
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title

Machine learning techniques for shape reconstruction and metric-semantic mapping

Permalink

https://escholarship.org/uc/item/5759z514

Author

Zobeidi, Ehsan

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5759z514
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Machine learning techniques for shape reconstruction and metric-semantic mapping

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Machine Learning and Data Science)

by

Ehsan Zobeidi

Committee in charge:

Professor Nikolay Atanasov, Chair
Professor Manmohan Chandraker
Professor Truong Nguyen
Professor Hao Su

2023

Copyright

Ehsan Zobeidi, 2023

All rights reserved.

The Dissertation of Ehsan Zobeidi is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

Acknowledgements . ix

Vita . x

Abstract of the Dissertation . xi

Chapter 1 Introduction . 1
1.1 Gaussian Process Mapping . 2
1.2 Signed Directional Distance Function . 3

Chapter 2 Dense Incremental Metric-Semantic Mapping for Multiagent Systems via
Sparse Gaussian Process Regression . 4

2.1 Background . 8
2.2 Problem Formulation . 12
2.3 Data Compression and Decomposition for Incremental Sparse Gaussian Process

Regression . 14
2.3.1 Background on Sparse GP Regression . 14
2.3.2 Repeated Input Data Compression . 17
2.3.3 Incremental Compressed Sparse GP Regression . 20
2.3.4 Hierarchical Tree Structure . 22

2.4 Probabilistic Metric-Semantic Mapping . 24
2.4.1 Training Set Construction . 24
2.4.2 TSDF Mapping and Semantic Class Prediction . 26

2.5 Distributed Incremental Sparse
GP Regression . 28
2.5.1 Distributed Kalman Filtering . 30
2.5.2 Distributed Incremental Sparse GP Regression . 31
2.5.3 Theoretical Guarantee for Consistent Estimation . 34
2.5.4 Echoless Distributed GP Regression . 37

2.6 Distributed Metric-Semantic Mapping . 39
2.7 Evaluation using 2-D Simulated Data . 41

2.7.1 Single-Robot 2-D Evaluation . 41
2.7.2 Multi-Robot 2-D Evaluation . 44

2.8 Evaluation using 3-D Real Data . 48
2.8.1 Single-Robot 3-D Evaluation . 48

iv

2.8.2 Parameter Selection . 49
2.8.3 Comparison with Deep TSDF Reconstruction . 51
2.8.4 Multi-Robot 3-D Evaluation . 53

2.9 Discussion . 55

Chapter 3 Signed Directional Distance Function Estimation using Deep Learning . . . 58
3.1 Background . 62
3.2 Problem Statement . 64
3.3 SDDF . 65

3.3.1 Signed Directional Distance Function . 65
3.3.2 SDDF Structure . 67
3.3.3 Infinite SDDF Values . 69

3.4 DeepSDDF . 70
3.4.1 DeepSDDF Neural Network . 70
3.4.2 Instance-Level DeepSDDF Training . 71
3.4.3 Category-Level DeepSDDF Training . 72
3.4.4 Multi-View Consistency . 73

3.5 Evaluation . 76
3.5.1 Instance-Level Shape Modeling (Synthetic Data) . 78
3.5.2 Instance-Level Shape Modeling (Real Data) . 80
3.5.3 Category-Level Shape Modeling . 81
3.5.4 Ablation Studies . 84
3.5.5 Scene-Level Reconstruction and Robotics Applications 85
3.5.6 Network Architecture and Training Details . 87
3.5.7 Effect of the Network Size on the Performance . 91
3.5.8 2D Evaluation . 92
3.5.9 Small Training Set without Synthesized Data . 93

3.6 Limitations . 94
3.7 Discussion . 95

Chapter 4 Conclusion . 112

Bibliography . 114

v

LIST OF FIGURES

Figure 2.1. RGB, segmentation, and depth images . 5

Figure 2.2. Sensor observation, pseudo-points, and SDF data generation 13

Figure 2.3. Noisy data and GP for sine function . 20

Figure 2.4. Overlapping quadtree . 22

Figure 2.5. Illustration of pseudo-point selection. 26

Figure 2.6. 2-D TSDF reconstruction . 42

Figure 2.7. Misclassification Rate, Precision, Recall, and Normalized SDF Error for
different class error probability and distance noise variance. 43

Figure 2.8. Misclassification rate, normalized SDF error, False Discovery Rate (FDR),
and False Negative Rate (FNR) . 46

Figure 2.9. Distributed algorithm for 2-D . 47

Figure 2.10. Evaluation of the SDF reconstruction for Cow and Lady dataset 50

Figure 2.11. Single-robot reconstructions of SceneNN dataset . 51

Figure 2.12. Comparison between GP mapping and Deep learning method 52

Figure 2.13. Distributed GP mapping for Cow and Lady dataset . 55

Figure 2.14. Log-space plot for distributed GP mapping for Cow and Lady dataset 56

Figure 2.15. Distributed GP mapping for SceneNN dataset . 57

Figure 2.16. Log-space plot for distributed GP mapping for SceneNN dataset 57

Figure 3.1. Visualization of the definition of the SDDF . 66

Figure 3.2. Diagram of DeepSDDF method . 71

Figure 3.3. Data synthesis approach . 75

Figure 3.4. SDDF multiview consistency and satisfaction of gradient property and
comparison with IGR and DGP . 78

Figure 3.5. Object-level SDDF reconstruction using real data . 81

vi

Figure 3.6. SDDF shape completion concept . 83

Figure 3.7. SDDF shape interpolation concept . 84

Figure 3.8. Scene-level SDDF reconstruction, visible volume, visible query 88

Figure 3.9. SDDF shape completion . 90

Figure 3.10. Sofa SDDF shape interpolation . 91

Figure 3.11. Airplane SDDF shape interpolation . 101

Figure 3.12. Car SDDF shape interpolation . 102

Figure 3.13. Watercraft and display SDDF shape interpolation . 103

Figure 3.14. Lamp SDDF shape interpolation . 104

Figure 3.15. Bench SDDF shape interpolation . 105

Figure 3.16. The quantitative effect of number of layers and number of neurons on
network’s performance . 106

Figure 3.17. The qualitative effect of number of neurons on network’s performance . . . 106

Figure 3.18. The qualitative effect of number of layers on network’s performance 106

Figure 3.19. SDDF in 2D . 107

Figure 3.20. Pointcloud and SDDF of a car and an airplain . 108

Figure 3.21. SDDF shape completion with few training instances 109

Figure 3.22. SDDF shape interpolation with few training instances 110

Figure 3.23. The effct of network size on training time . 111

Figure 3.24. The effect of noise . 111

vii

LIST OF TABLES

Table 2.1. Quantitative comparison between our approach and IGR [1] for TSDF
reconstruction . 53

Table 2.2. Profiling our python implementation of Alg. 1 with average times obtained
from 5 ShapeNet [2] with 100 RGB-D images each. 54

Table 3.1. Comparison between DGP [3], IGR [1], and DeepSDDF 97

Table 3.2. DeepSDDF model trained with real data from YCB [4] 98

Table 3.3. Comparison between DeepSDDF and IGR [1] over 5 categories from
ShapeNet [2] . 99

Table 3.4. Comparison between DeepSDDF and pointcloud methods reported in GR-
Net [5] . 100

Table 3.5. Comparison between DeepSDDF and IGR [1] on the challenging Lamp and
Bench categories from ShapeNet [2] . 100

viii

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Nikolay Atanasov for his support as the adviser

and the chair of my committee. During my PhD, I could work on interesting problems, think on

the novel ideas and investigate interesting approaches.

I would like to thank my family for their support. I want to thank my parents for being

with me, passionately, for each step of my life. I want to thank my mother to let me share my

happiness and sadness with her. I want to thank my father for being my father, my teacher, my

supporter and my best friend through my life.

Chapter 2, in full, is a reprint of the material as it appears in ”Ehsan Zobeidi, Alec Koppel

and Nikolay Atanasov. Dense Incremental Metric-Semantic Mapping for Multiagent Systems

via Sparse Gaussian Process Regression. IEEE Transactions on Robotics, vol. 38, no. 5, pp.

3133-3153, Oct. 2022”. The dissertation author was the primary investigator and author of this

paper.

Chapter 3, in full, is a reprint of the material as it appears in ”Ehsan Zobeidi and Nikolay

Atanasov. A deep signed directional distance function for object shape representation. arXiv

preprint arXiv:2107.11024 (2021)”. The dissertation author was the primary investigator and

author of this paper.

ix

VITA

2017 Bachelor of Science in Electrical Engineering (Communications), Sharif University
of Technology

2017 Bachelor of Science in Computer Science, Sharif University of Technology

2020 Master of Science in Electrical Engineering (Machine Learning and Data Science),
University of California San Diego

2023 Doctor of Philosophy in Electrical Engineering (Machine Learning and Data
Science), University of California San Diego

x

ABSTRACT OF THE DISSERTATION

Machine learning techniques for shape reconstruction and metric-semantic mapping

by

Ehsan Zobeidi

Doctor of Philosophy in Electrical Engineering (Machine Learning and Data Science)

University of California San Diego, 2023

Professor Nikolay Atanasov, Chair

These days, robots are contributing to many aspects of our lives and this role is growing.

One of the fundamental problems in robotics is shape representation and mapping, that is

necessary for most robotic applications. In this regard, from a stream of lidar scans or RGB-

D images we model an object shape or map an environment. One of the main challenges

in this regard is an appropriate shape representation with appropriate ray-tracing speed and

accuracy. There are many other challenges for mapping like being 3D, continuous, probabilistic,

online, containing semantic information, and the possibility of the mapping algorithm to be

distributed. In this thesis we propose a novel mapping algorithm based on existing shape

representation signed distance function and Gaussian Processes which is able to reconstruct an

xi

online, continuous, probabilistic 3-D representations of the geometric surfaces and semantic

classes in the environments. Then we extend it to a distributed mapping algorithm that is able to

be perform in a network of robots. Additionally, we propose a novel shape representation signed

directional distance function (SDDF) that measures signed distance from a query location to a set

surface in a desired viewing direction. The main advantage of SDDF, compared to existing shape

representations, is that ray tracing can be performed as a look-up operation through a single

function call. Additionally, we propose a deep neural network model for SDDF shape learning.

A key property of our DeepSDDF model is that it encodes by construction that distance to the

surface decreases linearly along the viewing direction. This ensures that the model represents

only valid SDDF functions and allows reduction in the input dimensionality and analytical

confidence in the distance prediction accuracy even far away from the surface. We show that

our DeepSDDF model can represent entire object categories and interpolate or complete shapes

from partial views.

xii

Chapter 1

Introduction

Nowadays, robots have various applications in our life like construction, agriculture,

healthcare, environment monitoring, transportation and etc. We are now at the time that we

can expect the robots to do a complete tasks like surgery, delivery, driving etc. These tasks

should be done such that it is fast, efficient, in distributed way, in human understandable terms

and most importantly safe for humans. However, these tasks could be broken into more basic

and fundamental sub-tasks. One of these fundamental sub-tasks, is shape representation and

mapping. Usually the data that we receive, like RGB-D, has 2D structure. However since the

robot is working in 3D space, it is essential to provide 3D shape representation and mapping.

Usually the data that we receive has discrete structure for example it is either color or depth

on the pixels. However, when a robot wants to accomplish a task it needs ray-tracing which

requires continuous shape re[presentation and mapping. In practice we are interested in mapping

a large environment or learn the object shapes over a very huge class of data sets, all require

our methods to be scalable. Usually we have noise in the process of data accumulation and

data processing, as a result this is very important to have probabilistic estimate of the map.

It helps with realizing how much we are confident about a part of our map, or from which

parts we require more observations. If the robots are performing tasks in a priory unknown

environment, they should be able to do the mapping online, so they can build the map as they

observe the environment and immediately they could be able to perform their tasks. The tasks

1

a robot is assigned to require a semantic understanding of the environment, making semantic

mapping very important to accomplish theses tasks. For example, in order to tell a robot go

to a room and bring a cup, it should realize different parts of a map including door, cup, table,

etc. Usually for a large environment it is more efficient, faster and cheaper to be done by a

group of robots in collaboration rather than by a single huge and expensive robot. As a result,

one of challenges of mapping is how to provide a distributed mapping algorithm. In this thesis,

we have two main works in the first one we use already existing shape representation Signed

Distance Function (SDF) and Gaussian Processes to propose a mapping method that addresses

aforementioned challenges, and then we propose a novel shape representation Signed Directional

Distance Function (SDDF) which has specifications that makes it more appropriate for robotics

applications.

1.1 Gaussian Process Mapping

We develop an online probabilistic metric-semantic mapping approach for mobile robot

teams relying on streaming RGB-D observations. The generated maps contain full continuous

distributional information about the geometric surfaces and semantic labels (e.g., chair, table,

wall). Our approach is based on online Gaussian Process (GP) training and inference, and avoids

the complexity of GP classification by regressing a truncated signed distance function (TSDF) of

the regions occupied by different semantic classes. Online regression is enabled through a sparse

pseudo-point approximation of the GP posterior. To scale to large environments, we further

consider spatial domain partitioning via a hierarchical tree structure with overlapping leaves.

An extension to a multi-robot setting is developed by having each robot execute its own online

measurement update and then combine its posterior parameters via local weighted geometric av-

eraging with those of its neighbors. This yields a distributed information processing architecture

in which the GP map estimates of all robots converge to a common map of the environment while

relying only on local one-hop communication. Our experiments demonstrate the effectiveness of

2

the probabilistic metric-semantic mapping technique in 2-D and 3-D environments in both single

and multi-robot settings and in comparison to a deep TSDF neural network approach.

1.2 Signed Directional Distance Function

Object shape and scene surface representations play a key role in enabling autonomous

robot mapping, navigation, and manipulation. Mesh, point cloud, signed distance function (SDF),

occupancy, and density representations are among the most popular for shape reconstruction.

They offer different advantages, such as interpretable visualization for meshes, continuous

surface representation for SDFs, and continuous decision boundary for occupancy models. The

first contribution of this paper is a new shape representation, called signed directional distance

function (SDDF), that measures signed distance from a query location to a set surface in a desired

viewing direction. The main advantage of SDDF, compared to existing shape representations, is

that distance at any desired view can be obtained as a look-up operation through a single function

call. Compared to SDF, our formulation removes post-processing steps like surface extraction or

sphere tracing and allows extremely efficient ray tracing, which is crucial for real-time robotics

applications. Recent results demonstrate impressive performance of deep neural networks for

shape learning, including DeepSDF for SDF, Occupancy networks for occupancy, AtlasNet for

meshes, and NeRF for density. Our second contribution is a deep neural network model for

SDDF shape learning. A key property of our DeepSDDF model is that it encodes by construction

that distance to the surface decreases linearly along the viewing direction. This ensures that the

model represents only valid SDDF functions and allows reduction in the input dimensionality

and analytical confidence in the distance prediction accuracy even far away from the surface.

Similar to DeepSDF, we show that DeepSDDF can model whole object categories and interpolate

or complete shapes from partial views.

3

Chapter 2

Dense Incremental Metric-Semantic Map-
ping for Multiagent Systems via Sparse
Gaussian Process Regression

Autonomous robot systems navigating and executing complex tasks in real-world envi-

ronments require an understanding of 3-D geometry and semantic context. This chapter develops

a probabilistic metric-semantic mapping algorithm, using streaming distance and semantic cate-

gory observations (see Fig. 2.1), to reconstruct geometric surfaces and their semantic identity

(e.g., chairs, tables, doors). To support collaboration among multiple robots, we also consider

a distributed setting in which each robot observes the environment locally, with its onboard

sensors, and communicates with the other robots to arrive at a common map.

We develop on a map representation which models geometric surfaces implicitly as the

zero level-set of a TSDF function [6, 7, 8]. TSDF surface representations have gained popularity

due to their high accuracy (compared to regular, adaptive, or sparse grid representations [9, 10])

and ability to directly provide distance and gradient information (compared to explicit mesh

representations [11]) useful for specification of safety and visibility constraints. Classification of

the geometric surfaces into semantic categories is also necessary to support context understanding

and robot task specification [12, 13, 14, 15].

We propose a multi-class TSDF inference approach based on GP regression [16, 17]. GP

inference techniques for mapping [18, 19, 20, 21] have key advantages, including uncertainty

4

Figure 2.1. RGB images (first column), segmented images (second column), and depth images
(third column) used by the proposed approach for online construction of dense metric-semantic
maps.

quantification and resolution-free representation of the environment. Map uncertainty quantifica-

tion is important for motion planning, as it captures sensing errors during collision checking, and

for autonomous exploration, as the sensor motion can be planned to reduce uncertainty. In this

paper specifically, uncertainty information enables us to formulate 3-D semantic segmentation

as a regression problem by comparing the signed distance estimates of different classes. As

discussed in more detail below, a regression formulation is conducive to more computationally

efficient algorithms than classification for 3-D metric-semantic mapping. The uncertainty in-

formation is also needed to weight the map estimates of different robots appropriately when

merging them across multiple robots to obtain a consistent joint map of the environment.

Our work contributes to the family of GP mapping algorithms by considering TSDF

regression and multi-category classification, instead of binary occupancy mapping. Range

sensors, such as LiDARs and depth cameras, do not provide direct TSDF observations because

they measure distance in a specific viewing direction rather than to the nearest obstacle surface.

To obtain TSDF training examples, we triangulate each depth image into a local mesh surface

5

and measure the distance to it from a set of 3-D locations. We use semantic segmentation to

divide the TSDF samples and train separate GPs for each object category. While the GPs are

trained separately, all of their posteriors are taken into account when deciding the nearest surface

to and the semantic categories of query points. This loosely coupled formulation is possible

because segmentation errors in the sensor observations are related to physical proximity of

objects of different classes in 3-D space. Hence, (discrete) semantic segmentation errors can

be transferred into (continuous) distance measurement errors, allowing us to use GP regression

with efficient closed-form incremental updates. In online mapping applications training needs to

done incrementally and efficiently. Relying on GP regression with closed-form updates instead

of GP classification with iterative approximation has a significant impact on the computational

efficiency of our approach.

Efficient incremental training for GP classification [22, 23, 24, 25] is more challenging

because the non-Gaussian likelihood of the segmentation data is not conjugate with the GP prior

and makes the integral needed for posterior normalization analytically intractable. Exciting

recent developments enable scalable variational inference [23] and conjugate GP classification

using latent variable augmentation [24], and offer a promising alternative to our approach.

Onboard sensors provide repeated observations of the same scene. While this redundancy

is important for mitigating measurement noise, the amount of training data keeps growing over

time. Hence, an important consideration is to build maps whose memory and computation

requirements are determined by the underlying structure of the environment, rather than the

number of observations. While GP training scales cubically with the number training examples,

there are various ways to address this bottleneck [26, 27, 28, 29]. We observe that, in our setting,

the data can be compressed significantly through averaging before GP training and, notably,

this does not affect the posterior TSDF distribution. The remaining training pairs are used as

pseudo-points [26] to support the continuous GP representation with a finite set of parameters.

To reduce the complexity in large maps further, one might consider local kriging, decomposing

the spatial domain into subdomains and making predictions at a test location using only the

6

pseudo-points contained within the subdomain. Choosing independent subdomains, however,

leads to discontinuities of the predicted TSDF function at the subdomain boundaries. Ensemble

methods that construct multiple local estimators and use a weighted combination of their pre-

dictions include Bayesian committee machines [30, 31], sparse probabilistic regression [32], or

infinite mixtures Gaussian process experts [33]. These techniques avoid the discontinuities of

local kriging but their computation cost is still significant for online training. Inspired by the

adaptive occupancy representation of Octomap [9], we propose a hierarchical tree structure that

decomposes the environment into overlapping subdomains, which prevents discontinuities in the

GP posterior. Combining the data compression and hierarchical tree decomposition ideas allows

our method to generate dense metric-semantic surfaces and, yet, remain efficient even in large

environments.

Finally, we provide a distributed formulation of our TSDF GP regression, enabling

multiple robots to collaboratively build a common metric-semantic map. Our distributed infer-

ence approach is inspired by probabilistic consensus techniques [34, 35]. We generalize those

techniques to enable distributed function approximation instead of fixed-dimension parameter

estimation. Each robot updates a local GP pseudo-point approximation and synchronizes its

pseudo-point statistics with its one-hop communication neighbors. The number of pseudo-points

maintained by a robot is increasing as the robot explores new regions of the environment online.

We prove that the local GP estimates of each individual robot converge in finite time to the same

GP posterior that would have been obtained by a central server using all observations obtained

from all robots.

This paper improves the theoretical development for the single-robot setting in our prior

work [36] and extends the approach to a decentralized multi-robot setting by introducing a

novel approach for distributed incremental sparse GP regression with theoretical guarantees for

consistent estimation. The main contributions of this work are to:

• develop an scalable incremental GP training and inference algorithm utilizing lossless data

7

compression into a sparse set of pseudo-points (Sec. 2.3.2) and pseudo-point decomposition

into a hierarchical tree structure (Sec. 2.3.4),

• achieve 3-D probabilistic metric-semantic mapping from streaming sensor data using the

GP algorithm (Sec. 2.4),

• propose a new distributed algorithm for GP regression for directed communication graphs

and prove its convergence to the same posterior distribution as centralized GP regression

(Sec. 2.5),

• enable a robot team to collaboratively build a common metric-semantic map using local

observations and one-hop communication (Sec. 2.6, Sec. 2.7, Sec. 2.8).

Our approach is demonstrated in simulated and real-world datasets and may be used either offline,

with all sensory data provided in advance, or online, processing distance and semantic category

observations incrementally as they arrive. We compare our incremental GP approach with a

state-of-the-art neural network approach for TSDF reconstruction, called Implicit Geometric

Regularization (IGR) [1].

2.1 Background

Various representations have been proposed for occupancy or geometric surface es-

timation from range or depth measurements. Occupancy grid mapping [37] discretizes the

environment into a regular voxel grid and estimates the occupancy probability of each voxel

independently. A dense voxel representation quickly becomes infeasible for large domains and

adaptive resolution data structures, such as an octree, are necessary [9, 38]. While accurate

maps may also be constructed using point cloud [39, 40] or surfel [41, 42] representations, such

sparse maps do not easily support collision and visibility checking for motion and manipulation

planning. Recent work is considering explicit polygonal mesh [43, 44, 11] and implicit signed

8

distance function [45, 46, 47, 48] models. We focus our review on TSDF techniques as they are

most closely related to our work.

The seminal work of Curless et al. [6] emphasized the representation power of TSDF and

showed that dense surface modeling can be done incrementally using range images. KinectFusion

[45] achieved online TSDF mapping and RGB-D camera pose estimation by storing weighted

TSDF values in a voxel grid and performing multi-scale iterative closest point (ICP) alignment

between the predicted surface and the depth images. Niessner et al. [10] demonstrated that TSDF

mapping can be achieved without regular or hierarchical grid data structures by hashing TSDF

values only at voxels near the surfaces. These three works inspired a lot of subsequent research,

allowing mapping of large environments [49], real-time operation without GPU acceleration

[50, 51], map correction upon loop closure [52, 53], and semantic category inference [54].

Bylow et al. [55] propose a direct minimization of TSDF projective depth error instead of

relaying on explicit data association or downsampling as in ICP. TSDF maps are accurate and

collision checking in them is essentially a look-up operation, prompting their use as an alternative

to occupancy grids for robot motion planning and collision checking [56, 48]. Voxblox [47]

incrementally builds a (non-truncated) Euclidean signed distance field (ESDF), applying a

wavefront algorithm to the hashed TSDF values. Fiesta [48] improves the ESDF construction

by introducing two independent queues for inserting and deleting obstacles. Saulnier et al. [57]

show that weights of the TSDF values arise as the variance of a Kalman filter and may be used

as an uncertainty measure for autonomous exploration and active TSDF mapping.

Most TSDF mapping techniques, however, forgo probabilistic representations in the

interest of scalability. Gaussian process (GP) inference has been used to capture correlation

in binary occupancy mapping. O’Callaghan et al. [18] is among the first works to apply GP

regression to infer a latent occupancy function using data from a range sensor. The GP posterior

is squashed to a binary observation model a posteriori to recover occupancy likelihood. The

resulting probabilistic least-squares method is more efficient than GP classification but still scales

cubically with the amount of training data. To address this, several works [31, 19, 58, 59] rely

9

on sparse kernels to perform separate GP regressions with small subsets of the training data and

Bayesian Committee Machines (BCM) to fuse the separate estimates into a full probabilistic

occupancy map. Ramos et al. [60, 61] proposed fast kernel approximations to project the

occupancy data into a Hilbert space where a logistic regression classifier can distinguish occupied

and free space. This idea has been extended to dynamic maps [62, 63] as well as into a variational

autoencoder formulation [64] that compresses the local spatial information into a latent low-

dimensional feature representation and then decodes it to infer the occupancy of a scene. Guo

and Atanasov [65] showed that using a regular grid discretization of the latent function and a

decomposable radial kernel leads to special structure of the kernel matrix (kronecker product

of Toeplitz matrices) that allows linear time and memory representation of the occupancy

distribution.

Augmenting occupancy representations with object and surface category information is an

important extension, allowing improved situational awareness and complex mission specification

for robots. Several works [13, 66, 67, 68, 69] employ conditional random fields (CRFs) to

capture semantic information. Vineet et al. [66] provide incremental reconstruction and semantic

segmentation of outdoor environments using a hash-based voxel map and a mean-field inference

algorithm for densely-connected CRFs. Grinvald et al. [54] reconstruct individual object shapes

from multi-view segmented images and assemble the estimates in a voxelized TSDF map. Gan

et al. [70] propose a continuous-space multi-class mapping approach, which relies on a Dirichlet

class prior, a Categorical observation likelihood, and Bayesian kernel inference to extrapolate

the class likelihoods to continuous space. Rosinol et al. [11] provide a modern perception

library combining the state of the art in geometric and semantic understanding. Zheng et al.

[71] incorporate spatial information across multiple levels of abstraction and form a probability

distribution over semantic attributes and geometric representations of places using TopoNet, a

deep sum-product neural network. Wang et al. [8] propose a fully convolutional neural network

for semantic 3-D reconstruction that takes an octree of TSDFs fused from different camera

views as input and generates a semantically labeled octree as output. IGR [1] uses a deep fully

10

connected network with skip connections and softplus nonlinearity to map a 3D point and a

latent shape vector of an object category to the signed distance from that point to the object

surface. The authors observe that the norm of the gradient of an SDF function should be 1

everywhere and incorporate this in the training loss. Instead of single-object reconstruction,

recent deep learning methods have focused on complete scene reconstruction using distance

fields, radiance fields, and multi-view stereo [72, 73, 74, 75]. These techniques have shown

impressive performance but currently need all training data at once and provide only most likely

estimates instead of complete posterior probability distributions. In contrast, online mapping

applications require incremental update and expansion of the reconstructed scene as new data

arrives. Also, uncertainty quantification is needed to support safe navigation, autonomous

exploration, and collaborative multi-robot mapping.

In many applications, mapping may be performed by a team of collaborating robots.

Relying on centralized estimation has limitations related to the communication, computation,

and storage requirements of collecting all robot measurements and map estimates at a central

server. Developing distributed techniques that allow local inference and storage at each robot,

communication over few-hop neighborhoods, and consensus among the robot estimates is

important. Techniques extending consensus [76] to distributed probabilistic estimation [77,

78, 79, 34] are closely related to our work. These works show that distributed estimation of a

finite-dimensional parameter is consistent when the probability density functions maintained by

different nodes are averaged over one-hop neighborhoods in strongly connected di-graphs. We

extend these results to distributed probabilistic estimation functions relying on local averaging of

sparse (pseudo-point) GP distributions. Specific to cooperative semantic mapping, Choudhary et

al. [80] develop distributed pose-graph optimization algorithms based on successive and Jacobi

over-relaxation to split the computation among the robots. Koch et al. [81] develop a parallel

multi-threaded implementation for cooperative 2-D SDF mapping. Lajoie et al. [82] propose a

distributed SLAM approach with peer-to-peer communication that rejects spurious inter-robot

loop closures using pairwise consistent measurement sets.

11

2.2 Problem Formulation

Consider a team of n robots operating in an unknown environment, represented by two

disjoint sets O ⊂ R3 and F ⊂ R3, comprising obstacles and free space, respectively. The

obstacle region is a pairwise disjoint union, O = ∪C
l=1Ol , of C closed sets, each denoting the

region occupied by object instances from the same semantic class. For example, O1 may be the

space occupied by all chairs, while O2 may be the space occupied by all tables.

Each robot is equipped with a sensor, such as a lidar scanner or an RGB-D camera, that

provides distance and class observations of the objects in its vicinity. We assume that the position

pi
t ∈ R3 and orientation Ri

t ∈ SO(3) of each sensor i ∈ V at time step t are known, e.g., from a

localization algorithm running onboard the robots. We model a sensor observation as a set of

unit-vector rays {η i
k ∈ R3|∥η i

k∥= 1}, e.g., corresponding to lidar scan rays or RGB-D image

pixels. At time t, the k-th sensor ray of robot i, starts at position pi
t and has direction Ri

tη
i
k.

Each ray measures the distance to and semantic class of the object that it intersects with first.

In practice, the class measurements are obtained from a semantic segmentation algorithm (e.g.,

[83]), applied to the RGB image or lidar scan (see Fig. 2.1), while the distance measurements

are provided either as a transformation of the depth image or directly from the lidar scan.

Definition 1. A sensor observation of robot i at time t is a collection of distance λ i
t,k ∈ R≥0

and object class ci
t,k ∈ {1, ...,C } measurements acquired from position pi

t along the sensor rays

Ri
tη

i
k.

Given sensor poses pi
t , Ri

t and streaming observations λ i
t,k, ci

t,k for t = 1,2, . . ., the main

objective of this work is to construct a 3-D metric-semantic map of the observed environment

incrementally by estimating the object class sets Ol . We use an implicit TSDF representation of

the sets Ol .

Definition 2. The truncated signed distance function (TSDF) fl(x) of object class Ol is the

12

gt,1(x) x ∈ P#

x̂up

ct,k = 1
x̂ ∈ Gt,1

ct,k′ = 2
x̂′ λt,k

λt,k ′

u

v

x

y

xc

yc

zc

Fc

z =
1

u
v

ηk

ηk′

y

z

x

pose {Rt ,pt}

Sensor
Frame

World Frame

Figure 2.2. Sensor observation at time t showing the distance λt,k, λt,k′ and class ct,k, ct,k′

measurements obtained along sensors rays ηk, η ′
k when a camera sensor is at position pt with

orientation Rt . The pseudo-points P# (see Sec. 2.4.1) close to the observed surface are shown in
gray.

signed distance from x to the boundary ∂Ol , truncated to a maximum of d̄ ≥ 0:

fl(x) :=

−min

(
d(x,∂Ol), d̄

)
if x ∈ Ol

min
(
d(x,∂Ol), d̄

)
if x /∈ Ol,

d(x,∂Ol) := inf
y∈∂Ol

∥x− y∥.

(2.1)

As we explained in Sec. 2.4, we model the effect of noise from various sources as

Gaussian noise on the TSDF values. We develop incremental sparse Gaussian Process regression

to maintain distributions G P(µ i
t,l(x),k

i
t,l(x,x

′)) over the TSDF functions fl(x) in (3.1) at each

robot i, conditioned on the sensor observations
{

λ i
τ,k,c

i
τ,k

}
up to time t.

In Sec. 2.3, we review a sparse pseudo-point formulation of GP regression and introduce

lossless compression and hierarchical decomposition of the training data to acheive incremen-

tal and scalable training. In Sec. 2.4, we apply our general GP regression algorithm to the

13

metric-semantic mapping problem, discussing construction of GP training data from the sensor

measurements and semantic class prediction based on the TSDF function distributions of the

different object classes. Next, we extend our approach from a centralized single-robot to a

distributed multi-robot formulation. We develop new techniques for distributed incremental

sparse GP regression in Sec. 2.5 and apply them to the collaborative semantic TSDF mapping

problem in Sec. 2.6. Our method allows each robot to update its own TSDF GP model using local

sensor observations and one-hop communication with its neighbors, yet guarantees theoretically

that the individual GP models converge to the same posterior distribution as centralized GP

regression.

2.3 Data Compression and Decomposition for Incremental
Sparse Gaussian Process Regression

This section reviews sparse Gaussian Process regression and introduces a new approach

for compressing and decomposing training data acquired by repeated observation of the same

locations. The latter is typical when an onboard robot sensor observes the same environment

multiple times as discussed in Sec. 2.4.1. When repeated observations are present, our data

compression allows training a pseudo-point GP model with much fewer samples, yet provably

generates the same GP posterior that would have been computed using the full uncompressed

training set. The pseudo-point GP model and data compression allow us to design an efficient

incremental GP algorithm that updates the posterior with sequential data instead of recomputing it

from scratch. To handle large datasets, we introduce a hierarchical tree structure of pseudo-points

such that separate GPs may be trained efficiently within each tree leaf.

2.3.1 Background on Sparse GP Regression

A Gaussian Process is a set of random variables such that the joint distribution of any finite

subset of them is Gaussian. A GP-distributed function f (x)∼ G P(µ0(x),k0(x,x′)) is defined

by a mean function µ0(x) and a covariance (kernel) function k0(x,x′). The mean and covariance

14

are such that for any finite set X =
{

x j
}

j, the random vector f (X) :=
[

f (x1), . . . , f (x|X |)
]⊤ ∈

R|X | has mean with j-th element µ0(x j) and covariance matrix with (j, l)-th element k0(x j,xl)

for j, l = 1, . . . , |X |. To avoid introducing additional symbols, we use the notation f (X) to

mean the application of the vector function f (x) to each element of the set X . Given a training

set D = {(x j,y j)}|X |
j=1, generated according to y j = f (x j) + η j with independent Gaussian

noise η j ∼ N (0,σ2), the posterior distribution of the random function f (x) can be obtained

from the joint distribution of the value f (x) at an arbitrary location x and the random vector

y :=
[
y1, . . . ,y|X |

]⊤ of measurements. In detail, the joint distribution is:

 f (x)

y

∼ N

 µ0(x)

µ0(X)

 ,

 k0(x,x) k0(x,X)

k0(X ,x) k0(X ,X)+σ2I

 ,

while the corresponding conditional distribution f (x)|X ,y ∼ G P(µ(x),k(x,x′)) has mean and

covariance functions [16]:

µ(x) := µ0(x)+ k0(x,X)(k0(X ,X)+σ
2I)−1(y−µ0(X)),

k(x,x′) := k0(x,x′)− k0(x,X)(k0(X ,X)+σ
2I)−1k0(X ,x′).

(2.2)

Computing the GP posterior has cubic complexity in the number of observations |X | due to the

matrix inversion in (2.2).

Inspired by Snelson and Ghahramani [26], we introduce a sparse approximation to the GP

posterior in (2.2) using a set of pseudo-points P ⊂D whose number is |P|≪ |X |. Maintaining

a GP distribution only over the pseudo-points is sufficient to obtain a high-fidelity approximation

of the true GP posterior, assuming that the training data are independent samples drawn from

the pseudo-point GP. The key idea is to first determine the distribution N (µ,Σ) of f := f (P)

15

conditioned on X , y according to (2.2):

µ := µ0(P)+ k0(P,X)(k0(X ,X)+σ
2I)−1(y−µ0(X))

= µ0(P)+ k0(P,P)(k0(P,P)+Γ)−1
γ (2.3)

Σ := k0(P,P)− k0(P,X)
(
k0(X ,X)+σ

2I
)−1

k0(X ,P),

= k0(P,P)(k0(P,P)+Γ)−1 k0(P,P)

where:

Γ := k0(P,X)
(
Λ+σ

2I
)−1

k0(X ,P)

Λ := k0(X ,X)− k0(X ,P)k0(P,P)−1k0(P,X)

γ := k0(P,X)
(
Λ+σ

2I
)−1

(y−µ0(X))

Using the definitions of information matrix Ω := Σ−1 and information mean ω := Ωµ , we can

equivalently write:

ω = Ωµ0(P)+ k0(P,P)−1
γ,

Ω = k0(P,P)−1 (k0(P,P)+Γ)k0(P,P)−1.

(2.4)

Then, the posterior density of f (x) conditioned on X ,y is:

p(f (x)|X ,y) =
∫

p(f (x)|f)p(f|X ,y)df (2.5)

16

which is a GP with mean and covariance functions:

µ(x) = µ0(x)+ k0(x,P)k0(P,P)−1 (
Ω

−1
ω −µ0(P)

)
k(x,x′) = k0(x,P)k0(P,P)−1

Ω
−1k0(P,P)−1k0(P,x′)

+ k0(x,x′)− k0(x,P)k0(P,P)−1k0(P,x′). (2.6)

If we assume that conditioned on P , the measurements y j are generated independently, i.e., Λ is

approximated by a diagonal matrix with elements

λ (x j) := k0(x j,x j)− k0(x j,P)k0(P,P)−1k0(P,x j),

then the complexity of computing µ , Σ in (2.3) (training) and µ(x), k(x,x′) in (2.6) (testing)

are O(|P|2|X |+ |P|3) and O(|P|2), respectively, instead of O(|X |3) and O(|X |2) without

pseudo-points in (2.2). The use of pseudo-points leads to significant computational savings when

|P| ≪ |X |. To select the locations and values of the pseudo-points P , the main approach in

the literature is to perform iterative optimization to maximally approximate the training data

[32, 84, 21]. However, iterative optimization is expensive in an incremental or distributed setting,

which is the focus of this paper. Instead, we exploit the structure of the TSDF reconstruction

problem to select pseudo-points close to the end points of the senor rays (observed surface) on

a latent grid over the environment. This allows selecting pseudo-points and computing the GP

posterior very efficiently. We assume that the kernel parameters are optimized offline and focus

on online computation of the terms in (2.6), needed for prediction.

2.3.2 Repeated Input Data Compression

Next, we detail a way to obtain additional savings in terms of data storage requirements.

Specifically, if the training data D = (X ,y) contains repeated observations from the same

locations, i.e., the points in X are not unique, then the GP training complexity can be reduced

17

from cubic in |X | to cubic in the number of distinct points in X . We formalize this in the

following proposition, which establishes that the GP posterior is unchanged if we compress the

observations in y obtained from the same locations in X . Repeated observations are meaningful

when there is measurement noise, i.e., σ > 0. In this case the matrix k0(X ,X)+σ2I in (2.2)

is never singular.

Proposition 1. Consider f (x)∼ G P(µ0(x),k0(x,x′). Let:

X = {x1 , . . . ,x1 ,x2 , . . . ,x2 , . . . ,xn , . . . ,xn }

y = [y1,1, . . . ,y1,m1,y2,1, . . . ,y2,m2, . . . ,yn,1, . . . ,yn,mn]
⊤

be data generated from the model yi, j = f (xi)+ηi, j with ηi, j ∼ N (0,σ2) for i = 1, . . . ,n and

j = 1, . . . ,mi. Let:

P = {x1, . . . ,xn}, ζ =

[
1

m1

m1

∑
j=1

y1, j, . . . ,
1

mn

mn

∑
j=1

yn, j

]⊤
(2.7)

be a compressed version of the data generated from f (xi) with noise η̂i ∼ N (0, σ2

mi
). Then,

f (x)|X ,y and f (x)|P,ζ have the same Gaussian Process distribution G P(µ(x),k(x,x′))

with:

µ(x) = µ0(x)+ k0(x,P)Z(ζ −µ0(P)),

k(x,x′) = k0(x,x′)− k0(x,P)Zk0(P,x′),
(2.8)

where Z−1 := k0(P,P)+σ2 diag(m)−1 and m is a vector with elements mi.

Proof. The distribution of f (x)|X ,y is provided in (2.2). Using the data P , ζ , instead of X ,

y, to compute the posterior GP distribution of f (x), according to (2.2), leads to the expression

in (2.8). We need to show that (2.2) and (2.8) are equal given the relationship between X ,

y and P , ζ in (2.7). Let E be a binary matrix defined such that k0(X ,x) = Ek0(P,x).

Note that k0(X ,X) = Ek0(P,P)E⊤, k0(x,X) = k0(x,P)E⊤, E⊤E = diag(m), and ζ =

18

(E⊤E)−1E⊤y. Using these expressions in (2.2) leads to:

µ(x) = µ0(x)+

k0(x,P)E⊤(Ek0(P,P)E⊤+σ
2I)−1(y−Eµ0(P)),

k(x,x′) = k0(x,x′)− (2.9)

k0(x,P)E⊤(Ek0(P,P)E⊤+σ
2I)−1Ek0(P,x′).

An application of the matrix inversion lemma followed by algebraic manipulation shows that

E⊤(Ek0(P,P)E⊤+σ
2I)−1 =

(
k0(P,P)+σ

2(E⊤E)−1
)−1

(E⊤E)−1E⊤ = Z(E⊤E)−1E⊤.

Replacing this and ζ = (E⊤E)−1E⊤y in (2.9) shows that the GP distributions of f (x)|X ,y and

f (x)|P,ζ are equal.

Prop. 1 allows us to summarize a training set X , y by keeping the distinct points P ⊂X

as well as the average observation value ζ (p) and number of times m(p) that each point p ∈ P

has been observed. Given these statistics, the mean function µ(x) and covariance function k(x,x′)

of the posterior GP can be obtained according to (2.8) with ζ := ζ (P) and m := m(P). The

number of observations m determines the value of the matrix Z in (2.9) and correctly scales the

influence of the points that are observed more frequently. When the training points X contain

many repetitions, the subset P of distinct points is a natural choice of pseudo-points (Sec. 2.3.1).

In this case, Prop. 1 shows that the GP posterior obtained from training with P is exactly equal

to the GP posterior obtained from training with X . This is illustrated in Fig. 2.3, where a dataset

with repeated observations is used for GP regression of sin(x) with or without the compression

of Prop. 1. Our result is related to a general distribution-to-distribution regression formulation in

[85]. It is interesting to consider whether this connection can allow removing the assumption

that the training data contains observations from the same locations, while keeping the simplicity

19

Figure 2.3. Noisy data (red) obtained from a sine function (teal) at 5 equidistant pseudo-points
(magenta). Two measurements are obtained at each pseudo-point. GP regression using all data is
equivalent to GP regression with a compressed dataset described in Prop. 1.

of computing summary statistics in (2.7).

The raw sensor data in the mapping problem does not directly satisfy the assumption of

Prop. 1. In Sec. 2.4.1, we first construct a set of pseudo-points with TSDF values computed from

the sensor data and only then apply Prop. 1 to compute the GP posterior efficiently. We exploit

this compression technique for efficient incremental GP training since the same pseudo-point

locations are observed multiple times.

2.3.3 Incremental Compressed Sparse GP Regression

Suppose now that, instead of a single training set D , the data are provided sequentially,

i.e., an additional dataset D̃t of points X̃t with labels ỹt is provided at each time step t. The

cumulative data up to time t are Dt :=∪t
τ=1D̃τ . Based on Prop. 1, we can define an incrementally

growing set of pseudo-points Pt with associated number of observations mt(p) and average

observation ζt(p) for p ∈ Pt and observation precision Zt . We show how to update these

statistics when a new dataset D̃t+1 = (X̃t+1, ỹt+1) arrives at time t +1. Let P̃t+1 be the set of

unique points in X̃t+1 with number of observations m̃t+1(p) and average observation ζ̃t+1(p)

20

for p ∈ P̃t+1. The update of Pt , mt(p) and ζt(p) is:

Pt+1 = Pt ∪P̃t+1

mt+1(p) =

mt(p)+ m̃t+1(p), if p ∈ Pt ,

m̃t+1(p), else,

ζt+1(p) =

mt(p)ζt(p)+m̃t+1(p)ζ̃t+1(p)

mt+1(p)
, if p ∈ Pt ,

ζ̃t+1(p), else.

(2.10)

To update the observation precision Zt , first consider the existing pseudo-points Pt . Let l be the

index of p ∈ Pt in Zt . Define εl := σ2
(

1
mt+1(p)

− 1
mt(p)

)
, B0 := Zt , and for l = 1, . . . , |Pt |:

Bl+1 =
(

B−1
l + εlele⊤l

)−1
= Bl −

Blele⊤l Bl
1
εl
+ e⊤l Blel

. (2.11)

This update is applied only to P̃t+1 ∩Pt because the rest of the pseudo-points have εl = 0 and,

hence, Bl+1 = Bl . With some abuse of notation, let B := B|Pt | be the observation precision after

all p ∈ Pt have been updated. Finally, we update B by introducing the pseudo-points P̃t+1 \Pt

that have been observed for the first time:

Zt+1 =

B−1 C

C⊤ D

−1

=

B+BCSC⊤B −BCS

−SC⊤B S

 , (2.12)

where C := k0(Pt ,P̃t+1\Pt), D := k0(P̃t+1\Pt ,P̃t+1\Pt)+σ2 diag(m̃t+1(P̃t+1\Pt))
−1,

and S := (D−C⊤BC)−1. The equality in (2.12) follows from the block matrix inversion lemma,

which relates the blocks of a matrix inverse to the inverse of their Schur complement [86, Ch. 9.1].

By recursively tracking these matrix inverses, the posterior update can be executed efficiently

every time a new observation arrives with complexity that is cubic in the number of new distinct

points. This is a significant improvement over naı̈ve GP training.

21

Nb

root

s

Ng

δ
s

2ℓ(Nr)

Nr

Figure 2.4. Illustration of a hierarchical tree data structure, containing two pseudo-points (blue
and cyan) in two dimensions. The support regions S (·) and test regions T (·) of three nodes
Nr, Ng, Nb are shown as dashed and filled areas with red, green, and blue color, respectively.
No pseudo-points are contained in the test region T (Ng) (filled green) of node Ng but two
pseudo-points are in its support region S (Ng) (dashed green). In this example, the maximum
number of allowable pseudo-points for each region is max(N) = 1, so node Ng is split into the
red (Nr) and yellow (not labeled) regions. The cyan pseudo-point belongs to both Pt(Nb) and
Pt(Nr).

2.3.4 Hierarchical Tree Structure

Even after compressing the training data to a set of distinct pseudo-points using Prop. 1,

the GP training complexity still scales cubically with the number of pseudo-points. In the

mapping problem, the correlation between two sufficiently distant points is negligible. To ensure

that online training is possible for large datasets, we develop a hierarchical tree data structure

that decomposes the sample space into overlapping regions to store the pseudo-points. Our data

structure is similar to an octree [9] but the regions associated with the tree nodes overlap. We

train separate GPs in each region, which is efficient since the maximum number of pseudo-points

per region is fixed. The resolution of the pseudo-points and the kernel parameters are fixed

and are not different in different levels of the tree. The region overlap serves to eliminate

22

discontinuities in the resulting GP estimate. The GPs associated with different regions are not

statically independent because they may share some of the same pseudo-points and associated

measurements. However, to enable efficient inference, we approximate the joint GP model over

all pseudo-points with separately trained GP models, each using training data only from one

region. At test time, the value of a query point is inferred using only the parameters of the

corresponding region according to (2.8). The overlapping regions are illustrated in Fig. 2.4.

Formally, a hierarchical tree structure of pseudo-points in d dimensions is a tree data

structure such that each internal node has 2d children. Each node N is associated with a spatial

region. The root is associated with a hypercube with side length s > 0, which is recursively

subdivided into 2d overlapping regions by the child nodes. Each node N maintains the following

information:

1. ℓ(N)≥ 0: level of N in the tree, starting from 0 at the root node.

2. ctr(N) ∈ Rd: center of the region associated with N.

3. S (N) := {x ∈ Rd| ∥x− ctr(N)∥∞ ≤ δ
s

2ℓ(N)+1}: support region of N with δ > 1.

4. T (N) := {x ∈ Rd| ∥x− ctr(N)∥∞ ≤ s
2ℓ(N)+1}: test region of N.

5. P(N)⊆ S (N)∩P#: set of pseudo-points assigned to this node

6. max(N): node N splits into 2d children if the number of observed pseudo-points P(N)

exceeds max(N)

7. children(N): empty set if N is a leaf and, otherwise, a set of 2d nodes at level ℓ(N)+1

with centers in {ctr(N)+ c | ci ∈ {− s
2ℓ(N)+1 ,+

s
2ℓ(N)+1}}.

The pseudo-points Pt observed up to time t are stored in the hierarchical tree structure.

The points assigned to node N at time t are Pt(N) := Pt ∩S (N). The pseudo-points Pt(N)

of each leaf node N are used to train a separate GP. At time step t, prediction for test points in

the region T (N) is performed by the GP associated with node N.

23

2.4 Probabilistic Metric-Semantic Mapping

In this section, we address the single-robot mapping problem using the incremental GP

regression theory developed in Sec. 2.3. For simplicity, we suppress the robot index superscript i.

We apply GP regression to estimate the TSDF fl(x) of each semantic class l. Since the sensor

measurements
{

λt,k,ct,k
}

are not direct samples from the TSDFs, in Sec. 2.4.1 we transform

them into training sets D̃t,l , suitable for updating the GP distributions of fl(x). In Sec. 2.4.2, we

apply incremental updates to GPs for each class and discuss how to predict the semantic class

labels on the surfaces of the implicitly estimated object sets Ol .

2.4.1 Training Set Construction

The class measurements allow us to associate the sensor data with particular semantic

classes, while the distance measurements allow us to estimate the points where the sensor rays

hit the object sets Ol . We define the following point sets for each detected semantic class at time

t:

Gt,l = {x̂ ∈ R3 ∣∣ x̂ = λt,kRtηk +pt and ct,k = l}. (2.13)

The values fl(x̂) of the TSDFs are close to zero at points x̂ ∈ Gt,l because the sensor rays hit an

object surface close to these locations.

As shown in Prop. 1, the complexity of online GP training can be improved by forcing

the training data to repeatedly come from a finite set of points. We choose a grid discretization

P# of the environment O ∪F and construct a training set by selecting points x ∈P#, that are at

most ε > 0 away from the points x̂ ∈ Gt,l , and approximating their TSDF values fl(x)≈ gt,l(x)

(see Fig. 2.2). Precisely, the training data sets are constructed at time t as:

D̃t,l = {(x,gt,l(x))|x ∈ P#,∃x̂ ∈ Gt,l s.t. ||x− x̂||2 ≤ ε}. (2.14)

24

In the case of a camera sensor, the TSDF value gt,l(x) of a pseudo-point x is obtained by

projecting x to the image plane and approximating its distance from the distance values of nearby

pixels. In detail, suppose ηk is the unit vector corresponding to the pixel closest to the projection

of x (red pixel in Fig. 2.2) and let x̂ ∈ Gt,l be the coordinates of its ray endpoint (blue point in

Fig. 2.2). Let x̂right and x̂up (two cyan points in Fig. 2.2) be the ray endpoints of two adjacent

pixels. Then, gt,l(x) is the signed distance from x to the plane defined by x̂, x̂right , and x̂up:

gt,l(x) := n⊤(x− x̂), n := sign(q⊤(pt − x̂))q,

q =
(x̂right − x̂)× (x̂up − x̂)

∥(x̂right − x̂)× (x̂up − x̂)∥
,

(2.15)

where q is the normal of the plane and the signed distance from pt to the plane is positive because

the sensor is known to be outside of the object set Ol . Approximating the pseudo-point SDF

values by measuring the distances to triangles formed by the nearest pixels means that the SDF

values may be larger or smaller than the ground-truth SDF and using a Gaussian noise model is

reasonable. The pseudo-point locations in the world frame are known since the sensor position

pt and orientation Rt are assumed known in this paper. If sensor pose uncertainty is considered,

the Gaussian noise model for the measured SDF values needs to be modified to account for

localization errors.

In the experiments, we discretize the workspace as a grid P# with resolution voxel size.

Given a sensor ray end point x̂ in (2.13), instead of a sphere (circle) with radius ε , we choose a

cubic (square) region of pseudo-points from P# around x̂. This is illustrated in Fig. 2.5. The

cubic region is parameterized by the number of pseudo-points on its the edge, called f rame size.

This parameter is such that (f rame size− 1)× voxel size ≥ 2ε . We do not use ε but only

f rame size as one of the hyperparameters of our method.

25

Figure 2.5. Illustration of pseudo-point selection. For each sensor ray end point (red), we select
pseudo-points (blue) from a regular grid P# (gray) according to (2.14). For efficiency, instead
of choosing points within radius ε , we choose a rectangular region of f rame size = 3 such that
(f rame size−1)× voxel size ≥ 2ε .

2.4.2 TSDF Mapping and Semantic Class Prediction

Given the transformed TSDF training data D̃t,l obtained from the sensor measurement{
λt,k,ct,k

}
k at time t, we update the GP distribution of the TSDF fl(x) for each class l using the

approach in Sec. 2.3.3. At time t, the new data are D̃t,l = (X̃t,l, ỹt,l), the new pseudo-points are

P̃t,l = X̃t,l \Pt−1,l , and we update Pt,l , ζt,l , mt,l via (2.10). If online prediction is required,

we can also update the precision matrix Zt,l using (2.11) and (2.12). Once we have the GPs of

all classes updated, and can predict the TSDF at any query point according to (2.8). Next, we

discuss how to predict the semantic class labels on the surfaces of the implicitly estimated object

sets Ol .

Semantic segmentation algorithms applied to camera images may produce incorrect

pixel-level classification. This leads to some observations λt,k, ct,k being incorrectly included

into the training set D̃t,l of a different semantic class. We model the classification error as one

of the sources of noise in the measured TSDF. This is motivated by the following observations.

26

First, the GP models for different classes are trained using the TSDF values of the pseudo-points

rather than the sensor ray endpoints, which semantic segmentation is based on. A pseudo-point

has TSDF values for all semantic classes so it should not be considered to belong to a specific

class. The association between pseudo-points and ray endpoints is based on the TSDF value so

a misclassification of a ray endpoint may be interpreted as noise on the measured TSDF value.

Second, the misclassification probability is not uniform across the semantic categories. Rather,

it is larger when two objects of different classes are close to each other in 3-D space. In the

region around the object surfaces, the pseudo-points will have very small and very similar TSDF

values. To predict the correct semantic class, we compare the likelihoods of the different classes

at surface points using the posterior GP distributions of the TSDFs fl(x).

Proposition 2. Let G P(µt,l(x),kt,l(x,x′)) be the distributions of the truncated signed distance

functions fl(x) at time t, determined according to (2.8). Consider an arbitrary point x ∈ ∂O on

the surface of the obstacle set, i.e., x is such that fl(x) = 0 for some class l ∈ {1, . . . ,C }. Then,

the probability that the true class label of x is c ∈ {1, . . . ,C } is:

P
(

argmin
l

| fl(x)|= c
∣∣∣∣ min

l
| fl(x)|= 0

)
=

1
σt,c(x)φ(

µt,c(x)
σt,c(x))

∑l
1

σt,l(x)
φ(

µt,l(x)
σt,l(x)

)
,

where φ(·) is the probability density function of the standard normal distribution and σt,l(x) :=√
kt,l(x,x).

Proof. Let x be an arbitrary (test) point. Denote the probability that closest surface at x is of

class c and distance |z| away by lc(z) := P
(

argmin
l

| fl(x)|= c and minl | fl(x)| ≤ |z|
)

. Since

P(minl | fl(x)| ≤ |z|) = ∑l ll(z), we have:

P
(

argmin
l

| fl(x)|= c
∣∣∣∣ min

l
| fl(x)| ≤ |z|

)
=

lc(z)
∑l ll(z)

.

The term we are interested in computing is limz→0
lc(z)

∑l ll(z)
. Define µl := µt,l(x) and σl :=

27

σt,l(x) for l = 1, . . . ,C . The GP distribution of fl stipulates that its value at x has a density

function p(z) = 1
σl

φ
(z−µl

σl

)
. Hence, P(| fl(x)| ≥ z) = 1−Φ(|z|−µl

σl
)+Φ(−|z|−µl

σl
). Note that lc(z)

corresponds to the probability that | fc(x)| ≤ | fl(x)| for all l. Since all fl are independent of each

other:

lc(z) =
1
σc

∫ z

−z
φ
(ζ −µc

σc

)
∏
l ̸=c

(
1−Φ

(|ζ |−µl

σl

)
+Φ

(−|ζ |−µl

σl

))
dζ

The claim is concluded by lim
z→0

lc(z)
2z = 1

σc
φ
(−µc

σc

)
.

The class distribution for an arbitrary point x ∈ O ∪F , not lying on an object surface,

may also be obtained, as shown in the proof of Prop. 2 but is both less efficient to compute and

rarely needed in practice.

2.5 Distributed Incremental Sparse
GP Regression

In this section, we develop a distributed version of the incremental sparse GP regression

in Sec. 2.3. Suppose that the n robots communicate over a network, represented as a strongly con-

nected directed graph G = (V ,E) with vertices V := {1, ...,n} and edges E ⊆ V ×V . An edge

(i, j) ∈ E from robot i to robot j exists if the two robots can communicate. The robots directly

connected to robot i are called neighbors and will be denoted by N ei = { j ∈ V | (i, j) ∈ E }.

Let W ∈ Rn×n be a weighted adjacency matrix such that Wi, j > 0 if j ∈ N ei and Wi, j = 0,

otherwise. Assume that W is a row-stochastic nonnegative and primitive matrix [76] and, hence,

has a stationary distribution. The stationary distribution π is specified by the left eigenvector of

W associated with the eigenvalue 1 and satisfies ∑
n
i=1 πi = 1. This weight matrix construction

is common in consensus and distributed gradient descent algorithms [76, 87, 88]. Relying

on consensus results for switching networks [76, 89, 90], our results may be generalized to

time-varying graphs assuming that the graph sequence is uniformly strongly connected, i.e.,

there exists an integer T > 0 such that the union of the edges over any time interval of length T

is strongly connected. However, we leave such an extension for future work.

28

Each robot i ∈ V receives its own local observations D̃ i
t = (X̃ i

t , ỹi
t) at time t and extracts

newly observed pseudo-points P̃ i
t , with associated number of observations m̃i

t and average

values ζ̃
i
t , as detailed in Sec. 2.3.3. This information is used to update the complete set of

pseudo-points P i
t observed up to time t, along with the number of observations mi

t and average

values ζ
i
t , according to (2.10). These parameters Θi

t :=
{

P i
t ,mi

t ,ζ
i
t

}
, maintained by robot i,

define a complete GP distribution for the function f (x), with mean and covariance functions in

(2.8).

While each robot can estimate f (x) individually, we consider how the robots may

exchange information to estimate f (x) collaboratively. We observe that the continuous-space

GP distribution of f (x) is induced by the statistics mi
t , ζ

i
t of the pseudo-points P i

t . Hence, if

the robots exchange information about and agree on these finite-dimensional parameters, then

the corresponding GP distributions of f (x) at each robot will agree. Our main innovation is a

distributed algorithm for updating the sparse GP parameters of one robot using the parameters

of its one-hop neighbors’ distributions. While existing results apply to fixed finite-dimensional

parameter estimation, our approach considers function estimation with an infinite-dimensional

GP distribution, updated via consensus over an incrementally growing set of pseudo-point

parameters.

To gain intuition about the construction of consensus schemes over GP posteriors, we

first review distributed Kalman filtering for fixed-dimensional parameter estimation in Sec. 2.5.1.

Then, we use the connection between the GP posterior induced by pseudo-points and the joint

Gaussian distribution over the pseudo-points described from Sec. 2.3.1 to develop distributed GP

regression in Sec. 2.5.2. In Sec. 2.5.3, we prove that the distributed algorithm converges to the

same posterior GP distribution as a centralized sparse GP regression that uses the observations

from all robots. Finally, in Sec. 2.5.4, we provide an approach to label the messages that the

robots exchange in order to avoid repeated communication of the same information.

29

2.5.1 Distributed Kalman Filtering

Suppose that the robots aim to estimate a fixed (finite-dimensional) vector f cooperatively

using local observations yi
t , generated according to a linear Gaussian model:

yi
t = H if+η

i
t , η

i
t ∼ N (0,V i). (2.16)

Assume that the observations yi
t received by robot i are independent over time and from the

observations of all other robots. Assume also that the graph G is connected and that f is observable

if one has access to the observations received by all robots, i.e., the matrix
[

H1 · · · Hn

]
has

rank equal to the dimension of f. Since individual observations yi
t alone may be insufficient to

estimate f, the robots need to exchange information. We suppose that each robot starts with

a prior probability density function pi
0(f) over the unknown vector f and updates it over time,

relying on its local observations yi
t as well as communication with one-hop neighbors in G.

Rahnama Rad and Tahbaz-Saleh [77] developed a consistent distributed estimation

algorithm, in which each agent i uses standard Bayesian updates with its local observations yi
t+1

but, instead of its own prior pi
t , each agent uses a weighted geometric average of its neighbors’

priors:

pi
t+1(f) ∝ pi(yi

t+1|f)
n

∏
i=1

(pi
t(f))

Wi j , (2.17)

where pi(yi
t+1|f) is an observation model, such as (2.16), that should satisfy certain regularity

conditions [77]. Atanasov et al. [78] showed that if the prior distributions pi
0 are Gaussian and

the observation models are linear Gaussian as in (2.16), the resulting distributed Kalman filter is

mean-square consistent (the estimates argmaxf pi
t(f) of all agents i converge in mean square to

the true f). Specifically, if the priors are f ∼ N (µ i
0,Σ

i
0) with information matrix Ωi

0 := (Σi
0)

−1

30

and information mean ω i
0 := Ωi

0µ i
0, the Gaussian version of the distributed estimator in (2.17) is:

ω
i
t+1 =

n

∑
i=1

Wi jω
j
t +H i⊤V i−1yi

t+1

Ω
i
t+1 =

n

∑
j=1

Wi jΩ
j
t +H i⊤V i−1

H i
(2.18)

because geometric averaging and Bayesian updates with Gaussian densities lead to a Gaussian

posterior density [78]. The relationship between geometric means being used for belief prop-

agation in (2.17) and weighted averaging via mixing matrix W forms the conceptual basis for

message passing in the more general GP posterior inference setting which we detail next.

2.5.2 Distributed Incremental Sparse GP Regression

The distributed estimation algorithm in (2.18) does not directly apply to GP regression

because the estimation target f (x) is infinite-dimensional. However, the sparse GP regression,

described in Sec. 2.3, relies on a finite (albeit incrementally growing) set of pseudo-points Pt ,

and we show that it is possible to obtain distributed incremental sparse GP regression based on

(2.18). As discussed earlier, each robot i maintains parameters Θi
t :=

{
P i

t ,mi
t ,ζ

i
t

}
based on its

local observations D̃ i
t = (X̃ i

t , ỹi
t). Our key idea is to perform weighted geometric averaging over

local posteriors, which translates to simple weighted averaging of the means and covariances

in (2.3) of f at a finite set of points Q ⊇ P i
t , which will be specified precisely below. The

parameters Θi
t induce a GP distribution over f in (2.8), which in turn provides a Gaussian

probability density function pi
t(f) := p(f|Θi

t) over the vector f := f (Q) with mean µ i
t (Q) and

covariance Σi
t(Q), obtained from (2.8). In order to derive decentralized updates for GPs akin to

(2.18), we first present the iterative updates associated with the robots’ local posteriors in terms

of their information mean and information matrix corresponding to the mean and covariance of

pi
t(f).

Lemma 1. The information mean ω i
t (Q) := Ωi

t(Q)µ i
t(Q) and information matrix Ωi

t(Q) :=

31

(Σi
t(Q))−1 of the Gaussian probability density function pi

t(f) := p(f|Θi
t) of f := f (Q) with

parameters Θi
t :=

{
P i

t ,mi
t ,ζ

i
t

}
are:

ω
i
t (Q) = ki

0(Q,Q)−1
µ

i
0(Q)+σ

−2 diag(mi
t(Q))ζ i

t (Q)

Ω
i
t(Q) = ki

0(Q,Q)−1 +σ
−2 diag(mi

t(Q)),

(2.19)

where, similar to Sec. 2.3.3, mi
t(p) and ζ i

t (p) denote the number of observations and average

observation, respectively, for p ∈ P i
t and their domains have been extended to Q ⊇ P i

t by

defining mi
t(q) = ζ i

t (q) = 0 for q ∈ Q \P i
t .

Proof. Similar to the proof of Prop. 1, let E be a binary matrix such that ki
0(P

i
t ,x) = Eki

0(Q,x),

i.e., E selects the points from the superset Q which correspond to P i
t . Note that ki

0(Q,P i
t) =

ki
0(Q,Q)E⊤, ki

0(P
i
t ,Q) = Eki

0(Q,Q), and ki
0(P

i
t ,P

i
t) = Eki

0(Q,Q)E⊤. The expression for

Ωi
t(Q) follows from the matrix inversion lemma applied to the covariance matrix Σi

t(Q) and

noting that E⊤ diag(mi
t)E = diag(mi

t(Q)). Then, note that:

Ω
i
t(Q)ki

0(Q,P i
t)Z

i
t

=
(

I +σ
−2E⊤ diag(mi

t)Eki
0(Q,Q)

)
E⊤Zi

t

= σ
−2E⊤ diag(mi

t)(Z
i
t)
−1Zi

t = σ
−2E⊤ diag(mi

t).

Thus, the information mean is:

ω
i
t (Q) = Ω

i
t(Q)

(
µ

i
0(Q)+ ki

0(Q,P i
t)Z

i
t

(
ζ

i
t −µ

i
0(P

i
t)
))

= Ω
i
t(Q)µ i

0(Q)+σ
−2E⊤ diag(mi

t)
(

ζ
i
t −µ

i
0(P

i
t)
)

= ki
0(Q,Q)−1

µ
i
0(Q)+σ

−2E⊤ diag(mi
t)ζ

i
t

= ki
0(Q,Q)−1

µ
i
0(Q)+σ

−2 diag(mi
t(Q))ζ i

t (Q).

With the expression for the parametric updates associated with the posterior inference

32

defined by observations acquired locally at robot i only, we next detail how to augment this

update with neighboring robots’ information.

Distributed updates with a fixed pseudo-point set

To begin, suppose that the pseudo-point sets are fixed across all robots, i.e., P ≡P i
t , and

the local observations D̃ i
t+1 = (X̃ i

t+1, ỹ
i
t+1) satisfy X̃ i

t+1 ⊆ P for all t, i. Then, the information

means and matrices in (2.19) have equal dimensions across the robots. By defining H i
t+1 :=

ki
0(X̃

i
t+1,P)ki

0(P,P)−1, ω i
t := ω i

t (P), and Ωi
t := Ωi

t(P) we can apply the update in (2.18)

directly. The information means and matrices have a simple structure, and, similar to (2.10), it is

sufficient to track only the number of observations mi
t and the average observations ζ

i
t over time:

ω
i
t+1 =

n

∑
i=1

Wi jω
j
0 +

1
σ2

n

∑
i=1

Wi j diag(m j
t)ζ

j
t +

1
σ2 diag(m̃i

t+1)ζ̃
i
t+1

Ω
i
t+1 =

n

∑
j=1

Wi jΩ
j
0 +

1
σ2

n

∑
i=1

Wi j diag(m j
t)+

1
σ2 diag(m̃i

t+1),

(2.20)

where m̃i
t+1 and ζ̃

i
t+1 are the number of new observations and new observation averages received

by robot i of the pseudo-points P at time t+1. We consider the case with incrementally growing

pseudo-point sets that are potentially different across the robots before presenting the final

distributed update equations for mi
t and ζ

i
t . This is the focus of the following subsection.

Distributed updates with dynamic pseudo-point sets

Consider the general case where each robot maintains its own pseudo-point set P i
t and

the observations D̃ i
t+1 = (X̃ i

t+1, ỹ
i
t+1) may introduce new pseudo-points P̃ i

t+1 ̸⊆ P i
t . Our key

observation is that the parameters Θi
t induce a GP distribution over the whole function f and,

hence, can be used to obtain a Gaussian distribution over a pseudo-point set that is larger than

P i
t according to (2.19):

P i
t+1 =

⋃
j∈N ei∪{i}

P j
t ∪P̃ i

t+1. (2.21)

33

Note that the structure of the information mean and information matrix in (2.19) was derived

for an arbitrary pseudo-points set Q. First, without considering the observations D̃ i
t+1, we let

Q = P i
t+1 and calculate ω

j
t (P

i
t+1), Ω

j
t (P

i
t+1). Then, the distributed averaging in (2.18) can

be performed over the information means and information matrices in (2.19) with Q = P i
t+1

and H i
t+1 := ki

0(X̃
i

t+1,P
i
t+1)k

i
0(P

i
t+1,P

i
t+1)

−1:

ω
i
t+1(P

i
t+1) =

n

∑
i=1

Wi jω
j

t (P
i
t+1)+H i⊤

t+1(σ
2I)−1ỹi

t+1,

Ω
i
t+1(P

i
t+1) =

n

∑
i=1

Wi jΩ
j
t (P

i
t+1)+H i⊤

t+1(σ
2I)−1H i

t+1.

(2.22)

We may rewrite the preceding expressions in terms of the number of observations mi
t+1(p) and

average observations ζ i
t+1(p) for any p ∈ P i

t+1, akin to (2.10), by following the steps in (2.20)

for the dynamic pseudo-point case, leading to:

mi
t+1(p) = ∑

j∈N ei∪{i}
Wi jm

j
t (p)+ m̃i

t+1(p), (2.23)

ζ
i
t+1(p) =

∑ j∈N ei∪{i}Wi jm
j
t (p)ζ

j
t (p)+ m̃i

t+1(p)ζ̃
i
t+1(p)

mi
t+1(p)

.

With the updates for robot i in terms of its local observations and message passing with its

neighbors N ei specified, we shift in the following subsection to establishing its statistical

properties.

2.5.3 Theoretical Guarantee for Consistent Estimation

We show that the proposed distributed incremental sparse GP regression defined by (2.21),

(2.23), and (2.8) converges to a centralized sparse GP regression, which uses the observation data

∪t ∪i D̃ i
t from all robots. At each time step t, the centralized estimator receives data ∪iD̃ i

t , and, as

discussed in Sec. 2.3.3, updates a global set of pseudo-points Pctr
t , the number of times mctr

t (p)

each pseudo-point p ∈ Pctr
t has been observed, and the average observation ζ ctr

t (p) of p ∈ Pctr
t .

34

In order to show that the GP maintained by each robot i eventually agrees with the centralized GP,

the centralized estimator should also be affected by the Perron weight matrix W . If W = 1
n11⊤,

the information provided by different robots is equally credible and the centralized estimator can

use the combined set of observations ∪iD̃ i
t directly. If, however, the left eigenvector π of W is

not 1, then its elements πi specify different credibility for the different robots. More precisely,

the centralized estimator should treat the measurements D̃ i
t of robot i as if they were generated

with noise variance σ2/πi, instead of the true noise variance σ2. This is equivalent to scaling the

number of observations m̃i
t provided by robot i by its “credibility” πi, leading to the following

update for the centralized sparse GP regression parameters:

Pctr
t+1 = ∪n

i=1P̃
i
t+1 ∪Pctr

t ,

mctr
t+1(p) = mctr

t (p)+
n

∑
i=1

πim̃i
t+1(p), (2.24)

ζ
ctr
t+1(p) =

mctr
t (p)ζ ctr

t (p)+∑
n
i=1 πim̃i

t+1(p)ζ̃
i
t+1(p)

mctr
t+1(p)

,

for all p ∈ Pctr
t+1. The next result shows that the individual GP distributions maintained by

each robot using the distributed updates in (2.23) converge to the centralized GP distribution

determined by the parameters above.

Proposition 3. Let D̃ i
t = (X̃ i

t , ỹi
t) be the data received by robot i at time t, associated with

pseudo-points P̃ i
t ⊂ P# and number of observations m̃i

t(p) and average observation ζ̃ i
t (p)

for p ∈ P#. If the data streaming stops at some time T < ∞, then as t → ∞, the distributions

G P(µ i
t (x),ki

t(x,x′)) maintained by each robot i, specified according to (2.8) with parameters

P i
t , mi

t(p), ζ i
t (p) in (2.21) and (2.23) converge to the distribution G P(µctr

t (x),kctr
t (x,x′)) of the

centralized estimator with parameters Pctr
t , mctr

t (p), ζ ctr
t (p) in (2.24), i.e., |µ i

t (x)−µctr
t (x)|→ 0

and |ki
t(x,x′)− kctr

t (x,x′)| → 0 almost surely for all i ∈ V , x,x′.

Proof. Since the distributions G P(µ i
t (x),ki

t(x,x′)) and G P(µctr
t (x),kctr

t (x,x′)) are completely

determined by the parameters P i
t , mi

t(p), ζ i
t (p) and Pctr

t , mctr
t (p), ζ ctr

t (p), respectively, it is

35

sufficient to show that |mi
t(p)−mctr

t (p)| → 0 and |ζ i
t (p)−ζ ctr

t (p)| → 0 for all i ∈ V , p ∈ P#.

Let p ∈ P# be arbitrary and note that mi
0(p) = mctr

0 (p) = 0 and ζ i
0(p) = ζ ctr

0 (p) = 0 since no

pseudo-points have been observed initially. Expand (2.24) recursively to obtain mctr
t (p) and

ζ ctr
t (p) in terms of the observation statistics:

mctr
t (p) =

t

∑
τ=0

n

∑
i=1

πim̃i
τ(p),

ζ
ctr
t (p) =

1
mctr

t (p)

t

∑
τ=0

n

∑
i=1

πim̃i
τ(p)ζ̃

i
τ(p).

(2.25)

Similarly, expand (2.23) to obtain mi
t(p) and ζ i

t (p) in terms of the observation statistics:

mi
t(p) =

t

∑
τ=0

n

∑
j=1

[
W t−τ

]
i j m̃ j

τ(p),

ζ
i
t (p) =

1
mi

t(p)

t

∑
τ=0

n

∑
j=1

[
W t−τ

]
i j m̃ j

τ(p)ζ̃
j

τ (p),
(2.26)

where the weights [W t−τ]i j appear since the data m̃ j
τ(p) and ζ̃

j
τ (p) propagate through the network

with weight matrix W and reach robot i via all paths of length t − τ . Alternatively, (2.26)

can be viewed as the solution of the discrete-time linear time-invariant system in (2.23) with

transition matrix Φ(t,τ) =W t−τ , t ≥ τ . Since the data collection stops at some finite time T ,

m̃i
t(p) = ζ̃ i

t (p) = 0 for all t > T , i ∈ V . The convergence of (2.26) to (2.25) is concluded from

the fact that [W t]i j → π j > 0 since W is a row-stochastic nonnegative and primitive matrix.

Prop. 3 is a similar result to [77, Thm. 3], where it is shown that, if the weight matrix W

is doubly stochastic, a distributed parameter estimator is as efficient as any centralized parameter

estimator. However, Prop. 3 applies to distributed function estimation using an incrementally

growing set of parameters and re-weights the observations used by the centralized estimator via

the stationary distribution π of W to ensure convergence even when W is not doubly stochastic.

36

2.5.4 Echoless Distributed GP Regression

The distributed pseudo-point update we derived in (2.23) is not efficient for two reasons.

First, convergence to the central GP estimate is guaranteed only in the limit, as t → ∞ (Prop. 3).

Second, every time robots exchange messages, all information they have must be sent. This is

inefficient as may be seen in the proof of Prop. 3, the observations are exchanged an infinite

number of times (echos in the network). To address these limitations, we label the communication

messages with the list of robots that have already received them and show that convergence to the

centralized estimate can, in fact, be achieved in finite time. Let Θ̃i
t := {P̃ i

t , m̃
i
t(P̃

i
t), ζ̃

i
t (P̃

i
t), ℓ

i
t}

define a communication package which contains the new observations P̃ i
t , m̃i

t(P̃
i
t), ζ̃ i

t (P̃
i
t) of

robot i at time t as well as a list of robots ℓi
t that have already received this package. The list ℓi

t is

initialized at time t with {i}. For each robot i, define also a set of packages Bi
t+1 that the robot

should use at time t to update its GP parameters. The set Bi
t from the previous time step contains

old packages that robot i should transmit to its neighbors. Inspired by the similarity of (2.25)

and (2.26), we propose a distributed protocol which ensures that:

• each package, which contains the processed observations of robot i at time t, visits each robot

once rather than echoing in the network, relying on ℓi
t to keep track of visited robots,

• convergence to the centralized GP distribution is achieved in finite and minimum time by using

the stationary distribution (left eigenvector) π of W as the coefficient in (2.26).

37

The distributed parameter update for robot i at time t is:

Bi
t+1 =

⋃
Θ̃

j
τ∈Br

t ,r∈N ei,i/∈ℓ j
τ

Θ̃
j
τ ∪ Θ̃

i
t+1,

ℓ
j
τ = ℓ

j
τ ∪{i} for all Θ̃

j
τ ∈ Bi

t+1,

P i
t+1 =

⋃
Θ̃

j
τ∈Bi

t+1

P j
τ ∪P i

t ,

mi
t+1(p) = mi

t(p)+ ∑
Θ̃

j
τ∈Bi

t+1

π jm̃
j
τ(p),

ζ
i
t+1(p) =

mi
t(p)ζ i

t (p)+∑
Θ̃

j
τ∈Bi

t+1
π jm̃

j
τ(p)ζ̃

j
τ (p)

mi
t+1(p)

.

(2.27)

We prove that this distributed update rule converges in finite time to the centralized GP

distribution. Compared with (2.23), the distributed update in (2.27) is able to achieve finite-time

convergence because it uses the weights π from the stationary distribution of W right away,

instead of processing the same information an infinite number of times to determine π . Moreover,

(2.23) stipulates that two robots should exchange all of their information at each time step, which

is very inefficient in practice. The messages in (2.27) allow the robots to exchange only the latest

information and guarantee that each observation reaches each robot once.

Proposition 4. Let D̃ i
t = (X̃ i

t , ỹi
t) be the data received by robot i at time t, associated with

pseudo-points P̃ i
t ⊂ P# and number of observations m̃i

t(p) and average observation ζ̃ i
t (p)

for p ∈ P#. If the data streaming stops at some time T < ∞, then at time t = T + n− 1,

the distributions G P(µ i
t (x),ki

t(x,x′)) maintained by each robot i, specified according to (2.8)

with parameters in (2.27) are exactly equal to the distribution G P(µctr
t (x),kctr

t (x,x′)) of the

centralized estimator with parameters in (2.24), i.e., µ i
t (x) = µctr

t (x) and ki
t(x,x′) = kctr

t (x,x′)

almost surely for all i ∈ V , x,x′.

Proof. As in the proof of Prop. 3, it is sufficient to show that at t = T +n−1, mi
t(p) = mctr

t (p)

and ζ i
t (p) = ζ ctr

t (p) for all i ∈ V , p ∈ P#. As before, we express mi
t(p) and ζ i

t (p) in terms of

38

m̃ j
τ(p) and ζ̃

j
τ (p) for arbitrary p ∈ P# and τ ≤ t. The key is to decide whether package Θ̃

j
τ is

received by robot i. Since the package exchanges are happening based on the communication

graph structure, the elements of W t−τ determine which robots have received a package released

at time τ by time t. Precisely, if [W t−τ]i j > 0, then robot i has received package Θ̃
j
τ by time t

and otherwise, if [W t−τ]i j = 0, it has not received it. Let sign(x) denote the sign of a scalar x

with sign(0) = 0. Expanding (2.27) recursively leads to:

mi
t(p) =

t

∑
τ=0

n

∑
i=1

sign(
[
W t−τ

]
i j)π jm̃

j
τ(p) (2.28)

ζ
i
t (p) =

1
mi

t(p)

t

∑
τ=0

n

∑
j=1

sign(
[
W t−τ

]
i j)π jm̃

j
τ(p)ζ̃

j
τ (p)

Since the data collection stops at some finite time T , m̃i
τ(p) = ζ̃ i

τ(p) = 0 for all τ > T , i ∈ V .

Comparing (2.26) and (2.25), equality of µ i
t (x) and µctr

t (x) and ki
t(x,x′) and kctr

t (x,x′) at t =

T +n−1 is concluded by the fact that
[
W n−1]

i j > 0 because the network is connected.

To ensure that each package is received by each robot once, we assumed that the package

keeps a list of visited robots. Since a package may be received by several robots at the same

time, the robots should keep a list of received packages. More precisely, each package should

be labeled based on the robot that observed it and the time slot the package is observed. Then,

each robot keeps the list of received packages and always removes the packages with time label

earlier than n−1.

2.6 Distributed Metric-Semantic Mapping

We apply the distributed GP regression technique developed in Sec. 2.5 to the multi-

robot metric-semantic TSDF mapping problem. Each robot i receives local distance and class

observations
{

λ i
t+1,k,c

i
t+1,k

}
, which are transformed using the procedure in Sec. 2.4.1 into

training data sets D̃ i
t+1,l =

(
X̃ i

t+1,l, ỹ
i
t+1,l

)
for estimating the TSDFs { fl(x)} of the different

object classes. Each dataset D̃ i
t+1,l is compressed into a set of pseudo-points P̃ i

t+1,l with

39

Algorithm 1. Distributed Metric-Semantic Mapping
1: Routine for robot i at time step τ:
2: Input: sensor observation: {λ i

τ,k,c
i
τ,k}k

3: Construct training set via Sec. 2.4.1:{
λ

i
τ,k,c

i
τ,k
}

k
→

{
D̃ i

τ,l
}

l
→

{
Θ̃

i
τ,l
}

l

4: Receive packages B j
τ from neighbors j ∈ N ei

5: Update the pseudo-point parameters via (2.27)
6: Update the GP tree data structure for each class l via Sec. 2.3.4
7: for each leaf N of each tree do
8: Update precision matrix Zi

τ,l(N) in Sec. 2.4.2 via (2.11), (2.12)

9: if TSDF and class evaluation for a set of points is requested then
10: Evaluate the class of each point via Prop. 2 in Sec. 2.4.2
11: Evaluate the TSDF of each point via (2.8)
12: if mesh reconstruction is requested then
13: Apply Marching Cubes [91] to the TSDF values

associated number of observations m̃i
t+1,l(p) and average observation ζ̃ i

t+1,l(p) for p ∈ P̃ i
t+1,l .

Each robot maintains a separate GP G P(µ i
t,l(x),k

i
t,l(x,x

′) for each class TSDF fl(x). In the

multi-robot case, the GP distributions of robot i are updated simultaneously and separately for

all classes using the new class-specific observation data P̃ i
t+1,l , m̃i

t+1,l(P̃
i
t+1,l), ζ̃ i

t+1,l(P̃
i
t+1,l)

as well as information from the neighboring robots in the form of class-specific packages Bi
t+1,l

as described in (2.27). To make the GP models scalable to large environments, we organize

the pseudo-points P i
t,l for each robot i and class l in a hierarchical tree data structure, as in

Sec. 2.3.4, and predict the class of a query point via the method in Sec. 2.4.2. Prop. 4 guarantees

that the local TSDF GPs at each robot converge to a common GP, which is equivalent to the one

that would be obtained by centralized sparse GP regression. Moreover, when the streaming of

new observations stops, the convergence happens in finite time as soon as each observation is

received by each robot exactly once. There is no unnecessary communication in the network.

The algorithm is summarized in Alg. 1.

40

2.7 Evaluation using 2-D Simulated Data

In this section, we evaluate our semantic TSDF mapping approach in 2-D simulated

environments. We first demonstrate the qualitative and quantitative performance of the single-

robot approach of Sec. 2.4. Then, we report results for the multi-robot approach of Sec. 2.6

using three robots to map the same environment collaboratively. In all experiments, we use an

isotropic sparse Matérn kernel (ν = 3/2) [31]. Since a TSDF value of zero indicates an object

surface, while an unknown environment is predominantly empty, we use a constant GP prior

equal to the truncation value, µ i
0,l(x) = d̄ > 0.

2.7.1 Single-Robot 2-D Evaluation

We generate random 2-D environments (see Fig. 2.6) and robot trajectories by sampling

poses sequentially and keeping the ones that are in free space. Observations are obtained along

the robot trajectories using a simulated distance-class sensor. We apply our incremental sparse

GP regression method to obtain a probabilistic TSDF map and compare it with the ground truth

TSDF.

TSDF Accuracy

A sample environment from our 2-D simulation with ground-truth and reconstructed

TSDF and boundaries is shown in Fig. 2.6. Our method provides continuous probabilistic TSDF

estimates. The choice of f rame size is dependent on the desired truncation value for the SDF

reconstruction. Larger f rame size allows estimating larger truncation values but incurs additional

computation cost. The precision and resilience to measurement noise of our method are evaluated

in Fig. 2.7. The test points are chosen from a grid with resolution 0.5× voxel size within the

truncation distance from the ground-truth object boundaries.

41

Figure 2.6. Ground-truth 2-D simulated environment (top left) with two object classes (red, blue),
ground-truth TSDF for the blue class (top middle), and reconstructed TSDF with f rame size= 10
(top right). The reconstructed TSDF boundaries are shown for three different f rame size
parameters on the bottom row: 10 (bottom left), 3 (bottom middle), 2 (bottom right). Sharp edges
are captured better with f rame size 3 vs. 10 but using f rame size less that 3 caused missing
parts at the boundaries.

Classification Accuracy

We evaluate the average precision and recall of our posterior classification over 50

random 2-D maps. In each map, we pick uniformly distributed random points along the obstacle

boundaries, and calculate the SDF error and the class-detection accuracy. Since the values are

symmetric for binary classification, we present the average precision and recall over the two

classes in Fig. 2.7. The figure shows that the misclassification rate, precision, recall, and SDF

error are not very sensitive to class error probability. The misclassification rate is the ratio

of all to the misclassified test points. The SDF error is the average absolute value difference

between the estimated and ground-truth SDF values. We report normalized SDF error: SDF error
voxel size .

Fig. 2.8 investigates the effect of the parameters of our algorithm on misclassification rate,

42

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Class error probability

var = 0

var = 0.2

var = 0.4

var = 0.6

var = 0.8

var = 1

Misclassification Rate

Precision

Recall

Normalized SDF Error

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

·10−2

Noise variance

SDF error

Figure 2.7. Misclassification Rate, Precision, Recall, and Normalized SDF Error for different
class error probability and distance noise variance. The top right plot shows the average SDF
error over 10 random 40×40 maps with a 100 random observations each, with voxel size = 0.1,
max(N) = 100, δ = 1.2.

normalized SDF error, False Discovery Rate (FDR := 1−Precision), and False Negative Rate

(FNR := 1−Recall). We see that the misclassification rate, FNR, and FDR respond similarly to

parameter variations.

Increasing the maximum number of pseudo-points per support region, max(N), in the

hierarchical tree structure improves the (normalized) SDF error. The improvement is significant

at first but after a certain support region size, even exponential increases in max(N) do not

significantly affect the SDF error. The geometric prediction improvement caused by an initial

increase in max(N), improves the classification measures at first. The classification noise is

iid and, hence, the training data have a Bernoulli misclassification probability and are roughly

uniformly distributed in space. Further increase of max(N) results in larger pseudo-point region

being used for GP training. Since the misclassified samples are more and not concentrated,

the classification measures deteriorate slightly with the increase of max(N). Nevertheless, our

approach remains accurate in the classification errors are low in all cases. Increasing δ has a

similar effect on all performance measures. Increasing the GP noise variance σ2 improves all

43

the measures at first but then worsens them. A correct choice of σ2 is critical to the method but

affects the misclassification rate smoothly so as long as the value of σ2 is in the right ballpark,

choosing the optimal σ2 is not critical.

2.7.2 Multi-Robot 2-D Evaluation

Next, we evaluate the distributed GP regression in a three-robot simulation and investigate

the convergence of the local GP estimates of each robot to a centralized GP estimate. We use

the same random polygonal 2-D environments with two object classes but this time generate

trajectories for three different robots (see Fig. 2.9). The robots communicate with each other

over a graph with a fixed weight matrix:

W =

0.5 0.25 0.25

0.25 0.75 0

0.25 0 0.75

 . (2.29)

The GP regression parameters at each robot are the same as the defaults in Sec. 2.7.1. To verify

Prop. 4 empirically, we compare the mean absolute error (MAE) between the GP prediction

of an individual robot i and the centralized estimator ctr using all observations as described in

Sec. 2.5.3. Specifically, at each t, we consider all classes l and associated pseudo-points Pctr
t,l

that have been observed by the centralized estimator and calculate the mean MAE as:

MAEt =
1

Lt |Pctr
t,l |

∑
ℓ

∑
p∈Pctr

t,l

∣∣∣µ i
t,l(p)−µ

ctr
t,l (p)

∣∣∣ , (2.30)

where Lt is the number of observed object classes by time t. The variance MAE is computed

equivalently to (2.30) with µ i
t,l(p) and µctr

t,l (p) replaced by ki
t,l(p,p) and kctr

t,l (p,p).

Fig. 2.9 shows the final reconstructions of one robot and the centralized estimator. As

expected, the final reconstructions are identical and convergence happens in finite time. The

behavior of the mean and variance MAE curves is similar. This is expected because the distance

44

between the local and centralized GP parameters is due to unobserved information rather than

stochastic noise. We see that the MAE curves approach 0 quickly. Several peaks are observed in

the curves when new sections of the environment that are not visible to robot i are observed by

another robot in the network. The new information disseminates in the network and the MAE

curves approach zero again.

45

101 102 103
10−2

10−1

100

Feature points’ number in each leaf (max(N))

1 1.2 1.4 1.6 1.8 2
Over lap ratio of tree’s leaves (δ)

0 0.5 1 1.5 2

10−1

100

Gaussian Process noise variance

5 ·10−2 0.1 0.15 0.2 0.25 0.3

Voxel size

Misclassification Rate Normalized SDF Error FDR FNR

Figure 2.8. Misclassification rate, normalized SDF error, False Discovery Rate (FDR), and
False Negative Rate (FNR) as a function of the number of pseudo-points per tree support region
(max(N)), support region overlap ratio (δ), GP noise variance σ2, and workspace discretization
(voxel size). The default parameter values are δ = 1.5, max(N) = 100, σ2 = 1, voxel size = 0.1.
Class and distance measurements with class error probability of 0.05 and distance noise variance
0.5 are obtained from 100 random observations in each of 50 random 2-D maps. Test points are
selected within a threshold of 0.05 from the ground truth class boundaries.

46

Figure 2.9. The orange robot (bottom right) are shown. As expected, due to Prop. 2, the
centralized and individual robot reconstructions are identical. This is verified quantitatively in
the GP mean and variance mean absolute error (MAE) plot (top right). The initial GP parameters
for each robot and object class were µ i

0,l(x) = 0.5,ki
0,l(x,x) = 1.

47

2.8 Evaluation using 3-D Real Data

In this section, we evaluate our approach using real RGB-D data from physical 3-D

environments. As before, we use an isotropic sparse Matérn kernel (v = 3/2) and a grid of

potential pseudo-points P# with resolution voxel size. Given a query point x̂, we choose a cubic

region around it such that (f rame size−1)× voxel size ≥ 2× ε to construct the training data in

(2.13). All points from P# that lie in the cubic region are chosen as pseudo-points associated

with x̂.

2.8.1 Single-Robot 3-D Evaluation

We compare our method to the incremental Euclidean signed distance mapping method

Fiesta [48] on the Cow and Lady dataset [47]. We also demonstrate 3-D semantic reconstruction

on the SceneNN dataset [92].

Cow and Lady Dataset

The reconstruction of the Cow and Lady dataset with 829 depth images and known

camera trajectory by the single-robot TSDF GP regression of Sec. 2.4 is shown in Fig. 2.13. A

triangular mesh is extracted from the mean TSDF prediction using the Marching Cubes algorithm

[93]. The reconstruction time and error with respect to the ground-truth scene point cloud are

reported in Fig. 2.10. The error of Fiesta with default parameters is shown as well. Similar to

the 2-D simulations, increasing the maximum number of pseudo-points max(N) per tree support

region improves the SDF error of our approach. The improvement is significant at first and

less pronounced afterwards. Conversely, the computation time decreases at first because the

number of leaves in the hierarchical tree structure decreases and then increases afterwards as

the GP covariance matrices get larger. Increasing δ leads to an insignificant improvement in the

SDF error at the expense of a significant reconstruction time increase. Increasing the GP noise

variance improves the SDF error at first (especially when the error is close to zero) but worsens

it afterwards without significant impact on time. As voxel size varies, our method outperforms

48

Fiesta noticeably.

SceneNN Dataset

We evaluate the classification accuracy of our method on the SceneNN dataset in Fig. 2.11.

The GP posterior is evaluated on a test grid with resolution 0.5× voxel size. The test points with

posterior variance less than a threshold are used to reconstruct a triangular mesh via Marching

Cubes [93]. We use Prop. 2 for classification. The effect of the different parameters is illustrated

in Fig. 2.11. Increasing max(N) improves both classification and TSDF reconstruction results.

The improvement after max(N) = 100 is negligible but time increases significantly. Increasing

δ improves the TSDF reconstruction significantly at first. After δ = 1.4, the improvement is

negligible. As seen in the 2-D simulations, choosing a correct magnitude for the GP noise

variance σ2 is very important for both the classification and TSDF reconstruction but choosing

the optimal value for σ2 is not critical. Our method provides continuous TSDF estimates but

this does not mean that the zero-level set of the estimated TSDF is necessarily continuous. A

positive TSDF prediction by the GP means that the corresponding location is empty. Choosing

the truncation value as the prior GP mean results in assuming that space is empty by default.

The presence of pseudo-points, generated around observed surfaces, is what introduces occupied

space in the GP estimation. For example, the grid-like empty spots in Fig. 2.11, resulting when

the parameter choices are suboptimal, are due to the choice of pseudo-points on a regular grid.

2.8.2 Parameter Selection

This section discusses parameter selection for our algorithm, based on the results in

Sec. 2.8.1. With parameter selection there is a trade-off between accuracy and computational

efficiency. For the hierarchical tree structure, as observed in Sec. 2.8.1, it is critical to select the

maximum number of pseudo-points per node as max(N)> 100 and the size of the node support

region as δ > 1.4 to ensure continuous surface representation, robustness to noise, and sufficient

accuracy of the decomposition into separate GPs. The larger these two parameters are, however,

49

10 100 200 400 600 800
0

2 ·10−2

4 ·10−2

6 ·10−2

8 ·10−2

0.1

Feature points’ number in each leaf (Max(N))

(m
)

10 100 200 400 600 800 1 1.2 1.4 1.6 1.8 2
Over lap ratio of each leaf (δ)

1 1.2 1.4 1.6 1.8 2

350

400

450

500

(s
ec

)

0 510 25 40 50 80
0

5 ·10−2

0.1

0.15

0.2

0.25

Gaussian Process noise variance

(m
)

0 510 25 40 50 80 5 ·10−2 0.1 0.2

Voxel size
5 ·10−2 0.1 0.2

300

400

500

600

700

(s
ec

)

Time (sec) Error (m) Fiesta Error (m)

Figure 2.10. Evaluation of the SDF reconstruction time (sec) and error (m) of our incremental
sparse GP regression algorithm on the Cow and Lady dataset [47] and in comparison with
Fiesta [48]. The errors are evaluated with respect to the ground-truth scene point cloud provided
by the dataset. Training is done with 829 depth images and known camera trajectory. The
default parameters for our algorithm are max(N) = 200, δ = 1.5, σ2 = 25, voxel size = 0.1,
f rame size = 5, and SDF truncation value 3× voxel size.

the more computationally expensive our algorithm becomes. Our experiments suggest optimal

choices around δ = 1.5 and max(N) = 200.

The noise parameter σ2 of the GP model depends on the measurement data. For the RGB-

D data used in our experiments σ2 = 3 was a good choice. The voxel size parameter depends on

the level of detail that needs to be captured in the reconstruction, with smaller values increasing

the accuracy but also the computational complexity. In our experiments, voxel size = 0.03 was a

good choice. A trade-off between accuracy and computation time is associated with the choice

of f rame size, which determines how many pseudo-points are added per sensor ray (Fig. 2.5).

50

(a) n : 5,t : 58.15 (b) δ : 1, t : 32.62 (c) σ2 : 0, t : 42.43 (d) v : 0.06, t : 23.24

(e) n : 100,t : 45.15 (f) δ : 1.4, t : 39.11 (g) σ2 : 10, t : 41.07 (h) v : 0.03, t : 45.15

(i) n : 1000,t : 96.83 (j) δ : 2, t : 57.41 (k) σ2 : 40, t : 43.76 (l) v : 0.01, t : 381.02

Figure 2.11. Single-robot reconstructions of sequence 255 (top left), containing 2450 RGB-D
images and 85 semantic categories (in random colors), and sequence 011 (bottom left), containing
3700 RGB-D images and 61 semantic categories (in random colors), of the SceneNN dataset
[92]. The incremental sparse GP TSDF mapping process took 1040.41 sec. for sequence 255 and
1885.72 sec. for sequence 011. The following default parameters were used for the hierarchical
tree structure: δ = 1.5, n = max(N) = 100 and the GP training: σ2 = 3, v = voxel size = 0.03,
f rame size = 2. On the right we see the effect of these parameters (t is time in seconds) on the
metric-semantic reconstruction over 140 RGB-D images.

While f rame size = 2 is very efficient and captures fine details, as discussed in Fig. 2.6 and

Sec. 2.8.3, it might miss surface boundaries. Choosing f rame size = 3 alleviates this issue while

keeping the approach efficient. If TSDF reconstruction accuracy close to the surface, in addition

to the surface extraction itself, is important, then f rame size ≥ 5 is a good choice (Fig. 2.10).

2.8.3 Comparison with Deep TSDF Reconstruction

This section compares our sparse GP approach to IGR [1], a deep learning approach

for SDF reconstruction introduced in Sec. 2.1. We evaluated the two approaches on five car

instances from the ShapeNet dataset [2]. Both methods were trained using 100 depth images

of size 512× 512, obtained from a sphere around the object with camera orientation facing

51

Figure 2.12. Reconstruction of car instances from the ShapeNet dataset using our incremental
GP approach (top row) and IGR [1] (bottom row). The color indicates the reconstruction variance
provided by our model, ranging from cold (low confidence) to hot (high confidence). The first
three car instances are reconstructed from RGB-D images with zero measurement noise, while
the last instance is obtained with noise standard deviation of 0.05.

the object. To make the measurement noise independent of the object scale, each element of

the depth image was multiplied with Gaussian noise with mean 1 and three levels of standard

deviation: 0 (no noise), 0.025 (low noise), and 0.05 (high noise). Our method was trained on a

single CPU with parameters: σ2 = 3, voxel size = 0.03, f rame size = 2, and tree support regions

with δ = 1.5 and max(N) = 200. IGR was trained without a latent shape vector (single shape

estimation) on an Nvidia GTX 1080 Ti GPU with initial learning rate 0.005 and decay factor of

2 every 200 steps for 2k iterations. Mesh reconstruction from the SDF values was performed

using Marching Cubes [91] with the same resolution of voxel size = 0.015 for both methods.

Qualitative results for three of the object instances are shown in Fig. 2.12. The color

patterns observed in the variance prediction of our method correspond to convex object parts

which more visible (so the uncertainty is lower) from various camera poses. The meshes in

ShapeNet are combinations of flat faces and the object surfaces are not smooth. Quantitative

results for noise evaluation are shown in Table 2.1. In the absence of noise IGR is more accurate

but the difference is minor. Examining the qualitative results in Fig. 2.12 suggests that our

52

Table 2.1. Quantitative comparison between our approach and IGR [1] for TSDF reconstruction,
averaged over 5 car instances from ShapeNet [2] and evaluated using the metrics from [94]. The
metrics are computed after the reconstructed meshes are normalized in a unit-length bounding
box.

Method Noise st. dev. Chamfer-L2 Chamfer-L1 Accuracy Completeness

Ours 0 0.0010 0.0091 0.0078 0.0105
IGR 0.0007 0.0071 0.0072 0.0070

Ours 0.025 0.0007 0.0104 0.0114 0.0093
IGR 0.0014 0.0262 0.0269 0.0255

Ours 0.05 0.0013 0.0198 0.0248 0.0148
IGR 0.0072 0.0677 0.0863 0.0492

method is able to capture fine details more precisely. As the measurement noise increases, our

method’s reconstruction accuracy remains robust while IGR’s accuracy deteriorates. Fig. 2.12

shows that with large measurement noise the reconstruction from IGR may sometimes fail, while

our method is still able to capture the overall object shape.

The total training time per instance for IGR, including mesh reconstruction, was 783.27

sec. Timing results for our method are provided in Table 2.2. Our method was able to process

depth images for training set construction and incremental GP training at roughly 6.2 Hz. In

robotics applications, such as autonomous navigation, only the dataset construction and GP

training steps need to be performed online and a small local portion of the TSDF values may

be predicted for collision checking. Prediction at a single test-point took 7.7 µs. If complete

TSDF reconstruction and mesh extraction are considered, our method took 66.4 sec to process

100 images.

2.8.4 Multi-Robot 3-D Evaluation

Finally, we evaluate our distributed GP regression on the Cow and Lady and SceneNN

datasets. We split the RGB-D image sequences into equal parts and consider each as data obtained

by a different robot. As in the 2-D simulation, we use three robots with communication weight

53

Table 2.2. Profiling our python implementation of Alg. 1 with average times obtained from 5
ShapeNet [2] with 100 RGB-D images each.

Online TSDF mapping without mesh reconstruction

Data construction and training (42214 pseudo-points, 944970 updates) 16.02 s
Single pseudo-point update 17.13 µs
Single test-point prediction 7.68 µs
Image processing and training rate 6.24 Hz

Online TSDF mapping with mesh reconstruction

Data construction and training (42214 pseudo-points, 944970 updates) 16.02 s
TSDF prediction (4138478 test points) 31.78 s
Marching cubes mesh reconstruction (944×969×1066 grid) 11.00 s
Other operations 7.58 s
Total reconstruction time (100 RGB-D images) 66.38 s
Image processing, training, and reconstruction rate 1.51 Hz

matrix W in (2.29). Each robot uses the distributed update rule in (2.27) and communication

continues for 2 rounds after the last RGB-D image from the individual robot sequences is

received. The individual robot parameters are the same as in the single-robot experiments in

Sec. 2.8.1. The choice of additional communication rounds is due to Prop. 4, where we showed

theoretically that T +n−1 rounds are needed for the local GP distributions to agree with the

centralized GP estimator. As in the 2-D simulations, to verify Prop. 4 empirically, we compare

the mean absolute error (MAE) in (2.30) between the GP mean and variance of an individual

robot and the centralized estimator.

The results from the Cow and Lady dataset are reported in Fig. 2.13 and Fig. 2.14,

while those from the SceneNN dataset are in Fig. 2.15 and Fig. 2.16. The local and centralized

reconstruction results are identical in both data sets, which confirms the expected theoretical

consistency. The mean and variance MAE curves also behave similarly in both data sets because

the errors in the local GP regression are due to unobserved information, that has not yet been

received by the robot, rather than measurement noise. As in the 2-D simulation, the peaks in

the MAE curves are due to another robot in the network observing a new region that has not yet

54

Figure 2.13. The Cow and Lady dataset [47] is divided into three equal sequences of about 275
depth images, and each is considered data obtained by one robot. The three camera trajectories
are shown in red, green, and blue on the right. The left plot shows the final reconstruction
obtained by the first robot. The right plot shows the final reconstruction obtained by centralized
GP regression using the observations of all three robots. The orange hues indicate smaller
variance. As expected, due to Prop. 4, the reconstruction of robot one is identical with that
of the centralized estimator. The initial GP parameters for each robot and object class were
µ i

0,l(x) = 0.15 and ki
0,l(x,x) = 5.

been observed by this robot. These peaks quickly decrease, which indicates the fast empirical

convergence of the distributed sparse GP algorithm.

2.9 Discussion

This paper developed an online Gaussian Process regression method that enables a robot

team to build metric-semantic maps collaboratively. A theorem to compress repeated observations

before GP training, combined with hierarchical data decomposition, allows scaling to large

domains. The presence of distance information allows GP regression instead of computationally

challenging GP classification to recover the semantic class distribution. Our approach achieves

comparable accuracy to deep neural network techniques for scene reconstruction but offers

better robustness to noise, incremental training, and uncertainty quantification. It also enables

collaborative inference through distributed GP regression with guaranteed finite-time convergence

to the distribution of a centralized estimator. Our probabilistic metric-semantic mapping results

55

Figure 2.14. Log-space plot of the mean absolute error (MAE) between the mean (red) and
variance (blue) predictions of robot 1 and centralized GP regression for the sequence in Fig. 2.13.
When the data streaming stops at the end, the MAE approaches zero (−∞ in log space).

offer a promising direction for future research in semantic task specifications and uncertainty-

aware task planning.

Chapter 2, in full, is a reprint of the material as it appears in ”Ehsan Zobeidi, Alec Koppel

and Nikolay Atanasov. Dense Incremental Metric-Semantic Mapping for Multiagent Systems

via Sparse Gaussian Process Regression. IEEE Transactions on Robotics, vol. 38, no. 5, pp.

3133-3153, Oct. 2022”. The dissertation author was the primary investigator and author of this

paper.

56

Figure 2.15. Sequence 255 of the SceneNN dataset [92] is divided into three equal sequences
of about 800 RGB-D images, and each is considered data obtained by a different robot. The
three camera trajectories are shown in red, green, and blue on the right. The left plot shows the
final metric-semantic reconstruction obtained by the first robot. The right plot shows the final
reconstruction obtained by centralized GP regression using the observations of all three robots.
As expected, due to Prop. 4, the reconstruction of robot one is identical with that of the centralized
estimator. The initial GP parameters for each robot and object class were µ i

0,l(x) = 0.09 and
ki

0,l(x,x) = 5.

Figure 2.16. Log-space plot of the mean absolute error (MAE) between the mean (red) and
variance (blue) predictions of robot 1 and centralized GP regression for the sequence in Fig. 2.15.
When the data streaming stops at the end, the MAE approaches zero (−∞ in log space).

57

Chapter 3

Signed Directional Distance Function Esti-
mation using Deep Learning

Various representations for object shape and geometric surfaces have been proposed

by the computer vision, computer graphics, and robotics communities. A unique challenge in

robotics applications that involve operation in a priori unknown environments is that shapes and

surfaces need to be reconstructed in real-time and immediately and efficiently used for collision

or occlusion checking to enable autonomous navigation or manipulation. Shape estimation

should be performed online using depth-camera or LiDAR observations, and shape models

should ideally be trained with such partial-view measurements rather than complete 3D object

models. Distance prediction for collision or occlusion checking should be performed highly

efficiently and independently of the distance or viewing direction to the observed surface. As

discussed below, many existing shape reconstruction methods have limitations when used for

online shape reconstruction from partial views or efficient distance prediction from arbitrary

views. In part, this is due to a lack of directional information in the geometry representations

used by these methods.

To address this challenge, we propose a new 3D shape representation, called signed

directional distance function (SDDF), and a DeepSDDF neural network model for learning

SDDF representations of objects from distance measurements. An SDDF h(p,η) returns the

signed distance from a 3D position p along a unit-vector viewing direction η . We show that the

58

SDDF h of an object can be estimated online from sensor data and subsequently allows highly

efficient prediction of the distance to the object surface from arbitrary position p and view η

queries in a single look-up evaluation. We discuss the relationship of SDDF to existing shape

models next.

3D object shape representations can be classified broadly into explicit and implicit.

Explicit models parameterize an object surface directly using point cloud [95], polygonal mesh

[96], or geometric primitive [97] representations. Mesh models can capture geometry, texture,

and lighting properties and are widely used in computer vision and graphics. Novel mesh

synthesis from partial views [98], however, is challenging, especially if, in addition to the vertex

locations, prediction of the mesh topology and number of vertices is required. Implicit models

parameterize an object surface indirectly, as a level set of a spatial function defined everywhere

in 3D. Common implicit surface representations include volumetric occupancy [99], density

[100] and signed distance function (SDF) [101] models. Recently, impressive results have been

achieved using deep neural networks to approximate occupancy [94] and SDF [102]. Deep

implicit surface models offer advantages with their ability to model arbitrarily complex shapes

and topologies but face challenges related to efficient rendering and view synthesis [103]. For

example, SDF returns the signed distance to the nearest object surface from a query position

and cannot accommodate a desired viewing direction. As a result, distance rendering from SDF

requires sphere tracing [104], an iterative process which evaluates the SDF distance multiple

times along the desired view ray until it arrives at the observed surface. In contrast, our SDDF

formulation returns the distance to the surface in a desired viewing direction directly, as a single

function evaluation. This allows significant advantages in rendering speed. Moreover, most deep

SDF models provide truncated distance estimates, guaranteed to be accurate only close to the

surface. As we discuss below, our DeepSDDF formulation provide analytical confidence in the

estimated distance accuracy, regardless of the distance to the observed surface. [105, 104, 106]

enabled occupancy and density representation to be used for differential rendering. However,

due to lack of direction in the geometry of their shape representation, still they struggle with

59

computational load. In contrast, DeepSDDF, is directly differentiable with respect to arbitrary

locations and directions, providing an efficient base for differential rendering applications. The

direction in density based deep models mostly provide the information about light rather than

geometry. However, our method provides a differentiable rendering framework by construction,

while keeping the most efficient rendering time.

Understanding the key point that the methods based on previous shape representations

struggle with efficiency due to lack of directional information in the geometry, we propose

DeepSDDF, the deep model we developed based on the SDDF shape representation has the

ability to predict accurate distance at any location and viewing direction, arbitrarily far from

the surface, and the ability to render novel distance views as a look-up operation, obviating

the need for mesh reconstruction or sphere tracing [107]. Capturing viewing direction allows

training an SDDF model directly from depth camera or LiDAR data. In contrast, SDF training

requires pre-processing the data to approximate the shortest distance to the observed surface.

Producing such samples is challenging, adds noise to the training process, and is one reasons

that SDF methods are frequently trained with 3D mesh supervision. Approximating an SDDF

h(p,η) with a neural network appears more challenging due to the additional two-degree-of-

freedom view-direction input η . Gropp et al. [1] observe that any valid SDF must satisfy a

unit-norm constraint on its gradient (Eikonal equation), and introduce an Implicit Geometric

Regularization (IGR) term to encourage a trained SDF model to satisfy this constraint. We

show that, similarly, the value of any valid SDDF must decrease at constant unit rate along the

viewing direction. Our key contribution is a neural network architecture for learning SDDFs that

ensures that the gradient property is satisfied by construction and is used to decrease the input

dimensionality of an SDDF. Encoding the gradient property in the SDDF model ensures that only

valid SDDF functions may be generated. In contrast, the IGR regularization term encourages

convergence to a valid SDF function but does not remove possible parameter local minima. This

makes our DeepSDDF model significantly more sample efficient than IGR, allowing parameter

convergences with little training data despite having both position and direction as inputs. More

60

importantly, the gradient property also provides analytical confidence about the SDDF prediction

accuracy regardless of the distance to the object surface. In contrast, SDF models are typically

truncated with a small threshold around the surface and require a wavefront algorithm [108]

to approximate the signed distance far away from the surface. A unique feature of our SDDF

model is that it allows differentiable and arbitrary distance view synthesis at the speed of a single

forward neural-network pass. For example, at any desired location p, a distance image may be

synthesized by simply querying an SDDF model h(p,η) for a set of rays η corresponding to the

image pixels.

We show that, DeepSDDF, is able to target both object instance-level and object category-

level shape reconstruction as well as the ability to render novel distance views accurately and

efficiently based on SDDF representation. Our deep model is inspired by DeepSDF [102],

which trains a decoder-only network h(p;z) that from a latent shape code z can model the SDF

shape representation of a whole category of objects, such as cars, or airplanes, instead of just

individual instances. The latent code z captures the shape of a specific instance, and the SDF

decoder h(p;z) generates the distance to the instance surface at p. Training the model across

multiple instances from the same category allows generalization to unseen instances and shape

interpolation. Optimizing the latent code at test time also allows shape completion of a novel

instance from a partial view. We demonstrate that an SDDF decoder h(p,η ;z) (DeepSDDF)

augmented with a latent shape code z, is similarly capable of representing a category of shapes,

allowing shape completion and shape interpolation.

In summary, we make the following contributions.

• We propose a new signed directional distance function (SDDF) for shape representation. A

key advantage of SDDF is that it returns distance in any desired viewing direction through

a single regression, allowing synthesis of novel views without sphere tracing and direct

training from distance data without 3D mesh supervision. We derive a gradient property,

that distance along a ray decreases linearly, satisfied by any SDDF. This guarantees the

61

accuracy of SDDF predictions analytically, regardless of the distance to the object surface.

• We propose, DeepSDDF, a neural network model to learn SDDF shape representation.

Similar to a deep method for SDF, a DeepSDDF, augmented with a latent shape code, is

capable of category-level shape completion and shape interpolation. Due to specifications

of SDDF, DeepSDDF satisfies the gradient property, that distance linearly decreases along

a ray, by design. SDDF allows DeepSDDF to do ray-tracing as fast as a single pass. To

avoid the need for a large training set with data from many views, we develop a data

augmentation technique to ensure that an SDDF model trained from a small dataset is

multi-view consistent.

Our model is demonstrated in qualitative and quantitative experiments using the synthetic

ShapeNet dataset [2] and the real YCB dataset [4].

3.1 Background

This section reviews popular 3D shape representations, including mesh, point cloud,

occupancy, SDF, and density (radiance) models, as well as neural network techniques for their

reconstruction from sensor data.

Mesh and chart representations

Explicit shape representations model the surface of an object directly, e.g., as a collection

of flat polygons [109, 110, 111, 112, 113, 114, 115]. Viewing the surface as a collection of

connected charts allows parameterization of object surface by neural network [116, 117, 3].

AtlasNet [118] parametrizes each chart with a multi-layer perceptron that maps a flat square to

the real chart. The deep geometric prior (DGP) [3] model improves the AtlasNet results using

Wasserstein distance and enforcing a consistency condition to fit the charts. Finding the proper

number of patches for different topologies is challenging, and ray tracing is not possible through

a single pass.

62

Geometric primitive representations

Other explicit shape representations use geometric primitives, such as points, cuboids,

or quadrics. PointNet [119] proposes a new architecture for point cloud feature extraction

that respects the permutation invariance of point clouds. Shape completion from partial point

cloud data is investigated by [5, 118, 120, 121, 122, 123] using an encoder-decoder structure to

estimate the point cloud of unseen shapes. Point cloud models are simple and efficient but do

not provide a continuous shape representation. In cases where a coarse model is sufficient, 3D

volumetric primitives can be used to represent the shape [96], including cuboids [124], quadrics

[125], or superquadrics [97].

Occupancy representations

A widely used implicit shape representation is based on binary spatial occupancy (oc-

cupied vs free) or probability of occupancy. An occupancy model may be stored in a regular

grid or adaptive-resolution octree [99, 126, 127] after discretization. OctNet [128, 129] is a deep

model that defines convolutions directly over octrees, exploiting the sparsity and hierarchical

partitioning of 3D space. As occupancy models do not provide distance information directly,

efficient ray-tracing may be be a challenge. Niemeyer et al. [105] enable differentiable rendering

of occupancy shape and texture representations by deriving the gradients of the predicted depth

map with respect to the network parameters.

Signed distance function representations

The surface of an object may also be represented implicitly as the zero level-set of a signed

distance function. An SDF associates with any point in space the signed distance to the closed

object surface. SDF values may be estimated in a discrete octree data structure [6, 130, 131, 94] or

continuously using Gaussian process [132, 133] or neural network [102, 1] regression. DeepSDF

[102] developed an auto-decoder model for approximating continuous SDF values, which

enables encoding category-level shape using a latent shape code in the neural network. This work

demonstrated that various object topologies can be captured as a single differentiable implicit

63

function, inspiring interest in learned SDF representations [134, 135, 136, 137, 138, 139]. IGR

[1] improves DeepSDF by incorporating a unit-norm gradient constraint on the SDF values in the

training loss function. Efficient rendering an SDF model is provided by the implicit differentiable

renderer (IDR) [104] using sphere tracing. Although the IDR implementation is very efficient,

due to the intrinsic limitation of the SDF shape representation, evaluation of each ray requires

multiple neural network forward passes.

Density and radiance representations

In a density-based shape representation, an object is viewed as fog with different densities

at different locations [100]. In this model, the geometry is not direction-based but, if the density

represents radiance, different brightness can be observed from different views. This shape

representation is similar in spirit to probabilistic occupancy. NeRF [106, 140, 141], that it

achieves impressively realistic scene reconstruction, learns to predict the volume density and

radiance of a scene at arbitrary positions and viewing directions using RGB images as input.

NeRF allows direction-based rendering but since it represents radiance, instead of directional

geometry, it requires sampling to approximate a radiance integral over the view ray, which cannot

be done with a single neural network pass.

3.2 Problem Statement

We focus on learning a common shape representation for multiple object instances from

the same category, such as cars, airplanes, or benches. We rely on supervision from distance

measurements, e.g., from a depth camera or a LiDAR scanner. A distance measurement is

modeled as a collection of rays (e.g, corresponding to depth camera pixels or LiDAR beams)

along which the distance from the sensor position (e.g., depth camera optical center or LiDAR

sensor frame origin) is measured to the observed surface. Let η i be a vector on the unit sphere

Sn−1 := {η ∈ Rn | ∥η∥2 = 1} in n dimensions specifying the direction of the i-th sensor ray.

Let the distance measurement obtained from sensor position pi ∈ Rn along direction η i be

64

di ∈ R∪{∞}. In practice, the dimension n is 2 or 3 and distance measurements of rays that do

not hit a surface are set to ∞.

Problem 1. Let Dl :=
{
(pi,l,η i,l,di,l)

}
i be distance measurements obtained from different object

instances l of the same category. Learn a latent shape encoding zl ∈ Rm for each instance l and

a function h(p,η ,z) that can predict the distance from any point p along any direction η to the

surface of an object instance with shape z from the same category.

3.3 SDDF

This section proposes a new signed directional distance function for implicit shape

representation. Sec. 3.3.1 defines SDDF and mathematically formulates the condition that the

distance to a surface decreases linearly along the viewing direction. Sec. 3.3.2 and Sec. 3.3.3

derive the class of functions that satisfy the SDDF condition and study their properties.

3.3.1 Signed Directional Distance Function

We define a signed directional distance function h(p,η) to model the distance measured

by a distance sensor from position p to the surface of an object O along viewing direction η .

Definition 3. A signed directional distance function (SDDF) h : Rn ×Sn−1 7→ R of set O ⊂ Rn

measures the signed distance from a point p ∈ Rn to the set boundary ∂O in direction η ∈ Sn−1:

h(p,η) := min
{

d ∈ R
∣∣ p+dη ∈ ∂O

}
. (3.1)

Unlike an SDF [102], which measures the distance from p to the surface ∂O along

the direction that minimizes the distance, an SDDF measures the distance to ∂O in a specific

direction η . Also, unlike an SDF, which is negative inside the surface that it models, an SDDF

is negative behind the observer’s point of view. A key property is that, if the SDDF of a set is

known, we can generate arbitrary distance views to the set boundary. In other words, we can

image what a distance sensor would see from any point p in any viewing direction η . The SDDF

65

Figure 3.1. Visualization of the SDDF of a sofa viewed from three different directions (indicated
by arrows). The color at each point shows the SDDF at that point with fixed direction. The
colormap indicates the signed distance from small (purple) to large (yellow). When the view
rays do not intersect the object the distance is infinitely large (yellow regions).

definition is illustrated in Fig. 3.1 and Fig. 3.19 (in Appendix 3.5.8). Our definition provides the

smallest signed distance to the object surface along a viewing direction. This makes the distance

continuous along a viewing direction with positive values before the first surface and negative

values afterwards.

An SDDF possesses a property that the distance to the surface ∂O decreases linearly

as the observer approaches ∂O along the viewing direction η . To formulate this property

mathematically, consider an observer located at position p1. Let the SDDF to the surface ∂O

in direction η be h(p1,η). Suppose that the observer moves a distance of δ units along the

viewing direction η towards ∂O . Now, the observer is at position p2 = p1 +δη and the SDDF

h(p2,η) in direction η is decreased by δ units, i.e., δ = h(p1,η)−h(p2,η). This property is

stated below, where ∇ph(p,η)⊤η = limδ→0
h(p+δη ,η)−h(p,η)

δ
is the gradient of h with respect to

p projected along the direction η .

Lemma 2. The gradient of an SDDF h(p,η) with respect to the position p projected to the

66

viewing direction η satisfies:

∇ph(p,η)⊤η =−1. (3.2)

3.3.2 SDDF Structure

In this section, we study the class of functions that satisfy the SDDF gradient property

noted in Lemma 2. We show that, while the domain Rn ×Sn−1 of an SDDF has 2n−1 degrees

of freedom, the constraint in (3.2) removes one additional degree of freedom. To see this, we

first simplify the condition in (3.2) by defining a function g(p,η) := h(p,η)+p⊤η . Since the

viewing direction η is a unit vector, we have η⊤η = 1 and (3.2) is equivalent to the requirement

that:

∇pg(p,η)⊤η = 0. (3.3)

The zero-gradient condition in (3.3) suggests that g(p,η) is constant along some direction and,

hence, has only 2n−2 degrees of freedom. To show this rigorously, we rotate the coordinate

system so that the viewing direction η lies along the last coordinate axis. For example, in n = 3

dimensions we can align η with the z-axis, showing that the third element of the gradient of

g(p,η) should be zero or equivalently that g(p,η) is constant along the third dimension in the

rotated reference frame.

The rotation matrix R ∈ SO(n) that rotates a unit vector x ∈ Sn−1 to another unit vector

y ∈ Sn−1 with y ̸=−x along the sphere geodesic [142] (shortest path) is:

R = I+yx⊤−xy⊤+
1

1+x⊤y
(yx⊤−xy⊤)2. (3.4)

Using (3.4), we can obtain an explicit expression for the rotation Rη that aligns a viewing

direction η with the unit vector en = [0, . . . ,0,1]⊤. Lemma 3 and 4 provide the rotation matrices

for the 2D and 3D cases.

Lemma 3. A vector η = [a,b]⊤ ∈ S1 can be rotated to e2 ∈ S1 via the rotation matrix Rη =

67

b −a

a b

 ∈ SO(2).

Lemma 4. A vector η = [a,b,c]⊤ ∈ S2 can be rotated to e3 ∈ S2 via the rotation matrix Rη ∈

SO(3) below:

Rη =

1 0 0

0 1 0

0 0 −1

 if η =−e3,

1− a2

1+c − ab
1+c −a

− ab
1+c 1− b2

1+c −b

a b c

 otherwise.

(3.5)

To reveal the structure implied by the condition in (3.3), we express it in a rotated

coordinate frame where en = Rηη and q = Rηp. By the chain rule:

0 =
∂g
∂p

η =
∂g
∂q

∂q
∂p

η =
∂g
∂q

Rηη =
∂g
∂q

en =
∂g
∂qn

. (3.6)

The set of functions that satisfy (3.6) do not depend on the last element of q. In other words, any

function g(p,η) that satisfies (3.6) can be expressed as g(p,η) = f (PRηp,η) for some function

f : Rn−1×Sn−1 7→R and a projection matrix P := [I 0] ∈R(n−1)×n, which drops the last element

of q = Rηp. We summarize this structural property of SDDF below.

Proposition 5. A function h : Rn × Sn−1 7→ R is a valid SDDF, i.e., satisfies Def. 3 and the

gradient condition (3.2) in Lemma 2, if and only if:

h(p,η) = f (PRηp,η)−p⊤
η (3.7)

for some function f : Rn−1 ×Sn−1 7→ R and Rη defined in (3.4) with x = η , y = en.

68

Proposition 5 shows that space of SDDF functions is isomorphic to a space of real-valued

functions with 2n− 2 degrees of freedom. For example, any SDDF in 2D with position p =

[x,y]⊤ and direction η = [a,b]⊤ such that a2 +b2 = 1 can be expressed as h(x,y,a,b) = f (bx−

ay,a,b)− (ax+by). The gradient condition in (3.2) is satisfied by construction: ∇ph(p,η)⊤η =

(f ′[b,−a]− [a,b]) · [a,b] = (f ′b− a)a− (f ′a+ b)b = −a2 − b2 = −1, where f ′ denotes the

derivative of f with respect to its first argument evaluated at (bx−ay,a,b).

3.3.3 Infinite SDDF Values

Proposition 5 allows learning SDDF representations of object shape from distance

measurements without the need to enforce structure constraints explicitly. A remaining challenge

is that the measured distance at some sensor position p and viewing direction η not directly

looking towards an object surface may be infinite. Since a regression model cannot predict

infinite values directly, we use an invertible function φ to squash the distance measurements to a

finite range.

Lemma 5. Let φ : R 7→ R be a function with non-zero derivative, φ ′(x) ̸= 0, for all x ∈ R. Then,

for any function g : Rn ×Sn−1 7→ R and vector η ∈ Sn−1, we have:

∇pg(p,η)⊤η = 0 if and only if ∇pφ(g(p,η))⊤η = 0. (3.8)

Proof. The claim is concluded by the chain rule, 0 = ∇pφ(g(p,η))⊤η =

φ ′(g(p,η))∇pg(p,η)⊤η , and since φ ′(g(p,η)) is never zero.

Since φ ′ in Lemma 5 is never zero, φ is either strictly increasing or strictly decreasing by

the mean value theorem. In both cases, it has an inverse φ−1. Such functions can be used to squash

the distance values to a finite range. Examples include logistic sigmoid σ(x) := (1+exp(−x))−1,

hyperbolic tangent tanh(x), and the Gaussian error function erf(x). For better performance in

distance reconstruction, φ should be chosen with a linear region covering most possible distances

and saturation regions covering the less likely (e.g., very large or very small) distances. For

69

example, the logistic sigmoid, hyperbolic tangent and Gaussian error functions all have linear

regions around zero, which is well-suited for our SDDF definition, which allows positive and

negative distances. The functions tanh(x) and erf(x) are odd (symmetric about the origin),

which makes them good choices for squashing large positive or negative distances without

distortion. An additional scaling parameter λ can be added, e.g., tanh(λx), to determine the

slope of the linear region around the origin. Hereafter we assume φ is strictly increasing and

define q(p,η) := φ(f (PRηp,η)) such that as in Proposition 5:

h(p,η) = φ
−1(q(p,η))−p⊤

η . (3.9)

The formulation in (3.9) allows training a neural network parameterization of q(p,η) with

possibly infinite distance data. Due to Lemma 5, (3.9) is guaranteed to satisfy the SDDF property

∇ph(p,η)⊤η =−1 by construction.

3.4 DeepSDDF

This section proposes a neural network architecture and a cost function for learning

instance-level and category-level SDDF shape models.

3.4.1 DeepSDDF Neural Network

Based on the formulation in (3.9), we design DeepSDDF, a neural network architecture

for SDDF learning, shown in Fig. 3.2. The network takes position-view pairs (p,η) as input and

requires corresponding distance measurements d for supervision. The architecture computes

PRηp analytically and then uses a fully connected autodecoder to map PRηp and η to y =

φ(f (PRηp,η)). We ensure that the autodecoder output does not exceed the maximum squashed

distance, m = min{y,φ(∞)}, and compare its value with the distance measurement, φ(d+p⊤η),

transformed according to (3.9). This neural network design ensures that the SDDF gradient

property in Lemma 3.2 is satisfied by construction.

70

PRηp

Inner Product
p⊤η

A
uto

D
ecoder

min
(
.,φ(∞)

)
φ−1(.) +

e = |m−φ(d +p⊤η)|

η

p
−

h

m

dp,η

Figure 3.2. Neural network model for DeepSDDF. Given a position p, viewing direction η and
measured distance d, the model rotates p to new coordinates Rηp, whose last component does
not effect the SDDF value and is removed via a projection matrix P. The projected input is
processed by an autodecoder to predict a squashed distance value m, which may be converted to
an SDDF value h or compared to a modified distance d +p⊤η in the error function.

3.4.2 Instance-Level DeepSDDF Training

Given distance measurements Dl from a single object instance l, as in Problem 1, we can

learn an SDDF shape representation h(p,η) by optimizing the autodecoder parameters of the

DeepSDDF model in Fig. 3.2. We split the training data Dl into two sets, distinguishing whether

the distance measurements are finite or infinite:

Fl := {(p,η ,d) ∈ Dl | d < ∞} ,

Il := {(p,η ,d) ∈ Dl | d = ∞} ,
(3.10)

and define an error function for training the parameters θ :

e(θ ;F ,I) :=
α

|F | ∑
(p,η ,d)∈F

|φ(d +p⊤
η)−qθ (p,η)|p

+
β

|I | ∑
(p,η ,d)∈I

r (φ(∞)−qθ (p,η))p + γ∥θ∥p
p, (3.11)

where α,β ,γ > 0 are weights, p ≥ 1, and r is a rectifier, such as ReLU r(x) = max{0,x},

GELU r(x) = xΦ(x), or softplus r(x) = log(1+ exp(x)). In the experiments, we use p = 1 and

71

r(x) = max{0,x}. The last term in (3.11) is used to regularizes the network parameters θ but in

our experiments we set γ to zero. The first term encourages the autodecoder qθ (p,η) to predict

the squashed distance values accurately. We introduced a rectifier r in the second term in (3.11)

to allow the output of qθ (p,η) to exceed φ(∞), which we observed empirically leads to faster

convergence. To address that qθ (p,η) may exceed φ(∞), we modify its conversion to an SDDF

as: hθ (p,η) = φ−1(min{qθ (p,η),φ(∞)})−p⊤η .

3.4.3 Category-Level DeepSDDF Training

Next, we consider learning an SDDF shape model for a complete object category with L

instances. Inspired by DeepSDF [102], we introduce a latent code zl ∈ Rm to model the shape of

each instance l and learn it as part of the neural network parameters with structure qθ (p,η ,zl)

described in Sec. 3.5. Given finite Fl and infinite Il distance measurements, we optimize zl

independently, for each instance l, and θ jointly, across all instances using the same error as in

(3.11):

min
θ ,{zl}l

α

∑l |Fl|∑l
∑

(p,η ,d)∈Fl

|φ(d +p⊤
η)−qθ (p,η ,zl)|p

+
1

∑l |Il|∑l
∑

(p,η ,d)∈Il

β r(φ(∞)−qθ (p,η ,zl))
p

+ γ∥θ∥p
p +σ

1
L ∑

l
∥zl∥p

p, (3.12)

where the last term regularizes the latent codes.

Training a category-level SDDF shape model allows predicting the shape of a previously

unseen instance online from a partial observation. Assume that the category-level neural network

parameters θ are already trained offline and we have an average category-level shape encoding

z̄ ∈ Rm (e.g., obtained by using a fixed z for all instances l during training or simply as the mean

of {zl}l). We initialize the shape code for a newly observed instance with z̄ and optimize it using

72

distance measurements F and I and the same error function as before:

min
z

α

|F | ∑
(p,η ,d)∈F

|φ(d +p⊤
η)−qθ (p,η ,z)|p

+
β

|I | ∑
(p,η ,d)∈I

r(φ(∞)−qθ (p,η ,z))p +σ∥z∥p
p.

(3.13)

The optimized latent shape code z∗ captures all geometric information about the instance and

can be used to synthesize novel distances to its surface from any point p in any viewing direction

η by a single forward pass through the SDDF model.

3.4.4 Multi-View Consistency

Compared to SDF whose input is a position p only, SDDF includes a viewing direction

η and hence needs diverse training data with respect to η to guarantee multi-view consistency.

We provide a data augmentation technique that augments a training set with additional synthetic

data by judging which of the observed surface points in the dataset may be visible from other

views. We emphasize that no additional training data is required. Rather for each surface

point, new directions from which the point is visible are added to the training set. The new

viewing directions are synthesized around the original direction from which the point was initially

observed. This augmentation technique allows training an SDDF model from a small dataset

with limited view directions in a multi-view consistent way.

Proposition 5 reduces the input dimension of an SDDF function h(p,η) from 2n−1 to

2n− 2. To model 3D shape, we need to represent a 4D SDDF function. In contrast, an SDF

model [102] has a 3D input, which may even be reduced to a 2D surface using an Eikonal

constraint [1]. Hence, training a multi-view consistent SDDF model might require a larger

data set with distance measurements from many positions p and directions η . To reduce the

necessary data, we develop an approach to synthesize additional data from the initial training set

Dl :=
{
(pi,l,η i,l,di,l)

}
i.

Remark. The data augmentation process uses the same point cloud data as the original training

73

set. For each point, it chooses additional view directions from which the point is visible.

Given an arbitrary position p̂ ∈ Rn, we describe how to synthesize both finite and infinite

(no surface hit) distance measurements d̂ along different view rays η̂ originating at p̂. Let

Pl := {p+dη | (p,η ,d) ∈ Dl,d < ∞} be a point cloud representation of the training data.

Infinite Ray Synthesis

To synthesize infinite rays, we project the point cloud Pl to the desired image frame

and select the directions η̂ of all pixels that do not contain a projected point. These directions

correspond to views with infinite distance. The points may be inflated with a finite radius to

handle sparse point cloud data.

Finite Ray Synthesis

If a point q ∈ Pl is observable from p̂, we can obtain a synthetic measurement with

distance d̂ = ∥q− p̂∥2 in direction η̂ = 1
d̂
(q− p̂). The challenge is to decide which points in

Pl are visible from p̂. For q ∈ Pl , let p be the start point of the ray that observed q originally.

We know that q is observable from p. In contrast, for all u ∈ Pl \{q} and all ε > 0, q is not

observable from u− ε(q−u), since u is in the way. Hence, q is observable when we look at

it in the direction q−p
∥q−p∥2

and unobservable in the direction q−u
∥q−u∥2

for all u ∈ Pl \ {q}. For

convenience of representation, translate all points such that q is at the origin, project all points

on a unit sphere around the origin, and rotate all of the points such that p maps to e3 = [0,0,1]⊤.

Formally, this can be achieved with the transformation:

Tq(x) :=

[0,0,0]⊤, if x = q,

Rη
x−q

∥x−q∥2
, otherwise,

(3.14)

where η = p−q
∥p−q∥2

. To decide whether q is observable from p̂, equivalently we should decide

whether the origin is observable from Tq(p̂). Let Pq := Tq(Pl \{q}). The origin is observable

from e3 and a region around it and unobservable from all u ∈ Pq. See Fig. 3.3 for an illustration.

74

Figure 3.3. A new distance view (right) is synthesized from a point cloud Pl (left) by deciding
whether each point q (left, red) is visible from the new view p̂. The point cloud is projected on a
sphere around q (middle) to judge the visibility from p̂ (middle, red).

Spherical Convex Hull Data Augmentation

We approximate the region of points around e3 that can observe the origin. The vertices

adjacent to e3 in the convex hull of Pq ∪{e3} represent the boundary. We sort the boundary

points based on their azimuth so that the geodesic among them represents the boundary. The

origin is observable from the part of sphere that contains the e3. We provide a lemma that allows

the convex hull computation to be performed in 2D.

Lemma 6. Let P be a set of points on the unit sphere. The boundary points of P with

respect to e3 are points that are adjacent vertices to e3 in the convex hull of P ∪{e3}. Let

m be a function that maps a point on the unit sphere to the plane z = 0 with center e3, i.e.,

m([x,y,z]⊤) := [x
1−z ,

y
1−z]

⊤. A point u ∈ P is a boundary point if and only if m(u) is a vertex of

the convex hull of m(P).

Proof. For u = [ux,uy,uz]
⊤ ∈ P , suppose that m(u) is not a vertex of the convex hull of m(P).

Then, there exists a set of points {ui = [ui
x,ui

y,ui
z]
⊤}n

i=0 ⊂ P \ {u} and coefficients {αi}n
i=0,

0 < αi < 1, ∑
n
i=0 αi = 1 such that m(u) = ∑

n
i=0 αim(ui). Let β := 1

∑
n
i=0 αi

1−uz
1−ui

z

, and γi = βαi
1−uz
1−ui

z
,

75

so that ∑
n
i=0 γi = 1. Since all points are on the unit sphere, we have γi > 0, β > 0, and:

n

∑
i=0

γiui
x = β (1−uz)

n

∑
i=0

αi
ui

x
1−ui

z

= β (1−uz)
ux

1−uz
= βux,

n

∑
i=0

γiui
z = β (1−uz)

n

∑
i=0

(αi
1− (1−ui

z)

1−ui
z

)

= β

n

∑
i=0

αi
1−uz

1−ui
z
−β (1−uz)(

n

∑
i=0

αi)

= 1−β (1−uz).

Hence, ∑
n
i=0 γiui = [βux,βuy,1−β (1−uz)]

⊤ = (1−β)e3 +βu. Note that (1−β)e3 +βu is

on the segment from e3 to u, so 0 < β < 1; otherwise the convex combination of points on the

unit sphere (∑n
i=0 γiui) will be out of unit sphere. This means that the segment between e3 and u

intersects with the convex hull of P at another point (1−β)e3 +βu, which implies that u is not

a boundary point of P . The converse statement can be proven similary by reversing the steps

above.

Discretized Spherical Convex Hull Data Augmentation

To accelerate the convex hull computation further, we propose an approximation using

discretization. We discretize the azimuth of the sphere into N segments. Let Ei =max{el(u) | u∈

Pq,az(u) ∈ [2πi
N , 2π(i+1)

N)}, 0 ≤ i < N be the maximum elevation of points in Pq with azimuth

in [2πi
N , 2π(i+1)

N). Then, let i determine the interval [2πi
N , 2π(i+1)

N) that contains the azimuth of

Tq(p̂). We consider q observable from p̂ if the elevation of Tq(p̂) is larger than Ei. In the

experiments, we accelerate the computation further by sub-sampling Pq.

3.5 Evaluation

This section presents qualitative and quantitative evaluation of the DeepSDDF model for

shape learning. Sec. 3.5.1 presents results for instance-level shape modeling in comparison to

76

the deep geometric prior (DGP) [3] and the implicit geometric regularization (IGR) [1] models

on the synthetic ShapeNet dataset [2]. Sec. 3.5.2 presents single-instance shape modeling using

real data from the YCB dataset [4].

Sec. 3.5.3 and Sec. 3.5.4 apply DeepSDDF to category-level shape modeling, demon-

strating shape completion from a single distance view and shape interpolation between different

instances. The accuracy of DeepSDDF for shape completion is compared against IGR [1],

which improves over DeepSDF [102] due to the Eikonal regularization but otherwise uses the

same network. Both our model (by construction) and IGR (by loss function) capture structural

constraints for SDDF and SDF, respectively, making a quantitative comparison interesting. We

also compare the results against a group of category-level shape modeling methods that utilize

point-cloud models without considering surface continuity or gradient properties, including Atlas-

Net [118], GRNet [5], PCN [120], FoldingNet [121], TopNet [122], and MSN [123]. Sec. 3.5.5

demonstrates scene-level reconstruction using real depth images from the SceneNN dataset

[143] and discusses the utility of DeepSDDF for robotics applications, including accurate shape

modeling for navigation or manipulation and high-speed depth and visibility prediction for active

perception.

More results, exploring different aspects of our method are provided in the Appendices,

while Sec. 3.6 discusses the limitations of our SDDF formulation. We emphasize that our

DeepSDDF model can synthesize point clouds with arbitrary resolution from arbitrary views as

efficiently as a single neural-network forward pass. The generated point clouds can be converted

to a different representation, such as occupancy grid, depth images, or mesh if desired.

Additional ablation studies are available, in Sec. 3.5.6, providing training details and

more shape completion and shape interpolation results, Sec. 3.5.7, investigating the effect of

the decoder network size further, Sec. 3.5.8, reporting 2D results, and Sec. 3.5.9, showing

category-level shape learning with few training set instances and varying levels of noise.

77

Figure 3.4. SDDF reconstruction of a sofa. The first two columns show distance images
synthesized by DeepSDDF along the same view direction but different distance from the object.
The third column shows point clouds synthesized from different arbitrary camera views, indicated
in different colors to emphasize multi-view consistency. The fourth column shows DGP (top)
and IGR (bottom) reconstructions of the same sofa.

Metrics

Our evaluation results use shape reconstruction metrics introduced by Occupancy Net-

works [94] based on point-cloud comparison, including Chamfer distance, Completeness, and

Accuracy. For all metrics lower is better and all metrics are zero for two identical point clouds.

3.5.1 Instance-Level Shape Modeling (Synthetic Data)

We evaluate the performance of DeepSDDF for instance-level shape reconstruction using

5 object instances from different categories in the ShapeNet dataset [2].

Network Architecture

We use an autodecoder with 16 layers, 512 hidden units per layer, and a skip connection

from the input to layers 4,8,12 to represent the SDDF model qθ (p,η) introduced in Sec. 3.4.

Baseline Algorithms

We compare against DGP [3], an explicit shape model using local surface parameteriza-

tions fused in a manifold atlas, and IGR [1], an implicit shape model using decoder-only deep

SDF esimation with a loss function to enforce unit-norm (Eikonal) SDF gradients. The DGP

radius is set to guarantee at least 128 patches per object. DeepSDDF and IGR were trained with

learning rate 0.005 that decreases every 1k epoch by factor of 0.5 for 10k epochs.

78

Training Details

We use truck, airplane, sofa, boat, and car instances from ShapeNet [2], normalized to

a unit cube. Distance images with resolution 512×512 are generated as training data from 8

camera views facing the object from azimuth kπ

4 and elevation (−1)kπ

4 for k = 0, . . . ,7 on a sphere.

Each distance image is subsampled to contain at most 100k finite and 100k infinite distance

measurement rays. Both DGP and IGR were trained using the point-cloud obtained from all

points with finite distance measurements and augmented with normals obtained using the method

of [144]. Normals were not used to train DeepSDDF.

Timing

We compare the average ray-tracing speed of DeepSDDF and IGR [1] for distance

prediction along a single viewing direction because efficient rendering time is important in many

applications. Ray tracing for SDF models is implemented using sphere tracing. We used an

open-source sphere-tracing algorithm from IDR [104], which is based on IGR. We used default

algorithm parameters, except for sphere tracing iters = 50, which led to faster and accurate

results in our experiments. Sphere-tracing time also depends on the radius of a bounding sphere

enclosing the surface of interest. The test objects were normalized to a unit sphere. DeepSDDF

does not require a bounding volume and, by definition of the model, ray tracing requires a single

forward pass through the neural network model, which leads to an order of magnitude speed gain

over sphere tracing. In real applications, where the bounding volume might be larger, we expect

that the speed superiority of DeepSDDF will be more significant. The timing setup is equivalent

in the following sections.

Results

Quantitative results are presented in Table 3.1. The shape reconstruction accuracy of

DeepSDDF is comparable to DGP but, unlike DGP, our model can handle category-level shape

modeling as shown in Sec. 3.5.3 and Sec. 3.5.4. DeepSDDF outperforms IGR significantly,

showing that the model is generalizes well with limited training data. Visualizations of the

79

DeepSDF, DGP, and IGR reconstructions of a sofa instance are shown in Fig. 3.4. By inspecting

the distance level sets in distance images synthesized by the DeepSDDF model, we can see that

the model captures shape details accurately. The images get brighter as the view moves further

away from the object because the measured distances at each pixel increase. On the other hand,

the level sets in the distant view remain parallel to the close-up view. The two-view comparison

shows that the directional condition of the SDDF model in (3.2) holds. The learned DeepSDDF

model can generate distance predictions at arbitrary views. To visualize the learned model, we

choose arbitrary camera locations facing the object and show point cloud predictions in Fig. 3.4

(third column). The different color point clouds in Fig. 3.4 are synthesized from different camera

views and the fact that they align well on the object surface verifies the multi-view consistency

of the learned shape model. Additionally, since the point clouds are generated from arbitrary

views, DeepSDDF can synthesize novel views accurately. The results from DGP and IGR for the

same instance are shown in Fig. 3.4.

3.5.2 Instance-Level Shape Modeling (Real Data)

In this section, we show that DeepSDDF can handle real data from the YCB dataset [4]

directly.

Network Architecture

We use an autodecoder with 8 layers, 512 hidden units per layer, and a skip connection

from the input to layer 4.

Training Details

We used depth images, segmentation masks, and camera poses for 20 object instances

from YCB [4]. The masks are used to separate the (finite) rays that hit an object from the

background (provided as infinite rays to our model). For each object in YCB, there are 600 views

from which images are taken. The data was split randomly into a 95% training set and 5% test

set. For each instance, we trained two different DeepSDDF models. The first one was trained

80

Figure 3.5. Novel-view point clouds synthesized by a DeepSDDF model trained using real
data from YCB [4]. The first row shows the output of DeepSDDF trained with real data only.
The second row shows the output of DeepSDDF trained with real data plus synthetic data
augmentation.

only with the real data, while the second one was trained with our discretized convex hull data

augmentation (see Sec. 3.4.4) with 1000 synthesized random views. Note that no new real data

is used for training the second model. The data augmentation, synthesizes novel view directions

based on the visibility of the real data points.

Results

Qualitative results are presented in Fig. 3.5. Quantitative results are provided in Table 3.2.

This experiment shows that DeepSDDF predicts novel views (views from which the object has

never been observed) accurately from real data.

3.5.3 Category-Level Shape Modeling

In this section, we explore the capability of our method to represent a whole category of

object shapes.

Network Architecture

We use an autodecoder with 16 layers, 512 hidden units per layer, and a skip connection

from the input to layers 4,8,12 to represent the SDDF model qθ (p,η ,z) introduced in Sec. 3.4

with dimension of the latent shape code z set to 256.

81

Baseline Algorithms

We compare against the SDF model IGR [1] and the point-cloud models GRNet [5],

AtlasNet [118], PCN [120], FoldingNet [121], TopNet [122], and MSN [123].

Training Details

DeepSDDF and IGR were trained over 5 categories from ShapeNet [2]. For each instance,

we collect data from 8 views similar to Sec. 3.5.1. DeepSDDF and IGR were trained for 1000

epochs, with 2000 random samples, and with learning rate 0.0005, 0.0001 for the network

weights and latent code weights, respectively. The learning rate decreases by factor of 2 every

500 epochs for IGR (as suggested in [1]) and every 200 epochs for DeepSDDF. We did not retrain

the point-cloud synthesis models, and used the results reported in [5]. To make the comparison

to the point-cloud synthesis models as fair as possible, DeepSDDF was trained on the same

ShapeNet categories with the same train/test splits and was evaluated at view rays that collide

with the points used for testing of the baseline methods. Additional training details and results

are provided in the Sec. 3.5.6.

Shape Completion
Results

The shape reconstruction accuracy and timing of the DeepSDDF and IGR models are

presented in Table 3.3. The results show that our model is an order of magnitude more accurate

than IGR with limited training data, despite training IGR with normals and encoding additional

directional information in SDDF. This can be explained by the fact that IGR encourages the

satisfaction of the SDF gradient property [1] through regularization, while DeepSDDF encodes

the SDDF gradient property (Lemma 3.2) by construction, making DeepSDDF more data

efficient. In a separate experiment in Appendix 3.5.9, we show that DeepSDDF, while capturing

both position and orientation geometry, can learn shape space from few instances (see airplane in

Fig. 3.7). Comparing the results of IGR(1) and IGR(2), in which point clouds are extracted after

mesh reconstruction, with IGR(3), in which point clouds are obtained through sphere tracing,

82

Figure 3.6. SDDF shape completion using distance measurements (first column) from unseen
boat (first row) and car (second row) instances. The trained DeepSDDF model can synthesize
novel distance views (second and third columns) or point clouds from arbitrary camera views
which are multi-view consistent (fourth column). In the last column, the point cloud from each
arbitrary view is shown with random color.

shows that the accuracy of deep SDF estimation may deteriorate with distance from the surface.

The results also show that DeepSDDF is an order of magnitude faster than IGR for distance

queries because DeepSDDF requires a single forward pass through the network, while IGR

performs iterative sphere tracing.

We compare DeepSDDF versus the point-cloud reconstruction baselines in Table 3.4.

The reconstructed objects are not normalized to a unit-length bounding box in these experiments

since the baseline methods did not do this. These methods, despite DeepSDDF, do not challenge

with modeling continuous representation or incorporating a geometric property by construction.

Still, we see that DeepSDDF performs close to these methods (or even sometimes better).

Shape Interpolation

Finally, we demonstrate that DeepSDDF is able to capture the latent shape space of an

object category continuously and meaningfully. Fig. 3.7 presents results for linear interpolation

between the latent shape codes of two object instances from the same category. The intermediate

shapes do not exist in the training set and are imagined by the DeepSDDF decoder based on the

interpolated latent code z.

83

Figure 3.7. SDDF shape interpolation between two instances. The left-most and right-most
column in the first row show the DeepSDDF output from the same view for two different airplane
instances from the training set. The three columns in the middle are generated by using a
weighted average of the latent codes of the left-most and right-most instances as an input to the
DeepSDDF network. In each row, from left to right, the latent code weights with respect to the
left-most instance are 1, 0.75, 0.5, 0.25, 0, respectively. Note how the shapes transform smoothly
from the left-most to the right-most instance with intermediate shapes looking like valid airplanes.
The second row shows interpolation (in column 2) between two learned car shapes (in columns 1,
3). The last column shows the point cloud reconstructions of the interpolated car instance from
several different views (indicated in different colors to emphasize the multi-view consistency of
the model).

3.5.4 Ablation Studies

In this section, we explore the effect of the DeepSDDF decoder depth (16 vs 8 layers) for

modeling challenging ShapeNet [2] categories with delicate structure, such as Lamp and Bench.

Network Architecture

We use two autodecoders, one with 16 layers, 512 hidden units per layer, and a skip

connection from the input to layers 4,8,12, and another one with 8 layers, 512 hidden units, and

a skip connection from input to layer 4 (similar to the IGR network structure) to represent the

SDDF model qθ (p,η ,z) introduced in Sec. 3.4 with latent shape code dimension set to 256.

Baseline Algorithms

We compare against IGR [1], which uses an autodecoder with 8 layers, 512 hidden units,

and a skip connection from input to layer 4.

84

Training Details

The models were trained on the Lamp and Bench categories from ShapeNet [2]. For

each category, we randomly picked 80% of the instances for training and the rest for testing.

Each instance was normalized to a unit sphere and 500 camera views uniformly distributed on a

sphere facing the object were used to collect training data. For each view, distance images with

resolution 256×256 are generated and randomly subsampled such that are at most 2000k finite

and 2000k infinite rays per instance. The training parameters, such as learning rates, were set the

same way as in Sec. 3.5.3. No synthetic data augmentation was used for DeepSDDF.

Results

The results are provided in Table. 3.5. The shape reconstruction accuracy of DeepSDDF

is still better than IGR, although the training data in this experiments is significantly more than

the experiment in the previous section. The accuracy of the 16-layer DeepSDDF model is

slightly better than the 8-layer model. However, the two results are very close, showing that the

DeepSDDF model is able to accurately capture both position and orientation geometry with an

8-layer decoder.

3.5.5 Scene-Level Reconstruction and Robotics Applications

In this section, we apply DeepSDDF to learn part of a scene using real depth images

from the SceneNN dataset [143]. This experiment shows that a single DeepSDDF network is

capable of modeling multiple objects and that our data augmentation technique (Appendix 3.4.4)

is effective for real data captured from a small set of views. Once the SDDF model is trained,

it can be used to perform visibility and visible volume queries very efficiently (as a single

SDDF network forward pass). Fast assessment of the visible volume of an environment from

novel views is a key component in the next-best-view problem [145] and other active perception

problems [146] in robotics.

85

Network Architecture

The DeepSDDF network structure is the same as the one in Sec. 3.5.1.

Training Details

We use sequence 255 from the SceneNN dataset [143]. We use 38 depth images chosen

every 50 steps starting from image 0. For each image, we randomly choose 20k colliding rays

and 20k non-colliding rays, effectively subsampling the depth image resolution. Since the real

training data is limited, we use our discretized spherical convex hull data augmentation approach

in Sec. 3.4.4 to synthesize additional training data. The same training procedure as in Sec. 3.5.1

is used.

Scene Reconstruction and Visibility Queries

An RGBD sample and a reconstruction of the 3D scene in SceneNN sequence 255 are

shown in Fig. 3.8. Additionally, the SDDF function in a horizontal plane cutting the scene is

shown. To illustrate the utility of an SDDF model in active perception applications, we consider

two arbitrary poses (shown in Fig. 3.8) and evaluate the visible volume from their views. We

approximate the visible volume by considering the volume corresponding to each pixel as a

pyramid. If the dimensions of pixel at depth 1 are w, h, then the volume corresponding with a ray

with depth d is whd3

3 . The sum of these volumes for all collided rays predicted by DeepSDDF

provide the visible volume. As the resolution of the camera increases the accuracy of the visible

volume prediction increases. For example for the yellow camera in Fig. 3.8 with resolution

480× 640 the visible volume is 0.307, computed by the DeepSDDF model. With resolution

240×320, the computed visible volume is 0.305.

Similarly, the visibility of a query point q of interest may be evaluated as single DeepS-

DDF pass. A visibility query requires checking whether q is visible from a camera with position

p, i.e., checking ∥p−q∥> h(p, q−p
∥q−p∥), where h is SDDF. For example, the red point in Fig. 3.8

is visible from the yellow camera but it is not visible from the purple camera, which can be

verified in less than a millisecond.

86

Other Robotics Applications

This paper introduced a new SDDF shape representation and an associated neural network

model for learning SDDF in both instance- and category-level. We envision that this model may

be beneficial for robotics applications, including manipulation, safe navigation, and unknown

environment exploration. For example, the ability of DeepSDDF for accurate shape modeling

of delicate objects may be useful in dexterous robot manipulation scenarios. The ability of

DeepSDDF for shape completion from a single point cloud observations may be useful for

geometry prediction in autonomous navigation and exploration of unknown environments. Our

real data experiments show that DeepSDDF can be trained directly with depth or LiDAR data

coming from the onboard sensors of a mobile robot. Finally, many robotics applications require

real-time operation in partially known environments. Often, ray-tracing for collision or visibility

prediction is a bottleneck, which may be alleviated by the ability of DeepSDDF to perform

ray-tracing as a single forward pass with timing and accuracy independent of the distance to the

observed surface.

3.5.6 Network Architecture and Training Details

We present additional details about the network architecture for qθ (p,η ,z) and the

training procedure. We use a soft-plus activation function 1
β

ln(1+ exp(βx)) with β = 100.

The inputs are positions p ∈ R3, view direction η ∈ S2, and latent code z ∈ R256. The third

component of η (c in Lemma 3) may be very close to −1. To avoid numerical problems, we

let η = [sin(θ)cos(φ),sin(θ)sin(φ),cos(θ)]⊤. Using sθ := sin(θ), cθ := cos(θ), sφ := sin(φ),

cφ := cos(φ), and applying the fact that sθ
2

1+cθ
= 1−cθ

2

1+cθ
= 1− cθ , the rotation matrix Rη in

Lemma 4 used to map η to the standard basis vector e3 becomes:

Rη =

1− (1− cθ)c2

φ
−(1− cθ)sφ cφ −sθ cφ

−(1− cθ)sφ cφ 1− (1− cθ)s2
φ

−sθ sφ

sθ cφ sθ sφ cθ

 .

87

Figure 3.8. Scene-level SDDF reconstruction using 38 real depth images from the SceneNN
dataset [143]. A sample RGBD image is shown on the right. A point cloud surface reconstruction
from 8 test views, two of which are shown as a purple camera frame (left) and yellow camera
frame (close to the surface). The ground plane shows the SDDF value at each point in the viewing
direction indicated by the black arrow with yellow color indicating infinite values (truncated by
some max value) and red-to-blue transition indicating large to small signed distance. The red
point on the surface is a sample point which is visible from the yellow camera but not from the
purple camera. The SDDF model can handle such visibility queries very efficiently (as a single
forward pass through the neural network model).

Using the dimension reduction in Proposition 5, the final network inputs are PRηp ∈R2, η ∈ S2,

and z ∈ R256.

All experiments are done on a single GTX 1080 Ti GPU with the PyTorch deep learning

framework [147] and the ADAM optimizer [148]. For single shape estimation, the network is

trained with initial learning rate of 0.005, decreasing by a factor of 2 every 1000 steps for 10k

iterations. In each iteration, we pick a batch of 100k samples randomly from the synthesized

training data and use α = 1, β = 0.5, γ = 0, p = 1, r(x) = max{0,x} in the error function in

(3.11). For category-level shape estimation, the network is trained with initial learning rate of

0.0005 for the network parameters θ and 0.0001 for latent code z, both decreasing by a factor

of 2 every 200 steps for 1k iterations. In each iteration, for each object we pick a batch of 2k

88

samples randomly from the union of the synthesized and original samples. We use α = 1, β = 1,

p = 1, r(x) = max{0,x}, σ = 0.001 and Euclidean norm regularization ∥z∥2
2 for the latent shape

code in the error function (3.13).

To train the IGR network [1], for each object we picked a batch of 2k samples randomly

from the original point cloud and augmented them with normals. Note that for our method we

pick a total of 2k samples for each object, including the original data and synthesized data as

well as finite rays and infinite rays. We use the default training parameters for IGR as provided in

the open-source implementation [1]. The only parameter we adjusted was the initial learning rate

because there was a discrepancy between the open source code and the IGR paper. We chose the

setting that provided better results, namely initial learning rate of 0.0005 for network parameters

θ and 0.0001 for latent code z, both decreasing by a factor of 2 every 500 steps for 1k iterations.

We use the default training parameters for the DGP network [3], except increasing the

upsamples-per-patch parameter from 8 to 20 and adjusting the radius parameter to guarantee at

least 128 patches for each object.

To produce training data for the category-level experiments in Sec. 3.5.3, we normalize

each instance to a unit box and generate 8 distance images with resolution 512× 512 using

PyRenderer [149]. Each distance image is subsampled to have at most 12500 infinite rays and

12500 finite rays. Hence, there are at most 100k finite and 100k infinite rays for each object.

To accelerate the data augmentation procedure, we further subsample the point cloud produced

by the finite rays in each view from 12500 to 1250 points, when computing the convex hull

approximation in Sec. 3.4.4. This provides a subsampled point cloud across all views with at

most 10k points, which was further subsampled to 2k points using the diversipy python package

[150, 151]. To generate synthetic data, we choose 1k random azimuth and elevation views on a

sphere around the point cloud. Infinite rays are obtained by projecting the original point cloud

(with 100k points) to an image plane with resolution 128×128 for each imaginary camera and

selecting the unoccupied pixel directions. Finite rays are generated using the procedure described

in Sec. 3.4.4. In Sec. 3.5.4, to make the optimal situation for IDR sphere-tracing, we normalize

89

each instance to a unit sphere and generate 500, 256×256 distance images with random views,

then we randomly pick rays such that at most we have at most 2000k finite and 2000k infinite

rays for each object. Then directly use this data for training the DeepSDDF (without applying the

data augmentation technique). Additional qualitative results for shape completion are presented

in Fig. 3.9 and for shape interpolation in Fig. 3.10, Fig. 3.11, Fig. 3.12, Fig. 3.13, Fig. 3.14,

Fig. 3.15.

Figure 3.9. SDDF shape completion using 1k finite and 1k infinite rays from a single distance
view and the corresponding point cloud (upper row) from an unseen object instance. After latent
code optimization, the DeepSDDF model can synthesize novel distance views (the four middle
rows), and novel point clouds from arbitrary views (last row). In the last row, the point cloud
reconstructed from each arbitrary view is shown with different color.

90

Figure 3.10. SDDF shape interpolation between two sofa instances. The first and last row show
the SDDF output from the same view for two different instances from the training set. The rows
in the middle are generated by using a weighted average of the latent codes of the upper-most
and down-most instances as an input to the DeepSDDF network. In each column, from top to
bottom, the latent code weights with respect to the upper-most instance are 1, 0.75, 0.5, 0.25,
0, respectively. Note how the shapes transform smoothly from top to bottom with intermediate
shapes looking like valid sofas. This demonstrates that the DeepSDDF model represents the
latent shape space continuously and meaningfully.

3.5.7 Effect of the Network Size on the Performance

This section evaluates the effect of the number of layers and number of neurons per layer

in the DeepSDDF model on the performance qualitatively and quantitatively. The results are

91

obtained using a single sofa instance, shown in Fig. 3.4 in main paper. We use the same settings

as the single-object experiment in Sec. 3.5.1 with data augmentation from 10k random views.

The default model in the paper has 16 layers with 512 neurons per layer with skip connections

every 4 layers.

First, we varied the number of layers in the neural network, while keeping a skip

connection every 4 layers. We evaluated the DeepSDDF model with 4 (with out skip connection),

8, 12, 16 layers. Quantitatively, as seen in Fig. 3.16, at first the error decreases significantly and

then it increases slowly. Qualitatively, in Fig. 3.17, with more layers the model can capture finer

details about the shape but even with 8 layers the shape is reconstructed very well.

Second, in the default setup with 16 layers, we kept an equal number of neurons per

layer but varied the number as 8, 32, 128, 512. As we see in Fig. 3.16, at first the error decreases

significantly and then continues to decrease slowly. In Fig. 3.18, we see that with fewer neurons

per layer the model cannot capture the shape details very well. In comparison to the changing

number of layers experiment, we see that the model is qualitatively more sensitive to the number

of neurons.

3.5.8 2D Evaluation

This section shows that an DeepSDDF model can be used in 2D, e.g., with distance

measurements obtained from a LiDAR scanner. We simulated a Hokuyo UTM-30LX Lidar

scanner with 1081 rays per scan moving along a manually specified trajectory in an environment

containing a 2D shape. See Fig. 3.19 for an example. The Lidar scans were used as training

data for the DeepSDDF and IGR models. After training, the DeepSDDF network can generate

distance values to the object contours at any location and in any viewing direction. Fig. 3.19

visualizes the models learned by IGR and DeepSDDF for a heart-shaped 2D object. The

distance predictions of the SDDF model are shown at every 2D location for several fixed viewing

directions. We see that the DeepSDDF model recognizes the boundary between free space and

the object well. The parallel distance level sets indicate that the condition in Lemma 2 in the

92

main paper indeed holds everywhere.

3.5.9 Small Training Set without Synthesized Data

The larger dataset, in number of objects, we have the better results we get. In this section,

we study the performance of the DeepSDDF model when only a small training set of objects

is available and the data augmentation technique, described in Appendix 3.4.4 is not used. We

show that even in this case DeepSDDF can learn the latent space continuously and meaningfully.

The results are generated using 100 car and 200 airplane instances from the ShapeNet dataset [2].

To generate training data, we use the functions in PyTorch3D [152] for ray casting. For each

object, we choose 1000 random locations uniformly distributed on a sphere with orientations

facing the object. Each distance image was down-sampled to have at most 5000 finite rays and

5000 infinite rays. An DeepSDDF model with 8 fully connected layers, 512 hidden units per

layer, and a skip connection from the input to the middle layer is used. All experiments are done

on a single GTX 1080 Ti GPU using PyTorch [147] and the ADAM optimizer [148] with initial

learning rate of 0.005.

Single Instance Shape Representation

For single-instance shape estimation, we schedule the learning rate to decrease by a

factor of 2 every 500 steps for 9k iterations. In each iteration, we pick a batch of 1282 samples

randomly from the input data. The result is provided in Fig. 3.20.

Shape Completion and Interpolation

For Car category-level shape estimation, the network is trained for 500 epochs with 100

instances. The learning rate is scheduled to decrease by a factor of 2 every 50 epochs. In each

iteration, for each shape, 8000 random samples are picked uniformly out of the training data

for that instance. For the Airplane category, the network is trained for 5000 epochs with 200

shapes. The learning rate is scheduled to decrease by a factor of 2 every 250 epochs. In each

iteration, for each instance 10k random samples are picked uniformly. Shape completion results

93

are provided in Fig. 3.21, while shape interpolation results are provided in Fig. 3.22. These show

the latent space are learnt continuously and meaningfully.

Effect of Measurement Noise on the Performance

We present qualitative and quantitative results about the effects of noisy distance data

and different number of layers and neurons per layer in the model on the performance of the

DeepSDDF model. The results are obtained for a single Airplane instance, shown in Fig. 3.20. We

obtained 500 finite rays and 500 infinite rays from 1000 random locations uniformly distributed

on a sphere around the instance with orientations facing the object. The DeepSDDF model was

trained for 9k iterations in several different settings. The default setting has 8 layers with 512

neurons per layer and noise-free distance data for training. Training this model takes about 688

seconds. A distance view synthesized by the trained DeepSDDF model is shown in Fig. 3.24

(the first image).

First, keeping the network structure fixed, we varied the standard deviation of zero-

mean Gaussian noise added to the distance measurements. To have a sense about the noise

magnitude, note that the radius of the sphere on which the camera locations were picked was

0.6. Qualitatively, as we see in Fig. 3.24, the more the noise increases, the fewer details the

DeepSDDF model can capture. Second, we varied the number of layers (fixing the number

of neurons to 512) and the number of neurons (fixing the number of layers to 8) in the neural

network, keeping a skip connection to the middle layer, to measure the training time, as shown

in Fig. 3.23.

3.6 Limitations

Compared to SDF, SDDF has a higher dimensional input, including both position p and

viewing direction η . In Sec. 3.3, we observed that any valid SDDF satisfies a gradient condition

(Lemma 2) that allowed us to reduce the required input dimension by one. Nonetheless, training

an SDDF model requires more data than an SDF model because it needs to capture a variety of

94

viewing directions. When an SDDF model is trained with real data, it may not be possible to

obtain data with sufficient viewing direction variability. To address this limitation, we developed

a data augmentation technique (Sec. 3.4.4) that generates more viewing directions from which

the points in a given point cloud are observable. The method does not generate new data but

rather provides additional valid viewing directions, which help ensure multi-view consistency of

the SDDF model. The experiments in Sec. 3.5.1 and Sec. 3.5.3 show that an SDDF model can be

trained with real subsampled depth images from only 8 views. Data augmentation alone may not

completely solve the problem when there is limited training data. Since SDDF models geometry

rather than appearance (e.g., in contrast with NeRF [106]), an SDDF model can be pre-trained in

simulation with depth images or LiDAR scans from a variety of viewing directions, followed by

fine-tuning with a smaller set of real data without significant accuracy loss. Another limitation

of our formulation is that, although it can model instance-level and category-level shape, it is

limited to individual objects rather than complete scenes. This means that the current formulation

assumes that the observer is collecting distance views from outside of the observed surface and

there are no other surfaces behind the observer. Our future work will focus on extending the

SDDF formulation to scene-level modeling that allows arbitrary surfaces in front of and behind

the observer as well as online training from streaming sensor data.

3.7 Discussion

This work proposed a signed directional distance function (SDDF) as an implicit shape

representation of object shape. Any valid SDDF was shown to satisfy a gradient condition,

which should be respected by neural network approximations. We designed DeepSDDF, a neural

network model for SDDF estimation that that guarantees the gradient condition by construction.

Our model enables direct supervision from depth camera or LiDAR sensors and efficient ray-

tracing as a single network forward pass. We introduced a data augmentation technique to

ensure multi-view consistency of DeepSDDF in limited training data regimes. DeepSDDF

95

showed superior shape reconstruction accuracy and rendering time in various instance-level and

category-level shape learning experiments. SDDF is a promising representation for robotics

applications requiring accurate continuous shape and surface modeling and efficient visibility

prediction.

Chapter 3, in full, is a reprint of the material as it appears in ”Ehsan Zobeidi and Nikolay

Atanasov. A deep signed directional distance function for object shape representation. arXiv

preprint arXiv:2107.11024 (2021)”. The dissertation author was the primary investigator and

author of this paper.

96

Table 3.1. Comparison between DGP [3], IGR [1], and DeepSDDF with exact (e) and dis-
cretized (d) spherical convex hull data augmentation (Appendix 3.4.4) on 5 object instances
from ShapeNet [2] using metrics from [94] with meshes normalized to unit-length bounding box.
Three versions of IGR are evaluated: IGR(1), using the same test points as DeepSDDF, IGR(2),
producing a uniform point cloud from the reconstructed mesh, and IGR(3) using IDR [104]
sphere-tracing.

Class Method Chamfer-L2 Chamfer-L1 Completeness Accuracy Time (sec.)

Truck

DeepSDDF (e) 5.186e-05 4.776e-03 4.616e-03 4.935e-03 1.407e-06
DeepSDDF (d) 5.727e-05 4.857e-03 4.705e-03 5.008e-03 1.495e-06

IGR(1) 1.902e-02 8.947e-02 1.670e-02 1.622e-01 –
IGR(2) 1.259e-02 5.961e-02 6.026e-03 1.132e-01 –
IGR(3) 1.948e-02 9.345e-02 2.504e-02 1.618e-01 1.551e-05
DGP 8.842e-05 7.388e-03 6.842e-03 7.935e-03 –

Airplane

DeepSDDF (e) 2.085e-05 3.468e-03 3.016e-03 3.919e-03 1.442e-06
DeepSDDF (d) 3.217e-05 3.824e-03 3.055e-03 4.593e-03 1.474e-06

IGR(1) 1.951e-02 9.124e-02 1.769e-02 1.648e-01 –
IGR(2) 2.422e-02 8.450e-02 4.305e-03 1.646-01 –
IGR(3) 1.965e-02 9.304e-02 2.130e-02 1.647e-01 1.552e-05
DGP 4.900e-05 5.141e-03 4.512e-03 5.770e-03 –

Sofa

DeepSDDF (e) 2.692e-05 3.837e-03 3.354e-03 4.321e-03 1.494e-06
DeepSDDF (d) 3.883e-05 3.941e-03 3.332e-03 4.549e-03 1.413e-06

IGR(1) 1.054e-02 6.361e-02 2.905e-02 9.816e-02 –
IGR(2) 9.831e-03 4.603e-02 4.488e-03 8.757e-02 –
IGR(3) 1.142e-02 6.904e-02 4.030e-02 9.778e-02 1.500e-05
DGP 1.882e-04 1.074e-02 9.546e-03 1.194e-02 –

Boat

DeepSDDF (e) 1.318e-05 3.304e-03 3.074e-03 3.533e-03 1.390e-06
DeepSDDF (d) 1.421e-05 3.311e-03 3.083e-03 3.539e-03 1.425e-06

IGR(1) 3.053e-02 1.140e-01 2.147e-02 2.066e-01 –
IGR(2) 2.198e-02 8.078e-02 3.281e-03 1.582e-01 –
IGR(3) 3.138e-02 1.190e-01 3.009e-02 2.079e-01 1.358e-05
DGP 2.399e-05 4.015e-03 3.848e-03 4.182e-03 –

Car

DeepSDDF (e) 4.543e-05 4.371e-03 4.469e-03 4.273e-03 1.432e-06
DeepSDDF (d) 4.315e-05 4.223e-03 4.276e-03 4.170e-03 1.442e-06

IGR(1) 3.521e-02 1.083e-01 2.000e-02 1.966e-01 –
IGR(2) 1.914e-01 2.679e-01 8.813e-03 5.271e-01 –
IGR(3) 1.068e-01 2.044e-01 3.623e-02 3.727e-01 1.389e-05
DGP 5.988e-05 5.927e-03 5.809e-03 6.046e-03 –

Avg.

DeepSDDF (e) 3.164e-05 3.951e-03 3.705e-03 4.196e-03 1.433e-06
DeepSDDF (d) 3.712e-05 4.031e-03 3.690e-03 4.371e-03 1.449e-06

IGR(1) 2.296e-02 9.332e-02 2.0982e-02 1.656e-01 –
IGR(2) 5.200e-02 1.077e-01 5.382e-03 2.101 e-01 –
IGR(3) 3.774e-02 1.157e-01 3.059e-02 2.009e-01 1.470e-05
DGP 8.189e-05 6.642e-03 6.111e-03 7.174e-03 –

97

Table 3.2. Shape reconstruction accuracy of an 8-layer DeepSDDF model trained with real
data from YCB [4] on 20 object instances. DeepSDDF(1) is trained with real data only, while
DeepSDDF(2) uses discretized spherical convex hull data augmentation.

Class Method Chamfer-L2 Chamfer-L1 Completeness Accuracy Time (sec.)

002 master chef can
DeepSDDF(1) 3.191e-06 1.002e-03 6.775e-04 1.327e-03 5.902e-07
DeepSDDF(2) 1.259e-06 8.834e-04 7.882e-04 9.786e-04 6.277e-07

003 cracker box
DeepSDDF(1) 1.991e-05 1.982e-03 6.615e-04 3.302e-03 5.786e-07
DeepSDDF(2) 6.264e-06 1.394e-03 7.997e-04 1.990e-03 5.861e-07

004 sugar box
DeepSDDF(1) 2.501e-06 1.019e-03 7.455e-04 1.293e-03 5.779e-07
DeepSDDF(2) 1.319e-06 8.673e-04 7.171e-04 1.017e-03 5.824e-07

005 tomato soup can
DeepSDDF(1) 2.260e-06 9.234e-04 6.396e-04 1.207e-03 5.813e-07
DeepSDDF(2) 1.538e-06 9.605e-04 8.877e-04 1.033e-03 6.124e-07

006 mustard bottle
DeepSDDF(1) 5.281e-06 1.489e-03 8.673e-04 2.111e-03 5.811e-07
DeepSDDF(2) 4.072e-06 1.303e-03 8.522e-04 1.754e-03 5.989e-07

007 tuna fish can
DeepSDDF(1) 1.267e-06 7.619e-04 5.966e-04 9.271e-04 5.827e-07
DeepSDDF(2) 1.402e-06 9.122e-04 1.027e-03 7.965e-04 5.960e-07

008 pudding box
DeepSDDF(1) 1.725e-06 9.583e-04 7.523e-04 1.164e-03 5.842e-07
DeepSDDF(2) 1.895e-06 1.000e-03 8.004e-04 1.199e-03 6.056e-07

009 gelatin box
DeepSDDF(1) 1.495e-06 8.888e-04 6.974e-04 1.080e-03 5.831e-07
DeepSDDF(2) 1.461e-06 9.553e-04 8.321e-04 1.078e-03 5.960e-07

010 potted meat can
DeepSDDF(1) 1.571e-06 8.316e-04 6.073e-04 1.055e-03 5.784e-07
DeepSDDF(2) 1.271e-06 8.465e-04 6.478e-04 1.045e-03 5.960e-07

011 banana
DeepSDDF(1) 1.255e-06 8.172e-04 6.301e-04 1.004e-03 5.815e-07
DeepSDDF(2) 1.273e-06 8.538e-04 7.924e-04 9.152e-04 5.976e-07

019 pitcher base
DeepSDDF(1) 5.578e-06 1.254e-03 6.580e-04 1.850e-03 5.812e-07
DeepSDDF(2) 1.194e-05 1.125e-03 7.268e-04 1.523e-03 5.900e-07

021 bleach cleanser
DeepSDDF(1) 4.454e-06 1.378e-03 8.556e-04 1.901e-03 5.848e-07
DeepSDDF(2) 3.053e-06 1.209e-03 9.064e-04 1.513e-03 5.937e-07

024 bowl
DeepSDDF(1) 2.281e-06 8.160e-04 6.790e-04 9.530e-04 5.839e-07
DeepSDDF(2) 3.270e-06 1.056e-03 1.028e-03 1.085e-03 5.870e-07

035 power drill
DeepSDDF(1) 4.755e-06 1.082e-03 6.103e-04 1.554e-03 5.825e-07
DeepSDDF(2) 5.167e-06 1.193e-03 7.235e-04 1.663e-03 5.962e-07

036 wood block
DeepSDDF(1) 1.255e-05 1.462e-03 6.209e-04 2.304e-03 5.823e-07
DeepSDDF(2) 3.950e-06 9.273e-04 6.022e-04 1.252e-03 5.972e-07

037 scissors
DeepSDDF(1) 3.566e-05 1.785e-03 7.537e-04 2.817e-03 5.904e-07
DeepSDDF(2) 9.896e-06 1.881e-03 8.948e-04 2.868e-03 6.110e-07

040 large marker
DeepSDDF(1) 4.923e-05 3.413e-03 5.016e-04 6.325e-03 5.812e-07
DeepSDDF(2) 3.365e-05 3.754e-03 5.945e-04 6.913e-03 6.036e-07

051 large clamp
DeepSDDF(1) 6.143e-05 1.767e-03 7.469e-04 2.787e-03 5.862e-07
DeepSDDF(2) 7.151e-06 1.719e-03 1.042e-03 2.395e-03 6.074e-07

052 extra large clamp
DeepSDDF(1) 6.485e-06 1.459e-03 7.115e-04 2.208e-03 5.838e-07
DeepSDDF(2) 7.923e-05 2.315e-03 9.836e-04 3.646e-03 5.998e-07

061 foam brick
DeepSDDF(1) 1.349e-06 8.015e-04 6.968e-04 9.062e-04 5.841e-07
DeepSDDF(2) 1.649e-06 8.862e-04 8.561e-04 9.163e-04 5.940e-07

Avg.
DeepSDDF(1) 1.121e-05 1.294e-03 6.854 e-04 1.903e-03 5.829e-07
DeepSDDF(2) 8.831e-06 1.302e-03 8.251e-04 1.779e-03 5.989e-07

98

Table 3.3. Comparison between DeepSDDF and IGR [1] over 5 categories from ShapeNet [2],
using metrics from [94] with meshes normalized to unit-length bounding box. Three versions
of IGR are evaluated: IGR(1), using the same test points as DeepSDDF, IGR(2), producing a
uniform point cloud from the reconstructed mesh, and IGR(3) using IDR [104] sphere-tracing.

Class Method Chamfer-L2 Chamfer-L1 Completeness Accuracy Time (sec.)

Car

DeepSDDF 1.971e-04 7.982e-03 7.609e-03 8.355e-03 1.190e-06
IGR(1) 3.599e-03 3.869e-02 1.646e-02 6.092e-02 –
IGR(2) 2.771e-03 3.273e-02 1.444e-02 5.102e-02 –
IGR(3) 9.091e-03 6.937e-02 3.279e-02 1.059e-01 1.772e-05

Airplane

DeepSDDF 2.332e-04 7.707e-03 6.407e-03 9.008e-03 1.175e-06
IGR(1) 1.774e-02 8.798e-02 2.076e-02 1.551e-01 –
IGR(2) 1.260e-02 7.100e-02 1.774e-02 1.242e-01 –
IGR(3) 2.840e-02 1.172e-01 2.880e-02 2.057e-01 2.317e-05

Watercraft

DeepSDDF 5.209e-04 1.288e-02 1.147e-02 1.428e-02 1.192e-06
IGR(1) 7.075e-03 5.480e-02 2.751e-02 8.210e-02 –
IGR(2) 6.981e-03 5.374e-02 2.733e-02 8.014e-02 –
IGR(3) 3.326e-02 1.231e-01 3.855e-02 2.077e-01 2.010e-05

Sofa

DeepSDDF 3.850e-04 1.221e-02 1.093e-02 1.348e-02 1.195e-06
IGR(1) 1.151e-02 6.923e-02 4.083e-02 9.764e-02 –
IGR(2) 1.132e-02 6.904e-02 4.202e-02 9.607e-02 –
IGR(3) 5.414e-02 1.563e-01 5.594e-02 2.567e-01 2.239e-05

Display

DeepSDDF 9.200e-04 1.789e-02 1.551e-02 2.027e-02 1.184e-06
IGR(1) 8.883e-03 5.063e-02 3.493e-02 6.633e-02 –
IGR(2) 8.306e-03 5.069e-02 3.491e-02 6.647e-02 –
IGR(3) 2.139e-02 9.600e-02 4.030e-02 1.516e-01 1.951e-05

Avg.

DeepSDDF 4.512e-04 1.173e-02 1.038e-02 1.307e-02 1.187e-06
IGR(1) 9.761e-03 6.026e-02 2.809e-02 9.241e-02 –
IGR(2) 8.395e-03 5.544e-02 2.728e-02 8.358e-02 –
IGR(3) 2.925e-02 1.123e-01 3.927e-02 1.855e-01 2.057e-05

99

Table 3.4. Comparison between DeepSDDF and baseline methods reported in GRNet [5] over 4
categories from ShapeNet [2]. The errors are scaled by ×10−3.

Class Metric Car Airplane Watercraft Sofa Avg.

AtlasNet
Chamfer-L2 0.3237 0.1753 0.4177 0.5990 0.3789
Chamfer-L1 10.105 6.366 10.607 12.990 10.017

PCN
Chamfer-L2 0.2445 0.1400 0.4062 0.5129 0.3259
Chamfer-L1 8.696 5.502 9.665 11.676 8.8847

FoldingNet
Chamfer-L2 0.4676 0.3151 0.7325 0.8895 0.6011
Chamfer-L1 12.611 9.491 14.987 15.969 13.2645

TopNet
Chamfer-L2 0.3513 0.2152 0.4359 0.6949 0.4243
Chamfer-L1 10.898 7.614 11.124 14.779 11.1037

MSN
Chamfer-L2 0.4711 0.1543 0.3853 0.5894 0.4000
Chamfer-L1 10.776 5.596 9.485 11.895 9.438

GRNet
Chamfer-L2 0.2752 0.1531 0.2122 0.3613 0.2504
Chamfer-L1 9.447 6.450 8.039 10.512 8.612

DeepSDDF
Chamfer-L2 0.17351 0.26172 0.39942 0.23767 0.26808
Chamfer-L1 8.31331 5.90701 9.80779 9.8593 8.47185

Table 3.5. Comparison between DeepSDDF and IGR [1] on the challenging Lamp and Bench
categories from ShapeNet [2] using metrics from [94] with meshes normalized to unit sphere.
Two versions of DeepSDDF are evaluated: DeepSDDF(1), with 16 layers, and DeepSDDF(2),
with 8 layers. Three versions of IGR are evaluated: IGR(1), using the same test points as
DeepSDDF, IGR(2), producing a uniform point cloud from the reconstructed mesh, and IGR(3)
using IDR [104] ray-tracing.

Class Method Chamfer-L2 Chamfer-L1 Completeness Accuracy Time (sec.)

Lamp

DeepSDDF(1) 5.310e-03 3.531e-02 2.503e-02 4.558e-02 1.175e-06
DeepSDDF(2) 5.704e-03 3.866e-02 2.376e-02 5.356e-02 5.992e-07

IGR(1) 2.222e-02 9.344e-02 4.729e-02 1.395e-01 –
IGR(2) 2.011e-02 8.962e-02 4.833e-02 1.309e-01 –
IGR(3) 1.094e-01 2.355e-01 7.112e-02 3.999e-01 1.839e-05

Bench

DeepSDDF(1) 1.682e-03 2.214e-02 1.808e-02 2.619e-02 1.179e-06
DeepSDDF(2) 1.853e-03 2.352e-02 1.800e-02 2.905e-02 5.975e-07

IGR(1) 1.331e-02 7.277e-02 3.111e-02 1.144e-01 –
IGR(2) 1.176e-02 6.725e-02 3.132e-02 1.031e-01 –
IGR(3) 3.539e-02 1.380e-01 5.946e-02 2.166e-01 1.788e-05

Avg.

DeepSDDF(1) 3.496e-03 2.872e-02 2.155e-02 3.588e-02 1.177e-06
DeepSDDF(2) 3.778e-03 3.109e-02 2.088e-02 4.130e-02 5.983e-07

IGR(1) 1.776e-02 8.310e-02 3.920e-02 1.269e-01 –
IGR(2) 1.593e-02 7.843e-02 3.982e-02 1.170e-01 –
IGR(3) 7.239e-02 1.867e-01 6.529e-02 3.082e-01 1.813e-05

100

Figure 3.11. SDDF shape interpolation between two airplane instances. The first and last row
show the SDDF output from the same view for two different instances from the training set.
The rows in the middle are generated by using a weighted average of the latent codes of the
upper-most and down-most instances as an input to the DeepSDDF network. In each column,
from top to bottom, the latent code weights with respect to the upper-most instance are 1, 0.75,
0.5, 0.25, 0, respectively. Note how the shapes transform smoothly from top to bottom with
intermediate shapes looking like valid airplanes. This demonstrates that the DeepSDDF model
represents the latent shape space continuously and meaningfully.

101

Figure 3.12. SDDF shape interpolation between two car instances. The first and last row show
the SDDF output from the same view for two different instances from the training set. The rows
in the middle are generated by using a weighted average of the latent codes of the upper-most
and down-most instances as an input to the DeepSDDF network. In each column, from top to
bottom, the latent code weights with respect to the upper-most instance are 1, 0.75, 0.5, 0.25,
0, respectively. Note how the shapes transform smoothly from top to bottom with intermediate
shapes looking like valid cars. This demonstrates that the DeepSDDF model represents the latent
shape space continuously and meaningfully.

102

Figure 3.13. SDDF shape interpolation between two watercraft instances in the first three
columns and two display instances in the last column. The first and last row show the SDDF
output from the same view for two different instances from the training set. The rows in the
middle are generated by using a weighted average of the latent codes of the upper-most and
downer-most instances as an input to the DeepSDDF network. In each column, from top to
bottom, the latent code weights with respect to the upper-most instance are 1, 0.75, 0.5, 0.25,
0, respectively. Note how the shapes transform smoothly from top to bottom with intermediate
shapes looking like valid instances. This demonstrates that the DeepSDDF model represents the
latent shape space continuously and meaningfully.

103

Figure 3.14. SDDF shape interpolation between two lamp instances. The first and last row show
the SDDF output from the same view for two different instances from the training set. The rows
in the middle are generated by using a weighted average of the latent codes of the upper-most
and down-most instances as an input to the DeepSDDF network. In each column, from top to
bottom, the latent code weights with respect to the upper-most instance are 1, 0.75, 0.5, 0.25, 0,
respectively.

104

Figure 3.15. SDDF shape interpolation between two bench instances. The first and last row
show the SDDF output from the same view for two different instances from the training set.
The rows in the middle are generated by using a weighted average of the latent codes of the
upper-most and down-most instances as an input to the DeepSDDF network. In each column,
from top to bottom, the latent code weights with respect to the upper-most instance are 1, 0.75,
0.5, 0.25, 0, respectively. Note how the shapes transform smoothly from top to bottom with
intermediate shapes looking like valid benches. This demonstrates that the DeepSDDF model
represents the latent shape space continuously and meaningfully.

105

Figure 3.16. The first two figures show the error as the number of layers changes between
4,8,12,16 layers. The second two figures show the error as number of neurons changes between
8,32,128,512. In the first and third figures, Chamfer-L2 distance is measured, and the second
and forth figures contain Chamfer-L1 distance, Accuracy and Completeness.

Figure 3.17. Distance views synthesized by our DeepSDDF model trained with the same data
with 512 neurons per layer and different numbers of layers: 4 (first), 8 (second), 12 (third), 16
(forth).

Figure 3.18. Distance views synthesized by our DeepSDDF model trained with the same data
with 16 layers and different numbers of neurons per layer: 8 (first), 32 (second), 128 (third), 512
(forth).

106

Figure 3.19. Ground-truth 2D instance (top left) and signed distance field (bottom left) learned
by IGR [1]. The remaining plots show the output of our DeepSDDF model with a fixed direction
at each 2D location in the image. The fixed viewing directions for the six plots from left to right
and top to down are π

3 , 2π

3 , π , 4π

3 , 5π

3 , 2π , respectively. To produce good color contrast, in all
images infinite distance values (corresponding to rays in free space) are set to 1.

107

Figure 3.20. SDDF shape representation of a car (left two columns) and airplane (right two
columns) instance. In each two columns, the ground-truth model is shown on the top left, a
distance image synthesized by the DeepSDDF model is shown on the top right, and a point cloud
generated from the distance image is shown in the middle right. The middle left shows a distance
image synthesized from the same view but further distance from the object. Note that the level
sets in the distant view remain parallel to the close-up view but more yellowish, indicating the
distance increase. The third row includes more distance images synthesized by our DeepSDDF
model from other views. To produce good color contrast, in all images we set infinite distance
values (corresponding to rays in free space) to 1.

108

Figure 3.21. SDDF shape completion using a distance image (left column) from an unseen
object instance (second column). After latent code optimization, the DeepSDDF model can
synthesize novel distance views (third and fourth columns).

109

Figure 3.22. SDDF shape interpolation between two instances. The left-most and right-most
columns show the SDDF output from the same view for two different instances from the training
set. The three columns in the middle are generated by using a weighted average of the latent
codes of the left-most and right-most instances as an input to the DeepSDDF network. In each
row, from left to right, the latent code weights with respect to the left-most instance are 1,
0.75, 0.5, 0.25, 0, respectively. Note how the shapes transform smoothly from the left-most to
the right-most instances with intermediate shapes looking like valid cars and airplanes. This
demonstrates that the DeepSDDF model represents the latent shape space continuously and
meaningfully.

110

Figure 3.23. Distance image (left) produced by our DeepSDDF model with 8 layers, 512 neurons
per layer, and noiseless training data. The model training time is shown as a function of the
number of layers (middle) and number of neurons per layer (right). Note that in the right plot
the x-axis is in log scale and the number of neurons is equal in all layers. The error of the point
cloud, obtained from 100 distance images produced by our DeepSDDF model at 100 fixed poses,
with respect to the ground-truth instance mesh in different settings: noisy distance data (left),
changing number of network layers (middle), and changing numbers of neurons per layer (right).
Note that in the right plot the x-axis is in log scale and the number of neurons is equal in all
layers.

Figure 3.24. Distance views synthesized by our DeepSDDF model with default structure
(8 layers and 512 neurons per layer) trained on noisy data. The standard deviation of the
Gaussian noise added to the distance data from left to right is 0 (without noise), 0.1, 0.2, 0.3,
0.4, respectively.

111

Chapter 4

Conclusion

In this thesis, we have investigated the problem of mapping and shape representation for

robotic applications. We considered the challenges in the mapping and addressed them within a

single method. Based on existing shape representation signed distance function and Gaussian

process regression, we proposed an online, continuous, probabilistic, 3D representation of

geometric surfaces and semantic classes in the environment. Then we have extended our method

to a distributed mapping algorithm that could be used by a network of robots which communicate

with each other through a one-hop network. We have elaborated on the method to provide more

efficient methods to address echo in the network and handle the large dimension of mapping

problem. For all we have provided theoretical guarantee on convergence. However, there are

a lot of room to improve this method like incorporating other information like temperature in

the method. Another interesting direction is that we can investigate better optimization of the

kernels or pseudo points or the way we transfer the data from depth images to SDF data.

In continue, observing the limitations that the popular shape representations have, we

have proposed a novel shape representation signed directional distance function (SDDF). SDDF

extends the SDF definition by measuring distance in a desired viewing direction rather than

to the nearest point. As a result, SDDF removes post-processing steps for view synthesis

required by SDF, such as surface extraction via marching cubes or rendering via sphere tracing,

and allows ray-tracing through a single function call. SDDF also encodes by construction the

112

property that distance decreases linearly along the viewing direction. We showed that this enables

dimensionality reduction in the function representation and guarantees the prediction accuracy

independent of the distance to the surface. Recent advances demonstrate impressive performance

of deep neural networks for shape learning, including DeepSDF for SDF, Occupancy Networks

for occupancy, AtlasNet for meshes, and NeRF for density. Our second contribution, DeepSDDF,

is a deep neural network model for SDDF shape learning. Similar to DeepSDF, we show that

DeepSDDF can model whole object categories and interpolate or complete shapes from partial

views. However, there are a lot of room to build upon this shape representation. For example

extending the method to scene level. Our current implementation includes only the geometry, we

can add the color to it as well. Improving the frequency of representation is another challenge

since the ideas developed for SDF do not necessarily work here. Another aspect is to improve

the multi-view consistency aspect. More importantly, this a novel shape representation and it is

very interesting to explore using SDDF and DeepSDDF for various applications that have been

done before with other shape representation.

Another interesting aspect of this thesis is that we have investigated different learning

methods like Gaussian processes (GP) and deep learning in this thesis. We grow a sense about

their pros and cons. For example we observed that GP performs better in presence of noise, can

capture the higher frequencies in comparison to neural networks. Additionally, it is much easier

to provide an incremental and distributed method with GP, while it is very challenging with

neural networks. On the other side, when we need to learn a lot of information like the shape

representation over a class, deep learning works much better. In future, it is very interesting to

explore other machine learning tools like graph neural networks and their performance for the

mapping and shape representation as well.

113

Bibliography

[1] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit geometric regulariza-
tion for learning shapes,” arXiv preprint arXiv:2002.10099, 2020.

[2] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, “ShapeNet: An Information-Rich 3D
Model Repository,” arXiv:1512.03012, 2015.

[3] F. Williams, T. Schneider, C. Silva, D. Zorin, J. Bruna, and D. Panozzo, “Deep geometric
prior for surface reconstruction,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[4] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar, “The ycb
object and model set: Towards common benchmarks for manipulation research,” in 2015
international conference on advanced robotics (ICAR), pp. 510–517, IEEE, 2015.

[5] H. Xie, H. Yao, S. Zhou, J. Mao, S. Zhang, and W. Sun, “Grnet: Gridding residual
network for dense point cloud completion,” in European Conference on Computer Vision,
pp. 365–381, Springer, 2020.

[6] B. Curless and M. Levoy, “A volumetric method for building complex models from range
images,” in Conference on Computer Graphics and Interactive Techniques, pp. 303–312,
1996.

[7] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in Eurographics
Symposium on Geometry Processing, 2006.

[8] X. Wang, M. R. Oswald, I. Cherabier, and M. Pollefeys, “Learning 3d semantic reconstruc-
tion on octrees,” in German Conference on Pattern Recognition, pp. 581–594, Springer,
2019.

[9] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: An
efficient probabilistic 3D mapping framework based on octrees,” Autonomous Robots,
vol. 34, no. 3, 2013.

[10] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time 3d reconstruction at
scale using voxel hashing,” ACM Transactions on Graphics (ToG), vol. 32, no. 6, pp. 1–11,
2013.

114

[11] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an Open-Source Library for
Real-Time Metric-Semantic Localization and Mapping,” in IEEE Intl. Conf. on Robotics
and Automation (ICRA), 2020.

[12] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Semanticfusion: Dense
3d semantic mapping with convolutional neural networks,” in 2017 IEEE International
Conference on Robotics and automation (ICRA), pp. 4628–4635, IEEE, 2017.

[13] A. Hermans, G. Floros, and B. Leibe, “Dense 3D Semantic Mapping of Indoor Scenes
from RGB-D Images,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 2631–2638, 2014.

[14] A. Kundu, Y. Li, F. Dellaert, F. Li, and J. M. Rehg, “Joint semantic segmentation and
3d reconstruction from monocular video,” in European Conference on Computer Vision,
pp. 703–718, Springer, 2014.

[15] J. Zhang, C. Zhu, L. Zheng, and K. Xu, “Fusion-aware point convolution for online seman-
tic 3d scene segmentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4534–4543, 2020.

[16] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. MIT
Press, 2006.

[17] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer School on
Machine Learning, pp. 63–71, Springer, 2003.

[18] S. O’Callaghan and F. Ramos, “Gaussian process occupancy maps,” The International
Journal of Robotics Research (IJRR), vol. 31, no. 1, pp. 42–62, 2012.

[19] S. Kim and J. Kim, “Occupancy Mapping and Surface Reconstruction Using Local
Gaussian Processes With Kinect Sensors,” IEEE Trans. on Cybernetics, vol. 43, no. 5,
pp. 1335–1346, 2013.

[20] M. G. Jadidi, J. V. Miró, R. Valencia, and J. Andrade-Cetto, “Exploration on Continuous
Gaussian Process Frontier Maps,” in IEEE Int. Conf. on Robotics and Automation (ICRA),
pp. 6077–6082, 2014.

[21] R. Senanayake and F. Ramos, “Building continuous occupancy maps with moving robots,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[22] M. Ghaffari Jadidi, L. Gan, S. Parkison, J. Li, and R. Eustice, “Gaussian Processes
Semantic Map Representation,” arXiv:1707.01532, 2017.

[23] J. Hensman, A. Matthews, and Z. Ghahramani, “Scalable Variational Gaussian Pro-
cess Classification,” in International Conference on Artificial Intelligence and Statistics,
pp. 351–360, 2015.

115

[24] T. Galy-Fajou, F. Wenzel, C. Donner, and M. Opper, “Multi-class gaussian process
classification made conjugate: Efficient inference via data augmentation,” in Uncertainty
in Artificial Intelligence Conference, pp. 755–765, 2020.

[25] D. Hernández-Lobato, J. Hernández-lobato, and P. Dupont, “Robust multi-class gaussian
process classification,” Advances in neural information processing systems, vol. 24,
pp. 280–288, 2011.

[26] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-inputs,” in
Advances in neural information processing systems, pp. 1257–1264, 2006.

[27] J. Hensman, N. Durrande, and A. Solin, “Variational Fourier features for Gaussian
processes,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 5537–5588,
2017.

[28] A. Koppel, “Consistent online Gaussian Process regression without the sample complexity
bottleneck,” in American Control Conference (ACC), pp. 3512–3518, 2019.

[29] A. Koppel, A. S. Bedi, K. Rajawat, and B. M. Sadler, “Optimally compressed nonpara-
metric online learning,” IEEE Signal Processing Magazine, 2020.

[30] V. Tresp, “A bayesian committee machine,” Neural computation, vol. 12, no. 11, pp. 2719–
2741, 2000.

[31] S. Kim and J. Kim, “Recursive Bayesian Updates for Occupancy Mapping and Surface
Reconstruction,” in Australasian Conference on Robotics and Automation (ACRA), 2014.

[32] M. Bauer, M. van der Wilk, and C. E. Rasmussen, “Understanding probabilistic sparse
gaussian process approximations,” in Advances in neural information processing systems,
pp. 1533–1541, 2016.

[33] C. E. Rasmussen and Z. Ghahramani, “Infinite mixtures of gaussian process experts,” in
Advances in neural information processing systems, pp. 881–888, 2002.

[34] A. Nedić, A. Olshevsky, and C. A. Uribe, “Distributed learning for cooperative inference,”
arXiv preprint:1704.02718, 2017.

[35] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-bayesian social learn-
ing,” Games and Economic Behavior, vol. 76, no. 1, pp. 210–225, 2012.

[36] E. Zobeidi, A. Koppel, and N. Atanasov, “Dense incremental metric-semantic mapping
via sparse gaussian process regression,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2020.

[37] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,” Computer,
vol. 22, no. 6, pp. 46–57, 1989.

116

[38] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. J. Kelly, and S. Leutenegger, “Efficient
Octree-Based Volumetric SLAM Supporting Signed-Distance and Occupancy Mapping,”
IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1144–1151, 2018.

[39] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct monocular SLAM,”
in European Conf. on Computer Vision, 2014.

[40] R. Dubé, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto, R. Siegwart,
and C. Cadena, “SegMap: Segment-based mapping and localization using data-driven
descriptors,” The International Journal of Robotics Research, vol. 39, no. 2-3, pp. 339–355,
2020.

[41] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping: Using kinect-style
depth cameras for dense 3d modeling of indoor environments,” The International Journal
of Robotics Research, vol. 31, no. 5, pp. 647–663, 2012.

[42] J. Behley and C. Stachniss, “Efficient Surfel-Based SLAM using 3D Laser Range Data in
Urban Environments,” in Robotics: Science and Systems, 2018.

[43] L. Teixeira and M. Chli, “Real-time mesh-based scene estimation for aerial inspection,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4863–
4869, 2016.

[44] E. Piazza, A. Romanoni, and M. Matteucci, “Real-time cpu-based large-scale three-
dimensional mesh reconstruction,” IEEE Robotics and Automation Letters, vol. 3, no. 3,
pp. 1584–1591, 2018.

[45] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison, P. Kohi, J. Shot-
ton, S. Hodges, and A. Fitzgibbon, “KinectFusion: Real-Time Dense Surface Mapping
and Tracking,” in IEEE Int. Symposium on Mixed and Augmented Reality, pp. 127–136,
2011.

[46] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and S. Leutenegger, “Elastic-
fusion: Real-time dense slam and light source estimation,” The International Journal of
Robotics Research, vol. 35, no. 14, pp. 1697–1716, 2016.

[47] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: Incremental 3d
euclidean signed distance fields for on-board mav planning,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2017.

[48] L. Han, F. Gao, B. Zhou, and S. Shen, “Fiesta: Fast incremental euclidean distance fields
for online motion planning of aerial robots,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2019.

[49] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. McDonald, “Real-
time large-scale dense RGB-D SLAM with volumetric fusion,” The International Journal
of Robotics Research (IJRR), vol. 34, no. 4-5, pp. 598–626, 2015.

117

[50] M. Klingensmith, I. Dryanovski, S. S. Srinivasa, and J. Xiao, “Chisel: Real Time Large
Scale 3D Reconstruction Onboard a Mobile Device using Spatially Hashed Signed Dis-
tance Fields,” in Robotics: science and systems, vol. 4, p. 1, Citeseer, 2015.

[51] L. Han and L. Fang, “FlashFusion: Real-time Globally Consistent Dense 3D Reconstruc-
tion using CPU Computing,” in Robotics: Science and Systems (RSS), 2018.

[52] O. Kähler, V. A. Prisacariu, and D. W. Murray, “Real-time large-scale dense 3d re-
construction with loop closure,” in European Conference on Computer Vision (ECCV),
pp. 500–516, 2016.

[53] V. Reijgwart, A. Millane, H. Oleynikova, R. Siegwart, C. Cadena, and J. Nieto, “Voxgraph:
Globally Consistent, Volumetric Mapping Using Signed Distance Function Submaps,”
IEEE Robotics and Automation Letters, 2020.

[54] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Siegwart, and J. Nieto,
“Volumetric Instance-Aware Semantic Mapping and 3D Object Discovery,” IEEE Robotics
and Automation Letters, vol. 4, no. 3, pp. 3037–3044, 2019.

[55] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers, “Real-time camera tracking and 3d
reconstruction using signed distance functions.,” in Robotics: Science and Systems, 2013.

[56] H. Oleynikova, M. Burri, Z. Taylor, J. I. Nieto, R. Siegwart, and E. Galceran, “Continuous-
time trajectory optimization for online uav replanning,” in IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS), 2016.

[57] K. Saulnier, N. Atanasov, G. Pappas, and V. Kumar, “Information theoretic active explo-
ration in signed distance fields,” in IEEE Int. Conf. on Robotics and Automation (ICRA),
2020.

[58] S. Kim and J. Kim, “GPmap: A Unified Framework for Robotic Mapping Based on Sparse
Gaussian Processes,” in International Conference on Field and Service Robotics, 2015.

[59] J. Wang and B. Englot, “Fast, accurate gaussian process occupancy maps via test-data
octrees and nested bayesian fusion,” in IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 1003–1010, 2016.

[60] F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy mapping with
stochastic gradient descent,” The International Journal of Robotics Research, vol. 35,
no. 14, pp. 1717–1730, 2016.

[61] W. Zhi, L. Ott, R. Senanayake, and F. Ramos, “Continuous occupancy map fusion with fast
bayesian hilbert maps,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 4111–4117, 2019.

[62] R. Senanayake and F. Ramos, “Bayesian Hilbert Maps for Continuous Occupancy Map-
ping in Dynamic Environments,” in Conference on Robot Learning (CoRL), vol. 78 of
Proceedings of Machine Learning Research, pp. 458–471, 2017.

118

[63] R. Senanayake, S. O’Callaghan, and F. Ramos, “Learning highly dynamic environments
with stochastic variational inference,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 2532–2539, 2017.

[64] V. Guizilini and F. Ramos, “Learning to Reconstruct 3D Structures for Occupancy Map-
ping,” in Robotics: Science and Systems, 2017.

[65] S. Guo and N. A. Atanasov, “Information filter occupancy mapping using decomposable
radial kernels,” in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 7887–7894, 2019.

[66] V. Vineet, O. Miksik, M. Lidegaard, M. Nießner, S. Golodetz, V. A. Prisacariu, O. Kähler,
D. W. Murray, S. Izadi, P. Pérez, and P. H. S. Torr, “Incremental dense semantic stereo
fusion for large-scale semantic scene reconstruction,” in IEEE International Conference
on Robotics and Automation (ICRA), pp. 75–82, 2015.

[67] S. Sengupta and P. Sturgess, “Semantic octree: Unifying recognition, reconstruction and
representation via an octree constrained higher order mrf,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1874–1879, IEEE, 2015.

[68] S. Yang, Y. Huang, and S. Scherer, “Semantic 3D occupancy mapping through efficient
high-order CRFs,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 590–597, 2017.

[69] Z. Zhao and X. Chen, “Building 3D semantic maps for mobile robots using RGB-D
camera,” Intelligent Service Robotics, vol. 9, no. 4, pp. 297–309, 2016.

[70] L. Gan, R. Zhang, J. W. Grizzle, R. M. Eustice, and M. Ghaffari Jadidi, “Bayesian spatial
kernel smoothing for scalable dense semantic mapping,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 790–797, 2020.

[71] K. Zheng and A. Pronobis, “From pixels to buildings: End-to-end probabilistic deep
networks for large-scale semantic mapping,” arXiv preprint arXiv:1812.11866, 2018.

[72] Y. Siddiqui, J. Thies, F. Ma, Q. Shan, M. Nießner, and A. Dai, “RetrievalFuse: Neural
3D Scene Reconstruction with a Database,” IEEE International Conference on Computer
Vision (ICCV), 2021.

[73] R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove, and R. Newcombe,
“Deep local shapes: Learning local sdf priors for detailed 3d reconstruction,” in European
Conference on Computer Vision (ECCV), pp. 608–625, Springer, 2020.

[74] C. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, T. Funkhouser, et al., “Local implicit
grid representations for 3d scenes,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6001–6010, 2020.

119

[75] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger, “Convolutional
occupancy networks,” in European Conference on Computer Vision (ECCV), pp. 523–540,
Springer, 2020.

[76] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked
multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[77] K. Rahnama Rad and A. Tahbaz-Salehi, “Distributed parameter estimation in networks,”
in IEEE Conference on Decision and Control (CDC), pp. 5050–5055, 2010.

[78] N. Atanasov, R. Tron, V. M. Preciado, and G. J. Pappas, “Joint estimation and localization
in sensor networks,” in IEEE Conference on Decision and Control (CDC), pp. 6875–6882,
2014.

[79] A. Nedić, A. Olshevsky, and C. A. Uribe, “Distributed Gaussian learning over time-
varying directed graphs,” in Asilomar Conference on Signals, Systems and Computers,
pp. 1710–1714, 2016.

[80] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and F. Dellaert, “Dis-
tributed mapping with privacy and communication constraints: Lightweight algorithms
and object-based models,” The International Journal of Robotics Research, vol. 36, no. 12,
pp. 1286–1311, 2017.

[81] P. Koch, S. May, M. Schmidpeter, M. Kühn, C. Pfitzner, C. Merkl, R. Koch, M. Fees,
J. Martin, D. Ammon, and A. Nüchter, “Multi-robot localization and mapping based on
signed distance functions,” Journal of Intelligent & Robotic Systems, vol. 83, no. 3-4,
pp. 409–428, 2016.

[82] P. Lajoie, B. Ramtoula, Y. Chang, L. Carlone, and G. Beltrame, “DOOR-SLAM: Dis-
tributed, Online, and Outlier Resilient SLAM for Robotic Teams,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 1656–1663, 2020.

[83] A. Milioto and C. Stachniss, “Bonnet: An Open-Source Training and Deployment Frame-
work for Semantic Segmentation in Robotics using CNNs,” in IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2019.

[84] T. D. Bui, J. Yan, and R. E. Turner, “A unifying framework for sparse gaussian process
approximation using power expectation propagation,” stat, vol. 23, no. 1050, 2016.

[85] J. Oliva, B. Póczos, and J. Schneider, “Distribution to distribution regression,” in Interna-
tional Conference on Machine Learning, pp. 1049–1057, PMLR, 2013.

[86] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” 2008.

[87] A. Tahbaz-Salehi and A. Jadbabaie, “A Necessary and Sufficient Condition for Consensus
Over Random Networks,” IEEE Transactions on Automatic Control, vol. 53, no. 3,
pp. 791–795, 2008.

120

[88] A. Nedic and A. Ozdaglar, “Distributed Subgradient Methods for Multi-Agent Optimiza-
tion,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[89] L. Moreau, “Stability of multiagent systems with time-dependent communication links,”
IEEE Transactions on Automatic Control, vol. 50, no. 2, pp. 169–182, 2005.

[90] F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization over time-varying di-
rected graphs with row and column-stochastic matrices,” IEEE Transactions on Automatic
Control, vol. 65, no. 11, pp. 4769–4780, 2020.

[91] T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,” Computers &
Graphics, vol. 30, no. 5, pp. 854–879, 2006.

[92] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and S.-K. Yeung, “Scenenn:
A scene meshes dataset with annotations,” in International Conference on 3D Vision
(3DV), 2016.

[93] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface construc-
tion algorithm,” Computer Graphics, vol. 21, no. 4, pp. 163–169, 1987.

[94] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy
networks: Learning 3D reconstruction in function space,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4460–4470, 2019.

[95] W. Yifan, F. Serena, S. Wu, C. Öztireli, and O. Sorkine-Hornung, “Differentiable Sur-
face Splatting for Point-based Geometry Processing,” ACM Transactions on Graphics,
SIGGRAPH ASIA, vol. 38, no. 6, 2019.

[96] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik, “Learning shape abstractions
by assembling volumetric primitives,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2635–2643, 2017.

[97] D. Paschalidou, A. O. Ulusoy, and A. Geiger, “Superquadrics revisited: Learning 3d
shape parsing beyond cuboids,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[98] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik, “Learning category-specific mesh
reconstruction from image collections,” in European Conference on Computer Vision
(ECCV), 2018.

[99] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: an
efficient probabilistic 3D mapping framework based on octrees,” Autonomous Robots,
vol. 34, no. 3, pp. 189–206, 2013.

[100] J. T. Kajiya and B. P. Von Herzen, “Ray tracing volume densities,” ACM SIGGRAPH
computer graphics, vol. 18, no. 3, pp. 165–174, 1984.

121

[101] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi,
J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion: Real-time dense surface map-
ping and tracking,” in IEEE International Symposium on Mixed and Augmented Reality,
pp. 127–136, 2011.

[102] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “DeepSDF: Learning
continuous signed distance functions for shape representation,” in IEEE/CVF Conference
on Computer Visioan and Pattern Recognition (CVPR), pp. 165–174, 2019.

[103] S. Liu, Y. Zhang, S. Peng, B. Shi, M. Pollefeys, and Z. Cui, “DIST: Rendering deep implicit
signed distance function with differentiable sphere tracing,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2019–2028, 2020.

[104] L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen, and Y. Lipman, “Mul-
tiview Neural Surface Reconstruction by Disentangling Geometry and Appearance,” in
Advances in Neural Information Processing Systems, vol. 33, pp. 2492–2502, 2020.

[105] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger, “Differentiable volumetric
rendering: Learning implicit 3D representations without 3D supervision,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3504–3515, 2020.

[106] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng,
“NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,” in European
Conference on Computer Vision, pp. 405–421, 2020.

[107] J. C. Hart, “Sphere tracing: A geometric method for the antialiased ray tracing of implicit
surfaces,” The Visual Computer, vol. 12, no. 10, pp. 527–545, 1996.

[108] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: incremental 3D
Euclidean signed distance fields for on-board MAV planning,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2017.

[109] L. Gao, Y.-K. Lai, J. Yang, Z. Ling-Xiao, S. Xia, and L. Kobbelt, “Sparse data driven
mesh deformation,” IEEE Transactions on Visualization and Computer Graphics, vol. 27,
no. 3, pp. 2085–2100, 2021.

[110] Q. Tan, L. Gao, Y.-K. Lai, and S. Xia, “Variational autoencoders for deforming 3d mesh
models,” in IEEE conference on computer vision and pattern recognition, pp. 5841–5850,
2018.

[111] K. Zhou, J. M. Snyder, X. Liu, B. Guo, and H.-y. Shum, “Large mesh deformation using
the volumetric graph laplacian,” Oct. 23 2007. US Patent 7,286,127.

[112] O.-C. Au, C.-L. Tai, L. Liu, and H. Fu, “Dual Laplacian Editing for Meshes,” IEEE
Transactions on Visualization and Computer Graphics, vol. 12, no. 3, pp. 386–395, 2006.

122

[113] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel, “Laplacian
surface editing,” in ACM SIGGRAPH Symposium on Geometry Processing, pp. 175–184,
2004.

[114] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum, “Mesh editing with
Poisson-based gradient field manipulation,” in ACM SIGGRAPH, pp. 644–651, 2004.

[115] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, “Interactive multi-resolution
modeling on arbitrary meshes,” in Conference on Computer Graphics and Interactive
Techniques, pp. 105–114, 1998.

[116] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym, E. Yumer, V. G. Kim, and
Y. Lipman, “Convolutional neural networks on surfaces via seamless toric covers.,” ACM
Trans. Graph., vol. 36, no. 4, pp. 71–1, 2017.

[117] A. Sinha, A. Unmesh, Q. Huang, and K. Ramani, “Surfnet: Generating 3d shape surfaces
using deep residual networks,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6040–6049, 2017.

[118] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry, “A papier-mâché approach
to learning 3d surface generation,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 216–224, 2018.

[119] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 652–660, 2017.

[120] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “Pcn: Point completion network,” in
2018 International Conference on 3D Vision (3DV), pp. 728–737, IEEE, 2018.

[121] Y. Yang, C. Feng, Y. Shen, and D. Tian, “Foldingnet: Point cloud auto-encoder via deep
grid deformation,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp. 206–215, 2018.

[122] L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese, “Topnet: Struc-
tural point cloud decoder,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 383–392, 2019.

[123] M. Liu, L. Sheng, S. Yang, J. Shao, and S.-M. Hu, “Morphing and sampling network
for dense point cloud completion,” in AAAI conference on artificial intelligence, vol. 34,
pp. 11596–11603, 2020.

[124] S. Yang and S. Scherer, “Cubeslam: Monocular 3-d object slam,” IEEE Transactions on
Robotics, vol. 35, no. 4, pp. 925–938, 2019.

[125] L. Nicholson, M. Milford, and N. Sünderhauf, “QuadricSLAM: Dual quadrics from
object detections as landmarks in object-oriented SLAM,” IEEE Robotics and Automation
Letters, vol. 4, no. 1, pp. 1–8, 2018.

123

[126] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction,” in European Conference on Computer
Vision (ECCV), pp. 628–644, Springer, 2016.

[127] M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Octree generating networks: Efficient con-
volutional architectures for high-resolution 3d outputs,” in IEEE International Conference
on Computer Vision (ICCV), pp. 2088–2096, 2017.

[128] G. Riegler, A. Osman Ulusoy, and A. Geiger, “Octnet: Learning deep 3d representations
at high resolutions,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3577–3586, 2017.

[129] G. Riegler, A. O. Ulusoy, H. Bischof, and A. Geiger, “Octnetfusion: Learning depth fusion
from data,” in IEEE International Conference on 3D Vision (3DV), pp. 57–66, 2017.

[130] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser, “3dmatch: Learning
local geometric descriptors from rgb-d reconstructions,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1802–1811, 2017.

[131] Z. Chen and H. Zhang, “Learning implicit fields for generative shape modeling,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5939–
5948, 2019.

[132] L. Wu, K. M. B. Lee, L. Liu, and T. Vidal-Calleja, “Faithful Euclidean Distance Field
From Log-Gaussian Process Implicit Surfaces,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 2461–2468, 2021.

[133] E. Zobeidi, A. Koppel, and N. Atanasov, “Dense Incremental Metric-Semantic Mapping
for Multi-Agent Systems via Sparse Gaussian Process Regression,” IEEE Transactions on
Robotics (TRO), vol. 38, no. 5, pp. 3133–3153, 2022.

[134] K. Genova, F. Cole, A. Sud, A. Sarna, and T. Funkhouser, “Local deep implicit functions
for 3d shape,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[135] C. M. Jiang, A. Sud, A. Makadia, J. Huang, M. Niessner, and T. Funkhouser, “Local
implicit grid representations for 3d scenes,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[136] C.-H. Lin, C. Wang, and S. Lucey, “SDF-SRN: Learning Signed Distance 3D Object
Reconstruction from Static Images,” in Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[137] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Implicit neural
representations with periodic activation functions,” in Advances in Neural Information
Processing Systems (NeurIPS), pp. 7462–7473, 2020.

124

[138] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene Representation Networks: Continu-
ous 3D-Structure-Aware Neural Scene Representations,” in Advances in Neural Informa-
tion Processing Systems, 2019.

[139] Q. Xu, W. Wang, D. Ceylan, R. Mech, and U. Neumann, “DISN: Deep Implicit Sur-
face Network for High-quality Single-view 3D Reconstruction,” in Advances in Neural
Information Processing Systems, pp. 492–502, 2019.

[140] R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy, and D. Duck-
worth, “NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections,”
arXiv preprint arXiv:2008.02268, 2020.

[141] K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger, “GRAF: Generative Radiance Fields
for 3D-Aware Image Synthesis,” in Advances in Neural Information Processing Systems,
vol. 33, pp. 20154–20166, 2020.

[142] J. Ángel Cid and F. A. F. Tojo, “A Lipschitz condition along a transversal foliation implies
local uniqueness for ODEs,” Electronic Journal of Qualitative Theory of Differential
Equations, arXiv:1801.01724, vol. 36, no. 4, pp. 1–13, 2018.

[143] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and S.-K. Yeung, “SceneNN:
A scene meshes dataset with annotations,” in IEEE International Conference on 3D Vision
(3DV), pp. 92–101, 2016.

[144] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D data processing,”
arXiv:1801.09847, 2018.

[145] N. Atanasov, B. Sankaran, J. L. Ny, G. Pappas, and K. Daniilidis, “Nonmyopic View
Planning for Active Object Classification and Pose Estimation,” IEEE Transactions on
Robotics (T-RO), vol. 30, no. 5, pp. 1078–1090, 2014.

[146] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Carlone, and J. A.
Castellanos, “A Survey on Active Simultaneous Localization and Mapping: State of the
Art and New Frontiers,” IEEE Transactions on Robotics, pp. 1–20, 2023.

[147] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in Advances in Neural
Information Processing Systems (NeurIPS) Autodiff Workshop, 2017.

[148] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[149] M. Matl, “Pyrender.” https://github.com/mmatl/pyrender, 2019.

[150] S. Salomon, G. Avigad, A. Goldvard, and O. Schütze, “Psa–a new scalable space partition
based selection algorithm for moeas,” in EVOLVE-A Bridge between Probability, Set
Oriented Numerics, and Evolutionary Computation II, pp. 137–151, Springer, 2013.

125

https://github.com/mmatl/pyrender

[151] D. P. Hardin and E. B. Saff, “Discretizing manifolds via minimum energy points,” Notices
of the AMS, vol. 51, no. 10, pp. 1186–1194, 2004.

[152] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. Johnson, and G. Gkioxari,
“Accelerating 3d deep learning with pytorch3d,” arXiv:2007.08501, 2020.

126

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Gaussian Process Mapping
	Signed Directional Distance Function

	Dense Incremental Metric-Semantic Mapping for Multiagent Systems via Sparse Gaussian Process Regression
	Background
	Problem Formulation
	Data Compression and Decomposition for Incremental Sparse Gaussian Process Regression
	Background on Sparse GP Regression
	Repeated Input Data Compression
	Incremental Compressed Sparse GP Regression
	Hierarchical Tree Structure

	Probabilistic Metric-Semantic Mapping
	Training Set Construction
	TSDF Mapping and Semantic Class Prediction

	Distributed Incremental Sparse GP Regression
	Distributed Kalman Filtering
	Distributed Incremental Sparse GP Regression
	Theoretical Guarantee for Consistent Estimation
	Echoless Distributed GP Regression

	Distributed Metric-Semantic Mapping
	Evaluation using 2-D Simulated Data
	Single-Robot 2-D Evaluation
	Multi-Robot 2-D Evaluation

	Evaluation using 3-D Real Data
	Single-Robot 3-D Evaluation
	Parameter Selection
	Comparison with Deep TSDF Reconstruction
	Multi-Robot 3-D Evaluation

	Discussion

	Signed Directional Distance Function Estimation using Deep Learning
	Background
	Problem Statement
	SDDF
	Signed Directional Distance Function
	SDDF Structure
	Infinite SDDF Values

	DeepSDDF
	DeepSDDF Neural Network
	Instance-Level DeepSDDF Training
	Category-Level DeepSDDF Training
	Multi-View Consistency

	Evaluation
	Instance-Level Shape Modeling (Synthetic Data)
	Instance-Level Shape Modeling (Real Data)
	Category-Level Shape Modeling
	Ablation Studies
	Scene-Level Reconstruction and Robotics Applications
	Network Architecture and Training Details
	Effect of the Network Size on the Performance
	2D Evaluation
	Small Training Set without Synthesized Data

	Limitations
	Discussion

	Conclusion
	Bibliography

