency. To substantiate their model, they put forth four conjectures

based on physical reasoning: (a) the fluctuation amplitudes adhere to an anisotropic

log-Poisson distribution (Chandran et al., 2015; Zhdankin et al., 2016); (b) the structures

at small scales are 3D anisotropic with a sheet-like morphology (Boldyrev, 2006; Howes,

2015); (c) the scale-independence of the critical balance parameter, inclusive of dynamic

alignment, within the inertial range (Mallet et al., 2015); (d) a consistent energy flux

across parallel scales in the inertial range (Beresnyak, 2015). The model offers predictions

for scaling in the perpendicular, parallel, and fluctuation directions:

For the perpendicular direction:

ζMS17
λ (n) = 1 − βn, (1.137)

for the parallel direction:

ζMS17
ℓ|| (n) = 2(1 − βn), (1.138)

and for the fluctuation direction:
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ζMS17
ξ (n) =

n(1 − βn)

n/2 + 1 − βn
, (1.139)

where β = 1/
√

2. A more practical discussion of the model is presented in (Schekochi-

hin, 2022).
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1.4 Solar Wind: In-situ Observations.

The Sun, through nuclear fusion in its core, extending up to approximately 0.3 solar

radii (R⊙ ∼ 7 × 105 km), converts hydrogen into helium at temperatures around 15

million Kelvin. Surrounding the core, the radiation zone spans from 0.3 to 0.7 R⊙,

beyond which lies the convection zone. Here, convection occurs when the temperature

gradient surpasses the adiabatic gradient, which measures how temperature decreases in

an adiabatically expanding material. The tachocline, a thin layer about 0.05 R⊙ thick at

the interface between the radiation and convection zones, plays a crucial role in magnetic

field generation and the Sun’s differential rotation.

The photosphere, the Sun’s visible surface about 150-200 km thick, maintains a

temperature of approximately 5,800 K. The solar atmosphere consists of the chromosphere,

the transition region, and the corona. The chromosphere heats up to around 20,000 K,

whereas the transition region sees temperatures escalating rapidly from 2×104 K to 106 K

over just 30 km. The corona, observable during total solar eclipses, reaches temperatures

of millions of degrees, significantly hotter than the underlying photosphere. The magnetic

field, driven by convective motions within the photosphere, is essential in this heating

process. The debate on the coronal heating problem focuses on the specific mechanisms

that transfer, store, and dissipate this energy to the corona. The corona itself, lacking a

defined boundary, gradually transitions into interplanetary space as the solar wind.

Table 1.1: Characteristic length scales in the solar wind at 1 AU.

Scale Length Definition

L 1 AU Characteristic size of the system
λmfp,p 1 AU Proton collisional mean free path
dp 100 km Proton inertial length
ρp 80 km Proton gyro-radius
λe 10 m Electron Debye length

Parker (1958) theorized that the lack of hydrostatic equilibrium in the solar corona,

due to its high thermal pressure, could drive the solar plasma to expand hydrodynamically

into space at hypersonic velocities. Solar magnetic field lines, embedded in the moving
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plasma, would also extend outward, a phenomenon described as a ”frozen-in” magnetic

field. This results in the magnetic field being twisted into spiral shapes in the ecliptic

plane, forming what is known as the Parker spiral. The Parker spiral angle, ϕr,B, which is

the angle of inclination of the magnetic field lines relative to the radial direction from the

Sun, is described by the equation:

tan(ϕr,B) =
Bϕ

Br

= −Ω sin(θ)(Reff −R)

Ur
,

where Bϕ and Br are the azimuthal and radial components of the magnetic field,

respectively, Ω is the angular velocity of the Sun, θ is the colatitude, Reff is the effective

co-rotation radius (typically 10–20 solar radii) (Bruno and Carbone, 2013), and Ur is the

radial velocity of the solar wind. At a distance of 1 AU, the Parker spiral angle ϕr,B is

approximately 45◦. Further exploration of the mechanisms behind solar wind generation

can be found in Chapter 5 of (Russell et al., 2016).

Initially met with skepticism, Parker’s theory gained acceptance following in situ

observations from Mariner II (Neugebauer and Snyder, 1966), which provided direct

evidence of a steady stream of ionized particles from the Sun, confirming Parker’s

predictions.

It is now well-established that low-frequency Alfvénic motions in the lower solar

corona possess sufficient energy to initiate and sustain the solar wind, a weakly collisional,

supersonically expanding stream of charged particles that carries photospheric magnetic

field lines into interplanetary space, forming a magnetized sphere of hot plasma known as

the heliosphere.

Solar wind properties in the inner heliosphere vary due to the diversity of solar coronal

sources, affecting plasma density, velocity, and temperature. This variability is influenced

by the phase of the solar cycle, large-scale gradients, proximity to the heliospheric current

sheet (HCS), and large-scale velocity shear in the solar wind (Bruno and Carbone, 2013,

and references therein).

The data collected by the Helios mission, spanning from the solar minimum in 1976

56



to the solar maximum in the early 1980s, provided crucial insights into the distinct

characteristics of solar wind streams. These streams are significantly differentiated by

their outflow speeds, manifesting as fast and slow solar wind streams. Slow wind streams

are characterized by lower proton temperatures and higher densities and exhibit more

variable properties compared to their faster counterparts (Marsch and Tu, 1990a). Due

to these pronounced differences, a classification system for solar wind was established

in previous decades, categorizing it into three distinct types (see e.g., McComas et al.,

1998). These categories are:

• Fast wind (500-800 km s−1) - characterized by low-density and originating from

open field lines in coronal holes.

• Slow wind (300-500 km s−1) - more variable and higher density, emanating from

open streamers, loops, and active regions.

• Transient structures - encompassing eruptive events such as coronal mass ejections

(CMEs) during solar maximum.

Recently, the traditional dichotomy between fast and slow solar winds has come under

scrutiny. This reevaluation is driven by the increased detection of Alfvénic slow solar

wind streams, which exhibit many characteristics commonly associated with fast winds,

particularly in regions closer to the Sun (D’Amicis and Bruno, 2015; D’Amicis et al.,

2021).

This leads to non-WKB (Wentzel-Kramers-Brillouin) reflections due to linear couplings

with large-scale inhomogeneities, providing necessary sunward components for activating

the non-linear term in Equation 1.100 and inducing a turbulent cscade of the fluctuating

energy (Velli et al., 1989; Iroshnikov, 1963; Kraichnan, 1965).

Turbulence is increasingly recognized as a significant contributor to the non-adiabatic

expansion and acceleration of the solar wind (Matthaeus and Velli, 2011). In-situ

observations suggest that the ion temperature, Tp, and electron temperature, Te, of

the solar wind decrease as functions of radial distance, Tp ∼ r−γp and Te ∼ r−γe , with
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indices 0.5 ≲ γp ≲ 1 and 0.3 ≲ γe ≲ 0.7 respectively, indicating a slower decay than

predicted by spherical symmetric adiabatic expansion models (Richardson et al., 1995;

Stansby et al., 2018; Maksimovic et al., 2005; Boldyrev et al., 2020).

TO summarize, though only a small fraction ∼5 × 10−5 of the Sun’s overall energy

output occurs via coupling to magnetized plasma, the latter interaction is responsible

for the very existence of the Heliosphere and all the dynamic high-energy manifestations

occurring therein, including interactions with the Earth and planetary magnetospheres.

Traditionally, the coupling of magnetic fields in the solar atmosphere (photosphere

through corona), solar wind, and solar wind – magnetosphere interactions have been

studied independently, depending on the type of observational data available. The multi-

spacecraft exploration of the interacting Sun - Earth system has reached new frontiers,

with measurements reaching into the inner heliosphere and corona with Parker Solar

Probe (PSP) and Solar Orbiter (SO)

1.4.0.1 Reduced Spectra & Taylor’s Hypothesis

Before proceeding with a review of recent literature and discussing some of the statistical

properties of MHD turbulence in the solar wind, it is important to address the framework

through which we interpret spacecraft measurements.

In the study of turbulent flows, the ideal experimental setup would capture snapshots of

flow properties in three dimensions at each instant in time. However, practical limitations

often preclude this, due to constraints in experimental capabilities. The spatial resolution

of measurements is limited by the number of sensors and their distribution across the

observed region. Although several missions, such as Cluster, Themis, and MMS, have

provided multi-point measurements (Escoubet et al., 2001; Angelopoulos, 2008; Burch

et al., 2016), the in-situ solar wind observations considered in this work are restricted to

single-point measurements.

Given that the spacecraft data analyzed in this study consist of temporal measurements

in a reference frame that is in relative motion with respect to the turbulent plasma, certain
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assumptions are necessary to interpret the temporal variations of measured quantities in

terms of their corresponding spatial and temporal variations in the plasma frame.

An appropriate method is required to relate the frequency of waves in the plasma

rest frame (ωp) to the observed frequency measured onboard the spacecraft (ωsc) and

to translate this information into spatial information about waves and turbulence. This

is typically achieved by employing Taylor’s hypothesis (Taylor, 1938), thereby TH. In

essence, Taylor’s hypothesis, or the ”frozen-in-flow” hypothesis, asserts that the timescale

over which the characteristics of the studied modes change is much longer than the

duration it takes for the spacecraft to traverse them, implying that they remain static in

the reference frame moving with the large-scale flow, vsw. For instance, if the value of a

field measured by the spacecraft at time t is ψsc(t) and ψsw(r) denotes the value of the

field in the solar-wind frame, assumed to be static, then:

ψsc(t) = ψsw(r0 − vswt). (1.140)

In this context, the spectrum of modes measured by a spacecraft moving with velocity

V sc consists of a set of Doppler-shifted fluctuations. The equation relating ωsc to ωp is

given by:

ωsc = ωp + k · (vsw + vsc), (1.141)

where the phase speed of the waves is given by vph = ω/k, with k as the wavevector.

Assuming that vsc ≪ vsw, which is typical for measurements at 1 AU, we obtain:

ωsc = ωp + kvsw cos θk, (1.142)

where the second term accounts for the frequency arising from the advection of a

spatial fluctuation with wavevector k past the spacecraft. This indicates that the validity

of TH depends on both the phase speed and the propagation angle of the modes with

respect to the solar wind flow, and holds when cos θk, |ωp| ≪ |kvsw cos θk| (Matthaeus
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and Goldstein, 1982).

By considering typical plasma parameters at 1 AU, an order of magnitude analysis

reveals that the solar wind speed vsw is significantly greater than the thermal or Alfvén

speed - given that the dominant fluctuations are non-compressive with traits akin to large-

amplitude Alfvén waves. Therfore, the solar wind flow is both Alfvénic (Ma = VR/Va ≫ 1),

typically Ma ≈ 10. Considering that typical spacecraft speeds satisfy vsc ≪ vsw, TH is, in

principle, valid for low-frequency, MHD fluctuations.

For this reason, temporal scales may be converted to spatial scales through

ℓ = −vswτ, (1.143)

where τ is the temporal lag.

However, at high frequencies, the solar wind exhibits fast/magnetosonic fluctuations,

often appearing in the 0.1-10.0 Hz range near 1 AU. Their phase speeds can be comparable

to or a significant fraction of the solar wind speed, |ω| ≳ |k · vsw|. In such cases, the wave

phase speed becomes prominent, and TH may be violated.

Therefore, the auto-correlation tensors we defined in Section 1.1.1 are only determined

along a single direction defined by the flow past the spacecraft. A full Fourier decomposi-

tion is impossible, and instead, only reduced spectra can be measured (Matthaeus and

Goldstein, 1982). If r1 is the direction of flow past the spacecraft, only Rmn(r1, 0, 0) can

be calculated. In this case we can estimate the reduced power spectral tensor as:

Ẽ(r)
mn(k1) =

∫
dr1Rmn(r1, 0, 0) exp(−ik1r1). (1.144)

Due to the inherent ambiguity associated with spatiotemporal evolution captured

through single point measurements, the energy observed at the spacecraft frequency fsc

encompasses spectral components from various wave numbers:
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Ẽ(r)
mn(fsc) =

∫∫∫
d3k, Ẽmn(k)δ(2πfsc − k · vsw) (1.145)

(Fredricks and Coroniti, 1976). For a uniform flow and assuming a two-dimensionally

anisotropic wave vector, we can estimate the power-spectrum as:

Ẽ(r)
mn(fsc) =

∫
d3k Ẽmn(k)δ(2πfsc − k∥vsw cos θBv − k⊥vsw sin θBv). (1.146)

Using this decomposition it is possible to obtain the field perpendicular and field

parallel spectra in the limits where the angle between the mean magnetic field direction

and the flow direction is θBv → 90◦, and, θBv ∼ 0◦, respectively (Horbury et al., 2008).

1.4.0.2 Taylor’s Hypothesis: What happens closer to the Sun?

In contrast to 1 AU measurements, the validity of TH is threatened closer to the Sun.

This is because as PSP approaches the Alfvén surface, where Ma ∼ 1, the solar wind

speed decreases becoming comparable, or even dropping bellow the alfvén speed, vswva.

In this case the conventional version of Taylor’s hypothesis does not in general apply. In

recent years several modifications to TH have been proposed to quantify and account for

these effects (Howes et al., 2014; Klein et al., 2014; Klein et al., 2015; Bourouaine and

Perez, 2019; Perez et al., 2021; Zank et al., 2022)

In the following we provide a vulgarized version of the analysis presented in (Klein

et al., 2015) who derived a modified version of TH that applies to outwardly propagating

non-compressive modes satisfying the conditions pertaining to alfvén waves, Section 1.2.5.

The dynamics of these non-compressibe fluctuations can be studied in the framework of

the (Heinemann and Olbert, 1980) equations
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∂ξ±

∂t
+ (vsw ± vA) · ∇ξ± −

(
vsw ± vA

2vA

)
dvA
dr
ξ∓ = −(z∓ · ∇ξ±)nc, (1.147)

where,

(z∓ · ∇ξ±)nc = z∓ · ∇ξ± −
(

1 ± η1/2

η1/4

) ∇ptot
ρ0

.

Here, the subscript “nc” denotes “non-compressive modes, and,

ξ+ =

(
1 + η1/2

η1/4

)
z+, ξ− =

(
1 − η1/2

η1/4

)
z−, (1.148)

are the Heinemann-Olbert variables,

η ≡ ρ0
ρa

=
v2A
v2sw

, (1.149)

with ρa the reference density, and vsw the flow velocity.

Focusing on strongly imbalanced intervals, z+ ≫ z−, which is usually the norm close

to Sun, implies that ξ− ≪ ξ+, and in addition that ξ−/ξ+ is much smaller than z−/z+.

Therefore, we can write (1/ua)dua/dr ∼ r−1. It follows

|(vsw + vA) · ∇ξ+| ≫ |(vsw + vA)/(2ua)(dua/dr)ξ
−|,

and, Equation 1.147 may be written as

∂ξ+

∂t
+ (vsw + vA) · ∇ξ+ = −(z− · ∇ξ+)nc.

To account for the motion of the spacecraft, we now apply a reference frame transfor-

mation from an inertial frame centered on the sun to the spacecraft reference frame with

position r′ = r −
∫
vscdt and time t′ = t. We can rewrite the previous equation as
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∂ξ+

∂t′
+Utot · ∇′ξ+ = −(z− · ∇′ξ+)nc,

where, Utot = vsw + vA − vsc.

We now seek to find the conditions under which nonlinear term can be negated. The

z− · ∇′ξ+, (vsw + vA) · ∇′ξ+ terms account for variations of ξ+ orthogonal and parallel

to B0, respectively. Therefore, the condition

|(vsw + vA) · ∇′ξ+| ≫ |z− · ∇′ξ+|,

is not always satisfied despite, vsw + vA ≫ z−. This is because the perpendicular

gradients in ξ+ could be larger than the longitudinal ones. On the other hand, the

spacecraft velocity vsc has a nonzero perpendicular component vsc,⊥ ≡ vsc − (b̂ · vsc)b̂,
that becomes increasingly important as PSP approaches the perihelion of it’s orbit. As a

result, the term vsc · ∇′ξ+ greatly exceeds z− · ∇′ξ+ in magnitude when vsc,⊥ satisfies:

vsc,⊥ ≫ z−.

This is the case at the perihelion of the orbit where the perpendicular component

of the spacecraft velocity attains a very large value, vsc,⊥ ≈ 200 km s−1. In this case

Equation 1.4.0.2 can be approximated to first order as:

∂ξ+

∂t′
+ Utotal · ∇′ξ+ = 0,

where,

U total = vsw + vA − vsc.

This expression is equivalent to TH but modified to take into account the spacecraft
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Figure 1.7: Near-Sun, R ≈ 13.4R⊙, PSP measurements illustrating the highly alfvénic and
spherically polarized nature of the fluctuations. While the fluctuations in the components
are strong, with several switchbacks evident within the interval, the local magnetic field
magnitude remains fairly constant. Left: scatterplot of the radial BR and normal BN

magnetic field components in RTN. Right: radial BR vs. orthogonal fluctuations B⊥.

motion and mode propagation. This implies that that the frequency spectrum of ξ+ in

the spacecraft frame may be estimated as

Ẽ(ξ+)
mn (fsc) =

∫∫∫
d3k, Ẽξ+

mn(k)δ(2πfsc − k ·U total) (1.150)

1.4.1 Transport of turbulent Fluctuations in the Expanding Solar Wind

Mechanisms that are not fully understood, possibly involving photospheric motions

or magnetic reconnection, lead to a predominance of anti-sunward propagating waves,

δz+ ≫ δz−, a condition known as ”imbalance.” As the solar wind expands into the

heliosphere, it carries a wide spectrum of magnetic field and plasma fluctuations (Coleman,

1968; Belcher and Davis Jr., 1971). These fluctuations encompass both incompressible

and compressible motions, with the former contributing at least 90% of the total energy
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(Klein et al., 2011). The study of the transport of these fluctuations in an inhomogeneous

flow such as the solar wind is a necessary first step to understanding the more general

question of the heating and acceleration of mechanically driven stellar winds (Velli et al.,

1991; Velli, 1993).

In an expanding medium, the wave energy density E = 1
2
ρδu2 is not a conserved

quantity because wave pressure does work on the flow. Instead, in the absence of

dissipation, the conserved quantity is the wave action, S = E/ω, where E is the wave

energy density and ω is the intrinsic wave frequency (i.e., in the plasma rest frame). The

theory of wave action conservation (Witham, 1965; Bretherton and Garrett, 1968) is

based on the WKB approximation. In this framework, the length scale over which the

underlying medium is changing is much larger than the wavelength of the modes under

study, allowing one to discard wave reflection due to coupling of the outgoing wave to the

large-scale inhomogeneities. The following conservation law may then be derived:

∂S
∂t

+ ∇ · (vgS) = 0, (1.151)

where vg is the radial component of the group velocity. This conservation law can be

generalized to include finite wavelength effects, thereby going beyond the WKB framework

(Heinemann and Olbert, 1980; Grappin and Velli, 1996a).

The conservation of the flux S of the wave action across a spherical surface is given

by:

u2
(U + Va)

2

UVa
= const. (1.152)

For purely outwardly propagating, arbitrary amplitude Alfvénic structures, charac-

terized by a constant magnetic field magnitude, the WKB (Wentzel-Kramers-Brillouin)

approximation (Jacques, 1977) anticipates amplitude maxima at the Alfvén critical point.

Beyond the Alfvén critical point, for Va < U , where U ∼ U0 is nearly constant and

U0 ≫ Va, the amplitude exhibits a decay described by:
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δu2 ∼ U/(vsw + vA)2 ∝ R−3, (1.153)

implying that, since for an Alfvén wave the fluctuating magnetic field δB is related

by δB/
√

4πρ = ±u, the wave energy decays as u2 ∼ R−1.

Strong deviations from this prediction are indicative of other effects such as a nonlinear

cascade (Bavassano et al., 1982). The conservation principle for wave action can be

extended to the non-WKB limit, where the coupling between counter-propagating modes,

influenced by background inhomogeneities, becomes significant. With these non-WKB

effects considered, one can expect the turbulence amplitude to reach its absolute maximum

within the Alfvén surface (Cranmer and van Ballegooijen, 2005; Verdini and Velli, 2007).

As Alfvén waves propagate through the heliosphere, the decreasing Alfvén speed

results in the growth of normalized magnetic-field amplitudes to nonlinear magnitudes,

δB/B0 ∼ 1. Unlike linearized Alfvén waves discussed in Section 1.2.5, these structures

retain a parallel δB|| component. Therefore these structures are not purely transverse to

B0 but exhibit spherical polarization, meaning the magnetic field vector traces a sphere

of constant radius |B0 + δb| = const. (Barnes and Hollweg, 1974; Bruno et al., 2001;

Matteini et al., 2014).

As a result, in-situ near-Sun solar wind reveal that embedded within this turbulent

spectrum of Alfvénic fluctuations is a population of radial-field reversals, or switchbacks

whose amplitude is large enough for the magnetic field to bend backward on itself (Horbury

et al., 2018; Bale et al., 2019; Tenerani et al., 2023). This results in a local reversal

of the field’s polarity and a corresponding jet in radial velocity (Matteini et al., 2014).

Switchbacks display traits akin to spherically polarized, high-amplitude Alfvén waves. The

origins of switchbacks remain a subject of ongoing discussion. There are generally three

main theories: they may be produced and injected at coronal heights, for instance through

interchange reconnection (Fisk and Kasper, 2020; Drake et al., 2021; Bale et al., 2021a);

they could result from large-scale velocity shears, possibly due to coronal jets or the

movement of magnetic footpoints across different source regions of fast and slow streams
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(Landi et al., 2006); or they might form continuously in situ as a result of expansion and

nonlinear processes.

Comprehending the dynamical evolution of fluctuations and switchbacks is crucial.

This not only sheds light on the formation of switchbacks from the broader spectrum

of turbulent fluctuations but also offers insight into their potential role in the turbulent

cascade in the solar wind.

A first attempt in this direction was made in Tenerani et al. (2021). In this work, we

investigated the radial evolution of switchbacks using data from PSP, Helios, and Ulysses.

We demonstrated that large-scale Alfvénic fluctuations follow WKB decay, but the subset

of switchbacks evolves as a separate population, with the radial component decaying

as δB2
r ∼ R−4—faster than WKB decay—allowing them to maintain an approximately

constant magnetic field magnitude. This result was interpreted as the saturation of

amplitudes and could be due to coupling with compressible modes or dispersive waves

that prevent relative amplitudes from becoming arbitrarily large. Furthermore, we found

that the radial evolution of the occurrence rate of switchbacks in the solar wind is

size-dependent, with larger switchbacks increasingly predominant at greater distances.

On the other hand, small-scale fluctuations were found to fall off with radial distance

faster than predicted (see also Bavassano et al., 1982). In general, deviations from

the WKB prediction indicate additional mechanisms that can accelerate or slow the

dissipation of the waves, usually due to nonlinear coupling, instabilities (e.g., parametric

decay instability) (Pruneti and Velli, 1997; Del Zanna et al., 2001; Réville et al., 2018;

Chandran, 2018), and other effects, which can result in the preferential decay of certain

components. For example, expansion preferentially reduces the radial magnetic field with

respect to transverse components across all scales (Dong et al., 2014). This aspect is

included in the Expanding Box Model (EBM) (Velli et al., 1992; Grappin et al., 1993;

Grappin and Velli, 1996b), which describes a locally homogeneous plasma parcel advected

by the expanding solar wind. Finally, it was shown by Matteini et al. (2024) that the

tendency of magnetic field fluctuations in the solar wind to evolve towards a state of

spherical polarization imposes constraints on the radial component’s rms fluctuations,
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leading to a decay described, particularly at large scales, by br ∼ b/2B (see also Squire

et al., 2020; Mallet et al., 2021).

1.4.2 The Solar Wind as a Testbed for Turbulence Theories

Linear couplings of the outgoing waves with the large-scale inhomogeneity result in

non-WKB reflections (Velli et al., 1989), providing the sunward propagating component

necessary for the activation of the non-linear term in Equation 1.100, leading to the

emergence of a turbulent character (Iroshnikov, 1963; Kraichnan, 1965).

Alfvénic turbulence is widely regarded as the primary paradigm for explaining many

observed properties of the solar wind (Matthaeus and Velli, 2011). Consequently, over

the past few decades, the solar wind has served as a testbed (Coleman, 1968; Bavassano

et al., 1982; Marsch and Tu, 1990b; Sorriso-Valvo et al., 1999; Mangeney, 2001a; Bruno

et al., 2003; Salem et al., 2009; Horbury et al., 2008; Podesta, 2009; Chen et al., 2012,

2013; Verdini et al., 2018; Bowen et al., 2018a; Chen et al., 2020) for evaluating models of

homogeneous incompressible magnetohydrodynamic turbulence (Goldreich and Sridhar,

1995; Lithwick et al., 2007; Chandran, 2005; Boldyrev, 2006; Chandran, 2008; Perez and

Boldyrev, 2009a; Podesta and Bhattacharjee, 2010; Chandran et al., 2015; Mallet and

Schekochihin, 2017; Schekochihin, 2022).

The magnetic spectrum of the solar wind, influenced by various physical processes

across different scales, displays several segments each characterized by a power-law

dependence over wavenumber, E(κ) ∝ κ−γ. At the largest scales, a spectral break

delineates the inertial from the injection scales, typically showing a κ−1 dependence. This

feature is prevalent in fast solar wind streams, shifting to larger scales with increasing

heliocentric distance, though it is not always observed in the slow solar wind (Bruno and

Carbone, 2013, and references therein).

At intermediate scales, non-linear interactions among counterpropagating wavepackets

channel energy preferentially towards smaller scales perpendicular to B0. This range

exhibits a steepening of the spectrum with indices, γ, varying between 3/2 to 5/3
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(Bavassano et al., 1982; Marsch and Tu, 1990b; Matthaeus and Goldstein, 1982; Chen

et al., 2020; Shi et al., 2021; Telloni et al., 2021). At ion scales, kinetic processes dominate,

leading to further steepening of the spectrum and the conversion of turbulent energy into

plasma heat through mechanisms such as ion cyclotron damping and kinetic Alfvén waves

(Dmitruk et al., 2004; TenBarge and Howes, 2013; Karimabadi et al., 2013).

Over recent decades, our understanding of solar wind turbulence has significantly

advanced, thanks to a combination of in-situ observations, theoretical developments,

and numerical studies (see reviews by Matthaeus and Velli, 2011; Chen, 2016b; Bruno

and Carbone, 2013; Schekochihin, 2022, and references therein). Despite this progress,

several key questions remain unresolved. These include the overall decrease of the Alfvénic

character of the fluctuations (Roberts et al., 1987; Chen et al., 2020; D’Amicis et al., 2019),

the tendency of large-amplitude fluctuations to maintain a state of spherical polarization

(Belcher and Davis Jr., 1971; Matteini et al., 2014), the origin and evolution of coherent

structures in the inner heliosphere (Bruno et al., 2003; Borovsky, 2008; Greco et al., 2012a)

and their impact on magnetic energy dissipation and plasma heating (Osman et al., 2012;

Chasapis et al., 2015), the differential evolution in the inertial range scalings of magnetic

field and velocity fluctuations (Shi et al., 2021), the large excess of energy observed in

the magnetic field fluctuations over that in the velocity field fluctuations (Roberts et al.,

1987; Grappin et al., 1991; Chen et al., 2013; D’Amicis and Bruno, 2015; Shi et al., 2021),

often associated with anomalously steep magnetic field spectra (Bowen et al., 2018b),

the role of compressible fluctuations in the turbulent cascade (Hnat et al., 2005), the

inertial range anisotropic scalings of the fluctuations (Horbury et al., 2008; Wicks et al.,

2010), the role of imbalance in the fluxes of counterpropagating wavepackets (Podesta

and Borovsky, 2010; Wicks et al., 2011; Chen et al., 2013; Bowen et al., 2023) and their

scale-dependent dynamic alignment (Podesta, 2009; Bowen et al., 2021), and finally the

role of radial expansion and the breaking of the background magnetic field symmetry

(Verdini et al., 2018, 2019).

The Parker Solar Probe (PSP; Fox et al., 2016) and Solar Orbiter (SolO; Müller et al.,

2020) missions offer a unique opportunity to address these challenges by tracing the solar
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wind from its early acceleration to its journey through the inner heliosphere (Velli et al.,

2020a). Their complementary observations across various heliospheric distances hold the

promise of providing new insights into solar wind dynamics, potentially shedding light on

longstanding questions in solar and space physics.

Relation of MHD Turbulence Phenomenologies to Solar Wind Turbulence

The phenomenological MHD turbulence models discussed in Section 1.3 focus on the

dynamics of small amplitude (toroidal) Alfvén modes, neglecting potential couplings with

compressive fluctuations (e.g., Cho and Lazarian, 2003; Chandran, 2005; Chandran, 2018),

within the context of globally balanced, homogeneous MHD turbulence. Therefore, while

the higher-order scaling predictions offered by these models align reasonably well with

numerical simulations of forced, homogeneous, and balanced reduced MHD turbulence

(Chandran et al., 2015; Mallet et al., 2016; Palacios et al., 2022), their applicability to

the solar wind is questionable. This uncertainty arises because solar wind turbulence is

inhomogeneous, affected by spherical-expansion (Heinemann and Olbert, 1980; Velli et al.,

1991), often characterized by non-vanishing cross helicity (D’Amicis et al., 2021) and

includes a non-negligible fraction (∼ 10%) of compressive and longitudinal fluctuations

(Howes et al., 2012; Klein et al., 2012). To add to the above concerns, theoretical treatment

of MHD turbulence is often performed in the limit of small-amplitude fluctuations. In

contrast, solar wind turbulence typically displays a predominance in the flux of outwardly

propagating fluctuations over inwardly directed ones (Roberts et al., 1987; D’Amicis et al.,

2021). In addition, the predominant fluctuations in the solar wind are consistent with

large amplitude (δb ∼ B0) Alfvén waves. These waves are not purely transverse to B0

but exhibit spherical polarization, meaning the magnetic field vector traces a sphere of

constant radius |B0+δb| = const. (Barnes and Hollweg, 1974; Bruno et al., 2001; Matteini

et al., 2014). Recent Parker Solar Probe observations reveal that MHD turbulence in the

vicinity of solar wind sources is permeated by abrupt radial-field reversals, or switchbacks

that display traits akin to spherically polarized, high-amplitude Alfvén waves. The

generation mechanism of switchbacks, whether from processes near the solar surface or

in-situ during the expansion of the solar wind, remains under debate (Squire et al., 2020),
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with latest observations indicating an absence of full magnetic reversals in sub-alfvénic,

vsw/va ≤ 1, where vsw the bulk solar wind speed, intervals (Akhavan-Tafti, unpublished).

Furthermore, the dominance of this Alfvénic state diminishes as the heliocentric distance

increases suggesting a potential connection between the dissipation of finite amplitude

Alfvénic fluctuations and the acceleration and heating of the solar wind (Chen et al., 2020;

Shi et al., 2021; Sioulas et al., 2022a; Dunn et al., 2023).

Finally, the dynamics of the solar wind are influenced not just by the mean field

direction, but also by the radial axis along which the solar wind expands (Völk and Aplers,

1973). This aspect has been illuminated by numerical simulations using the Expanding

Box Model (EBM) (Grappin et al., 1993; Grappin and Velli, 1996b), which demonstrate

that expansion preferentially reduces the radial component of the magnetic field across

all scales, confining fluctuations to a plane orthogonal to the radial direction (Dong

et al., 2014). Given these considerations, the extent to which phenomenological models

of homogeneous, Alfvénic turbulence can accurately capture the unique characteristics

of the solar wind remains an active area of debate (Bowen et al., 2021). This aspect is

further explored in Chapter5.
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1.5 Research Objectives & Outline.

The thesis is comprised of three sections. The main scientific objectives of each section

can be summarized as follows:

1. Evolution of Alfvén Wave and Turbulence in the inner heliosphere.

• How do anisotropic signatures, like inertial range scalings and power-anisotropy,

of MHD turbulence develop within the inner Heliosphere?

• What are the physical mechanisms underlying the dynamic evolution?

2. Dynamical evolution of coherent structures and their role on plasma

heating.

• How do coherent magnetic structures, form and evolve in the solar wind?

• How do the effects of expansion and spherical polarization affect their evolution

as compared to homogeneous MHD ?

• What is the contribution of coherent structures to magnetic energy dissipation

and plasma heating?

3. Higher-Order analysis of 3D anisotropic Alfvénic turbulence.

• How do predictions and conjectures of MHD turbulence models grounded in

CB and SDDA principles fair against in-situ observations?

• What are the effects of compressibility, intermittency, imbalance, and solar

wind expansion on the 3D anisotropic statistical signatures of MHD turbulence?
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CHAPTER 2

Analytical Tools, and Methods

2.0.1 Fourier Transform and Estimation of Power-Spectral Densities

The Fourier transform serves as a mathematical technique that breaks down a time-domain

function (signal) into its individual frequency components. For a continuous-time signal

x(t), the Fourier transform X̃(f) is expressed as:

X̃(f) =

∫ ∞

−∞
x(t)e−j2πft dt (2.1)

This integral transforms the time-domain signal x(t) into the frequency-domain

representation X̃(f), where f denotes the frequency.

In practical scenarios, signals are often discrete rather than continuous. When a signal

is discretized, we use the Discrete Fourier Transform (DFT) to analyze its frequency

content. If we sample a continuous signal x(t) at regular intervals ∆t, we obtain a discrete

signal x[n] = x(n∆t). The DFT of this discrete signal is given by:

[k] =
N−1∑
n=0

x[n]e−j2πkn/N (2.2)

where N is the total number of samples, and k ranges from 0 to N − 1. The DFT is

not merely an approximation but a precise computation of the discrete signal’s frequency

content. However, the frequency resolution is limited by the sampling interval ∆t and the

total number of samples N . The frequency resolution is defined as:

∆f =
1

N∆t
(2.3)
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One significant consequence of discrete sampling is spectral leakage, which occurs when

the signal contains frequencies that do not align with the DFT’s frequency bins. This

misalignment causes energy to spill into adjacent bins, leading to inaccurate frequency

representation.

The Nyquist frequency is a critical concept in sampling theory. It is defined as half

the sampling rate and represents the highest frequency that can be accurately sampled

without aliasing. If the sampling rate is fs, then the Nyquist frequency fN is:

fN =
fs
2

(2.4)

The computational expense of the DFT is another consideration. The direct computa-

tion of the DFT requires O(N2) operations, which can be computationally intensive for

large N . However, the Fast Fourier Transform (FFT) algorithm significantly reduces this

complexity to O(N logN), making it more practical for large datasets.

To estimate the Power-Spectral Density (PSD) of a signal, we leverage the total energy

of the signal in real space. For a continuous signal x(t), the total energy E is given by:

E =

∫ ∞

−∞
|x(t)|2 dt (2.5)

Parseval’s theorem states that the total energy of the signal in the time domain is

equal to the total energy in the frequency domain:

∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
|X̃(f)|2 df (2.6)

For discrete time series, Parseval’s theorem can be expressed as:

N−1∑
n=0

|x[n]|2 =
1

N

N−1∑
k=0

|X̃[k]|2 (2.7)

This relationship allows us to compute the PSD, which represents how the signal’s
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power is distributed across different frequencies.

The Wiener-Khinchin theorem connects the PSD to the autocorrelation function of

the signal. The autocorrelation function Rxx(τ) of a signal x(t) is defined as:

Rxx(τ) =

∫ ∞

−∞
x(t)x∗(t+ τ) dt (2.8)

The theorem states that the Fourier transform of the autocorrelation function yields

the PSD:

R̃xx(f) = S̃xx(f) (2.9)

where S̃xx(f) is the PSD of x(t).

2.0.2 Continous Wavelet Transform (CWT)

The Continuous Wavelet Transform (CWT) is a signal processing technique that offers

a robust alternative to the Fourier Transform. Unlike the Fourier Transform, which

decomposes a signal into infinite-duration sinusoidal components, the CWT employs

wavelets—localized waveforms of finite energy and zero mean. This localization in both

time and frequency allows the wavelet transform to capture both temporal and spectral

information simultaneously, making it highly suitable for analyzing non-stationary signals

where the frequency content varies over time.

A wavelet is characterized by its finite duration and complex structure, differentiating

it from the infinite sinusoids used in Fourier analysis. The finite-energy property ensures

that the wavelet has a bounded duration, while the zero-mean condition ensures that it

oscillates around zero, providing both high and low-frequency information. This dual

localization enables the wavelet to adapt to different scales, providing a multi-resolution

analysis of the signal.

The process of wavelet transformation begins with the selection of a mother wavelet,

denoted as ψ0. The mother wavelet is a prototype function that generates daughter
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wavelets through scaling and translation operations. A daughter wavelet, ψ, at scale s

and position u, is obtained by stretching or compressing the mother wavelet, retaining its

shape while adjusting its frequency and duration. Mathematically, this is expressed as:

ψs,u(t) =
1√
s
ψ0

(
t− u

s

)
(2.10)

Here, the factor 1√
s

ensures that the energy of the wavelet remains constant across

different scales, maintaining the same total energy as the mother wavelet. The parameter

s controls the scale of the wavelet, determining whether it captures high-frequency,

short-duration components (small s) or low-frequency, long-duration components (large

s).

The Continuous Wavelet Transform of a signal x(t) with respect to the mother wavelet

ψ0 is defined as:

Wx(s, u) =

∫ ∞

−∞
x(t)

1√
s
ψ∗
0

(
t− u

s

)
dt (2.11)

In this equation, ψ∗
0 represents the complex conjugate of the mother wavelet. The

CWT decomposes the signal x(t) into wavelet coefficients Wx(s, u), which provide a

measure of the signal’s similarity to the wavelet ψs,u at different scales and positions.

Parseval’s theorem for the wavelet transform states that the total energy of a signal

x(t) can be expressed in the wavelet domain as:

E =

∫ ∞

−∞
|x(t)|2dt =

2

cψ

∫ ∞

0

∫ ∞

−∞
|Wψ

x (s, τ)|2ds dτ
s2

(2.12)

where cψ is the admissibility constant, defined as:

cψ =

∫ ∞

−∞

|Ψ0(ω)|2
ω

dω (2.13)

For the Morlet wavelet, cψ ≈ 0.776. Hence, |Wψ
x (s, τ)|2 represents the wavelet energy

spectrum, indicating the relative contribution to the signal energy for a specific scale s
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and time shift τ .

The conversion from scale to a Fourier pseudo-frequency for a Morlet wavelet is given

by:

f =
ω0 +

√
ω2
0 + 2

4πs
≈ ω0

2πs
(2.14)

where ω0 is the central frequency of the Morlet wavelet.

To estimate the Power Spectral Density (PSD) using the CWT, we utilize the wavelet

coefficients Wx(s, τ). The PSD provides information about the distribution of power across

different frequency components of the signal. The PSD at a specific pseudo-frequency f

can be estimated using the following expression derived from Parseval’s theorem:

E(f, τ) =
2Ts
cψf0

∣∣Wψ
x (f, τ)

∣∣2 (2.15)

where Ts is the sampling period, f0 = ω0/2π, and Wψ
x (f, τ) are the wavelet coefficients

corresponding to the pseudo-frequency f .

2.0.3 Estimating Conditional Power Spectra

Anisotropy in turbulence represents a local property that relies on both the position and

scale. The turbulent fluctuations at a given scale ℓ are greatly influenced by the local

mean magnetic field of a size that ranges between 3 − 5 · ℓ (Gerick et al., 2017). To

analyze anisotropy, wavelet analysis has proven to be a useful technique as it allows signal

decomposition into components that are localized both in time and wavelet scale. Recently,

the continuous wavelet transform (CWT) has been extensively utilized to estimate the

power of magnetic field fluctuations as a function of the direction of the local mean

magnetic field (Podesta, 2009; Wicks et al., 2010). For a discrete set of measurements

such as the time series of the i-th component of the magnetic field Bi, where i = R, T, N

and resolution δt , the wavelet transform is defined as:
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ωi(ℓ, tn) =
N−1∑
j=0

Bi(tj)ψ
∗(
tj − tn
ℓ

), (2.16)

where ψ∗ denotes the conjugate of the Morlet mother wavelet, and ψ(t) = π−1/4[eiω0t−
e−

ω2
0
2 ]e−

t2

2 . The parameter w0, representing the frequency of the wavelet, is set equal to

w0 = 6. The transformation from the dilation scale, ℓ, to the physical spacecraft frequency,

fsc, is given by:

fsc =
w0

2πℓ∆t
, (2.17)

where, ∆t represents the time interval between successive measurements. The power

spectral density of the i-th component as a function of spacecraft frequency fsc and the

local, scale-dependent field/flow angle θBV can be estimated as:

Fii(fsc, θBV ) =
2δt

N

N−1∑
n=0

|ωi(ℓ, tn, θBV )|2, (2.18)

Here, N is the number of samples within the range θj−1 ≤ θBV ≤ θj , θj = 5◦ · j, j=0, 1,

..., 18. At time tn and wavelet scale ℓ, we estimate the angle θBV using the scale-dependent

local mean magnetic field Bℓ and velocity field V ℓ, where V represents the solar wind

velocity in the spacecraft frame (Duan et al., 2021; Cuesta et al., 2022). To calculate the

scale-dependent local mean of a field, q, we use a Gaussian weighting scheme centered at

tn:

qℓ(tn, ℓ) =
N−1∑
m=0

qm exp

(
−(tn − tm)2

2λ2ℓ2

)
, (2.19)

where λ is a dimensionless parameter that determines the scaling of the average. To

ensure the robustness of our findings, we investigated two distinct values of λ, specifically

λ = 1 and λ = 3. Remarkably, the results obtained for both cases were comparable,

exhibiting differences in spectral exponents of only 0.01-0.02 (see also Gerick et al.,

2017). The parameter θBV was determined using two distinct methods: the non-scale
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dependent time-to-time velocity field value V (t) and the scale-dependent value, V ℓ.

Our results indicates that the outcomes obtained from both techniques are practically

indistinguishable, which validates the minimal impact of interpolating V at the time

points of B or only considering V (t) (see also Verdini et al., 2018; Wang et al., 2022).

Throughout the remainder of the study, we utilize Bℓ and V ℓ to estimate the θBV

parameter considering the case where λ = 3. For intervals that are sampled at heliocentric

distances greater than 0.5 AU and have a significant lack of plasma data, defined as having

more than 10% of solar wind velocity measurements missing, the angle θBR is used. This

angle represents the angle between Bℓ and the scale-dependent radial component of the

magnetic field, denoted as BRℓ. To determine the reliability and consistency of using θBR

instead of θBV , both angles were evaluated for intervals with adequate plasma data. Our

findings suggest that the anisotropic spectra remained almost unchanged for the majority

of intervals, even when sampled as close as 0.3 au. The subsequent analysis examines the

trace of the power spectral density, denoted as F =
∑
Fii. The range of θBV is restricted

to be between 0◦ and 90◦ based on the symmetry of θBV around 90◦ (Chen et al., 2011).

To transform the PSD derived in the spacecraft-frame frequency F (fsc, θBV ) into

a wavenumber spectrum expressed in physical units E(κ∗, θBV ), we employ Taylor’s

frozen-in hypothesis (Taylor, 1938).

2.0.4 Estimating 2-point & 5-point increments

Assuming the validity of (Taylor, 1938) hypothesis the 2-point increments for a field ϕ at

a specific spatial lag, where ℓ = τ · V sw and V sw represents the solar wind speed, can be

estimated as:

δϕ = ϕ(r + ℓ) − ϕ(r). (2.20)

However, in the context of estimating five-point increments, Equation 2.0.4 necessitates

a redefinition of δϕ to:
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δϕ = [ϕ(r − 2ℓ) − 4ϕ(r − ℓ) + 6ϕ(r)

− 4ϕ(r + ℓ) + ϕ(r + 2ℓ)]/
√

35. (2.21)

Using the 5-point method, one can estimate the scale-dependent increments of the

magnetic field—in velocity units—as δb = δB/(µ0ρ(t))1/2, where ρ(t) = 1.16mpnp(t), µ0

is the permeability of free space, and mp and np represent the proton mass and number

density, respectively. The factor 1.16 accounts for alpha particles, assuming na/np = 0.04

(Podesta et al., 2009).

Additionally, we can estimate the scale-dependent increments in the velocity field,

denoted as δv. The perpendicular components of the increments are defined by

δϕ⊥ = δϕ− (δϕ · ẑ) · ẑ, (2.22)

where, ẑ = Bℓ/|Bℓ|, is a unit vector in the direction of the localy-defined scale-

dependent background magentic field estimated as

Bℓ = [B(r − 2ℓ) + 4B(r − ℓ) + 6B(r)

+ 4B(r + ℓ) +B(r + 2ℓ)]/16. (2.23)

Additionally, we can calculate the perpendicular components of the increments in the

outwardly and inwardly propagating modes as follows:

δzo,i⊥ = δv⊥ ∓ sign(⟨BR⟩)δb⊥, (2.24)

where ⟨BR⟩ represents a 30-minute rolling average of BR, the radial component of the
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magnetic field in RTN coordinates (Franz and Harper, 2002). This rolling average assists

in determining the polarity of the radial magnetic field (Shi et al., 2021).

2.0.5 Acounting for Imbalance

The total energy Et = E+ + E− and cross-helicity Hc = E+ − E−, expressed in terms

of the energy associated with fluctuations in z±, E± = ⟨|δz±|2⟩/4, are ideal (i.e., with

zero viscosity and resistivity) invariants of the incompressible MHD equations. Elsässer

imbalance can be quantified by the normalized cross-helicity, σc = Et/Hc, which measures

the relative fluxes of counterpropagating wavepackets in the system. In the context of solar

wind turbulence, Elsässer imbalance is assessed by examining the relative magnitudes of

inwardly and outwardly propagating Alfvén waves (Velli et al., 1991; Velli, 1993).

σc =
2⟨δv⊥ · δb⊥⟩
⟨δv2⊥⟩ + ⟨δb2⊥⟩

(2.25)

In addition, we consider the normalized residual energy, σr, to investigate the effects

of Alfvénic imbalance. This metric evaluates the relative energy in kinetic and magnetic

fluctuations:

σr =
⟨δv2⊥⟩ − ⟨δb2⊥⟩
⟨δv2⊥⟩ + ⟨δb2⊥⟩

. (2.26)

2.0.6 Alignment Angles

Conventionally, the angle between perpendicular components of field fluctuations, δϕ⊥

and δψ⊥, is estimated using:

sin(θϕψ⊥ ) =

〈 |δϕ⊥ × δψ⊥|
|δϕ⊥||δψ⊥|

〉
. (2.27)

This definition applies to estimating the angle between the fluctuations of the Elsässer

fields, δzo⊥ and δzi⊥, denoted as θz⊥, as well as the angle between δu⊥ and δb⊥, denoted
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as θub⊥ .

An alternate definition of these angles is obtained by separately averaging the numerator

and denominator, a method known as polarization intermittency (Beresnyak and Lazarian,

2006a):

sin(θ̃ϕψ⊥ ) =
⟨|δϕ⊥ × δψ⊥|⟩
⟨|δϕ⊥||δψ⊥|⟩

. (2.28)

This approach allows for the identification of “dynamically relevant” fluctuations, as

the averaging procedure considers that, at a given λ, fluctuations with amplitudes near

the rms value are primary contributors to turbulent dynamics (Mason et al., 2006).

CSM15 predicts θ̃z⊥ ∝ λ0.10 for the Elsässer field and θ̃ub⊥ ∝ λ0.21 for the magnetic-

velocity field polarization intermittency, respectively.

2.0.7 Partial Variance of Increments

The boundaries of CSs are associated with spatial variations or reversals of the local

magnetic field. In recent years, a variety of methods, suitable for the detection of sharp

gradients in a turbulent field, have been proposed (Bruno et al., 1999; Hada et al.,

2003; Khabarova et al., 2021; Pecora, F. et al., 2021). A convenient statistical tool to

perform this study, is the Partial Variance of Increments PV I (Greco et al., 2008). The

PVI method has been used in the past in a variety of space plasma environments to

determine the portion of the data corresponding to the underlying CSs (Tessein et al.,

2013a; Chasapis et al., 2015; Bandyopadhyay et al., 2020; Chhiber et al., 2020b; Vasko

et al., 2022; Lotekar et al., 2022). Assuming the validity of Taylor’s hypothesis (Taylor,

1938), the PV I index at time t, for lag ℓ = −VSW τ , is given by (Greco et al., 2008):

Iψ(t, ℓ) =
|δψ(t, ℓ)|√
⟨|δψ(t, ℓ)|2⟩

, (2.29)

where, |δψ(t, ℓ)| is the magnitude of the field vector increments (either 2-pt or 5-pt),

and ⟨...⟩ stands for an average over a suitably large window that is a multiple of the
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estimated correlation time for the magnetic field. (Greco et al., 2018) have shown that as

the PVI index increases, the identified events are more likely to be associated with Non-

Gaussian structures that lay on the ”heavy tails” observed in the PDF of scale-dependent

increments, suggesting that coherent structures correspond to events of index PV I ≥ 2.5.

The most intense magnetic field discontinuities, such as current sheets and reconnection

sites, can then be identified by further raising the threshold value to PV I ≥ 4, and,

PV I ≥ 6, respectively (Servidio et al., 2009).

2.0.8 Structure Functions and Scaling Exponents

Another method for assessing intermittency in a time series is based on estimating a

sequence of qth order moments of the magnetic field increments. The physical significance

of this method is founded on the susceptibility of higher-order moments to concentrations

of energy dissipation related to coherent structures and, from KRSH to extreme values

of the magnetic field increments. We can estimate the qth order structure-function for a

field ψ field through

Sqψ(ℓ) = ⟨[δψ(t, ℓ)]q⟩T , (2.30)

where, |δψ(t, ℓ)| = (
∑

i δψ
2
i )

1/2, is the magnitude of the vector magnetic field in-

crements, and ⟨...⟩T stands for averaging over an interval of duration T. Fitting each

component of Snψ(ℓ) to a power law, ∝ ℓζn , facilitates the estimation of scaling exponents,

ζn.

2.0.9 Scale Dependent Kurtosis

An intermittency-affected generic time series exhibits alternate intervals of very high

activity followed by extended periods of quiescence. Thus, intermittency in a signal is

manifested in the form of a decrease in the fraction of volume occupied by structures at
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scale ℓ with decreasing scale. Thus, due to it’s relationship to the scale dependent filling

fraction F (ℓ) for structures through

K(ℓ) ∼ 1/F (ℓ) (2.31)

the Scale Dependent Kurtosis (SDK), defined as

K(ℓ) =
⟨|δψ|4⟩
⟨|δψ|2⟩2 , (2.32)

can be utilized to characterize the intermittency of a statistically homogeneous signal

(Frisch, 1995).

An increase in K(ℓ) with the involvement of smaller and smaller scales ℓ is indicative

of a signal that exhibits activity over only a fraction of space, with the fraction decreasing

with the scale ℓ under consideration. For a scalar that emerges from an additive random

process subject to a central limit theorem (i.e., follows a Gaussian distribution), the SDK

is independent of scale and attains a constant value K(ℓ) = 3, indicating the self–similar

character of the fluctuations. On the contrary, the PDFs of intermittent fluctuations

progressively deviate from a Gaussian distribution (i.e., distributions display fat tails)

at smaller scales (Frisch, 1995). As a result, intermittency in a generic timeseries is

manifested in the form of a monotonically increasing SDK with the involvement of smaller

spatial/temporal scales. Additionally, when comparing two different time series, the

one for which SDK grows more rapidly will be considered as more intermittent. Note

that in the case where SDK fluctuates around a value different from 3, fluctuations are

still characterized as self–similar but not Gaussian (i.e., formally referred to as Super-

Gaussian). In this case, the fluctuations are not considered intermittent. This can be

better understood when considering the way PDFs of increments are modified with scale.

For instance, one may consider increments of a field ϕ that follow a given scaling

δϕℓ = ⟨|ϕ(x+ ℓ) − ϕ(x)|⟩ ∼ ℓh. (2.33)
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By introducing a change of scale, ℓ→ κℓ, where κ > 0, we get the following transfor-

mation

δϕκℓ ∼ κhδϕℓ. (2.34)

According to this relationship, increments estimated at different scales, are characterized

by the same statistical properties (Frisch, 1995)

PDF (δϕκℓ) = PDF (κhδϕℓ). (2.35)

This means that if κ is unique, the PDFs of the normalized increments (e.g., rescaled

by their standard deviations), δϕℓ(x) = (ϕ(x+ ℓ)−ϕ(x))/⟨(ϕ(x+ ℓ)−ϕ(x))2⟩1/2 collapses

to a single PDF highlighting the self-similar (fractal) nature of the fluctuations. On the

other hand, intermittency implies multifractality and, as a consequence, an entire range

of values for κ. It is thus reasonable to expect that over the scales for which the PDF of

increments collapse on to each other, the SDK will fluctuate around a constant value.
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CHAPTER 3

Magnetic Field Spectral Evolution in the Inner

Heliosphere

3.1 Plasma Parameters Underlying the Dynamic Evolution of

the Magnetic Spectrum in the Inner Heliopshere

This section is based on work published in (Sioulas et al., 2023a)

3.1.1 Introduction

As discussed in Section 1.3 MHD turbulence phenomenologies predict different power-law

exponents depending on prevailing characteristics of turbulence, such as spatial wave-

number anisotropy (Goldreich and Sridhar, 1995, 1997), intermittency (Chandran et al.,

2015), and the scale-dependent correlation between velocity and magnetic field (Boldyrev,

2006). The variability of solar wind turbulence properties in the inner heliosphere reflects

the diversity of solar coronal sources, which modulate the density, velocity, temperature,

and ion composition of the plasma. Consequently, several factors, including the role played

by large-scale gradients (Velli et al., 1989; Chandran and Perez, 2019), the proximity

to the heliospheric current sheet (Chen et al., 2021; Shi et al., 2022b), the presence of

magnetic field switchbacks (Martinović et al., 2021; Bourouaine et al., 2020; Shi et al.,

2022a), and large-scale velocity shear in the SW (Coleman, 1968), strongly influence the

properties of turbulence, resulting in a wide range of spectral scalings.

By fitting the power spectrum within a constant range in the frequency domain, recent

statistical studies of PSP data have revealed a non-evolving velocity spectral index close
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to −3/2, independent of the radial distance from the Sun (Shi et al., 2021), while the

magnetic field spectrum steepens from a −3/2 slope at ∼ 0.2 AU to a −5/3 slope at ∼ 0.6

AU (Chen et al., 2020; Shi et al., 2021).

However, it is natural to expect that the relative physical scale of fluctuations of a given

frequency decreases as the solar wind expands. Two scales are crucial to understanding

the radial evolution of turbulence in the solar wind: (1) the ion inertial scale, di = VA/Ωi,

and (2) the thermal ion gyroradius, ρi = Vth,i/Ωi, where Ωi = (e|B|)/mp is the proton

gyrofrequency, e is the elementary charge, |B| is the magnitude of the magnetic field, and

mp is the mass of the proton. With increasing heliocentric distance, both physical scales

(di, ρi) increase (Cuesta et al., 2022b; Sioulas et al., 2022b).

Here, we aim to understand the radial evolution of magnetic turbulence and study the

basic features of scaling laws for solar wind fluctuations in terms of properly normalized

physical scales. High-resolution data from the Parker Solar Probe (PSP) (Fox et al., 2016)

and Solar Orbiter (SO) (Müller et al., 2020), covering heliocentric distances 13 R⊙ ≲ R ≲

220 R⊙, are utilized to investigate the radial evolution of the magnetic spectral index as

a function of normalized wavenumber.

We show that closer to the Sun, the magnetic field power spectrum exhibits a poorly

developed, i.e., extending over a limited range of scales, inertial range characterized by

a −3/2 spectral index. The inertial range extends to larger and larger scales as the

solar wind expands into the interplanetary medium, with the inertial range spectral

index steepening towards a −5/3 value. We demonstrate that the rate at which the

steepening occurs is strongly dependent on the magnetic energy excess and Alfvénicity of

the fluctuations.

3.1.2 Data Selection and Processing

We analyzed magnetic field data from the Flux Gate Magnetometer (FGM) (Bale et al.,

2016), as well as plasma moment data from the Solar Probe Cup (SPC) and Solar Probe

Analyzer (SPAN), which are part of the Solar Wind Electron, Alpha, and Proton (SWEAP)

87



Figure 3.1: The radial evolution of (a) the ion inertial length di, (b) the ion gyroradiusρi,
(c) ion plasma β

suite, collected between January 1, 2018, and June 15, 2022. This period encompasses

the first twelve perihelia (E1-E12) of the PSP mission. SPC data were utilized for E1-E8,

while SPAN data were used for E9-E12. When available, quasi-thermal noise-derived

data (Moncuquet et al., 2020a) were preferred over SPAN or SPC data. Additionally, we

considered magnetic field and particle moment measurements from the Magnetometer

(MAG) instrument (Horbury et al., 2020), prioritizing burst data when available, and

the Proton and Alpha Particle Sensor (SWA-PAS) (Owen et al., 2020) onboard the SO

mission, collected between June 1, 2018, and March 1, 2022.

Intervals with quality flags indicating missing data ≥ 1% and/or ≥ 10% in the magnetic

field and particle time series were omitted from further analysis. The remaining intervals

were resampled linearly to the highest possible cadence based on their initial resolution.

To eliminate spurious spikes, a Hampel filter (Davies and Gather, 1993a) was applied to

the plasma time series.

Converting the spacecraft-frame frequency derived PSD, F (fsc), to a wavenumber

PSD, E(κ), far from the Sun is possible using Taylor’s hypothesis (TH) (Taylor, 1938),

κ = 2πfsc
VSW

. This hypothesis becomes questionable when both the Alfvén velocity and

the spacecraft velocity are comparable to the velocity of the solar wind. Therefore, a

modified version of Taylor’s hypothesis that accounts for both wave propagation and

spacecraft velocity is adopted (Klein et al., 2015): in the above expression for κ, Vsw is

replaced by Vtot = |V sw +V a−V sc|, where V sc is the spacecraft velocity, and turbulence

is assumed to be dominated by outwardly propagating Alfvén waves. Note that TH
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Figure 3.2: Magnetic field power spectrum, PSD at different heliocentric distances. The
power-spectrum is shown, as a function of (a) spacecraft frequency; (b) wavenumber
k = ℓ−1 in units of di

remained either moderately or highly valid for the majority of the time intervals examined,

with only ∼ 1.53% of the intervals under study exhibiting MA < 1.5, including a number

of sub-Alfvénic intervals during PSP E8 −E12 (∼ 0.45% of the entire dataset). Figure 5.8

illustrates the radial evolution of ion inertial length di, ion gyroradius ρi, and ion plasma

β, which are quantities relevant to this study.

3.1.3 Results

3.1.3.1 Radial Evolution of magnetic field spectral index

We considered overlapping intervals of duration d = 24 hours, with the beginnings of

adjacent intervals separated by 8 hours. For each interval, the Fourier trace power spectral

density F (fsc) was calculated, smoothed by averaging over a sliding window with a factor

of 2, and transformed into a wavenumber spectrum expressed in physical units E(κ∗)

using the modified Taylor Hypothesis (TH):

E(κ∗) =
Vtot

2π · ξF (fsc) [nT 2 · ξ],

where κ∗ = κ · ξ = 2πfsc
Vtot

· ξ, and ξ = di, ρci.

The radial evolution of the power spectral density (PSD) as a function of spacecraft
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frequency, normalized by di, is presented in Fig. 3.2a,b, respectively. Due to the expansion

of the solar wind and the turbulent cascade, a decrease of approximately 4 orders of

magnitude in magnetic power is observed with increasing heliocentric distance.

The spectral index αB is obtained by taking a sliding window of one decade in

the spacecraft-frame frequency (wavenumber) domain, over the smoothed spectra, and

calculating the best-fit linear gradient in log-log space over this window. For clarity, ten

radial bins have been used, and the median value of the spectral index as a function of

frequency has been estimated for intervals that fall within the same bin. The color of the

curve is keyed to the mean value of the distance R corresponding to the intervals within

each bin. The results of this analysis are presented in Figure 3.3a. In the inertial range,

an energy cascade rate that is independent of scale is expected, reflected in the power

spectrum as a constant spectral index over this range of scales. Close to the Sun (dark

blue line in Figure 3.3a), the inertial range is limited to a narrow range of frequencies

(2 × 10−2 − 2 × 10−1Hz). As the solar wind expands in the interplanetary medium: (1) a

universal steepening (i.e., across all frequencies) is observed for the spectral index αB at a

constant fsc; (2) the curves shift horizontally to lower and lower frequencies. As illustrated

in Figure 3.3a, the frequency range over which the spectral index is constant migrates

to the left while steepening with increasing distance, from αB ≈ −3/2 to αB ≈ −5/3.

Similar behavior is observed at the largest scales. Closer to the Sun, for fsc ≤ 2 × 10−2

Hz, the spectrum becomes progressively shallower at lower frequencies and obtains a value

of αB ≈ −1 at fsc = 3 × 10−4 Hz. As heliocentric distance increases, this low-frequency

part of the spectrum gradually steepens, with all frequencies approaching a −5/3 scaling.

Therefore, as the solar wind propagates outward, the inertial range of the spectrum

develops gradually, extending from higher frequencies to progressively lower frequencies.

Additionally, in accordance with (Duan et al., 2021), the ion scale break, which separates

the inertial from the kinetic range, is observed to migrate to lower frequencies with

distance.

To cast the results in terms of relevant physical scales, we considered the evolution of

αB into the wavenumber domain, normalizing by either the ion inertial length (di) or the
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Figure 3.3: Evolution of magnetic field spectral index (αB) as a function of distance, &
(a) frequency in units of Hz (b) normalized wavenumber κ∗ in units of di.

ion gyroradius (ρi).

The evolution of the spectral index as a function of distance (R) in the wavenumber

domain normalized by di is illustrated in Figure 3.3b. It is readily seen that the vertical

shifting of the curves to lower frequencies, observed in Figure 3.3a, has vanished: all the

curves roll over at κdi ≈ 0.1 and overlap at smaller scales. The normalization does not

appear to have a substantial impact on the radial development of the spectral index at

large scales, κ∗ ≲ 8 × 10−2, since a steepening closely resembling Figure 3.2a is obtained.

On the other hand, as shown in Figure 3.2b, the small-scale break, demarcating the

beginning of the transition region, κ∗ ≈ 9 × 10−2 (ρ−1
i ), does not show any remarkable

evolution with distance and remains constant in physical space. We do not show plots

using ρi as normalization because the spectra do not collapse as clearly into one curve at

small scales, demonstrating that di is the more appropriate scale for such normalization.

3.1.3.2 Dependence of αB on plasma parameters

To disentangle the spectral variation with distance from changes due to the differing plasma

parameters of different solar wind streams the dependence of αB on the normalized cross

helicity σc, a measure of the relative amplitudes of inwardly and outwardly propagating

Alfvén waves, and the normalized residual energy σr. The variation of αB with Vsw, the

ratio of magnetic to thermal pressure, β ≡ npKBT/(B
2/2µ0) ≪ 1, and the field/flow
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Figure 3.4: The joint distribution of normalized cross-helicity σc and normalized residual
energy σr at different heliocentric distances.

angle ΘBV was also examined. Though we do not focus on β, and ΘBV here, we will

comment on these in Section 3.1.4. The evolution of αB is investigated by fitting the

magnetic spectrum over a constant range (10−3 − 3 × 10−2 d−1
i ). To ensure that the

plasma parameters under study do not vary significantly within the interval the duration

of intervals has been reduced to d = 1 hr.

3.1.3.3 Solar Wind Speed, VSW

As shown in Figure 3.5a, Within 30 Rs, no significant differences in spectral index with

solar wind speed are found with an inertial range scaling , αB ≈ −3/2. As the solar wind

expands, the dependence on solar wind speed becomes more evident: steepening occurs

regardless of solar wind speed, but it is more efficient for slower solar wind streams. As

a result, at R ≈ 1 au, the dependence of the spectral index on speed is clear, with the

spectral index being consistent with a K41 scaling in the fast wind and a steeper scaling
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of ≈ −1.8 for the slowest winds. Categorizing the spectral index as a function of τadv,

Figure 3.5b, instead of radial distance one finds that for τadv < 40Hrs no clear trend is

observed for the spectral index as a function of wind speed. Beyond, this point, though

steepening is monotonic with τadv at all wind speeds. Overall, lower speed intervals display

a significant radial steepening as compared to faster winds that only display a slight

steepening. Closer to the Sun, however, there seems to be no dependence on wind speed

on the spectral index, suggesting that the spectra are initially similar regardless of the

wind speed.

3.1.3.4 Normalized Cross Helicity, σc, & Normalized Residual Energy σr

The joint σc - σr distribution, estimated using 1 minute-long moving averages of the

respective timeseries is presented in Figure 3.4. The median and mean value of σc

and σr for each bin are also shown as red and black crosses respectively. The gray

circle defines fluctuations with perfect alignment between velocity and magnetic field,

given by σ2
c + σ2

r = 1. Closer to the sun (0.06-0.1 au) turbulence is highly Alfvénic,

dominated by outwardly propagating waves (σc ≈ 0.85), and in slight excess of magnetic

energy (σr ≈ −0.15). A small population of strongly magnetically dominated intervals

characterised by very low alfvénic content (i.e., σr ≈ −1, and σc ≈ 0, mostly associated

with heliospheric current sheet (HCS) crossings is also observed (see (Shi et al., 2022c)).

At larger heliocentric distances the mean/median value of σc progressively decreases

(Chen et al., 2020; Shi et al., 2021). Several mechanisms have been proposed to explain

the diminishing dominance of outwardly propagating waves with increasing heliocentric

distance due to wave reflection, including velocity shears (Roberts et al., 1992) and the

parametric decay instability (Tenerani et al., 2017; Shoda et al., 2019). At 1au, σr is

clearly more negative than in the near-Sun environment, but it does not show a clear

trend with radial distance. In the distance range of 0.6-1 au, most of the data points are

concentrated in the lower half, with a few intervals having slightly positive σr values. In

addition, datapoints located in the bottom left quadrant are increasing with distance,

indicating a radially decreasing dominance of waves propagating outward
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Figure 3.5: Magnetic field spectral index aB as a function of Vsw and (a) heliocentric
distance, (b) advection time τadv, as well as, a function of distance and (c) normalized
cross helicity (σc), (d) normalized residual energy (σr)

The power-spectra of the fluctuating fields δb, δV , δZo,i have been obtained and both

σc, and σr have been estimated by integrating the resulting spectra over a constant range

(10−3 − 5 × 10−2 d−1
i ) in the wavenumber domain normalized by the ion inertial length.

The dependence of the spectral index on |σc| and σr as well as the radial distance (R)

is presented in Figure 3.5c,d for σc and σr respectively. These show how highly alfvénic

(|σc| ≈ 1) and energetically equipartitioned intervals display little spectral evolution, while

evolution to significantly steeper spectra is associated with low |σc| and/or large magnetic

energy excess, with the data at large distances consistent with 1 AU results (Chen et al.,

2013; Bowen et al., 2018b).
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3.1.4 Conclusions

Using PSP and SO data from the inner heliosphere we have analyzed 1) how the statistical

signatures of turbulence evolve with heliocentric distance and (2) the plasma parameters

driving the evolution.

Identifying a plasma scale that grows radially at the same rate as the high frequency

break point is crucial for this study in order to anchor the spectrum in normalized

wavenumber space and enable meaningful comparison between intervals sampled at

different heliocentric distances. Since the high frequency break point exhibits a power-

law radial dependence with a scaling exponent 1.08 ± 0.03 (Duan et al., 2021), then di

which grows radially as ∝ R1.04±0.01 provides a better normalization than ρi which is

characterized by a ∝ R1.48±0.02 radial scaling. It is important to emphasize that the goal

here is not to find the quantity that has 1:1 correspondence with the high frequency break

point. In fact, it is well known that intervals characterized by low ion β values exhibit a

magnetic power spectral density that breaks at the ion inertial length (di), while high

β intervals are characterized by a small scale break at the thermal ion gyroradius (ρi)

(Chen et al., 2014a). Thus, the pinning of the power-spectrum at a constant κdi scale,

with increasing distance may be explained by the fact that plasma β values remain rather

low in the inner heliosphere, see Figure 5.8. Another plasma scale that is correlated with

the high frequency break point and should be considered by future investigations is the

proton cyclotron resonance (Woodham, 2019a).

Additionally, our analysis indicates that closer to the Sun, the inertial range of the

magnetic field power-spectrum is poorly developed i.e., the range of scales over which αB

remains constants is limited; its value is closer to αB = −3/2. As the solar wind expands

into the interplanetary medium, the inertial range extends to progressively larger scales,

while at the same time the inertial range spectral index steepens towards αB = −5/3.

We demonstrate that the rate at which αB steepens is strongly dependent on the

normalized residual energy and normalized cross helicity of the intervals under study. In

particular, intervals with high alfvénic content (|σc| ≈ 1), and equipartitioned in EV -Eb
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(σr ≈ 0) seem to retain their near-Sun scaling, and show a minor steepening with radial

distance. In contrast, magnetically dominated and balanced intervals are observed to

strongly steepen, resulting in anomalously steep inertial range slopes at 1 au, consistent

with previous studies (Podesta, 2009; Bowen et al., 2018b).

While |σc| ≈ 1 and σr ≈ 0 values may be found in slow wind streams, especially closer

to the sun, they are statistically less relevant than in fast winds (Shi et al., 2021). As a

result, the occurrence of steeper spectral indices in slower wind streams may be attributed

to the observed positive correlation between solar wind speed and σc, σr.

Intervals with large magnetic energy excess closer to the Sun do not display the

steep spectra observed at 1 au, attributed by (Bowen et al., 2018b) to the correlation

between magnetic coherent structures and highly negative σr values (Mininni and Pouquet,

2009). Recent studies (Sioulas et al., 2022b), suggest that magnetic field intermittency

is strengthened with increasing heliocentric distance in the inner heliosphere, but no

similar analysis has been conducted for the velocity field. However, velocity spectra do

not display radial evolution (Shi et al., 2021) and exhibit a scaling of av = −3/2 at 1 au

(Podesta and Borovsky, 2010). Based on our results, we expect that both the magnetic

and velocity field spectra display a −3/2 scaling closer to the Sun, with the evolution of

the magnetic spectrum related to the in-situ generation of magnetic coherent structures

during expansion. A study of the evolution of αB and av as a function of radial distance as

well as intermittency is ongoing. Turbulence in the solar wind is anisotropic with respect

to the mean magnetic field (see, e.g., reviews by Schekochihin et al., 2009a; Horbury

et al., 2012; Oughton et al., 2015a, and references therein). Horbury et al. (2008); Osman

et al. (2012) have shown that when the field/flow angle ΘBV is ΘBV = 90◦, then the

inertial range range scales like either αB ≈ =5/3, or sometimes ≈ =3/2, consistent with

a critical balance cascade and dynamical alignment models respectively. In the parallel

direction, ΘBV = 0◦, it is nearer αB ≈ −2. In contrast, when a global magnetic field

is utilized to estimate θBV , no anisotropy in the spectral index as a function of ΘBV is

observed (Tessein et al., 2009; Chen et al., 2011). Though it is not shown here, we find

no correlation between ΘBV and αB, using a global magnetic field. A similar result was
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obtained when considering the dependence of αB on plasma β, suggesting that these two

parameters are not related to the steepening of the spectrum. Further work to clarify the

debate between a local, scale-dependent and global background magnetic field and it’s

role on the spectral evolution is presented in Chapter 3.2.

Our findings will help us gain a better understanding of how solar wind turbulence is

generated and transported and will guide future models of solar wind turbulence.
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3.2 On the Evolution of the Anisotropic Scaling of Magnetohy-

drodynamic Turbulence in the Inner Heliosphere.

This section is based on work published in (Sioulas et al., 2023b)

We analyze a merged Parker Solar Probe (PSP ) and Solar Orbiter (SO) dataset

covering heliocentric distances 13 R⊙ ≲ R ≲ 220 R⊙ to investigate the radial evolution of

power and spectral-index anisotropy in the wavevector space of solar wind turbulence. Our

results show that anisotropic signatures of turbulence display a distinct radial evolution

when fast, Vsw ≥ 400 km s−1, and slow, Vsw ≤ 400 km s−1, wind streams are considered.

The anisotropic properties of slow wind in Earth orbit are consistent with a “critically

balanced” cascade, but both spectral-index anisotropy and power anisotropy diminish

with decreasing heliographic distance. Fast streams are observed to roughly retain their

near-Sun anisotropic properties, with the observed spectral index and power anisotropies

being more consistent with a “dynamically aligned” type of cascade, though the lack

of extended fast-wind intervals makes it difficult to accurately measure the anisotropic

scaling. A high-resolution analysis during the first perihelion of PSP confirms the presence

of two sub-ranges within the inertial range, which may be associated with the transition

from weak to strong turbulence. The transition occurs at κdi ≈ 6 × 10−2, and signifies

a shift from -5/3 to -2 and -3/2 to -1.57 scaling in parallel and perpendicular spectra,

respectively. Our results provide strong observational constraints for anisotropic theories

of MHD turbulence in the solar wind.

3.2.1 Introduction

In astrophysical systems such as stellar coronae, stellar winds, and the interstellar medium

a large-scale magnetic field B0 is often present (Parker, 1979; Biskamp, 2003) and the

fluctuations are typically observed to be mostly incompressible. Based on the weak

interaction of oppositely moving Alfvénic wavepackets in a strong background magnetic

field, δv, δb ≪ B0, i.e., assuming that the wave propagation, τA(κ) = 1/|B · k| is

shorter than the nonlinear decay time τnl(κ) ≈ 1/(k · δuk), where δuk is the average
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velocity fluctuation at scales ℓ ∼ 1/|k|, the turbulent cascade will be slowed relative to

hydrodynamic turbulence (Iroshnikov, 1963; Kraichnan, 1965). Assuming homogeneity,

isotropy, B · k → B · k, and scale locality of the interactions, simple dimensional

analysis then leads to the prediction of the inertial range omnidirectional power-spectrum,

E(k) ∝ k−3/2. Magnetic fields, however, cannot be eliminated via Galilean transformations

of MHD equations, as opposed to mean velocity fields, V 0, resulting in strongly anisotropic

turbulent dynamics (Montgomery and Turner, 1981) (see also reviews by Schekochihin

et al., 2009a; Oughton et al., 2015b, and references therein). In particular, conservation

of energy and momentum during wave-wave interactions (more specifically, a wave -

2D perturbation interaction, (see, Montgomery and Matthaeus, 1995)) allows power to

cascade down to smaller scales perpendicular to B0, resulting in a two-dimensionalization

of the turbulence spectrum in a plane transverse to the locally dominant magnetic field

while at the same time inhibiting spectral energy transfer along the direction parallel to

the field. (Shebalin et al., 1983; Ng and Bhattacharjee, 1996; Galtier et al., 2000).

Using in-situ observations in the solar wind (Horbury et al., 2008; Podesta, 2009;

Chen et al., 2010) explored the dependence of the scaling index of the magnetic power

spectrum’s inertial range, αB, on the field/flow angle θBV . An essential nuance in observing

scale-dependent anisotropy involves the necessity of measuring parallel correlations along

a local, scale-dependent mean magnetic field, Bℓ, instead of the global mean magnetic

field, as emphasized by (Cho and Vishniac, 2000; Gerick et al., 2017), (see also, review

by Schekochihin, 2022, and references therein). The aforementioned studies suggest

inertial range spectral indices of −2 and −5/3 for flow directions parallel (ΘBV ≈ 0◦) and

perpendicular (ΘBV ≈ 90◦) to the mean magnetic field, respectively. These observations

were interpreted as supporting evidence for the critical balance (CB) theory (Sridhar and

Goldreich, 1994; Goldreich and Sridhar, 1995, 1997) 5, which is based on the conjecture that

the inertial range dynamics of MHD turbulence with vanishing cross-helicity (σc ≈ 0), later

extended to imbalanced cascades (Lithwick et al., 2007), are governed by wavevector modes

for which rough equality between τA(κ) and τnl(κ), τA(k) ≈ τnl(|k|) holds. As a result,

5Heavily influenced by the work of (Higdon, 1984)
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the relationship between the parallel and perpendicular wavevectors follows an anisotropic

scaling, κ|| ∼ κ
2/3
⊥ . Based on this scaling, we expect the magnetic fluctuation spectra to

follow scalings of: E(k⊥) ∝ k
−5/3
⊥ and E(k||) ∝ k−2

|| . However, the dynamic alignment

conjecture (Boldyrev, 2006; Mason et al., 2006; Perez and Boldyrev, 2009b) suggests

that, as the energy cascades to smaller scales, velocity and magnetic field fluctuations in

the plane perpendicular to Bℓ will align to within a smaller angle ϕ, resulting in weaker

nonlinear interactions and a flatter perpendicular inertial range spectrum, E(k⊥) ∝ k
−3/2
⊥ .

In contrast, the field parallel spectrum remains unchanged, E(k||) ∝ k−2
|| . Other models

of turbulence, such as the 2D plus slab model (Zank et al., 2020) lead to perpendicular

and parallel spectra that can range between 5/3 and 3/2 in the perpendicular direction

and 5/3 and 2 in the parallel direction.

As discussed in Section 3.1, recent observations from the Parker Solar Probe (PSP )

and Solar Orbiter (SO) missions have provided the opportunity to investigate the radial

evolution of turbulence in the inner heliosphere. It was shown that the inertial range of the

magnetic spectrum grows with distance, progressively extending to larger spatial scales

(Sioulas et al., 2022a) while at the same time steepening from a scaling of αB = −3/2 at

approximately 0.06 au towards the Kolmogorov scaling of αB = −5/3 (Chen et al., 2020;

Alberti et al., 2020; Telloni et al., 2021; Shi et al., 2021). The rate at which the spectrum

steepens has also been found to be related to the Alfvénic content and magnetic energy

excess of the fluctuations (Sioulas et al., 2022a). On the contrary, the spectral index of

the velocity spectrum in the inertial range has consistently been found to be close to

αv = −3/2, regardless of the distance from the Sun (Shi et al., 2021).

In this study, we aim to understand the radial evolution of anisotropic magnetic

turbulence in the inner heliosphere. To do this, we analyze data from the PSP and SO

missions covering heliocentric distances 13 R⊙ ≲ R ≲ 220 R⊙ using wavelet analysis.

This technique allows us to decompose the magnetic field timeseries into scale-dependent

background and fluctuations, and study the dependence of the turbulence properties on

the field/flow angle θBV .

The rest of the paper is structured as follows: Section 3.2.2 presents the selection and
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processing of the data. The results of this study are presented in Section 3.2.4, with a

focus on high-resolution data obtained during the first perihelion of PSP in Subsection

3.2.4.1, and the radial evolution of magnetic field anisotropy investigated in Subsection

3.2.4.2. In Section 3.2.6, we compare our findings to previous relevant studies in order to

advance our understanding of the topic and validate our conclusions. The discussion of

the results and conclusions are provided in Sections 3.2.5 and 3.2.7, respectively.

3.2.2 Data Selection

As a first step, observations of PSP between January 1, 2018, and October 1, 2022, were

collected, encompassing the first thirteen perihelia (E1 −E13) of the PSP mission. Level

2 magnetic field data from the Flux Gate Magnetometer (FGM) (Bale et al., 2016), as

well as Level 3 plasma moment data from the Solar Probe Cup (SPC) for E1-E8, and the

Solar Probe Analyzer (SPAN) from the Solar Wind Electron, Alpha and Proton (SWEAP)

suite for E9-E13 (Kasper et al., 2016), were analyzed. Data from the SCaM product

(Bowen et al., 2020a) obtained during E1 have also been analyzed and will be presented

as a high-quality case study. The plasma data consists of moments of the distribution

function computed on board the spacecraft, including the proton velocity vector V p,

number density np, and temperature Tp. When available, electron number density data

derived from the quasi-thermal noise from the FIELDS instrument (Moncuquet et al.,

2020a) were preferred over SPAN or SPC data for estimating proton number density. In

order to calculate the proton density from the electron density, charge neutrality must be

considered, leading to a ≈ 4% abundance of alpha particles. Therefore, electron density

from QTN was divided by 1.08.

The second step involved obtaining magnetic field and particle measurements from

the SO mission between June 1, 2018, to March 1, 2022. Magnetic field measurements

from the Magnetometer (MAG) instrument (Horbury et al., 2020), have been analyzed

using burst magnetic field data when available. Particle moments measurements for our

study are provided by the Proton and Alpha Particle Sensor (SWA-PAS) onboard the
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Figure 3.6: Averaged magnetic field power-spectrum (black solid line) for fluctuations
parallel θBV ≤ 5◦ (left panel) and perpendicular θBV ≥ 85◦ (right panel) to the local
magnetic field during the first perihelion of PSP (E1) estimated using SCaM data. The
dependence of the spectra on normalized cross-helicity (σc) is also shown, with the color
keyed to σc. The inset figures illustrate the spectral index αB, at two different ranges
of scales (bottom) 3 × 10−3 − 5 × 10−2di and (top) 8 × 10−2 − 2 × 10−1di as a function
of solar wind speed and σc. The dashed horizontal lines indicate the mean value of αB.
The second row illustrates the local αB, calculated over a sliding window of a factor of 3,
5, and 10 shown in cyan, orange, and red respectively. Horizontal dotted lines have also
been added marking values −3/2, −5/3 and −2

Solar Wind Analyser (SWA) suite of instruments (Owen et al., 2020).

3.2.3 Data processing

Quality flags for the magnetic field and particle time series have been taken into account,

and time intervals missing ≥ 1% and/or ≥ 10% in the magnetic field and particle time

series have been omitted from further analysis. Additionally, the mean value of the

cadence between successive measurements δτ in the magnetic field time series has been

estimated for each of the selected intervals, and time intervals that were found to have a

mean cadence of δτ ≥ 250 ms were discarded. Due to poor data quality, all PSP intervals

exceeding R ≃ 0.5 au have also been discarded.
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Spurious spikes in the plasma time series were eliminated by replacing outliers exceeding

three standard deviations within a moving average window covering 200 points with their

median values (Davies and Gather, 1993a).

3.2.4 Results

3.2.4.1 Case Study: SCaM Dataset, E1

The high-resolution data from the first perihelion of the PSP (R ≈ 0.17 au) from November

1 to November 11, 2018, was analyzed. A total of 33 intervals each with a duration of

12 hours were obtained and the power spectral density was estimated, with subsequent

intervals overlapping by 50%. The analysis covered 18 bins of the θBV angle, but in

the following, we will only focus on those bins closer to the parallel and perpendicular

directions, with θBV ≤ 5◦ and θBV ≥ 85◦, respectively. It is worth noting that the second

half of E1 displayed significantly different characteristics compared to the first half, with

the solar wind exhibiting higher speeds and a greater number of magnetic switchbacks

(Bale et al., 2019). It is well established that power spectra exhibit different characteristics

when different solar wind speeds are considered due to the different types of fluctuations

they transport (Borovsky et al., 2019). Specifically, the fast solar wind is highly Alfvénic

and characterized by large-amplitude, incompressible fluctuations, while the slow wind is

generally populated by smaller amplitude, less Alfvénic, compressive fluctuations, that

include convected coherent structures (Bruno et al., 2003; Matteini et al., 2014; Shi et al.,

2021; Sioulas et al., 2022b; Zhao et al., 2020). Consequently, the spectral variation due to

the differing plasma parameters of the selected streams was investigated. More specifically,

we considered the dependence of the PSD on the solar wind speed, Vsw, the normalized

cross helicity σc:

, and the normalized residual energy σr. The magnetic field power-spectrum for

fluctuations parallel θBV ≤ 5◦ and perpendicular θBV ≥ 85◦ to the local magnetic field,

resulting from averaging all the respective spectra are presented in Figure 3.6. Individual

spectra are also shown with the color of the curve keyed to σc. The fluctuation power
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Figure 3.7: The anisotropy of the fluctuations described by the ratio of the perpendicular
(E⊥) to the parallel power (E||). A horizontal black solid line has been added to indicate
E⊥/E|| = 1.

in the MHD range shows a positive correlation with σc, but this dependence vanishes in

the transition region and kinetic scales. A similar trend was observed with σr and Vsw,

not shown here. The results are consistent with (Vasquez et al., 2007), who found higher,

MHD range, turbulence amplitudes associated with faster streams, as well as, (Pi et al.,

2020) who showed that such dependence vanishes in the kinetic scales. The trend also

vanishes at the large, energy injection scales, κdi ≤ 10−3, where the power spectrum is

clearly dominated by parallel fluctuations. Focusing our attention on MHD scales, we can

observe two distinct ranges, roughly 3 × 10−3 − 5 × 10−2κdi and 8 × 10−2 − 2 × 10−1κdi,

over which the PSD displays a clear power-law scaling. A light-black and red shade are

used to indicate these regions in the figure, and we will thereby refer to them as R1
||(⊥),

and R2
||(⊥). The power-law fitting has been applied to the PSD for the two ranges, and the

bottom and top inset figures illustrate αB as a function of Vsw. Note, that the color of the

scatter plot is keyed to σc. Furthermore, horizontal lines have been added to indicate the

average value of αB. In the direction parallel to the mean field the PSD scales roughly

like -5/3 and -2 in R1
|| and R2

||, respectively. For perpendicular fluctuations, only a minor

difference may be observed between R1
⊥ and R2

⊥ which are characterized by a power-law
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Figure 3.8: The local spectral index (αB(κ∗)) for fluctuations with θBV ≤ 5◦ (blue), and
θBV ≥ 85◦ (red) at different heliocentric distances for slow streams, Vsw ≤ 400km s−1. The
local spectral index was calculated for all selected intervals, and each curve corresponds
to the mean of all intervals that fall inside the bins indicated in the legend. We focus on
MHD scales, κdi ≤ 3 × 10−1, because instrumental noise flattens the PSD with increasing
distance, as discussed in Section 3.2.4.1.

scaling with index -3/2 and -1.57, respectively. The absence of a definitive correlation

between αB, Vsw, and σc, as reported in the study by (Sioulas et al., 2022a), could be

ascribed to the relatively extended time intervals that were examined or the limited size

of the sample, which, in this case, encompassed only 33 intervals.

When examining the local spectral index, αB(κ∗), a similar pattern emerges. This

is achieved by applying a sliding window of size w = 3, 5, 10 in κ∗ over the spectra

and calculating the best-fit linear gradient in log-log space over this window, shown

in cyan, orange, and red, respectively, in the bottom panel of Figure 3.6. At smaller

scales where κ∗ ≥ 0.1d−1
i , both parallel and perpendicular fluctuations display a steeper

spectrum between the inertial and kinetic ranges. The scaling behavior observed in the

transition and kinetic ranges is consistent with the findings reported by (Duan et al.,

2021). Additionally, (Duan et al., 2021) report a scaling exponent of −2 for the parallel

spectrum in the inertial range spanning 4 × 10−1 − 2 Hz, which corresponds to region
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R2
|| in our analysis. It is worth noting, however, that R2

|| does not encompass the entire

inertial range. Specifically, R1
|| covers most of the MHD range and is characterized by a

shallower scaling exponent, αB ≈ −5/3. The two different MHD scalings persist in most

of the intervals studied, suggesting that this may be a consistent feature of the solar wind

power spectrum in the vicinity of the Sun.

We then analyzed the power anisotropy, defined as E⊥/E|| (Podesta, 2009), as a

function of κ∗. The results of this analysis are displayed in Figure 3.7, where individual

intervals are plotted as scatter points and binned based on their σc value. The median

curve for each bin is shown and the color of each curve is keyed to σc. The median curve

(black solid line) in Figure 3.7 is consistent with previous findings at larger heliocentric

distances. Specifically, the curve exhibits a region of near isotropy for kdi ≤ 10−3, which

roughly corresponds to the roll-over to the f−1 range of the magnetic spectrum (see

Figure 3.6). At smaller scales, the anisotropy becomes more noticeable and shows a

power-law scaling that closely resembles the 1/3 value suggested by the CB conjecture.

Therefore, a line with a scaling exponent of 1/3 was included in the figure as a point of

reference. This κ∗1/3 scaling is observed within the range of 4 × 10−2 − 3 × 10−1 [d−1
i ],

which corresponds to region R2 in Figure 3.6. Additionally, while the anisotropy increases

at smaller scales until κdi ≈ 4 × 10−1, there is a sudden but noticeable local minimum

at around κdi ≈ 0.7 followed by a local maximum at κdi ≈ 1.7. Both the trough and

peak are consistently observed across all intervals considered in this study. The local

minimum may be caused by the bump observed in E|| at κdi ≈ 0.06, which coincides with

the beginning of the transition region in E⊥ (see Figure 3.6). This bump may suggest a

local enhancement of energy that could be due to ion kinetic instabilities (Wicks et al.,

2010). For a more comprehensive discussion of the double-peak structure in Figure 3.7a,

see (Podesta, 2009).The results of this study differ from those of (Podesta, 2009) in that

we observe an increase in anisotropy at smaller scales κdi > 2. As shown in Figure 7

of (Podesta, 2009), a rapid decrease in the power ratio is observed beyond the local

kinetic scale maximum of approximately 1 Hz, which is attributed to the dissipation of

kinetic Alfven waves (KAWs). However, as the spacecraft moves farther away from the
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Figure 3.9: The local spectral index (αB(κ∗)) for fluctuations with θBV ≤ 5◦ (blue), and
θBV ≥ 85◦ (red) at different heliocentric distances for fast streams, Vsw ≥ 400km s−1.
The local spectral index was obtained for all selected intervals and each curve corresponds
to the mean of all the intervals that fall inside the bins indicated in the legend.

sun, the amplitude of the fluctuations at kinetic scales is close to the noise floor of the

magnetometer. This can lead to an artificial steepening of the power spectral density (PSD)

caused by instrumental noise (Woodham, 2019b). The effect is particularly significant for

αB(κ∗) parallel, as most of the power in the solar wind is associated with perpendicular

fluctuations. As a result, the parallel PSD systematically obtains lower values at MHD

and kinetic scales and is therefore more likely to be affected by instrumental noise. On the

other hand, the perpendicular PSD can remain intact. This can cause the parallel PSD

to flatten out and the power ratio to decrease with decreasing scale. Considering that (1)

the aforementioned paper uses magnetic field data from the STEREO mission (Acuña

et al., 2008) at Earth-orbit, where the turbulence amplitude is lower compared to that

observed by PSP’s E1, and (2) the SCaM data product merges fluxgate and search-coil

magnetometer measurements, allowing for magnetic field observations up to 1 MHz with

an optimal signal-to-noise ratio, we attribute the discrepancy to instrumental noise that

may have affected the parallel PSD in Figure 7 of (Podesta, 2009).

107



3.2.4.2 Radial Evolution of Spectral-index Anisotropy

In the following, we investigate the evolution of spectral index anisotropy with heliocentric

distance. For this analysis we consider intervals sampled by the PSP and SO at distances

between 0.06 - 1 au (see Section 4.1.3). Previous research has shown that the dominant

orientation of fluctuation wavevectors in fast solar wind streams tends to be quasi-parallel

to the local magnetic field, while in slow solar wind streams the dominant orientation

is quasi-perpendicular (Dasso et al., 2005). In order to examine the distinct features of

each type of stream and their potential impact on the development of anisotropy in the

solar wind, a comprehensive visual analysis was undertaken to categorize the streams

into two distinct groups: slow streams characterized by Vsw ≤ 400 km/s and fast streams

with Vsw ≥ 400 km/s . A comprehensive record of the chosen intervals can be accessed in

MHDTurbPy

We shall begin by examining the evolution of slow streams, which comprise the majority

of the samples collected from PSP and SO. To determine the local spectral index for each

interval, we perform calculations in the direction parallel (θBV ≤ 5◦) and perpendicular

(θBV ≥ 85◦) to the locally dominant magnetic field, utilizing a sliding window of size

w = 10, following the methodology outlined in Section 3.2.4.1.

We then partitioned our intervals into six heliocentric bins and calculated the mean

local spectral index for those intervals that fell within each bin. It should be noted that

despite the spectra and local spectral indices being calculated at identical frequencies

based on the interval duration and sampling frequency, the normalization process results

in an irregular shift along the vertical axis. Consequently, we divided the complete range

of κ∗ into 100 bins, and computed the mean for all αB(κ∗) values that fell within each

bin, as described in (Němeček et al., 2021). It is worth noting that the size of the interval

under consideration does not have a significant impact on the outcomes. This is true as

long as a sizable statistical sample of fluctuations is taken into account at a given scale,

in order to ensure the validity of the statistical analysis and produce accurate spectra

(Dudok de Wit et al., 2013). Any intervals that exhibited noisy or otherwise unreliable

108

https://github.com/nsioulas/MHDTurbPy


Figure 3.10: The radial evolution of the power anisotropy, represented by the ratio E⊥/E||,
is depicted as a function of heliocentric distance for slow (Vsw ≤ 400 km s−1) and fast
(Vsw ≥ 400 km s−1) streams. Six heliocentric-radius bins were utilized, and each curve
represents the median of E⊥/E|| from all intervals that fall within each bin. The dashed
(y = 15 · κ∗1/2) and dashed-dotted (y = 15 · κ∗1/3) lines were added as reference points,
indicating consistency with “dynamically aligned” and “critically balanced” cascade,
respectively.

spectra were excluded from subsequent analyses. However, it is important to note that

such intervals made up only an inconsequential proportion of the overall dataset.

The radial size of each bin is shown in the legend of Figure 3.8. The slow wind local

spectral indices, as a function of heliocentric distance, are shown in blue for perpendicular

fluctuations, and in red for parallel fluctuations along with error bars indicating the

standard error of the mean. The standard error is given by σi/
√
N , where σi is the

standard deviation and N is the number of samples inside the bin, as described in

(Gurland and Tripathi, 1971a). We focus our attention on MHD scales, κdi ≤ 3 × 10−1,

here simply because instrumental noise artificially steepens the PSD with increasing

distance, as discussed in Section 3.2.4.1.

It is evident from Figure 3.8 that the spectral-index anisotropy of slow wind turbulence

diminishes closer to the Sun. Within 0.1 au, both parallel and perpendicular spectra are

characterized by a poorly developed inertial range, viz. the range of scales over which

the spectral index is constant is limited to 3 × 10−3 ≲ κdi ≲ 2 × 10−2 with a scaling
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exponent −1.47 ± 0.04 and −1.55 ± 0.05 for perpendicular and parallel fluctuations. At

distances 0.1-0.2 au, two subranges (R1 and R2) emerge within the inertial range. The

transition occurs at κdi ≈ 6 × 10−2, and the scaling exponents in these ranges are similar

to those shown in Figure 3.6. However, the steepened region R2 is not as well defined in

this case. Considering that the PSP was at a distance of 0.17 au during E1, we attribute

this discrepancy to the fact that R2 actually appears closer to 0.2 au. By shifting the

left boundary of the bin towards 0.2 au, we confirmed this expectation as the steepened

region displayed a parallel power-law scaling of -2 when the left boundary was shifted to

approximately 0.15 au.

In R1 both parallel and perpendicular spectra dynamically evolve with increasing

distance and steepen towards -5/3, which in the case of the parallel spectrum occurs

within 0.1 au. The steepening occurs in a scale-dependent fashion which results in R2

extending to larger scales with distance. As a result, for distances exceeding 0.5 au, R1

practically vanishes, and the power spectra are characterized by a power-law exponent

that changes from −5/3 in the direction perpendicular to −2 in the direction parallel

to the locally dominant mean field in good agreement with the predictions of “critical

balance” theory. It should be noted that the analysis was iterated over bins of width 10◦,

yielding consistent outcomes. Notably, the obtained Power Spectral Densities (PSDs) for

θBV ≥ 80◦ or θBV ≥ 85◦ exhibited indistinguishable scaling behavior across all distances.

Conversely, a comparison of the PSDs obtained for θBV ≤ 10◦ and θBV ≥ 5◦ revealed

marginally steeper scaling behavior in the latter case for the inertial range. Specifically,

in the instance of slow solar wind intervals, when distances exceeded 0.5au, a consistent -2

scaling was observed for θBV ≥ 5◦, whereas for θBV ≥ 10◦, the scaling behavior obtained

was closer to -1.89.

We next examined the evolution of fast streams (Vsw ≥ 400 km s−1). It is important to

consider that as the solar wind expands in the heliosphere, the local mean magnetic field

vectors become increasingly oriented at larger angles relative to the radial direction. This

radial trend causes sampling at 0.06 AU to be more quasi-longitudinal, and sampling at

1.0 AU to be more quasi-perpendicular. As parallel fluctuations decrease with increasing

110



distance, our ability to accurately estimate the low-frequency part of the parallel power

spectrum is reduced. This effect makes the determination of the anisotropic scaling laws

for high-speed streams in the ecliptic plane challenging, as there is insufficient data to

make accurate measurements at low frequencies. While using longer records could resolve

this issue, the limited lifetime of the streams restricts the length of the record. In an effort

to address this issue, we imposed a minimum interval length that would allow for a large

enough interval size but still enable us to gather a sufficient number of intervals for our

statistical study. Specifically, for heliographic distances exceeding 0.3, and 0.5 au, we set

the minimum interval size to 12 and 20 hours respectively. This resulted in a total of 274

intervals sampled across the inner heliosphere. The results of this analysis are presented

in Figure 3.9. It is readily seen that the differences between fast and slow intervals are

significant. When examining the lower frequencies, we observe that within 0.2 au, the

energy injection range of the PSD is dominated by parallel fluctuations. In particular,

a remarkably extended and relatively shallow range with αB ≈ −0.8 is observed within

0.1 au, which steepens towards -1 with distance. This is particularly noteworthy as

previous research has shown that Alfvén waves (AWs) can parametrically decay into

slow magnetosonic waves and counter-propagating AWs (Galeev and Oraevskii, 1963a;

Tenerani et al., 2017; Malara et al., 2022). This process may lead to the development of a

k−1
|| spectrum for outward-propagating AWs by the time they reach a heliocentric distance

of 0.3 au in the fast solar wind (Chandran, 2018). For a more comprehensive investigation

of the radial evolution of the lower-frequency part of the spectrum, see (Davis et al.,

2023). Due to the issues with interval size that were discussed earlier, we do not attempt

to interpret the evolution of the lower-frequency part of the spectrum beyond 0.3 au.

Focusing on MHD scales, we notice that the perpendicular PSD only extends up to

κdi ≈ 10−2. This implies that fast streams in proximity to the Sun exhibit a nearly

radial magnetic field at low frequencies. Interestingly, within 0.1 au, the scaling of the

perpendicular spectrum is consistent with −5/3, but at larger distances, a scaling that

is roughly consistent with −3/2, fluctuating between -1.49 to -1.55, is observed. This

suggests that the MHD range spectral index of the perpendicular spectrum for fast
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streams may not evolve in a consistent manner with increasing distance in the inner

heliosphere. It is worth noting, however, that within 0.1 au, only four intervals with

Vsw ≥ 400 km/s were sampled by PSP. More data from fast streams near the Sun is

needed to statistically confirm these findings. For parallel fluctuations, the inertial range

scaling remains remarkably similar across all heliographic bins with the spectral index

progressively steepening towards smaller scales from -5/3 towards -2, where a narrow

range of scales over which the local spectral index obtains a constant value appears.

In contrast to slow wind streams, the high-frequency point in fast wind streams does

not remain anchored in a normalized wavenumber but gradually drifts towards larger

scales with distance. This is an interesting finding that suggests the evolution of the

high-frequency point is different between fast and slow wind streams and is discussed

further in Section 3.2.5.

3.2.4.3 Radial Evolution of Power anisotropy

In this section we examine the radial evolution of the power anisotropy, represented by

the ratio E⊥/E||, where E⊥, E|| the PSD for θBV ≥ 85◦ and θBV ≤ 5◦, respectively. To

do this, we utilized the method described in Section 3.2.4.2 and calculated the mean

of E⊥/E|| in six heliocentric bins. The results of this analysis are presented in Figure

3.10a for slow streams and Figure 3.10b for fast streams. According to theories based on

“dynamical alignment’, the inertial range scaling index should be 1/2 when considering

E⊥/E||, while a slope of 1/3 is predicted by theories of “critical balance”.

For slow wind streams, the power anisotropy becomes more significant with increasing

distance, particularly at smaller scales (see Figure 3.10a). This suggests that the turbulence

undergoes an anisotropic cascade, transporting the majority of its magnetic energy towards

larger perpendicular wavenumbers. In contrast, fast streams show practically no significant

radial trend, especially when taking into account the error bars (not shown here). As a

result, even though the power anisotropy is more pronounced for fast winds closer to the

Sun, at distances of around 1 au, the situation is reversed, and slow wind exhibits higher
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values of E⊥/E||. In terms of anisotropic scaling, we observe that E⊥/E|| evolves in a

manner similar to what was described in Subsection 3.2.4.2. Specifically, the scaling of

E⊥/E|| for slow wind streams does not fit the predictions of any of the existing anisotropic

theories closer to the Sun, but with increasing distance, it evolves towards a scaling that is

consistent with CB theories. The situation is more complex for fast streams. In particular,

for the bin closest to the Sun, the scaling of E⊥/E|| is closer to that predicted by CB

theories (κ∗1/3), but for the rest of the bins, the scaling exponent fluctuates in the range

between 1/2 − 1/3. Additionally, the double peak structure discussed in Section 3.2.4.1

is also observed for most of the curves in this analysis, especially in fast wind intervals.

In contrast to the data presented in Section 3.2.4.1, at smaller scales, the utilization of

fluxgate magnetometer data leads to a significant impact of instrumental noise on the

resulting curves, ultimately causing a marked decrease in the power ratio.

3.2.5 Discussion

Wavelet analysis of solar wind data obtained at heliocentric distances greater than 0.3 au

has shown strong agreement between the anisotropic characteristics of magnetic turbulence

and the predictions of the “critical balance” conjecture (Horbury et al., 2008; Wicks et al.,

2010). However, (Podesta, 2009) cautioned that it would be premature to draw conclusions

about the agreement of the scaling in the fast solar wind with any particular theory due

to the large uncertainties of the scaling at the largest scales. It is worth noting that these

studies either focused on high-speed streams or prolonged periods of both high-speed and

slow streams(Horbury et al., 2008; Wicks et al., 2010; Wicks et al., 2013a; He et al., 2013).

When extended intervals are considered, the PSD behavior will be practically determined

by the fast sub-intervals since high-speed streams exhibit higher-amplitude magnetic

fluctuations. Recent PSP measurements below 0.3 au have provided an unprecedented

opportunity to study the nature of the solar wind in the vicinity of the solar wind sources.

(Bandyopadhyay and McComas, 2021) have recently shown that large-scale fluctuations

in the near-Sun solar wind are dominated by wavevectors quasi-parallel to the local

magnetic field. (Zhao et al., 2022) also studied the radial dependence of this ratio by

113



grouping the available datasets into two catalogs according to the radial distance and

found that the ratio between parallel and perpendicular fluctuations observed by PSP is

about 50% : 50%.

Inertial range spectral anisotropy has been investigated by (Huang et al., 2022; Wu

et al., 2022), who used slow solar wind data from E1 of PSP to show that the spectral

indices are close to −5/3 and −3/2 in the parallel and perpendicular direction, respectively.

(Wu et al., 2022) furhter conducted a comparative analysis of the anisotropic spectral

properties of the slow wind stream observed by PSP during E1 and a fast wind stream

with a solar wind speed Vsw ≈ 770km/s, which was sampled by Ulysses at 1.48 au. Their

analysis led to the conclusion that the dynamical evolution of the inertial range scaling

can be attributed to the existence of two sub-ranges in the inertial range. Specifically,

the sub-range closer to the kinetic scales, 30-300 di, exhibits a radial steepening, while

the sub-range at larger scales remained unchanged. As demonstrated by (Wu et al.,

2022), the transition between the two ranges in question does not exhibit radial evolution,

but rather remains constant in terms of κdi. Nevertheless, the reliability of this finding

is uncertain given the contrasting radial evolutions of fast and slow streams based on

turbulence signatures, as reported by (Shi et al., 2021; Sioulas et al., 2022b; Sioulas et al.,

2023a).

There are several significant questions that remain unanswered regarding the anisotropy

of magnetic turbulence in the solar wind and its evolution as it propagates into the

heliosphere. Firstly, it is unclear whether the anisotropy dynamically evolves with

distance. Secondly, there is a need to investigate potential differences in spectral and

power anisotropy between fast and slow streams, and if such differences exist, it is

important to determine whether they evolve with distance. In the subsequent section,

we endeavor to address these outstanding issues by comparing our findings with those of

previous studies.
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3.2.6 Review of Related Literature

3.2.6.1 Horbury et al. (2008) & Podesta (2009)

In our study, using data from PSP and SO, we estimated perpendicular inertial range

spectral indices for the fast wind with values in the range of [−1.49, − 1.55]. These

values are slightly shallower than those reported in previous studies (Horbury et al., 2008;

Podesta, 2009; Wicks et al., 2010) , which estimate values in the range of [−1.55, − 1.67].

One possible reason for this discrepancy could be that the PSP and SO data were only

collected in the ecliptic plane during the minimum and early rising phase of the Solar

Cycle. It is known that solar wind conditions can vary significantly over the course of the

Solar cycle, and it is possible that these variations could affect the observed scalings of

the perpendicular spectra. In addition, due to the phase of the Solar Cycle, only a limited

number of extended fast wind streams were collected. For example, PSP only sampled

four intervals with Vsw ≥ 400 km/s within 0.1 au. This limitation may affect the statistical

significance of the results and make it difficult to accurately measure the anisotropic

scaling laws for these streams at lower frequencies. As a result, it may be premature to

draw firm conclusions about the agreement of the scaling in the fast solar wind sampled

in the ecliptic plane by PSP and SO with any particular theory of anisotropic MHD

turbulence.

3.2.6.2 Wicks et al. (2010)

Our results indicate that, when analyzing slow wind streams, normalizing the PSD with

di allows us to fix the high-frequency break point, fb, in normalized wavenumber space, as

previously reported in (Sioulas et al., 2022a). However, for fast solar wind streams, fb tends

to shift towards larger κdi as the distance increases. This phenomenon can be attributed

to the fact that fast solar wind streams are characterized by higher proton temperatures

(Tp) (Maksimovic et al., 2020; Shi et al., 2021; Shi et al., 2023b), which lead to higher

plasma pressure and, consequently, higher plasma β values. The plasma β is defined as

the ratio of thermal to magnetic pressure, β ≡ npKBTp/(B
2/2µ0), and it is comparatively
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higher in fast streams than in slow ones. It should be noted that the Vsw − β correlation

was verified, although it is not presented in this report. 2018vechhaveshownthatthefb of

the magnetic PSD between inertial and kinetic scales correlates better with di when the

intervals are characterized by β < 1 values, while high β intervals are characterized by

a small scale break at the thermal ion gyroradius (ρi). In line with this, our analysis

confirms the findings of (Wicks et al., 2010), who used five fast solar wind streams with

β > 1 between 1.5 - 2.8 au and found that the small scale end of the inertial range seems

to naturally scale with the ion gyroradius when normalized with ρi. Given that ρi grows

radially as ∝ R1.48±0.02 (Sioulas et al., 2022a), we expect that fb will display a similar

radial trend for fast solar wind streams.

3.2.6.3 Wu et al. (2022)

The use of high-resolution data from E1 of PSP allowed us to confirm the existence of two

sub-ranges (Telloni, 2022; Wu et al., 2022) within the inertial range. The transition occurs

at κdi ≈ 6 × 10−2 and signifies a shift from -5/3 to -2 scaling in the parallel spectra and

from -3/2 to -1.57 scaling in the perpendicular spectra. The difference between the two

ranges (R1, R2) is most apparent in the parallel spectrum and could signify a transition

from weak to strong turbulence(Sridhar and Goldreich, 1994; Meyrand et al., 2016; Zank

et al., 2020). It is important to note that the parallel spectral index we report here for

R2
||, αB ≈ −2, is steeper than the one reported by (Wu et al., 2022). It is unlikely that

the variations seen in the outcomes are due to the utilization of structure functions in the

analysis carried out by (Wu et al., 2022). This is because we used second-order structure

functions to confirm the anisotropic scaling. Nonetheless, it is feasible that the differences

could be linked to the usage of better quality SCaM data in our research. In particular,

Wu et al.’s parallel structure function in Figure 4b seems to become steeper at shorter

timescales, but the limited cadence of around 1 Hz might prevent the clear detection of

such scaling.

Moreover, it has been observed that there exist noteworthy differences between fast
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and slow streams in terms of their anisotropic properties and dynamic evolution. Besides

the distinctions noted in the evolution of the inertial range scaling, the high-frequency

breakpoint displays a more rapid shift towards lower frequencies in the analysis of fast

wind streams. These findings are at odds with the assertions put forth by (Wu et al.,

2022) and emphasize the necessity of analyzing wind streams of comparable speeds for

making meaningful comparisons.

3.2.7 Conclusions

We used a merged PSP and SO dataset to study the dynamic evolution of turbulence

anisotropy in the inner heliosphere, focusing on understanding the differences in anisotropy

observed between fast and slow wind streams. The main findings of our study can be

summarized as follows:

For slow wind streams (Vsw ≤ 400 km s−1), we find:

(a1) Within 0.1 AU, the spectral index anisotropy of the inertial range vanishes, and

the inertial range is confined to 3 × 10−3 ≲ κdi ≲ 2 × 10−2. The scaling exponents are

−1.47 ± 0.04 and −1.55 ± 0.05 for perpendicular and parallel fluctuations, respectively.

The power anisotropy (E⊥/E∥) is weaker compared to previous studies at 1 AU, and its

inertial range scaling does not fit any predictions of anisotropic theories of turbulence.

(a2) At ≈ 0.15 AU, two inertial subranges (R1 and R2) emerge. The transition occurs

at κdi ≈ 6 × 10−2, signifying a shift from −5/3 to −2 and −3/2 to ≈ −1.6 scaling in

parallel and perpendicular spectra, respectively.

(a3) Beyond this point, the power anisotropy strengthens monotonically with distance,

indicating an anisotropic turbulent cascade that transports most of its magnetic energy

towards larger perpendicular wavenumbers. Additionally, region R2 extends towards

smaller wavenumbers, gradually “consumin” region R1. This process results in a scale-

dependent steepening of the inertial range.
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(a4) At distances exceeding 0.5 AU, region R1 practically vanishes, and the power

spectra are characterized by a power-law exponent that changes from −5/3 in the

perpendicular direction to −2 in the parallel direction to the locally dominant mean field,

in good agreement with the predictions of “critical balance” theory.

(a5) The rate at which the high-frequency breakpoint fb of the magnetic power

spectrum drifts to lower frequencies with distance scales naturally with the rate at which

the ion inertial scale (di) grows with distance. In other words, the high-frequency point

fb remains anchored in κdi.

For fast streams (Vsw ≥ 400 km s−1), we find:

(b1) Closer to the Sun, the energy injection range (κdi ≤ 10−3) of the spectrum is

dominated by parallel fluctuations. Within 0.1 AU, this range exhibits an extended

shallow region with a scaling index of ≈ −0.8. This region steepens towards −1 with

increasing distance, providing evidence for the Parametric Decay Instability (PDI) as a

generating mechanism for the k−1
∥ spectrum in the fast solar wind (Chandran, 2018).

(b2) In MHD scales, the scaling of both the parallel and perpendicular spectra does

not exhibit a clear radial trend. Within 0.1 AU, the scaling of the perpendicular spectrum

is consistent with −5/3. Beyond 0.1 AU, the perpendicular spectral index fluctuates

between −1.49 and −1.55. For parallel fluctuations, the inertial range scaling remains

remarkably similar across all heliographic bins. The spectral index progressively steepens

towards smaller scales from −5/3 towards −2, where a narrow range of scales over which

the local spectral index obtains a constant value is observed.

(b3) Power anisotropy for fast streams does not seem to display a clear trend with

distance. In terms of inertial range scaling, we find that fast streams are more consistent

with the model based on ”dynamical alignment” (Boldyrev, 2006) than the model based

on ”critical balance” (Goldreich and Sridhar, 1997), but the large uncertainties at lower

frequencies make the statistical significance of this result questionable.

(b4) In agreement with (Wicks et al., 2010), the high-frequency point fb remains
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anchored in κρi.

A deeper understanding of anisotropy could be gained by considering the effect of

intermittency on turbulence (Oboukhov, 1962), i.e., the concentration of fluctuation energy

into smaller volumes of space at smaller scales. Recent research has demonstrated a

connection between critical balance and dynamic alignment with intermittency (Chandran

et al., 2015; Mallet and Schekochihin, 2017). Such results are presented in Chapter ref.

When analyzing turbulence in the inner heliosphere, where the Alfvén speed approaches

and sometimes exceed the solar wind speed special care must be used in applying

homogeneous turbulence theories and models to the observed characteristics. This is

especially important for power anisotropies, as in addition to wave-number couplings, the

couplings to large scale gradients both in the radial and transverse directions may be

fundamental, with the solar corona, for example, acting to refract energy in fast mode

polarization into regions of low Alfvén speed or even providing some total reflection. These

couplings could also affect spectral slopes in the parallel and perpendicular directions in

the nascent solar wind (Velli et al., 1991).

In conclusion, it is important to recognize the potential limitations of the current

analysis, including the limited number of extended fast wind streams sampled by PSP

and SO. These limitations may affect the statistical significance of the results and make

it difficult to accurately determine the anisotropic scaling laws for these streams at lower

frequencies. Therefore, it is advisable to continue collecting more samples from PSP and

SO, particularly those of longer duration, to confirm the statistical significance of the

findings. In addition, a more robust statistical analysis with longer intervals of data from

Ulysses and Helios will be conducted to accurately determine the scaling of the anisotropy

and its dependence on the heliocentric distance, phase of the solar cycle, and heliographic

latitude.
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CHAPTER 4

Intermittency: Dynamic Evolution and the Role of

Magnetic Coherent Structures in Dissipation and

Plasma Heating

4.1 Magnetic Field Intermittency in the Solar Wind: PSP and

SolO Observations Ranging from the Alfvén Region out to

1 AU.

This section is based on work published in (Sioulas et al., 2022b)

4.1.1 Introduction

Even though the analysis of spectral properties, discussed in Chapter 3 can be informative,

the second statistical moment of the probability distribution function of increments is

only sufficient to fully characterize turbulence under the assumption of isotropic and

scale-invariant fluctuations (Kolmogorov, 1962). In practice, these conditions are in

principle violated in space and astrophysical systems.

The fundamental approach to studying intermittency involves the examination of

the probability density functions (PDFs) of the dissipation rate. However, based on the

Kolmogorov refined similarity hypothesis KRSH (Kolmogorov, 1962), local averages of

dissipation rate are related to the scale-dependent increments of the velocity field. Thus,

intermittency is reflected on the PDF of field increments in the form of an increasing

divergence with respect to a Gaussian distribution (i.e., PDFs display fatter tails) as
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increasingly smaller scales are involved (Castaing et al., 1990; Frisch, 1995). This behavior,

often referred to as multifractal, violates the concept of global scale invariance, a key

assumption of the K41 theory, giving rise to the concept of local scale invariance, i.e.,

turbulence is characterized by a diverse set of fractals with varying scalings.

The solar wind is an expanding medium. MHD fluctuations entering the super-Alfvénic

wind in the trans-Alfvénic region, expected at ∼ 15 − 25R⊙ (DeForest et al., 2018), are

modified in terms of structure and scale as the SW expands into the interplanetary

medium driven by the turbulent cascade, as well as, shear at stream interfaces (Roberts

et al., 1992) and other transients (Shi et al., 2022b). It is, therefore, reasonable to expect

that the statistical signatures of coherent structures evolve with heliocentric distance.

Indeed, recent studies in the solar wind suggest a dynamic evolution of intermittency

properties of MHD fluctuations indicating that the solar wind is an active turbulent

medium involving both local and global dynamical processes that influence the higher-

order statistics of fluctuations. (Bruno et al., 2003) have utilized Helios data to examine

the radial evolution of intermittency utilizing the flatness (i.e., SDK hereafter) of the

magnetic field. Their analysis indicates a different behavior for slow and fast wind

intermittency. More specifically, slow wind (VSW ≲ 500 km · s−1) was observed to display

a higher degree of intermittency than the fast wind (VSW ≳ 600 km · s−1). Additionally,

no radial dependence was observed for the slow wind, in contrast to an increase in

intermittency with heliocentric distance for the fast solar wind. The distinct nature and

radial evolution of intermittency were attributed to the different roles played by coherent

non-propagating structures and by stochastic Alfvénic fluctuations for the two types of

wind at different heliocentric distances. Turbulence in fast streams closer to the Sun is

highly Alfvénic (i.e., the magnetic field and velocity fluctuations exhibit a high degree

of correlation) and displays a self-similar (i.e., monofractal) character. However, during

the expansion, due to nonlinear interaction amongst counter-propagating Alfvén waves,

the fluctuations become decorrelated (Roberts et al., 1992; Chen et al., 2020; Shi et al.,

2021) and the Alfvénic contribution, which tends to decrease intermittency because of

its stochastic nature, is gradually depleted (Marsch and Liu, 1993). On the contrary,
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advected structures tend to increase intermittency because of their coherent nature, while

their relative contribution becomes more important with increasing heliocentric distance.

As a result, the fractal nature of the magnetic field is modified, gradually approaching

multifractal with increasing heliocentric distance. Slow wind does not show the same

behavior since Alfvénic fluctuations have a less dominant role for this type of wind.

The same line of reasoning was adopted by (Alberti et al., 2020; Telloni et al., 2021)

to interpret the increasing deviation, with respect to the linear scaling expected from

K41 theory, of the structure function scaling exponents , as well as, (Greco et al., 2012a)

who, utilizing the PVI method, observed an increase in the fractional volume occupied

by coherent in the inner heliosphere. More recently, (Parashar et al., 2019; Cuesta et al.,

2022b) have examined the relationship between SDK and Re, where Re is the Effective

Reynolds Number, to show that regions with lower Re have on average lower kurtosis,

at a fixed physical scale, suggestive of a less intermittent behavior. Even though Re is

observed to decrease in the inner heliosphere, several effects overcome the relation of Re

with intermittency, but at 1 au, a change of system dynamics begin to favor the effects

from system size, resulting in progressively weaker intermittency at larger heliocentric

distances, concurrent with a decreasing Re.

During its first ten encounters with the Sun, the Parker Solar Probe (PSP ) mission

(Fox et al., 2016) has provided valuable measurements of solar wind particles and fields in

the neighborhood of the solar wind sources. Aiming to approach the surface of the Sun

by as close as 9.86 R⊙, PSP offers unprecedented in-situ measurements in the vicinity

of the Alfvén-zone, allowing us to study its influence on the evolution of spectral and

intermittency properties of the field fluctuations (Kasper et al., 2021; Bandyopadhyay

et al., 2022; Zhao et al., 2022). These observations will supplement simulations (Chhiber

et al., 2022) and ultimately enable us to explore processes such as the heating of the

solar corona and the acceleration of the solar wind in the vicinity of the Alfvén zone

(Matthaeus and Velli, 2011). In conjunction with the recently launched Solar Orbiter

SolO (Müller et al., 2020), the synergy of the two missions offers a unique opportunity to

explore the connection between the Sun and the heliosphere (Velli et al., 2020b).
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In this work, we are interested in understanding the radial evolution of inertial range

MHD turbulence and studying the basic features of scaling laws for solar wind fluctuations.

We start our investigation by examining the radial evolution of intermittency without

accounting for the anisotropy introduced with respect to the alignment angle, ΘV B. At a

later stage, however, we show that accounting for anisotropy will complicate interpretation

of the observations.

For the purposes of our analysis, high-resolution magnetic field and particle data from

PSP and SolO covering heliocentric distances 13 ≲ R ≲ 220 R⊙ are implemented. Our

tools to study intermittency involve analytical methods such as the Partial Variance of

increments (PVI), the scaling behavior of the high order moments of variations of the

magnetic fields separated by a scale ℓ, or Structure Functions (SFs), and their respective

scaling exponents, and finally the Scale Dependent Kurtosis (SDK) of the magnetic field.

The structure of this section is as follows: Section 4.1.2 presents the selection of data

(PSP, Solar Orbiter) and their processing; The results of this study are presented in

Section 4.1.4: In Subsection 4.1.4, the radial evolution of magnetic field intermittency

is investigated, and in Subsection 4.1.5 the dependence of intermittency on plasma

parameters is examined; A summary of the results along with the conclusions is given in

Section 4.1.6.

4.1.2 Data Selection

A merged dataset of PSP and SolO observations is employed to study the radial evolution

of magnetic field fluctuations in the inner heliosphere. In the first step, all available PSP

observations from the period 2018-11-01 to 2022-02-22 (i.e., orbits 1 - 11 ) are collected.

More specifically, Level 2 magnetic field data from the Flux Gate Magnetometer (FGM)

(Bale et al., 2016), and Level 3 plasma moments from the Solar Probe Cup (SPC), as

well as the Solar Probe Analyzer (SPAN) part of the Solar Wind Electron, Alpha and

Proton (SWEAP) suite (Kasper et al., 2016), in the spacecraft frame, have been analyzed.

Magnetic field data were obtained at a cadence of 4.58 samples per second ( ∼ 0.218s
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Figure 4.1: (a) Histogram showing the number of 5-hr intervals as a function of heliocentric
distance (b) Joint distribution of SW speed Vsw vs heliocentric distance (R) (c) Joint
distribution of ion inertial length di vs heliocentric distance(R) .
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resolution). However, it was found that the higher cadence is mostly offered close to

the perihelia of PSP, while for periods where PSP is further away from the Sun, the

cadence is reduced to 0.42s. For plasma moments, the cadence strongly depends on the

interval studied, ranging from 0.218 − 0.874s during the encounters and to ∼ 27.9s at

larger heliocentric distances for SPC, while for Span-i, the median cadence is ∼ 3.5 for

the encounters and ∼ 28s further away from the sun.

In the second step, magnetic field and particle data from the SolO mission from

2021-01-01 to 2021-12-01 are also employed. Magnetic field measurements from the

Magnetometer (MAG) instrument (Horbury et al., 2020), downloaded from the ESA Solar

Orbiter archive, have been utilized. Particle moment measurements for our study are

provided by the Proton and Alpha Particle Sensor (SWA-PAS) onboard the Solar Wind

Analyser (SWA) suite of instruments (Owen et al., 2020).

4.1.3 Data processing

In order to account for gaps in the magnetic field timeseries, the mean value of the cadence

between successive measurements ⟨δτ⟩ has been estimated for each interval. Subsequently,

intervals have been divided into three classes (a) ⟨δτ⟩ ≤ 250ms (b) ⟨δτ⟩ ≤ 500ms (c)

⟨δτ⟩ ≥ 500ms. For the first two classes of intervals magnetic field data have been linearly

resampled to a cadence of dt = 250ms and dt = 500ms respectively, while the remaining

intervals have been discarded. This decision was based on the observation that when

resampling to dt = 450ms, the minimum spatial scale of 20di could not be achieved for

a minor fraction of the intervals at distances R ≤ 20R⊙. To confirm that the different

cadence does not affect the results of our study, the analysis was repeated by resampling

all magnetic field data to dt = 450ms, with qualitatively similar results.

To obtain the plasma parameters from PSP, either SPAN or SPC data are utilized

depending on the quality and cadence of the data for the interval. Subsequently, a Hampel

filter was applied to all particle moments timeseries to eliminate spurious spikes and

outliers exceeding three standard deviations from a moving average window spanning 200
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Figure 4.2: (a) Evolution of SDK with τadv. Each line represents the average of 100
intervals that fall within the same τadv bin. The inset scatter plots show (i) the scale, in
units of di, at which the kurtosis attains the maximum value (ii) The maximum kurtosis
value estimated for the individual 5H intervals. The binned mean of the two quantities
is also shown with a red line. (b) Scale-dependent kurtosis of the magnetic field as a
function of scale in units of ion inertial length di and SW convection time τadv. The
numbers indicate the median value of kurtosis within each bin, and the bracketed numbers
show the number of events within each bin.

points (Davies and Gather, 1993a). Finally, in order to maintain a sufficient statistical

sample within any given interval, intervals that were found to have more than 5% of

the values missing in the magnetic field or 10% in the particle timeseries have also been

discarded. For the purposes of the SDK and SF’s analysis, magnetic field and particle

data have been divided into intervals of duration d = 5 hr. On the other hand, due to the

nature of the PVI analysis (i.e., our measure of intermittency is provided in the form of a

timeseries) after PVI was estimated, data have been divided into intervals of duration

d = 15 min. The smaller duration intervals were chosen to mitigate the effects of mixing

different types of solar wind, as well as to allow us to study intervals for which angle,

ΘV B is estimated.

Additionally, in an attempt to interpret the evolution of parameters that measure the

evolution of intermittency, we attribute the differing behaviors in various samples of solar

wind turbulence to the role played by the advection time of the solar wind defined as

τadv = DSC/VSW , where DSC is the heliocentric distance of the spacecraft in units of km
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and VSW has units of km H−1.

4.1.4 Radial evolution of magnetic field intermittency.

4.1.4.1 Scale Dependent Kurtosis (SDK).

In this section, we investigate the evolution of the magnetic field kurtosis as a function

of lag and advection time of the solar wind. The SDK for the magnetic field magnitude

was estimated for 3100 individual intervals of duration d = 5 hr. In Figure 4.2a the

evolution of SDK as a function of advection time τadv of the solar wind is presented. To

emphasize the trend, the average of 100 intervals that fall within the same τadv bin is

estimated, and the mean value of τadv for each bin is reflected on the line color. At the

largest scales, the kurtosis is near Gaussian, and no clear trend is observed. At smaller

lags, ℓ ∼ 5 · 103di, the lines intersect and beyond this point separate. In particular,

for ℓ ≲ 5 · 103di, an increase in kurtosis is observed with increasing τadv. For a more

quantitative comparison, the evolution of the maximum value of the kurtosis (thereby

Kmax) as a function of τadv is presented on the right-hand side inset of Figure 4.2a. The

blue dots indicate Kmax estimated for individual intervals, and the red line is the binned

mean of the same quantity. Uncertainty bars indicate the standard error of the sample,

σi/
√
n, where σi is the standard deviation and n is the number of the samples inside the

bin (Gurland and Tripathi, 1971b). Additionally, the spatial scale ℓ at which Kmax is

observed, i.e. ℓ(Kmax), expressed in units of di, is presented in the left inset figure. Even

though there is a considerable scatter in the data, the maximum shifts towards smaller

lags with increasing τadv. Moreover, as τadv increases, the peaks of SDK are progressively

shifted to larger and larger values. As noted in the introduction, intermittency manifests

itself as a growing kurtosis with decreasing spatial scale. Consequently, the increase

of Kmax indicates a radial strengthening in intermittency within the inner heliosphere.

Figure 4.2 offers a different perspective on the evolution of SDK as a function of τadv for

different spatial scales. The data points were binned according to ℓ, and τadv, and the

median value inside each bin was calculated, which is reflected in the colors and written
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Figure 4.3: (a) Structure functions for δB, as a function of spatial lags in units of the ion
inertial length di, S

p
B(ℓ). Power-law fits applied to SpB(ℓ), in the range (a) 20 − 102di, (b)

102 − 103di (c) 103 − 104di are shown as a dashed-dotted and dashed line respectively. (b)
The normalized resulting scaling exponents ζ(q)/ζ(3) as a function of q. The K41 (q/3)
linear scalings is also shown for comparison.

in the plot. The bracketed numbers in the plots are the number of data points inside each

bin. Note that bins that include less than 10 data points have been discarded. From this

figure, we can understand that at small lags, there is a clear upward trend as a function

of τadv, whereas, for larger spatial scales, such trend becomes progressively less obvious.

4.1.4.2 Structure Functions (SFs).

A convenient way to describe the scaling variation of PDFs of the field fluctuations is

by observing the deviation of the structure-function scaling exponents from the linear
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Figure 4.4: Normalized scaling exponents ζ(q)/ζ(3) vs. q, as a function of advection time
τadv. Each line represents the average of 100 intervals that fall within the same τadv bin.
The scaling exponents have been obtained by applying a power-law fit on the structure
functions (SqB(ℓ)) within three different spatial ranges: (a) [20di, 100di], (b) [100di, 1000di],
(c) [1000di, 10000di]. The K41 linear scaling is also shown with the black dashed line in all
panels. The shaded area has been included to indicate moments that are not determined
with reliable accuracy.
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Figure 4.5: To further quantify the divergence from the linear scaling predicted by the
K41 theory of isotropic turbulence, z

(q)
k41 = q/3, and as a measure of intermittency at a

given scale, the quantity D(ℓ, τadv) = (
∑

( z(q, ℓ)
z(q=3, ℓ)

− zk41(q))
2)1/2 is presented. The data

points were binned according to ℓ, and τadv, and the median value inside each bin was
calculated, which is reflected in the colors and written in the plot. The bracketed numbers
in the plots are the number of data points inside each bin. Note that bins, including less
than 10 data points, were discarded.

dependence on the order.

We thus proceed by dividing ζ(q) for the different lag ranges by ζ(3) for the respective

range. Two d = 5 hr-long intervals, sampled by PSP, and SolO, were randomly selected,

and the structure functions SqB(ℓ) up to sixth order were calculated. Power-law fits have

been applied on each qth order structure-function in the ranges between (20 − 102di),

(102 − 103di) and (103 − 104di) respectively. The resulting power-law exponents ζ(q)

are presented in Figure 4.3. The same process was then repeated for each of the 3100

intervals, and ζ(q)/ζ(3) as a function of q for the three different spatial scales is portrayed

in Figure 4.4. It is important to note that the statistical accuracy of higher-order moments

is affected by sample size. As a general rule, the highest order that can be computed

reliably is qmax = log(N) − 1, where N is the number of samples (Dudok de Wit et al.,

2013). In this case, since the majority of the intervals contain N ∼ 72000 samples, we can

estimate qmax ≈ 4, meaning that higher-order statistics should be interpreted with caution.

Consequently, a shaded gray area has been added to all the figures to indicate scaling
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exponents recovered for moments that were determined with questionable accuracy.

In Figure 4.4a, the scaling exponents obtained by applying a best-fit linear gradient in

log-log space over a window that spans between (20−102di) are shown. Over this range of

spatial scales, which, roughly speaking, corresponds to the transition region (Bowen et al.,

2020c), the scaling exponents obtain the highest observed values, indicating the presence

of relatively stronger gradients in the magnetic field. Additionally, a roughly linear, i.e.,

monofractal, but super-Gaussian scaling at lower τadv, which after normalization with ζ(3),

closely resembles the K41 predicted curve, is obtained. However, as τadv increases, the

lines exhibit a more concave behavior at large q. This result is in qualitative agreement

with the results obtained through the SDK method and suggests the strengthening of

transition range intermittency as a function of the advection time. In the inertial range,

(102 − 103di) the normalized scaling exponents exhibit a concave scaling that strongly

deviates from the K41 curve and does not show a dependence on the advection time of

the solar wind. As a matter of fact, the concave scaling is observed at all times, indicating

that the inertial range fluctuations exhibit a multifractal character even in the vicinity of

the Sun. A similar behavior (i.e., multifractal scaling that does not evolve radially) is

observed at yet larger, nonetheless still inertial, scales between (103 − 104di).

To provide a quantitative context for the radial evolution of intermittency with

respect to the advection time of the solar wind, the quantity D(ℓ, τadv) = (
∑

( z(q, ℓ)
z(q=3, ℓ)

−
zk41(q))

2)1/2 was estimated. This quantity is essentially the distance between two curves.

The first curve corresponds to the scaling exponents z(q, ℓ) estimated for 5 hr-long

intervals by applying a moving power-law fit to each of the structure functions up to order

q = 6, normalized by z(q = 3, ℓ); the second curve corresponds to the K41 prediction for

the scaling exponents z
(q)
k41). More specifically, the scaling exponents ζ(q, ℓ) have been

obtained by applying a moving power-law fit on each of the structure functions up to

sixth order over a range of scales in the spatial domain ℓ ∈ [xi, 3xi], where xi is the

starting point of the power-law fit; Each scaling exponent, ζ(q, ℓ), has been normalized

by z(q = 3, ℓ) estimated over the same range of the respective interval. As a result, for a

given interval and over a certain range of spatial scales, six normalized scaling exponents
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Figure 4.6: Binned mean of the fraction of datapoints with PV I value exceeding a given
threshold (fPV I≥θ, where θ = [1, 3, 6]) shown as a function of advection time τadv, different
thresholds are shown in different colors. Three spatial lags normalized to the ion inertial
length di are considered, ℓ = 20, 500, 1000 di.

ζ(q, ℓ)/z(q = 3, ℓ) have been obtained. Subsequently, the square of the deviation from the

K41 prediction, z
(q)
k41), was estimated. Finally, the square root of the sum for q = 1, ..., 6

was calculated resulting in D(ℓ, τadv). By sliding the moving fit window over the spatial

domain, several estimates of D(ℓ, τadv) have been obtained for different spatial scales over

the same interval. The process was then repeated for all the available 5 hr-long intervals.

Data points were subsequently binned according to ℓ and τadv, and the median value of

D(ℓ, τadv) inside each bin was calculated, which is reflected in the colors. The results of

this analysis are illustrated in Figure 4.4. The picture that emerges fits well with the
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Figure 4.7: Five τadv bins are utilized to illustrate the fraction of ΘV B angles for intervals
that fall within each of the bins. Note that the alignment angle is constrained to lie in the
range between 0◦ and 90◦. For clarity, the inset figure shows the fraction of the dataset
occupied by parallel (ΘV B ≤ 20◦) and perpendicular intervals ΘV B ≥ 70◦.

evolution of SDK (see Figure 4.2) since the general trend is towards stronger intermittency

at larger τadv for ℓ ≲ 100di and no dependence on the advection time for ℓ ≳ 100di.

Obviously, the statistical trend is heavily influenced by the higher-order moments. The

normalized scaling exponents, which relate to the moments of order q ≤ 3, remain almost

linear (see Figure 4.4), hence contributing a negligible amount to the difference between

the two curves. It is also important to note that the same process was repeated by only

taking into account scaling exponents up to 4th order, and the results were found to be

qualitatively similar.

4.1.4.3 Partial Variance of Increments (PVI).

In this section, we examine the radial dependence of intermittency by considering the

evolution of the fractional volume with respect to the overall fluctuations occupied by

coherent structures identified by means of the PVI method. As suggested in (Greco et al.,

2008), we consider a coherent structure any event for which the corresponding PVI index

attains a value of PV I > 2.5. To estimate the PVI timeseries we follow the method

outlined in Section 4.1.4.3 and employ non-overlapping 10 hr-long intervals sampled by

PSP and SolO throughout the inner heliosphere. To ensure estimating the PVI on a
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Figure 4.8: Binned mean of the fraction of PVI events fPV I≥θ (%), where θ = 1, 3, 6 as
a function of the angle between solar wind and background magnetic field ΘV B. Three
different lags are considered (ℓ = 1000, 500, 20 di). A total number of n = 45 bins have
been used.
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constant plasma scale, we adapt a lag normalized by the ion inertial length estimated at

the respective interval (see Section. 4.1.4.3). After the PVI timeseries is estimated, data

are further divided into 15-minute intervals, and the mean plasma advection time τadv

for each interval is estimated. As a result of this process, a total number of ∼ 30, 000,

intervals of duration d = 15 minutes are collected throughout the inner heliosphere. For a

given interval, each data point is assigned a PVI value, and the fraction of the data points

exceeding a certain PVI threshold fPV I≥θ, where, θ = 1, 3, 6, is estimated. In Figure

4.15a,b,c, we use 25 bins, to present the average value of fPV I≥θ per bin plotted against

τadv, for PVI estimated with a lag of ℓ = 20, 500, 1000 di, respectively. Uncertainty

bars indicate the standard error of the sample. It is readily seen that as we move to

smaller spatial lags (i.e., going from right to left panel), the fractional volume occupied

by the extreme events is increasing. This result is consistent with the elevated probability

density of extreme events when the PDFs of the magnetic increments are considered and

indicates the presence of large gradients in the magnetic field at the smaller scales. In

Figure 4.15a, for lag ℓ = 20di and PV I greater than 3 (fPV I≥3, orange line), no clear

trend is observed with τadv. This result introduces a paradox to our analysis as it seems

to contradict the evolution of SDK at the smaller scales, shown in Figure 4.2a. However,

when the evolution of fPV I≥6 with lag ℓ = 20di (red line, panel a) is considered, a clear

upward trend as a function of τadv is observed. Thus, a natural hypothesis to explain

the apparent contradiction is that the evolution of scale-dependent kurtosis (SDK) is

dominated by the presence of the extreme events (PV I ≳ 6) that usually lay on the

tails of the PDFs of normalized magnetic increments. Is easy to understand that the

fluctuations characterized by a smaller PVI index, albeit accounting for the bulk of the

distribution of data points, have a relatively minor contribution to the final SDK values;

On the other hand, even though the high PVI value events occupy only a small fraction of

the dataset, they can significantly impact the behavior of SDK, due to the susceptibility

of the fourth-order moment, found in the numerator to extreme increments. The trend

of fPV I≥6 is also consistent with the evolution of SDK at larger scales, shown in Figure

4.15b,c, as in both cases, the line practically remains flat as a function of τadv. A different
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Figure 4.9: Binned mean of the fraction of datapoints with PV I value exceeding a given
threshold, fPV I≥θ, where θ = 3 (left panel) and θ = 6 (right panel) shown as a function
of advection time τadv and ΘV B angle. The PVI timeseries was estimated with a lag,
ℓ = 20 di. The top subplot shows the averaged fraction of coherent structures, over ΘV B,
⟨fPV I≥θ⟩|ΘV B

. Power-law fits are also shown as black-dashed lines. Similarly, the right
subplot shows the averaged fraction over τadv, ⟨fPV I≥θ⟩|τadv .

trend is observed for fPV I≥3, and ℓ = 500, 1000di. In both cases, an abrupt increase in

fPV I≥3 (yellow line) is observed up to ∼ 20 − 25 hours. This feature is of particular

importance, as it could be related to the crossing of PSP through the Alfvén region and

is further discussed in Section 4.1.6. Beyond this point, a slight upward trend is observed

at both lags for subsequent times. Another interesting feature in Figures 4.15a,b,c is

the evolution of fluctuations with PV I < 1, as in all three cases a monotonic increase

of fPV I≤1 with τadv is observed. Since both fPV I≤1 and fPV I≤3 are following an upward

trend, we can understand that the fluctuations in the 1 ≲ PV I ≲ 3 are gradually getting

depleted as the solar wind expands. In particular, for ℓ, the depletion process is gradual

with a decrease of ≈ 2.5 %, observed between 5 and 130 hours. On the other hand, at the

largest scales following an abrupt decrease of ≈ 5 % up to ≈ 25H, the fPV I<1 practically

remains constant over the ranges examined.

4.1.4.4 Angle between Solar Wind Flow and Magnetic Field ΘV B

Two important factors need to be considered when studying the radial evolution of

intermittency in the solar wind: (a) MHD turbulence in the solar wind has a well-known
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Figure 4.10: Scale-dependent kurtosis of the magnetic field as a function of ΘV B and
τadv. The numbers indicate the median value of kurtosis within each bin. The top subplot
shows Kmax, over ΘV B, ⟨Kmax⟩|ΘV B

. Power-law fits are also shown as black-dashed lines.
Similarly, the right subplot shows the averaged fraction over τadv, ⟨Kmax⟩|τadv .

tendency to develop and sustain several manifestations of anisotropy, e.g., wavevector

anisotropy, variance anisotropy, etc. (Oughton et al., 2015). One of these is the anisotropy

in magnetic field intermittency introduced by the presence of the background solar

wind flow. For parallel intervals (i.e., ΘV B ≈ 0◦, or equivalently ΘV B ≈ 180◦), the

statistical signature of the magnetic field fluctuations is that of a non-Gaussian globally

scale-invariant process, in contrast to multi-exponent statistics observed when the local

magnetic field is perpendicular to the flow direction (Horbury et al., 2008; Osman et al.,

2012). (b) Because of the conservation of magnetic flux (Parker Spiral), the radial

component of the magnetic field decreases faster than the transverse component.

Consequently, as radial distance increases, so does the number of perpendicular

intervals. On the other hand, as shown in the inset of Figure 4.7, the fraction of

parallel/anti-parallel intervals is monotonically decreasing. Therefore, for a complete

understanding of the radial evolution of intermittency in the solar wind, an analysis that

takes into account both τadv and ΘV B is required. In this section, we examine the radial

evolution of anisotropic intermittency by means of the PVI and SDK methods. As a first
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step, the PVI method and the 15-min intervals are adapted. Having confirmed that the

anisotropy is symmetric with respect to ΘV B = 90◦, we proceeded by not distinguishing

between parallel and anti-parallel directions. As a result, intervals with an estimated

Θinit
V B ≥ 90◦ have been recast to ΘV B = 180◦ − Θinit

V B . We, therefore, require that the

alignment angles lie within a range between 0◦ and 90◦ degrees. In Figures 4.8a,b,c, the

fraction of PVI events at a given PVI threshold, fPV I≥θ, is plotted against the ΘV B angle

for PVI estimated with lag ℓ = 20, 500, 1000 di, respectively. For clarity, data have been

binned into 45 linearly spaced bins in the ΘV B domain, and each dot indicates the mean

value of fPV I≥θ within the bin. Error bars are also shown, indicating the standard error of

the mean. For ℓ = 20di (Figure 4.8a), the fraction of random fluctuations with PV I < 1

is rapidly decreasing as intervals with greater ΘV B angles are considered. The opposite

trend is observed in the fraction of magnetic increments with PV I ≥ 1. As a matter of

fact, the anisotropy grows stronger as higher PVI thresholds are considered. For instance,

an increase in fPV I≥θ of at least one and two orders of magnitude is recovered between the

lowest and highest ΘV B angles for PVI thresholds θ = 3, 6, respectively. Note, however,

that regardless of the PVI threshold value, the increasing trend is halted at ΘV B ≈ 50◦.

Beyond this point, no statistically significant differences in fPV I≥θ are observed at the

largest ΘV B angles. A similar degree of anisotropy, as a function of ΘV B, is recovered

for larger lags (ℓ = 500, 1000di) shown in Figure 4.8b,c, respectively. Note, however, a

deviation from the trend for fPV I≥6 indicating that the degree of anisotropy is lessened

at progressively larger spatial scales.

In Figure 4.9, the evolution of anisotropic intermittency is examined as a function of

τadv. For this reason, the data points were binned according to ΘV B and τadv, and the

mean value inside each bin was calculated, which is reflected in the colors and presented

in the plot. The bracketed numbers in the plots are the number of data points inside each

bin. Note that bins, including less than 10 data points, were discarded. In Figure 4.9a,

the dependence of fPV I≥3 as a function of ΘV B and τadv for lag ℓ = 20di is illustrated.

Two major but contradicting conclusions can be drawn from this figure: (1) When the

evolution of intervals that belong to the same ΘV B bin is considered, a monotonic decrease
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Figure 4.11: (a) Scale-dependent kurtosis of the magnetic field as a function of solar
wind speed VSW and SW advection time τadv. The numbers indicate the median value of
kurtosis within each bin.

in fPV I≥3 is observed for all ΘV B rows. (2) The average fPV I≥3, with regard to ΘV B,

shows a negligible, slightly positive trend as a function of τadv. This seemingly inconsistent

result can be addressed by considering the radial evolution of the Parker spiral. Closer to

the Sun, the solar wind speed and background magnetic field tend to be aligned, i.e., the

intervals tend to concentrate around ΘV B ∼ 0◦(180◦). As we move further away from the

Sun, this angle shifts towards the perpendicular direction, i.e., ΘV B ∼ 90◦. However, as

shown in Figure 4.9, perpendicular intervals are typically associated with higher fPV I≥3

values. Thus, despite the gradual decrease in the fraction of coherent structures with

PV I ≥ 3 as a function of τadv for a constant ΘV B angle, on average, the fraction of the

entire dataset shows signs of a very subtle increase. When considering the evolution of

coherent structures of PV I,≥ 6, Figure 4.9b, a slightly different evolution may be noticed.

In particular, not a clear trend is observed for intervals of constant ΘV B. Additionally,

as pointed out in Figure 4.8a the degree of anisotropy with regards to the ΘV B angle

is strengthened when higher PVI thresholds are considered. Therefore, by applying the

same logic as outlined before for PV I ≥ 3, we can explain the apparent increase in the

fraction of coherent structures as a function of τadv.
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We move on to examine the evolution of Kmax as a function of τadv and ΘV B. In

order to mitigate the effects of mixing different types of solar wind, the duration of the

intervals used has been reduced to d = 30 minutes. It is important to note that even

though the radial trend of kurtosis is not affected (i.e., the maximum of the kurtosis is

observed to increase with increasing τadv regardless of interval size), the curves are shifted

vertically to larger values when larger averaging windows are considered. This may be

attributed to the fact that by increasing the interval size, more and more extreme events

are taken into consideration during the averaging process. Since these events have been

shown to strongly affect the SDK, an increase of SDK for larger averaging windows is

to be expected. The results of this analysis are illustrated in Figure 4.10. As expected,

Kmax follows a qualitatively similar trend with fPV I≥6. More specifically, intervals for

which the magnetic field and solar wind speed tend to be aligned exhibit lower Kmax

values. Moreover, no clear trend may be observed with τadv when examining intervals

with a similar ΘV B.

As a result of our analysis, it is apparent that understanding the physical mechanisms

driving the evolution of intermittent properties in the magnetic field of the solar wind

requires making a distinction between the effects of mixing strongly and less intermittently

perpendicular and parallel intervals, respectively, as opposed to the evolution of turbulence

during the expansion due to the local plasma dynamics.

4.1.5 Dependence of intermittency in plasma parameters.

4.1.5.1 Solar Wind Speed

In this section, the relationship between solar wind speed VSW and magnetic field inter-

mittency is investigated. Similarly to Section 4.1.4.4, to mitigate the effects of mixing

different types of solar wind, the duration of the intervals used has been reduced to

d = 30 minutes. Also, note that the intervals that are associated with fast solar wind

VSW ≳ 600 km s−1 comprise only a minor fraction of our dataset. Moreover, the majority

of these intervals were observed during the latest perihelia of PSP and thus in proximity
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Figure 4.12: Fraction of datapoints with PV I value exceeding a given threshold, fPV I≥θ,
where θ = 1, 3, 6 as a function of solar wind speed, VSW .

to the Sun. Taking these arguments into account, we can understand that the study of the

radial evolution of the fast wind is not feasible with our current dataset. Nevertheless, the

study of intermittency properties as a function of VSW is still possible since a considerable

number of intervals with VSW in the range 200 km s−1 ≲ VSW ≲ 600km s−1 have been

sampled by both PSP and SolO throughout the inner heliosphere. We begin our analysis

by considering the relationship between Kmax with τadv and VSW , estimated for respective

intervals. The results of this analysis are presented in Figure 4.11. In accordance with

(Bruno et al., 2003; Weygand et al., 2006), we find that the kurtosis for the magnetic

fluctuations in the slow solar wind exhibit higher peaks when compared to those of the

fast solar wind. As a matter of fact, Kmax almost monotonically decreases as a function

of VSW when intervals sampled at the same τadv column are considered. Additionally,

regardless of the solar wind speed, Kmax, increases as a function of τadv. This result

comes in disagreement with (Bruno et al., 2003), as it indicates the radial strengthening

of intermittency regardless of the solar wind speed.

Additionally, the relationship between the fractional volume occupied by coherent

141



Figure 4.13: Fraction of datapoints with PV I value exceeding a given threshold, fPV I≥θ,
where (a) θ = 3, (b) θ = 6, as a function of VSW and τadv. The numbers indicate the
median value of fPV I≥θ and the bracketed numbers show the number of events within
each bin.

structures, fPV I≥θ, identified by using the PVI method, and VSW is examined. The results

of this analysis are illustrated in Figure 4.12, for PVI threshold θ = 1, 3, 6. It is readily

seen that fast solar wind is characterized by an elevated number density of magnetic

increments with PVI index greater than unity, θ ≥ 1 (cyan line). Strictly speaking, and

following the definition of

(Greco et al., 2008), only events of PV I ≳ 2.5 correspond to coherent structures and

consequently strengthen the intermittent character of the magnetic fluctuations. However,

this result is of interest as it was recently shown (Sioulas et al., 2022) that the number

density of structures with PVI index greater than unity fPV I≥1 is very strongly correlated

with the temperature of protons Tp in the solar wind. At the same time, one of the

clearest correlations between plasma parameters in the solar wind is the one between

proton temperature with solar wind speed (Perrone et al., 2019). It is thus quite probable

that events of PVI index greater than unity not only contribute to magnetic energy

dissipation and the heating of the ambient plasma environment but at the same time are

partly responsible for the acceleration of the solar wind. Moving on and considering the

events of θ ≥ 3 (shown in yellow), a picture that contradicts our conclusions from the

SDK analysis outlined earlier emerges. In particular, within the error bars, no statistically
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Figure 4.14: (a) Scale-dependent kurtosis of the magnetic field as a function of scale in
units of ion inertial length di and SW advection time τadv. The numbers indicate the mean
value of kurtosis within each bin. (b) Evolution of SDK with τadv. Each line represents
the average of 100 intervals that fall within the same τadv bin. The inset scatter plots
show (i) the scale, in units of di, at which the kurtosis attains the maximum value (ii)
The maximum kurtosis value estimated for the individual 30-min intervals. The binned
mean of the two quantities is shown (red line).

significant differences in the fractional volume occupied by coherent structures can be

observed between fast and slow solar wind streams. As a matter of fact, one could even

argue that a slight increase of fPV I≥3 can be observed with increasing solar wind speed.

A different picture emerges when we consider the highest PVI threshold PV I ≥ 6. More

specifically, fPV I≥6 is progressively reduced when faster solar wind streams are considered.

This result provides a natural explanation for the lower SDK peaks observed at faster

solar wind streams since, as already discussed, the number density of PVI greater than 6

events, fPV I≥6 is tightly correlated with Kmax. We move on to investigate the evolution

of fPV I≥θ as a function of VSW and τadv. The results are presented in Figure4.13 for

PV I ≥ 3, and PV I ≥ 6 respectively. For PV I ≥ 3, though on average slightly higher

values of ffV I≥3, may be observed at greater τadv, there is, strictly speaking, not a clear

horizontal trend. On the contrary, for PV I ≥ 6, an increasing trend is observed for most

of the rows (i.e., streams of similar solar wind speed) in qualitative agreement with the

increasing Kmax reported in Figure 4.12.
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4.1.5.2 Normalized cross helicity.

In this section, the correlation between the normalized cross-helicity and intermittency,

as indicated by the scale-dependent kurtosis (SDK) of the magnetic field magnitude, is

examined. Note that for this analysis, the length of the interval has been reduced to

d = 30min, to ensure that σc does not vary significantly within the interval. For each

interval, the median of σc has been estimated, and intervals with standard deviation

of σc greater than 0.2 have been discarded. In Figure 4.14a, the dependence of SDK

as a function of |σc| is illustrated. Note that each line corresponds to the average of

100 intervals that fall within the same |σc| bin. As shown in the right inset figure, the

maximum value of kurtosis is decreasing with increasing |σc|, indicating that Alfvénicity

is negatively correlated with intermittency. However, it has been shown that the Alfvénic

character of the field fluctuations in the solar wind strongly decreases with radial distance

(Chen et al., 2020; Shi et al., 2021). Therefore, to distinguish between the effects of radial

evolution and decrease in σc, we show in Figure 4.14b, the dependence of Kmax as a

function of |σc| and τadv. It is readily noticed, that on average, highly Alfvénic intervals,

exhibit lower Kmax values. Nevertheless, it is evident that for a any |σc| row in Figure

4.14, an increasing trend is observed for Kmax at larger τadv values. The increase may be

explained by the fact that there is still a mixing of parallel and perpendicular intervals

outlined in Section 4.1.4.4.

4.1.6 Conclusions

This study has tried to address the following question: How do the statistical signatures of

turbulence and intermittency evolve as the solar wind expands in the inner Heliosphere?

Intermittency lies at the heart of MHD turbulence in the solar wind. Thus, an

improved understanding of its radial evolution can offer insights into some of the major

open problems in the field of space physics, including the origins of the fluctuations and

coherent structures observed in the solar wind; the influence of local and global dynamics

in the evolution of the higher-order statistics; and ultimately into fundamental questions,
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such as the generation, acceleration and adiabatic expansion of solar and stellar winds.

For this purpose, we have analyzed high-resolution magnetic field and particle data from

the first 11 orbits of the Parker Solar Probe mission, as well as Solar Orbiter observations,

ranging from the vicinity of the Alfvén region (R ≈ 13.7 R⊙) out to 1 au (R ≈ 215 R⊙).

Our study has been made possible by a variety of statistical tools, such as the Scale

Dependent Kurtosis, the normalized scaling exponents of the Structure functions, and

the PVI method that enable us to exploit the property of PDFs of intermittency affected

magnetic fluctuations to be increasingly flared out at progressively smaller scales.

The main findings of our study can be summarized as follows:

(1) When methods utilizing higher-order moments are considered (e.g., SDK, SFq), a

strengthening of small-scale intermittency is observed with increasing advection time of

the solar wind. Closer to the Sun, fluctuations of spatial scale ℓ ≈ 20 − 102di, exhibit a

monofractal-like but Super-Gaussian scaling that gradually evolves into multifractal as

the solar wind expands into the interplanetary medium. Deeper in the inertial range, a

multifractal scaling is observed that does not exhibit clear signs of radial evolution.

(2) The PVI method provides a different perspective on the evolution of intermittency.

For lag ℓ = 20di, the fraction of the dataset occupied by coherent structures, fPV I≥3,

displays a very subtle upward radial trend, whereas a more obvious increase is observed

for fPV I≥6. At larger spatial scales ℓ = 5 · 102, 103di, the opposite trend is observed as

fPV I≥6 is, within the error bars, independent of radial distance, while an increasing trend

is observed for fPV I≥3. It is important to note, however, that even though the trend

remains positive at larger τadv, the biggest gain is observed for τadv ≲ 35 hrs.

In an effort to explain the disparity between SDK and PVI on the radial evolution of

intermittency, the relationship between fPV I≥θ and the maximum values of SDK, Kmax

was examined. We have shown that the fractional volume of events with PV I ≥ 6 is

strongly correlated with Kmax. In light of this result, we can understand that methods

relying on the estimate of higher-order moments as a measure of intermittency will
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mostly be affected by the extreme events that lie at the very tails of the distribution of

increments. Such events are usually characterized by PVI values of the order of PV I ≳ 6

and constitute only a minor fraction ≲ 0.2% of the fluctuations observed in the solar

wind. As a result, higher peaks in SDK may still be observed at larger τadv even though

fPV I≥3 stays constant as long as fPV I≥6 radially increases. However, to fully characterize

the radial evolution of intermittency, one has to also take into account the evolution of

coherent structures with PV I ≥ 3, as these structures have been shown to dissipate a

considerable amount of magnetic energy in the solar wind (Osman et al., 2012). In other

words, a comprehensive analysis of the radial evolution of intermittency in the solar wind

requires the use of lower-order moment-based methods, such as PVI.

(3) CSS can both decay and reform due to local plasma dynamics during the expansion,

with in situ generation being more efficient at the larger scales (Figure 4.15). Nevertheless,

the existence of passively advected coherent structures of Solar origin cannot be ruled out.

An observation that warrants a brief discussion is the abrupt increase incoherent

structures of PV I ≥ 3 at the largest spatial scales in the vicinity of the Alfvén region.

Recently (Tenerani et al., 2021) have analyzed PSP, Helios, and Ulysses data to show that

the evolution of the occurrence rate of Switchbacks in the solar wind is scale-dependent

as the fraction of longer-duration switchbacks increases with radial distance, whereas

it decreases for shorter switchbacks. The PVI method is agnostic to the nature of the

discontinuities, meaning that coherent structures may be identified by PVI as long as

there are strong gradients in the magnetic field. As a result, several types of coherent

structures such as current sheets, vortices, reconnection exhausts, and switchbacks may

be identified with the PVI method. In this sense, one contributing factor to the increasing

fraction of the dataset occupied by coherent structures might be the increasing trend

of longer-duration switchbacks associated with increasing solar wind advection times.

At the same time, several mechanisms, including stream-stream dynamic interactions,

parametric decay instability of large amplitude Alfvén waves, (e.g., Biskamp and Müller,

2000; Malara et al., 2001; Wan et al., 2009) might coexist simultaneously, resulting in the
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generation of several types of CSS.

(4) In agreement with earlier studies, we identify a strong anisotropy in intermittency

with respect to the angle between the background magnetic field and the solar wind

flow. Intermittency is weaker at ΘV B ≈ 0◦ and is progressively strengthened at larger

angles. More specifically, peaks in the SDK (Kmax) are shifted upward, and an increase is

observed in the fraction of the dataset occupied by coherent structures (PV I ≥ 3) when

intervals with increasingly larger ΘV B angles are considered. The anisotropy is more

pronounced at higher PVI thresholds but becomes weaker at progressively larger spatial

scales ;

(5) Even though at the smallest scales (ℓ = 20di), the fraction of the dataset occupied

by coherent structures (PV I ≥ 3) radially decreases for intervals with fixed ΘV B, on

average (i.e., averaging over all ΘV B bins at a given τadv column in Figure 4.9) the fraction

of measured coherent structures increases in the inner Heliosphere. This is because closer

to the Sun, the solar wind flow is statistically (anti)parallel to the magnetic field (i.e.,

ΘV B ≈ 0◦(180◦). However, due to the radial evolution of the Parker Spiral, the fraction of

observed parallel intervals gradually decreases. Note that the changing fraction of parallel

vs. perpendicular intervals is due to the limitations of the single-point measurements by

PSP and the use of the Taylor hypothesis and not a reflection of the radial evolution of

turbulence. Taking the ΘV B anisotropy into account (see point (3) ), we can understand

that the mixing of highly intermittent perpendicular and relatively less intermittent

parallel intervals blur the averaged behavior of the radial evolution of intermittency. Due

to the fact that the anisotropy is stronger at a higher PV I threshold, the averaged fraction

of events with PV I ≥ 6 shows a more prominent positive radial trend with τadv. This

increase is also reflected in Kmax, as already discussed in (2).

(6) Solar wind of lower speed exhibits higher SDK peaks and is characterized by

a higher fraction of fPV I≥6 events. However, no statistically significant differences are

observed in fPV I≥3 as a function of solar wind speed. A strengthening of intermittency
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with respect to the advection time τadv is observed regardless of solar wind speed. (see

Figures 4.11, 4.12, 4.13)

(7) A negative correlation is observed between the absolute value of the normalized

cross-helicity and intermittency of the magnetic field. That is, Alfvénic intervals statis-

tically display lower levels of intermittency as indicated by the maximum value of the

SDK. (see Figure 4.14)

As already discussed in point 4, the mixing of parallel and perpendicular intervals in

the inner Heliosphere will result in a subtle radial increase in intermittency. However,

perpendicular intervals are expected to progressively dominate with increasing heliocentric

distance due to the conservation of magnetic flux (i.e., Parker Spiral). It is, therefore

natural to expect that when the fraction of parallel intervals becomes statistically insignif-

icant, the decreasing trend in the fraction of the dataset occupied by coherent structures

will become apparent. Several observational studies have indicated that intermittency is

expected to become progressively weaker with increasing heliocentric distance beyond

1AU (Parashar et al., 2019; Cuesta et al., 2022b). Based on our analysis, we propose that

the decreasing trend in intermittency beyond 1AU can be attributed to the fact that the

mixing effect is diminished due to the dominance of perpendicular intervals.

Finally, our results indicate that when it comes to analyzing the radial evolution of

turbulence and intermittency, monitoring the changes in sampling direction is crucial. As

the interplanetary magnetic field follows the Parker spiral, its angle with the spacecraft

sampling direction will also vary as the distance from the Sun increases, which will then

have an effect on measured turbulence characteristics. This effect needs to be disentangled

from observations before the nature of the radial evolution of turbulence can be revealed.

Previous studies using PSP data to analyze the radial evolution of intermittency have not

taken this effect into consideration. However, our analysis indicates that obtaining such

information is essential for understanding the more complex dynamics of the solar wind

in the inner Heliosphere and can facilitate improvements to simulations of the solar wind

(see also, Zhao et al., 2020; Chhiber et al., 2021b; Cuesta et al., 2022a).
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As a final remark, we would like to caution the reader of a possible caveat to the

current analysis. As PSP approaches the Sun, ∼ 10 − 15R⊙, the spacecraft velocity can

be similar to that of the solar wind Vsc ∼ Vsw. As a result, the validity of the ergodic

theorem is at best questionable (Matthaeus and Goldstein, 1982a) and could hinder our

ability to perform statistical analysis that involves an ensemble averaging process (e.g.

the estimate of moments of the field fluctuations). In any case, such intervals only make

up a small portion of the entire dataset and should not affect the main conclusions of this

section.

Our results will further the understanding of how CSs are generated and transported

in the solar wind and will guide the development of future solar wind turbulence models.
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4.2 Preferential Proton over Electron Heating from Coherent

Structures & Statistical Analysis of Intermittency in the

Near-Sun Environment

This section integrates findings from two published works (Sioulas et al., 2022; Sioulas

et al., 2022)

4.2.1 Introduction

Observational and numerical studies indicate that plasma heating occurs in an intermittent

fashion and suggest a statistical link between coherent magnetic field structures (CSs) and

elevated temperatures (Osman et al., 2012; Chasapis et al., 2015; Yordanova et al., 2021;

?). The intermittent character of turbulence can be attributed to a fractally distributed

population of small-scale CSs, superposed on a background of random fluctuations that,

despite occupying only a minor fraction of the entire dataset (Vlahos et al., 2008; Parashar

et al., 2009; Osman et al., 2012; Wan et al., 2012; Sioulas et al., 2020a,b) can account

for a disproportionate amount of magnetic energy dissipation, and heating of charged

particles (Karimabadi et al., 2013; Sioulas et al., 2020a,b; Bandyopadhyay et al., 2020).

In this study, we aim to investigate the proton vs. electron heating in the nascent

solar wind environment. For this reason, we analyze the Quasi-Thermal Noise (QTN)

electron data and proton data from the Solar Probe Analyzer (SPAN) part of the Solar

Wind Electron, Alpha, and Proton (SWEAP) suite (Kasper et al., 2016) form Parker

Solar Probe mission (PSP ) with the Sun (Fox et al., 2016). We examine the properties

of proton and electron heating occurring within magnetic coherent structures identified

by means of the Partial Variance of Increments (PVI) method. We show that on average,

such events constitute ≈ 19% of the dataset, though variations may occur depending on

the plasma parameters. We show that the waiting time distribution (WT ) of identified

events is consistent across all six encounters following a power-law scaling at lower WTs.

This result indicates that coherent structures are not evenly distributed in the solar
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Figure 4.15: (a) PDFs of PV I for lag, τ = 0.837s (b) Fraction of PVI events exceeding a
given threshold θ for E1 − E6.

wind but rather tend to be tightly correlated and form clusters. Statistically, regions of

space with strong gradients in the magnetic field, PV I ≥ 1, are associated with strongly

enhanced proton but only slightly elevated electron temperatures. Our analysis indicates

a heating mechanism in the nascent solar wind environment facilitated by a nonlinear

turbulent cascade that preferentially heats protons over electrons.

The structure of this paper is as follows: Section 4.2.2 presents the selected data and

their processing; In Section 4.2.3.2 we present the results of this study; Section 4.2.4

provides a summary of the results and conclusions.

4.2.2 Data

For the first part of this work we analyze data from first six encounters (E1 − E6) of

PSP from 2018 to 2020, covering heliocentric distances 0.1 ≲ R ≲ 0.25 au. We use

magnetic field data from the FIELDS fluxgate magnetometers (Bale et al., 2016). To

estimate the PVI time-series at time-lags, τ = 0.837 seconds magnetic field data have

been resampled to a cadence of 0.837 seconds using linear interpolation. As outlined

in Sec 2.0.7, in order to compute the variance, a moving average over a window that is

a multiple of the correlation time is required. The correlation time can be estimated
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Figure 4.16: PDFs of WT between (a) PV I > 3, (b) PV I > 6 events for lag τ =
0.837 seconds.

using the e-folding technique by considering the time it takes for the autocorrelation

function to drop to e−1 of its maximum value (Matthaeus and Goldstein, 1982b; Krishna

Jagarlamudi et al., 2019). For encounters E1 − E6, the correlation time was estimated to

be between 500 ≲ t ≲ 2000 seconds. Accordingly, we perform the ensemble averaging over

a window of 8 hours for all six encounters. Several different averaging windows, ranging

2 − 12 hours have been implemented, with qualitatively similar results on our analysis.

Plasma data from Solar Probe Cup (SPC), part of the Solar Wind Electron, Alpha and

Proton (SWEAP) suite (Kasper et al., 2016) have also been analyzed to obtain the bulk

velocity and radial proton temperature/thermal speed measurements at ∼ 0.837 seconds

resolution. The radial temperature and bulk velocity time-series have been pre-processed

to eliminate spurious spikes and outliers using the Hampel filter (Davies and Gather,

1993b). An important effect that should be taken into account when analyzing solar wind

particle data is the anisotropy in the parallel (T||) and perpendicular (T⊥) temperatures

with respect to the background magnetic field (Huang et al., 2020; Hellinger et al., 2011).

On the second, part, we focus solely first encounter E1 of PSP with the Sun, during

the period November 1 - November 10, 2018. For magnetic field measurements, in order to

obtain high-quality data without interference from instrumental noise, which could lead to
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an artificial flattening of the power spectrum at the highest frequencies, we use the SCaM

data product, which merges fluxgate and search-coil magnetometer (SCM) measurements

from the FIELDS instrument (Bale et al., 2016) by making use of frequency-dependent

merging coefficients, thus enabling magnetic field observations from DC to 1MHz with

an optimal signal-to-noise ratio (Bowen et al., 2020a). Proton data were obtained from

the Solar Wind Electron, Alpha, and Proton (SWEAP) suite (Kasper et al., 2016),

and electron data derived from the Quasi-thermal noise from the FIELDS instrument

(Moncuquet et al., 2020a). Note, that the same electron analysis was repeated by taking

into account core temperature data fitted from the SPAN-e electron VDFS (Halekas et al.,

2020), with qualitatively similar results.

In order to estimate the PVI timeseries, SCaM magnetic field data have been linearly

interpolated to a cadence of δτ = 0.05s. Subsequently, the PVI timeseries was estimated

using an averaging window of duration d = 8 hours, which was several times the estimated

correlation time of the magnetic field for E1 of PSP (Chhiber et al., 2020b). A lag of

δτ = 0.05s was used in estimating the PVI timeseries. Based on Taylor’s hypothesis we

can convert the temporal to spatial lag. We can then estimate the time-to-time ratio

of the spatial lag to the ion inertial length to obtain the mean value of the spatial lag

in units of the ion inertial length (di). The obtained di timeseries, not shown here, is

in agreement with (Parashar et al., 2020). Therefore, the mean value of the spatial lag

normalized in units of di value corresponds to ℓ̃ ≈ 0.76 di, with a standard deviation of

±0.18 di. Note that the analysis was also carried out for various averaging times (from 1

to 12 hours) and it was observed to have minimal impact on the final result. Finally, the

PVI time series was resampled to the electron timeseries cadence of 7 seconds, and proton

timeseries cadence of ∼ 28 seconds in a way such that for each interval the mean value of

PVI in that interval was chosen. Note, that the same analysis was repeated by choosing

the maximum value of PVI within each interval with qualitatively similar results.
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Figure 4.17: An example indicating clustering of intermittent structures associated with
increased proton temperature. The shaded areas point to the location of PV I ≥ 3 events.
From top to bottom, the magnitude of the magnetic field |B|, the radial component of
the magnetic field (BR), the tangential and normal components of the magnetic field (BT )
and (BN), in green and red respectively, the PVI time-series for lag, τ = 0.837 seconds
the temperature T , the radial component of the proton bulk velocity VR, the tangential
and normal components of the proton bulk velocity (VT ), and proton number density (n)
are shown.

4.2.3 Results

4.2.3.1 Statistical properties of intermittent structures.

One of the major questions one has to address when studying intermittency is the nature

of the physical processes that initiate the coherent structure production at the origin.

Accordingly, in order to gain insight into the statistics of intermittent magnetic structures

in the solar wind, we follow the process described in Sec. 2.0.7 to estimate the PVI time-

series for time-lag, τ = 0.837 seconds. In Fig. 4.15a we show the Probability Density

Functions (PDFs) of PVI values. The most probable value is close to ∼ 0.3, indicating

that the majority of the detected events can be characterized as non-intermittent. In Fig.
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Figure 4.18: Binned average of radial proton temperature plotted against PVI (blue)
along with the number of points per bin (red) for the first six encounters of PSP. Notice
a rough upward trend in mean temperature at higher PVI bins.

4.15b, the fraction of the entire data-set occupied by PVI events exceeding the threshold

PV I > θ, is shown for E1 − E6.

Another method that can provide an insight into the statistics of the solar wind

coherent structures is the Waiting Time (WT) distribution analysis. In the case of the

PVI time-series, we define the waiting time as the time passed between the end and the

start of two subsequent events for which the value of PVI stays above a threshold θ. Note,

that PVI events have a finite duration. Therefore, subsequent times for which the PVI

time-series stay above the threshold are considered as part of the same event. Also note

that in order to maintain an adequate sample size, we have imposed a restriction on

the minimum counts per bin. Consequently, bins with fewer than ten counts have been

discarded. The waiting time interval is itself a new random variable, the distribution of

which, is independent of the original random variable’s distribution. A simple inspection

of the distribution shape can then reveal whether or not the underlying mechanism can

be classified as a random Poissonian-type of process, or it possesses “memory” indicating

strong correlation and clustering. In the first case, the distribution is better described

by an exponential, while in the latter distribution, scales like a power-law (Greco et al.,

2009; Greco et al., 2010). Figs. 4.16a,b, show the PDF’s of WT between intermittent

PVI events with lag τ = 0.837 seconds and threshold θ1 = 3, θ2 = 6, respectively, for the

first six encounters. At lower WT’s, the best fit analysis indicates that WT distributions

are better described by a power-law. The index of the power-law fit attains values in the

range a ∈ [−0.8, −0.52], progressively getting softer as the threshold value, θ, increases.

In contrast, for events further apart in time, the distribution is better described by an

exponential. The change between power-law and exponential in the distribution can be

interpreted as the breaking-point between intercluster and intracluster waiting times

(Greco et al., 2010). This change seems to coincide with an ill-posed, due to the power-law

nature of the distribution, mean value of WT, ⟨WT ⟩ (Chhiber et al., 2020a). The WT
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Figure 4.19: Binned mean of proton (Tp in blue) and electron temperature (Te in red)
plotted against PVI . Error bars are also shown indicating the standard error of the mean,
σi/

√
n, where σi is the standard deviation of the samples inside the bin. The PDFs of

the electron and proton temperature p(Te), p(Tp) and the PVI index p(PV I) are shown
separately in red and blue on the top and right margin of the plot respectively.

distribution analysis was repeated by estimating the PVI time-series using a different time-

lag, τ = 8.37, 83.7 seconds, still sampling though, overtimes with 0.837 seconds cadence.

The resulting waiting time distributions (not shown here) are once again remarkably

similar between all six encounters and thus resemble the ones reported in (Chhiber et al.,

2020a) for E1. This provides a strong indication that high PVI valued coherent structures,

are not evenly distributed within the solar-wind, but rather tend to be strongly correlated

and form clusters, creating alternating regions of very low and very high magnetic field

activity respectively (see also (Dudok de Wit et al., 2020; Chhiber et al., 2020a; Bale

et al., 2021b)). One such example, out of the thousands of clustering events we were able

to recover is presented in Fig. 4.17. To emphasize the clustering of coherent structures,

blue, vertical lines have been added to indicate the location of events characterized by a

magnetic PVI index, PV I ≥ 3. Notice the elevated proton temperature at regions where

coherent structures abound.
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4.2.3.2 Electron vs. proton heating from intermittent structures.

We now focus on E1 and investigate the contribution of coherent structures, identified

by means of the PVI method (see Section 4.2.2), to the heating of protons and electrons

in the solar wind. The first step in this analysis is to interpret Tp as a function of PVI

through binned statistics. Figure 4.19 shows the average proton (blue) and electron (red)

temperature per bin using 100 PVI bins (i.e., ⟨Tp(θi ≤ PV I ≤ θi+1)⟩, where θi is the

PVI threshold) plotted against the center of the bin. Uncertainty bars are also shown

indicating the standard error of the sample (Gurland and Tripathi, 1971a). In this case,

the uncertainty is estimated as σi/
√
n, where σi is the standard deviation of the samples

inside the bin. The PDFs of the electron and proton temperature p(Te), p(Tp), as well

as, the PDF of the PVI index p(PV I) are shown separately in blue and red on the top

and right margin of the plot. In agreement with previous studies (Osman et al., 2012;

Yordanova et al., 2021; Sioulas et al., 2022c) a statistically significant positive correlation

is observed with high PVI index and elevated Tp. Nevertheless, the limited number of

observations for PV I ≥ 4 results in high variability of Tp on the right-hand side of the

figure. More specifically, the lowest observed PVI values, PV I ∼ 10−1, are associated with

a proton temperature of Tp ∼ 4 · 105 K, while for PV I ∼ 4 the proton temperature raises

to Tp ∼ 4.6 · 105 K. On the other hand, for electrons, only a moderate positive statistical

correlation is observed. In particular coherent structures characterized by a PVI index,

PV I ≤ 1, hardly change the electron temperature, while for higher PVI thresholds a rough

statistical trend is observed. Note, that several bins with PV I ∼ 10, usually associated

with reconnection exhausts (Servidio et al., 2012), display considerably increased electron

temperatures Te ≥ 3.5 · 105 K. This could indicate that magnetic reconnection plays

a major role in electron heating observed in the solar wind. However, further study

is needed to identify these structures and determine whether magnetic reconnection is

indeed responsible for the observed heating, and whether other mechanisms are involved.

To gain a deeper understanding of the relationship between the temperature of the solar

wind, and magnetic field discontinuities, we estimate averages of Tj, where, j = e, p the
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Figure 4.20: Average (a) Te (b) Tp conditioned on the spatial lag, normalized to the ion
inertial length di, estimate separation from PVI events that exceed a PVI threshold. Note
that Tj , j = e, p has been normalized by the average value T̃j within a window that spans
δℓ = 2 · 105di and is centered around the discontinuity under study.

temperature of electrons and protons respectively, constrained by the temporal separation

between PVI events that belong to a given PVI bin. This can be formally expressed as

(Tessein et al., 2013b; Sorriso-Valvo et al., 2018):

⟨Tj(∆t, θi, θi+1)⟩ = ⟨Tj(tPV I + ∆t)|PV I ≥ θi⟩, (4.1)

where, ∆t is the temporal lag relative to the location of the main PVI event taking place

at time tPV I , and θ = [0, 1, 2, 3, 4, 6]. Fig. 4.20 illustrates the conditional average

of electron and proton temperature in the left and right panel respectively at different

spatial lags. Note, that temporal lags have been converted to spatial lags, subject to

the validity of Taylor’s hypothesis (Taylor, 1938), ℓ = VSW∆t. For a direct comparison

between different plasma environments and to cast our results in physically relevant units,

spatial scales have been normalized by the ion inertial length di = VA/Ωi, where Ωi = eB
mp

,

is the proton gyrofrequency, e is the elementary charge, B is the mean magnetic field,

and mp is the mass of the proton (Huba, 2004). Additionally, for each identified event

the temperature Tj was normalized by the average value T̃j within a window that spans

δℓ = 2 · 105di and is centered around the discontinuity under study. This allows us to
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disentangle our observations from the effects of transients such as Heliospheric Current

Sheet (HCS) crossings, usually associated with minima in solar wind temperature (Suess

et al., 2009; Shi et al., 2022c), Switchback patches, observed to enhance the solar wind

temperature (Shi et al., 2022a) etc. Additionally, it enables us to get a more direct

estimate of the relative contribution of CSs to the internal energy of the charged particle

species under investigation.

It appears that no significant proton and electron heating of the solar wind occurs

at times when the magnetic field is relatively smooth, as indicated by the dip in the

normalized mean temperature at lag equal to t = 0s for PV I ≤ 1. Increasing the

threshold value θ, however, results in a global maximum in normalized Tj close to zero

lag, suggesting that both proton and electron temperatures will rise in the vicinity of

coherent structures. It can be readily seen, however, that the heating process is less

pronounced in the case of the electrons, since, Te does not considerably deviate from the

mean T̃e. On the other hand, proton temperature considerably increases near CSs as

illustrated in Figure 4.20b, with the enhancement being progressively more obvious as we

consider higher PVI thresholds. There is a distinct rate of decrease for each bin, with

the steepest gradients in Tp observed around the sharpest discontinuities, PV I ≥ 6. Tp

remains elevated near the main event, most likely because of the clustering of coherent

structures (Yordanova et al., 2021; Sioulas et al., 2022).

4.2.4 Summary & Conclusions

In this work, we have analyzed magnetic field and particle data from the first six encounters

of the PSP mission. Our goal was to study the statistics of intermittency and further

elucidate the nature of turbulent dissipation in the neighborhood of the solar wind sources.

As a first step, an effort was made to understand the nature of the mechanism that is

responsible for the generation of intermittency and coherent structures in the solar wind.

We have shown that coherent structures, corresponding to PV I ≥ 1, constitute only

≈ 19% of the dataset. As a follow-up to the study of (Chhiber et al., 2020a), we studied

159



the waiting time distributions by applying thresholds on the PVI time-series. We have

confirmed that intermittent magnetic field structures are not evenly distributed in the solar

wind but rather tend to strongly cluster, forming regions characterized by a high magnetic

field variability followed by intervals for which the magnetic field is relatively smooth. This

observation is also reinforced by the power-law nature of the waiting time distributions at

low waiting times, indicating the presence of an intracluster population. The power law

is followed by an exponential at longer waiting times, suggesting a second intercluster

population of coherent structures in the solar wind’s magnetic field. Additionally, the

power-law scaling of the WT distributions is indicative of clusters that do not have a

typical size or distance, except for the limiting size given by the exponential cutoff.

Focusing on observations from PSP’s first encounter with the Sun, we investigated the

relationship between the proton and electron heating with coherent magnetic structures

in the young solar wind environment. Seeking to better understand turbulent dissipation

in the vicinity of solar wind sources we have first identified coherent structures in our

dataset using the PVI method (Greco et al., 2008). Subsequently, the effect of CSs on the

heating of electrons and protons was examined. The electron temperature here is obtained

from QTN-spectroscopy (Moncuquet et al., 2020a), which indicates the temperature of

the distribution’s core.

Our analysis corroborates previous theoretical and observational works (Greco et al.,

2012b; Servidio et al., 2012; Osman et al., 2012; Sorriso-Valvo et al., 2019; Qudsi et al.,

2020; Yordanova et al., 2021; Sioulas et al., 2022) and indicates that coherent structures

can provide a channel for ion heating in the young solar wind. However, enhancements

in electron temperature are considerably less significant and it would be challenging to

imagine that intermittent heating could account for the non-adiabatic cooling profile of

electrons in the solar wind. Qualitatively, the results are consistent with what numerical

works have indicted in the past, namely enhanced heating of ions compared to electrons

in the vicinity of coherent structures. (see, e.g., Parashar and Matthaeus, 2016). One

possible explanation for the preferential intermittent heating of protons over electrons

is the ”helicity barrier” mechanism that prevents turbulence energy cascade to electron
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scales so it can effectively heat the electrons (Squire et al., 2022a). In the case where

the system is continuously driven, the large-scale energy will grow in time as the parallel

correlation length decreases (Meyrand et al., 2021b). It is through this growth that

turbulent energy is eventually funneled into a spectrum of high-frequency ion-cyclotron

waves (ICWs), which end up primarily heating the ions.

As a result of our study, we gained a better understanding of how turbulent dissipation

and heating of electrons and protons occur in the near Sun solar wind environment.

The main finding of this study is that proton heating from coherent structures in the

nascent solar wind is preferential to electron heating. However, our results present only

a preliminary comparison of electron and proton heating in the near sun solar wind. A

complete understanding of how particle heating and dissipation occur at inertial and

kinetic scales, will require a more thorough statistical analysis considering a larger and

higher resolution dataset. Additionally, strahl, and halo components of the electron

distribution function will need to be studied to provide a more complete understanding

on how different electron populations behave in the vicinity of CSs.

Our results will guide future works that model the heating of the nascent solar wind

environment.
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CHAPTER 5

Providing Observational Constraints for

Phenomenological Models of MHD Turbulence

5.1 Higher-Order Analysis of Three-Dimensional Anisotropy in

Imbalanced Alfvénic Turbulence

This section is based on work that has been submited for publication to the Astrophysical

Journal and is available on the Arxiv (Sioulas et al., 2024):

5.1.1 Introduction

In this investigation, we endeavor to evaluate the consistency of the homogeneous models

of balanced MHD turbulence by CSM15 and MS17, and discussed in Section 1.3.1,

against in-situ observations sampled during the first perihelion (E1) of the Parker Solar

Probe mission, (PSP, Fox et al., 2016). Our primary objective is to conduct a rigorous

comparison between the predicted scalings of higher-order moments in these models and

the corresponding empirical observations, with a specific focus on determining the presence

and measurable impact of model-specific elements, such as SDDA and CB, on the observed

characteristics. Through this analysis, our aim is to not only provide deeper insights

into the higher-order statistics of magnetic turbulence but also to establish a robust

benchmark for the testing and refinement of theoretical models addressing imbalanced

MHD turbulence in the inhomogeneous solar wind.

We find that at the energy injection scales, (out)ingoing Alfvénic fluctuations undergo a

weak cascade, χ±
λ < 1, χ±

λ ≡ τ±A /τ
±
nl, the ratio of linear to non-linear timescales. Outgoing
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waves remain in the weak regime throughout the inertial range, χ+
λ ≈ 0.2; ingoing modes

transition to χ−
λ > 1 at λ ≈ 3 × 104di. This transition is accompanied by spectral

scalings diverging from the expected behavior marking the shift from weak to strong

turbulence - the discrepancy may be explained by “anomalous coherence’ effects. What is

normally considered as inertial range consists of two sub-inertial segments. At λ ≳ 100di,

the “average” eddy assumes a field-aligned tube topology, with SDDA signatures being

weak–largely restricted to the highest amplitude fluctuations. The scaling exponents, ζn,

of the structure functions, perpendicular to both the local mean field and fluctuation

direction, conform to the (Chandran et al., 2015), (Mallet and Schekochihin, 2017) models,

indicating “multifractal” statistics; parallel and fluctuation direction scalings are more

concave than predicted. The different statistics of this range might be caused by expansion

effects. Below λ ≈ 100di, eddies display increasing anisotropy, resembling thin current

sheets. Concurrently, ζn scales linearly with order, signaling “monofractal” statistics. At

λ ≈ 8di, the eddies transition to a quasi-isotropic state. This shift might be a signature of

the “helicity barrier”. We employ 5-point structure functions, shown to be more effective

than the 2-point approach at small spatial scales.

The structure of the remainder of this section is as follows: Section 5.1.2 elaborates on

the methodologies utilized in this analysis. Details regarding data selection and processing

are outlined in Section 5.2.2. The study’s findings are presented in Section 5.2.3. A

comprehensive comparison with prior theoretical, observational, and numerical studies,

which contextualizes our results, is provided in Section 5.2.4. The paper concludes with a

summary of the main findings in Section 5.2.5.

5.1.2 Data Analysis

To investigate and quantify the three-dimensional anisotropy of higher-order magnetic

field moments, we employ a methodology proposed by (Wang et al., 2022), which builds

upon and extends the framework established in (Chen et al., 2012).

Adhering to the approach outlined in (Chen et al., 2012), we establish a locally-
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defined, scale-dependent Cartesian coordinate system, represented as (ξ̂, λ̂, ℓ̂||). In this

coordinate system the “parallel” direction, ℓ̂||, is aligned with the local magnetic field, Bℓ,

defined by Equation 2.0.4. Magnetic field increments are calculated using Equation 2.0.4.

The amplitude of the field increment is denoted as δb = |δb|. The local “displacement”

direction, ξ̂, aligns with the unit vector of the perpendicular component of the field

increment, with δb⊥ defined as:

δb⊥ = Bℓ × (δb×Bℓ). (5.1)

Lastly, the “perpendicular” direction, λ̂, is orthogonal to both ξ̂ and ℓ̂||, λ̂ = ℓ̂|| × ξ̂.

The Cartesian system can be converted into a spherical polar coordinate system (ℓ, θB,

ϕδB⊥), where θB is the angle between Bℓ and ℓ, and ϕδB⊥ is the angle between ξ̂ and the

projection of ℓ onto the plane orthogonal to Bℓ.

In our analysis, we utilize the 5-point (5-point) increment method, which represents

a significant advancement over the conventional 2-point (2-point) method, especially

for examining turbulence statistics in sub-ion regimes. A critical benefit of the 5-point

method is its reduced susceptibility to large-scale spectral leakage (Cho, 2019), rendering

it more suitable and effective for our ensuing analysis.

For calculating 5-point structure functions, denoted as SF n
5 , a modified definition of

δb is required, see Equation 2.0.4. Moreover, the local scale-dependent value ψℓ of a field

ψ can be computed as a weighted average using a five-point stencil, Equation 2.0.4.

For example, the local scale-dependent magnetic and velocity fields are represented by

Bℓ and V ℓ, respectively.

The nth-order, structure functions conditioned on the pair of angles θB, ϕδB⊥ , are

defined as:

SF n(ℓ, θB, ϕδB⊥) = ⟨(δB)n| θB, ϕδB⊥ , ℓ⟩, (5.2)

The conditional average in Equation 5.2 was calculated over the angle bin ω(i− 1)◦ ≤
θB ≤ ωi◦, ω(j − 1)◦ ≤ ϕδB⊥ ≤ ωj◦, where i = 1, ..., 9 and j = 1, ..., 9. In the following, ω
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takes the value of ω = 5 for estimating lower-order moments and ω = 10 for higher-order

moments.

In the following, we focus mainly on three special cases, defining the components in

i = 1, j = 1 : SF (ℓ||)
n, “parallel”, (5.3)

i = 9, j = 1 : SF (ξ)n, “displacement”, (5.4)

i = 9, j = 9 : SF (λ)n, “perpendicular”, (5.5)

directions, where ℓ|| = ℓ · ℓ̂||, λ = ℓ · λ̂, and ξ = ℓ · ξ̂.

To estimate a component structure function for the entire dataset, we adopt the

methodology outlined in (Verdini et al., 2018). For each selected interval, j, within the

dataset, we compute the structure functions SF n
j (ℓ, θB, ϕδB⊥) for the three orthogonal

components, as defined by Equations 5.3 to 5.5. Considering the substantial variation in

the root mean square (rms) of fluctuations between intervals, normalization is a critical

step prior to averaging these intervals. The normalization involves selecting a specific

scale, ℓ∗, and normalizing each SF n
j by the energy of fluctuations at that scale. We

determine an appropriate ℓ∗ by estimating the trace structure function Snj (ℓ) for each

interval and identifying a scale range where power-law behavior is consistent across all

Snj (ℓ). The fluctuation energy at scale ℓ∗ is given by the value of the trace structure

function Si(ℓ∗).

The normalized weighted average structure function for a given magnetic field compo-

nent is then calculated as follows:

S̃F
n
(ℓ, θB, ϕδB⊥) =

∑
j

SF n
j (ℓ, θB, ϕδB⊥)

Snj (ℓ∗)
Wj, (5.6)

where Wj = nj(ℓ, θB, ϕδB⊥)/n(ℓ, θB, ϕδB⊥) represents the weighting factor, with

nj(ℓ, θB, ϕδB⊥) being the total number of measurements within each bin for the interval

under consideration, divided by the count in each bin for the whole data set, n =
∑

j nj.
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Figure 5.1: The local 2-point structure functions (circles) and 5-point structure functions
(squares) averaged for the five most highly Alfvénic intervals within our dataset. The
structure functions are displayed for the parallel, perpendicular, and displacement direc-
tions, indicated by red, black, and blue colors, respectively. Reference lines representing
scalings of 1/2, 2/3, and 1 are included for comparison.

Our subsequent analysis, as discussed in Section 5.2.2, relies on these conditionally

defined structure functions, utilizing data from the first perihelion of the Parker Solar

Probe (PSP). Unless specified otherwise, the results in the following analysis are derived

from estimating 5-point structure functions.6

5.1.3 Data Set

We analyze magnetic field and particle data collected during the first perihelion of the

PSP mission, covering the period from November 1 to November 11, 2018. Specifically,

we analyze magnetic field measurements obtained by the FIELDS instrument (Bale

et al., 2016). In particular, we make use of the SCaM data product, which combines

measurements from fluxgate and search-coil magnetometers (SCM) by using frequency-

dependent merging coefficients. This approach allowed us to observe the magnetic field

over a frequency range ranging from direct current (DC) to 1 MHz while achieving optimal

signal-to-noise ratio (Bowen et al., 2020b). The FIELDS magnetometer suite is susceptible

to narrow-band coherent noise stemming from the spacecraft reaction wheels, including

their rotation frequencies, as well as harmonic and beat frequencies. To address potential

6The algorithm detailed in this section, along with a package for downloading, cleaning, and processing
PSP data, is readily accessible in MHDTurbPy (Sioulas, 2023).
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Figure 5.2: Overview of E1: (a) Magnetic field timeseries, radial component, BR (blue)
and magnitude, |B| (black); (b) Solar wind speed, Vsw (black, left axis) and proton
temperature, Tp (blue, right axis); (c) Normalized cross helicity, σc (black) and normalized
residual energy, σr (red); (d) Plasma β (black, left axis) and Alfvénic Mach number,
Ma = VR/|Va| (blue, right axis); (e) Variance anisotropy, E = (b2T + b2N)/b2R, where b
represents the rms amplitude of fluctuations (black, left axis) and angle between the
magnetic field and velocity flow, ΘV B (blue); (f) Sampling angle, ΘR, defined as the angle
between R̂ and V sc − V sw (black, left axis), and radial distance from the Sun, R (red,
right axis). Additionally, three intervals denoted as Ij, j = 1, 2, 3 and marked with
black, pink, and cyan shadings on the main figure. The corresponding 5-point structure
functions of the parallel, perpendicular, and displacement directions, denoted by red,
transparent black, and blue colors, respectively, are shown in panels (g)-(i). In addition,
the trace structure function is shown in black circles. Reference lines representing scalings
of 1/2, 2/3, and 1 are included for comparison.
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contamination of magnetic field measurements at ion-scales by the reaction wheels, for

each interval, we implement a procedure involving the identification and elimination of

reaction wheel noise using the method detailed in Shankarappa et al. (2023).

Moreover, we incorporated data from the Solar Probe Cup (SPC) instrument, which

is part of the Solar Wind Electrons Alphas and Protons (SWEAP) suite (Kasper et al.,

2016), to estimate bulk plasma properties. We also utilized Quasi Thermal Noise (QTN)

electron density measurements (Moncuquet et al., 2020b; Pulupa et al., 2017). To enhance

statistical robustness and expand the sample size, the data were segmented into 12-hour

intervals. These intervals were designed to overlap by 6 hours to maximize data utilization.

We then conditioned the intervals based on σc, selecting only those with an average value

of σc(ℓ∗) ≥ 0.75, where ℓ∗ = 104di. This methodology yielded a total of 82 intervals,

sampled at distances ranging from 0.166 to 0.244 au.

5.1.4 Results

5.1.4.1 A Comparison of SF n
5 and SF n

2

This section is dedicated to a comparative analysis aimed at substantiating our preference

for the 5-point structure function method over the traditionally favored 2-point approach.
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Table 5.1: The median values for the spectral indices of the trace, parallel, perpendicular,
and displacement components of the magnetic field in the ranges R1 and R2. These indices
are derived from the corresponding scaling indices of SF 2

5, i, utilizing the relationship
αi = −1−βi (Monin and Jaglom, 1987). The error values provided represent the standard
deviation of the mean.

α αℓ|| αλ αξ

R1 −1.79 ± 0.06 −1.97 ± 0.05 −1.64 ± 0.04 −1.94 ± 0.06
R2 −1.53 ± 0.02 −1.66 ± 0.05 −1.49 ± 0.03 −1.56 ± 0.08

To this end, we calculated second-order structure functions for the parallel, perpendicular,

and displacement components according to Equations 5.3 to 5.5, setting ω = 5.

The local 2-point structure functions (circles) and 5-point structure functions (squares)

averaged for the five most highly Alfvénic intervals within our dataset are illustrated in

Figure 5.1. To highlight specific scale ranges, pink and gray shadings are employed for

intervals 8−100di (labeled R1) and 200−6000di (labeled R2), respectively. At large scales,

comparable results are obtained from both the 5-point and 2-point methods. However,

a marked divergence is observed in the R1 range. The 5-point method reveals steep

scaling for parallel and displacement components, with indices βℓ|| ≈ βξ ≈ 1, aligning

with wavelet-derived parallel component scaling of the same dataset reported in (Sioulas

et al., 2023). In contrast, the 2-point method produces a notably flatter slope.

The distinction between the two methods becomes stark at kinetic scales, highlighting

the 2-point method’s limitations in detecting steep scalings. This shortfall is further

evident when comparing B-trace wavelet structure functions using both the SF 2
2 and SF 2

5

methods; only the 5-point approach produces scalings that align with wavelet analyses

across scales from injection to kinetic (details not shown here). This inconsistency

underscores potential inaccuracies when employing the 2-point method in scenarios

characterized by steep scaling7. Therefore, for our further analyses, we have chosen to

7A cautionary note is warranted: when comparing SF 2
5 with wavelet-derived trace structure functions

for intervals observed in later PSP encounters —characterized by shallower than 1/f energy injection
scale power spectra (Huang et al., 2023; Davis et al., 2023)— SF 2

5 fails to replicate the wavelet scalings.
This indicates that SF 2

5 , similar to its SF 2
2 counterpart, is ineffective under conditions with scalings

shallower than 1/f .
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rely on the 5-point method.

Across all examined intervals, the results remained qualitatively consistent. Three

such intervals are illustrated in panels (g)-(h) of Figure 5.8. In addition to the component

structure functions, these panels also illustrate the trace structure function estimated

for the respective intervals. It can be observed that the perpendicular component can

significantly diverge from the trace, while the latter typically shows remarkable overlap

with the displacement component, with the difference becoming more pronounced towards

smaller scales.

Table 5.1.3 presents the median SF 2
5 scalings estimated across the R1 and R2 ranges

for the entire dataset.

5.1.4.2 Power & wavevector anisotropy

To examine the scale-dependent three-dimensional anisotropy in our dataset, we calculated

SF 2
5 (ℓ), following the methodology outlined in Equations 5.3 to 5.5, setting ω = 5. Our

analysis commenced by identifying the anisotropic relationships for individual intervals,

then proceeded to compute a scale-dependent median for the entire dataset, utilizing 150

logarithmically spaced bins.

Panels (a) and (b) of Figure 5.3 illustrate the anisotropic relationships ℓ||(λ), and

ξ(λ), derived by equating pairs of structure functions: SF 2
5 (λ) with SF 2

5 (ℓ||), and SF 2
5 (λ)

with SF 2
5 (ξ), respectively. The aspect ratios ℓ||/λ and ξ/λ are represented by gray lines

in their respective panels. Panel (c) focuses on power anisotropy, illustrating the ratios

SF 2
5 (λ)/SF 2

5 (ℓ||) and SF 2
5 (λ)/SF 2

5 (ξ) in red and blue, respectively. The median values of

the dataset’s anisotropic scalings are summarized in Table 5.1.4.2.

At large scales, our observations reveal a rough equipartition of the fluctuating energy

between SF 2
5 (λ) and SF 2

5 (ℓ||), with SF 2
5 (ξ) being slightly more energetic. The energy

distribution is reflected in the wavevector anisotropy and aspect ratios, indicating that

eddies tend to be slightly compressed along the fluctuation direction.

Within the R2 range, we note that the fluctuating magnetic energy is distributed

170



Figure 5.4: 3D representation of turbulence eddies obtained by estimating isosurfaces of
constant energy of SF 2

5 at different levels, ranging from small scales (top left) to large
scales (bottom right). The color scheme, although redundant, indicates the distance from
the origin (0,0,0). Additionally, projections of the object onto each respective plane are
displayed. While the projections share a common colormap to denote the distance from
each plane’s origin, the colormap for the 3D object differs.
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Table 5.2: Median values of the scaling indices for wavevector anisotropies, specifically
ℓ|| ∝ λ

wℓ|| and ξ ∝ λwξ , and the power anisotropies Eλ/Eℓ|| ∝ λ
pℓ|| and Eλ/Eξ ∝ λpξ .

These indices were derived by applying a power-law fit to the curves obtained from
individual intervals over the scale ranges R1 and R2. The table presents the median values
along with their associated errors, represented as the standard deviation of the mean.

wℓ|| wξ pℓ|| pξ

R1 0.89 ± 0.06 0.77 ± 0.05 −0.31 ± 0.04 −0.30 ± 0.07
R2 0.86 ± 0.08 0.99 ± 0.06 −0.19 ± 0.05 −0.09 ± 0.06

almost evenly between the perpendicular and displacement components. This observation

suggests rough axisymmetry of the turbulent eddies at these scales, i.e., approximate

isotropy in the plane perpendicular to Bℓ. The aspect ratio ξ/λ is observed to be close

to, yet marginally greater than, unity, displaying only a slight increase within R2. This

trend is further emphasized by the scale-dependent power-anisotropy depicted in panel

(c). In contrast, within this range, eddies exhibit elongation along Bℓ, as indicated by

the ratio ℓ||/λ, which is greater than 1 and shows a monotonic increase towards smaller

scales. These findings collectively indicate that turbulent eddies within the R2 range

predominantly exhibit a field-aligned tube topology, consistent with the results presented

in (Vinogradov et al., 2023). This is visually demonstrated in Figure 5.4. At scales smaller

than λ ≲ 100di, a noticeable shift from isotropy in the plane perpendicular to Bℓ becomes

evident. This shift is highlighted by a gradual increase in the aspect ratio ξ/λ, indicating

a transition of eddy structures from tube-like to ribbon-like. The evolving eddies exhibit

three-dimensional anisotropy, adhering to the relationship ℓ|| ≫ ξ ≫ λ. This trend

persists into the smaller-scale end of the R1 range, where both power-anisotropy ratios

follow a scaling of approximately -1/3. Additionally, within R1, the ratio ℓ||/λ continues

to rise, albeit at a reduced rate compared to the 100 − 600di range, where ℓ|| ∝ λ0.72±0.04.

This slower rate of increase within R1 can be attributed to the steepening of SF 2
5 (ℓ||) at

scales marginally larger than R1.

As we move below the R1 range and into the transition region (Sahraoui et al.,

2009; Bowen et al., 2020a), the previously observed trend of increasing anisotropy ceases.

Within the scale range of 2di ≲ λ ≲ 8di, the eddies start to demonstrate more isotropic
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characteristics. This tendency towards isotropy peaks at λ = 2di, where the aspect

ratio reaches λ : ξ : ℓ = 1.56 : 1 : 1. Throughout this scale range, the anisotropic

scaling relations —derived from fitting curves to individual intervals and estimating the

median values, presented along with the standard deviation of the mean— conform to

ℓ|| ∝ λ2.01±0.06 and ξ ∝ λ1.25±0.05.

At even smaller scales, distinct scaling anisotropies characterize two separate ranges.

Within 1di ≲ λ ≲ 2di, the ratio ℓ||/λ shows an upward trend, following ℓ|| ∝ λ0.67±0.02,

while the ratio ξ/λ remains relatively stable, adhering to ξ ∝ λ0.98±0.04. These findings

stand in contrast to standard kinetic Alfvén wave (KAW) turbulence models (Howes

et al., 2008; Schekochihin et al., 2009a) and deviate statistically from in-situ observations

reported in (Duan et al., 2021; Zhang et al., 2022). However, they are in agreement with

the intermittent KAW model proposed by (Boldyrev and Perez, 2012) and align with

numerical kinetic simulations by (Cerri et al., 2019), as well as in-situ observations in the

magnetosheath (Wang et al., 2020). At yet smaller scales, 0.5di ≤ λ ≤ 1di, both ℓ||/λ and

ξ/λ ratios exhibit an increase, scaling as ℓ|| ∝ λ0.5±0.05 and ξ ∝ λ0.87±0.04, respectively.

Figure 5.4 presents a three-dimensional representation of turbulence eddies, illustrating

isosurfaces of SF 5
2 at various scales. This visualization was achieved by estimating

conditional SF 2
5 (ℓ, θB, ϕδB⊥) , according to Equation 5.2, and utilizing 5◦ angular

bins. The spherical polar coordinates (ℓ, θB, ϕδB⊥) obtained from this process were

then converted into Cartesian coordinates (ℓ||, ξ, λ). Surfaces computed for the first

octant were mirrored across to the other octants, based on the assumption of reflectional

symmetry (Chen et al., 2012). In the 3D visualization, surface colors represent the

distance from the origin, with cooler colors indicating larger distances. When these

surfaces are projected onto different planes, the color denotes the distance from the origin

of each respective plane. It is important to note that the colormap applied to these planar

projections differs from the one used for the 3D representation. The color coding in these

projections reflects the range of maximum and minimum distances observed across all

three components.
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Figure 5.5: The main panels depict the normalized weighted average structure functions,
S̃F

n

5 (ℓ), for (a) parallel, (b) perpendicular, and (c) displacement components, each adjusted
with a vertical offset for enhanced clarity. Prior to the weighted average estimation, each
SF n

5 (ℓ) was normalized using the value of the trace Sn5 (λ∗), where λ∗ = 2 × 103di. These
normalized averages, S̃F

n

5 (ℓ), displayed in the main figure, were used to estimate ζn for
R2, marked as gray asterisks in the insets. For ζn estimation in R1, indicated by red
asterisks in the insets, a similar normalization process was applied at λ∗ = 50di. It is
important to note that the latter normalized S̃F

n

5 (ℓ) for R1 are not depicted in the figure.
Error bars in the insets represent the uncertainty associated with the power-law fits. For
comparison, the scaling behaviors as predicted by the K41, IK, CSM15, and MS17 models
are also included.

5.1.4.3 Higher order statistics & Intermittency

We computed five-point structure functions, SF n
5 , for parallel, perpendicular, and dis-

placement components, as per Equations 5.3 to 5.5, considering orders n = 1, . . . , 10

with ω = 10. Additionally, we evaluated B-trace structure functions, Sn5 . Furthering our

analysis, we derived thenormalized weighted average, S̃F5n, for our dataset following

Equation 5.6. After identifying two distinct sub-inertial ranges displaying clear power-law

behavior, we calculated two sets of normalized structure functions. Within the R1 domain,

we normalized SF n
5 using Sn5 (λ∗), where λ∗ = 50di.

For the R2 domain, normalization employed a different scale, λ∗ = 2 × 103di. The

latter normalized structure functions, particularly for the parallel, perpendicular, and

displacement components, are depicted in Figure 5.5 panels (a) to (c), respectively. To

aid visualization, each n-th order moment was vertically offset by 10−n. Fitting each

component of S̃F
n

5 (ℓ) to a power law, ∝ ℓζn , facilitated the estimation of scaling exponents,

ζn. The resulting ζn are depicted by red asterisks for the R1 domain and gray for R2
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within the insets of the corresponding figure panels. For comparison, scaling exponent

predictions based on the theoretical models proposed by CSM15 and MS17 are also

included.

In the R2 range, the scaling exponent ζλn of the perpendicular component forms a

convex function of n, indicative of multifractal statistics and strong intermittency. This

scaling profile closely aligns with the theoretical predictions by CSM15 and MS17, showing

notable correspondence to the latter model at lower n values. For SF n
5 (ξ), the observed

scaling exponents, ζξn, slightly deviate towards shallower gradients compared to the MS17

model. The scaling exponents of the parallel component ζ
ℓ||
n exhibit a nonlinear dependence

on n, though with less pronounced concavity than the perpendicular components, and

notably diverge from the MS17 model, even at lower n values. A comprehensive discussion

of these findings and their broader implications is provided in Section 5.2.4.

In the small-scale sub-inertial range, R1, the scaling exponents for both the parallel

and displacement components display a linear relationship with n. Conversely, the

scaling exponent ζλn of the perpendicular component forms a convex function of n, albeit

demonstrating a lesser extent of non-linearity relative to that observed in the R2 range.

Overall, R1 is characterized by less pronounced intermittency signatures compared to R2,

with the observed ζn profiles deviating from the expectations set by established theoretical

models.

To further investigate multifractality and deviations from Gaussian statistics in the

magnetic field time series, we consider the Scale-Dependent Kurtosis, defined as K(ℓ) =

SF 4(ℓ)/[SF 2(ℓ)]2 (Frisch, 1995; Bruno et al., 2003). As a normalized fourth-order moment,

K(ℓ) is sensitive to extreme values of increments, allowing us to detect the tendency

of PDFs in intermittency-affected time series to exhibit increasingly flared-out tails at

smaller scales. In simpler terms, it quantifies how the “tailedness” of the distribution of

increments in a turbulent field changes across various scales.

We employ both 2-point (K2(ℓ)) and 5-point (K5(ℓ)) methods to study the fractal

properties of magnetic field time series. The resulting curves for the parallel, perpendicular,
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and displacement components of the magnetic field are illustrated in panels (a) to (c) of

Figure 5.6. At scales λ ≥ 100di, an increase in K(ℓ) is observed for all components towards

smaller scales, indicating a progressive deviation from Gaussianity in the underlying PDFs

of increments, a hallmark of multifractal statistics (Sorriso-Valvo et al., 1999).

The limitations of the 2-point method are particularly evident in the R1 range, where

it notably diverges from the 5-point approach. In the case of the perpendicular component,

K2(λ) appears to plateau at λ < 20di, consistent with the findings of (Chhiber et al.,

2021a). Conversely, K5(ℓ) maintains an increasing trend in R1, albeit with a less steep

slope compared to R2. Within the R1 range, both the parallel, K5(ℓ||), and displacement,

K5(ξ), components exhibit super-Gaussian but monofractal behavior, consistent with the

linear ζ
ℓ||
n and ζξn profiles illustrated in Figure 5.5.

At kinetic scales, both K5(λ) and K5(ξ) exhibit an increasing trend towards smaller

scales, while the behavior of the parallel component remains less distinct. This trend

in the perpendicular component diverges from the monofractal statistics observed at

sub-ion scales in several observational studies using K2 (Wu et al., 2013; Chen et al.,

2014b; Chhiber et al., 2020a). However, our findings align with hybrid and fully kinetic

simulations by (Cerri et al., 2019), where K5(λ) is demonstrated to increase above Gaussian

values throughout the sub-ion scale range. Furthermore, qualitatively consistent trends

were identified by (Alexandrova et al., 2008), who utilized wavelet-derived kurtosis to

observe a gradual increase in this measure at kinetic scales.

5.1.4.4 Scale-Dependent Dynamic Alignment & Critical Balance

We begin by examining the scale-dependent behavior of the alignment angle between the

perpendicular components of the increments, δb⊥− δu⊥ and δz+⊥− δz−⊥. Elsässer variable

increments were determined as δz±⊥ = δv⊥ ± sign(B0
r )δb⊥, where B0

r represents the 30-

minute rolling average of the radial magnetic field component, Br, used to determine the

polarity of the background magnetic field. Here, z−⊥ and z+⊥ denote inward and outward

propagating Alfvén waves, respectively. Magnetic field data were downsampled, following
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Figure 5.6: The scale-dependent kurtosis of the magnetic field, denoted as K5 and K2, is
estimated using 5-point structure functions (SF n

5 ) and 2-point structure functions (SF n
2 ),

respectively. These are plotted in red, gray and light-blue, respectively, as a function
of scale in units of ion inertial length (di) for the parallel (a), perpendicular (b), and
displacement (c) directions. Power-law fits have been applied to K5 over the region R2.

the application of a low-pass (Butterworth, 1930) filter to mitigate aliasing, to match the

temporal resolution of the ion moment data. Magnetic field data were then normalized to

velocity units using a 1-minute moving average applied to the proton density, np, time

series.

Figure 5.7a,b illustrates two sets of alignment angles: θ
ub(z)
⊥ in black, as defined by

Equation 2.27, and θ̃
ub(z)
⊥ in blue, calculated according to Equation 2.28. These sets are

referred to as Θz when discussing Elsässer variables and Θub in the context of velocity-

magnetic field fluctuations, with the angle range confined to 0◦ − 90◦, consistent with

(Podesta et al., 2009). The inset of Figure 5.7b illustrates the normalized residual energy,

σr, in red, and the normalized cross helicity, σc, in gray.

At the energy injection range, λ ≳ 2 × 104di, a trend towards tighter alignment at

smaller scales is observed, predominantly in Θub. This is accompanied by a monotonic

increase in σc and a shift of σr towards more negative values. These trends are more

pronounced over longer observational intervals, although such extended periods are beyond

the scope of this analysis.

Within the R2 range, θz exhibits negligible variation with scale. Conversely, θ̃z

reveals subtle signatures of enhanced alignment at λ ≲ 2 × 103di, coinciding with σr

transitioning from negative to positive values. Simultaneously, Θub steadily increases,
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indicating progressive misalignment between the magnetic field and velocity increments

at inertial scales.

The disparity between the two alignment definitions becomes more evident in the

R1 range, where θ̃z ∝ λ0.11. However, observations concerning this range should be

approached cautiously due to potential instrumental noise, a matter further explored in

Section 5.2.4.

What appears to solidly be the case, however, is that an inverse relationship holds

between the alignment angle and the intensity of the field gradients. This relationship

is depicted in the inset panel of Figure 5.7a, where θub is plotted across various scale-

dependent percentile bins of the Partial Variance of Increments (PVI) diagnostic, IB(t, ℓ) =

|δB(t, ℓ)|/σB, with σB representing the standard deviation calculated over a moving

window of 1 hour, (Greco et al., 2018). Specifically, at λ ≳ 2 × 102di, higher-percentile

P (IB) bins are characterized by lower average θub⊥ values. Similar results were obtained

when considering θz⊥ and segregating alignment angles based on the percentile bins of the

PVI diagnostic applied to the z+⊥ time-series, Iz+ .

Under the assumption that the cascade is local in λ, we investigated the scale-

dependence of the nonlinearity parameter χ±, according to the formulations by B06 and

CSM15: χ± = (ℓ±||,λ/λ
±)/(δz∓λ /Va)sinθ

z. The analysis of outgoing (χ+) and ingoing (χ−)

waves, depicted in gray and red respectively in panel (c) of Figure 5.7, reveals that both

cascades start weak, with χ± < 1. As the cascade progresses towards smaller scales, a

significant increase in the wave to nonlinear times ratio leads to a consistent rise in χ±,

continuing until scales nearing the R2 range onset.

For the ingoing waves, a transition from weak to strong wave turbulence is noted, with

χ− > 1 at λ ≈ 3×104di. The cascade remains strong throughout the resolvable portion of

the inertial range, with χ− being scale-independent, staying close to, yet slightly greater

than, 1.

In contrast, the cascade of outwardly propagating waves remains weak within the R2

range. More specifically, χ+ shows a modest increase from approximately 0.1 at λ = 104di
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to around 0.2 at λ = 2 × 102di.

The potential inaccuracies in velocity measurements, exacerbated at smaller scales,

along with the limited resolution of velocity field data, caution against drawing definitive

conclusions about the cascades’ nature in the R1 range.

Lastly, it’s noteworthy that the definition of χ±, as proposed by GS95, was also

considered. This analysis revealed a scale dependence similar to that of χ±, but with

both χ± values being approximately twice as high.

5.1.5 Discussion

Recent in-situ observations indicate that the regime canonically identified as the inertial

range comprises two sub-inertial segments, exhibiting distinct scaling behaviors (Wicks

et al., 2011; Chhiber et al., 2021a; Sioulas et al., 2022b; Telloni, 2022; Wu et al., 2022;

Sioulas et al., 2023; Sorriso-Valvo et al., 2023).

Building on this insight, our study investigates the anisotropic properties and higher-

order statistics of the two sub-inertial ranges, utilizing a physically motivated, locally

defined coordinate system. Concurrently, we focus on evaluating the predictions of

homogeneous MHD turbulence models, grounded in the principles of critical balance and

dynamic alignment, as proposed by CSM15 and MS17.

In the ensuing section, we embark on a detailed comparison with previous theoretical,

observational, and numerical results that contextualizes our findings.

5.1.5.1 Investigating the Impact of Imbalance and Expansion on the Higher-

Order Statistics

Phenomenological treatment of homogeneous MHD turbulence (e.g., GS95, B06, CSM15,

MS17) is usually performed under the simplifying assumption of negligible cross helicity.

However, the statistical properties of solar wind turbulence vary significantly with the

degree of Elsässer and Alfvénic imbalance (Podesta and Borovsky, 2010; Chen et al.,
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Figure 5.7: Alignment angles (a) Θub(λ) and (b) Θz(λ), constrained to the range of
0◦ ≤ Θub(z) ≤ 90◦. The black curves depict alignment angles calculated with Equation
2.27, whereas the blue curves are based on Equation 2.28. The inset in panel (a) highlights
the inverse relationship between alignment angle and field gradients by color-coding
θub across scale-dependent percentile bins of IB. The i-th bin at scale λ is defined as
[10(i− 1), 10i), for i = 1, ..., 10. The inset in panel (b) displays σr(λ), in red, and σc(λ),
in gray. Panel (c) shows the nonlinearity parameter, χ±(λ), for outwardly (δz+) and
inwardly (δz−) propagating waves, depicted with gray and red lines respectively. For all
cases, results were derived by first calculating values for each interval independently and
then computing a scale-dependent median.

2013; Wicks et al., 2011; Wicks et al., 2013b; Bowen et al., 2018b; Andrés et al., 2019;

Sorriso-Valvo et al., 2021; Sioulas et al., 2023a; D’Amicis et al., 2022; McIntyre et al.,

2023a). Various models have been proposed as modifications to the frameworks of GS95

and B06, incorporating different assumptions about the turbulent cascade to address the

imbalance in oppositely directed Alfvénic fluxes (Lithwick et al., 2007; Beresnyak and

Lazarian, 2008; Chandran, 2008; Perez and Boldyrev, 2009c; Podesta and Bhattacharjee,

2010; Schekochihin, 2022). As these models omit considerations of intermittency, they

will not be elaborated upon in the ensuing discussion.

From an observational standpoint, the extent to which imbalance impacts higher-order

statistics in MHD turbulence, is largely unexplored territory. Previous investigations

have predominantly focused on categorizing findings based on wind speed or analyzing

mixed Fast/Slow streams (Horbury and Balogh, 1997b; Mangeney, 2001b; Salem et al.,

2009; Chhiber et al., 2021a; Wu et al., 2023), with a recent shift in interest towards

magnetic compressibility (Palacios et al., 2022). However, these studies often do not

explicitly detail the degree of Elsässer imbalance in the dataset, making direct comparisons
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with our observations challenging. Nonetheless, it is worth pointing out that the scaling

profiles observed in the R2 range, especially for the parallel and perpendicular components,

qualitatively align with results presented in (Osman et al., 2012).

In terms of numerical simulations, both homogeneous and inhomogeneous setups

have been employed to examine the influence of imbalance on MHD turbulence statistics.

Studies have primarily concentrated on spectral properties, revealing inertial range scalings

of αλ = −3/2 (Perez et al., 2012; Chandran and Perez, 2019; Grappin et al., 2022; Meyrand

et al., 2023).

(Shi et al., 2023a) investigated the effects of Elsässer imbalance on higher-order

statistics using both homogeneous and EBM simulations, each initialized with varying

degrees of imbalance. It was shown that EBM simulations initialized with |σc| ≈ 1

result in higher-order moment scaling exponents consistent with the predictions of the

CSM15 model. Conversely, simulations with lower values of σc exhibited scaling exponents

showing a linear dependence on order n. The study also highlighted significant differences

in higher-order scaling exponents between homogeneous and EBM simulations, even

when initialized with identical levels of imbalance. For example, scaling exponents in

homogeneous runs with σc ≈ 0 were found to be convex functions of order and closely

resembled the CSM15 model, in line with previous investigations (Chandran et al., 2015;

Mallet et al., 2015; Palacios et al., 2022). Additionally, (Shi et al., 2023a) noted that in

EBM simulations, the scaling properties displayed variations when higher-order moments

were calculated from increments sampled in directions other than radial.

The latter observation is consistent with the findings of (Verdini and Grappin, 2015),

who conducted a comparative analysis of balanced homogeneous and EBM simulations.

They observed that while the homogeneous simulations displayed three-dimensional

anisotropy, in agreement with B06—a finding further corroborated by (Mallet et al.,

2016)—the EBM simulations demonstrated axisymmetry relative toBℓ and did not exhibit

three distinct inertial range scaling laws. Specifically, EBM simulations with increments

measured along the radial direction demonstrated spectral scalings of αλ ≈ αξ ≈ −3/2 in

both the perpendicular and displacement components. However, measurements in the
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transverse direction revealed scalings of αλ ≈ αξ ≈ −5/3. In both cases, the parallel

component lacked convincing scaling properties, although it exhibited a slightly steeper

spectrum compared to the perpendicular components.

These findings lead to the following interpretation: The large-scale flow, being radial

rather than uniform, cannot be negated by a Galilean transformation. Consequently,

the expansion introduces an additional axis of symmetry and fosters a scale-dependent

competition between the mean-field and radial axes (Völk and Aplers, 1973). Intuitively

the effects of the expansion should be important when the non-linear time, τnl is slower

than the expansion of the solar wind, τexp = R/VSW , τexp ≤ τnl. Given that τnl is scale-

dependent, it logically follows that the effects of expansion are more pronounced at larger

scales8. From this discussion, it becomes evident that the expansion has the potential to

modify the local 3D anisotropy in a scale-dependent manner.

At the resolution currently achievable in (R)MHD simulations, meaningful comparisons

are possible with the larger-scale end of the inertial range, R2, spanning 200 − 6000di.

Focusing on ζλ and setting aside anisotropy, our findings are consistent with (Shi et al.,

2023a)’s imbalanced EBM results and, consequently, with the models of CSM15 and

MS17. Nevertheless, the observed discrepancies in the scaling exponents of the parallel

and displacement components within R2 could hint at the influence of expansion effects,

suggesting a scenario where the dominant axis of symmetry is a mix of both Bℓ and the

radial axis, with the contribution of each being scale-dependent.

Shifting focus to the scaling exponents in R1 (spanning 8 − 100di), recent theoretical

work suggests that under conditions of strong imbalance, generalized helicity conservation

may hinder turbulent energy transfer to kinetic scales (Passot et al., 2018; Passot and

Sulem, 2019; Meyrand et al., 2021a; Passot et al., 2022). The “helicity barrier” effect

could influence both spectral and potentially higher-order moment scalings at the smaller

end of the inertial range. Homogeneous hybrid-kinetic simulations, initialized under

strong imbalance conditions to capture this effect (Squire et al., 2022b), exhibit spectral

8Note, however, that observational evidence suggests that expansion can contaminate the turbulence
statistics even within inertial scales (Verdini et al., 2018, 2019)
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exponents for the parallel and perpendicular magnetic field components, aℓ|| ≈ −2 and

aλ ≈ −5/3 respectively, in line with observations in the R1 range.

While our current data does not definitively link our observations to the helicity barrier

effect, it underscores the necessity for more comprehensive numerical studies focusing on

the higher-order statistics of strongly imbalanced turbulence.

In conclusion, this discussion underscores the significant impact of imbalance and

expansion effects on MHD turbulence statistics, indicating that the solar wind might

not provide an ideal laboratory for evaluating homogeneous MHD turbulence models.

This realization calls for a prudent application of homogeneous, balanced turbulence

models in the analysis of solar wind observations and highlights the imperative for more

sophisticated theoretical modeling and refined data interpretation techniques.

5.1.5.2 Critical Balance (CB)

Using balanced RMHD simulations, (Mallet et al., 2015) demonstrated that although the

distributions of τnl and τA are not self-similar, their ratio, χ, maintains a scale-invariant

distribution within the inertial range. (Chhiber et al., 2020) employed balanced incom-

pressible MHD simulations to show that while the χ distribution peaks at χ ≈ 1, it is

asymmetric and skewed towards χ ≥ 1. Further reinforcing the (Chhiber et al., 2020)

findings, (Oughton and Matthaeus, 2020) highlighted that, despite RMHD simulations

producing results claimed to support CB, the similarity between RMHD’s χ ≥ 1 require-

ment and the CB condition of χ ≈ 1 has led to some confusion in differentiating these

two theoretical frameworks.

(Chen, 2016a) utilized an extensive dataset of fast wind streams with moderate cross-

helicity (σc ≈ 0.6) from the outer heliosphere to investigate the scale dependence of the

non-linearity parameter. They found χ to be scale-independent across the inertial range,

maintaining a value around χ ∼ 1. Due to the lower resolution in velocity data and a

less pronounced imbalance compared to our dataset, they assumed identical statistical

properties for the two Elssässer fields, enabling them to estimate χ = (ℓ||/λ)(δb/VA) using
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solely magnetic field data.

However, numerical simulations by (Beresnyak and Lazarian, 2008, 2009) suggest that

with increasing imbalance, statistical properties (i.e., amplitudes, coherence lengths) of

the two Elsässer species diverge progressively. Considering the strong imbalance in our

dataset, we employed a more refined approach, computing χ± = (ℓ±||,λ/λ
±)/(δz∓λ /Va)sinθ

z.

Our analysis reveals a strong cascade for the inwardly propagating waves, with χ−

remaining scale-independent across the inertial range, maintaining a value slightly above

unity. In contrast, the outwardly propagating waves exhibit a weaker cascade, with χ+

increasing from 0.1 at λ ≈ 104di to 0.2 at λ ≈ 102di

At this point, it’s important to recognize two key factors that might affect the accuracy

of our χ± estimates. First, there’s a prevailing assumption that z± structures are primarily

sheared by counter-propagating z∓ wavepackets of similar perpendicular scale, which

implies a cascade that is local in λ. However, this notion is challenged by the work of

(Schekochihin, 2022) who put forward a model of imbalanced turbulence that consists of

two strong, “semi-local” cascades: one local in λ for the stronger field and another, local

in ℓ||, for the weaker field. The implications of this model cast doubt on our estimates of

χ± that is predicated on the concept of scale locality.

Furthermore, the transition from weak to strong turbulence, characterized by a change

from χ ≪ 1 and αλ ≈ −2 to χ ≈ 1 and αλ ≈ −3/2, is a pivotal aspect of the CB

discussion. This transition, observed in balanced RMHD shell-model simulations (Verdini

and Grappin, 2012), 3D incompressible MHD simulations (Meyrand et al., 2016), and

recently in the Earth’s magnetosheath (Zhao et al., 2023), remains unreported in the

solar wind 9.

Our results indicate a transition in the cascade of the ingoing wave from weak to

strong turbulence, with χ− > 1 at λ ≈ 3 × 104di, yet without capturing the anticipated

scaling transition. We speculate, below, that this could be related to the effects of

9Even though such a transition was speculated in recent works (Telloni, 2022; Wu et al., 2022; Sioulas
et al., 2023)
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“anomalous coherence”. More specifically, in the context of homogeneous MHD, nonlinear

interactions between counterpropagating waves are uncorrelated and transient, limited

to the duration of encounters. In the solar wind, however, nonlinear dynamics are

complicated by anomalous coherence, a phenomenon arising from non-WKB reflection

of outwardly propagating fluctuations (Velli et al., 1989; Velli et al., 1990; Hollweg and

Isenberg, 2007). A key aspect of this effect is the presence of an “anomalous” reflected

component, z−a , in addition to the “classical” component z−c , which remains stationary

relative to the z+ frame, coherently shearing it throughout its lifetime (Verdini et al., 2009;

Chandran and Perez, 2019). Under strong imbalance and inhomogeneity, z−a can assume a

leading role at large scales, altering the phenomenology of the energy cascade and leading

to distinct spectral behaviors: a 1/f scaling for outwardly propagating waves and an

f−3/2 scaling for inwardly propagating waves (Velli et al., 1989; Perez and Chandran,

2013; Meyrand et al., 2023).

In summary, our results suggest that at inertial scales, outgoing waves experience

a weak cascade, while ingoing waves undergo a strong one, closely resembling the CB

condition (χ−
ξ ≈ 1). However, given the complexities previously discussed and the

uncertainties inherent in our measurements, we advise interpreting these findings with a

degree of caution.

5.1.5.3 Scale Dependent Dynamic Alignment (SDDA)

Several numerical investigations into homogeneous (R)MHD (Mason et al., 2006; Perez

et al., 2012, 2014; Cerri et al., 2022) have provided ample evidence for alignment signatures

spanning a significant portion of the inertial range. However, (Beresnyak, 2012, 2014)

have suggested that this observed alignment increase may be a finite-range phenomenon

closely linked to dynamics at the outer scale.

Observational studies using data sampled at 1 AU have provided evidence of alignment

at large, energy-containing scales. However, it has been observed that this trend towards

increasing alignment diminishes at inertial scales (Podesta, 2009; Hnat et al., 2011; Wicks
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et al., 2013a; Parashar et al., 2019). This trend persists even in data intervals specifically

chosen to mitigate the effects of solar wind expansion (Verdini et al., 2018). It has been

noted, however, that small errors in velocity vector measurements, due to instrumental

limitations, can lead to significant errors in alignment angle measurements, even at large

scales (Podesta et al., 2009).

Recently, (Parashar et al., 2020) explored the scale dependence of several alfvénicity

diagnostics during E1 of PSP. Their findings suggest that σc starts decreasing, with

σr increasing, at scales considerably larger than those observed at 1 AU (Podesta and

Borovsky, 2010), despite high alfvénicity at large scales. This observation aligns with

HELIOS observations (Tu et al., 1990) and has been attributed to the substantial energy

found in velocity shears in the inner heliosphere (Ruffolo et al., 2020). Specifically, shear

disrupts an initial spectrum of high cross helicity by injecting equal amounts of the two

Elsässer energies (Roberts et al., 1987; Goldstein et al., 1989; Roberts et al., 1992).

The scale-dependence of the alignment angles correlates directly with that of σc

and σr, as only two out of these four quantities are independent. Specifically, the

formal relationship between imbalance, residual energy, and alignment, as described by

cosθz⊥ = σr/(1 − σ2
c )

1/2 and cosθub⊥ = σc/(1 − σ2
r)

1/2 , indicates that the development of

both Elsässer imbalance and residual energy, i.e., a monotonic increase in |σc| and |σr|
towards smaller scales, is necessary for SDDA to emerge towards smaller scales (Wicks

et al., 2013a; Schekochihin, 2022).

Such trend is evident in Figure 5.7, where alignment signatures become apparent only

when σc exhibits a monotonic increase at scales λ < 104di, or when σr becomes positive,

leading to a monotonic increase in |σr| at scales λ < 2 × 103di. Although instrumental

noise might influence the latter trend, as discussed in (Bourouaine et al., 2020), the

observed behavior at energy injection scales aligns with 1 AU observations (Wicks et al.,

2013a). In contrast, in the inertial range, θz(≈ 35◦) remains roughly scale-independent.

These observations raise a critical question: Is the observed scale-dependence of the

alignment a reflection of actual physical processes, or might it simply be a consequence of
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instrument characteristics?

Potential physical mechanisms may encompass interactions between compressive and

non-compressive modes (Cho and Lazarian, 2003; Chandran, 2005), ideal MHD instabilities

manifesting in the solar wind, including the Kelvin-Helmholtz instability (Malagoli et al.,

1996), the cessation of the aligning cascade due to the tearing instability (Mallet and

Schekochihin, 2017; Boldyrev and Loureiro, 2017; Comisso et al., 2018), or even the

solar wind’s inherent inhomogeneity resulting in non-WKB reflections and a reduction in

cross-helicity.

The extent to which instrumental noise influences these observations remains a crucial,

yet unresolved, concern, emphasizing the necessity for a careful interpretation of observa-

tional data. While our analysis cannot definitively assert the nature of SDDA at small

scales, it provides compelling observational evidence suggesting an inverse relationship

between alignment angles and the intensity of field gradients, thereby corroborating the

numerical results of (Mallet et al., 2015). As such, our observations lend support to the

CSM15 model, suggesting that the physical basis of alignment lies in the mutual shearing

of Elsässer fields during imbalanced collisions between counterpropagating wave packets.

Before concluding, another topic related to our findings deserves further discussion.

Our observations indicate strong anti-alignment between Elsässer species at larger scales,

with σc ≈ 1 and typically small and negative σr, implying, as suggested by (Wicks et al.,

2013a), cosθz⊥ ≈ 180◦ at λ ≈ 104di. It is natural, then, to inquire how this picture would

be modified in the case of globally balanced streams. For instance, as emphasized in

CSM15, outer-scale fluctuations in the context of globally balanced turbulence are not

expected to be strongly aligned. This suggests that while imbalanced turbulence may

exhibit alignment saturation at larger scales, balanced turbulence has the potential for

further alignment, assuming that σc has room to increase at smaller scales. Thus, the

dynamics of alignment across scales in balanced turbulence present an intriguing area for

future research, particularly in comparing the extent of this alignment process with that

in imbalanced streams. This aspect warrants further investigation and will be the focus

of future work.

187



5.1.5.4 Exploring the Efficacy of the CSM15 & MS17 Models in the Context

of Imbalanced Turbulence

Our results indicate that the intermittent scalings of the nth-order conditional structure

functions in the direction perpendicular to both the local mean field and the fluctuation

directions closely align with the theoretical frameworks proposed by CSM15 and MS17.

However, our dataset exhibits notable characteristics that diverge from the assumptions

underlying these models. These include strong imbalance in the fluxes of the Elsässer

species and a prevalence of eddies conforming to a field-aligned tube topology, which, on

average, do not display increasing alignment towards smaller scales. At first glance, these

observations might seem contradictory to the expectations set forth in the aforementioned

models. Nevertheless, upon closer examination of the model’s fundamental assumptions,

it becomes apparent that these empirical findings are not inconsistent with the model’s

theoretical framework.

In Section 1.3.6, we examine the foundational assumptions of the CSM15 and MS17

models. These assumptions encompass (1) negligible cross helicity at energy injection

scales and (2) the formation of eddies following a current sheet topology, characterized by

a volume filling factor fcs ∝ λ, alongside the dynamic alignment of vector field fluctuations

at smaller scales. The models incorporate alignment as an intermittency effect, resulting in

(1) the inherent introduction of local Elsässer imbalance and (2) the lack of a requirement

for the “average” eddy to adhere to a 3D anisotropic current sheet topology. The models

propose that it is the eddies in the tails of the PDFs that are expected to exhibit this

topology, showing increased alignment at smaller scales. In essence, an inverse correlation

between alignment and the intensity of field gradients is anticipated at any given scale.

When second-order moments are employed to examine the statistical shape of eddies,

the high-amplitude, current-sheet-like structures found in the tails of the increment PDFs

are typically obscured during the averaging process by more common, lower-amplitude,

tube-like eddies. However, as higher moment orders are considered, these high-amplitude

structures gain more prominence in the ensemble average, thereby significantly impacting
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the profile of the scaling exponents.

Given that fluctuations in the perpendicular component are energetically dominant,

any “side effects” stemming from the disruption of anisotropy due to expansion, and

possibly from constraints imposed by spherical polarization (Matteini et al., 2024), do not

seem to significantly impact the scaling characteristics of the perpendicular component.

However, they do appear to influence the scaling profiles of the displacement and parallel

components. Hence, incorporating these effects into the existing homogeneous models

could potentially enhance the scaling predictions of these models and offer valuable

insights into the nature of intermittent turbulence in the expanding solar wind.

5.1.5.5 Observations of the outer scale

At large energy-containing scales, as depicted in Figure 5.3, the parallel and perpendicular

components display rough equipartition in fluctuating energy. However, the displacement

component appears somewhat more energetic in comparison. Consequently, eddies deviate

from isotropy, exhibiting a subtle compression along the fluctuation direction.

Our findings contrast with those of (Chen et al., 2012), who observed eddy elongation

along the displacement direction (ξ̂) at large scales in fast solar wind data at 1.4 AU.

To delve deeper into these findings, (Verdini and Grappin, 2015) conducted a compar-

ative analysis using 3D MHD homogeneous and EBM simulations. They found isotropic

eddies at energy injection scales in non-expanding simulations. However, in expand-

ing simulations where increments were measured along the radial direction (typical for

single-spacecraft missions at 1 AU), results aligned with those reported by (Chen et al.,

2012). Interestingly, large-scale anisotropy disappeared, and eddies appeared isotropic

when increments were measured in non-radial directions. This was interpreted as an

effect of expansion, which preferentially dampens the radial component of magnetic field

fluctuations relative to the azimuthal ones, confining fluctuations primarily to the plane

orthogonal to the radial direction and leading to an anisotropic energy distribution among

the field components. This phenomenon was observed in 3D EBM simulations (see e.g.,
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Dong et al., 2014).

In a more recent study, (Verdini et al., 2018) analyzed a decade of data from the

Wind spacecraft and identified a correlation between large-scale anisotropy and variance

anisotropy, defined as E = (b2T + b2N)/b2R, where b represents the rms amplitude of

fluctuations. They found that intervals corresponding to the “strong” expansion dataset

(defined by E > 2) exhibited eddy elongation along the displacement direction, consistent

with (Chen et al., 2012). Conversely, intervals from the “weak” expansion dataset (with

E ≤ 2) showed eddy elongation along the perpendicular direction (λ̂).

Based on these results, (Verdini et al., 2018) suggested that PSP, due to its unique

orbit– allowing measurements perpendicular to the radial direction during its near-sun

phase– would detect isotropic eddies at energy injection scales.

To overcome the limitations of single spacecraft measurements, (Vech and Chen, 2016)

adopted a multispacecraft approach, enabling the separation of measurements along

both radial and transverse directions. This strategy facilitated the isolation of expan-

sion, solenoidality, and the mean magnetic field effects. Their investigation underscored

the dominant role of the solenoidality constraint (Turner et al., 2011) over expansion

in contributing to the observed variance anisotropy, E (see e.g., Horbury and Balogh,

2001). They further noted that while some anisotropy, as observed with radial incre-

ments, stemmed from expansion, a reduced yet noticeable degree of anisotropy persisted

when measurements were conducted along the transverse direction. This suggests the

involvement of additional mechanisms in shaping the large-scale 3D anisotropy.

Recent in-situ observations have shed light on the decay observed in the radial

component within the inner heliosphere, indicating that it cannot be solely attributed

to expansion effects. Specifically, analysis of data from PSP and HELIOS by (Tenerani

et al., 2021) demonstrated that the rms of fluctuations in the radial component decays at

a slower rate compared to that of the perpendicular component. This phenomenon was

further clarified by (Matteini et al., 2024), who attributed it to the tendency of magnetic

field fluctuations in the solar wind to evolve towards a state of spherical polarization. The
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spherical polarization imposes constraints on the radial component’s rms fluctuations,

leading to a decay described, particularly at large scales, by br ∼ b/2B (see also, Squire

et al., 2020; Mallet et al., 2021).

Returning to our findings, we observe only a slight deviation from isotropy at the

outer scale, which is notable considering that our dataset falls within the strong expansion

category, with an average variance anisotropy of E ≈ 4.26 ± 3.51. Additionally, the

sampling angle consistently falls within the range of θR ∈ [160◦, 180◦], indicating quasi-

radial sampling. Despite identifying several intervals among multiple PSP encounters that

exhibit isotropic large-scale eddies, no clear correlation has emerged from this preliminary

analysis between prevailing plasma signatures (e.g., E, σc, σr, θR) and the occurrence of

such intervals.

Taking into account the subtleties revealed by the recent observations discussed above,

we must recognize our current inability to offer a satisfactory explanation for the observed

configuration of the large-scale eddies in our dataset. However, the differences noted in the

near-Earth and near-Sun eddies could indicate preferential damping in the fluctuations

of the displacement component of the magnetic field. To clarify this aspect, it would be

worthwhile to explore the development of the large-scale eddies at varying heliocentric

distances.

5.1.5.6 Isotropization of eddies at small scales

Figure 5.4 illustrates that within the R1 range, the eddies display increasing anisotropy,

resembling ribbon-like structures towards smaller scales. However, the trend of increasing

aspect ratio ceases at λ ≈ 2di, at which point the eddies transition toward a quasi-isotropic

state. In the following, we discuss two potential mechanisms that could explain these

observations.

The observed transition towards isotropy at smaller scales is consistent with the idea

that thin, long-lived current sheets generated by the turbulent cascade can be disrupted

by the tearing instability and subsequent reconnection (Furth et al., 1963). Specifically,
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when the maximum growth rate of the (Coppi et al., 1976) mode, γt, representing the

fastest tearing mode in an MHD sheet, becomes comparable to the non-linear cascade

time τnl (γtτnl ≳ 1), the stability of the current sheets is compromised (Pucci and

Velli, 2014; Uzdensky and Loureiro, 2016). The instability leads to the fragmentation

of the dynamically forming sheets into flux ropes, which exhibit isotropy in the plane

perpendicular to the magnetic field. This phenomenon is expected to occur at scale, λD,

beyond which the nature of the MHD cascade undergoes a significant transformation. The

disruption of the current sheets affects the dynamic alignment, accelerating the turbulent

cascade and resulting in a noticeable steepening of the power spectrum (Mallet et al.,

2017; Loureiro and Boldyrev, 2017; Boldyrev and Loureiro, 2017).

While this mechanism appears feasible for balanced turbulence, as evidenced by

observations in the solar wind (Vech et al., 2018) and more recent findings in 3D fully-

compressible (Dong et al., 2022) and reduced (Cerri et al., 2022) MHD simulations, it’s

important to acknowledge that the cutoff of the inertial range in imbalanced turbulence

might also be influenced by kinetic effects. Therefore, despite the observation of a sub-ion-

scale range mediated by magnetic reconnection in 2.5D hybrid-kinetic simulations (Cerri

and Califano, 2017; Franci et al., 2017), other kinetic-scale mechanisms in imbalanced

turbulence could potentially contribute to eddy isotropization. For instance, an alternative

explanation for the isotropization of the eddies at small scales could be associated with

the recently discovered “Helicity Barrier” mechanism (Passot et al., 2018; Passot and

Sulem, 2019; Meyrand et al., 2021a; Passot et al., 2022).

As discussed in the introduction, strongly magnetized (low-beta) collisionless plasmas

exhibit nonlinear conservation of both energy and cross helicity. However, the conserved

quantity in reality is termed “generalized helicity.” At k⊥ρi ≲ 1, this corresponds to the

cross helicity following a forward cascade, which conservatively transforms into magnetic

helicity at k⊥ρi ≳ 1, undergoing an inverse cascade. Consequently, an imbalanced cascade

arriving from the inertial range faces a complication—the sudden need to reverse the

direction of the generalized helicity cascade. The helicity barrier impedes the viability of

a constant-flux cascade, leading to an accumulation of energy in the stronger Elsässer
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field. This accumulation shortens τnl, reducing the parallel correlation length, in line

with the CB theory, to the extent that turbulent energy is redirected into an (ICW;

(see, Stix, 1992)) spectrum. This mechanism opens up a new dissipation channel via the

ion-cyclotron resonance (Squire et al., 2022c).

ICWs are commonly observed in the nascent solar wind, particularly during intervals

marked by (anti)alignment between the mean magnetic field and solar wind flow direction

(Bowen et al., 2020b). A strong correlation exists between the presence of ion-scale waves

and the level of imbalance of fluctuations at inertial scales (Zhao et al., 2022; Bowen et al.,

2023). The presence of ICWs can significantly impact the power spectra of magnetic

fields at ion kinetic scales (Bowen et al., 2020b; Shankarappa et al., 2023). Specifically,

the bump observed in the parallel spectrum just before the transition region has been

attributed to the presence of ICWs, suggesting that the isotropization of the eddies could

be a consequence of the helicity barrier mechanism.

The main emphasis of this analysis is on the inertial and energy injection scales. The

extended interval size allows for more reliable estimates of second-order moments and,

consequently, the anisotropic curves presented in Figure 5.3. However, no effort has been

made to account for the energy contribution ICWs. Due to the strong correlation between

the presence of ion-scale waves and Elsässer imbalance, simply disregarding intervals with

ICW wave signatures (Duan et al., 2021; Zhang et al., 2022) may impede our investigation

into kinetic-scale turbulence statistics in strongly imbalanced intervals. An alternative

approach would entail identifying and eliminating the energy attributed to ICWs from

the observed energy spectrum (see e.g., Shankarappa et al., 2023; Wang et al., 2023), and

examining the resulting anisotropy based on the parallel and perpendicular spectra. This

will be the focus of an upcoming study.

5.1.5.7 Can the trace PSD be interpreted as the perpendicular PSD ?

The theoretical models discussed in Section 1.3.5 provide scaling predictions for the

parallel, perpendicular, and displacement components of fluctuating fields.
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However, the angle between the solar wind flow and the magnetic field, as observed

by spacecraft, can significantly influence whether fluctuations in measured quantities vary

parallel or perpendicular to the magnetic field. Due to the Parker Spiral configuration

(Parker and Tidman, 1958), the baseline value of the angle between the solar wind flow and

the magnetic field, denoted as ΘV B, increases with heliocentric distance. Consequently,

spacecraft measuring magnetic field fluctuations at 1 AU are more likely to detect

fluctuations perpendicular to the mean magnetic field direction.

Considering the strongly anisotropic nature of the turbulent cascade, with the majority

of power associated with perpendicular wavenumbers (Shebalin et al., 1983; Montgomery

and Turner, 1981; Horbury et al., 2008), observational studies have traditionally estimated

the trace PSD and interpreted these measurements as representative of the perpendicular

spectrum. However, as the PSP moves closer to the Sun, both the flow and the magnetic

field become predominantly radial. Consequently, PSP often detects variations parallel

-resulting in a deficit of measurements perpendicular- to the magnetic field. This can

impact the statistical signatures of MHD turbulence, including intermittency (Sioulas

et al., 2022b), estimates of correlation lengths (Cuesta et al., 2022), etc. As shown in

Figure 5.8, the deficit caused by the sample size of the perpendicular fluctuations due to

quasi-parallel sampling can also result in strong deviations between the perpendicular

and trace PSD. This effect becomes even more important at later PSP encounters, and

thus caution should be exercised when trying to utilize the trace PSD to compare with

perpendicular PSD predictions of theoretical models.

5.1.5.8 Assessing 2-Point Structure Functions for Small-Scale Turbulence

Analysis

The departure from monofractal statistics, exemplified by the adoption of SF n
5 , underscores

the inadequacy of the SF n
2 method for statistical analysis of MHD turbulence at smaller

spatial scales. Specifically, the SF n
2 method lacks accuracy in capturing the scaling

behavior at these scales, where steep scaling in the power spectra and higher-order
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moments are frequently seen. This deficiency can result in imprecise estimations of all

associated intermittency metrics, leading to potentially erroneous interpretations of the

nature of the turbulent cascade.

The prolonged duration of the intervals examined in this study, which may not be

optimal for a concentrated analysis at kinetic scales, in conjunction with the limitations

posed by the presence of ICWs as discussed in Section 5.1.4.2, underscores the need for

further investigation. Future studies should consider employing either 5-point or wavelet-

derived structure functions, with a specific emphasis on distinguishing between balanced

and imbalanced turbulence streams (see, e.g., Bowen et al., 2023). This comprehensive

exploration is essential for achieving a deeper and more precise comprehension of the

fractal properties of MHD turbulence at kinetic scales.

5.1.5.9 Limitations

In addition to the limitations associated with velocity measurements discussed earlier, it

is essential to acknowledge further inherent limitations in the analysis presented in this

study.

5.1.5.10 Finite sample size effects

The proper study of MHD turbulence hinges on the ability to sample plasma from a

common solar source, typically a single solar wind stream, and gather a sufficiently

large sample size for statistical analysis. Spectral properties alone are insufficient for

assessing scale invariance and fractal properties; higher-order moments are necessary.

While evaluating structure functions is generally straightforward, estimating scaling

exponents presents pitfalls. The primary concern arises from increased sensitivity to

rare and large events as the order, p, increases. This can lead to finite sample effects

dominating the analysis, especially as emphasis shifts to the poorly sampled tails of the

distribution with higher orders. Consequently, higher-order moments become susceptible

to outliers, rendering estimates of scaling exponents increasingly unreliable (Dudok de
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Wit et al., 2013; Palacios et al., 2022). As a rule of thumb, it is generally deemed safe to

compute structure functions up to a certain order, typically defined as pmax = logN − 1,

where N represents the sample size (Dudok de Wit et al., 2013).

In our analysis, these challenges are further compounded by two factors. Firstly,

we employ conditional analysis to estimate higher-order moments in three physically

motivated directions, resulting in the exclusion of a significant portion of increments

falling outside specified angle ranges. Secondly, we utilize 5-point structure functions,

where the way increments are taken leads to a larger portion of the time series being

discarded due to edge effects.

Moreover, PSP data introduces added complexity compared to 1AU measurements,

as the distance from the Sun rapidly changes, causing large variations in the rms of

fluctuations between intervals sampled at different heliocentric distances. Consequently,

very long intervals cannot be utilized effectively.

Despite these limitations, the present analysis could be significantly improved by

adopting the method described in (Palacios et al., 2022), where a large sample of increments

from non-contiguous solar wind streams with similar characteristics can be utilized to

construct the PDFs needed to obtain higher-order moments. This approach will be the

focus of future work.

5.1.5.11 Scaling exponents of Elsässer fields.

In this study, our primary focus has been on the higher-order moments derived from the

magnetic field timeseries. However, it’s crucial to recognize that the fundamental variables

in MHD are the Elsässer fields—rather than B and V—due to their conservatively

cascading energies. Indeed, the scaling predictions provided by the CSM15 and MS17

models pertain to the scaling exponents of the Elsässer field increment moments. Therefore,

a more direct comparison with these models would entail estimating the moments of

increments in z± (see e.g., Palacios et al., 2022). However, adopting this approach would

require downsampling the magnetic field timeseries to synchronize with the cadence of

196



the velocity field data. This would lead to a notable reduction in sample size, and render

the estimation of anisotropic higher-order moments unfeasible with our current dataset.

Nevertheless, as discussed in CSM15, the regions contributing dominantly to both

types of structure functions are those where δz± exhibits exceptional magnitudes. In

these regions, one Elsässer fluctuation, e.g., δz+, typically dominates over the other,

leading to δb ≈ (1/2)δz+. Therefore, given the significant imbalance in our dataset, the

scaling exponents estimated for the magnetic field timeseries can provide a reasonable

approximation for the scaling exponents of the dominant (outgoing) Elsässer field.

5.1.5.12 Switchbacks

The near-Sun solar wind environment is characterized by the prevalent occurrence of

Switchbacks, a subset of predominantly Alfvénic fluctuations with amplitudes significant

enough to cause the magnetic field to reverse its direction abruptly, resulting in a local field

polarity reversal and a corresponding radial velocity jet (Matteini et al., 2014; Horbury

et al., 2018; Bale et al., 2019).

The question arises as to what extent these sudden reversals impact our ability to

accurately estimate the local magnetic field, and consequently, the scaling exponents of

the parallel and displacement components.

While excluding switchbacks from the analysis could potentially address this concern,

it’s noteworthy that the majority of our samples for the two perpendicular components

originate from substantial kinks in the magnetic field time series, as these events lead

to large ΘBV angles. Therefore, no attempt has been made to further clarify this

aspect. However, it is reassuring to note that the scaling exponent profiles obtained for a

substantial dataset of imbalanced Wind observations at 1 AU, where significant kinks

in the magnetic field time series typically diminish and switchbacks/switchback patches

transition into microstreams (Horbury et al., 2023; Soni et al., 2024), are qualitatively

consistent with those reported in the current analysis.
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5.1.6 Conclusions and Summary

We analyzed in-situ observations from a highly Alfvénic stream captured during Parker

Solar Probe’s first perihelion to assess the predictions of MHD turbulence models grounded

on the principles of “Critical Balance” and “Scale-Dependent Dynamic Alignment”. Our

objective was to assess the extent to which the conjectures made and predictions derived

by these models align with in-situ solar wind observations and establish solid observational

benchmarks for the testing and refinement of MHD turbulence phenomenologies.

The main findings of our study can be summarized as follows:

At the outer scale, λ ≳ 2 × 104di, we find:

(a1) Both (out)ingoing waves undergo a weak cascade, χ± < 1, that strengthens

towards smaller scales. The trend is concurrent with tighter scale-dependent dynamic

alignment (SDDA) of fluctuations, a monotonic increase in cross-helicity (σc), and a shift

towards more negative residual energy (σr) values

(a2) The ingoing waves transition to a strong cascade (χ− ≳ 1) at λ ≈ 3 × 104di;

the associated spectral scalings deviate from the expected weak-to-strong turbulence

transitions. We explore the possibility that “anomalous coherence’ effects may account

for this discrepancy in Section 5.2.4.

The domain canonically identified as the inertial range is comprised of two distinct

sub-inertial segments that exhibit distinct turbulence statistics.

For the subinertial range spanning 200 − 6000di and termed R2 we find:

(b1) Spectral scaling indices for components parallel to the local mean field, fluctuation

(displacement), and perpendicular directions assume values of αℓ|| = −1.66 ± 0.05, αξ =

−1.56 ± 0.08, and αλ = −1.49 ± 0.03, respectively.

(b2) The “average” eddy assumes a field-aligned tube topology.

198



(b3) The alignment angle Θub between velocity and magnetic-field fluctuations mono-

tonically increases towards smaller scales, while the alignment Θz between the Elsässer

fields remains roughly scale independent (≈ 35◦). In both cases, an inverse relationship

between alignment angles and the intensity of field gradients is observed, suggesting

that the physical basis of alignment lies in the mutual shearing of Elsässer fields during

imbalanced collisions between counterpropagating wave packets, as suggested in CSM15.

(b4) The cascade is strong for inwardly propagating waves (χ− ≳ 1) but weak for

outwardly propagating ones, with χ+ increasing from 0.1 to 0.2 as scales decrease from

λ ≈ 104di to 102di.

(b5) The scaling exponents of the structure functions perpendicular to both Bℓ and

the fluctuation direction conform to the theoretical models of CSM15 and MS17. However,

the scaling profile in the parallel and displacement components deviates from theoretical

predictions, possibly due to contamination from expansion effects.

For the subinertial range spanning 10 − 100di (termed R1), we find:

(c1) The spectrum steepens, with spectral scaling indices for components parallel to

the local mean field, fluctuation (displacement), and perpendicular directions assuming

values of αℓ|| = −1.97 ± 0.05, αξ = −1.94 ± 0.06, and αλ = −1.64 ± 0.04, respectively.

(c2) A shift from isotropy in the plane perpendicular to Bℓ becomes evident, indicating

a shift in eddy structures from tube-like to ribbon-like, ℓ|| ≫ ξ ≫ λ. While signatures of

increasing SDDA are observed, the result is potentially susceptible to errors in particle

data measurements.

(c3) The scaling exponents of the parallel and displacement components are a linear

function of order, while the perpendicular component exhibits a weakly non-linear scal-

ing profile. An overall transition towards “monofractal” statistics and a weakening of

intermittency, compared to R2, are evident.
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(d) At λ ≈ 8di, the increase in aspect ratio ceases, and the eddies transition to a

quasi-isotropic state. This shift might be a signature of the tearing instability, potentially

leading to reconnection of the thin current sheets, or it could result from turbulent energy

being channeled into an ion-cyclotron wave spectrum, consistent with the “helicity barrier”

effect.

(e) The 2-point structure function method SF n
2 is inadequate for capturing the essential

properties of the turbulent cascade, at smaller scales. To accurately characterize steeper

power laws at smaller spatial scales, the use of a more sophisticated method such as the

5-point structure function SF n
5 is essential.

While our study doesn’t delve into the direct application of diagnostics for expansion

and imbalance effects, it’s interesting to note that preliminary findings using data from

the Wind mission show a notable correspondence with the results from EBM simulations

conducted by (Shi et al., 2023a). Specifically, the scaling exponents in R2 are consistent

with CSM15 when σc ≈ 1, and become a linear function of order as the imbalance decreases

to σc ≈ 0. Furthermore, extending the work of (Verdini et al., 2018) to higher order

moments it is found that when intervals are selected in such a way as to minimize the

expansion effects the scaling exponents in all three components are in striking agreement

with those predicted by the MS17 model (Sioulas et al. 2024, in progress).

In summary, our findings suggest that the models proposed by CSM15 and MS17,

which integrate SDDA as an intermittency effect and account for local imbalance, possess

the essential elements for a successful phenomenological representation of imbalanced

MHD turbulence. This assertion stems from several key observations: firstly, the models

provide scaling predictions for higher-order moments in the perpendicular component

of the magnetic field that align well with our in-situ observations. Secondly, an inverse

relationship between alignment angles and the intensity of field gradients suggests that

the alignment mechanism originates from the mutual shearing of fields during imbalanced

collisions of wavepackets. However, it’s worth noting that certain aspects of solar wind

turbulence, such as the presence of two sub-inertial ranges and anisotropic signatures,
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remain unaddressed by the models. This suggests that incorporating additional effects,

such as accounting for inhomogeneity or the spherical polarization of fluctuations, could

enhance the models’ scaling predictions.
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5.2 Scale-Dependent Dynamic Alignment in Magnetohydrody-

namic Turbulence: Insights into Intermittency, Compress-

ibility, and Imbalance Effects

5.2.1 Introduction

In the framework of reduced Magnetohydrodynamics (RMHD), applied to highly con-

ducting, magnetized plasmas threaded by a large-scale background magnetic field, B0, on

scales larger than the ion gyroradius, ρi, the dynamics of (Alfvén, 1942) polarized fluctua-

tions decouple from the compressive cascade and can be studied through (Kadomtsev

and Pogutse, 1967; Schekochihin et al., 2009b)

∂tz
∓
⊥ ± VA∂zz

∓
⊥ + z±⊥ · ∇⊥z

∓
⊥ = −∇⊥p, (5.7)

where, V a = B0/
√

4πρ the Alfvén speed, z±⊥ = u⊥ − b⊥/
√

4πρ are the (Elsasser,

1950) variables, u⊥ and b⊥ represent transverse, to B0, small amplitude |b⊥|/|B0| ≪ 1

velocity and magnetic field perturbations, respectively, and the total pressure, p, can be

determined by ∇⊥ · z±⊥ = 0. In this framework, non-linearity arises from the collisions

of counterpropagating wave packets, resulting in their distortion and fragmentation

(Iroshnikov, 1963; Kraichnan, 1965). The effectiveness of the non-linear interactions

hinges on the relative importance of the linear and non-linear terms in Equation 5.2.1. It

can be quantified by the non-linearity parameter χ± ≡ τ±A /τ
±
nl ∼ (k⊥δuk)(k||VA), which

compares the linear wave propagation time τ±A = ℓ±|| /VA and non-linear decorrelation time

τ±nl ∼ λ/δz∓λ .

The interaction of Alfvénic wavepackets, described by the dispersion relation ω = k||vA,

where k|| the wavevector parallel to B0, gives rise to a distinctive feature of MHD turbulence

wherein the flux of energy is primarily directed towards smaller scales perpendicular to

the magnetic field. The cascade is strongly anisotropic, and even more so at smaller

scales, resulting in structures characterized by coherence lengths parallel (ℓ|| ∼ 1/k||) and

perpendicular (λ ∼ 1/k⊥) to B0, which satisfy ℓ|| ≫ λ (Robinson and Rusbridge, 1971;
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Shebalin et al., 1983; Higdon, 1984; Oughton et al., 1994). The anisotropy amplifies the

non-linearity of the interactions (Galtier et al., 2000). Consequently, even in the case where

the system was forced at large scales such that χ≪ 1 (referred to as the “weak turbulence”

regime), it inevitably transitions, at sufficiently small scales, to a state where within a

single collision, the wave packet undergoes deformation of a magnitude comparable to its

own, χ ∼ 1, i.e., the cascade τc and dynamical τd = 1/wk⊥ timescales are similar. Since

the perturbation frequency ω has a lower bound due to an uncertainty relation ωτc > 1,

the cascade is forced to remain in the χ ∼ 1 regime. This realization foRMS the basis of

what is formally known as the “critical balance” (CB) conjecture (Goldreich and Sridhar,

1995), denoted hereafter as (Goldreich and Sridhar, 1995). In the framework of balanced

turbulence, i.e., assuming equal fluxes, ϵ±, in counterpropagating wavepackets, CB implies

an anisotropic scaling relationship between the parallel and perpendicular wavevectors,

specifically κ|| ∝ κ
2/3
⊥ , leading to expected field-perpendicular and field-parallel energy

spectra of the form E(k⊥) ∝ k
−5/3
⊥ and E(k||) ∝ k−2

|| , resepectively.

While in situ observations of the solar wind appeared consistent with the phenomenol-

ogy proposed by (Goldreich and Sridhar, 1995) (Horbury et al., 2008; Wicks et al., 2010),

numerical simulations of homogeneous, incompressible MHD revealed a significant dis-

crepancy. Specifically, the observed spectral index perpendicular to Bℓ was closer to

−3/2 (Maron and Goldreich, 2001; Müller et al., 2003; Müller and Grappin, 2005). These

findings prompted refinements to the (Goldreich and Sridhar, 1995) model (Boldyrev,

2005; Galtier et al., 2005; Beresnyak and Lazarian, 2006b; Gogoberidze, 2007).

One approach to addressing this discrepancy was the incorporation of scale-dependent

dynamic alignment (SDDA) into the (Goldreich and Sridhar, 1995) framework. Specifically,

(Boldyrev, 2006), henceforth (Boldyrev, 2006), proposed that non-linearity in MHD

turbulence is reduced due to the increasing alignment between δv⊥ and δb⊥ as λ decreases,

with θubλ ∼ δb/vA ∝ λ1/4. At small scales, this leads to the emergence of three-dimensional

anisotropic eddies characterized by ℓ|| ≫ ξ ≫ λ, where ξ represents the coherence length

in the direction of δb. A self-consistent mechanism that results in increasing alignment

would modify the spectral slope of the field-perpendicular inertial range energy spectrum
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from the -5/3 Kolmogorov slope to the numerically observed -3/2 slope.

A substantial body of numerical studies on homogeneous MHD turbulence has provided

evidence supporting the scale-dependence of certain alignment measures across a sizable

portion of the inertial range (Mason et al., 2006; Perez et al., 2012, 2014; Mallet et al.,

2015; Chandran et al., 2015; Cerri et al., 2022). However, concerns have been raised

suggesting that the observed alignment may be a finite-range effect intrinsically linked to

dynamics occurring at the outer scale (Beresnyak, 2012). For instance, Beresnyak (2012)

interpret these signatures based on the idea that MHD turbulence is much less local in

k-space compared to hydrodynamic turbulence (see, e.g., Beresnyak, 2011; Schekochihin,

2022). Consequently, the driving mechanism does not fully replicate the properties of

the inertial range, and the transition to asymptotic statistics is broad, causing many

quantities to appear scale-dependent as they adjust to the asymptotic regime. Moreover,

the (Boldyrev, 2006) model has faced criticism for violating the rescaling symmetry of the

RMHD equations (Beresnyak, 2012). As a result, an ongoing debate persists regarding

whether this numerical evidence accurately reflects the scale-dependent dynamic alignment

angle in the asymptotic state of the inertial range (Beresnyak, 2012; Perez et al., 2014).

The theory of SDDA has been revisited by Chandran et al. (2015, hereafter, (Chandran

et al., 2015)), refining it in a manner that aligns SDDA with the rescaling symmetry of

RMHD. Their model distinguishes between two archetypal types of alfvénic interactions:

imbalanced (δz± ≫ δz∓) and balanced (δz± ∼ δz∓). They develop an approximate

theory which demonstrates that in imbalanced interactions, the mutual shearing of

the interacting wave packets leads to the rapid cascading of the subdominant field

to smaller scales. This occurs as it rotates into alignment with the dominant field,

notably without distorting their amplitudes. Consequently, at any given scale, wave

packets subjected to the smallest number of balanced collisions—those that alter both

amplitude and coherence lengths—roughly retain their outer scale amplitudes, resembling

three-dimensional anisotropic current sheet structures (see also Howes, 2015; Mallet and

Schekochihin, 2017). This indicates that as the cascade progresses toward smaller scales,

the fluctuating energy becomes confined within an increasingly smaller volume fraction,
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thus establishing a link between SDDA and intermittency (Oboukhov, 1962; Kolmogorov,

1962).

The framework established by (Chandran et al., 2015) has received substantial support

from the studies of (Mallet et al., 2015, 2016), who utilized RMHD numerical simulations

to demonstrate that the degree of alignment at any given scale increases with fluctuation

amplitude. This result suggests that alignment angles exhibit intermittency rather

than scale invariance (see also Beresnyak and Lazarian, 2006a). Furthermore, scaling

predictions derived from these phenomenological models, particularly concerning higher-

order moments and alignment angles, show strong agreement with numerical simulations

of forced, homogeneous, and isotropic MHD turbulence (Chandran et al., 2015; Mallet

et al., 2016; Mallet and Schekochihin, 2017; Shi et al., 2023a; Dong et al., 2022).

However, in-situ solar wind observations reveal certain deviations from the model

predictions. For example, while inertial range scalings of the perpendicular components

for highly Alfvénic intervals tend towards the predicted -3/2 value, for both magnetic field

and velocity fluctuations, the former steepen towards -5/3 in balanced streams (Chen

et al., 2013; Sioulas et al., 2022; McIntyre et al., 2023b). Moreover, emerging evidence

indicates the presence of two sub-regimes within the traditionally defined inertial range,

particularly prominent in strongly imbalanced streams and when considering anisotropic

spectra in locally defined frames (Wicks et al., 2011; Sioulas et al., 2022b; Wu et al., 2022;

Sioulas et al., 2023). Although 3D anisotropic eddies are evident at the smaller scale end

of the inertial range, anisotropy qualitatively changes across scales (Chen et al., 2012;

Verdini et al., 2018; Sioulas et al., 2024).

Finally, in-situ observations of SDDA in the solar wind remain inconclusive. While

SDDA is evident at large, energy-containing scales in the 1/f range, a shift occurs in

the inertial range (λ ≈ 104di), demonstrating an increasing misalignment of fluctuations

towards smaller scales (Podesta, 2009; Hnat et al., 2011; Wicks et al., 2013a; Parashar

et al., 2018; Parashar et al., 2020). The increasing misalignment at inertial scales persists

even in intervals selected to minimize solar wind expansion effects (Verdini et al., 2018),

although in this case, the 3D anisotropic inertial range spectral scaling and topology of
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eddies align with proposed models (Boldyrev, 2006; Chandran et al., 2015; Mallet and

Schekochihin, 2017).

These observations could suggest that additional physical mechanisms beyond standard

homogeneous MHD are necessary to fully explain the observed properties of solar wind

turbulence. Such mechanisms include, but are not limited to, the breaking of local

anisotropy due to the additional radial symmetry axis introduced by expansion (Dong

et al., 2014; Verdini and Grappin, 2015; Verdini et al., 2018), the influence of non-Alfvénic

interactions in the turbulent cascade (see, e.g., Bowen et al., 2021), the spherically polarized

nature of Alfvénic fluctuations (Matteini et al., 2014; Mallet et al., 2021; Matteini et al.,

2024), and the imbalance in the fluxes of counterpropagating wave packets (Lithwick

et al., 2007; Chandran, 2008; Perez and Boldyrev, 2009a; Schekochihin, 2022).

In recent years, considerable efforts have been made to gauge the impact of imbalance,

compressibility, intermittency, and expansion on the statistical properties of MHD turbu-

lence (Lithwick and Goldreich, 2001; Hnat et al., 2005; Salem et al., 2009; Lithwick et al.,

2007; Chandran, 2008; Podesta and Borovsky, 2010; Podesta and Bhattacharjee, 2010;

Chen et al., 2013; Wicks et al., 2013a; Matteini et al., 2014; Bowen et al., 2018a,b; Shoda

et al., 2019; Vech and Chen, 2016; Meyrand et al., 2021a; Sioulas et al., 2022b; Wang

et al., 2023). However, previous investigations, particularly those focusing on in-situ

observations, have not thoroughly explored these effects on the statistical properties of

SDDA. This work aims to bridge this gap.

To this end, we conduct a statistical analysis of carefully selected solar wind intervals

spanning a 28-year period from WIND observations. We utilize scale and time-dependent

proxies to isolate the properties of interest, namely compressibility, intermittency, and

imbalance, enabling us to quantify their effects on SDDA measurements.

5.2.2 Data Selection

We utilize data collected by instruments aboard the WIND spacecraft, positioned at

Earth’s L1 Lagrange point, approximately 1 AU from the Sun.
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Figure 5.8: Joint probability distribution of Vsw and (a) σc, (b) σr for the homogeneous
intervals selected for our analysis. σc and σr are computed based on fluctuations at the
scale of 2 · 104di. In Panel (d), a histogram displays interval counts and cumulative
durations relative to Vsw.

This study primarily analyzes magnetic field and ion measurements obtained from

the MFI instrument (Lepping et al., 1995) and the 3DP/PESA-L instrument (Lin et al.,

1995), which provide data with resolutions of 0.1 seconds and 3 seconds, respectively.

It should be noted that, while a 3-second dataset is available for the magnetic field

timeseries, an issue has been identified with this specific dataset, as detailed in 5.2.3.5.

Consequently, the full-resolution MFI data were downsampled—following the application

of a low-pass Butterworth filter to mitigate aliasing—to match the temporal resolution of

the ion moment data.

In the preliminary phase of our analysis, we conducted a meticulous visual inspection

of the WIND timeseries data spanning from January 1, 1995, to August 1, 2023. Based

on this examination, we classified the data into three distinct categories:

1. Slow Alfvénic wind: Vsw ≤ 450 km/s, σc ≥ 0.85

2. Slow non-Alfvénic wind: Vsw ≤ 450 km/s, σc ≤ 0.85

3. Fast Alfvénic wind: Vsw ≥ 500 km/s, σc ≥ 0.85

Throughout the visual inspection, strict adherence was maintained to several selection

criteria:

1. A minimum interval duration of 6 hours was mandated,
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2. The stability of plasma parameters (Vsw, np, β, ΘV B, σc, σr, sign(Bx)) was ensured

throughout the selected interval,

3. Intervals showing clear indications of transient events, like Coronal Mass Ejections

or Heliospheric Current Sheet crossings, were omitted,

4. Intervals were restricted to those with a maximum of 2

The selection process resulted in a total of 2335 intervals. The distribution of interval

characteristics within our dataset is visualized in Fig. 5.8. Panels (a) to (c) depict 2D

histograms illustrating the solar wind speed in correlation with normalized cross helicity

(σc), normalized residual energy (σr), both evaluated at a scale of ℓ ≈ 2 · 104di. Finally,

column (c) provides a histogram portraying the number of selected intervals (solid line)

and their cumulative duration associated with different Vsw values.

Furthermore, to facilitate a more direct comparison with (Podesta, 2009) (hereinafter

referred to as (Podesta, 2009)), we examined four intervals spanning: (a) January 1,

1995, to July 29, 1995, (b) May 15, 1996, to August 16, 1996, (c) January 8, 1997, to

June 9, 1997, (d) August 23, 2000, to February 15, 2001. For an exhaustive discussion

regarding the properties of the chosen intervals, readers are directed to (Podesta, 2009).

An in-depth comparison between our results and those of (Podesta, 2009) is provided in

Appendix 5.2.5.1.

5.2.2.1 Quantifying the Influence of Intermittency and Compressibility on

SDDA

To assess the influence of intermittency and compressibility on alignment angle measure-

ments, we utilize scale- and time-dependent proxies for these properties. Employing a

scale-dependent conditional averaging technique enables us to isolate specific types of

fluctuations, thus focusing on particular properties of interest.

To identify coherent structures, we employ the Partial Variance of Increments (PVI)

method, which is effective for detecting sharp gradients within a turbulent field (Greco
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Figure 5.9: (a) θz⊥, (b) θub⊥ . Each subplot categorizes alignment angles into 50 bins
based on I(zo), as shown in panel (c). Specifically, the i-th bin at scale λ is defined as
[2(i − 1), 2i], where i = 1, ..., 50. Reference lines depict the scaling parameter θ ∝ λα,
aiding comparative analysis.

et al., 2008; Servidio et al., 2012). The scale-dependent PVI time series can be estimated

through Equation 2.29

To quantify the compressibility of fluctuations, we utilize

nq(t, ℓ) = (
δ|q(t, ℓ)|
|δq(t, ℓ)|)

2. (5.8)

It’s worth noting that alternative proxies for compressibility, such as CB2 (Squire et al.,

2020), have also been explored, yielding qualitatively similar results, although they are

not presented here.

To conduct our analysis, we obtain δb⊥(t, ℓ) and δv⊥(t, ℓ) using the method detailed in

Section 2.0.4. Additionally, we compute Iq(t, ℓ) and nq(t, ℓ) using equations 2.29 and 5.8,

respectively, for a range of ℓ values, specifically ℓ = 1.2jdi, where j = 15, ..., 80.

Here, di represents the ion inertial length, defined as di = VA/Ωi, where Ωi denotes

the proton gyrofrequency, e is the elementary charge, |B| is the magnetic field magnitude,

and mp is the proton mass.

Subsequently, we employ a scale-dependent conditional binning technique. This process

entails partitioning Iq(t, ℓ), nq(t, ℓ), and their corresponding alignment angle values into

N = 50 consecutive bins for each scale ℓ. More precisely, the i-th bin at scale ℓ is defined

as the interval [2(i− 1), 2i), where i = 1, ..., 50. The results of this analysis are presented
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in Section 5.2.3.1.

5.2.2.2 Quantifying Imbalance Effects on SDDA

The total energy Et = E+ + E− and cross-helicity Hc = E+ − E−, expressed in terms

of the energy associated with fluctuations in z±, E± = ⟨|δz±|2⟩/4, are ideal (i.e., with

zero viscosity and resistivity) invariants of the incompressible MHD equations. Elsässer

imbalance can be quantified by the normalized cross-helicity, σc = Et/Hc, which measures

the relative fluxes of counterpropagating wavepackets in the system. In the context of solar

wind turbulence, Elsässer imbalance is assessed by examining the relative magnitudes of

inwardly and outwardly propagating Alfvén waves (Velli et al., 1991; Velli, 1993).

σc(t, ℓ) =
|δzo⊥|2 − |δzi⊥|2
|δzo⊥|2 + |δzi⊥|2

. (5.9)

In addition, we consider the normalized residual energy, σr, to investigate the effects

of Alfvénic imbalance. This metric evaluates the relative energy in kinetic and magnetic

fluctuations:

σr(t, ℓ) =
|δv⊥|2 − |δb⊥|2
|δv⊥|2 + |δb⊥|2

. (5.10)

To understand the influence of imbalance, we opted for an approach different from

the one presented in Section 5.2.2.1. This decision was based on theresults presented

Appendix 5.2.5.2. More specifically, among the variables σc, σr, θ
ub
⊥ , and θz⊥, only two are

independent. Thus, using the previously described binning method would merely replicate

the relationships shown in Figure 5.22. However, a more pressing question remains: how

does global-scale imbalance affect SDDA measurements?

To address global imbalance, we adhered the following methodology: We computed

the average values of σc(ℓ
∗) and σr(ℓ

∗) for each interval identified by visual inspection,

where ℓ∗ = 104 di. It is important to clarify that estimating σ(ℓ∗) involves more than

simply calculating σ(ℓ∗) = ⟨σ(t, ℓ∗)⟩. Instead, we begin by estimating ⟨δξ⊥(t, ℓ∗)2⟩ for all
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Figure 5.10: (a) θz⊥, (b) θub⊥ . These are categorized into scale-dependent percentiles based
on nB.

fields involved in Equations 5.9-5.10 (see e.g., Shi et al., 2021). The former definition is

applied only in cases requiring both temporal and spatial information to be retained, as

illustrated in Figure 5.11.

Following this, we segregate our intervals into 10 linearly spaced bins, ranging from [0,

1] for Elsässer imbalance and [-1, 0] for Alfvénic imbalance, based on the values of |σc(ℓ∗)|
and σr(ℓ

∗), respectively. Within each bin, we calculate a scale-dependent weighted mean

of the alignment angle, using the number of samples in each interval at that scale as the

weighting factor. The results of this analysis are discussed in Section 5.2.3.3.

5.2.3 Results

In this section, our aim is to assess the impact of intermittency, compressibility, and

global imbalance on SDDA measurements. However, before presenting our findings, it is

essential to address a key aspect of our analysis.

We first investigated the scaling of SDDA for each stream type (slow Alfvénic, fast

Alfvénic, slow non-Alfvénic) separately. Then, we aggregated all homogeneous intervals

and applied the conditional averaging method outlined in Section 5.2.2.1. Interestingly,

the trends observed when analyzing stream types with similar characteristics separately

persisted when considering a mix of various interval types. This observation could be

attributed to the inherently diverse nature of fluctuations across all wind streams. For

instance, intervals primarily characterized as incompressible may still contain a fraction
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Contours in panel (b) show the count levels of the distribution. In addition, mean (black)
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of compressible fluctuations. Similarly, wind streams classified as generally balanced may

exhibit localized patches of imbalance (Matthaeus et al., 2008b; Perez and Boldyrev, 2009a;

Chen et al., 2013). The use of conditional averaging enables us to concentrate on specific

types of fluctuations, facilitating an investigation into particular properties of interest,

such as segregating fluctuations based on scale-dependent proxies for compressibility and

intermittency.

Finally, it is important to point out that the conditional averaging analysis utilized

here only considers normalized quantities like θ⊥, Iξ, and nξ. Therefore, at this stage, we

did not consider the polarization intermittency definition, θ̃⊥. This is because it entails

averaging non-normalized quantities, and extreme values among different intervals, owing

to significant variations in the root mean square of the fluctuations, could potentially

dominate the mean. We will explore the polarization angle definition in Section 5.2.3.3,

where we calculate averages among homogeneous intervals, ensuring that the previously

mentioned concern does not hinder our analysis.
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5.2.3.1 Influence of Intermittency & Compressibility on measurements of

SDDA

In this section, we delve into the effects of intermittency and compressibility on SDDA

using the conditional averaging method described in Section 5.2.2.1.

Figure 5.9 presents the results for intervals of mixed streams. The first two columns

show θz⊥ and θub⊥ , conditioned on Iξ(t, ℓ) with ξ = zo, plotted against scales normalized

in di units. Although analyses for ξ = zi,B,V were also conducted, they are not shown

here; key findings are discussed below.

Figure 5.9 clearly illustrates that the scaling of SDDA varies significantly depending

on the percentile bin, the alignment angle definition, and the type of field gradient used to

condition the alignment angles. However, it is evident that at any given scale, an inverse

relationship exists between alignment angles and the intensity of field gradients.

More specifically, curves derived from averaging alignment angles for fluctuations with

weak field gradients (black lines) tend to exhibit flat profiles, indicating negligible or weak

SDDA at smaller scales. In contrast, curves for fluctuations with the strongest Izo indices

show steeper scaling laws, suggesting increasing alignment down to λ ≈ 8 · 102di. While

the anticorrelation holds in both cases, it is apparent that alignment in θub⊥ is consistently

tighter compared to θz⊥. This is likely because the intervals considered here are slightly

skewed towards the globally Alfvénic side, as shown in Figure 5.8, primarily because

such intervals were prioritized during the selection process. This was the only notable

difference observed between the analyses of “pure” and “mixed” intervals. This effect

will become more pronounced in Section 5.2.3.3, where we demonstrate that θub⊥ and θz⊥

exhibit very similar behavior in balanced intervals, but they tend to diverge, with the

former showing tighter alignment as the imbalance increases. Nonetheless, this does not

affect the conclusions of this analysis. The primary objective here is to illustrate the

relationship between alignment angles and field gradients, which, as explained earlier,

shows consistent behavior in all cases.

It is also important to note that both θz⊥ and θub⊥ exhibit an inverse relationship with
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the gradients IB. However, when conditioned on IV , θz⊥ and θub⊥ display forward and

inverse correlations, respectively. Finally, θz⊥ and θub⊥ are correlated and anti-correlated

with Izi , respectively. This behavior primarily reflects a geometric effect, as discussed

in Appendix 5.2.5.2. Nonetheless, even when forward correlation is observed, alignment

angle curves derived from fluctuations with the strongest Iξ indices consistently exhibit

the steepest power-law scaling.

As a final diagnostic, and for a more straightforward comparison with the numerical

simulations by (Mallet et al., 2015), we also investigated the relationship between the

alignment angle and the normalized Elsässer fluctuation magnitudes, |δzo|/VA. The

results, not shown here, reveal a trend qualitatively similar to those in Figure 5.9, as

expected since the PVI diagnostics provide an estimate of fluctuation gradient intensity

normalized by the standard deviation of local gradients.

We proceed to segregate fluctuations into percentile bins based on the compressibility

diagnostic, nξ, illustrated in Figure 5.10, reveal a strong correlation between alignment

and magnetic compressibility. Specifically, at the outer scale, strongly compressible

fluctuations exhibit no signs of dynamic alignment, and the scaling of SDDA becomes

progressively steeper as nB decreases. Conditioning on nV reveals only a weak and

statistically insignificant correlation with alignment. It is worth noting, however, that the

compressibility in the velocity field is considerably stronger than that in the magnetic

field, with nV (ℓ) ≫ nB(ℓ) for the majority of intervals considered.

In general, curves derived from magnetically incompressible fluctuations exhibit behav-

iors at outer scales similar to those associated with the most intense coherent structures,

suggesting a strong correlation between compressibility and intermittency (see also Vasko

et al., 2022; Lotekar et al., 2022). However, unlike Figure 5.9, the quenching of SDDA, in

most cases, occurs near the large-scale break of the power spectrum, approximately at

the small-scale end of the outer range.

To quantify our findings, we applied a power-law fit to the curves representing the

top 5% of fluctuations measured by |δz±| and Iξ, with ξ = zo, zi,B,V , and to the
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bottom 5% in terms of nξ for ξ = B,V . The derived scalings, evaluated over the range

4 × 104 − 4 × 105di, are summarized in Table 5.3.

5.2.3.2 Nature of fluctuations

In Section 5.2.2.1, our analysis revealed unexpected findings. While SDDA signatures

persist within part of the inertial range for the strongest discontinuities, this is not the

case when isolating the incompressible component of turbulence. Instead, a regime change

was observed at the onset of the inertial range. To understand this discrepancy, we use

here diagnostics to analyze the nature of fluctuations at inertial scales.

Figure 5.11 presents the results, showing IB as a function of scale, color-coded by (a)

σr, (b) σc, and (c) nB. Panel (b) also includes a contour plot of the IB distribution versus

scale.

The distribution of ⟨IB⟩ shows a slight downward curvature at inertial scales, indicating

a decrease in the median PVI index towards smaller scales. This may seem counterintuitive

given in-situ observations of non-Gaussian increment distributions at smaller scales (see

e.g., Sorriso-Valvo et al., 1999). However, examining ⟨InB⟩1/n for n = 2, ..., 6 reveals that

while the median curve bends downward, the mean curve trends upward at scales λ ≤ 104di.

The steepness of the mean curve increases with n, reflecting intermittency in the magnetic

field time series. For n = 1, the mean is influenced by median-amplitude eddies, while for

larger n values, rare large-amplitude eddies dominate. The scale-dependent behavior of

both the mean and median suggests a trend towards distributions that peak near zero

but have heavier tails at smaller scales, consistent with previous findings (Sorriso-Valvo

et al., 1999; Chhiber et al., 2021a).

Conversely, the roughly scale-independent behavior observed in both the mean and

median curves at the outer range reflects the well-established phenomenon of Gaussian

distributions of fluctuations at energy injection scales (Sorriso-Valvo et al., 1999; Bruno

et al., 2003).

Interestingly, the shift from intermittent to Gaussian regimes appears to coincide with
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Table 5.3: Power-law scaling of alignment angles within 4 × 104 − 4 × 105di using top
5% fluctuations in |δz±| and Iξ, where ξ = B, V , zo, zi, and bottom 5% in nξ for
ξ = B, V .

θz⊥ θ̃z⊥ θub⊥ θ̃ub⊥

Izo 0.3 ± 0.02 0.32 ± 0.02 0.29 ± 0.02 0.33 ± 0.01
Izi 0.3 ± 0.02 0.28 ± 0.03 0.30 ± 0.02 0.35 ± 0.04
IB 0.30 ± 0.01 0.30 ± 0.02 0.27 ± 0.01 0.31 ± 0.01
IV 0.23 ± 0.01 0.25 ± 0.02 0.29 ± 0.02 0.30 ± 0.01
nB 0.19 ± 0.01 0.26 ± 0.02 0.25 ± 0.03 0.32 ± 0.03
nV 0.17 ± 0.03 0.25 ± 0.03 0.33 ± 0.04 0.38 ± 0.02

the scale at which we typically observe the rollover of the alignment curves. However, the

extent to which this regime change affects the scaling of SDDA remains unclear.

In addition we can see that, at any given scale, fluctuations with the highest PVI index

exhibit the lowest nB and highest σc values, along with strongly negative residual energy

indices. This implies an anticorrelation between σr and IB, a finding that aligns with the

work by (Bowen et al., 2018b), who noted that intervals with large scale-dependent kurtosis,

K(ℓ), predominantly exhibit negative σr. Our analysis confiRMS the persistence of this

relationship across the observed spectrum, substantiating the claim that intermittency

and residual energy are most likely interconnected.

Finally, we turn our attention to the nature of the compressible fluctuations. To this

end, we consider the PVI diagnostic applied to the magnetic field magnitude and proton

density timeseries, I|B| and Inp , respectively. Figure 5.12 illustrates the distribution

of Inp , binned by I|B| and scale λ. This method of visualizing the result has not been

implemented before. Previous works have compared the magnetic and thermal pressure

(Burlaga and Ogilvie, 1970; Thieme et al., 1990), used wavelet cross-coherence analysis

(Kellogg and Horbury, 2005; Yao et al., 2011), or utilized the zero-lag cross-correlation

between |B| and np (Howes et al., 2012; Bowen et al., 2018a).

A well-established result is recovered: fluctuations in |B| and np are anticorrelated at

inertial scales, similar to observations by Thieme et al. (1990); Yao et al. (2011); Howes

et al. (2012); Bowen et al. (2018a). However, this anticorrelation gradually fades at the
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Figure 5.12: Distribution of Inp , binned by I|B| and scale λ (normalized to the ion inertial
length di). The plot utilizes a color gradient to represent the mean values of Inp within
each bin. Black and red dots show the mean and median values of I|B| as a function of
scale.

outer scale, with clear correlation observed at λ ≥ 8 × 104di consistent witht the results

of (Burlaga and Ogilvie, 1970). The observed inertial-range anticorrelations have been

attributed to the presence of the kinetic slow-mode (Howes et al., 2012; Klein et al., 2012),

while Verscharen et al. (2017) proposed that the MHD slow-mode provides a better fit to

the observed properties of compressible fluctuations.

It is not clear whether this observation can provide any insights into the effects of

compressible fluctuations on SDDA. Nevertheless, we present this finding for completeness

without further discussion.

5.2.3.3 Influence of Imbalance on SDDA

In this section, we seek to understand the influence of global Alfvénic and Elsässer

imbalance on alignment angle scaling using homogeneous intervals identified through

visual inspection (see Section 5.2.2). To this end we employ the conditional averaging

technique described in Section 5.2.2.2, and segregate intervals based on the outer scale

values of either the cross-helicity or normalized residual energy σc(ℓ
∗) and σr(ℓ

∗), where

ℓ∗ = 104di.
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Figure 5.13: Weighted averages of (a) θ̃z⊥, (b) θ̃ub⊥ , and (c) σc for the homogeneous intervals
identified through visual inspection. After estimating these quantities as a function of
scale for each identified interval, the curves are divided into N = 10 bins based on σc(ℓ

∗),
where ℓ∗ = 2 · 104di, and a scale-dependent weighted average of the curves is computed.

We first consider alignment curves conditioned on σc(ℓ
∗). The results are shown in

Figure 5.13. For σc(ℓ
∗) < 0.7, there is no clear trend in the scaling of θ̃z⊥, as curves

from all bins overlap. However, for σc(ℓ
∗) > 0.7, the scaling of θ̃z⊥ becomes progressively

shallower, especially at larger scales. In contrast, large-scale Elsässer imbalance organizes

the θ̃ub⊥ curves more clearly. As σc(ℓ
∗) increases, (a) θ̃ub⊥ shows steeper scaling, and (b)

the quenching of the curves shifts towards larger scales. The local scaling index, α(λ),

illustrated in the inset of Figure 5.13b, shows that α(λ) ≈ 0.4 for σc(ℓ
∗) > 0.90, while

a shallower scaling of α(λ) ≈ 0.2 is observed for σc(ℓ
∗) < 0.10. The range of scales over

which the slope remains positive increases as σc(ℓ
∗) → 0. Additionally, there is a trend of

increasing σc towards smaller scales, and the range of scales over which this behavior is

observed widens with σc(ℓ
∗) → 0.

It is worth noting that while alignment in θ̃ub⊥ is considerably tighter compared to θ̃z⊥

for strongly imbalanced intervals, the two definitions yield qualitatively similar results at

σc(ℓ
∗) → 0.

When intervals are segregated based on σr(ℓ
∗), a similar trend is observed for θ̃ub⊥ .

Additionally, as Alfvénic imbalance decreases (σr(ℓ
∗) → 0), SDDA signatures in θ̃z⊥

diminish, resulting in flatter curves between 102 − 106di. Conversely, with increasing mag-

netic energy dominance over kinetic energy, SDDA signatures become more pronounced,

exhibiting steep power-law behavior, particularly at larger scales. In practice, this implies
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Figure 5.14: Columns 1 to 4 display θz⊥, θ̃z⊥, θub⊥ , and θ̃ub⊥ , respectively. Homogeneous
intervals, identified through visual inspection, are segregated into 50 bins based on σc(ℓ

∗)
and σr(ℓ

∗), where ℓ∗ = 2 · 104di and a scale-dependent weighted average of the curves is
estimated shown in the top and bottom panels, respectively.

that equipartitioned intervals (Eu ≈ Eb) show no signs of increasing alignment in the

Elsässer field fluctuations, but at least at large scales still show increasing alignment in

the polarizations of magnetic/velocity field fluctuations.

To summarize: (a) Large-scale Alfvénic imbalance is a good predictor for the expected

behavior of both θ̃ub⊥ and θ̃z⊥. As σr(ℓ
∗) approaches zero, the scalings of θ̃ub⊥ become steeper,

while the scalings of θ̃z⊥ become shallower, extending to a narrower and wider range of

scales, respectively. (b) Elsässer imbalance mostly correlates with the expected θ̃ub⊥ scaling.

SDDA signatures persist to smaller scales for globally balanced streams compared to their

imbalanced counterparts, but with the scaling becoming progressively shallower.

5.2.3.4 High-Frequency Instrumental Noise

In this section, we investigate the extent to which high-frequency, small-amplitude noise

in the velocity field measurements can affect our ability to reliably estimate alignment

angles in the Elsässer field fluctuations, θz⊥.

Let δb denote the true value of the magnetic field fluctuation vector in velocity units.

We assume that the error in its measurement is negligible. Although a more realistic

assessment would incorporate an error term, especially since δb measurements may be

contaminated by errors in proton density measurements, we assume for highly Alfvénic

intervals that δρ/ρ is sufficiently small. This assumption is supported by observations
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(Shi et al., 2021), allowing rolling averages of ρ to be used for Alfvénic normalization.

We define the real value of the velocity field as δu and introduce an error term ∆,

where ∆ is a normally distributed random vector with mean 0 and standard deviation σ,

represented by ∆ ∼ N (0, σ). We assume that the magnitude of ∆ is significantly smaller

than the magnitudes of δb and δu (i.e., |∆| ≪ |δb|, |δu|). For simplicity, we assume that

the real vectors are perfectly aligned, δu = αδb, and that δzi = ϵδzo.

We can then write:

δz′o = δzo + ∆ (5.11)

δz′i = ϵδzo + ∆ (5.12)

The quantity controlling the error in the measurements of δzi can be represented by

the dimensionless parameter Q:

Q =
|ϵδzo|
|∆| (5.13)

We can estimate the alignment angles as follows:

cos(θ′) =
δz′o · δz′i

∥δz′o∥∥δz′i∥

=
ϵδz2o + (1 + ϵ)δzo∆ + ∆2

ϵδz2o

√
1 + 2δzo∆

δz2o
+ ∆2

z2o

√
1 + 2δzo∆

ϵδz2o
+ ∆2

ϵδz2o

Considering the case where Q≫ 1, we can estimate:

cos(θ′) ≈ 1 −O(Q−2) (5.14)

On the other hand, when Q≪ 1:
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cos(θ′) ≈ 1 + higher-order terms (5.15)

where higher-order terms include O(Q), O (∆/δzo), and O(ϵ). Therefore, the accuracy

of the angle measurement depends on the errors in the velocity compared to the true size

of the δzi signal. Specifically, when Q≫ 1, the alignment angle can be estimated reliably.

Conversely, for Q≪ 1, a significant deviation is expected between the true and estimated

values of the alignment angles.

5.2.3.5 Modeling High Frequency Instrumental Noise

To further investigate the impact of high-frequency noise on alignment angle measurements,

we simulate the previous analysis by generating synthetic magnetic and velocity field

data, which are subsequently polluted by artificial high-frequency white noise of specified

amplitude.

To this end, we generate two sets of three-component time series for the magnetic

field (B) and the velocity field (V), with the corresponding components being perfectly

correlated (ρ = 1). To simplify our analysis, we assume—though this is strictly true only

for the velocity field (Chen et al., 2012; Sioulas et al., 2023a; McIntyre et al., 2023b)—that

the inertial-range trace power-spectral scalings of the two fields are independent of σc and

scale as ab = av = −3/2.

Initially, we generate a Gaussian white noise time series for each component of

the magnetic and velocity fields. The duration of the time series is set to 48 hours

(d = 48 hours), with a cadence of 3 seconds (dt = 3 s), mimicking the typical duration

and cadence of our identified intervals. To shape the power-spectral density (PSD) of

the time series, we apply filters in the frequency domain. For a given desired spectral

exponent α, the filter response H(f) is defined as:

H(f) = |f |α/2, (5.16)
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Figure 5.15: The empirical relationship for the RMS of the fluctuations is shown for (a)
B (black line), (b) V (red line), (c) zo (blue line), and (d) zi (gray line), plotted against
σc. Using the fluctuations estimated through Eq. 5.2.3.5, 1-minute moving averages of
σc were also estimated, yielding a dataset of size N ≈ 7.5 × 107. The RMS quantities of
the fields were plotted against σc, and an empirical fit was extracted by finding the best
12th-degree polynomial fit. The fits obtained for the different fields are plotted against
σc, with the legends showing only the first three terms of the empirical fit.

where f denotes the frequency.

The base time series are transformed to the frequency domain using the Fast Fourier

Transform (FFT). The spectral shaping filters are applied by multiplying the Fourier-

transformed series by the filter response H(f). The filtered series are then transformed

back to the time domain using the inverse FFT. At this point, two time series with the

desired correlation and spectral properties have been constructed.

Next, we need to properly normalize the two time series to model different levels of

Elsässer imbalance. This requires input from in-situ observations. It is well known that

the RMS of the fluctuations in both velocity and magnetic field increases with σc (Pi

et al., 2020; Sioulas et al., 2023). To quantify this dependency, we estimate the RMS

value of the fluctuations in the different fields for each of our selected intervals. For any

given field Φ, fluctuations are estimated as:
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Figure 5.16: Synthetic power-spectra of (a) the velocity field (Pv) and (b) the minor
Elsässer field (Pzi

) for different levels of imbalance. Dotted lines indicate the original
time series, while solid lines represent the time series after adding white noise. Panel (c)
shows the alignment angle of the Elsässer/Alfvén fields for the original time series (dotted
lines), which remain constant at θz = 180◦, θub = 0◦, respectively, independent of scale,
and for the noise-affected time series (solid lines). The inset in panel (c) illustrates σc, σr
for the different runs. Power-spectra obtained

∆Φ = Φ−Φ0, (5.17)

where Φ = Va, V, Zo, Zi and Φ0 = ⟨Φ⟩D is a moving average with a window of duration

D = 8 hours. Subsequently, the RMS of each field is estimated using d = 1 minute moving

averages of the fluctuations:

ΦRMS =

√
⟨∆Φ2⟩d. (5.18)

Using the fluctuations estimated through Eq. 5.2.3.5, 1-minute moving averages of

σc are then also estimated. This process yielded a dataset of size N ≈ 7.5 × 107 total

measurements. ΦRMS are then then plotted against σc, and an empirical fit is extracted

by finding the best 12th-degree polynomial fit. The fit obtained for the different fields is

plotted against σc in Figure 5.15 with the legends showing only the first three terms.

Using the empirical relationship for the RMS of the fields as a function of σc, the time

series are normalized such that the RMS of the synthetic data matches that of the real
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data at different levels of imbalance while retaining the original correlation and desired

spectral scalings.

Noise is then added to the V (t) series. We assume here, though not strictly true

(see e.g., Ervin et al., 2024), that the noise floor in the velocity field measurements is

the same for all intervals considered and independent of σc. Given that the RMS of the

fluctuations peaks at σc ≈ 1, we take the noise level to be ∆ = 0.1V ∗
RMS(fNyq) ×N (0, 1),

where V ∗
RMS(fNyq) is the RMS value of the velocity field at the Nyquist frequency for

σc = 1.

For each simulated interval, the Fourier trace power spectral density F (f) was cal-

culated, smoothed by averaging over a sliding window with a factor of 2, and then

transformed into a wavenumber spectrum expressed in physical units P (kdi):

P (kdi) =
Vsw
2πdi

F (f), (5.19)

where kdi = (2πfdi)/Vsw (Sioulas et al., 2023a). To perform this normalization, the

ratio Vsw/di was estimated for all intervals in our dataset, resulting in a mean value of

3.95 ± 1.27. The mean value was used to normalize the synthetic spectra to enable a

more meaningful comparison with the in-situ derived power spectra and spectral scaling

indices.

The results of this analysis are illustrated in Figure 5.16. Panels (a)-(c) display the

power-spectral density of the velocity field Pu, ingoing Elsässer fields Pzi , and alignment

angles θz⊥, θub⊥ , respectively. The insets in panels (a) and (b) show σr and σc, respectively.

Different colors represent varying levels of Elsässer imbalance, with red lines indicating

imbalanced intervals and black curves showing balanced intervals. Dotted lines represent

the expected behavior, while solid lines show the impact of introducing white noise to the

velocity field time series.

As σc → 1, V RMS increases and approaches that of BRMS. This results in a decrease

in zi,RMS, causing an artificial flattening of the power spectrum of zi at lower frequencies.

For the black curves, although the spectrum of V is flattened at lower frequencies, the

224



impact on zi is subtle and mainly evident at high frequencies. More specifically, when Pu

reaches the noise floor at a frequency fn, the power spectrum of zi becomes unmeasurable

for Pzi(f > f ∗), where Pzi(f
∗) = Pu(fn).

Although assuming the noise floor is independent of imbalance might be an over-

simplification, our analysis demonstrates that small amplitude high-frequency noise can

significantly affect Pzi , thereby reducing the accuracy of Pzi estimates as the Elsässer

imbalance increases.

Noise has an even greater impact on alignment angle estimates. It distorts the phases

of the velocity field measurements, causing them to decorrelate from the magnetic field

phases without significantly altering their amplitude. The extent and frequency of these

effects depend on the level of imbalance—θz⊥ is more affected during imbalanced intervals,

while θub⊥ is more affected during balanced intervals.

It is important to note that we have only examined the scenario where, for σc to

decrease, the RMS of the velocity field fluctuations must decrease faster than that of

the magnetic field fluctuations, with the alignment angle remaining independent of the

imbalance. This assumption forces our time series to be perfectly correlated, limiting

our analysis to the periphery of the circle plot shown in Figure 5.22. However, this is

not always the case; in principle, we could maintain the RMS of both fields constant and

adjust the alignment angles, or even use a combination of these factors. In fact, as shown

in the inset of Figure 5.16b, this approach does not allow σc at large scales to decrease

below σc ≲ 0.45.

We therefore need to follow a more rigorous approach. To this end, we generate time

series for the magnetic and velocity fields that meet three simultaneous conditions informed

by our in-situ observations: (1) the fluctuations are correlated with a specified correlation

coefficient, (2) their inertial-range spectral scaling, and (3) the RMS values of these time

series align with those observed in-situ. Therefore, in addition to considering the RMS

values of the fields, the inertial-range spectral-scalings, αϕ, where ϕ = B,V , Zi, Zo

were estimated by finding the best-fit linear gradient in log–log space over the range
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kdi ∈ [5 × 10−4, 10−2]. In addition, the correlation coefficient

Cϕ =
⟨∆ϕ · ∆ψ⟩√
⟨∆ϕ2⟩⟨∆ψ2⟩

, (5.20)

between either magnetic-velocity or Elsässer field fluctuations, was estimated and an

empirical relationship was obtained for these quantities as a function of σc. The obtained

functional form for the spectral scalings and the correlation coefficients between the

magnetic-velocity fields, ρub, and Elsässer fields, ρz, are illustrated in Figure 5.17.

While the third condition is straightforward to enforce and satisfying either of the

first two conditions independently is also manageable, applying spectral shaping filters as

described in Equation 5.16 to achieve the desired spectral scaling can disrupt the specified

correlation coefficient, and vice-versa. Thus, imposing both conditions simultaneously in

a rigorous manner is challenging.

To achieve this, we follow an iterative approach. Specifically, we generate time series for

the magnetic field components Bi with the desired spectral scaling of aB = −1.74+0.26·σc.
Each component Bi of the magnetic field is paired with an initially uncorrelated component

Vi of the velocity field. The desired scaling index for the velocity field is −1.5, independent

of σc. However, the iterative process to achieve the desired correlation coefficient modifies

the imposed scaling.

We have empirically found that if the initial scaling of the generated velocity time

series is given by av = −1.51 + 0.18 · σc, we can obtain both the desired scaling and

correlation coefficient simultaneously through iterative adjustment. This process aims to

match the desired correlation between the increments of Bi and Vi. The input velocity

field component is given by

Vi = ρ ·Bi +
√

1 − ρ2 · ηi, (5.21)

where ρ is the desired correlation coefficient, and ηi is the initially generated velocity

time series with the imposed scaling. This provides an initial guess for Vi.
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For each iteration, the current correlation coefficient r between Bi and Vi increments

over specified intervals is computed. If the absolute difference between the current and

desired correlation coefficients is less than the specified tolerance, the iteration stops.

Otherwise, an adjustment is applied to Vi based on the correlation error, defined as

δ = γ × (ρ− r) ×Bi, (5.22)

where γ is the learning rate and r is the current correlation coefficient. This process

is repeated until the desired correlation coefficient is achieved.

Once the desired correlation is achieved, we normalize the RMS values of the magnetic

and velocity fields to ensure they meet the specified conditions.

By carefully balancing the spectral properties and correlation through this iterative

process, we successfully produced time series for the magnetic and velocity fields that

simultaneously satisfied the specified conditions and adhered to the desired spectral

scalings and correlation coefficients.

The results of this analysis are presented in Figure 5.19, with a setup identical to

Figure 5.16. In addition the inset of panel (c) illustrates the normalized diffrence of the

alignemnt angle estimates of the clean and noise-affected timeseries. While the exact

spectral scaling of the different fields does not make a big difference in the observed

behavior, not shown here, allowing the correlation coefficient, to vary in a manner consitent

with in-situ data, enables for a more realistic comparison between the synthetic and

in-situ data.

To further clarify this aspect, we estimate the band-pass RMS value of the different

fields within a specified frequency, or kdi, range from the power spectral density through:

Jξ =

√∫ f2

f1

Pξ(f) df (5.23)

The results of this analysis are presented in Figure 5.18. Panels (a), (b), and (c)

illustrate the variations of Jzo , Jzi
, and Jv/Jzi

as functions of kdi and σc. These values
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Figure 5.17: (a) The inertial-range power-spectral scalings for B (black line), V (red line),
zo (blue line), and zi (gray line) plotted against σc, estimated by determining the best-fit
linear gradient in log–log space over the range kdi ∈ [5 × 104, 10−2] for each selected
interval in our dataset. (b) The correlation coefficient, Cϕ, as defined in Equation 5.20,
for the velocity/magnetic fields (black) and Elsässer fields (red) plotted against σc. In
contrast to the scaling index in panel (a), Cϕ is estimated using the 1-minute moving
average, similar to Figure 5.15, from a dataset of size N ≈ 7.5 × 107.

are initially calculated for individual intervals in our dataset. Afterward, the weighted

mean values for each kdi and σc bin are determined, with the weights being the interval

duration.

Panel (c) additionally includes estimates of the same quantities derived from the

synthetic dataset, obtained by integrating the power-spectra shown in Figure 5.19. These

synthetic estimates are represented as solid lines overlaid on the dots from the in-situ

data.

The good agreement between the synthetic and in-situ data suggests that the noise

level introduced in the synthetic dataset is roughly consistent with the quantization noise
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Figure 5.18: (a) Jzo , (b) Jzi
, and (c) Jv/Jzi

as functions of σc. Here, Jξ represents the
band-pass RMS of the field ξ, as defined in Equation 5.23. These values are initially
estimated for individual intervals in our dataset. Subsequently, the weighted mean values
at a given kdi and σc bin are calculated, with the weights being the interval duration.
Panel (c) also includes the estimates of the same quantities for the synthetic dataset
obtained by integrating the power-spectra presented in Figure 5.19. These are shown as
solid lines overlaid on the dots from the in-situ data.

observed in the in-situ data. This validation indicates that our method for simulating

noise and comparing it to real data is reliable and accurate.

Overall, this analysis indicates that small amplitude high-frequency noise can cause

significant deviations in observed alignment angles from their true values, even at low

frequencies (large scales). However, reliable estimates of σc and σr can still be obtained

at higher frequencies, as the distortion in amplitude is minimal, but the phase effects are

significant.

5.2.4 Discussion

In recent years, the inertial-range scaling behavior of the alignment angle has ignited

intense discussions and debate. SDDA, if related to the reduction of nonlinearities10,

holds the potential to flatten the inertial range spectrum from E(k⊥) ∝ k
−5/3
⊥ to E(k⊥) ∝

k
−3/2
⊥ . Although the spectral exponents of -5/3 and -3/2 are numerically close, they

signify fundamentally different physical mechanisms underlying the turbulent energy

cascade. Therefore, a thorough understanding of the inertial range behavior of SDDA

10A dedicated discussion on why this may not be the case can be found in (Bowen et al., 2021)
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Figure 5.19: The setup is similar to that in Figure 5.16, but with the time series generated
using the empirical relationships obtained for ρ, BRMS, V RMS, ab, and au. Additionally,
the inset in panel (c) features the normalized difference D = 100(θ − θc)/θc, where θ and
θc are the noise-affected and clean estimates of the alignment angles, respectively.

is crucial, particularly when applying MHD turbulence models to astrophysical systems

with extensive inertial ranges. For example, predictions about the turbulent heating rate

can deviate significantly between models that ingore and incorporate SDDA (?Chandran

and Perez, 2019).

Nonetheless, in-situ observations have cast doubt on our comprehension of the role

of SDDA in Alfvénic turbulence. While several aspects of model incorporating SDDA

(Boldyrev, 2006; Chandran et al., 2015; Mallet and Schekochihin, 2017) are consistent

with in-situ observations (Chen et al., 2012; Verdini et al., 2018; Shi et al., 2023a; Sioulas

et al., 2024), signatures of increasing alignment usually fade within the inertial range

(Podesta, 2009; Verdini et al., 2018; Parashar et al., 2019, 2020; Sioulas et al., 2024).

It is imperative to recognize, however, that the (Boldyrev, 2006) and (Chandran et al.,

2015), models omit the potential effects of compressibility, imbalance, solar wind expansion,

and various instabilities on field alignment. These factors have been deliberately neglected

either because they were deemed negligible, given that these models focus on homogeneous

alfvénic turbulence, or to simplify computations, e.g., by assuming negligible cross-helicity.

Nonetheless, these effects often become significant in the solar wind, raising questions

about the applicability of these models to such conditions (Verdini et al., 2018; Bowen

et al., 2021).
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In this work, we have cast our analysis within a framework that allows us to isolate

and study the influence of effects such as compressibility, intermittency, and imbalance,

which have not been adequately addressed in previous works.

Before drawing conclusions, we review related work and discuss the characteristics

of solar wind turbulence that diverge from conventional models of homogeneous MHD

turbulence. Additionally, we evaluate how instrumental noise might obscure the precise

estimation of alignment angles in solar wind studies.

5.2.4.1 Wavepackets, shearing, alignment & residual energy

We have shown that the quenching of the alignment angle typically observed at inertial

scales shifts toward smaller scales when fluctuations with strong gradients are isolated

from residual fluctuations, as illustrated in Figure 5.9a. It is well known that the breadth

of the inertial range narrows with Elsässer imbalance (Bruno and Carbone, 2013, and

references therein). Nevertheless, at 1 AU, the inertial range begins, on average, at

ℓ ≈ 104di. Combining this observation with the results presented in Figure 5.9, it is clear

that by carefully thresholding based on the field gradients, SDDA signatures can still be

detected across a significant portion of the inertial range.

This latter observation is crucial because it is not the typical or median amplitude eddy

that is expected—or required for the purposes of the (Chandran et al., 2015) model—to

be strongly aligned at a given scale. Such wave packets have likely undergone several

balanced collisions, which could impede increasing alignment. Instead, it is the “atypical,”

yet “dynamically relevant,” eddies residing at the tails of the PDFs of increments that are

expected to show such behavior for the model to work. This is indeed the case, at least

down to the point where instrumental effects likely dominate the statistics (see analysis in

Sections 5.2.3.5). These wave packets are characterized by strong field gradients, remain

strongly incompressible, and have highly correlated velocity/magnetic field fluctuations,

as evidenced by the low nB and high σc indices, respectively. However, they exhibit a

significant excess of magnetic over kinetic fluctuation energy and therefore deviate from
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purely Alfvénic behavior.

Therefore, our observations support the following picture: The nonlinear, intermittent

dynamics perpendicular to B0 produce highly aligned, strongly turbulent, current sheet

structures that retain certain properties associated with the linear-wave response, given

their high cross-helicity. Kinetic-magnetic energy equipartition is spontaneously broken

due to imbalanced wave packet collisions, even if it is present initially at large scales,

where δu ≈ ±δb. This process culminates in the formation of incompressible current

sheet structures at smaller scales, residing at the periphery of the circle plot illustrated

in Appendix 5.2.5.2, a result also recovered in homogeneous and EBM simulations (see

e.g., Dong et al., 2014; Shi et al., 2023a). In this sense, our results provide observational

support for the (Chandran et al., 2015) model, indicating that both excess residual energy

and SDDA can be explained within the framework of strongly imbalanced wave packet

collisions (see also, Boldyrev et al., 2012; Howes, 2015). As such, our results provide

observational support for the in-situ generation of coherent structures as a by-product of

the turbulent cascade. At the same time, however, our results cannot definitively rule

out the presence of advected flux tube structures originating from the inner heliosphere

(Borovsky, 2008).

5.2.4.2 Dependence of SDDA measurements to Elsässer and Alfvénic imbal-

ance

In Section 5.2.3.3, we demonstrated that the scaling of Θz and Θub is strongly correlated

with the global Alfvénic and Elsässer imbalance, but with some nuances.

For instance, the large-scale value of normalized cross helicity, σc(ℓ
∗), with ℓ∗ =

2 × 104di, shows a strong correlation with Θub. As σc(ℓ
∗) → 1, the scaling of Θub becomes

steeper and is observed over a progressively narrower range of scales. However, the

scaling of Θz does not appear to change significantly with global Elsässer imbalance, at

least for σc(ℓ
∗) < 0.7. This finding is in qualitative agreement with the incompressible,

homogeneous MHD simulations by Beresnyak and Lazarian (2009), who found that the
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scaling of Θz remains unaffected by the global Elsässer imbalance.

Conversely, large-scale Alfvénic imbalance correlates with both Θz and Θub. As

σr(ℓ
∗) → 0, the scaling of Θub becomes steeper and narrows in scale range; that is, the

rollover of the curves shifts to smaller scales as σr(ℓ
∗) → −1 or σc(ℓ

∗) → 0. For Θz, the

scaling becomes steeper as σr(ℓ
∗) → −1, but there is no clear trend in the extent of Θz

with σr(ℓ
∗).

While our analysis clearly indicates that the scaling of SDDA depends strongly on the

degree of large-scale imbalance in the system, the observation that the extent over which

these signatures persist might also depend on imbalance is less convincing. It is tempting

to assume that for globally imbalanced intervals, the fields are already tightly aligned at

large scales, resulting in a strong depletion of nonlinearities. This would effectively halt the

mechanism that results in SDDA and prevent the average value of the different alignment

angles from becoming any tighter towards smaller scales. This could lead to a saturation

of the alignment angles at some minimum value, or allow for other mechanisms that result

in misalignment of the fields to become significant, as discussed in Section 5.2.4.6.

Another possible explanation could be instrumental effects. As discussed in Appendix

5.2.3.5, small uncertainties in high-frequency velocity field measurements can result

in significant uncertainty in alignment angle measurements, with the effect becoming

increasingly important as Elsässer imbalance increases. For example, it is clear from

the inset in Figure 5.19c that as σc → 1, the effects of high-frequency noise become

increasingly important at larger scales for Θub, consistent with the results presented in

Figure 5.14b. Thus, the dependence of alignment angle contamination due to instrumental

effects on the imbalance could provide an alternative explanation for the observed trend.

In any case, the extent to which SDDA persists deeper into the inertial range depending

on the global imbalance in the system is an interesting area for future research. Further

investigation with better quality particle measurements or high-resolution numerical

simulations is necessary to conclusively address this matter.
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5.2.4.3 Sensitivity of SDDA measurements to instrumental noise

In recent years, concerns have been raised regarding the extent to which our ability

to estimate statistical quantities that depend on the sub-dominant Elsässer mode is

hampered by uncertainty in velocity field measurements due to instrument characteristics

(Podesta, 2009; Chen et al., 2012; Podesta et al., 2009; Gogoberidze et al., 2012; Bowen

et al., 2021; Sioulas et al., 2024; Ervin et al., 2024).

For example, the velocity data from the Wind mission are quantized before transmission

back to Earth, a process that involves rounding real, rational numbers to the nearest

integer. A close inspection of the velocity field time series shows that almost every data

point has a time-discontinuity. While these discontinuities are small—corresponding to

the bit size of the data—they induce an artificial ∝ f−2 spectrum. This high-frequency

quantization noise leads to a decoupling of velocity and magnetic field fluctuations near

the Nyquist frequency, identified as the primary reason for the observed decrease in σc at

high frequencies (Podesta and Borovsky, 2010). Other sources of uncertainty, including

aliasing and Poisson noise, are further discussed by Chen et al. (2013).

Since good-quality, high-frequency velocity field measurements are not available at

the moment, we have tried to quantify the uncertainty in our measurements to assess the

degree of confidence we can place in our observations and to attribute them to physical

mechanisms underlying the turbulent cascade.

In Section 5.2.3.5, we presented a simplified theoretical analysis along with an effort

to model the effects of noise on SDDA measurements. Our analysis indicates that despite

the fact that other quantities, e.g., Pu, σc, or even Pzi, may still be measurable for the

largest portion of the inertial range, the effects of noise on alignment angle measurements

can be dramatic at very low frequencies. The strong dependence on the level of Elsässer

imbalance can render such measurements impossible even at scales as large as 5−10×103di.

Therefore, while we discuss other alternative mechanisms of physical origin that could

result in misalignment of the fields in subsequent sections, we believe, based on the

analysis presented in Section 5.2.3.5, that the increasing misalignment of the fields usually
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observed at inertial scales is of instrumental origin.

5.2.4.4 Effects of compressibility in SDDA

As the cascade progresses toward smaller spatial scales, the topology and characteristics of

turbulent fluctuations can change dramatically. Various types of coherent structures, both

incompressible (such as current sheets and Alfvén vortices) and compressible (including

magnetic holes and solitons), have been observed in different space-plasma environments

(Alexandrova et al., 2006; Rees et al., 2006; Perrone et al., 2016; Vasko et al., 2022;

Vinogradov et al., 2023). In many cases, compressive fluctuations have been shown to

significantly impact the dynamics of the turbulent solar wind (Klein et al., 2012; Howes

et al., 2012; Verscharen et al., 2017; Chandran, 2018; Shoda et al., 2019).

To bridge the gap between in-situ observations, theoretical predictions, and numerical

evidence, we sought to quantify the effects of compressibility on SDDA. This involved a

distinct examination of the dynamics of compressible and incompressible fluctuations to

gain insights into the persistent observation of increasing misalignment at the inertial

scale of solar wind turbulence.

As anticipated, our results indicated that strongly compressible fluctuations generally

exhibit very weak to negligible signatures of increasing alignment, as shown in Figure 5.10.

These fluctuations can, to some extent, affect the average scaling of SDDA when mixed

with Alfvénic fluctuations. However, compressible fluctuations are usually associated

with weak field gradients and have considerably lower amplitudes than incompressible

fluctuations, Figure 5.11. Therefore, their impact on the average scaling behavior

is minimal, especially when amplitude-weighted definitions of the alignment angle are

considered.

In fact, though not shown here, the average behavior (i.e., without segregating

compressible from incompressible fluctuations) of the alignment angles almost perfectly

overlaps with the black (i.e., incompressible) lines in Figure 5.10, indicating that the

effects of compressibility on SDDA are negligible and can thus not explain the trend of
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misalignment at inertial scales.

5.2.4.5 Alignment at the Outer Scale: Assessing Consistency with Homoge-

neous, Incompressible MHD Phenomenologies

Our findings confirm a well-established result: increasing signatures of SDDA are ob-

servable for the majority of the intervals considered, irrespective of associated plasma

parameters, at the outer scale. However, before concluding that the observed behavior

aligns with the phenomenological models of homogeneous MHD turbulence discussed

above, another aspect, which has not been extensively explored in the literature, warrants

further discussion.

In homogeneous MHD, the turbulent cascade advances through uncorrelated collisions

between counterpropagating wave packets. However, in the stratified solar wind, dynamics

become more intricate due to linear couplings of outgoing waves with large-scale inhomo-

geneities, leading to non-WKB (Wentzel-Kramers-Brillouin) reflections. In this scenario,

the Elsässer fields can be decomposed into primary and secondary components (Velli et al.,

1989; Velli et al., 1990; Hollweg and Isenberg, 2007). The primary component, known

as the “classical” component zic, travels at the characteristic phase speed Vsw − Va. The

secondary, or “anomalous” component zia, maintains the same phase function and thus

propagating properties as the forcing, zo. Consequently, zia maintains a strong correlation

with zo, zo ∝ −zia. Numerical demonstrations of this anomalous coherence effect in

inhomogeneous MHD turbulence have been explored in (Verdini et al., 2009).

The nonlinear interactions between zo and zic are uncorrelated and transient, limited

to the duration of their encounters. Conversely, in the frame of the outgoing wave, zia

appears stationary, and the shearing between zo and zia remains coherent over time.

It is intuitive to anticipate that as the imbalance in the fluxes of counterpropagating

wavepackets increases, the efficiency of zo and zic decreases—it becomes more difficult for

a zic fluctuation to locate and interact with the dominant zo fluctuations. Consequently,

the influence of the anomalous coherence effect would intensify with increasing Elsässer
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imbalance.

The anomalous coherence of wave packets in the expanding solar wind enhances

nonlinear interactions compared to the homogeneous scenario, thereby altering the phe-

nomenology of the energy cascade. This results in 1/f and f−3/2 outer range scalings

for inwardly and outwardly propagating modes, respectively (Velli et al., 1989; Perez

and Chandran, 2013). By selecting the most strongly imbalanced (σc(ℓ
∗) > 0.95) fast

wind intervals—having similar levels of RMS—and calculating an average second-order

moment, we demonstrate that this is indeed the case, as shown in Figure 5.20. herefore,

the coherent nature of the interactions could potentially affect the scale-dependence of

the alignment angle.

This discussion underscores the need for a comprehensive theoretical framework to

understand the nature of SDDA in the solar wind, taking into account the relative

contributions of zia and zic to the shearing of zo across various scales. Nevertheless,

regardless of whether SDDA derives primarily from “classical” or “anomalous” interactions,

the underlying mechanism remains the same. Therefore, the conclusion that the physical

origin of SDDA stems from the shearing of wave packets due to strongly imbalanced

interactions remains valid, even though the exact scaling might deviate from the (Chandran

et al., 2015) predictions, especially as σc → 1.

5.2.4.6 Instabilities

An important question arising from our study concerns the regime change observed

in the polarization alignment, which tends to plateau, at best, as inertial scales are

approached. An additional explanation for the observed increasing misalignment at

smaller spatial scales involves the idea that dynamically aligned structures of a particular

amplitude become unstable to disruption by tearing instabilities and the onset of magnetic

reconnection (Furth et al., 1963). Particularly, when the maximum growth rate of the

(Coppi et al., 1976) mode, γt, becomes comparable to the non-linear cascade time τnl,

γtτnl ≳ 1, the current sheets can no longer remain stable (Pucci and Velli, 2014; Uzdensky
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Figure 5.20: Averaged trace SF 2
5 of zo (black) and zi (red) for the fast, strongly Alfvénic

(σc > 0.95) solar wind. At inertial scales, indicated by the pink shading, both fields
follow a −3/2 spectral scaling. Two outer scale regimes may be observed: at scales
ℓ ∈ [2 × 104 − 2 × 105]di, spectral scalings for both fields, Pzo ∝ k−1 and Pzi ∝ k−3/2,
are consistent with models based on “anomalous coherence” effects (Velli et al., 1989;
Perez and Chandran, 2013). At even larger scales, a range with Pzo ∝ k−1 and Pzi ∝ k−2

scalings is observed, consistent with the model by Chandran (2018) based on PDI.

and Loureiro, 2016). The disruption of the current sheets, at a certain scale λD, interrupts

dynamic alignment, accelerating the turbulent cascade and leading to a pronounced

steepening of the power spectrum (Mallet et al., 2017; Loureiro and Boldyrev, 2017). In

the tearing-dominated regime, the alignment angle is expected to increase with decreasing

scale, θub ∼ λ−4/5 (Mallet and Schekochihin, 2017; Boldyrev and Loureiro, 2017).

Using three-dimensional gyrokinetic simulations, (Cerri et al., 2022) explored the

dynamics of collisions between Alfvén waves (AW), revealing distinct behaviors in SDDA

depending on whether the wave packets are colliding or well separated. When colliding,

alignment demonstrates scale-dependent behavior likely induced by the packets shearing

each other, whereas when well separated, a reconnection-mediated cascade dominates,

leading to misalignment. This differentiation, as depicted in Figure 4 of (Cerri et al.,

2022), is crucial; without it, the average curve lacks specific scaling and remains nearly
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flat. This averaging effect could significantly impact in-situ measurements, especially

when alignment is measured over extended periods, exacerbating as the measurements

move towards smaller scales where turbulence evolution timescales become shorter.

In many astrophysical scenarios, MHD turbulence is typically driven by localized

sources (e.g., shear, instabilities), leading to non-balanced states, i.e., non-negligible cross

helicity. Indeed, localized regions of imbalance have been prominently observed even

in globally imbalanced simulations of MHD turbulence (Matthaeus et al., 2008a; Perez

and Boldyrev, 2009a). Patches of positive and negative cross-helicity are also evident in

globally balanced solar wind streams (Chen et al., 2011; Wicks et al., 2013a). Considering

these observations and based on their simulations (Cerri et al., 2022) propose that aligning

thin, long-lived current sheets are generated by the turbulent cascade, then misaligning

through tearing, in a patchy fashion in space and time, rather than stepwise in k-space.

Taking these observations into account, we can conclude that while the tearing mediated

regime is highly unlikely to occur at scales as large as 103− 104di, the impact of tearing of

the current sheets on the alignment angle at inertial scales warrants further investigation.

In addition, other types of ideal MHD instabilities, such as the Kelvin-Helmholtz

instability (Malagoli et al., 1996), could potentially manifest in the solar wind. For example,

it has been demonstrated that despite the highly Alfvénic nature of the fluctuations at

large scales, the signatures of Alfvénicity (namely, σc, σr, θ
ub) diminish at considerably

larger scales than those observed at 1 AU (Podesta and Borovsky, 2010).

(Parashar et al., 2020) interpret these observations as indicative of substantial energy

found in velocity shears, which disrupt an initial spectrum of high cross helicity by

injecting equal amounts of the two Elsässer energies (Roberts et al., 1987; Goldstein

et al., 1989; Roberts et al., 1992) within the inner heliosphere (Ruffolo et al., 2020).

Since both σc and σr are interdependent with the alignment angles, such effects could

potentially influence the SDDA scalings. While it is not possible to rule out such effects,

especially given recent in-situ observations (Paouris et al., 2024), it’s essential to note

that, as demonstrated in Section 5.2.4.3, high-frequency instrumental noise in velocity

field measurements can contaminate the power spectrum of the ingoing Elsässer field even
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at lower frequencies. This contamination becomes progressively more significant as the

Elsässer imbalance increases, see 5.16b. Therefore, another plausible explanation for such

observations may be contamination by high-frequency velocity field noise. Additionally,

as pointed out in (Schekochihin, 2022), since the vortex stretching terms for the different

Elsässer fields have opposite signs (Zhdankin et al., 2013), there will generally be more

“current sheets” than “shear layers”. In such sheets, at least in the homogeneous case, the

Kelvin–Helmholtz instability will be suppressed (Taylor, 1938).

5.2.5 Summary & Conclusions

Using a large dataset of carefully selected homogeneous intervals from the WIND mission,

we explored the impact of compressibility, intermittency, and imbalance on the statistical

signatures of Scale-Dependent Dynamic Alignment (SDDA) in MHD turbulence within

the solar wind (Boldyrev, 2006; Chandran et al., 2015).

Below, we summarize the key findings of our analysis. For clarity, we refer to the

alignment angles of the Elsässer variables as (Θz) and the alignment between velocity

and magnetic field fluctuations as (Θub).

(1) SDDA in both Θz and Θub is consistently evident at energy-containing scales,

λ ≳ 104di, and is observed concurrently with an increase in |σc| and σr becoming more

negative.

(2) Θz and Θub exhibit an inverse correlation with the intensity of field gradients.

This may stem from “anomalous” and/or “counterpropagating” wave packet interactions.

Nevertheless, this observation indicates that the physical origin of alignment arises from

the mutual shearing of the Elsässer fields during imbalanced wave-packet interactions

(Chandran et al., 2015).

(2) Compressible fluctuations do not exhibit any signs of SDDA. However, their effects

on the average behavior of SDDA are negligible due to their relatively low amplitude and
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thus cannot explain the trend of misalignment at inertial scales.

(3) Stringent thresholding on proxies for intermittency reveals SDDA signatures

within a portion of the inertial range. Regardless of the approach we follow increasing

misalignment is consistently observed for scales λ ≥ 8 × 102di. Based on analytical

arguments and modeling, we believe this misalignment is not a physical phenomenon but

rather an artifact caused by high-frequency noise in the velocity field measurements.

(4) The scaling of Θz/Θub becomes steeper/shallower with increasing global Alfvénic

imbalance (σr(ℓ
∗) → −1), but only Θub is correlated, becoming steeper, with the increasing

global Elsässer imbalance (σc(ℓ
∗) → 1).

(5) Signatures of increasing alignment in Θub extend deeper into the inertial range of

balanced intervals. This could be due to two factors: first, in globally imbalanced intervals,

the fields are tightly aligned at large scales, depleting nonlinearities and halting the SDDA

mechanism, causing alignment angles to saturate at a minimum value. Alternatively,

instrumental noise may have a greater impact on alignment angle measurements as

imbalance increases, leading to significant measurement errors.

While we do not disregard the need for theoretical advancements in existing turbulence

models—especially to address the effects of imbalance and the expansion of the solar

wind—it is more plausible that our results underscore the current limitations in precisely

estimating alignment angles due to instrumental constraints, particularly in the context

of highly Alfvénic, strongly imbalanced turbulence. Regrettably, the most intriguing cases

are also the most difficult to investigate.

Alternative methods for studying the scaling of alignment angles should be considered.

For example, using electric field measurements could enable the estimation of the perpen-

dicular component of the magnetic field fluctuations, given by δV⊥(ℓ, t) = δE⊥(ℓ, t)×B0/c,

where δE⊥(ℓ, t) represents the perpendicular component of the electric field fluctuations

and c is the speed of light. This approach is planned for future research.
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Moreover, 3D expanding box simulations of compressible MHD, which include both

balanced and imbalanced turbulence, will offer deeper insights and facilitate more precise

quantification of these effects on alignment measurements (Shi et al., in prep).

5.2.5.1 Revisiting (Podesta et al., 2009)
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Figure 5.21: Alignment angle measurements as defined by Equations 2.27 and 2.28 in
top and bottom panels, respectively, across the three (out of four) intervals studied in
(Podesta et al., 2009).Black curves represent the alignment between Elss̈ser fields, while
red curves illustrate the alignment between velocity and magnetic field fluctuations.

To verify the effectiveness of our modified alignment angle estimation method in

comparison with (Podesta, 2009), we revisited the intervals analyzed in their study. Their

investigation primarily focused on the alignment between δv⊥ and δb⊥, employing the

definitions outlined in Equation 2.28. In addition they introduced a weighted average

angle, defined in Equation 8 of (Podesta, 2009). Our analysis indicates that the latter

definition results in scalings that are in most cases identical to the polarization alignment

definiton. In line with the methodology proposed by (Chandran et al., 2015), we specifically

examined the angles delineated by Equations 2.27 and 2.28.

2.27

Figure 5.21 showcases our findings for θ̃
ub(z)
⊥ , with each column representing one of

the three (out of four) intervals analyzed by (Podesta, 2009). The Elsässer fields are

denoted by black lines, while the angles between magnetic and velocity fields are depicted

in red. In all instances, the scaling obtained aligns with those reported in (Podesta, 2009),
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with both the 2-pt and 5-pt increment methods yielding very similar results, as detailed

in Section 2.0.8. Thus, we can confidently proceed with our analysis utilizing the 5-pt

increment method.

5.2.5.2 Geometrical Constrains and Types of Alignment
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Figure 5.22: Graphical representation of Equations 5.24 illustrated in panels (a) and (b),
respectively.

To provide a clear illustration of the interdependence between σc, σr, θ
ub
⊥ , and θz⊥ we

provide a graphical representation of the equations:

cos(θz⊥) =
σr√

1 − σ2
c

, cos(θub⊥ ) =
σc√

1 − σ2
r

, (5.24)

To generate random values for σc and σr within a unit circle on the Cartesian plane,

constrained to the range of [-1, 1], we employed a random sampling approach. We

independently selected values for σc and σr from a continuous uniform distribution

spanning [-1, 1], while ensuring that the condition σ2
c + σ2

r ≤ 1 was met to keep them

within the unit circle. Subsequently, for each pair, we estimated the alignment angles

according to Equation 5.24. The results are illustrated in Figure 5.22, colored by θz⊥ in

panel (a), and θub⊥ in panel (b).
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CHAPTER 6

Conclusion

In this thesis I have investigated the statistical properties of MHD turbulence spanning

the entire spectrum from the outer, to the inertial and in some cases the kinetic scales. I

have combined observations from the PSP, SolO and WIND missions spanning several

decades and heliocentric distances ranging from the boundary of the solar corona out to

Earth’s orbit at 1au.

Before summarizing the new physics learned from this work, it is important to

highlight that this endeavor has revealed a significant limitation in a method widely

used in experimental turbulence studies. More specifically, as discussed in Section 5.1,

the susceptibility of 2-point structure functions to spectral leakage (Cho, 2019) can

result in erroneous interpretations of the turbulent cascade. While negligible at inertial

scales—validating the results in Section 4—this deficiency becomes significant at kinetic

scales, Gaussianizing the distributions of increments and leading to imprecise estimations

of intermittency-related metrics. Consequently, this work suggests that the well-established

monofractal nature of the turbulent cascade at kinetic scales must be re-examined using

wavelet or multipoint structure functions. This reconsideration is crucial for a deeper

understanding of the fractal properties of MHD turbulence at kinetic scales, which can

significantly impact our understanding of the mechanisms underlying magnetic turbulent

energy dissipation into plasma heating. In future work, we will thoroughly investigate this

topic, focusing on distinguishing between balanced and imbalanced turbulence streams

(see, e.g., Bowen et al., 2023).

I first studied the evolution of statistical properties of magnetic field fluctuations in

the inner heliosphere, published in (Sioulas et al., 2023a), and discussed in Section 3.1
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of this thesis. Initially focusing on spectral properties, I aimed to identify the plasma

parameters underlying the inertial-range steepening of the magnetic field power spectrum.

The results indicate that closer to the Sun, the magnetic field power spectrum exhibits a

poorly developed inertial range, characterized by a −3/2 spectral index. As the solar wind

expands into the interplanetary medium, the inertial range extends to larger scales, with

the spectral index steepening towards −5/3 (Chen et al., 2020). The main finding of this

work is that the rate of steepening is strongly dependent on the degree of equipartition

between the energy in magnetic field and velocity field fluctuations. Specifically, our

results indicate that the shearing of counterpropagating wave packets results in a turbulent

cascade producing highly aligned coherent structures with an excess of residual magnetic

over kinetic energy, leading to steeper magnetic field spectra. Conversely, nonlinearities

are suppressed in strongly imbalanced intervals, allowing them to retain their near-sun

shallower scaling of −3/2 at Earth’s orbit.

Focusing on the anisotropic properties of the magnetic field power spectra (Sioulas

et al., 2023), and discussed in Section 3.2, we provided strong evidence suggesting that

the domain canonically identified as the inertial range comprises two distinct sub-inertial

segments exhibiting different turbulence statistics. The presence of the two sub-ranges is

evident closer to the Sun, with the small-scale sub-range extending between 10−100di and

gradually extending to larger scales with increasing heliocentric distance. Turbulence in the

large-scale sub-inertial range is roughly isotropic, and thus close to the Sun, the anisotropy

in both the scaling and power gradually diminishes and deviates significantly from the

canonical behavior expected from the phenomenological models discussed in Section 1.3.1.

Additionally, this work highlights that the lack of a well-defined inertial range close to

the Sun could be partly attributed to the scarcity of perpendicular fluctuations due to

quasi-parallel sampling, leading to significant discrepancies between the perpendicular

and trace power spectra. This study underscores the importance of using conditional

analysis to separately estimate the field-parallel and field-perpendicular power spectra.

Without this careful analysis, results cannot be accurately interpreted based on the

phenomenological models discussed in Section 1.3.1, which only offer scaling predictions
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in the three physically important directions, as elaborated in Section ??. Finally, this

work has shown that close to the Sun, the outer range of the spectrum is characterized a

remarkably extended and relatively shallow scaling of αB ≈ −0.8 that steepens towards

αB ≈ −1 with distance. This is particularly noteworthy as previous research has shown

that the coupling of large amplitude outwardly propagating waves to slow magnetosonic

wave through the parametric decay instability (Galeev and Oraevskii, 1963b; Goldstein,

1978; Pruneti and Velli, 1997; Réville et al., 2018; Malara et al., 2022; Chandran, 2018)

which results in two daughter waves; an antisunward propagating slow wave and a sunward

propagating alfven wave, of frequency slightly lower than the mother wave. This process

may lead an inverse energy cascade and to the development of a k−1
|| spectrum for outward-

propagating AWs by the time they reach a heliocentric distance of 0.3 au in the fast solar

wind (Chandran, 2018).

To elucidate the mechanisms behind the slow decay of electron and proton temperatures

in the solar wind, compared to spherically symmetric adiabatic expansion models (i.e.,

T ∼ r−4/3), I investigated the characteristics and radial evolution of coherent structures

and their role in magnetic energy dissipation and plasma heating. Focusing on the perihelia

of PSP, we found that coherent structures tend to form clusters rather than being evenly

distributed. Regions with strong magnetic field gradients, which are expected to enhance

stochastic heating rates based on critically balanced Alfvénic turbulence (Mallet et al.,

2019), are associated with significantly higher proton temperatures but only slightly

elevated electron temperatures. The results suggest a heating mechanism in the nascent

solar wind driven by a nonlinear turbulent cascade that preferentially heats protons over

electrons. This could be interpreted through the recently discovered ”helicity barrier”

mechanism (Meyrand et al., 2021a; Squire et al., 2022b), which posits that under conditions

of strong imbalance, generalized helicity conservation may impede energy transfer to

electron scales, resulting in preferential proton heating. Further work is needed to

understand whether heating rates among different species change between balanced and

imbalanced solar wind intervals. This could be investigated using high-quality electron

temperature data from the quasithermal-noise estimate of the SolO mission.
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Following the solar wind further into the inner heliosphere, I investigated the dynamic

evolution of magnetic coherent structures and how their statistical is that the strengthening

of intermittency with increasing distance from the Sun (Bruno et al., 2003) should be

re-examined. This is because intermittency properties exhibit strong anisotropy relative

to the background magnetic field, and the angle between the solar wind flow and the

magnetic field, as observed by spacecraft, can significantly influence whether fluctuations

in measured quantities vary parallel or perpendicular to the magnetic field. Due to

the Parker Spiral configuration (Parker and Tidman, 1958), the baseline angle between

the solar wind flow and the magnetic field, denoted as ΘV B, increases with heliocentric

distance. Consequently, spacecraft measuring magnetic field fluctuations at 1 AU are more

likely to detect fluctuations perpendicular to the mean magnetic field direction, resulting

in an observational bias when ΘV B is not taken into account, leading to a perceived radial

increase in intermittency. However, when the sampling becomes quasi-perpendicular

and the fraction of parallel intervals becomes statistically insignificant, a decrease in

the fraction of the dataset occupied by coherent structures is evident. This observation

provides a simple explanation for the observed weakening of intermittency beyond 1 AU

(Parashar et al., 2019; Cuesta et al., 2022b).

Given the unexpected observation of the two sub-inertial ranges in the domain cnaon-

ically identified as the inertial range, I have then tried to understand the physical

mechanisms underlying this transition. In the process an effort was made to on deter-

mining the presence and measurable impact of model-specific elements, such as SDDA

and CB, on the observed characteristics. It was shown, for the first time, through in situ

observations that the two Alfvénic species undergo distinct turbulent cascades. While

both start weak at large scales, outgoing modes remain in the weak regime throughout

the inertial range, while ingoing modes transition to a strong cascade at the onset of the

inertial range. This transition is accompanied by spectral scalings diverging from the

expected behavior marking the shift from weak to strong turbulence, an effect we have

atributed to “anomalous coherence’ effects taking place in the solar wind (Velli et al.,

1989).
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While several findings came out of this work, the most important realization, is that

the models proposed by CSM15 and MS17, which integrate SDDA as an intermittency

effect and account for local imbalance, possess the essential elements for a successful

phenomenological representation of imbalanced MHD turbulence. However, the models

do not address certain aspects of solar wind turbulence, such as the presence of two

sub-inertial ranges and anisotropic signatures. THerefore Incorporating additional effects,

like accounting for inhomogeneity or the spherical polarization of fluctuations, proves

necessary to enhance the models’ scaling predictions.

While important, the previous work only considers a specific case of MHD turbulence,

namely imbalanced turbulence. It is essential to understand how these statistical signatures

change depending on the global imbalance. To address this, the study was extended using

a large statistical dataset from the WIND mission. Although this work is not yet fully

completed, the initial focus has been on a topic that has proven controversial in recent

years.

SDDA in the polarization of Elsässer field fluctuations is posited to suppress nonlin-

earities and modulate the energy spectrum. Despite its theoretical significance, empirical

evidence for SDDA within the inertial range of solar wind turbulence has been sparse.

I revisited the topic analyzed homogeneous intervals from 28 years of WIND mission

data to assess the effects of compressibility, intermittency, and imbalance on SDDA.

The results indicate that alignment at the largest scales tightens regardless of plasma

parameters. As imbalance increases, the scaling of SDDA becomes steeper; however,

SDDA signatures are observed deeper within the inertial range of balanced intervals.

Minor uncertainties in high-frequency velocity field measurements can significantly affect

estimates of low-frequency alignment angles, and such effects intensify with imbalance.

An observed anticorrelation between the intensity of field gradients and alignment angles

supports the hypothesis that SDDA may originate from the mutual shearing of Elsässer

fields in highly imbalanced collisions (δz± ≫ δz∓) between counterpropagating wave

packets. By applying stringent thresholds on proxies for intermittency and compressibility,

we identified SDDA signatures extending into a portion of the inertial range. This work
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highlights another limitation of in-situ observations and suggests that a satisfactory answer

to the question of how deep into the inertial range SDDA affects the turbulent spectra

will not be provided using solely velocity field data.

Alternative methods for studying the scaling of alignment angles warrant consideration.

For instance, using electric field measurements could allow for the estimation of the

perpendicular component of the magnetic field fluctuations, δV⊥(ℓ, t) = δE⊥(ℓ, t) ×B0/c,

where δE⊥(ℓ, t) denotes the perpendicular component of the electric field fluctuations

and c is the speed of light. This area of study is slated for future research. Finally, 3D

expanding box simulations of compressible MHD, including both balanced and imbalanced

turbulence, will provide deeper insights and facilitate a more precise quantification of

these effects on alignment measurements (Shi et al., in prep).

Finally, using the WIND dataset, the 3D anisotropic higher-order scalings of the

different fields will be studied and an effort will be made to further understand the degree

to which effects happening, but are not accounted for by MHD turbulence phenomenologies,

modfy the turbent cascade and in turn affect the magentic energy dissipation and plasm

heting in the solar wind.

SDDA in the polarization of Elsässer field fluctuations is posited to suppress nonlin-

earities and modulate the energy spectrum. Despite its theoretical significance, empirical

evidence for SDDA within the inertial range of solar wind turbulence has been sparse.

Revisiting this topic, I analyzed homogeneous intervals from 28 years of data from the

WIND mission, selected through visual inspection, to assess the effects of compressibility,

intermittency, and imbalance on SDDA. The results indicate that, at any given scale,

the alignment angle is anticorrelated with the intensity of field gradients, supporting

the hypothesis that the physical origin of SDDA may stem from the mutual shearing of

Elsässer fields in highly imbalanced collisions (δz± ≫ δz∓) between counterpropagating

wave packets. Compressible fluctuations do not show any increasing alignment and, when

mixed with Alfvénic ones, can pollute the average behavior. By applying stringent thresh-

olds on proxies for intermittency and compressibility, I have identified SDDA signatures

extending into a portion of the inertial range. As imbalance increases, the scaling of
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SDDA becomes steeper; however, SDDA signatures are observed deeper within the inertial

range of balanced intervals. However, by modeling the influence of minor uncertainties

in high-frequency velocity field measurements, demonstrating their substantial impact

on low-frequency alignment angle estimates, with these effects intensifying with Elsässer

imbalance. Therefore, this work highlights another limitation of in-situ observations and

suggests that a satisfactory answer to how deep into the inertial range SDDA affects the

turbulent spectra will not be provided using solely velocity field data.

Alternative methods for studying the scaling of alignment angles warrant consideration.

For instance, using electric field measurements could allow for the estimation of the

perpendicular component of the magnetic field fluctuations, δV⊥(ℓ, t) = δE⊥(ℓ, t) ×B0/c,

where δE⊥(ℓ, t) denotes the perpendicular component of the electric field fluctuations and

c is the speed of light. This area of study is slated for future research. Additionally, 3D

expanding box simulations of compressible MHD, including both balanced and imbalanced

turbulence, will provide deeper insights and facilitate a more precise quantification of

these effects on alignment measurements (Shi et al., in prep).

Finally, using the WIND dataset, the 3D anisotropic higher-order scalings of the

different fields will be studied. Efforts will be made to understand the degree to which

unaccounted effects in MHD turbulence phenomenologies modify the turbulent cascade

and, in turn, affect magnetic energy dissipation and plasma heating in the solar wind.
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A journey from the earth back to the sun. Journal of Geophysical Research: Space
Physics, 126(4):e2020JA028996. e2020JA028996 2020JA028996. 57

Elsasser, W. M. (1950). The hydromagnetic equations. Phys. Rev., 79:183–183. 34, 202

Ervin, T., Bale, S. D., Badman, S. T., Bowen, T. A., Riley, P., Paulson, K., Rivera,
Y. J., Romeo, O., Sioulas, N., Larson, D. E., Verniero, J. L., Dewey, R. M., and Huang,
J. (2024). Near subsonic solar wind outflow from an active region. arXiv e-prints, page
arXiv:2405.15844. 224, 234

Escoubet, C. P., Fehringer, M., and Goldstein, M. (2001). Introduction: The Cluster
mission. Annales Geophysicae, 19:1197–1200. 58

Feller, W. (1968). An Introduction to Probability Theory and Its Applications, volume 1.
Wiley. 12

Fisk, L. A. and Kasper, J. C. (2020). Global Circulation of the Open Magnetic Flux of
the Sun. , 894(1):L4. 66

262



Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A., Kasper,
J. C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M. K., McComas, D. J., Raouafi,
N. E., and Szabo, A. (2016). The Solar Probe Plus Mission: Humanity’s First Visit to
Our Star. ßr, 204(1-4):7–48. 2, 69, 87, 122, 150, 162

Franci, L., Cerri, S. S., Califano, F., Landi, S., Papini, E., Verdini, A., Matteini,
L., Jenko, F., and Hellinger, P. (2017). Magnetic Reconnection as a Driver for a
Sub-ion-scale Cascade in Plasma Turbulence. , 850:L16. 192

Franz, M. and Harper, D. (2002). Heliospheric coordinate systems. Planetary and
Space Science, 50(2):217–233. 81

Fredricks, R. W. and Coroniti, F. V. (1976). Ambiguities in the deduction of rest frame
fluctuation spectrums from spectrums computed in moving frames. , 81(A31):5591–5595.
61

Frisch, U. (1995). Turbulence: The Legacy of A.N. Kolmogorov. Publication Title:
Astrophysical Letters and Communications. 9, 10, 49, 50, 84, 85, 121, 175

Frisch, U., Sulem, P. L., and Nelkin, M. (1978). A simple dynamical model of intermit-
tent fully developed turbulence. Journal of Fluid Mechanics, 87:719–736. 51

Furth, H. P., Killeen, J., and Rosenbluth, M. N. (1963). Finite-Resistivity Instabilities
of a Sheet Pinch. The Physics of Fluids, 6(4):459–484. 191, 237

Galeev, A. A. and Oraevskii, V. N. (1963a). The Stability of Alfvén Waves. Soviet
Physics Doklady, 7:988. 111

Galeev, A. A. and Oraevskii, V. N. (1963b). The Stability of Alfvén Waves. Soviet
Physics Doklady, 7:988. 246

Galtier, S., Nazarenko, S. V., Newell, A. C., and Pouquet, A. (2000). A weak turbulence
theory for incompressible magnetohydrodynamics. Journal of Plasma Physics, 63(5):447–
488. 99, 203

Galtier, S., Pouquet, A., and Mangeney, A. (2005). On spectral scaling laws for
incompressible anisotropic magnetohydrodynamic turbulence. Physics of Plasmas,
12(9):092310. 203

Gerick, F., Saur, J., and von Papen, M. (2017). The uncertainty of local background
magnetic field orientation in anisotropic plasma turbulence. The Astrophysical Journal,
843(1):5. 45, 46, 77, 78, 99

Gogoberidze, G. (2007). On the nature of incompressible magnetohydrodynamic
turbulence. Physics of Plasmas, 14(2):022304–022304. 203

Gogoberidze, G., Chapman, S. C., Hnat, B., and Dunlop, M. W. (2012). Impact of
measurement uncertainties on universal scaling of MHD turbulence. , 426(2):951–955.
234

263



Goldreich, P. and Sridhar, S. (1995). Toward a Theory of Interstellar Turbulence. II.
Strong Alfvenic Turbulence. \apj, 438:763. xi, 44, 46, 47, 68, 86, 99, 179, 180, 203

Goldreich, P. and Sridhar, S. (1997). Magnetohydrodynamic Turbulence Revisited.
\apj, 485(2):680–688. eprint: astro-ph/9612243. 86, 99, 118

Goldstein, M. L. (1978). An instability of finite amplitude circularly polarized Afvén
waves. , 219:700–704. 246

Goldstein, M. L., Roberts, D. A., and Matthaeus, W. H. (1989). Numerical simulation
of interplanetary and magnetospheric phenomena: the Kelvin-Helmholtz instability.
Geophysical Monograph Series, 54:113–125. 186, 239

Grappin, R. and Velli, M. (1996a). Waves and streams in the expanding solar wind. ,
101(A1):425–444. 65

Grappin, R. and Velli, M. (1996b). Waves and streams in the expanding solar wind. ,
101(A1):425–444. 67, 71

Grappin, R., Velli, M., and Mangeney, A. (1991). ”Alfvénic” versus ”standard” turbu-
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proton and electron heating rates via landau damping constrained by parker solar probe
observations. The Astrophysical Journal, 946(2):85. 168, 193

She, Z.-S. and Leveque, E. (1994). Universal scaling laws in fully developed turbulence.
, 72(3):336–339. 51

Shebalin, J. V., Matthaeus, W. H., and Montgomery, D. (1983). Anisotropy in mhd
turbulence due to a mean magnetic field. Journal of Plasma Physics, 29(3):525–547.
42, 99, 194, 203

Shi, C., Panasenco, O., Velli, M., Tenerani, A., Verniero, J. L., Sioulas, N., Huang,
Z., Brosius, A., Bale, S. D., Klein, K., Kasper, J., de Wit, T. D., Goetz, K., Harvey,
P. R., MacDowall, R. J., Malaspina, D. M., Pulupa, M., Larson, D., Livi, R., Case,
A., and Stevens, M. (2022a). Patches of magnetic switchbacks and their origins. The
Astrophysical Journal, 934(2):152. 86, 159

280



Shi, C., Sioulas, N., Huang, Z., Velli, M., Tenerani, A., and Réville, V. (2023a).
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versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar
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Owen, C. J., Rodŕıguez-Pacheco, J., Romoli, M., Solanki, S. K., Wimmer-Schweingruber,
R. F., Bale, S., Kasper, J., McComas, D. J., Raouafi, N., Martinez-Pillet, V., Walsh,
A. P., De Groof, A., and Williams, D. (2020b). Understanding the origins of the
heliosphere: integrating observations and measurements from Parker Solar Probe, Solar
Orbiter, and other space- and ground-based observatories. , 642:A4. 122

Veltri, P. (1999). MHD turbulence in the solar wind: self-similarity, intermittency
and coherent structures. Plasma Physics and Controlled Fusion, 41(3A):A787–A795.
Publisher: IOP Publishing. 51

Verdini, A. and Grappin, R. (2012). Transition from weak to strong cascade in mhd
turbulence. Phys. Rev. Lett., 109:025004. 44, 184

Verdini, A. and Grappin, R. (2015). Imprints of Expansion on the Local Anisotropy of
Solar Wind Turbulence. , 808(2):L34. 47, 181, 189, 206

Verdini, A., Grappin, R., Alexandrova, O., Franci, L., Landi, S., Matteini, L., and
Papini, E. (2019). Three-dimensional local anisotropy of velocity fluctuations in the
solar wind. , 486(3):3006–3018. 69, 182

Verdini, A., Grappin, R., Alexandrova, O., and Lion, S. (2018). 3D Anisotropy of Solar
Wind Turbulence, Tubes, or Ribbons? , 853(1):85. 68, 69, 79, 165, 182, 186, 190, 200,
205, 206, 230

Verdini, A. and Velli, M. (2007). Alfvén Waves and Turbulence in the Solar Atmosphere
and Solar Wind. The Astrophysical Journal, 662(1):669. Publisher: IOP Publishing. 66

Verdini, A., Velli, M., and Buchlin, E. (2009). Turbulence in the Sub-Alfvénic Solar
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