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LETTER TO THE EDITOR Open Access

Towards precision quantification of
contamination in metagenomic sequencing
experiments
M. S. Zinter1, M. Y. Mayday1, K. K. Ryckman2, L. L. Jelliffe-Pawlowski3,4 and J. L. DeRisi5,6,7*

Abstract

Metagenomic next-generation sequencing (mNGS) experiments involving small amounts of nucleic acid input are
highly susceptible to erroneous conclusions resulting from unintentional sequencing of occult contaminants,
especially those derived from molecular biology reagents. Recent work suggests that, for any given microbe
detected by mNGS, an inverse linear relationship between microbial sequencing reads and sample mass implicates
that microbe as a contaminant. By associating sequencing read output with the mass of a spike-in control, we
demonstrate that contaminant nucleic acid can be quantified in order to identify the mass contributions of each
constituent. In an experiment using a high-resolution (n = 96) dilution series of HeLa RNA spanning 3-logs of RNA
mass input, we identified a complex set of contaminants totaling 9.1 ± 2.0 attograms. Given the competition
between contamination and the true microbiome in ultra-low biomass samples such as respiratory fluid,
quantification of the contamination within a given batch of biological samples can be used to determine a
minimum mass input below which sequencing results may be distorted. Rather than completely censoring
contaminant taxa from downstream analyses, we propose here a statistical approach that allows separation of the
true microbial components from the actual contribution due to contamination. We demonstrate this approach
using a batch of n = 97 human serum samples and note that despite E. coli contamination throughout the dataset,
we are able to identify a patient sample with significantly more E. coli than expected from contamination alone.
Importantly, our method assumes no prior understanding of possible contaminants, does not rely on any prior collection
of environmental or reagent-only sequencing samples, and does not censor potentially clinically relevant taxa, thus
making it a generalized approach to any kind of metagenomic sequencing, for any purpose, clinical or otherwise.
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Main text
Metagenomic next-generation sequencing (mNGS) is a
highly sensitive tool capable of detecting even single frag-
ments of nucleic acid. While this sensitivity allows for de-
tection of rare organisms within a much larger host
background, sensitivity is a double-edged sword, as reagent
and environmental contamination, ubiquitous in sequen-
cing experiments, will also be detected and potentially
misinterpreted. Contamination can be introduced by the
environment, reagents, handlers, or machines at any point

during the collection of the sample, the extraction of nu-
cleic acid, or the preparation of libraries [1–6]. This can
lead to results that vary widely between laboratories, re-
agent kits, or extraction batches [6–8], can result in
false-negative or false-positive assessments [9–12], and can
provide misleading information about microbiological
niches [13–16]. While steps can be taken to minimize con-
tamination, existing best practices are unable to com-
pletely prevent it or control for it; therefore, it is critical
that contamination is addressed during sequencing ana-
lyses in order to prevent misleading results, particularly
from low biomass samples [4, 8, 10, 12, 16–21].
In the December 2018 issue of Microbiome, Davis et

al. present an elegant approach to the identification of
contamination in metagenomic sequencing results [22].
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Their approach relies on two core principles: first, that
contaminant sequences are inversely correlated with
total sequencing reads (the frequency-based approach),
and second, that contaminant sequences are present in
more controls than samples (the prevalence-based ap-
proach). Their work employs several statistical methods
that culminate in a classification threshold ranging from
0 to 1. Once the threshold is set (the authors recom-
mend 0.1 to start), a list of contaminant DNA can be
compiled. Analyzing sequences according to these prin-
ciples eliminates the need to assign an arbitrary thresh-
old for removing sequences and reduces reliance on an
a priori set list of known contaminants. Davis et al. then
provide a user-friendly R package entitled decontam and
validate their approach on multiple datasets to demon-
strate robust detection of contaminating sequences in
both shotgun and 16S sequencing results [22, 23].
The approach employed by Davis et al. is particularly

useful in identifying contamination in low biomass sam-
ples, and the authors rightly point out that the assumptions
of their approach break down when the contaminant mass
(C) approaches the total input sample mass (S). For any
given sample in any given mNGS experiment, the exact
limit at which input sample mass becomes so small that
contamination dominates the results remains unknown.
In our own work in the area of clinical mNGS, this issue

has been a cause of constant concern [16, 24]. Paralleling
the work of Davis et al., we sought better methods to
characterize the lower limit of sample input in order to
automatically both identify and quantify the contribution
of each contaminating component. Here, we suggest an
amendment to the method of Davis et al. This improve-
ment relies on determining an association between se-
quencing read output and input mass, made possible
through the incorporation of a series of precise spike-in
controls. In doing so, a straightforward statistical method
allows the identification and separation of contaminating
components from those inherent to the sample itself,
without censoring.
To demonstrate this, we prepared in triplicate a set of

32 samples consisting of between 1 picogram (pg) and 2.5
nanograms (ng) of RNA extracted from a single stock of
the HeLa cell line. To each sample, we added 25 pg of a
stock of 92 standardized RNA transcripts present in vary-
ing concentrations ranging from 1.4 × 10−2 to 3.0 × 10−22

mol/L (External RNA Controls Consortium, ERCC,
Thermo Fisher Cat #4456740), which we have previously
demonstrated can facilitate quantitation of ultra-low bio-
mass samples [25]. Each sample then underwent library
preparation (New England Biolabs Ultra II RNA Library
Prep Kit) followed by 125 base paired-end sequencing on
an Illumina HiSeq 4000 to a median depth of 26.9 million
read-pairs per sample (interquartile range [IQR] 24.1–
30.8). As depicted in Fig. 1, the log10-transformed sum of

sequencing reads for the 92 ERCC transcripts is indeed in-
versely proportional to the log10-transformed total input
sample mass (linear regression R2 = 0.966, p < 0.001).
Using this fact, the calculation associating microbial se-
quencing reads and input sample mass for all microbial
taxa identified in the experiment may be automated, thus
directly facilitating the unbiased determination of taxa
that demonstrate contaminant behavior. Simply by solving
the equation contaminant mass/ERCC mass = contamin-
ant reads/ERCC reads, the mass contribution of each con-
taminant may be quantified for each experiment (Fig. 2).
In this set of samples, the sum mass of all contaminants
was 9.1 ± 2.0 attograms, which suggests that samples of
less than 10 ag may be overwhelmed by contamination
bias and thus would be unusable. This measurement in-
corporates only high-quality microbial reads and could be
adapted to include other contaminating reads such as
human-derived or low-quality microbial reads as needed.
Of note, statistical confidence in the ability to estimate the
molar contribution of each contaminating taxa actually in-
creases when the experimental batch contains samples
that vary over a wide range of input masses, suggesting
that sub-sampling input nucleic acid across a batch of
samples to approximately the same input mass prior to li-
brary preparation may, in fact, be contraindicated.
After microbial taxa are binned as either contaminant or

true constituent of the microbiome, Davis et al. propose
that contaminant taxa are censored from the dataset and
nicely demonstrate a reduction in batch effect and other
experimental improvements. However, as described by the
authors, one significant limitation of the approach is that
“decontam assumes that contaminants and true
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Fig. 1 Contaminant sequencing reads are inversely proportional to
sample mass. For each of n = 32 HeLa input masses (present in
triplicate), sequencing reads for the total ERCC set (n = 92 different
transcripts) are normalized per million (rpm) and presented in green;
sequencing rpm aligning to the E. coli genome are presented in blue;
and sequencing rpm aligning to the S. cerevisiae genome are presented
in red. The linear regressions associating sample input mass with ERCC,
E. coli, and S. cerevisiae are described with the adjusted R2 and p value
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community members are distinct from one another.” In
our view, such binary assignments are not realistic for a
number of important microbes in numerous experimental
situations. Consider the example of a human patient har-
boring an Escherichia coli bloodstream infection. As E. coli
appears to be a ubiquitous laboratory contaminant, at-
tempts to sequence the metagenome from a blood sample
would produce a final E. coli sequencing count with contri-
butions from both reagent contamination and the true
microbiome. Disregarding E. coli as a component of the
microbiome based on its identification as a contaminant
would result in a false negative report, which could be dis-
astrous in the field of clinical metagenomics for infectious
disease diagnostic purposes. Similar vignettes can be de-
scribed for numerous microbes that are both pathogenic
and common laboratory contaminants, including Staphylo-
coccus aureus and Pseudomonas aeruginosa.
We propose the following logical extension of Davis et

al. After the establishment of the inverse linear relation-
ship between contaminant reads and input sample mass
in an experiment, the quantity of microbial reads for a
given taxa in a given sample can be described according
to its deviation from the value predicted by the
above-described linear regression. Dividing this value by

the standard error produces the studentized residual,
which can serve to identify outliers to the linear relation-
ship while also accounting for varying statistical power at
different points along the linear regression [26]. To dem-
onstrate the value of this approach, we prepared sequen-
cing libraries from 97 de-identified serum samples from
pregnant women collected with informed consent (UCSF
IRB 12-090702). As described above, RNA was extracted
from 100 microliters (uL) of serum, and then combined
with 25 pg ERCC RNA spike-in control set. Following li-
brary preparation, as described in [23], 125 base
paired-end sequencing on an Illumina NovaSeq instru-
ment was conducted to a median depth of 34.6 million
read-pairs per sample (IQR 28.3–43.6). Using the
above-described workflow, we identified numerous con-
taminant microbes including both non-pathogenic labora-
tory contaminants such as Delftia acidovorans and
Achromobacter xylosoxidans as well as potentially patho-
genic organisms including Escherichia coli and Stenotro-
phomonas maltophilia. Rather than censoring E. coli
results from the dataset, we use the studentized residual
approach to identify a patient with more E. coli than ex-
pected from contamination alone (Fig. 3). Phylogenetic
tree analysis suggests the E. coli in this sample to be

Fig. 2 Precision quantification of microbial contamination in sequencing experiments. For each of n = 32 HeLa input masses (measured in triplicate),
microbial contaminants were identified if the inverse linear relationship associating log10-transformed rpm of any given microbe with the log10-
transformed sample mass demonstrated an adjusted R2 ≥ 0.7. By solving the equation contaminant mass/ERCC mass = contaminant reads/ERCC reads, the
estimated mass of each contaminant in each sample was calculated. The top contaminating taxa were E. coli (2.59 ± 0.67 ag), S. cerevisiae (1.02 ± 0.30 ag),
S. maltophilia (0.61 ± 0.49 ag), unspecified cloning vector (0.43 ± 0.17 ag), and A. xylosoxidans (0.40 ± 0.27 ag), respectively. The estimated mass of all
contaminants (excluding human and low-quality reads) in each sample was 9.1 ± 2.0 ag
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phylogenetically distinct from the E. coli in our
no-template controls. Using this methodology, we noted
an additional patient sample as possessing a quantity of S.
maltophilia in excess of what was expected from contam-
ination alone. Orthogonal confirmation of the presence of
E. coli and S. maltophilia RNA in the original sera was
performed using custom reverse transcription primers
followed by Sanger sequencing1. Of note, to avoid the po-
tential for confusing distinct organisms with highly similar
genomes, we recommend examining each taxa at the
highest resolution (lowest phylogenetic level) supported
by the depth of sequencing and the detection within the
metagenome. The non-human (microbial) reads from this
dataset are available under the Sequence Read Archive
(SRA) BioProject ID PRJNA516238.
In summary, Davis et al. present an intuitive and

straightforward approach to identifying contamination in
metagenomic sequencing experiments. When microbe se-
quencing quantity is inversely proportional to total sample
input mass, it is suspicious for contamination; we thus
suggest that assessing the studentized residual for each
sample can provide a probabilistic assessment of the de-
gree to which a contaminant might also be present in the
true sample metagenome. The inclusion of ERCC controls
provides the additional benefit of allowing sample input
mass to be calculated even for picogram-level samples. In
short, this statistical approach allows an investigator to
separate the estimated contribution from contamination
from the true sample-derived component without censor-
ing the organism from all further analyses. Importantly,
our method assumes no prior understanding of possible
contaminants and does not rely on any prior collection of

environmental or reagent-only sequencing samples, thus
making it a generalized approach to any kind of metage-
nomic sequencing, for any purpose, clinical or otherwise.

Endnotes
1The presence of E. coli and S. maltophilia RNA in the

original sera was confirmed using custom PCR primers for
the following inserts with 100% BLAST homology for their
respective species. E. coli insert: TCAGCACGATTT
CAGTCTGAGTCGGACATTCAGCAGTGATACCCGCA
GGCAGCTGATGGTCAACAGGATGAGAGAAACCCA
GAGACAGGTTAATCACATTGCCTTTAACCGCTGCA
CGGTAACCTACACCAACCAGCTGCAGCTTCTTAGT
GAAGCCTTCGGTAACACCGATAACCATTGAGTTCA
GCAGGGCACGCGCGGTACCAGCCTGTGCCCAACC
GTCTGCGTAACCATCACGCGGACCGAAGGTCAGG
GTATTATCTGCATGTTTAACTTCAACAGCATCGTT.
S. maltophilia insert: ATAGCCCTGTATCTGAAAGGG
CCATTTCAGTGAAGACGAGTAGGGCGGGGCACGT
GAAACCCTGTCTGAACATGGGGGGACCATCCTCCA
AGGCTAAATACTACTGACCGACCGATAGTGAACCA
GTACCGTGAGGGAAAGGCGAAAAGAACCCCGGAG
AGGGGAGTGAAATAGAACCTGAAACCGTGTGCGT
ACAAGCAGTAGGAGCTCCGCAAGGAGTGACTGCG
TACCTTTTGTATAATGGGTCAGCGACTTACTG
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mNGS: Metagenomic next-generation sequencing; SRA: Sequence Read Archive
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Fig. 3 Identification of outliers among contaminant microbes. Left: for each of n = 97 serum sample RNA input masses, sequencing reads for the total
ERCC set (n = 92 different transcripts) are normalized per million (rpm) and presented in green; sequencing rpm aligning to the E. coli genome are
presented in blue; and sequencing rpm aligning to the S. maltophilia genome are presented in grey. The linear regressions associating sample input
mass with ERCC, E. coli, and S. cerevisiae are described with the adjusted R2 and p value. Right: a histogram of the studentized residual for each
observation informing the linear regression between log10-transformed sequencing reads (E. coli in blue, S. maltophilia in grey) and log10-transformed
sample input mass. Studentized residuals approximate a near-normal distribution between − 2 and + 2 such that outliers can be rapidly identified (red)
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