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ABSTRACT OF THE DISSERTATION

Bayesian Spatial Longitudinal Modeling for Local Rates of Glaucoma Progression

by
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Professor Robert E. Weiss, Co-Chair

Professor Andrew J. Holbrook, Co-Chair

Timely detection of glaucoma progression is imperative to identify eyes for treatment and prevent

further loss of vision. Methods to diagnose and monitor progression include routine use of structural

and functional tests at multiple locations across the macula, the central part of the retina. Visual field

(VF) testing provides functional measures of sensitivity to light while optical coherence tomography

imaging gives structural thickness measurements of macular layers. In current practice, physicians

assess progression by modeling functional or structural changes over time using simple linear re-

gression (SLR) for each subject-location combination separately. This dissertation motivates and

develops Bayesian hierarchical spatial longitudinal models to analyze structural and functional data

from multiple subjects, borrowing strength across subjects and locations, to better detect glaucoma

progression and predict future observations for individual subjects.

Chapter 1 gives an overview of the study objectives and summarizes the contributions of this

dissertation. Chapter 2 presents a novel Bayesian hierarchical spatial longitudinal (HSL) model and

compares its performance in estimating macular rates of structural change to the performances of

SLR and a conditional autoregressive model. Notably in the simulation study, the HSL model is

ii



more than three times as efficient as SLR in estimating local rates of change. To more explicitly

model the spatial correlation in intercepts, slopes, and residual standard deviations (SD), Chapter 3

proposes a Bayesian hierarchical model with spatially varying random coefficients and visit effects.

A comparison of the model to several nested models lacking different model components demon-

strates the benefit of incorporating spatially varying visit effects in improving model fit and reducing

prediction error. Chapter 4 extends the spatially varying coefficients approach to model VF data.

This model simultaneously accounts for censoring and heteroskedasticity, which are inherent qual-

ities of VF data, and the spatial structure in the data. Chapter 4 highlights the importance of using

Gaussian processes with nonstationary covariance functions to better model spatial irregularities in

the subject-level intercepts and slopes.
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CHAPTER 1

Introduction

This dissertation presents novel methodology to study and analyze data from patients with moder-

ately advanced to severe glaucoma. We provide a brief introduction to essential topics for ease of

understanding and give a summary of our contributions.

1.1 Overview

Glaucoma is a chronic and progressive disease that damages the optic nerve and is the second leading

cause of blindness worldwide (Kingman, 2004). Glaucoma poses a significant worldwide public

health burden. The number of people affected by glaucoma was estimated to be approximately 76

million in 2020 and is predicted to reach more than 110 million by 2040 (Allison et al., 2020; Tham

et al., 2014). There is currently no cure for glaucoma and vision loss due to glaucoma is irreversible.

Detection of disease progression is crucial to identify eyes for treatment and prevent vision from

worsening.

The visual field (VF) refers to the field of vision or the entire space that is visible when the eyes

are focused on a single point. Light entering the eye is absorbed by photoreceptor cells that activate

ganglion cells located in the retina, the back of the eye. The ganglion cells form the nerve fiber

layer, where the visual stimulus is transmitted to the optic nerve and relayed to the brain. Glaucoma

leads to ganglion cell death and loss of optic nerve fiber. Typically as the disease progresses, patients

experience loss in peripheral vision and eventually central vision (Weinreb et al., 2014).

Currently, methods to diagnose and monitor progression in more advanced glaucoma focus on
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assessing structural or functional changes in the macula, the central area of the retina. The macula

contains the highest density of photoreceptors and is responsible for sharp, central vision. Optical

coherence tomography (OCT) is an imaging modality commonly used to obtain structural (thick-

ness) measurements from the optic nerve head, retinal nerve fiber layer, and the macula. Routine

macular OCT imaging enables ophthalmologists to monitor the thickness of macular layers and de-

tect thinning indicative of structural damage over time. Alternatively, VF testing provides functional

measures by assessing the patient’s response to light sensitivities and serves as the gold standard for

glaucoma detection.

Throughout this dissertation, we develop models for, and analyze data, from the Advanced Glau-

coma Progression Study (AGPS) (Mohammadzadeh et al., 2021, 2022a,b). We obtain macular OCT

measurements in a grid of 8× 8 superpixel locations and VF measurements in a grid of 68 test

locations. In current practice, physicians assess progression by modeling functional (VF loss) or

structural (thinning of macular layers) changes over time using repeated simple linear regression

(SLR) for each subject-location combination (Gardiner and Crabb, 2002; Nouri-Mahdavi et al.,

2007; Tatham and Medeiros, 2017; Thompson et al., 2020a). These methods do not take into ac-

count the hierarchical structure, repeated measures within subjects, or spatial correlation of the data.

Since there is no single, established method to evaluate rates of progression, there is a need for more

complex models to properly analyze spatio-temporal structural or functional data.

Recently, some methods accounting for the hierarchical structure or spatial dependence have

been proposed to model functional VF data. Betz-Stablein et al. (2013) propose a model using con-

ditional autoregressive (CAR) priors to account for spatial correlations between test locations and

VF clusters corresponding to sectors of the optic nerve head (Garway-Heath et al., 2000). Berchuck

et al. (2019) introduce a model to account for localized spatio-temporal smoothing, allowing the

spatial correlation structure to adapt over time. Montesano et al. (2021) develop a model to ac-

count for the hierarchical structure (cluster and location levels) and heteroskedasticity. These recent

developments account for spatial structure but are fit separately for each eye, effectively ignoring

population information. Bryan et al. (2017) describe a two-stage approach to fit a hierarchical model

2



taking subject, eye, hemifield (one half of the VF), and location levels into account, but this work ig-

nores spatial correlations. Despite these recent advances, there is still a need for methods accounting

for the hierarchical structure of the data, spatial correlations, and heteroskedasticity simultaneously.

Moreover, studies of VF rarely account for inherent censoring and instead treat the censoring cutoff

value as the actual measurement.

This dissertation provides methodology for ophthalmologists to better detect local structural and

functional rates of change for individual subjects. To this end, we propose Bayesian hierarchical

models to analyze data from all AGPS subjects simultaneously, borrowing information across sub-

jects to reduce uncertainty in estimating individual slopes. The Bayesian framework provides a

means to quantify the uncertainty in estimation, as subject-specific slopes are estimated parameters

in the model. Location-level parameters summarize population characteristics at each location. Our

models are appropriately tailored to the characteristics of structural and functional data to better

estimate rates of progression.

1.2 A Bayesian hierarchical spatial longitudinal model for structural data

In Chapter 2, we model longitudinal macular ganglion cell complex (GCC) thickness measurements

from 111 patients in the AGPS. We propose a novel Bayesian hierarchical spatial longitudinal (HSL)

model to estimate local macular GCC rates of change over 49 superpixel locations simultaneously.

The model includes global, superpixel-specific, patient-specific, and superpixel-patient specific pa-

rameters. To account for spatial variation, we employ semi-parametric spatial effects for patient-

specific intercepts and slopes and visit effects. Visit effects account for spatially correlated measure-

ment errors affecting all superpixels on the same visit.

To assess estimation performance of the HSL model on AGPS data, we compare superpixel-

patient specific estimates and posterior variances from HSL to those from SLR and a Bayesian CAR

model. Comparison to SLR is important as SLR is often used in practice. We implement a CAR

model inspired by Betz-Stablein et al. (2013) for further comparison to a model more complex than
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SLR. While we fit data from all patients together in HSL, SLR is fit separately for each superpixel-

patient combination and the CAR model is fit separately for data from each eye (patient). Since

we do not know the true rates of progression, we perform a simulation study to better compare the

accuracy of the slope estimates between HSL, SLR, and CAR. In particular, we show that HSL

estimates slopes more than twice as efficiently as CAR and three times as efficiently as SLR.

1.3 A Bayesian spatially varying hierarchical random effects model for struc-

tural data

In Chapter 3, we consider an improved spatial model for longitudinal GCC measurements. To better

account for the spatial structure of measurement locations, we model superpixel-level and subject-

specific parameters and visit effects as spatially varying coefficients with Gaussian process priors.

Healthier eyes with more thickness at baseline have more potential for progression and faster rates of

change (Rabiolo et al., 2020). In some macular layers, measurement variability increases at very low

thicknesses (Miraftabi et al., 2016). We explicitly model the correlations between intercepts, slopes,

and residual standard deviations (SD) to capture these relationships, further reducing uncertainty

in slope estimates. To assess the performance of the proposed model on AGPS data, we compare

the model to several nested models lacking different model components and to SLR. The proposed

model with spatially varying visit effects vastly outperforms models without visit effects and SLR

in terms of model fit and reduces error in predicting future observations.

1.4 A Bayesian hierarchical spatially varying coefficients model for functional

data

In Chapter 4, we extend the spatially varying coefficients model for longitudinal VF measurements.

VF sensitivities are reported in decibels (dB) of attenuation, ranging from 50 dB to 0 dB, with 0 dB

being the brightest stimulus. There is inherent censoring and heteroskedasticity in VF data. Due
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to the limitations of the measurement scale, VF sensitivities are censored at 0 dB, the maximal,

brightest stimulus. Measurement variability increases with level of glaucoma damage. Due to the

complex nature of VF data, analysis of VF progression is difficult. Our proposed model fits data

from all AGPS patients while accounting for censoring, heteroskedasticity, and the spatial structure

of test locations. To better accommodate spatial irregularities, we model the subject-level intercepts

and slopes using Gaussian process priors with nonstationary covariance functions. We illustrate how

spatially varying SD processes better capture the variability in subject-specific intercepts and slopes

across locations. Our inclusion of data from the entire cohort and appropriate spatial modeling

provide a means to better estimate subject-specific rates of change.

1.5 Outline of dissertation

We present the statistical models and detailed results, as described in Sections 1.2, 1.3, and 1.4, in

Chapters 2, 3, and 4, respectively. Each chapter can be read as a standalone paper, each with its own

introduction and notation. Some information may be repeated between chapters.
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CHAPTER 2

A Bayesian hierarchical spatial longitudinal model improves

estimation of local macular rates of change in glaucomatous eyes

2.1 Introduction

Detection of change over time is often important for the proper treatment of chronic diseases and

is crucial to the management of glaucoma. Glaucoma is particularly suited to applying statistical

and machine learning models to detect disease and to identify its progression, since most disease-

related outcome measures are quantifiable (Thompson et al., 2020b; Liu et al., 2013; Abu et al.,

2020; Mohammadzadeh et al., 2022a; Kass et al., 2002; Gordon et al., 2002). Relevant outcomes

include the optic disc size, neuroretinal rim, retinal nerve fiber layer, or macular thickness measures

along with a host of quantitative variables related to visual fields.

Global, regional, or local structural and functional measures have frequently been used as met-

rics to detect differences of a specified amount from baseline, commonly called event analyses, or

to estimate rates of change, also known as trend analyses (Rao et al., 2013; Wu and Medeiros, 2018;

Rabiolo et al., 2020). Longitudinal analyses of local structural or functional measures frequently

rely on repeated simple linear regression (SLR) of such measures from single eyes against time to

estimate eye-specific rates of change at macular superpixels, optic disc or retinal nerve fiber layer

sectors or visual field test locations or clusters (Rabiolo et al., 2020; Mohammadzadeh et al., 2020b;

Medeiros et al., 2012; Mansouri et al., 2011; Gracitelli et al., 2014). While SLR is easy to do and

seems intuitive, there are multiple issues with this approach, which while occasionally acknowl-

edged, have mostly been ignored (Montesano et al., 2021; Swaminathan et al., 2022; Zhu et al.,
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2014b). Simple linear regression models ignore the spatial relationships among local structural (sec-

tors, superpixels) or functional (visual field clusters or locations) measures. Another shortcoming

of SLR is that valuable population information from the cohort is not used to refine estimated rates

of change. Similarly, there is no formal way to specify the correlation of baseline measurements

(the intercepts) with slopes (rates of change). This is an important issue as baseline measurements

influence the magnitude of rates of change in an OCT sector or superpixel (Rabiolo et al., 2020).

Accounting for baseline structural measurements can lead to a reduction of the estimated variability

for rates of change (slopes). A few prior studies have proposed linear mixed or hierarchical mod-

els to address some of the above shortcomings (Montesano et al., 2021; Swaminathan et al., 2022;

Russell et al., 2012b; Medeiros et al., 2011). For example, Montesano et al. (2021) applied a hier-

archical linear mixed model to 24-2 visual field data to estimate global and local rates of change in

individual eyes. To account for spatial correlation, Betz-Stablein et al. (2013) developed a model

using conditional autoregressive (CAR) priors on intercepts and slopes for individual-level 24-2 vi-

sual field data. However, in either case, no attempt was made to include the cohort’s population data

to help estimate individual eye parameters. The cohort’s data has information on the distribution of

possible slopes and using this information as a prior results in more accurate slope estimates. Such

models are challenging to specify correctly and run and can require a significant investment of time

and computer CPU power.

Our team has developed several versions of a novel Bayesian hierarchical spatial longitudinal

(HSL) model to improve estimation of local macular thickness rates of change in a prospective cohort

of glaucoma patients (Mohammadzadeh et al., 2022a, 2021). This ongoing project aims to provide a

longitudinal framework to estimate global and most importantly local rates of change more precisely

across the macula within individual eyes while at the same time overcoming the inadequacies of the

SLR approach. Each successive model improves on the previous version with additional modeling

features. The current model adds spatially correlated subject specific random effects and spatially

correlated visit effects. The goal of the current work is to compare the performance of the latest

HSL model to that of SLR and a CAR model. We hypothesized that the HSL model would provide
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more accurate estimates of local macular rates of change thanks to reduced variance for those rates

of change compared to SLR and more appropriate shrinkage towards the population averages by

location than CAR.

2.2 Methods

One hundred eleven eyes (111 patients) from the Advanced Glaucoma Progression Study (AGPS)

were included in this study. The AGPS is an ongoing longitudinal study at the University of Cali-

fornia Los Angeles. University’s Institutional Review Board (IRB) approval was obtained for this

study. The study adhered to the tenets of the Declaration of Helsinki and conformed to Health In-

surance Portability and Accountability Act policies. All patients provided written informed consent

at the time of enrollment in the study. Inclusion criteria for enrolled eyes were: a) clinical diagnosis

of primary open-angle glaucoma, pseudoexfoliative glaucoma, pigmentary glaucoma, or primary

angle-closure glaucoma; b) evidence of either central damage on 24-2 visual field (VF), defined as

two or more points within the central 10° with p < 0.05 on the pattern deviation plot or VF mean

deviation (MD) worse than −6 dB. Exclusion criteria consisted of baseline age less than 40 years

or greater than 80 years, best-corrected visual acuity < 20/50, refractive error exceeding 8 diopters

of sphere or 3 diopters of cylinder, or significant retinal or neurological disease affecting OCT mea-

surements. Eyes with ≥ 4 optical coherence tomography (OCT) scans and ≥ 2 years of follow-up

were included. We analyzed observations up to 4.25 years after baseline. Data from visits less than

0.2 years after a previous visit were omitted (Mohammadzadeh et al., 2021).

2.2.1 Macular OCT imaging

Macular volume scans were obtained with a Spectralis spectral-domain OCT (Heidelberg Engineer-

ing, Heidelberg, Germany). The Posterior Pole Algorithm of the Spectralis OCT acquires 30°×25°

volume scans of the macula (61 B-scans spaced approximately 120 µm apart) centered on the fovea

and repeated 9-11 times to reduce speckle noise. Proprietary software of Spectralis OCT, the Glau-
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coma Module Premium Edition, was used to automatically segment individual retinal layers before

data export. Images were reviewed for segmentation errors and image artifacts. Segmentation errors

were manually rectified with the OCT device’s built-in software. After segmentation, the individ-

ual layer thickness measurements are provided as 8×8 arrays of 3°×3° superpixels for the central

24°× 24° region centered on the fovea. Due to substantial measurement noise in the peripheral

macular regions, we only included the ganglion cell complex (GCC) thickness within 7× 7 arrays

of superpixels from Spectralis OCT macular volume scans after excluding the most inferior row and

nasal column of superpixels. The GCC thickness was calculated by adding the thickness measure-

ments of the retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer.

2.2.2 Data management and statistical modeling

Our methods have been described previously (Mohammadzadeh et al., 2021). We identified potential

outliers as observations with very large increases or decreases between consecutive measurements

and removed observations that produced the greatest reduction in the sum of absolute consecutive

differences resulting in removing approximately 0.5% of observations as outliers. We removed

all observations for a single person in a single superpixel if we identified 2 or more outliers in

that superpixel (Mohammadzadeh et al., 2021). We then fit a Bayesian normal hierarchical random

effects model using the JAGS package in R (R2jags) (R Core Team, 2021; Su and Yajima, 2021). The

current version of our Bayesian HSL model includes (a) a macula-wide global intercept and slope,

(b) superpixel-specific intercept and slope deviations from the global intercept and slope (superpixel-

level random effects), (c) macula-wide patient-specific intercept and slope effects (global patient

random effects), (d) patient-superpixel specific intercept and slope random effects, and (e) macula-

wide visit effects. Letting yi jk denote a single observation of GCC thickness (µm) for patient i at

time ti j in superpixel k, the model is

yi jk = µ0 +µ1ti j +α0k +α1kti j +β0ik +β1ikti j +φ0kPC0i +φ1kPC1iti j +φ2kVEi j + εi jk

εi jk ∼ N(0,σ2
k exp(PC2i))
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where µ0 is the global macula-wide intercept; µ1 is the global macula-wide slope; α0k is the pop-

ulation average intercept in superpixel k; α1k is the population average slope in superpixel k; β0ik

is the patient-superpixel intercept for the ith patient; β1ik is the patient-superpixel interaction slope

for the ith patient; φ0k is the spatial effects eigenvector component for the patient-specific inter-

cepts; φ1k is the spatial effects eigenvector component for the patient-specific slopes; φ2k is the

spatial visit effects eigenvector component; PC0i is the macula-wide patient-specific intercept ran-

dom effect; PC1i is the macula-wide patient-specific slope random effect; PC2i is the macula-wide

patient-specific log residual variance random effect; VEi j is the macula-wide visit random effect; the

population component of the patient-superpixel log residual variance is logσ2
k . Our model employs

novel, semi-parametric spatial effects for the intercept, φ0kPC0i, slope φ1kPC1i, residual variance

σ2
k exp(PC2i), and visit effects φ2kVEi j. In each component, terms with a k subscript φ0k, φ1k, σ2

k ,

and φ2k define the spatial pattern of variation across the macula while the random effects PC0i, PC1i,

exp(PC2i), and VEi j are random subject effects, or visit effects, that indicate how much subject i’s

observations deviate from the population averages. Each of these 4 terms are factor analytic mod-

els with 1 factor each where the φ0k, φ1k, σ2
k , and φ2k are called loadings and the random effects

are also called factors (Kline, 2014). Superpixel-specific population intercepts and slopes are the

sum of the macula-wide global intercept and slope plus the superpixel-specific intercept and slope

deviations. Similarly, a superpixel-patient slope (intercept) is the sum of (a), (b), (c), and (d): the

sum of the macula-wide global slope (intercept), superpixel-specific slope (intercept), the macula-

wide patient-specific intercept slope (intercept), and the patient-superpixel specific slope (intercept)

random effect. Patient-superpixel log residual variances are modeled as the sum of a superpixel

component and a patient-specific component. The outlier removal algorithm and full model and

priors are given in the supplementary material in Sections 2.5.1 and 2.5.2, respectively.

In Bayesian models, inference is made by summarizing the posterior distributions of the param-

eters of interest. The posterior distribution is obtained by combining the likelihood (information in

the data) with the prior (prior knowledge about the unknown parameters) and quantifies the uncer-

tainty in the parameters after observing the data. The posterior mean, i.e., mean of the posterior
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distribution of a parameter of interest, is often taken as the Bayesian point estimate; similarly, the

posterior standard deviation (SD), that is, the SD of the posterior distribution, summarizes the uncer-

tainty in the posterior. Posterior means and SDs of superpixel-patient specific intercepts and slopes

were calculated from the HSL model and compared to superpixel-patient specific intercepts and

slopes obtained from a Bayesian SLR model with a flat prior analyzing longitudinal data from each

superpixel-patient separately and a Bayesian CAR model with intrinsic CAR priors analyzing data

from each patient separately.

The Bayesian SLR model produces posterior means and posterior Credible Intervals (CrI) that

are identical to the classical point estimate and confidence intervals (CI) from classical least squares

regression on the same data. The Bayesian SLR posterior SDs are slightly larger than classical SLR

standard errors (SEs) by a factor of
(

ni−4
ni−2

)1/2
where ni is the number of observations for patient

i because SEs are not standard deviations and SEs do not account for the classical estimates being

t distributed with ni − 2 degrees of freedom (df). Using the posterior SD from this Bayesian SLR

model puts SLR, CAR and HSL on an equal footing.

For the CAR model inspired by Betz-Stablein et al. (2013), we assumed GCC thicknesses in

neighboring superpixels would be more similar than in more distant superpixels. We defined the

neighborhood structure, or adjacency matrix, such that superpixels sharing an edge are weighted as

1. For each patient i, we model spatial dependence in intercepts and slopes

y jk = α0 +α1t j +β0k +β1kt j + ε jk

ε jk ∼ N(0,σ2)

where α0 is the overall eye intercept; α1 is the overall eye slope; β0k is the superpixel-specific

spatial deviation from the overall eye intercept; β1k is the superpixel-specific spatial deviation from

the overall eye slope; and σ2 is the residual variance specific to patient i. We fit the CAR models

using the R package NIMBLE v0.13.1 (de Valpine et al., 2017, 2022). The full CAR model and

priors are given in the supplementary material in Section 2.5.3 .
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We identified superpixel-patient specific rates of change as worsening or improving (significantly

negative or positive) when the upper or lower limit of the symmetric 95% CrI was less than or greater

than 0, respectively. We compared the proportion of significant negative or significant positive slopes

at each superpixel from the HSL and SLR models using an α = 0.05 level classical McNemar’s test

with the null hypothesis being that the 2 proportions were equal.

We summarize differences (SLR minus HSL and CAR minus HSL) of posterior means and of

SDs for individual patient-superpixel intercepts and slopes. We compared differences of posterior

means averaged within each of 49 superpixels and also averaged across all 5,419 patient-superpixel

profiles. We similarly compared the SLR/HSL and CAR/HSL ratios of posterior SDs for superpixel

averaged intercepts and slopes, and patient-superpixel intercepts and slopes. Ratios of posterior

variances (i.e., ratios of squared SDs) are measures of the improved estimation efficiency of the

better model. Individual patient-superpixel intercept and slope posterior means, posterior SDs, and

95% CrI lengths from HSL, CAR, and SLR were plotted against each other to compare the inferences

from the three approaches. A patient-superpixel profile is the set of measurements over time for a

single patient in a single superpixel. We omitted 18 patient-superpixel profiles in the data cleaning

step because there were two or more outliers in a single patient-superpixel profile and omitted 2 more

patient-superpixel profiles with constant GCC at all time points, as SLR, unlike the HSL model or

CAR, is unable to provide an appropriate inference. Thus 5,419 is slightly smaller than 111×49 =

5,439 patient-superpixel profiles.

2.2.3 Simulation study

We ran a simulation study to provide comparisons between the accuracy of HSL, CAR, and SLR

estimates for rates of change (slopes); this comparison is only possible in a simulation study where

true individual eye slopes are known. In the initial step, a true slope and intercept for each superpixel-

patient combination (49 superpixels in each of 111 patient-eyes) was set by sampling each from a

normal distribution with mean equal to the sum of the superpixel-specific population and macula-

wide patient-specific parameters and variance equal to the superpixel intercept and slope random
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effects variance. All superpixel-specific and patient-specific parameters were set as the posterior

means from our model fit to the actual data; log residual variance was set as the posterior mean of

the patient plus superpixel log components; visit times were copied from the data set and visit effect

parameters were set to the posterior mean of those parameters. In the next step, we generated 100

data sets with random residual errors and visit effects.

We recorded bias, estimator variance, and root mean squared error (RMSE) from the simulation

for all patient-superpixel intercepts and slopes. We took the posterior means from the HSL and CAR

models as the estimates, and the least squares estimate was the SLR estimate. Bias was calculated

as the average estimate over simulated datasets minus truth, which is a measure of whether the

model estimates the true value on average. Estimator variance is the variance over simulations of

the estimate around its average estimate over simulated data sets, a measure of precision. Estimator

variance is estimator SD squared. Root mean squared error (RMSE) is the square root of the sum of

squared bias and estimator variance

RMSE =

√
∑

100
m=1 estimatem − truthm

100
=
√

bias2 + estimator variance

where m indexes data sets. The RMSE is the gold standard for assessing the accuracy of a model

for estimating the true parameter value. We calculated average over simulations of 95% Credible

Interval Length (CrIL) which is the length of the interval with 2.5% posterior probability to the left

and to the right of the interval for HSL and CAR and the usual 95% CI for SLR. Finally, 95% CrI

Coverage is the proportion of the time where the 95% CrI contains the truth. For bias, estimator

SD, RMSE, and 95% CrIL, smaller is better. For 95% CrI Coverage, values close to 95% are

preferred. For the estimator SD, RMSE, and 95% CrIL, we report the SLR/HSL and CAR/HSL

ratios; ratios > 1 represent better performance of HSL. We report superpixel summaries by averaging

reported measures over all patients at each superpixel location and global summaries by averaging

each component over all patients and superpixel locations.
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Table 2.1: Averages over all patient-superpixel intercepts and slopes of root mean squared error
(RMSE), 95% credible interval length (CrIL), and 95% credible interval (CrI) coverage probability
of intercepts and slopes for simple linear regression (SLR), conditional autoregressive (CAR), and
hierarchical spatial longitudinal (HSL) models and the averages of the CAR/HSL and SLR/HSL
ratios from the simulation study. Lower RMSE and 95% CrIL indicates better model performance
and ratios greater than one favor HSL over CAR or SLR. The HSL model outperforms SLR for
RMSE and 95% CrIL for both intercepts and slopes. CAR does substantially worse on 95% CrI
coverage probability compared to HSL and SLR.

Model RMSE 95% CrIL 95% CrI Coverage Probability

Intercept
HSL 1.07 4.21 0.949
CAR 1.31 4.24 0.882
SLR 1.44 7.17 0.951
Ratio (CAR/HSL) 1.25 1.03
Ratio (SLR/HSL) 1.38 1.70

Slope
HSL 0.38 1.55 0.947
CAR 0.58 1.59 0.810
SLR 0.69 3.44 0.951
Ratio (CAR/HSL) 1.65 1.08
Ratio (SLR/HSL) 2.05 2.25

2.3 Results

A total of 39,625 GCC superpixel measurements in 49 superpixels from 815 visits were included

in the analysis. Supplementary Table 2.3 presents clinical and demographic characteristics of the

study sample. Mean (SD) baseline 10-2 visual field mean deviation was −8.9 (5.9) dB. Mean (SD)

follow-up time was 3.6 (0.4) years with an average (SD) of 7.3 (1.1) OCT scans per eye.

2.3.1 Simulation results

Table 2.1 presents the average RMSE, 95% CrIL, and 95% CrI coverage probability for SLR, CAR,

and HSL averaged over all 5,439 patient-superpixel for intercepts and for slopes. Compared to

SLR, the HSL model had substantially better RMSE (intercept SLR/HSL mean ratio: 1.38; slope

SLR/HSL mean ratio: 2.05) and 95% CrIL (intercept SLR/HSL mean ratio: 1.70; slope SLR/HSL
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mean ratio: 2.25), and similar 95% CrI coverage probability. Compared to CAR, the HSL model

had better RMSE (intercept CAR/HSL mean ratio: 1.25; slope CAR/HSL mean ratio: 1.65), similar

95% CrIL, and much better 95% CrI coverage probability (HSL vs. CAR coverage probability for

intercepts: 0.949 vs. 0.882; for slopes: 0.947 vs. 0.810).

Patient-superpixel intercepts and slopes. Supplementary Table 2.4 presents summaries of the

grand mean and 10th to 90th percentile range of posterior means, posterior SDs, estimator SDs,

95% CrILs, RMSEs, and 95% CrI coverage probabilities for intercepts and slopes across all 5,439

patient-superpixel combinations for HSL, CAR, SLR and the differences between the means (SLR

− HSL and CAR − HSL) and ratios (SLR/HSL and CAR/HSL) of the SDs, CrILs, and RMSEs.

Intercepts- For the 5,439 individual patient-superpixel intercepts, SLR, CAR, and HSL models

demonstrated similar average, 10th-, and 90th-percentile posterior means. The SLR model had larger

(worse) estimator SDs (ratio range: 1.12 to 2.31) and larger (worse) 95% CrILs (ratio range: 1.23

to 3.09) than HSL for all patient-superpixels. While CAR had similar posterior SDs and 95% CrILs

to HSL, HSL had higher (better) 95% CrI coverage probabilities for 80.2% (4,364 out of 5,439)

of patient-superpixel intercepts. Compared to SLR and CAR, the HSL model had lower (better)

RMSE values for 95.1% (5,174/5,439) and 92.7% (5,028/5,439) of patient-superpixel intercepts,

respectively.

Slopes- Averaged across all 5,439 estimated patient-superpixel slopes, SLR, CAR, and HSL had

similar average slope estimates. However, the 10th to 90th percentile range of SLR slope pos-

terior means (−1.36, 0.48 µm/year) was much wider than HSL (−1.17, 0.19 µm/year) and CAR

(−1.01, 0.14 µm/year). The SLR model had larger (worse) estimator SDs than HSL (SLR/HSL ratio

range: 1.17 to 11.84) and 95% CrILs (SLR/HSL ratio range: 1.32 to 6.44) for all patient-superpixel

slopes. The CAR model had larger estimator SDs than HSL (CAR/HSL ratio range: 0.71 to 7.57)

with comparable 95% CrILs (CAR/HSL ratio range: 0.55 to 2.75); however, HSL had better 95%

CrI coverage probabilities for 4,965/5,439 (92.1%) patient-superpixel slopes. The average 95% CrI

coverage probabilities for patient-superpixel slopes were 0.951, 0.810, and 0.949 for SLR, CAR,

and HSL, respectively. Compared to SLR and CAR, the HSL model had lower RMSE values for
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5,211/5,439 (95.8%) and 5,097/5,439 (93.7%) patient-superpixel slopes, respectively. Figure 2.1

plots histograms of mean squared error (MSE), squared bias, and estimator variance for patient-

superpixel slopes for all patients and superpixels for the SLR (blue), CAR (green), and HSL (red)

models. The HSL model had noticeably smallest MSE due to having much smaller estimator vari-

ance compared to CAR and SLR. Equivalent histograms are plotted for the intercepts in Supplemen-

tary Figure 2.6, where the HSL model also demonstrates noticeably smaller MSE compared to CAR

and SLR.

Superpixel-averages of intercepts and of slopes. For the intercepts, there was significant bias

averaged across patients for HSL (range: −0.054 to 0.082 µm) and CAR (range: −0.486 to 0.290

µm) for 28/49 and 45/49 superpixels, respectively, while SLR had no bias in any superpixels. While

the magnitude of the observed bias for HSL was not clinically relevant both in comparison to the

size of the intercepts (posterior mean range: 52.9 to 101.6 µm) and compared to the posterior SDs,

the magnitude of bias for CAR was more comparable to the posterior SDs. In contrast, SLR had

substantially larger (worse) estimator SD (ratio range: 1.29 to 1.74), RMSE (ratio range: 1.19 to

1.58), and 95% CrILs (ratio range: 1.47 to 1.94) than HSL for all 49 superpixels. The CAR model

had larger estimator SD (ratio range: 0.97 to 1.40) and RMSE (ratio range: 1.15 to 1.36) than HSL

across superpixels, but similar 95% CrILs (ratio range: 0.76 to 1.33). There were no important

differences (fraction coverage − 0.95) in 95% CrI coverage probability for HSL and SLR, but no-

ticeable differences in parafoveal and nasal superpixels for CAR (HSL range: −0.014 to 0.008; CAR

range: −0.169 to 0.012; SLR range: −0.004 to 0.006). Superpixel averages of estimator SD, RMSE,

95% CrIL, and 95% CrI coverage probability for intercepts and slopes are shown in Supplementary

Figures 2.7, 2.8, 2.9, and 2.10, respectively.

For the slopes, there was significant bias for HSL (range: −0.040 to 0.038 µm/year) and CAR

(range: −0.155 to 0.252 µm/year) for 27/49 and 45/49 superpixels, respectively. The magnitude of

the bias for HSL was generally modest in comparison to the slopes (range: −0.982 to 0.025 µm/year)

and was small in comparison to posterior SDs; however, the magnitude of the bias for CAR was on

par with the slope estimates. For the 49 superpixel slopes, SLR had larger (worse) estimator SD
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Figure 2.1: Histograms of mean squared error (MSE) (upper left), squared bias (upper right), and es-
timator variance (lower left) for patient-superpixel slopes comparing simple linear regression (SLR),
conditional autoregressive (CAR), and hierarchical spatial longitudinal (HSL) models pooled across
all superpixels from the simulation study. Mean squared error is squared bias plus estimator vari-
ance; the x-axis values are directly comparable in all three plots. Lower MSE indicates better model
performance. Counts of large values omitted due to truncating the x-axis at 1: MSE (HSL: 43; CAR:
241; SLR: 500), squared bias (HSL: 31; CAR: 120; SLR: 0), and estimator variance (HSL: 0; CAR:
8; SLR: 492).
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(ratio range: 1.55 to 4.56), RMSE (ratio range: 1.33 to 3.08), and 95% CrILs (ratio range: 1.63

to 3.14) than HSL across superpixels. CAR had larger estimator SD (ratio range: 0.94 to 3.05)

and RMSE (ratio range: 1.27 to 2.28) than HSL across superpixels, but similar 95% CrILs (ratio

range: 0.73 to 1.69). There were no substantive differences (coverage − 0.95) in 95% CrI coverage

probability for HSL and SLR, but noticeable differences in parafoveal and nasal superpixels for CAR

(HSL range: −0.033 to 0.024; CAR range: −0.273 to −0.006; SLR range: −0.004 to 0.005). Figure

2.2 displays heat maps of the intercept and slope average RMSE ratios (CAR/HSL and SLR/HSL)

across superpixels. In all superpixels, HSL outperforms CAR and SLR with all ratios > 1. Figure

2.3 gives the proportion of significant negative and positive slopes detected by HSL, CAR, and SLR

when the true slope is negative. The HSL model detected a higher proportion of significant negative

slopes than SLR in 38/49 superpixels, with notably larger differences in the central superpixels.

It also detected a lower proportion of significant positive slopes than SLR in all superpixels. In

contrast, CAR detected a higher proportion of significant negative slopes in 36/49 superpixels, but

also a higher proportion of significant positive slopes in all 49 superpixels than HSL when the true

slopes were negative. The proportions of significant negative and positive slopes detected by HSL,

CAR, and SLR when the true slope is positive are shown in Supplementary Figure 2.11. The HSL

model detected a lower proportion of significant negative slopes in 42/49 superpixels than SLR

when the true slopes were positive and a lower proportion of significant positive slopes in 43/49

superpixels than SLR. In addition, HSL detected a lower proportion of significant negative slopes

in all 49 superpixels and a lower proportion of significant positive in 39/49 superpixels than CAR.

A detailed breakdown of the proportion of significant slopes detected by superpixel is shown in

Supplementary Tables 2.5, 2.6, and 2.7.

2.3.2 Analysis of AGPS data

Table 2.2 presents summaries of the grand mean and 10th to 90th percentile range of posterior

means and SDs for intercepts and slopes across all 5,419 patient-superpixel combinations for HSL,

CAR, and SLR and the differences between the means (CAR − HSL and SLR − HSL) and ratios
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Figure 2.2: Heat map of the average root mean squared error (RMSE) ratio for simple linear regres-
sion (SLR) over hierarchical spatial longitudinal (HSL) or conditional autoregressive (CAR) over
HSL for intercepts (top) and slopes (bottom) by superpixel location from the simulation study. HSL
outperforms SLR and CAR in all superpixels as ratios greater than one favor HSL over the alterna-
tive model.
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Figure 2.3: Heat map of the percentage of significant negative slopes (top) and significant positive
slopes (bottom) detected by simple linear regression (SLR), conditional autoregressive (CAR), and
hierarchical spatial longitudinal (HSL) models when the true slope is negative in the simulation
study.

20



of the SDs. Globally, HSL, CAR, and SLR posterior means were similar on average for both the

intercepts (CAR − HSL mean difference [10th, 90th percentile]: 0.01 [−1.36, 1.39 µm]; SLR −
HSL difference: 0.01 [−1.53, 1.55 µm]) and slopes (CAR − HSL mean difference [10th, 90th

percentile]: −0.02 [−0.76, 0.71 µm/year]; SLR − HSL difference: −0.02 [−0.85, 0.82 µm/year]);

however, substantial differences existed across patients and superpixels. The striking difference

between HSL and SLR was the systematically higher posterior SDs for SLR compared to HSL

particularly for the slopes (median 1.69, 10th, 90th percentile = 0.93, 3.28). The mean and 10th and

90th percentiles of posterior means and SDs of slopes by superpixel for HSL, CAR, and SLR are

shown in Supplementary Tables 2.8 and 2.9. While the posterior means of the slopes are similar, the

ranges are noticeably smaller and the posterior SDs are also uniformly smaller across all superpixels

for HSL and CAR. Across 5,419 patient-superpixel curves, the HSL posterior SDs were smaller than

those of SLR for 75.2% of intercepts and 87.1% of slopes but larger than those of CAR for 63.4%

of intercepts and 54.6% of slopes. Figure 2.4 displays the median and 10th and 90th percentile

of posterior SD ratios of CAR/HSL and SLR/HSL. Across all 49 superpixels, HSL has smaller

posterior SDs than SLR; HSL has smaller posterior SDs than CAR in temporal superpixels and

larger posterior SDs in nasal superpixels. Figure 2.5 shows scatter plots of the posterior means from

SLR against HSL. There is noticeable shrinkage towards the population mean in the HSL estimates

in the peripheral superior and temporal superpixels. The scatter plots of the posterior means from

CAR against HSL are shown in Supplementary Figure 2.12, where there is noticeable shrinkage

in the HSL estimates in the temporal regions as well. We provide the scatter plots of posterior

means from SLR against HSL and from CAR against HSL on the same axes for all 49 superpixels

in Supplementary Figures 2.13 and 2.14, respectively.

The HSL model identified a higher proportion of significant negative slopes compared to SLR

and a lower proportion compared to CAR (HSL: 17.6%; CAR: 26.6%; SLR: 15.6%); it detected a

lower proportion of significant positive slopes compared to both CAR and SLR (HSL: 1.2%; CAR:

6.9%; SLR: 4.6%). Supplementary Figure 2.15 presents the McNemar’s test results comparing the

proportion of significant negative slopes between HSL and SLR or HSL and CAR, where a higher
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Table 2.2: Summary of the grand mean (10th, 90th percentile) of posterior means and posterior
standard deviations (SD) for intercepts and for slopes for all 5,419 patient-superpixel combinations
for simple linear regression (SLR), conditional autoregressive (CAR), and hierarchical spatial lon-
gitudinal (HSL) models for the data from the patient cohort. The difference in posterior means for
intercepts and slopes is defined as SLR minus HSL or CAR minus HSL. The ratio in posterior SDs
is defined as SLR over HSL or CAR over HSL and we report the median (10th, 90th percentile) ratio
of posterior SDs.

Mean 10th Percentile 90th Percentile

Intercept Posterior Mean
HSL 72.95 52.73 102.97
CAR 72.96 52.49 102.92
SLR 72.96 52.29 103.32
Difference (CAR − HSL) 0.01 –1.36 1.39
Difference (SLR − HSL) 0.01 –1.53 1.55

Intercept Posterior SD
HSL 1.09 0.82 1.40
CAR 1.03 0.72 1.49
SLR 1.61 0.78 2.76
Ratio (CAR/HSL), median 0.92 0.71 1.28
Ratio (SLR/HSL), median 1.35 0.76 2.43

Slope Posterior Mean
HSL –0.39 –1.19 0.26
CAR –0.41 –1.40 0.60
SLR –0.41 –1.80 0.87
Difference (CAR – HSL) –0.02 –0.76 0.71
Difference (SLR – HSL) –0.02 –0.85 0.82

Slope Posterior SD
HSL 0.40 0.27 0.56
CAR 0.41 0.23 0.59
SLR 0.77 0.35 1.33
Ratio (CAR/HSL), median 0.96 0.63 1.55
Ratio (SLR/HSL), median 1.69 0.93 3.28

proportion of significant negative slopes was identified in 13/49 superpixels for HSL compared to

SLR, 4/49 superpixels for SLR compared to HSL, and 31/49 superpixels for CAR compared to

HSL. Supplementary Figure 2.16 shows the McNemar’s test results for comparing the proportion of

significant positive slopes, where a lower proportion of significant positive slopes was identified in

21/49 superpixels for HSL compared to SLR and 36/49 for HSL compared to CAR.
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Figure 2.4: Heat map of the median (10th, 90th percentile) slope SD ratio as a function of super-
pixel location for the patient cohort data. The ratio was defined as either conditional autoregressive
(CAR) over hierarchical spatial longitudinal (HSL) or simple linear regression (SLR) over HSL.
Ratios greater than 1 indicate better performance for HSL. On average, HSL outperforms SLR at all
superpixel locations.
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Figure 2.5: Scatter plots of slope posterior means from simple linear regression model (SLR, y-axis)
against those from the hierarchical spatial longitudinal model (HSL, x-axis) in each superpixel for
the patient cohort data (right eye format). The SLR posterior means are much more variable than
the HSL means. There is noticeable shrinkage towards the population mean in the HSL estimates in
the peripheral superior and temporal regions. Each plot is square with its own axes with the x- and
y- axes having the same range. The red dashed line represents the x = y diagonal.
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2.4 Discussion

We examined the ability of SLR, CAR, and HSL to accurately estimate rates of GCC thinning within

macular superpixels in a cohort of eyes with central or moderate to advanced glaucoma damage at

baseline. Our novel HSL model resulted in lower posterior SD for both intercepts (SLR/HSL median

ratio: 1.35) and slopes (SLR/HSL median ratio: 1.69, Table 1) indicating a marked improvement in

the certainty in estimated intercepts and rates of change for HSL over SLR. The simulation study

showed a significantly higher performance by HSL compared to SLR in terms of detecting actual

change; on simulated models, HSL detected 21% of slopes as significantly negative while SLR de-

tected only 13% when the true slopes were negative. A smaller and still significantly better perfor-

mance was observed with the cohort data. While CAR also reduced the posterior SD, CAR estimates

were more biased by superpixel location and offered substantially reduced 95% CrI coverage prob-

ability (mean intercept probability: 0.882; slope probability 0.810). Based on the simulation study

findings, CAR underreported posterior SDs or over-estimated coverage, implying that in the AGPS

data analysis, the more frequent declarations of significance are overly optimistic. Therefore, with

the advantage of the reduction in noise and appropriate coverage, HSL could detect changes in GCC

more efficiently and earlier with relevant clinical and research implications for earlier detection of

glaucoma progression.

Simple linear regression is still frequently used to estimate global or local rates of change of

structural or functional measures in the field of glaucoma. We show that SLR has numerous weak-

nesses in this context. Data from the patient cohort are not used to help draw inferences about

individual eyes, sectors or superpixels. Spatial correlations are ignored, and correlation of baseline

thickness and slopes are not accounted for. Visit effects cannot be accommodated in SLR. These

limitations in SLR lead to substantially larger uncertainty in estimating individual patient-superpixel

rates of change. In contrast, our HSL model accommodates all these features of the data and thus

reduces uncertainty in estimating rates of change.

Our Bayesian hierarchical spatial longitudinal model addresses these shortcomings in SLR by
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modeling the structure of the data with patients nested in a cohort, spatial correlations across the

macula, and visit effects. The HSL model provides intercept and slope estimates with substantially

higher accuracy by incorporating information from the cohort and other superpixels from the same

person and reduces the posterior variances for both intercepts and slopes. We implemented this

updated version of the HSL model developed in our research laboratory in this study. The cur-

rent version allows random variation across superpixels of individual intercepts and slopes from a

global patient estimate. Similarly, intercepts and slopes within individual superpixels are allowed

to randomly vary from the population intercept and slope. Population level intercepts and slopes

vary across the macula and log residual variances are modeled with superpixel and individual pa-

tient components. We recently identified spatial distributions of patient-intercepts, patient-slopes,

patient-residual variances, and residuals across superpixels through residual analysis of a prior model

that did not include spatial effects except for superpixel level parameters (Mohammadzadeh et al.,

2022b). The current model in this study improves on the model in Mohammadzadeh et al. (2022b)

by including such spatial effects for patient-superpixel intercepts, slopes, and residual variances.

Moreover, we now include visit effects, which model correlations in residuals across superpixels for

a single patient-visit. These spatial effects are modeled as factors in a factor analysis with one factor

per dimension.

Visit effects can be estimated with our HSL model but are impossible to implement in SLR. Visit

effects model the correlation in regression residuals across superpixels in a single visit. Presence

of visit effects means that all GCC thickness measurements from a single patient-visit tend to be

randomly above or below the patient’s actual GCC thickness. Estimating visit effects requires multi-

variate modeling of all superpixel thickness measures in one model. We believe this is the first study

to identify visit effects in structural OCT data. Visit effects in visual field data are well known (Phu

and Kalloniatis, 2021; Chauhan et al., 2008; Rui et al., 2021), though modeling of visual field visit

effects has been rarely done (Bryan et al., 2015).

Our findings indicate a more than twofold reduction in the variance of slope estimates with the

HSL model compared to SLR. This significant reduction in posterior variance shows that the HSL
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model is much more efficient than SLR in using the available data and it allows HSL to detect signif-

icant rates of change earlier as compared to SLR. For example, HSL identified a higher proportion

of significant negative slopes (17.6% vs. 15.6%) and lower proportion of significant positive slopes

(1.2% vs. 4.6%) as compared to SLR. While these numbers may not seem clinically impressive,

the overall superior performance of the HSL is clinically relevant as it not only increases negative

hit rates, an indication of higher sensitivity for identifying actual decreasing thicknesses, but it also

results in marked reduction of significant positive slopes, an indication of potentially higher speci-

ficity as GCC thickness is not expected to increase over time. These findings were confirmed in the

simulation study.

There are previous studies that used hierarchical linear models for detection of longitudinal

change in visual fields; our study is unique as it addresses detection of longitudinal changes in

macular structural measurements (Montesano et al., 2021; Zhu et al., 2014b; Betz-Stablein et al.,

2013; Bryan et al., 2015; Henson et al., 2000). Montesano et al. (2021) developed a Bayesian model

for visual field data accounting for the within-eye hierarchical structure, data censoring, and the

heteroskedastic variance as a function of the mean threshold sensitivity; they found that time to de-

tect progression was shorter for Bayesian models compared to SLR with permutation analysis of

point-wise linear regression.

In the paper by Betz-Stablein et al. (2013), a conditional autoregressive prior was used to model

spatial correlation across the visual field intercepts and slopes within a single person but data from

multiple patients were not included in a single model. Intercepts and slopes were not modeled as

correlated, and conditional on neighboring superpixels, distant superpixels were considered indepen-

dent. Our CAR model, while inspired by Betz-Stablein et al. (2013), is novel; like in Betz-Stablein

et al. (2013), our CAR model was fit to data from each patient separately. While the variances in

slope estimates were on par with HSL, there was substantially more bias and reduced 95% CrI cov-

erage probability, translating to a higher proportion of significant slopes identified even when the

true slopes were of the opposite sign; thus the CAR model had higher error rates. In contrast, our

model also has random patient-superpixel intercepts and slopes, but then allows for finding global
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patterns of associations in both intercepts and slopes, as we demonstrated in our previous work (Mo-

hammadzadeh et al., 2022b). It also accommodates residual variance varying by both superpixel and

patient and allows for visit effects as well.

Based on the simulation study, HSL has substantially lower RMSE than SLR and CAR for both

individual patient intercepts and slopes and for superpixel aggregated effects compared to SLR. The

SLR model does not have population or superpixel parameters that summarize the population of

patients globally or in a superpixel, so any superpixel level inference from SLR is ad hoc; by taking

a Bayesian approach with our SLR models, we were able to create an appropriate, if simplistic,

inference for SLR results aggregated across patients within a superpixel. For patient-superpixel

intercepts and slopes, HSL had lower RMSE in an overwhelming proportion of intercepts (95%)

and slopes (96%). Estimates from HSL had thus lower noise as compared to SLR.

Our simulation results demonstrated a small bias in some estimated HSL intercepts and slopes.

This phenomenon of shrinkage towards the prior mean is a well-known feature of Bayesian esti-

mators. By borrowing information from the population of patients, the Bayesian models shrink all

estimates towards population averages. Shrinkage depends on the play between uncertainty in the

estimate without population information and the variability in the population. Unusually high or low

estimates without shrinkage are typically due to noise in addition to possibly higher or lower under-

lying true values; these values are shrunken by greater absolute amounts in hierarchical Bayesian

models than estimates nearer to the center of the distribution. Posterior means from a hierarchi-

cal model are more stable than classical non-Bayesian estimates such as from SLR. This shrinkage

mitigates against erroneous high/low slope estimates and, hence, helps prevent making aggressive

therapeutic decisions when relying on uncertain and possibly erroneous estimates, pending addi-

tional data. The magnitude of the superpixel-averaged slope bias was at most 10% of the average

slope across all patients and superpixels (−0.040 µm/year vs. −0.39 µm/year). Despite this bias,

the HSL model was still able to identify a higher proportion of worsening slopes while at the same

time minimizing the significant positive slopes, which is desirable within both clinical and research

frameworks.
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Our model, as with any model, assumes data generated by the model. As we have normality of

residuals built into the model, it does not necessarily model well a distribution with long tails. The

obvious outliers are quite extreme, and we tried to remove all the obvious outliers. We believe these

are due to measure error. Undoubtedly there are still outliers in the data set. A future extension of

our methods may allow for diagnosing outliers via the model itself, or we may develop a novel and

improved outlier removal algorithm.

Optical coherence tomography data are somewhat noisy. If clinicians use raw data with outliers,

they will not be using the best data possible, and the conclusions could be flawed. Undoubtedly OCT

image quality will improve with time and outliers will lessen or disappear. In the meantime, our out-

lier removal algorithm does not require model fitting; clinicians could use it in clinical practice

before trying to fit any model including SLR. The implications of our findings go beyond macular

structural measures. The proposed framework can be applied to other structural measures such as

retinal nerve fiber layer or neuroretinal rim measurements with modifications for differing geome-

try and scale of measurements given the fact that all the limitations of SLR apply to those structural

measures as well. We are also developing a similar hierarchical model for visual field measurements.

The proposed framework is a useful starting point for analysis of visual fields; however, modifica-

tions will be required given properties of visual fields such as increased variability with worsening

thresholds (heteroskedasticity), censoring, and possible loss of information once threshold sensitiv-

ity at individual test locations drops to 15-19 dB or below (Montesano et al., 2021; Russell et al.,

2012a).

In conclusion, we present a novel Bayesian HSL model that improves estimation accuracy of

local GCC rates of change. In a simulation study, SLR and CAR have median MSE ratios over the

proposed model of 3.3 and 2.4, respectively, for estimating superpixel-patient slopes; in both the

simulation study and in the patient cohort data, HSL identifies a higher proportion of deteriorating

superpixels when compared to SLR while minimizing positive detection rates. This efficiency is

found by more fully utilizing already available information from measurements on a cohort of glau-

coma patients and jointly analyzing measurements on all superpixels. Our findings have important
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implications for improved detection of glaucoma deterioration both clinically and in the research

setting.

2.5 Supplementary material

2.5.1 Outlier removal algorithm

As previously described (Mohammadzadeh et al., 2021, 2022b), we developed a semi-automated

algorithm to identify and subsequently remove outliers which we also explain here. Let yi jk denote

a single observation of GCC thickness measured on patient i’s jth visit at time ti j in superpixel

k. The follow-up time ti j is years since baseline, with the first visit at ti j = 0 years. The total

number of observations for patient i at superpixel k is nik. For each patient’s data at each superpixel,

we calculated consecutive visit absolute differences |yi jk − yi( j−1)k| and consecutive visit absolute

centered slopes |yi jk − yi( j−1)k/(ti j − ti( j−1))− 0.41| for j = 2, . . . ,ni. Slopes were centered around

−0.41 µm/year, the mean of all slopes from all pairs of consecutive visits across all patients and

superpixels. We flagged absolute centered slopes greater than 24 µm/year that also had consecutive

visit absolute differences greater than 5 µm. These values were chosen to identify approximately

0.5% of the observations as possible outliers. The flagged slope identified two consecutive points

as candidates for removal. We calculated the sum of the absolute visit differences ∑
nik
j=2 |yi jk −

yi( j−1)k| for each superpixel in each patient and further considered the candidate that caused the

largest decrease in the sum of the absolute visit differences. If removing the candidate resulted

in a replacement absolute slope that was not one-half or less of the original flagged slope, we did

not remove the observation; otherwise, we removed the candidate. If an observation was removed,

we applied the same algorithm to the reduced data set to see if another observation from the same

superpixel should be removed as well. For each curve, if 2 or more points were identified as outliers,

we removed the entire curve. All together this resulted in removing 0.7% of the observations as

outliers.
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2.5.2 Bayesian hierarchical spatial longitudinal model specification

Let N(a,b) be a normal distribution with mean a and variance b, IG(a,b) be an inverse gamma

distribution with mean b/(a−1) (for a > 1) and variance b2/[(a−1)2(a−2)] (for a > 2), U(a,b) be

a uniform distribution over the interval (a,b), a < b, with mean (a+b)/2 and variance (b−a)2/12,

and let y ∼ HN(a) be distributed as a half-normal with scale a where the half-normal is the absolute

value of a mean zero normal density with variance a.

We fit data from all individuals and superpixels together in a single model. The current version

of our Bayesian Hierarchical Spatial Longitudinal (HSL) model includes (a) a macula-wide global

intercept and slope, (b) superpixel-specific intercept and slope deviations from the global intercept

and slope (superpixel-level random effects), (c) macula-wide patient-specific intercept and slope

effects (global patient random effects), (d) patient-superpixel interaction intercept and slope random

effects, and (e) macula-wide visit effects. Patient-superpixel log residual variances are modeled as

the sum of a superpixel component and a patient-specific component. We mean center the outcome

yi jk by the grand mean of all GCC measurements y and mean center the time ti j by the mean follow-

up time across patients t.

For superpixel k, α0k is the population average deviation from the grand mean y at the mean

follow-up time t; α1k is the population average slope; β0ik is the patient-superpixel interaction de-

viation at mean follow-up time t for the ith patient; β1ik is the patient-superpixel interaction slope

for the ith patient; φ0k is the spatial effects eigenvector component for the patient-specific deviation

at mean follow-up time t; φ1k is the spatial effects eigenvector component for the patient-specific

slopes; φ2k is the spatial effects eigenvector component for the visit effects; PC0i is the macula-wide

patient-specific deviation at mean follow-up time t; PC1i is the macula-wide patient-specific slope;

PC2i is the macula-wide patient-specific log residual variance component; VEi j is the macula-wide

visit effect; and the population component of the patient-superpixel log residual variance is logσ2
k .
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The full model is

yi jk|θ ∼ N(α0k +α1kti j +β0ik +β1ikti j +φ0kPC0i +φ1kPC1iti j +φ2kVEi j,σ
2
k exp(PC2i))

θ = {α0k,α1k,β0ik,β1ik,φ0k,φ1k,φ2k,PC0i,PC1i,PC2i,VEi j,σ
2
k }

β0ik|D00k ∼ N(0,D00k)

β1ik|γk,β0ik,D11.0k ∼ N(
γkβ0ik

100
,D11.0k)

We rescale the regression coefficient γk of the random slopes given the random intercept by a factor

of 100 for ease of computation and prior specification.

α0k|σ2
1 ∼ N(µ1,σ

2
1 )

logD00k|µ2,η12,α0k,σ
2
2 ∼ N(µ2 +η12α0k,σ

2
2 )

logD11.0k|µ3,η13,α0k,η23, logD00k,µ2,η12,σ
2
3 ∼ N(µ3 +η13α0k +η23(logD00k −µ2 −η12α0k),σ

2
3 )

α1k|µ4,σ
2
4 ∼ N(µ4,σ

2
4 )

γk|µ5,σ
2
5 ∼ N(µ5,σ

2
5 )

logσ
2
k |µ6,σ

2
6 ∼ N(µ6,σ

2
6 )

PC0i|σ2
7 ∼ N(0,σ2

7 )

PC1i|λ ,PC0i,σ
2
8 ∼ N(λPC0i,σ

2
8 )

PC2i|σ2
9 ∼ N(0,σ2

9 )

VEi j|σ2
10 ∼ N(0,σ2

10)

φ0k|σ2
11 ∼ N(1/7,σ2

11)

φ1k|σ2
12 ∼ N(1/7,σ2

12)

φ2k|σ2
13 ∼ N(1/7,σ2

13)

In our previous work, we conducted principal component (PC) decompositions of the covariance ma-

trices for random intercepts, slopes, and residuals (Mohammadzadeh et al., 2022b). Here, φ0k, φ1k,
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and φ2k are the spatial effects eigenvectors from the largest PC of each decomposition for random

intercepts, slopes, and residuals, respectively, and are all centered at 1/7.

The matrix Dk is a 2× 2 variance-covariance matrix of the random intercepts and slopes with

elements

Dk =

D00k D01k

D10k D11k


and D11.0k = D11k −D10kD−1

00kD01k is the variance of the conditional distribution of β1ik|β0ik. We are

particularly interested in the correlation

ρk =
D01k

(D00kD11k)1/2 = γk

√
D00k

D11k

between the random intercepts and slopes. The grand mean intercept µ1 is forced equal to zero

µ1 ≡ 0,

first because the data is centered and second because it greatly improves convergence of the Markov

chain Monte Carlo (MCMC) algorithms. We add y back into our inferences when we report intercept

estimates. The centering in time changes the meaning of the intercepts (the average deviation from

the grand mean y at the mean follow-up time t. We transform parameters back to time centered at

ti1 = 0 for inferences in the paper. For example, random intercepts β ∗
0ik are transformed using the

following equation: β ∗
0ik = β0ik −β1ikt. The priors are

µ2 ∼ N(5.4161,0.804719)

µ3 ∼ N(−0.4462871,0.804719)

µ4 ∼ N(−0.8,0.36)

µ5 ∼ N(0,9)

µ6 ∼ N(1.1,0.49)
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σ1 ∼ HN(18.7997121)

σ2 ∼ HN(0.6266571)

σ3 ∼ HN(1.0026513)

σ
2
4 ∼ IG(2.5,0.1666667)

σ
2
5 ∼ IG(2.5,13.5)

σ6 ∼ HN(0.8773199)

σ7 ∼ HN(95.07715)

σ8 ∼ HN(5.42492)

σ9 ∼ HN(1.253314)

σ10 = u1 +u2

u1 ∼U(0,10)

u2 ∼U(0,10)

σ11 ∼ HN(0.06266571)

σ12 ∼ HN(0.06266571)

σ13 ∼ HN(0.06266571)

η12 ∼ N(0,0.25)

η13 ∼ N(0,0.25)

η23 ∼ N(0,0.25)

λ ∼ N(0,0.25).

2.5.3 Bayesian conditional autoregressive model specification

For the conditional autoregressive (CAR) model inspired by Betz-Stablein et al. (2013), we fit data

for each individual separately. We assumed GCC thicknesses in neighboring superpixels would be

more similar than in more distant superpixels. We defined the neighborhood structure, or adjacency
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matrix, such that superpixels sharing an edge are weighted as 1 and nonadjacent superpixels are

weighted as 0. For each patient i, we model spatial dependence in intercepts and slopes

y jk = α0 +α1t j +β0k +β1kt j + ε jk

ε jk ∼ N(0,σ2)

where α0 is the overall eye intercept; α1 is the overall eye slope; β0k is the superpixel-specific

spatial deviation from the overall eye intercept; β1k is the superpixel-specific spatial deviation from

the overall eye slope; and σ2 is the residual variance specific to patient i. The priors are

σ
2 ∼ IG(3,8)

α0 ∼ N(77,400)

α1 ∼ N(−0.45,0.5625)

β0k|β0−k,τ0 ∼ N(µ0k,σ
2
0k)

where

µ0k =

(
1

∑l wkl

)
∑

l
wklβ0l

σ
2
0k =

1
τ0 ∑l wkl

and β0−k represents all elements of β0 except β0k. When superpixel k and l are adjacent, that is, they

share an edge, wkl = 1; otherwise, wkl = 0. The parameter τ0 is the precision for the spatial intercept

process. For the slopes we have

β1k|β1−k,τ1 ∼ N(µ1k,σ
2
1k)
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where

µ1k =

(
1

∑l wkl

)
∑

l
wklβ1l

σ
2
1k =

1
τ1 ∑l wkl

τ0 ∼ IG(0.001,0.001)

τ1 ∼ IG(0.001,0.001).
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2.5.4 Supplementary tables

Table 2.3: Clinical and demographic characteristics of study sample. SD = standard deviation; MD
= mean deviation; IQR = interquartile range; GCC = ganglion cell complex.

Age (years)
Mean (SD) 66.9 (8.5)
Range 39.7 to 81.2

Gender (%)
Female 70 (63.1%)
Male 40 (36.0%)
Not reported 1 (0.9%)

Ethnicity (%)
Caucasian 59 (53.2%)
Asian 24 (21.6%)
African American 15 (13.5%)
Hispanic 13 (11.7%)

Baseline 10-2 MD (dB)
Median (IQR) −7.6 (−12.0 to −4.1)
Mean (SD) −8.9 (5.9)
Range −25.1 to −0.4

Baseline 24-2 MD (dB)
Median (IQR) −6.7 (−12.3 to −4.3)
Mean (SD) −8.7 (6.1)
Range −26.4 to −0.3

Follow up (years)
Mean (SD) 3.59 (0.44)
Range 1.94 to 4.20

Visits per Subject
Mean (SD) 7.3 (1.1)
Range 4 to 10

Baseline GCC (µm)
Mean (SD) 73.1 (20.1)
Range 37 to 154
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Table 2.4: Summary of the grand mean (10th, 90th percentile) of posterior means, posterior stan-
dard deviations (SD)s, estimator SDs, 95% Credible Interval Lengths (CrIL)s, root mean squared
error (RMSE), and 95% Credible Interval (CrI) coverage probability for intercepts and for slopes
for all 5,439 patient-superpixel combinations for simple linear regression (SLR), conditional au-
toregressive (CAR), and hierarchical spatial longitudinal (HSL) models for the simulation study.
The difference in posterior means for intercepts and slopes is defined as CAR or SLR minus HSL.
All ratios are defined as CAR or SLR over HSL and we report the median (10th, 90th percentile)
ratios. One patient had 4 repeated measures and infinite posterior variance and was omitted from
the posterior SD calculations, which represents a slight advantage on the scale for SLR over HSL.

Intercepts Slopes

Mean
10th

Percentile

90th

Percentile
Mean

10th

Percentile

90th

Percentile

Posterior Mean

HSL 72.91 51.36 100.57 –0.39 –1.17 0.19

CAR 72.89 51.40 100.34 –0.38 –1.01 0.14

SLR 72.89 51.23 100.78 –0.38 –1.36 0.48

Difference (CAR – HSL) –0.02 –0.56 0.48 0.01 –0.26 0.30

Difference (SLR – HSL) –0.02 –0.64 0.61 0.01 –0.33 0.36

Posterior SD

HSL 1.07 0.82 1.37 0.39 0.27 0.54

CAR 1.08 0.91 1.27 0.40 0.31 0.49

SLR 1.80 1.30 2.43 0.86 0.56 1.27

Ratio (CAR/HSL), median 1.01 0.83 1.26 1.02 0.75 1.47

Ratio (SLR/HSL), median 1.63 1.41 1.99 2.04 1.60 3.02

Estimator SD

HSL 0.95 0.71 1.24 0.28 0.16 0.41

CAR 1.13 0.88 1.42 0.45 0.34 0.59

SLR 1.44 1.08 1.88 0.68 0.47 0.98

Ratio (CAR/HSL), median 1.19 1.02 1.39 1.59 1.08 2.76

Ratio (SLR/HSL), median 1.50 1.30 1.75 2.32 1.60 4.15

95% CrIL

HSL 4.21 3.23 5.38 1.55 1.08 2.13

CAR 4.24 3.59 4.97 1.59 1.23 1.94

SLR 7.17 5.21 9.66 3.44 2.24 5.10
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Table 2.4: (continued)

Intercepts Slopes

Mean
10th

Percentile

90th

Percentile
Mean

10th

Percentile

90th

Percentile

Ratio (CAR/HSL), median 1.01 0.84 1.26 1.03 0.76 1.48

Ratio (SLR/HSL), median 1.66 1.44 2.00 2.09 1.63 3.06

RMSE

HSL 1.07 0.76 1.43 0.38 0.20 0.58

CAR 1.31 0.95 1.76 0.58 0.37 0.84

SLR 1.44 1.08 1.89 0.69 0.47 0.98

Ratio (CAR/HSL), median 1.23 1.02 1.48 1.54 1.08 2.36

Ratio (SLR/HSL), median 1.38 1.11 1.66 1.80 1.18 3.18

95% CrI Coverage Probability

HSL 0.949 0.90 0.99 0.947 0.87 1.00

CAR 0.882 0.77 0.97 0.810 0.60 0.95

SLR 0.951 0.92 0.98 0.951 0.92 0.98

Difference (CAR – HSL) –0.067 –0.16 0.01 –0.137 –0.31 –0.01

Difference (SLR – HSL) 0.002 –0.04 0.05 0.004 –0.06 0.08
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Table 2.5: The proportion of significant negative and positive slopes detected by simple linear
regression (SLR), conditional autoregressive (CAR), and hierarchical spatial longitudinal (HSL)
models by superpixel (SP) location from the simulation study. The proportions are given first for
all patient-superpixel slopes, second when the true slope is negative, and third when the true slope
is positive. The first row is the global summary across all superpixels.

All Patient-Superpixel Slopes

Significantly Negative Significantly Positive

SP HSL CAR SLR HSL CAR SLR

All 20.7% 24.4% 13.8% 1.8% 3.5% 3.3%

1.1 4.9% 8.9% 6.5% 0.2% 3.1% 3.1%

1.2 5.5% 12.1% 6.4% 0.4% 3.9% 3.4%

1.3 13.8% 17.0% 9.4% 1.5% 4.5% 3.8%

1.4 15.4% 19.0% 8.7% 0.0% 3.4% 1.8%

1.5 5.0% 18.6% 6.0% 0.2% 4.3% 3.0%

1.6 24.5% 28.5% 10.9% 0.1% 3.7% 1.5%

1.7 19.6% 29.0% 12.4% 1.3% 6.1% 2.9%

2.1 0.6% 6.5% 3.2% 0.7% 3.3% 4.0%

2.2 1.0% 10.3% 3.8% 0.0% 3.9% 2.7%

2.3 5.9% 16.8% 5.2% 0.1% 4.7% 2.9%

2.4 10.3% 20.2% 5.4% 1.8% 5.3% 3.3%

2.5 15.5% 23.5% 8.8% 3.6% 6.2% 3.5%

2.6 15.7% 27.2% 8.1% 2.3% 6.0% 3.0%

2.7 18.4% 28.4% 12.9% 4.0% 7.2% 4.8%

3.1 2.7% 8.0% 4.9% 0.1% 2.1% 2.3%

3.2 8.2% 13.5% 7.0% 1.0% 3.3% 3.9%

3.3 18.3% 23.2% 10.2% 0.4% 3.5% 2.9%

3.4 31.7% 30.9% 18.7% 4.9% 4.7% 4.4%

3.5 27.8% 32.7% 17.7% 3.9% 5.2% 4.1%

3.6 35.1% 37.4% 21.6% 4.7% 6.2% 4.2%

3.7 27.7% 34.1% 17.1% 5.5% 7.2% 5.2%

4.1 8.6% 9.5% 7.4% 0.0% 1.3% 2.0%

4.2 22.3% 18.9% 12.7% 0.5% 1.9% 2.6%

4.3 46.6% 35.0% 27.2% 1.9% 2.6% 2.4%
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Table 2.5: (continued)

All Patient-Superpixel Slopes

Significantly Negative Significantly Positive

SP HSL CAR SLR HSL CAR SLR

4.4 42.8% 41.7% 28.1% 0.5% 2.1% 2.1%

4.5 43.0% 45.8% 28.3% 0.8% 2.3% 1.7%

4.6 44.3% 43.3% 27.6% 3.0% 3.7% 3.2%

4.7 39.7% 38.5% 22.7% 1.7% 3.4% 2.3%

5.1 5.5% 7.9% 6.2% 0.1% 1.0% 2.3%

5.2 21.6% 16.5% 12.9% 0.9% 1.4% 2.5%

5.3 34.2% 30.1% 20.7% 3.3% 2.1% 3.7%

5.4 24.6% 33.5% 18.4% 3.8% 2.4% 5.0%

5.5 28.3% 37.9% 23.0% 5.0% 3.4% 5.8%

5.6 46.7% 44.5% 32.8% 2.7% 2.9% 3.0%

5.7 42.5% 42.7% 27.7% 2.1% 3.6% 2.8%

6.1 1.5% 5.3% 4.5% 0.5% 1.6% 3.6%

6.2 4.9% 8.9% 6.2% 1.7% 1.8% 4.7%

6.3 22.2% 21.0% 13.2% 0.8% 1.6% 2.6%

6.4 32.4% 29.4% 18.7% 2.7% 2.2% 3.5%

6.5 40.7% 38.7% 27.0% 2.6% 2.9% 3.0%

6.6 37.5% 40.0% 23.3% 2.4% 2.8% 2.7%

6.7 30.3% 33.7% 18.1% 3.4% 4.1% 4.0%

7.1 0.4% 3.5% 3.0% 0.4% 1.8% 3.5%

7.2 1.6% 6.9% 4.2% 0.6% 2.2% 3.5%

7.3 10.8% 13.7% 7.6% 1.3% 2.5% 3.5%

7.4 12.6% 20.2% 8.1% 2.2% 3.7% 4.1%

7.5 22.6% 27.6% 13.8% 1.8% 3.7% 4.1%

7.6 24.3% 29.2% 16.1% 4.1% 4.0% 4.8%

7.7 12.8% 25.9% 9.5% 2.1% 5.8% 4.3%
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Table 2.6: The proportion of significant negative and positive slopes detected by simple linear
regression (SLR), conditional autoregressive (CAR), and hierarchical spatial longitudinal (HSL)
models by superpixel (SP) location from the simulation study. The proportions are given first for
all patient-superpixel slopes, second when the true slope is negative, and third when the true slope
is positive. The first row is the global summary across all superpixels.

When True Slope is Negative

Significantly Negative Significantly Positive

SP HSL CAR SLR HSL CAR SLR

All 30.3% 33.2% 19.8% 0.0% 1.2% 0.7%

1.1 7.0% 12.3% 9.2% 0.0% 1.5% 0.9%

1.2 8.7% 16.6% 9.5% 0.0% 1.5% 0.8%

1.3 19.3% 21.8% 12.9% 0.2% 2.0% 0.8%

1.4 19.1% 21.6% 10.8% 0.0% 2.7% 0.8%

1.5 7.8% 24.8% 8.8% 0.0% 2.3% 1.1%

1.6 30.1% 32.3% 13.3% 0.0% 2.5% 0.6%

1.7 26.7% 37.8% 16.7% 0.0% 1.9% 0.6%

2.1 1.1% 9.0% 5.4% 0.1% 2.0% 1.6%

2.2 1.7% 13.2% 6.0% 0.0% 2.5% 1.3%

2.3 8.5% 21.1% 7.1% 0.0% 2.5% 1.2%

2.4 16.9% 29.1% 8.6% 0.1% 2.0% 0.9%

2.5 25.4% 33.8% 13.9% 0.0% 1.9% 0.8%

2.6 26.5% 38.3% 12.9% 0.1% 2.2% 1.0%

2.7 29.8% 42.3% 20.6% 0.1% 2.2% 0.6%

3.1 4.4% 10.5% 7.3% 0.0% 1.1% 1.1%

3.2 13.8% 19.2% 11.4% 0.0% 1.4% 1.0%

3.3 28.0% 31.8% 15.3% 0.0% 1.1% 0.6%

3.4 44.8% 41.9% 26.2% 0.0% 0.6% 0.3%

3.5 38.9% 44.0% 24.7% 0.1% 1.7% 0.7%

3.6 46.9% 48.2% 28.5% 0.2% 1.2% 0.5%

3.7 42.6% 49.7% 26.1% 0.0% 0.9% 0.5%

4.1 11.0% 11.2% 9.3% 0.0% 0.7% 1.0%

4.2 30.8% 24.0% 17.1% 0.0% 0.8% 0.7%

4.3 58.0% 42.6% 33.6% 0.0% 0.5% 0.3%
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Table 2.6: (continued)

When True Slope is Negative

Significantly Negative Significantly Positive

SP HSL CAR SLR HSL CAR SLR

4.4 52.1% 49.7% 34.2% 0.0% 0.4% 0.3%

4.5 53.3% 55.2% 35.0% 0.0% 0.9% 0.4%

4.6 56.2% 53.5% 35.1% 0.0% 0.7% 0.3%

4.7 49.9% 47.3% 28.3% 0.1% 0.9% 0.5%

5.1 7.5% 9.5% 8.2% 0.0% 0.7% 1.2%

5.2 32.7% 22.0% 18.9% 0.0% 0.4% 0.4%

5.3 46.6% 39.5% 28.1% 0.0% 0.4% 0.5%

5.4 36.3% 47.1% 27.0% 0.0% 0.2% 0.3%

5.5 43.3% 53.1% 35.0% 0.2% 0.7% 0.6%

5.6 58.1% 54.1% 40.7% 0.1% 0.4% 0.4%

5.7 55.3% 53.2% 36.0% 0.1% 1.0% 0.4%

6.1 2.7% 7.7% 7.4% 0.0% 0.5% 0.9%

6.2 8.1% 12.3% 9.8% 0.0% 0.6% 0.9%

6.3 32.2% 28.2% 18.9% 0.1% 0.8% 0.7%

6.4 44.2% 38.5% 25.3% 0.1% 0.6% 0.5%

6.5 50.6% 46.1% 33.4% 0.1% 0.8% 0.3%

6.6 50.0% 50.2% 30.7% 0.0% 0.6% 0.3%

6.7 41.4% 43.3% 24.5% 0.1% 0.9% 0.5%

7.1 0.7% 5.1% 4.9% 0.0% 0.9% 1.3%

7.2 3.2% 10.9% 7.5% 0.1% 1.0% 1.1%

7.3 17.5% 19.4% 11.8% 0.0% 1.0% 0.8%

7.4 19.0% 27.4% 11.9% 0.1% 1.3% 0.7%

7.5 33.3% 37.8% 20.1% 0.0% 0.6% 0.6%

7.6 37.7% 41.9% 24.8% 0.0% 1.0% 0.3%

7.7 20.3% 36.4% 14.7% 0.1% 1.8% 0.9%
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Table 2.7: The proportion of significant negative and positive slopes detected by simple linear
regression (SLR), conditional autoregressive (CAR), and hierarchical spatial longitudinal (HSL)
models by superpixel (SP) location from the simulation study. The proportions are given first for
all patient-superpixel slopes, second when the true slope is negative, and third when the true slope
is positive. The first row is the global summary across all superpixels.

When True Slope is Positive

Significantly Negative Significantly Positive

SP HSL CAR SLR HSL CAR SLR

All 0.4% 5.9% 1.0% 5.6% 8.5% 9.0%

1.1 0.3% 2.1% 0.9% 0.7% 6.4% 7.8%

1.2 0.2% 4.6% 1.1% 1.0% 8.0% 7.8%

1.3 0.3% 5.2% 0.9% 4.9% 10.9% 11.1%

1.4 2.0% 9.6% 1.1% 0.2% 6.0% 5.5%

1.5 0.1% 8.2% 1.3% 0.5% 7.7% 6.3%

1.6 1.5% 12.8% 1.5% 0.4% 8.3% 5.0%

1.7 0.4% 5.2% 0.8% 4.6% 17.4% 9.3%

2.1 0.0% 4.0% 1.1% 1.3% 4.6% 6.3%

2.2 0.1% 6.8% 1.3% 0.0% 5.6% 4.4%

2.3 0.1% 7.5% 1.0% 0.4% 9.3% 6.6%

2.4 0.5% 7.1% 0.8% 4.3% 10.1% 6.8%

2.5 0.4% 7.8% 1.0% 9.1% 12.7% 7.6%

2.6 0.5% 11.4% 1.3% 5.4% 11.3% 5.8%

2.7 0.3% 6.5% 0.8% 10.1% 15.2% 11.3%

3.1 0.3% 4.4% 1.5% 0.2% 3.5% 4.2%

3.2 0.3% 5.5% 0.7% 2.3% 5.9% 8.0%

3.3 1.2% 7.9% 1.2% 1.2% 7.9% 6.8%

3.4 0.7% 5.0% 0.9% 16.3% 14.4% 14.1%

3.5 0.3% 5.0% 0.6% 13.3% 14.1% 12.4%

3.6 0.4% 5.5% 1.0% 18.2% 20.7% 15.0%

3.7 0.3% 5.1% 0.3% 15.6% 18.7% 14.0%

4.1 0.7% 3.6% 1.1% 0.2% 3.6% 5.5%

4.2 0.5% 5.7% 1.4% 1.5% 4.7% 7.7%

4.3 0.5% 4.3% 1.1% 9.3% 11.0% 10.8%

44



Table 2.7: (continued)

When True Slope is Positive

Significantly Negative Significantly Positive

SP HSL CAR SLR HSL CAR SLR

4.4 0.4% 5.5% 0.6% 2.8% 10.1% 10.3%

4.5 1.2% 7.6% 1.0% 4.2% 8.0% 7.2%

4.6 1.2% 6.2% 0.5% 14.0% 14.8% 13.6%

4.7 0.7% 4.6% 1.1% 8.1% 12.9% 9.2%

5.1 0.5% 3.8% 1.3% 0.2% 1.9% 4.9%

5.2 0.4% 5.8% 1.4% 2.5% 3.3% 6.7%

5.3 0.5% 4.6% 0.7% 12.3% 6.8% 12.4%

5.4 0.1% 5.3% 0.5% 11.8% 6.8% 14.7%

5.5 0.5% 9.7% 0.7% 13.9% 8.2% 15.5%

5.6 1.0% 5.7% 0.9% 13.3% 13.0% 13.6%

5.7 0.8% 8.5% 0.7% 8.7% 11.9% 10.5%

6.1 0.0% 2.4% 0.9% 1.0% 2.9% 6.8%

6.2 0.3% 4.0% 0.9% 4.1% 3.4% 10.2%

6.3 0.6% 5.3% 0.9% 2.5% 3.3% 6.8%

6.4 0.5% 5.0% 0.8% 9.9% 6.7% 11.5%

6.5 0.7% 8.8% 0.9% 13.0% 11.4% 14.0%

6.6 0.5% 9.8% 1.2% 9.6% 9.4% 9.9%

6.7 0.4% 7.6% 0.7% 12.6% 12.8% 13.5%

7.1 0.0% 2.1% 1.3% 0.8% 2.7% 5.6%

7.2 0.1% 2.9% 1.1% 1.1% 3.4% 5.8%

7.3 0.4% 4.6% 1.1% 3.4% 5.0% 7.6%

7.4 0.2% 6.3% 0.9% 6.3% 8.2% 10.7%

7.5 0.3% 6.4% 0.7% 5.4% 10.1% 11.4%

7.6 0.3% 6.6% 0.5% 11.2% 9.5% 12.7%

7.7 0.4% 8.6% 1.0% 5.3% 12.5% 9.9%
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Table 2.8: The mean and percentile range (10th, 90th) of posterior means and standard deviations
(SD) of slopes by superpixel (SP) location from the analysis of data from the patient cohort for
simple linear regression (SLR), conditional autoregressive (CAR), and hierarchical spatial longi-
tudinal (HSL) models. The first row is the global summary across all superpixels.

Posterior Mean

HSL CAR SLR

SP Mean Range Mean Range Mean Range

All –0.39 (–1.19, 0.26) –0.41 (–1.40, 0.60) –0.41 (–1.80, 0.87)

1.1 –0.19 (–0.59, 0.14) –0.23 (–1.34, 0.66) –0.26 (–1.45, 0.79)

1.2 –0.18 (–0.66, 0.20) –0.26 (–1.38, 0.56) –0.21 (–1.52, 0.83)

1.3 –0.28 (–0.91, 0.29) –0.29 (–1.39, 0.85) –0.31 (–1.58, 1.10)

1.4 –0.25 (–0.69, 0.17) –0.32 (–1.32, 0.67) –0.29 (–1.54, 0.91)

1.5 –0.20 (–0.68, 0.23) –0.35 (–1.49, 0.71) –0.28 (–1.71, 0.96)

1.6 –0.52 (–1.26, –0.04) –0.47 (–1.97, 0.60) –0.55 (–2.22, 0.99)

1.7 –0.48 (–1.56, 0.45) –0.41 (–1.77, 0.98) –0.45 (–2.31, 1.05)

2.1 –0.05 (–0.27, 0.23) –0.16 (–1.03, 0.65) –0.11 (–1.21, 0.81)

2.2 –0.06 (–0.20, 0.12) –0.17 (–1.00, 0.72) –0.08 (–1.13, 1.03)

2.3 –0.15 (–0.40, 0.12) –0.23 (–1.11, 0.68) –0.17 (–1.30, 0.97)

2.4 –0.12 (–0.54, 0.29) –0.28 (–1.29, 0.75) –0.19 (–1.61, 1.08)

2.5 –0.24 (–0.90, 0.42) –0.32 (–1.22, 0.66) –0.27 (–1.57, 0.95)

2.6 –0.22 (–1.06, 0.37) –0.35 (–1.32, 0.60) –0.22 (–1.71, 0.87)

2.7 –0.38 (–1.57, 0.63) –0.41 (–1.75, 0.67) –0.42 (–2.54, 1.17)

3.1 –0.10 (–0.31, 0.13) –0.18 (–0.88, 0.61) –0.13 (–0.81, 0.89)

3.2 –0.12 (–0.51, 0.27) –0.20 (–1.12, 0.63) –0.16 (–1.44, 0.96)

3.3 –0.28 (–0.74, 0.24) –0.35 (–1.27, 0.52) –0.35 (–1.48, 0.86)

3.4 –0.47 (–1.14, 0.33) –0.43 (–1.48, 0.58) –0.47 (–2.16, 0.91)

3.5 –0.53 (–1.60, 0.34) –0.48 (–1.41, 0.65) –0.56 (–1.84, 0.91)

3.6 –0.53 (–1.49, 0.41) –0.50 (–1.48, 0.64) –0.54 (–1.99, 0.78)

3.7 –0.41 (–1.83, 0.64) –0.50 (–1.98, 0.67) –0.41 (–2.20, 1.09)

4.1 –0.16 (–0.43, 0.06) –0.20 (–0.94, 0.49) –0.16 (–1.07, 0.65)

4.2 –0.32 (–0.92, 0.15) –0.32 (–1.23, 0.46) –0.36 (–1.49, 0.76)

4.3 –0.75 (–1.75, 0.11) –0.58 (–1.52, 0.42) –0.79 (–2.27, 0.48)

4.4 –1.02 (–2.11, –0.17) –0.77 (–1.98, 0.17) –1.06 (–2.57, 0.28)
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Table 2.8: (continued)

Posterior Mean

HSL CAR SLR

SP Mean Range Mean Range Mean Range

4.5 –0.94 (–1.94, –0.06) –0.74 (–1.79, 0.43) –0.94 (–2.67, 0.42)

4.6 –0.80 (–1.77, 0.24) –0.67 (–1.98, 0.56) –0.80 (–2.09, 0.43)

4.7 –0.75 (–1.80, 0.08) –0.69 (–2.24, 0.41) –0.77 (–2.28, 0.32)

5.1 –0.14 (–0.38, 0.11) –0.17 (–0.86, 0.51) –0.13 (–0.91, 0.65)

5.2 –0.27 (–0.79, 0.21) –0.31 (–1.02, 0.46) –0.29 (–1.25, 0.55)

5.3 –0.59 (–1.63, 0.17) –0.55 (–1.30, 0.41) –0.67 (–1.93, 0.43)

5.4 –0.34 (–1.20, 0.55) –0.56 (–1.41, 0.36) –0.33 (–1.45, 0.75)

5.5 –0.36 (–1.70, 0.99) –0.58 (–1.80, 0.61) –0.30 (–1.94, 1.66)

5.6 –1.08 (–2.76, 0.07) –0.81 (–2.59, 0.53) –1.07 (–3.30, 0.67)

5.7 –1.02 (–2.39, 0.01) –0.90 (–2.51, 0.23) –1.09 (–2.97, 0.40)

6.1 –0.05 (–0.28, 0.26) –0.09 (–0.82, 0.70) –0.04 (–0.89, 1.03)

6.2 –0.12 (–0.60, 0.27) –0.17 (–0.96, 0.48) –0.12 (–1.05, 0.86)

6.3 –0.39 (–1.07, 0.18) –0.39 (–1.30, 0.46) –0.43 (–1.55, 0.61)

6.4 –0.60 (–1.36, 0.28) –0.54 (–1.37, 0.46) –0.66 (–1.71, 0.81)

6.5 –0.79 (–1.97, 0.20) –0.69 (–1.62, 0.41) –0.89 (–2.40, 0.39)

6.6 –0.74 (–1.65, 0.23) –0.74 (–1.87, 0.28) –0.84 (–2.46, 0.47)

6.7 –0.52 (–1.51, 0.40) –0.68 (–1.56, 0.45) –0.59 (–2.09, 1.03)

7.1 0.01 (–0.13, 0.16) –0.05 (–0.81, 0.57) 0.03 (–0.80, 0.84)

7.2 –0.07 (–0.42, 0.21) –0.09 (–0.97, 0.67) 0.01 (–0.91, 1.16)

7.3 –0.16 (–0.60, 0.24) –0.20 (–1.09, 0.66) –0.12 (–1.17, 1.13)

7.4 –0.33 (–0.93, 0.22) –0.34 (–1.32, 0.71) –0.32 (–1.68, 0.85)

7.5 –0.33 (–1.08, 0.41) –0.41 (–1.59, 0.69) –0.34 (–1.87, 1.01)

7.6 –0.33 (–1.53, 0.54) –0.44 (–1.41, 0.59) –0.30 (–1.79, 1.05)

7.7 –0.34 (–1.12, 0.41) –0.38 (–1.39, 1.20) –0.27 (–1.80, 1.58)
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Table 2.9: The mean and percentile range (10th, 90th) of posterior means and standard deviations
(SD) of slopes by superpixel (SP) location from the analysis of data from the patient cohort for
simple linear regression (SLR), conditional autoregressive (CAR), and hierarchical spatial longi-
tudinal (HSL) models. The first row is the global summary across all superpixels.

Posterior SD

HSL CAR SLR

SP Mean Range Mean Range Mean Range

All 0.40 (0.27, 0.56) 0.40 (0.23, 0.59) 0.77 (0.35, 1.29)

1.1 0.36 (0.31, 0.42) 0.46 (0.28, 0.68) 0.70 (0.30, 1.14)

1.2 0.37 (0.32, 0.43) 0.42 (0.25, 0.60) 0.79 (0.36, 1.31)

1.3 0.43 (0.35, 0.51) 0.42 (0.24, 0.61) 0.78 (0.38, 1.22)

1.4 0.38 (0.33, 0.43) 0.41 (0.24, 0.61) 0.81 (0.39, 1.19)

1.5 0.40 (0.35, 0.46) 0.42 (0.24, 0.61) 0.86 (0.36, 1.44)

1.6 0.44 (0.38, 0.51) 0.42 (0.25, 0.61) 0.99 (0.36, 2.04)

1.7 0.61 (0.51, 0.75) 0.46 (0.27, 0.68) 1.14 (0.52, 2.13)

2.1 0.27 (0.24, 0.29) 0.42 (0.25, 0.60) 0.63 (0.30, 1.05)

2.2 0.27 (0.24, 0.29) 0.39 (0.22, 0.55) 0.73 (0.35, 1.23)

2.3 0.30 (0.27, 0.34) 0.38 (0.21, 0.55) 0.80 (0.38, 1.38)

2.4 0.32 (0.28, 0.36) 0.38 (0.22, 0.54) 0.84 (0.37, 1.38)

2.5 0.35 (0.30, 0.41) 0.39 (0.22, 0.54) 0.78 (0.37, 1.32)

2.6 0.36 (0.31, 0.43) 0.39 (0.22, 0.56) 0.87 (0.39, 1.35)

2.7 0.56 (0.44, 0.69) 0.43 (0.24, 0.63) 0.98 (0.42, 1.62)

3.1 0.26 (0.23, 0.28) 0.41 (0.24, 0.60) 0.68 (0.33, 1.12)

3.2 0.33 (0.28, 0.39) 0.38 (0.22, 0.56) 0.65 (0.34, 1.09)

3.3 0.38 (0.32, 0.43) 0.38 (0.22, 0.56) 0.76 (0.39, 1.27)

3.4 0.41 (0.33, 0.48) 0.38 (0.21, 0.56) 0.74 (0.38, 1.17)

3.5 0.43 (0.35, 0.52) 0.38 (0.21, 0.56) 0.74 (0.35, 1.22)

3.6 0.45 (0.37, 0.54) 0.38 (0.22, 0.56) 0.76 (0.35, 1.38)

3.7 0.52 (0.42, 0.62) 0.41 (0.24, 0.59) 0.87 (0.38, 1.41)

4.1 0.26 (0.23, 0.29) 0.41 (0.24, 0.60) 0.62 (0.31, 0.98)

4.2 0.34 (0.28, 0.40) 0.38 (0.22, 0.56) 0.64 (0.28, 0.95)

4.3 0.41 (0.33, 0.50) 0.38 (0.22, 0.56) 0.70 (0.32, 1.23)

4.4 0.51 (0.41, 0.62) 0.39 (0.22, 0.56) 0.84 (0.46, 1.43)
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Table 2.9: (continued)

Posterior SD

HSL CAR SLR

SP Mean Range Mean Range Mean Range

4.5 0.54 (0.44, 0.65) 0.39 (0.23, 0.57) 0.91 (0.43, 1.44)

4.6 0.44 (0.34, 0.54) 0.39 (0.22, 0.56) 0.70 (0.30, 1.19)

4.7 0.41 (0.33, 0.49) 0.41 (0.25, 0.59) 0.71 (0.30, 1.25)

5.1 0.26 (0.24, 0.29) 0.41 (0.24, 0.61) 0.61 (0.31, 0.99)

5.2 0.33 (0.28, 0.40) 0.38 (0.22, 0.56) 0.60 (0.31, 0.99)

5.3 0.39 (0.32, 0.47) 0.38 (0.21, 0.55) 0.66 (0.34, 1.02)

5.4 0.47 (0.37, 0.58) 0.38 (0.22, 0.55) 0.74 (0.35, 1.30)

5.5 0.56 (0.43, 0.71) 0.39 (0.22, 0.56) 0.80 (0.42, 1.32)

5.6 0.48 (0.36, 0.60) 0.39 (0.22, 0.55) 0.72 (0.36, 1.14)

5.7 0.53 (0.41, 0.66) 0.42 (0.25, 0.59) 0.83 (0.39, 1.30)

6.1 0.28 (0.24, 0.33) 0.42 (0.25, 0.60) 0.60 (0.32, 1.00)

6.2 0.33 (0.28, 0.40) 0.39 (0.22, 0.56) 0.58 (0.32, 0.99)

6.3 0.38 (0.32, 0.46) 0.38 (0.22, 0.56) 0.68 (0.31, 1.20)

6.4 0.41 (0.32, 0.49) 0.39 (0.22, 0.54) 0.71 (0.36, 1.09)

6.5 0.47 (0.38, 0.58) 0.39 (0.23, 0.54) 0.74 (0.37, 1.16)

6.6 0.44 (0.36, 0.54) 0.39 (0.22, 0.56) 0.75 (0.37, 1.24)

6.7 0.47 (0.38, 0.59) 0.42 (0.25, 0.60) 0.86 (0.41, 1.39)

7.1 0.24 (0.22, 0.27) 0.45 (0.28, 0.64) 0.69 (0.32, 1.25)

7.2 0.30 (0.27, 0.34) 0.42 (0.24, 0.60) 0.72 (0.36, 1.24)

7.3 0.37 (0.31, 0.42) 0.41 (0.24, 0.59) 0.77 (0.34, 1.14)

7.4 0.41 (0.35, 0.48) 0.41 (0.24, 0.59) 0.86 (0.39, 1.34)

7.5 0.44 (0.37, 0.53) 0.41 (0.25, 0.59) 0.83 (0.35, 1.40)

7.6 0.50 (0.39, 0.61) 0.42 (0.25, 0.60) 0.81 (0.37, 1.37)

7.7 0.55 (0.46, 0.66) 0.46 (0.28, 0.67) 1.11 (0.45, 2.01)
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2.5.5 Supplementary figures

Figure 2.6: Histograms of mean squared error (MSE) (upper left), squared bias (upper right), and
estimator variance (lower left) for patient-superpixel intercepts comparing simple linear regression
(SLR), conditional autoregressive (CAR), and hierarchical spatial longitudinal (HSL) models pooled
across all superpixels from the simulation study. Mean squared error is squared bias plus estimator
variance; the x-axis values are directly comparable in all three plots. Lower MSE indicates better
model performance. Counts of large values omitted due to truncating the x-axis at 4: MSE (HSL:
75; CAR: 271; SLR: 377), squared bias (HSL: 12; CAR: 68; SLR: 0), and estimator variance (HSL:
4; CAR: 25; SLR: 368).
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Figure 2.7: Heat map of the average estimator standard deviations (SD) of intercepts (top) and slopes
(bottom) by superpixel location for hierarchical spatial longitudinal (HSL) (left), conditional autore-
gressive (CAR) (middle), and simple linear regression (SLR) (right) models from the simulation
study.
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Figure 2.8: Heat map of the average root mean squared error (RMSE) of intercepts (top) and slopes
(bottom) by superpixel location for hierarchical spatial longitudinal (HSL) (left), conditional autore-
gressive (CAR) (middle), and simple linear regression (SLR) (right) models from the simulation
study.
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Figure 2.9: Heat map of the average 95% Credible Interval Length of intercepts (top) and slopes
(bottom) by superpixel location for hierarchical spatial longitudinal (HSL) (left), conditional autore-
gressive (CAR) (middle), and simple linear regression (SLR) (right) models from the simulation
study.
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Figure 2.10: Heat map of the 95% coverage probability minus 0.95 of intercepts (top) and slopes
(bottom) by superpixel location for hierarchical spatial longitudinal (HSL) (left), conditional autore-
gressive (CAR) (middle), and simple linear regression (SLR) (right) models from the simulation
study.
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Figure 2.11: Heat map of the percentage of significant negative slopes (top) and significant positive
slopes (bottom) detected by hierarchical spatial longitudinal (HSL) (left), conditional autoregressive
(CAR) (middle), and simple linear regression (SLR) (right) models when the true slope is positive
from the simulation study.
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Figure 2.12: Scatter plots of slope posterior means from conditional autoregressive model (CAR, y-
axis) against those from the hierarchical spatial longitudinal model (HSL, x-axis) in each superpixel
for the patient cohort data. The CAR posterior means are more variable than the HSL means in tem-
poral superpixels. There is noticeable shrinkage towards the population mean in the HSL estimates
in the temporal regions. Each plot is square with its own axes with the x- and y- axes having the
same range. The red dashed line represents the x = y diagonal.
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Figure 2.13: Scatter plots of slope posterior means from simple linear regression model (SLR, y-
axis) against those from the hierarchical spatial longitudinal model (HSL, x-axis) in each superpixel
for the patient cohort data. The SLR posterior means are much more variable than the HSL means.
There is noticeable shrinkage towards the population mean in the HSL estimates in the peripheral
superior and temporal regions. Each plot is square with the x- and y- axes having the same range
across all 49 superpixels. The red dashed line represents the x = y diagonal.

57



Figure 2.14: Scatter plots of slope posterior means from conditional autoregressive model (CAR, y-
axis) against those from the hierarchical spatial longitudinal model (HSL, x-axis) in each superpixel
for the patient cohort data. The CAR posterior means are more variable than the HSL means in tem-
poral superpixels. There is noticeable shrinkage towards the population mean in the HSL estimates
in the temporal regions. Each plot is square with the x- and y- axes having the same range across all
49 superpixels. The red dashed line represents the x = y diagonal.
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Figure 2.15: The proportion of significant negative slopes for each superpixel detected by hierarchi-
cal spatial longitudinal (HSL), conditional autoregressive (CAR), and simple linear regression (SLR)
for the data from the patient cohort. The asterisk on the CAR bar indicates a significant p-value from
McNemar’s tests comparing proportions between HSL and CAR and similarly for the asterisk on the
SLR bar for the comparison between HSL and SLR.
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Figure 2.16: The proportion of significant positive slopes for each superpixel detected by hierarchical
spatial longitudinal (HSL), conditional autoregressive (CAR), and simple linear regression (SLR) for
the data from the patient cohort. The asterisk on the CAR bar indicates a significant p-value from
McNemar’s tests comparing proportions between HSL and CAR and similarly for the asterisk on
the SLR bar for the comparison between HSL and SLR.
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CHAPTER 3

A spatially varying hierarchical random effects model for

longitudinal macular structural data in glaucoma patients

3.1 Introduction

Glaucoma damages the optic nerve and is the second leading cause of blindness worldwide (King-

man, 2004). As there is no cure, timely detection of disease progression is imperative to identify

eyes at high risk of or demonstrating early progression so that timely treatment can be provided

and further visual loss prevented. Ophthalmologists assess glaucomatous progression by monitoring

functional changes in visual fields or structural changes in the retina over time. Visual field (VF)

measurements assess functional changes by measuring how well eyes are able to detect light. Re-

peatedly measuring the thickness of retinal layers, such as macular ganglion cell complex (GCC),

with optical coherence tomography (OCT) allows ophthalmologists to evaluate central retinal (mac-

ular) structural change over time. Both VF and OCT obtain data from multiple locations across the

retina. In current practice, clinicians detect progression by modeling functional or structural changes

over time using simple linear regression (SLR) for each subject-location combination (Gardiner and

Crabb, 2002; Nouri-Mahdavi et al., 2007; Tatham and Medeiros, 2017; Thompson et al., 2020a).

SLR does not accommodate the hierarchical structure that patients are members of a population and

ignores the spatial arrangement of the data. For analyzing VF data at individual locations, Monte-

sano et al. (2021) introduce a hierarchical model accounting for location and cluster levels fit to data

from a single eye, Betz-Stablein et al. (2013) and Berchuck et al. (2019) present models accounting

for spatial correlation fit to data from a single eye, and Bryan et al. (2017) describe a two-stage
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approach to fit a hierarchical model taking subject, eye, hemifield (one half of the VF), and location

into account. While these methods exist for VF data, they cannot be directly applied to structural

macular data as the measurement processes are markedly different. Key features of VF data that

differ from structural data include censoring, heteroskedasticity, and a different underlying spatial

structure.

We analyze data from the Advanced Glaucoma Progression Study (AGPS), a cohort of eyes with

moderate to severe glaucoma. To monitor glaucoma progression, we model longitudinal macular

GCC thickness measurements over a square 6×6 grid of 36 superpixels (roughly a 20°×20° area)

for all subjects. For a single subject, the intercepts, slopes, and residual standard deviations (SD)

vary spatially across superpixel locations. Mohammadzadeh et al. (2021) model GCC data from each

superpixel separately and compare different Bayesian hierarchical models, preferring a model with

random intercepts, random slopes, and random residual SDs. Our desired model needs to account

for both the hierarchical structure of the data and the spatial correlations in both the population-

and subject-level intercepts, slopes, and residual SDs and in the residuals. The parameters at the

population level summarize information from the whole cohort at each superpixel location. Addi-

tional difficulties in modeling GCC data arise from the amount and sources of measurement error.

Thickness measurements are reliant on automated segmentation algorithms, which may introduce

spatially correlated errors unique to each imaging scan. We show that including visit effects to ac-

count for visit-specific errors reduces error in predicting future thickness measurements and greatly

improves model fit. In this study, we motivate and develop the Spatially varying Hierarchical Ran-

dom Effects with Visit Effects (SHREVE) model, a novel Bayesian hierarchical model with spatially

varying population- and subject-level coefficients and SDs, accounting for spatial and within-subject

correlation, between-subject variation, and spatially correlated visit-specific errors.

For the AGPS data, we allow the intercepts, slopes, and residual SDs to vary over space. Vary-

ing coefficient models are natural extensions to classical linear regression and extensively used in

imaging studies and the analysis of spatial data (Hastie and Tibshirani, 1993; Ge et al., 2014; Zhu

et al., 2014a; Liu et al., 2019), where regression coefficients are allowed to vary smoothly as a func-
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tion of one or more variables, and in our case, over spatial locations. Regression coefficients may

vary over space in a discrete fashion as with areal units or in a continuous manner as with point-

referenced data (Gelfand et al., 2010). In the context of imaging studies with grid data, a conditional

autogressive (CAR) model (Gössl et al., 2001; Penny et al., 2005; Ge et al., 2014) or a Gaussian

process (GP) model (Zhang et al., 2016; Castruccio et al., 2018) may be assumed for discrete or

continuous spatial variation, respectively. In a GP model, coefficients from any finite set of locations

has a multivariate normal distribution with a mean function and valid covariance function specify-

ing the expected value at each location and covariance between coefficients at any two locations,

respectively (Gelfand et al., 2010).

Gelfand et al. (2003) first proposed the use of GPs to model spatially varying regression coef-

ficients and multivariate Gaussian processes (MGP) for multiple spatially varying regression coef-

ficients in a hierarchical Bayesian framework. We can assign GP priors at different levels in the

hierarchy, which allows for flexible specification in hierarchical models (Gelfand and Schliep, 2016;

Kim and Lee, 2017). In our case with three components, spatially varying intercepts, slopes, and

residual SDs, we employ MGPs to model the correlations between components within a location

and across locations at both the subject and population level. MGPs are specified with a multivariate

mean function and cross-covariance function, defining the covariance between any two coefficients

at any two locations (Banerjee et al., 2014). For simplicity and computational convenience, separa-

ble cross-covariance functions are often used where components share the same spatial correlation

and components within a location share a common covariance matrix, and the resulting covariance

matrix is the Kronecker product of a covariance matrix between components and a spatial correlation

matrix (Banerjee et al., 2014). Assuming all components share a common spatial correlation struc-

ture is likely inadequate in practice, as processes may be very different from each other in nature.

Instead, we propose a nonseparable cross-covariance function to allow each process to have its own

spatial correlation function.

Constructing valid cross-covariance models is a challenging task for nonseparable MGPs. Gen-

ton and Kleiber (2015) review approaches to construct valid cross-covariance functions for MGPs in-
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cluding the linear model of coregionalization (Wackernagel, 2013; Schmidt and Gelfand, 2003) and

kernel and covariance convolution methods (Ver Hoef and Barry, 1998; Gaspari and Cohn, 1999).

For univariate GPs, the Matérn class of covariance models is widely used, featuring a smoothness pa-

rameter that defines the level of mean square differentiability and a lengthscale parameter that defines

the rate of correlation decay (Guttorp and Gneiting, 2006). Gneiting et al. (2010) and Apanasovich

et al. (2012) introduce multivariate Matérn models and provide necessary and sufficient conditions to

allow the cross-covariance functions to have any number of components (processes) while allowing

for different smoothnesses and rates of correlation decay for each component. We propose such a

multivariate Matérn construction to model our spatially varying intercepts, slopes, and residual SDs,

so that each component is allowed its own spatial correlation structure.

In Section 3.2, we describe the motivating data. In Section 3.3, we briefly review GPs and de-

velop the SHREVE model. In Section 3.4, we apply the SHREVE model to GCC data and compare

its performance to several nested models lacking visit effects or other model components. We give

a concluding discussion in Section 3.5.

3.2 Ganglion cell complex data

This section highlights data characteristics that motivate model development. We provide details on

the imaging procedure and study subjects.

3.2.1 Macular optical coherence tomography

Macular OCT has emerged as a standard imaging modality to assess changes in retinal ganglion

cells (RGCs) (Mohammadzadeh et al., 2020a). As glaucoma is characterized by progressive loss

of RGCs, clinicians use macular OCT as a means to monitor changes in retinal thickness over time

(Weinreb and Khaw, 2004). Macular GCC thickness, measured in microns (µm), has been shown to

be more efficient for detecting structural loss regardless of glaucoma severity compared to measures

of other macular layers (Mohammadzadeh et al., 2022a). Glaucomatous damage to the macular area,
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reflected in thinning of GCC, has been associated with VF loss (Mohammadzadeh et al., 2020b).

Visual field loss occurs when part(s) of the peripheral vision is (are) lost.

3.2.2 Advanced Glaucoma Progression Study

We analyze data from the AGPS (Mohammadzadeh et al., 2021, 2022a,b), an ongoing longitudinal

study at the University of California, Los Angeles. The study adhered to the tenets of the Decla-

ration of Helsinki and conformed to Health Insurance Portability and Accountability Act policies.

All patients provided written informed consent at the time of enrollment in the study. The data in-

clude GCC thickness measurements from 111 eyes with at least 4 OCT scans and a minimum of

approximately 2 years of observed follow-up time, up to 4.25 years from baseline. Subjects returned

approximately every 6 months for imaging using Spectralis OCT (Heidelberg Engineering, Heidel-

berg, Germany). This device acquires 30°× 25° volume scans centered on the fovea, the center of

the macula represented as a white dot in Figure 3.1 and as a black dot in subsequent figures (Mo-

hammadzadeh et al., 2020a). We used built-in software, the Glaucoma Module Premium Edition,

to automatically segment macular layers of interest. GCC thickness is calculated by summing the

thicknesses of the retinal nerve fiber layer, inner plexiform layer, and ganglion cell layer. The poste-

rior pole algorithm of the Spectralis reports layer thickness averaged over pixels within a superpixel

with superpixels forming an 8 × 8 grid of locations, as shown in Figure 3.1. We display superpixels

in right eye orientation with superpixels labeled as row number 1-8, a dot, then column number 1-8.

Superpixels in rows 1-4 are located in the superior hemiretina and rows 5-8 are located in the inferior

hemiretina; the temple and nose are to the left and right, respectively. Left eyes are mirror images

of right eyes and are flipped left-right for presentation and analysis. Because there is substantial

measurement noise in the outer ring of superpixels, rows 1 and 8 and columns 1 and 8 (Miraftabi

et al., 2016), we analyze only the central 6 × 6 superpixels as shown in Figure 3.1.
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Figure 3.1: Visualization of the 8× 8 grid of superpixels and labels from the Spectralis posterior
pole algorithm. The inner 36 superpixels included in the analysis are shaded in gray and delineated
with thicker lines. Superpixels are shown in right eye orientation where rows 1-4 are located in the
superior hemiretina and rows 5-8 are located in the inferior hemiretina; the temple and nose are to
the left and right, respectively. Superpixels labels are row number 1-8, a dot, then column number
1-8. The black dot indicates the foveal center for visual orientation.

3.2.3 Data exploration

Let observation yi jk be the GCC thickness measure in µm of subject i = 1, . . . ,n at visit j = 1, . . . ,Ji,

where Ji is the number of visits for subject i, in superpixel k = 1, . . . ,K observed at time ti j, with ti1 =

0 for all subjects. Location sk = (rowk,columnk) denotes the spatial coordinates of superpixel k in

two-dimensional space. Initially, we remove any zero thickness values yi jk = 0, which indicate errors

of measurement. We define a profile for subject i in superpixel k as the sequence of observations

(ti j,yi jk) from visits j = 1, . . . ,Ji and plot profiles of GCC thickness against time by connecting

consecutive observations with line segments. For all subjects and superpixels, we plotted data in

profile plots, which identified a number of outliers. We applied a semi-automated algorithm to

identify pairs of consecutive points that have large differences in GCC thicknesses between the

consecutive visits. For each subject and superpixel, we calculated the consecutive-visit absolute

differences |yi jk − yi( j−1)k| and the consecutive-visit centered-slopes |yi jk − yi( j−1)k/(ti j − ti( j−1))+

0.5|, which were centered around −0.5 µm/year, the mean of slopes across all pairs of consecutive
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Figure 3.2: Profile plots of ganglion cell complex (GCC) thickness measurements for 10 subjects
across 36 superpixels against follow-up time in years since baseline visit. Each color represents a
different subject. These profiles illustrate the variability in baseline GCC thickness across the 10
subjects within superpixels, with a range within a superpixel of up to 84 µm. The average baseline
thicknesses over subjects vary across superpixels, generally increasing from the temporal to nasal
regions (left to right).
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visits for all subjects and superpixels. We flagged pairs of observations (yi jk,yi( j−1)k) with absolute

centered-slopes greater than 24 µm/year with absolute differences greater than 5 µm as candidates

for removal. We calculated the sum of absolute visit differences for each profile ∑
Ji
j=2 |yi j − yi( j−1)k|

and removed the point that resulted in the largest reduction in the sum of absolute visit differences.

For each profile, if two or more observations were identified as outliers, we removed all remaining

observations as well.

Eyes enrolled in the AGPS had moderate to severe glaucoma, thus exhibit a range of glaucoma-

tous damage. Figure 3.2 shows profile plots after outlier removal of GCC thickness in µm against

time in years since baseline visit for 10 subjects at all 36 superpixels. Baseline GCC varies across

subjects within superpixels, with maximum differences in thicknesses between any of the AGPS

subjects ranging from 40 to 100 µm across superpixels. From Figure 3.2, we note that intercepts

are spatially correlated and repeated thickness measurements for each subject at each superpixel are

highly correlated. The leftmost, temporal superpixels tend to have lower baseline thicknesses and

smaller spread than rightmost, nasal superpixels and nasal superpixels show more variability both

within and between subjects.

Figure 3.3 shows heat maps of GCC measurements over time for four subjects. Each row repre-

sents a different subject and each block of 6×6 superpixels displays the GCC thicknesses observed

in rows 2-7 and columns 2-7 at the labeled follow-up time above the block. The range of baseline

thicknesses across superpixels varies across subjects, with the first subject’s baseline values ranging

between 53 and 82 µm, while the third subject’s baseline values range between 59 and 115 µm.

Changes in GCC thickness over time also differ between Subject 1 and Subject 3. Subject 3 has

noticeable decrease in thickness, thinning over time in many superpixels (e.g., 2.7, 3.3, and 4.3),

while Subject 1 is more stable over time. Within subjects, there is a range of baseline thicknesses

and changes over time across superpixels. These data characteristics motivate the need to model

spatially varying random intercepts and slopes. Analyzing longitudinal GCC data separately in each

superpixel, Mohammadzadeh et al. (2021) show that models with subject-specific residual SDs per-

form better than models with fixed residual SDs. Figure 3.4 shows heat maps of estimated slopes
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Figure 3.3: Heat maps of ganglion cell complex (GCC) thickness measurements (µm) across 8 visits
for 4 subjects for all 36 superpixels (top left 2.2 to bottom right 7.7). Each row is a different subject.
The follow-up time of each visit is labeled at the top of each block. All maps share a common color
scale for comparison. GCC measurements are highly correlated within subjects over time, illustrated
by similar color patterns over time. The color patterns also highlight the spatial correlation between
locations. GCC measurements are highly variable across subjects, as seen by the difference in color
shades. Over time, the third row subject has noticeable thinning in many superpixels while the other
subjects are more stable in comparison.
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(b) Residual SDs

Figure 3.4: Heat maps of (a) estimated slopes (µm/year) and (b) residual standard deviations (SD)
(µm) for the same 4 subjects as in Figure 3.3 using simple linear regressions of ganglion cell complex
(GCC) thicknesses on time since baseline in each superpixel. Each column is a different subject.
Estimated slopes appear spatially correlated within subjects. Subject 3 has particularly steep negative
slopes in the upper half of the eye, while Subjects 1 and 2 have more stable slopes across superpixels.
The estimated residual SDs vary within subject by superpixel location. Subjects 1 and 4 have more
uniform residual SDs across locations while Subjects 2 and 3 have some superpixels with much
higher residual SDs.
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(top) and residual SDs (bottom) from SLR of GCC thickness on time since baseline in each super-

pixel for the same four subjects as in Figure 3.3, where each column is a different subject. Estimated

slopes and residual SDs appear spatially correlated.

Bryan et al. (2015) model errors that affect all locations at a visit in glaucomatous VFs as global

visit effects. Similar to VF data, we suspect there are spatially correlated errors in GCC measure-

ments. We speculate these effects arise from the imaging process and segmentation errors that affect

multiple locations. To better visualize these effects, we plot empirical residuals yi jk − yik, where

yik = ∑yi jk/Ji. Empirical residual profile plots allow us to better see time trends within and across

superpixels. Figure 3.5 provides an example of correlated errors across superpixels, where there is a

noticeable increase at four years of follow-up. It is unlikely that such an increase is due to thicken-

ing of GCC, but rather due to errors in the imaging process or layer segmentation. Figure 3.5 shows

spatially correlated slopes noticeable in the region from superpixels 3.4 to 3.7 down to 6.4 to 6.7.

3.2.4 Modeling goals

We are interested in estimating individual rates of change at the superpixel level and predicting fu-

ture GCC observations. To this end, we explicitly model the correlations between intercepts, slopes,

and residual SDs at both the population and subject level. The intercepts are correlated with the mag-

nitude of the slopes; as the baseline thickness increases, rates of change are faster (Rabiolo et al.,

2020). Healthier eyes tend to have more thickness at baseline, with more potential for progression

but also more opportunities for clinicians to intervene and prevent vision loss. Accounting for the

relationships between measurement variability and either baseline thickness or slopes may help to

better estimate the rates of progression and elucidate whether increased noise is associated with

worsening disease. As glaucoma progresses, the ganglion cell and inner plexiform layers, two sub-

layers of GCC, show increased measurement variability especially as measures tend towards their

floor (Miraftabi et al., 2016).
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Figure 3.5: Empirical residual profile plots (superpixel mean subtracted from ganglion cell complex
(GCC) thickness) for a single subject across 36 superpixels. There is an increase at four years for
many superpixel locations suggesting visit-specific spatially correlated errors.
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3.3 Methods

This section reviews the MGP priors we use to model the spatially varying visit effects and coeffi-

cients, constructs the SHREVE model, defines the priors, and introduces model comparison metrics.

3.3.1 Gaussian processes

A Gaussian spatial process (Williams and Rasmussen, 2006; Bogachev, 1998; Banerjee et al., 2014)

is a stochastic process {z(s) : s ∈ Rd} in which any finite collection of real-valued random vari-

ables {z(s1), . . . ,z(sK)} is distributed as multivariate normal for every set of K ≥ 1 spatial locations

s1, . . . ,sK ∈ Rd , for dimension d ≥ 1; we work only with d = 2. We denote a GP as

z(s)∼ GP(m(s),C(s,s′)),

with mean function m(s) = E[z(s)] and covariance function C(s,s′) = cov[z(s),z(s′)] for two lo-

cations s and s′, which may be the same or distinct. The covariance function C(s,s′) models how

similar outcomes z(s) and z(s′) are. We assume stationary and isotropic covariance functions C(s,s′).

Stationarity means C(s,s′) depends only on the spatial separation vector s− s′ between points, and

isotropy means C(s,s′) depends only on the distance between locations h = ∥s− s′∥, where ∥ · ∥ is

the Euclidean norm, i.e., C(s,s′)≡C(h).

We use Matérn covariance functions of the form σ2M(h|ν , ℓ), where σ2 > 0 is the variance and

M(h|ν , ℓ) is the Matérn correlation function (Matern, 1986)

M(h|ν , ℓ) = 21−ν

Γ(ν)
(
√

2νh/ℓ)νKν(
√

2νh/ℓ),

where ν > 0 is the smoothness parameter, ℓ > 0 is the lengthscale, and Kν is the modified Bessel

function of the second kind of order ν (Abramowitz and Stegun, 1964). In general, the process

is m times mean square differentiable if and only if ν > m (Williams and Rasmussen, 2006). The

lengthscale parameter ℓ controls how quickly the correlation decays as a function of distance with
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larger ℓ indicating slower correlation decay.

3.3.2 Multivariate Gaussian processes

Let z(s) = (z1(s), . . . ,zP(s))T be a P× 1 stochastic process where each component zp(s) for p =

1, . . . ,P is a scalar random variable at location s. Then z(s) is an MGP if any random vector

(z(s1)
T , . . . ,z(sK)

T )T from any set of K ≥ 1 locations s1, . . . ,sK has a multivariate normal distri-

bution. The MGP is an extension of the univariate GP where the random variables z(s) are vector-

valued. We denote an MGP as

z(s)∼ MGP(m(s),C(s,s′)),

with P×1 mean vector m(s) and P×P cross-covariance matrix function C(s,s′) = cov[z(s),z(s′)] =

{Cpq(s,s′)}P
p,q=1. Functions Cpq(s,s′) = cov[zp(s),zq(s′)], for p,q = 1, . . . ,P, are called marginal

covariance functions when p = q and cross-covariance functions when p ̸= q.

We want to allow each marginal process to have its own spatial correlation function. Each

marginal covariance function Cpp is modeled with a Matérn correlation function, Cpp(h) =

σ2
ppM(h|νpp, ℓpp), for p = 1, . . . ,P, with variance parameter σ2

pp > 0, smoothness parameter νpp,

and lengthscale parameter ℓpp. We model each cross-covariance function Cpq with a Matérn cor-

relation function, Cpq(h) = σpqM(h|νpq, ℓpq), for 1 ≤ p ̸= q ≤ P, with covariance parameter σpq,

smoothness parameter νpq, and lengthscale parameter ℓpq. We assume marginal covariance Cpp and

cross-covariance Cpq functions to be Matérn following sufficient conditions on parameters νpp, νpq,

ℓp, ℓpq, σpp, and σpq that result in a nonnegative definite cross-covariance function (Apanasovich

et al., 2012). We use the simplest parameterization, where no additional parameters beyond σ2
pp, νpp,

and ℓpp are required to model the smoothness and lengthscale parameters for the cross-covariances.
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The cross-covariance function C(s,s′) is nonnegative definite when

νpq(νpp,νqq) =
νpp +νqq

2
,

ℓpq(ℓp, ℓq) =

√
2

ℓ−2
p + ℓ−2

q
, (3.1)

σpq(νpp,νqq, ℓp, ℓq,σpp,σqq,Rpq) = σppσqq
ℓpq(ℓp, ℓq)√

ℓpℓq

Γ(νpq(νpp,νqq))

Γ1/2(νpp)+Γ1/2(νqq)
Rpq, (3.2)

where R= {Rpq} is a nonnegative definite P×P correlation matrix with diagonal elements equal to 1

and nondiagonal elements in the closed interval [−1, 1]. The cross-correlation ρpq = σpq/σppσqq =

corr(zp(s),zq(s)) is the correlation between zp(s) and zq(s).

3.3.3 Model specification for a spatially varying hierarchical random effects with visit effects

model

The proposed SHREVE model allows random intercepts, slopes, and log residual SDs to be corre-

lated within and across locations while accounting for within-subject variability and spatially corre-

lated visit-specific errors. For ease of notation, we specify the model assuming no missing data but

note that complete data is not a requirement. We model yi jk as

yi jk = α0k +α1kti j +β0ik +β1ikti j + γi jk + εi jk

εi jk|τ2
ik ∼ N(0,τ2

ik),

logτik = φk +σik,

where α0k, α1k, and φk are the superpixel k population-level intercept, slope, and log residual SD

processes, respectively, β0ik, β1ik, and σik are subject-specific intercept, slope, and log residual SD

processes, respectively, in superpixel k and γi jk is the visit effect process at location sk for subject i

visit j. Figure 3.6 presents the model graphically.

Let αk = (α0k,α1k,φk)
T denote the population-level (PL) multivariate spatial process, which
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Figure 3.6: Plate diagram of the proposed model. Blue nodes are latent variables, red nodes are
observed variables, gray nodes are deterministic nodes, GP stands for Gaussian process, and MGP
stands for multivariate Gaussian process. Plates are used to group variables repeated together over
subjects, time, and space, where i = 1, . . . ,N indexes subjects, j = 1, . . . ,Ji indexes subject i’s visits,
and k = 1, . . . ,K indexes superpixel locations.

we model with MGP αk|µ,θα ∼ MGP(µ,Cα(sk,sk′)), with mean vector µ= (µ0,µ1,µφ )
T and PL

cross-covariance matrix function Cα(sk,sk′) with hyperparameters θα = {σα,pp,να,p, ℓα,p,Rα , p ∈
{1,2,3}}. The parameters µ0, µ1, and µφ are the global grand mean intercept, slope, and log resid-

ual SD, respectively. PL marginal covariance functions Cα,pp(sk,sk′) = σ2
α,ppM(h|να,p, ℓα,p), for

p = 1, ...,3 have PL marginal variances σ2
α,pp, PL smoothness parameters να,p, and PL length-

scales ℓα,p. PL cross covariance functions Cα,pq(sk,sk′) = σα,pqM(h|να,pq, ℓα,pq) have covari-

ance parameters σα,pq between processes p and q, smoothness parameters να,pq, and length-

scales ℓα,pq. Here h = ∥sk − sk′∥ is the distance between two superpixel locations, σα,pq ≡
σpq(να,p,να,q, ℓα,p, ℓα,q,σα,pp,σα,qq,Rα,pq) is a function of σα,pp and σα,qq as defined in (3.2),

and ℓα,pq ≡ ℓpq(ℓα,p, ℓα,q) is a function of ℓα,p and ℓα,q as in (3.1). The 3× 3 cross-correlation

matrix Rα is an unknown symmetric matrix with 1’s on the diagonal and with (p,q)th element the
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correlation parameter Rα,pq = Rα,qp.

Similarly, we model random effects (RE) βik = (β0ik,β1ik,σik)
T as βik|θβ ∼

MGP(0,Cβ (sk,sk′)), with mean vector 0 and cross-covariance matrix function Cβ (sk,sk′)

with hyperparameters θβ = {σβ ,pp,νβ ,p, ℓβ ,p,Rβ , p ∈ {1,2,3}}. RE marginal covariance

functions Cβ ,pp(sk,sk′) = σ2
β ,ppM(h|νβ ,p, ℓβ ,p) for p = 1, ...,3 have RE marginal vari-

ances σ2
β ,pp, smoothness parameters νβ ,p, and lengthscales ℓβ ,p. RE cross-covariance

functions Cβ ,pq(sk,sk′) = σβ ,pqM(h|νβ ,pq, ℓβ ,pq) have RE covariance parameters σβ ,pq ≡
σpq(νβ ,p,νβ ,q, ℓβ ,p, ℓβ ,q,σβ ,pp,σβ ,qq,Rβ ,pq), lengthscales ℓβ ,pq ≡ ℓpq(ℓβ ,p, ℓβ ,q), and unknown

cross-correlation matrix Rβ as defined in (3.1) and (3.2). We model the spatially varying visit

effects γi jk with mean 0 GPs γi jk|σv,νv, ℓv ∼ GP(0,Cv(sk,sk′)), with visit effects covariance function

Cv(sk,sk′) = σ2
v M(h|νv, ℓv).

3.3.4 Priors

We use weakly informative priors to keep inferences within a reasonable range and allow computa-

tions to proceed satisfactorily. The closest two superpixels can be is 1 unit apart, and the largest sepa-

ration is
√

(7−2)2 +(7−2)2 ≈ 7 units. We expect lengthscales to plausibly fall in this range. At the

same time, we wish to avoid infinitesimal lengthscales. We assign independent and identical inverse

gamma priors on all MGP lengthscale parameters ℓα,1, ℓα,2, ℓα,3, ℓβ ,1, ℓβ ,2, ℓβ ,3, ℓv ∼ IG(2.25,2.5)

with mean 2 and SD 4. For the MGP SD parameters, we wish to avoid flat priors that could pull

the posterior towards extreme values. We assign truncated-normal priors on all MGP SD parameters

σα,11,σβ ,11 ∼ N+(0,102), σα,22,σα,33,σβ ,22,σβ ,33,σv ∼ N+(0,2.52), where N+(a,b) is a normal

distribution restricted to the positive real line with mean a and variance b. We assign independent

normal priors on the global effects µ0 ∼ N(73,152), µ1 ∼ N(−0.3,0.32), µφ ∼ N(0.7,0.32). For the

correlation matrices Rα and Rβ , we assign marginally uniform priors on the individual correlations

derived from the inverse Wishart distribution with 3×3 identity matrix scale matrix parameter and

four degrees of freedom IW (I3,4) (Barnard et al., 2000). When Σ has a standard inverse-Wishart

distribution, we can decompose Σ = SRS in terms of the diagonal standard deviation matrix S and
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correlation matrix R to obtain the prior for the correlation matrices. We set all MGP smoothness pa-

rameters να,1, να,2, να,3, νβ ,1, νβ ,2, νβ ,3, νv =
1
2 since we obtain measurements from a coarse grid

of superpixel locations and expect the processes to be rough. When ν = 1
2 , the Matern correlation

function reduces to the popular exponential kernel M(h|1
2 , ℓ) = exp(−∥h∥/ℓ).

3.3.5 Computation and inference

For data analysis and visualization, we use the R programming language (R Core Team, 2021) and

GGPLOT2 (Wickham, 2016). We use Markov Chain Monte Carlo (MCMC) methods (Metropolis

et al., 1953; Robert and Casella, 2005) implemented in NIMBLE v0.13.0 (de Valpine et al., 2017,

2022). We specify the model at the observation level and omit observations removed in the data

cleaning step. To sample from the posteriors, we use Gibbs sampling and update specific parameters

using the automated factor slice sampler or Metropolis-Hastings sampler within Gibbs. We update

the global effects µ0, µ1 and µφ using scalar Metropolis-Hastings random walk samplers; the visit

effect GP lengthscale ℓν and subject-level residual SD GP SD parameter σβ ,33 together using the

automated factor slice sampler (Tibbits et al., 2014); the subject-level random effects β0ik, β1ik,

and σik and visit effects γi jk using multivariate Metropolis-Hastings random walk samplers in sub-

blocks. We tested various schemes for sampling sub-blocks of the subject-level random effects and

visit effects to improve sampling efficiency (Risser and Turek, 2020). We jointly sample subject-

level intercepts, slopes, and the first visit effect in sub-blocks of size 3. We separately sample the

subject-level residual SDs in sub-blocks of size 6 and the remaining visit effects in sub-blocks of

size 3. Each pair of SD and lengthscale parameters from MGPs and GPs were sampled together

(e.g., (σα,11, ℓα,1)) except for the subject-level residual SDs and visit effects where opposites were

paired together (σβ ,33, ℓν) and (σν , ℓβ ,3). We run all models with 9 chains of 250,000 iterations

after a burn-in of 30,000, a thin of 100 for a total of 19,800 posterior samples. Following Vehtari

et al. (2021)’s recommendation for assessing convergence, the bulk and tail effective sample sizes

were all greater than 100 per chain and the potential scale reduction factor R̂ were all less than

1.01. Visual assessment of model convergence show satisfactory results. We show efficiency per
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iteration plots of the 7 parameters with the largest R̂ in Supplementary Figure 3.11 and summarize

convergence diagnostics in Supplementary Table 3.3. The NIMBLE model code for the SHREVE

model is available as an R script at https://github.com/erica-su/SHREVE.

3.3.6 Model comparison

We fit the SHREVE model to the AGPS data and compare model fit of the SHREVE model to 7

nested models and to SLR fit separately for each subject and superpixel location. The 7 submodels

were SHREVE omitting (a) the population-level residual SD process φk, (b) the subject-specific

residual SD process σik, (c) the spatially varying visit effects γi jk, and all combinations (ab), (ac),

(bc), and (abc). We call the SHREVE model without visit effects the spatially varying hierarchical

random effects (SHRE) model. For SLR, we run a separate model for each eye and superpixel using

flat priors with results equivalent to classical least squares.

We compare models with the Watanabe-Akaike (or widely applicable) information criterion

(WAIC) (Watanabe and Opper, 2010; Gelman et al., 2013) and approximate leave-one-out cross-

validation (LOO) using Pareto Smoothed Importance Sampling (Vehtari et al., 2017). We report

WAIC

WAIC =−2

[
n

∑
i=1

Ji

∑
j=1

K

∑
k=1

log

(
1
S

S

∑
s=1

p(yi jk|θ s)

)
−

n

∑
i=1

Ji

∑
j=1

K

∑
k=1

V S
s=1
(
log p(yi jk|θ s)

)]

summing over all data points yi jk, where p(yi jk|θ) is the pointwise predictive density, θ are the model

parameters, superscript s denotes parameters drawn at the sth iteration for s = 1, . . . ,S posterior

samples, and V S
s=1 denotes the sample variance over S posterior samples. We report approximate

LOO

LOO =−2
n

∑
i=1

Ji

∑
j=1

K

∑
k=1

log

(
∑s=1 ws

i jk p(yi jk|θ s)

∑s=1 ws
i jk

)
where ws

i jk, s = 1, . . . ,S is a vector of importance weights for data point yi jk at iteration s and

ws
i jk =

(
p(yi jk|θ s)

)−1 except for extreme weights. Approximate LOO estimates the out-of-sample
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predictive accuracy of the model (Stone, 1977). Lower WAIC and LOO indicate better fit.

To assess predictive accuracy of the proposed model, we compare models on mean squared

prediction error

MSPE =
∑

S
s=1 ∑

n
i=1 ∑k∈Ki(yiJik − ŷs

iJik)
2

SNpred

for s = 1, . . . ,S posterior MCMC samples, i = 1, . . . ,n subjects, k ∈ Ki held out superpixels for

subject i, held out observations yiJik, and predicted observations for each posterior sample ŷs
iJik, of

Npred total held out observations after fitting the models. We randomly sample and hold out 7

observations yiJik, or approximately 20%, at the last visit for each of 110 subjects and 6 observations

for one subject because they only had 32 observations available at the last visit, for a total of Npred =

111×7−1= 776 observations, and fit models with the remaining observations. Not all observations

are available at all superpixels because we remove some observations in the data cleaning step. For

the SHREVE models, we define a predicted observation at each posterior sample s as

ŷs
iJik = α

s
0k +α

s
1ktiJi +β

s
0ik +β

s
1iktiJi + γiJik, (3.3)

where tiJi is the time observed and γiJik is the visit effect for the held out observation at the ith

subject’s last visit. For the SHRE models, there is no γiJik visit effect term in (3.3).

3.4 Advanced Glaucoma Progression Study

After identifying and removing approximately 0.5% of the data as outliers, we analyze 29,179 ob-

servations from 111 subjects over 36 superpixels. Table 3.1 gives the WAIC, LOO, and MSPE

of models considered. The SHREVE model has the lowest WAIC and LOO. Comparing pairs of

SHREVE and SHRE models with and without the (a) population-level residual SD process and (b)

subject-level residual SD process, omitting (a) increases WAIC (LOO) by up to 421 (238) while

omitting (b) increases WAIC (LOO) by up to 4,964 (4,573). Omitting visit effects increases WAIC

(LOO) by up to 18,361 (12,899). SLR has lower WAIC than the two SHRE models without (b),
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Table 3.1: Model fit comparison with widely applicable information criterion (WAIC), approxi-
mate leave-one-out cross-validation with Pareto Smoothed Importance Sampling (LOO), and mean
squared prediction error (MSPE) of predictions. For predictions, we hold out 7 randomly sampled
observations yiJik at the last visit of each of 110 AGPS subjects and 6 observations from one subject.
Models with visit effects perform better than models without visit effects. SLR performs notice-
ably worse compared to the hierarchical models. The smallest WAIC, LOO, and MSPE values are
bolded.

Model Joint
Model

Visit
Effects

Superpixel
Residual

SD

Subject
Residual

SD

WAIC LOO MSPE
(µm2)

SHREVE ✓ ✓ ✓ ✓ 107,581.6 113,323.1 6.6
SHREVE-(a) ✓ ✓ ✗ ✓ 108,002.2 113,560.7 6.5
SHREVE-(b) ✓ ✓ ✓ ✗ 110,992.3 116,978.1 6.8
SHREVE-(ab) ✓ ✓ ✗ ✗ 113,238.3 118,647.5 6.9

SHRE ✓ ✗ ✓ ✓ 124,389.5 125,304.7 7.2
SHRE-(a) ✓ ✗ ✗ ✓ 124,468.8 125,461.2 7.1
SHRE-(b) ✓ ✗ ✓ ✗ 129,353.2 129,877.3 7.5
SHRE-(ab) ✓ ✗ ✗ ✗ 130,188.4 130,732.1 7.5

SLR ✗ ✗ ✗ ✓ 128,870.2 132,916.3 39.7

but SLR still has higher LOO. Having subject-specific residual SDs is more important for models

without a visit effect component, as the difference in WAIC (LOO) between SHRE and SHRE-(b) is

larger by 1553 (918) than the difference between SHREVE and SHREVE-(b). For predictions, the

MSPE for SLR is 6.0 times that of the SHREVE model (39.7 vs. 6.6 µm2) and 5.5 times that of the

SHRE model (39.7 vs. 7.2 µm2). Among the hierarchical models, the biggest distinction in MSPE

is between models with and without visit effects. Comparing pairs of SHREVE and SHRE models,

omitting the subject-level residual SD process consistently increases the MSPE, while omitting the

population-level residual SD process has a negligible effect on MSPE. Figure 3.7 plots profiles and

posterior mean fitted lines from the SHREVE model and SLR for one subject for superpixels that

had the last (7th) observation held out. The SHREVE model better estimates slopes for noisy super-

pixels like 2.3 and 5.6. All predictions of the last visit in the 6 superpixels by the SHREVE model

are closer to the GCC observed at ti j = 3.6 than those by SLR.

Table 3.2 gives posterior means and 95% credible intervals (CrI) for parameters of interest from
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Figure 3.7: Comparison of predicted observations and model fit from the SHREVE model and simple
linear regression (SLR) after holding out the last observation at 3.6 years follow-up of this subject.
The gray line plots the raw data, the red line is the posterior mean fitted line from the SHREVE model
without adding in the visit effects, and the blue line shows the fitted line from SLR. The SHREVE
model is able to better estimate slopes and predict the last observation in noisy superpixels like 2.3
and 5.6 than SLR.

the SHREVE and SHRE models. The SHREVE global log residual SD parameter has a smaller pos-

terior mean than SHRE (0.35 vs 0.66 µm), although CrIs overlap; global intercepts and slopes have

similar posterior means and CrIs. The SHREVE subject-level slopes and log residual SDs MGP

lengthscales are shorter than for the SHRE model, implying that the spatial correlation of subject-

level slopes and log residual SDs decays faster after including visit effects, allowing random effects

to vary more across the macula. The SHREVE subject-level MGP SD parameter is larger than from

SHRE, meaning the variability of subject-specific residual SDs is higher within a superpixel for the

SHREVE model. All other subject-level MGP parameters are similar between the models. Supple-

mentary Table 3.4 gives posterior means and 95% CrIs for the population-level MGP parameters.

The population-level MGP parameters are similar between the two models.

Figure 3.8 plots spatial correlations M(h) as a function of distance h between superpixels for
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Table 3.2: Posterior mean and 95% credible interval (CrI) for global parameters and subject-level
multivariate Gaussian process (MGP) parameters comparing the SHREVE and SHRE models.

SHREVE Model SHRE Model

Parameters Symbols Mean 95% CrI Mean 95% CrI

Global Parameters
Intercept µ0 70.02 (54.47, 84.21) 71.22 (56.83, 84.80)
Slope µ1 −0.30 (−0.59, 0.02) −0.30 (−0.60, 0.04)
Log Residual SD µφ 0.35 (0.05, 0.86) 0.66 (0.39, 0.97)

Subject-Level MGP SD Parameters
Intercept σβ ,11 16.17 (15.11, 17.39) 16.33 (15.24, 17.57)
Slope σβ ,22 0.94 (0.87, 1.03) 1.00 (0.92, 1.09)
Log Residual SD σβ ,33 0.45 (0.42, 0.49) 0.34 (0.32, 0.37)

Subject-Level MGP Lengthscale Parameters
Intercept ℓβ ,1 5.42 (4.67, 6.32) 5.58 (4.80, 6.51)
Slope ℓβ ,2 4.20 (3.41, 5.16) 6.79 (5.48, 8.46)
Log Residual SDs ℓβ ,3 1.87 (1.57, 2.24) 3.71 (3.02, 4.61)

Subject-Level MGP Correlation Parameters
Intercepts/Slopes ρβ ,12 −0.14 (−0.19, −0.10) −0.13 (−0.18, −0.08)
Intercepts/Log Residual
SDs

ρβ ,13 0.12 (0.08, 0.16) 0.17 (0.11, 0.22)

Slopes/Log Residual SDs ρβ ,23 −0.21 (−0.28, −0.14) −0.24 (−0.31, −0.17)

Visit Effect Parameters
Lengthscale ℓv 3.54 (3.07, 4.10)
SD σv 1.42 (1.37, 1.48)

the SHREVE and SHRE models. At 4.2 units distance, the spatial correlation of subject-specific

slopes drops to exp(−1) ≈ 0.37 for the SHREVE model but is exp(−0.62) ≈ 0.54 for the SHRE

model. At 1.9 units distance, the spatial correlation of subject-specific log residual SDs is 0.37 for

the SHREVE model but around 0.60 for the SHRE model. The shorter lengthscales in the SHREVE

model result in reduced correlation at similar distances between superpixels.

Figure 3.9 presents heat maps of the posterior means and SDs of the log residual SDs from the

SHREVE and SHRE models. For most superpixels, the SHREVE model uniformly reduces log

residual SDs by approximately 0.5 compared to the SHRE model. The four central superpixels (4.4,
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Figure 3.8: Posterior mean (line) and 95% pointwise credible intervals (colored bands) of correlation
as a function of distance h between superpixels for subject-specific intercepts, slopes, and log resid-
ual SDs from the SHREVE (Visit Effects) and SHRE (No Visit Effects) models. The correlations
decay faster in the SHREVE model with shorter lengthscales for slopes and log residual SDs. The
dashed line indicates where the correlation is exp(−1) and the distance between superpixels is equal
to the lengthscale in the exponential kernel.

4.5, 5.4, and 5.5) and superpixels in the 7th column have higher log residual SDs and have smaller

differences in log residual SDs between the models. SHREVE breaks down measurement error into

two components, spatially correlated errors due to the imaging process and general measurement

noise. By accounting for visit effects, we reduce residual variance, leading to substantial improve-

ment in model fit.

We compare subject-specific slopes estimated from the SHREVE model to those estimated using

SLR. We declare a slope to be significantly negative or positive when the upper bound or lower bound

of the 95% CrI is less than or greater than 0, respectively. Across the 3,990 subject-superpixel

profiles, the SHREVE model detects a higher proportion of significant negative slopes (21.4% vs

18.0%) and lower proportion of significant positive slopes (3.1% vs 4.3%) as compared to SLR.

Figure 3.10 shows the proportion of significant negative slopes by superpixel, and Supplementary

Figure 3.12 shows the proportion of significant positive slopes by superpixel. The SHREVE model

detects 10% more significant negative slopes in 6 of 36 superpixels and 5% less significant positive

slopes in 5 of 36 superpixels. Because glaucoma is an irreversible disease, GCC thicknesses are

not expected to increase over time. These findings indicate SHREVE is more sensitive in detecting
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Figure 3.9: Heat map of the log residual standard deviations (SD) comparing the SHREVE (Visit
Effects) and SHRE (No Visit Effects) models. The values shown are the posterior mean (posterior
SD) across the 36 superpixels. The log residual SDs from the SHREVE model are uniformly reduced
across all superpixels compared to those from the SHRE model. The white dot is the fovea.

worsening slopes and possibly reduces false positive rates as compared to SLR.

3.5 Discussion

We motivate and develop a Bayesian hierarchical model with population- and subject-level spatially

varying coefficients and show that including visit effects reduces error in predicting future observa-

tions and greatly improves model fit. In current practice, ophthalmologists use SLR to assess slopes

for individual subject-superpixel profiles, using information from only a single subject and location

at a time. To better estimate subject-specific slopes, we include information from the whole cohort;

explicitly model the correlations between subject-specific intercepts, slopes, and log residual SDs;

allow population parameters and random effects to be spatially correlated; and account for visit-

specific spatially correlated errors. Using information from the entire cohort, our proposed model
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Figure 3.10: Bar charts of the proportion of significant negative slopes detected by the SHREVE
model and simple linear regression (SLR) across the 36 superpixels. The difference (∆= SHREVE−
SLR) in proportion is labeled at the top of each subplot. Across all locations, the SHREVE model
detects a higher proportion of significant negative slopes (21.4% vs 18.0%) than SLR.

leads to decreased noise in estimating subject-specific slopes, having smaller posterior SDs in 79%

of subject-superpixel slopes as compared to SLR.

There are many sources of error in obtaining the GCC thickness measurements from OCT scans.

By separating measurement errors into visit-specific spatially correlated errors and other measure-

ment noise, we are better able to detect eye-superpixels where GCC thicknesses are progressing most

rapidly. Our approach will help identify progression of glaucoma for more individualized treatment

plans.

Other methods for modeling spatial variation over discrete locations include CAR models, where

random effect distributions are conditional on some neighboring values (Betz-Stablein et al., 2013;
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Berchuck et al., 2019). Instead, we model spatial correlation between all locations with GPs, where

the spatial correlation depends only on the distance between any two locations. In addition to our a

priori specification of ν = 1
2 , we fit our model using Matérn correlation functions with ν = 3

2 , ν = 5
2 ,

and ν = ∞ (squared exponential kernel, Williams and Rasmussen 2006). These early exploratory

analyses had difficulty in MCMC convergence. One limitation of using GPs is the increasing diffi-

culty in fitting when the number of locations is large. Fitting GP models involves matrix inversion

which increases computational complexity in cubic order with the number of locations. When the

number of locations is too large, approximations for the processes could be considered (Banerjee

et al., 2008). Nonetheless, we expect these model developments will benefit ophthalmologists as

they seek to better estimate subject-specific slopes from structural thickness measurements.

We developed the current model specifically for GCC macular thickness measurements. Of fur-

ther interest is to simultaneously model all the inner retinal layers that make up GCC to identify

which sublayers may be worsening faster than others while accounting for between-layer correla-

tions. Future extensions of the SHREVE model could include working with multivariate outcomes,

which may pose additional computational challenges.

3.6 Supplementary material

3.6.1 Convergence assessment of the SHREVE model

We provide more details on convergence of the SHREVE model as mentioned in Section 3.3.5. Fol-

lowing Vehtari et al. (2021)’s recommendation on assessing convergence, we monitor the potential

scale reduction factor R̂ and the bulk and tail effective sample sizes (ESS) for all model parameters.

We obtain R̂ less than 1.01 and bulk and tail ESS all greater than 100 per chain for all parameters,

indicating convergence. Figure 3.11 shows the efficiency per iteration of the bulk ESS and poten-

tial reduction factor R̂ of 7 model parameters with the largest R̂ in the SHREVE model. The bulk

ESS increases linearly with iterations indicating that the relative efficiency is constant over different

numbers of draws. R̂ decreases exponentially with increasing iterations and are all less than 1.01.
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Figure 3.11: Plots of efficiency per iteration of the bulk effective sample size (ESS) on the left
and potential scale reduction factor R̂ on the right for the 7 parameters with the largest R̂ from
the SHREVE model. The bulk ESS increases linearly with increasing iterations while R̂ decreases
exponentially with increasing iterations. The bulk ESSs were all greater than 100 per chain and R̂
were all less than 1.01.

Table 3.3 gives the sampling efficiency of all model parameters in terms of bulk and tail ESS and R̂.

3.6.2 Additional results for AGPS analysis

We provide additional results mentioned in Section 3.4. Table 3.4 presents the posterior mean and

95% CrIs for population-level MGP parameters for the SHREVE and SHRE models. All population-

level MGP parameter posterior means and 95% CrIs are similar between the models. Figure 3.12

plots the proportions of significant positive slopes for the SHREVE model and SLR in each of the

36 superpixels. Across all locations, the SHREVE model detects a lower proportion of significant

positive slopes (3.1% vs 4.3%) than SLR.
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Table 3.3: The mean minimum/maximum bulk effective sample size (ESS), tail ESS, and potential
scale reduction factor R̂ for the SHREVE model broken down by parameter types. For convergence,
R̂ should be < 1.01 and ESS should be > 100 per chain. The first column gives the parameter
types: Hyperparameters include global parameters and multivariate Gaussian process hyperparam-
eters; Population-level includes the population-level intercepts, slopes, and log residual standard
deviations (SD) across all locations; Intercepts, Slopes, and Log Residual SDs include the subject-
level intercepts, slopes, and log residual SDs across all locations, respectively; and Visit Effects
include the visit effects across all locations. The second column gives the number of parameters
summarized.

Bulk ESS Tail ESS R̂

Parameter # Mean Min Mean Min Mean Max

Hyperparameters 23 12545.8 942.3 14152.8 1951.3 1.001 1.003
Population-level 108 11519.7 3706.8 15610.8 7478.1 1.001 1.002
Intercepts 3990 4406.5 1663.8 9644.9 3585.9 1.002 1.007
Slopes 3990 3757.7 1602.4 8559.5 3597.6 1.002 1.007
Log Residual SDs 3990 16268.4 9311.0 18271.6 14123.2 1.000 1.002
Visit Effects 29179 4963.8 1505.0 10572.5 3475.9 1.002 1.009

Table 3.4: Posterior mean and 95% credible interval (CrI) for population-level multivariate Gaussian
process (MGP) parameters for the SHREVE and SHRE models. SD stands for standard deviation.

SHREVE Model SHRE Model

Parameters Symbols Mean 95% CrI Mean 95% CrI

Population-Level MGP SD Parameters
Intercept σα,11 13.68 (9.27, 21.13) 13.31 (9.06, 20.55)
Slope σα,22 0.31 (0.20, 0.54) 0.32 (0.21, 0.56)
Log Residual SD σα,33 0.36 (0.19, 0.79) 0.22 (0.11, 0.47)

Population-Level MGP Lengthscale Parameters
Intercept ℓα,1 3.56 (1.32, 8.83) 3.27 (1.20, 8.16)
Slope ℓα,2 2.66 (0.88, 8.33) 2.82 (0.94, 8.90)
Log Residual SD ℓα,3 4.68 (0.75, 19.68) 6.43 (0.98, 26.16)

Population-Level MGP Correlation Parameters
Intercepts/Slopes ρα,12 −0.42 (−0.68, −0.13) −0.42 (−0.67, −0.12)
Intercepts/Log Residual SDs ρα,13 −0.30 (−0.57, −0.02) −0.28 (−0.55, 0.01)
Slopes/Log Residual SDs ρα,23 −0.11 (−0.42, 0.20) −0.06 (−0.37, 0.24)
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Figure 3.12: Bar charts of the proportion of significant positive slopes detected by the SHREVE
model and simple linear regression (SLR) across the 36 superpixels. The difference (∆= SHREVE−
SLR) in proportion is labeled at the top of each subplot. Across all locations, the SHREVE model
detects a lower proportion of significant positive slopes (3.1% vs 4.3%) than SLR.
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CHAPTER 4

A hierarchical spatially varying coefficients model for

longitudinal visual field data in glaucoma subjects

4.1 Introduction

Glaucoma is one of the leading causes of blindness worldwide and projected to affect more than

110 million people by 2040 (Tham et al., 2014). Because vision loss due to glaucoma is irre-

versible, timely treatment is crucial to slow down disease progression and prevent further vision

loss. Ophthalmologists assess glaucoma progression by monitoring decreases in visual acuity over

time. Visual field (VF) testing evaluates functional changes in vision by measuring the sensitivity to

presented light stimuli at multiple test locations within the VF. The Humphrey Field Analyzer (Carl

Zeiss Meditec, Dublin, CA) is a commonly used tool for VF testing. The standard testing pattern for

glaucoma is called the 24-2, which measures visual sensitivity at 52 locations, excepting two blind

spots, with 6° of spacing between points. However, many studies show that the 24-2 pattern can

miss damage in the central, macular area while using the 10-2 testing pattern is more likely to detect

progression (De Moraes et al., 2017; Traynis et al., 2014; Wu et al., 2019). The 10-2 testing pattern

measures visual sensitivity at 68 locations in the central 10° of the visual field.

During VF testing, the machine presents stimuli of varying intensity and the patient presses a

button when the stimulus is perceived. The test continues until the sensitivity threshold is deter-

mined. Monitoring decreases in VF sensitivity thresholds over time provides a means to monitor

VF loss due to glaucoma progression. VF threshold sensitivities are reported on the log scale in

decibels (dB) of attenuation, ranging from 50 dB to 0 dB, with 50 dB corresponding to the dimmest
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stimulus. Due to the limitations of the measurement scale, sensitivities are censored at 0 dB, the

maximal, brightest stimulus. VF data is heteroskedastic with increasing variability in measurements

as the level of damage increases. Due to the complex nature of VF data, analysis of VF progression

is difficult.

Currently, physicians estimate rates of change in VF sensitivities using simple linear regression

(SLR) for each subject and test location separately (Gardiner and Crabb, 2002; Nouri-Mahdavi et al.,

2007). Shortcomings of SLR include not accounting for the heteroskedastic nature, censoring, and

spatial structure of VF data, and not borrowing information across subjects. Recently, some models

accounting for the hierarchical structure or spatial dependence have been proposed to model 24-

2 VF data. Betz-Stablein et al. (2013) propose a model using conditional autoregressive priors to

account for spatial correlations between neighboring test locations and VF clusters corresponding

to the optic nerve head (Garway-Heath et al., 2000). Berchuck et al. (2019) present a model with

localized spatio-temporal smoothing, allowing the spatial correlation to adapt over time. Montesano

et al. (2021) develop a hierarchical model accounting for location and VF cluster levels, censoring,

and heteroskedasticity. However, these methods are fit to data from individual eyes and ignore

population information. Alternatively, Bryan et al. (2017) introduce a two-stage approach to fit

a multilevel hierarchical model using data from the entire cohort, but do not account for spatial

correlations. While there has been much work on modeling 24-2 VF data, these methods do not

directly apply to 10-2 VF data, which has a higher density of locations in the central area of the

retina.

We analyze longitudinal 10-2 VF data from the Advanced Glaucoma Progression Study (AGPS),

a cohort of eyes with central or moderate to severe glaucoma. Our desired model should include

data from all subjects and account for the spatial structure of VF locations, data censoring, and

heteroskedasticity. In this study, we motivate and develop the Hierarchical Spatially varying Longi-

tudinal Visual Field (HSLVF) model, a novel Bayesian hierarchical model accounting for censoring

with spatially varying population- and subject-level coefficients and spatially varying population-

and subject-level residual standard deviations (SD). We analyze data from the entire AGPS cohort
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using the HSLVF model and demonstrate how careful construction of the spatial covariance structure

allows additional flexibility in estimating intercepts and slopes.

In spatially varying coefficient models, regression coefficients vary over space to account for

the spatial dependence in the response variable (Hastie and Tibshirani, 1993; Gelfand et al., 2010).

With data observed over a grid of locations, regression coefficients may vary over space in either

the discrete, areal setting or continuous, point-referenced setting (Gelfand et al., 2010). For our

data, we allow the intercepts, slopes, and residual SDs to vary smoothly over space using a point-

referenced method in the Bayesian framework. We assume Gaussian process (GP) models for the

spatially varying coefficients. In a GP model, coefficients from any finite set of locations have a

multivariate normal distribution with a mean function and valid covariance function specifying the

expected value at each location and covariance between coefficients at any two locations, respec-

tively (Gelfand et al., 2010). Gelfand et al. (2003) first described the use of GPs to model spatially

varying coefficients in a Bayesian framework. We assign GP priors at the population and subject

level within our hierarchical model. For simplicity and computational ease, the covariance functions

of GPs are often assumed to be isotropic and stationary, meaning the covariance depends only on the

distance between locations while the variance is constant over space (Gelfand et al., 2010). To better

accommodate spatial irregularities within the data, we allow the subject-level intercepts and slopes

to have GPs with nonstationary covariance functions. We demonstrate the benefits of nonstationarity

by comparing models with stationary covariance functions to models with nonstationary covariance

functions.

In Section 4.2, we describe the motivating data and study cohort. In Section 4.3, we briefly

review GPs and develop the HSLVF model. In Section 4.4, we highlight the importance of using

nonstationary covariance functions and analyze AGPS data using the HSLVF model. We conclude

with a discussion in Section 4.5.
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4.2 Visual field data

This section describes the study subjects and goals. We highlight data characteristics that drive

model development.

4.2.1 Advanced Glaucoma Progression Study

The AGPS is an ongoing longitudinal study at the University of California, Los Angeles (Moham-

madzadeh et al., 2021). The study adheres to the tenets of the Declaration of Helsinki and conforms

to Health Insurance Portability and Accountability Act policies. At the time of enrollment, all study

participants provided written informed consent. AGPS evaluated the central 10° of the VF using the

10-2 testing pattern of the Humphrey Field Analyzer approximately every 6 months. The data in-

clude 10-2 VF threshold sensitivities from 137 eyes with a range of 1 year to 6.25 years of observed

follow-up time. The device measures threshold sensitivities at 68 locations within a 10° radius from

the point of fixation, with testing locations 2° apart. We export data with the right eye format for

ease of presentation and analysis; left eyes are mirror images of right eyes and are flipped left-right.

4.2.2 Visual field threshold sensitivity

The Humphrey Field Analyzer tests light intensities ranging from 10,000 apostilbs (asb) to 0.1 asb,

the brightest to dimmest stimuli. These intensities are converted to the log scale (dB), where dB

= 40−10log10(asb). Ability to see a 35 dB stimulus indicates good, healthy vision, while failure to

see a 0 dB stimulus indicates blindness. In our cohort, we remove sensitivities of dB > 35, as these

values are too good to be true for our cohort of moderate to severe glaucoma. Due to limitations

of the measurement scale, the maximum intensity is 10,000 asb or 0 dB. There is no distinction

between actual 0 dB sensitivities and values censored at 0 dB; a reading of 0 dB is recorded in both

cases.

Censored 0 dB VF values are often treated as actual 0 dB in the analysis of progression, in-

troducing positive bias in estimating rates of change. Bryan et al. (2013) report SLR not taking
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censoring into account at 0 dB performs similarly to SLR taking censoring into account and to other

robust models fit on each subject-location separately, but note that all models they compared result

in predictions too large to be of clinical value. Montesano et al. (2021) find that hierarchical models

accounting for censoring at 0 dB fit separately on individual eyes result in the smallest bias in es-

timating slopes when compared to SLR and hierarchical models that do not account for censoring.

To reduce bias and properly model the true sensitivities, we incorporate censoring into our HSLVF

model. We take a different approach to censoring and assume that values are interval censored in the

interval (−5,0]. Values of −10 dB or −20 dB would imply the stimuli are 10 or 20 times brighter

than the current maximum of the Humphrey Field Analyzer and seem implausible.

4.2.3 Heteroskedasticity

Previous research suggests that variability in VF measurements tends to increase with the level of

damage (Chauhan et al., 1993; Henson et al., 2000; Russell et al., 2012a). Variability tends to

increase linearly as sensitivity drops from 35 dB to around 10 dB, then decreases as sensitivity

approaches the measurement floor (Artes et al., 2005; Wyatt et al., 2007). The relationship between

variability and sensitivity is often modeled by the function log(SD)=A×sensitivity (dB)+B, where

the logarithm of the SD and true sensitivity are assumed to be linearly related (Henson et al., 2000;

Russell et al., 2012a; Bryan et al., 2017). For eyes with glaucoma, Henson et al. (2000) estimate

A and B to be −0.098 and 3.62 dB while Bryan et al. (2017) find A and B to be −0.08 and 2.82

dB. Montesano et al. (2021) obtain a good fit using a third-degree polynomial, but approximate the

relationship with a linear broken stick model in practice. Alternatively, Zhu et al. (2014b) model

measurement variability using a mixture of Weibull distributions instead of normal distributions.

We illustrate the relationship between log residual SD and sensitivity in Figure 4.1, We plot esti-

mated intercepts against estimated log residual SDs from SLR, treating censored 0 dB as actual 0 dB

values, fitting data from each subject-location separately. The blue lowess curve demonstrates how

variability tends to increase as the intercepts drop from 30 dB to around 10 dB and then decreases

rapidly as intercepts drop to 0 dB. There is noticeable variability in log residual SDs across subjects
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Figure 4.1: Scatter plot of intercept against log residual standard deviation (SD) posterior means
from simple linear regression of sensitivity in decibels (dB) against time from each subject-location
combination. The blue line is a lowess curve. We leave out 4 points with intercepts greater than 35
dB and 450 points with constant 0 dB sensitivities over time.

and locations. VF testing is subjective and responses are highly dependent on the cooperation of the

subject (Broadway, 2012). To better accommodate this variability, we want to allow residual SDs to

differ between subjects and locations in a principled fashion, offering more flexibility than assuming

a linear relationship between log(SD) and true sensitivity applied to all subjects and locations.

4.2.4 Spatial structure of test locations

Glaucoma is characterized by loss of retinal ganglion cells over time and this loss can be moni-

tored using optical coherence tomography (OCT). In addition to functional VF measures, structural

thickness measurements of retinal cells from OCT provide another means to monitor glaucoma pro-

gression. To combine both structural and functional information, the VF locations are displaced

to where the underlying retinal ganglion cells are connected to their photoreceptors (Drasdo et al.,
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Figure 4.2: Plot of the 10-2 visual field test locations before (left) and after (right) accounting for
ganglion cell displacement. The distances are measured in degrees from the center. We analyze and
visualize data in right eye orientation, where SN is superior nasal, ST is superior temporal, IN is
inferior nasal, and IT is inferior temporal.

2007; Montesano et al., 2020). We show the position of the 68 test locations before and after this

displacement in Figure 4.2 (Drasdo et al., 2007; Raza et al., 2011). We denote the coordinates of

each location (X position,Y position) in two dimensional space and label locations by their original

planar positions as shown on the left in Figure 4.2. The positions are measured in degrees from the

center (0,0) of the VF, which corresponds to the fovea, the center of the retina. The displacement is

more prominent in the center and decreases with distance from the center. We use the displaced test

locations as shown on the right in Figure 4.2 to define distances between locations in our model. The

smallest and largest Euclidean distance between any two displaced locations is 1.5 and 20.0 degrees,

respectively.

4.2.5 Modeling criteria

In the analysis of VF progression, we are interested in estimating location-specific rates of change

for each subject to identify eyes in need of treatment to prevent further vision loss. To achieve this,
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we model data from all subjects in AGPS and account for data censoring, measurement variability,

and the spatial structure of test locations. Ophthalmology still lacks a model that accommodates all

aspects of VF data simultaneously. The Bayesian hierarchical framework allows us to accomplish

this in a principled manner, shrinking intercepts and slopes towards the population averages at each

location in exchange for reducing uncertainty. In assigning priors, we can incorporate our knowledge

of the pathophysiology of glaucoma to guide this shrinkage.

4.3 Methods

This section introduces the GP priors we use to model the spatially varying coefficients, formulates

the single eye and HSLVF models, and describes model implementation.

4.3.1 Gaussian processes

A spatial stochastic process z(s) for s ∈ Rd , dimension d ≥ 1, is Gaussian if for any K ≥ 1 spatial

locations s1, . . . ,sK ∈ Rd , any finite collection of real-valued random variables {z(s1), . . . ,z(sK)} is

multivariate normal (Williams and Rasmussen, 2006; Bogachev, 1998; Banerjee et al., 2014). We

denote a GP as

z(s)∼ GP(m(s),C(s,s′)),

with mean function m(s) = E[z(s)] and covariance function C(s,s′) = cov[z(s),z(s′)] for two loca-

tions s and s′, which may be the same or distinct. The covariance function C(s,s′) describes the

association between outcomes z(s) and z(s′). In general, we expect values closer together in the

process to be more highly correlated than values far apart.

The form of the covariance function encodes assumptions on the GP such as stationarity and

isotropy. Stationarity means C(s,s′) depends only on the spatial separation vector s− s′ between

points, and isotropy means C(s,s′) depends only on the distance between locations h = ∥s− s′∥,

where ∥ · ∥ is the Euclidean norm, i.e., C(s,s′)≡C(h).
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We define stationary Matérn covariance functions as

CS(s,s′) = σ
2M(h|ν , ℓ), (4.1)

where σ2 > 0 is the variance and M(h|ν , ℓ) is the Matérn correlation function (Matern, 1986)

M(h|ν , ℓ) = 21−ν

Γ(ν)
(
√

2νh/ℓ)νKν(
√

2νh/ℓ),

where ν > 0 is the smoothness parameter, ℓ > 0 is the lengthscale, and Kν is the modified Bessel

function of the second kind of order ν (Abramowitz and Stegun, 1964). In general, the process

is m times mean square differentiable if and only if ν > m (Williams and Rasmussen, 2006). The

lengthscale parameter ℓ controls how quickly the correlation decays as a function of distance with

larger ℓ indicating slower correlation decay.

4.3.2 Nonstationary covariance functions

Nonstationary covariance functions depend on the referenced locations and are not invariant under

spatial shifts. Paciorek and Schervish (2006) and Risser and Turek (2020) provide a nonstationary

version of the Matérn covariance function as

C(s,s′) = σ(s)σ(s′)
|Σ(s)|1/4|Σ(s′)|1/4∣∣∣Σ(s)+Σ(s′)

2

∣∣∣1/2 M(
√

Q(s,s′)|ν)

where

Q(s,s′) = (s− s′)T
(
Σ(s)+Σ(s′)

2

)−1

(s− s′),

where σ(s) is the spatially varying SD process and Σ(s) is the matrix-valued anisotropy process. The

SD process σ(s) allows the variance of z(s) to vary as a function of s and the anisotropy process Σ(s)

controls the lengthscale and directional spatial dependence. We define a spatially constant anisotropy

process Σ(s)≡ Σ for all s, since we do not expect there to be directional spatial dependence. We use
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nonstationary Matérn covariance functions of the form

CNS(s,s′) = σ(s)σ(s′)M(h|ν , ℓ) (4.2)

where the SD process σ(s) is spatially varying while the spatial correlation M(h|ν , ℓ) depends on

the distance between locations h.

4.3.3 Single eye model

To highlight the importance of using nonstationary covariance functions, we first develop models

fit on data from individual eyes using either stationary or nonstationary Matérn covariance func-

tions. We refer to the model with only stationary covariance functions as the Single Eye Stationary

(SES) model and the model with nonstationary covariance functions as the Single Eye Nonstation-

ary (SENS) model. For a single subject, let observation y jk be the VF threshold sensitivity mea-

sured in dB at visit j = 1, . . . ,J, where J is the number of visits for the subject, in test location

k = 1, . . . ,K, observed at time t j, with t1 = 0. Location sk = (X positionk,Y positionk) denotes the

two-dimensional spatial coordinates for test location k. Let y∗jk denote the true, latent sensitivity for

observations, where we observe

y jk =


0, if −5 ≤ y∗jk ≤ 0

y∗jk, otherwise

and y∗jk <−5 is assumed impossible. We model y∗jk as linear in time

y∗jk = γ0 + γ1t j +β0k +β1kt j + ε jk

ε jk|τ2
k ∼ N(0,τ2

k ),

logτk = γ2 +σk,
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where γ0, γ1, and γ2 are the subject’s global eye intercept, slope, and log residual SD, respectively,

β0k, β1k, and σk are the intercept, slope, and log residual SD processes, respectively, in test location

k. We assign independent normal priors on the global effects γ0 ∼ N(20,62), γ1 ∼ N(−0.2,0.52),

γ2 ∼ N(0.9,0.52).

For the SES model, we model the intercept process with β0k|θβ0 ∼ GP(0,CS
β0
(sk,sk′)), slope pro-

cess with β1k|θβ1 ∼ GP(0,CS
β1(sk,sk′)), log residual SD process with logσk|θσ ∼ GP(0,CS

σ (sk,sk′))

where covariance functions CS
β0, CS

β1, and CS
σ are stationary Matérn covariance functions as in (4.1).

The superscripts S and NS denote stationary and nonstationary covariance functions, respectively.

The hyperparameters for the intercept, slope, and log residual processes are θβ0 = {σβ0,νβ0, ℓβ0},

θβ1 = {σβ1,νβ1, ℓβ1}, and θσ = {σσ ,νσ , ℓσ}, respectively. For the GP SD and lengthscale pa-

rameters, we wish to avoid flat priors that could pull the posterior towards extreme values. We

assign truncated-normal priors on all GP parameters σβ0 ∼ N+(0,102), σβ1,σσ ∼ N+(0,22), and

ℓβ0, ℓβ1, ℓσ ∼ N+(0,52) where N+(a,b) is a normal distribution with mean a and variance b re-

stricted to the positive real line.

For the SENS model, we use nonstationary covariance functions CNS
β0 and CNS

β1 as de-

scribed in (4.2) for more flexible processes on the intercepts and slopes, respectively. The

hyperparameters for the intercept and slope processes are θβ0 = {λβ0k,νβ0, ℓβ0} and θβ1 =

{λβ1k,νβ1, ℓβ1}, respectively. We model the spatially varying SD process for the intercept

process with logλβ0k|µλ0,σλ0,νλ0, ℓλ0 ∼ GP(µλ0,CS
λ0(sk,sk′)) and for the slope process with

logλβ1k|µλ1,σλ1,νλ1, ℓλ1 ∼ GP(µλ1,CS
λ1(sk,sk′)) where CS

λ0 and CS
λ1 take the stationary Matérn

form. We model the log residual SD process with logσk|θσ ∼ GP(0,CS
σ (sk,sk′)) in parallel with

the SES model. We assign truncated-normal priors to all GP parameters σβ0 ∼ N+(0,102),

σβ1,σσ ∼ N+(0,22), σλ0,σλ1 ∼ N+(0,32), and ℓβ0, ℓβ1, ℓσ , ℓλ0, ℓλ1 ∼ N+(0,52). We assign nor-

mal priors on the means of the log SD processes logλβ0k and logλβ1k with µλ0 ∼ N(2.3,0.252)

and µλ1 ∼ N(−0.2,0.252), respectively. Finally, we assume all hyperparameters are independent a

priori.
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4.3.4 Model specification for a hierarchical spatially varying longitudinal visual field model

The proposed HSLVF model is an extension of the SENS model to accommodate data from the entire

cohort, allowing the subject-specific intercept and slope processes to have nonstationary Matérn

covariance functions. We augment the notation from the single eye model to include data from all

subjects. Let observation yi jk be the VF threshold sensitivity measured in dB of subject i= 1, . . . ,n at

visit j = 1, . . . ,Ji, at time ti j, where Ji is the number of visits for subject i, in test location k = 1, . . . ,K,

with ti1 = 0 for all subjects. Let y∗i jk denote the true, latent sensitivity for observations. As with the

single eye models, we observe

yi jk =


0, if −5 ≤ y∗i jk ≤ 0

y∗i jk, otherwise.

We model y∗i jk as

y∗i jk = µ0 +µ1ti j +α0k +α1kti j +β0ik +β1ikti j + εi jk

εi jk|τ2
ik ∼ N(0,τ2

ik),

logτik = µ2 +φk +σik,

where µ0, µ1, and µ2 are the population global eye intercept, slope, and log residual SD, respec-

tively; α0k, α1k, and φk are the test location k population-level intercept, slope, and log residual SD

processes, respectively; and β0ik, β1ik, and σik are subject-specific intercept, slope, and log resid-

ual SD processes, respectively, in location k. We use weakly informative priors to encourage rea-

sonable ranges of values and facilitate computing. We assign normal priors on the global effects

µ0 ∼ N(20,62), µ1 ∼ N(−0.2,0.52), µ2 ∼ N(0.9,0.52).

We model the population-level intercept process with α0k|σα0,να0, ℓα0 ∼ GP(0,CS
α0(sk,sk′)),

slope process with α1k|σα1,να1, ℓα1 ∼ GP(0,CS
α1(sk,sk′)), log residual SD process with

φk|σφ ,νφ , ℓφ ∼ GP(0,CS
φ
(sk,sk′)) where covariance functions CS

α0, CS
α1, and CS

φ
take the station-
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ary form of the Matérn covariance function. We model the subject-specific log residual SD pro-

cess with σik|σσ ,νσ , ℓσ ∼ GP(0,CS
σ (sk,sk′)) where CS

σ takes the same stationary Matérn form. For

the subject-specific intercept and slope processes, we assign nonstationary Matérn covariance func-

tions with β0ik|λβ0k,νβ0, ℓβ0 ∼ GP(0,CNS
β0 (sk,sk′)) and β1ik|λβ1k,νβ1, ℓβ1 ∼ GP(0,CNS

β1 (sk,sk′)), re-

spectively. We model the spatially varying SD process for β0ik with logλβ0k|µλ0,σλ0,νλ0, ℓλ0 ∼
GP(µλ0,CS

λ0(sk,sk′)) and for β1ik with logλβ1k|µλ1,σλ1,νλ1, ℓλ1 ∼ GP(µλ1,CS
λ1(sk,sk′)).

We assign normal priors on the means of the spatially varying log SD processes logλβ0k and

logλβ1k with µλ0 ∼ N(2.3,0.252) and µλ1 ∼ N(−0.2,0.252), respectively. We set all GP smooth-

ness parameters να0, να1, νφ , νσ , νβ0, νβ1, νλ0, νλ1 = 1
2 since we obtain measurements from a coarse

grid of test locations and expect the processes to be rough. We assign truncated-normal priors on GP

SD parameters σα0 ∼ N+(0,102), σφ ,σσ ∼ N+(0,22), σλ0,σλ1 ∼ N+(0,32), and an inverse gamma

prior on the SD parameter for the population-level slope process σα1 ∼ IG(3,2) to avoid infinitesi-

mal SDs. For GP lengthscales, we expect values to fall plausibly between 1.5 and 20.0 degrees, the

range of distances between any two test locations. We therefore assign identical truncated-normal

priors on all GP lengthscales ℓα0, ℓα1, ℓφ , ℓσ , ℓβ0, ℓβ1, ℓλ0, ℓλ1 ∼ N+(0,52). Finally, we assume all

top-level hyperparameters are independent a priori.

4.3.5 Computation and inference

We use the R programming language (R Core Team, 2021) for all analyses and GGPLOT2 (Wickham,

2016) for visualization. To fit the models, we use Markov Chain Monte Carlo (MCMC) methods

(Metropolis et al., 1953; Robert and Casella, 2005) implemented in NIMBLE v0.13.1 (de Valpine

et al., 2017, 2022). To sample from the posteriors, we use Gibbs sampling and update specific pa-

rameters using Metropolis-Hastings within Gibbs. We update global effects µ0, µ1, µ2, µλ0 , and µλ1

using scalar Metropolis-Hastings random walk samplers; each pair of SD and lengthscale parameters

from GPs together using multivariate Metropolis-Hastings random walk samplers; and the subject-

level random effects β0ik, β1ik, and σik and spatially varying log SD processes logλβ0k and logλβ1k

using multivariate Metropolis-Hastings random walk samplers in sub-blocks after testing various
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schemes to improve sampling efficiency (Risser and Turek, 2020). We jointly sample subject-level

intercepts and slopes in sub-blocks of size 4. We separately sample the subject-level residual SDs

and spatially varying log SD processes in sub-blocks of size 8 or 10. To improve mixing of chains,

we repeat samplers for 13 subject-level intercepts and slopes with poor mixing and the spatially

varying log SD processes 3 times in each MCMC iteration.

We follow Vehtari et al. (2021)’s recommendation for assessing convergence, monitoring the

potential scale reduction factor R̂, bulk effective sample sizes (ESS), and tail ESS for all model

parameters. We use the R package RSTAN (Stan Development Team, 2022) to provide ESS measures

and R̂ convergence diagnostics.

4.4 Advanced Glaucoma Progression Study

We apply our methodology to 10-2 VF measurements from 137 eyes (137 subjects) in the AGPS.

After removing sensitivities greater than 35 dB, we analyze 86,819 observations from 9,316 subject-

location VF series.

4.4.1 Single eye model results

First, we fit the SES and SENS models on data from each eye separately as part of an exploratory

analysis before applying the HSLVF model. Comparing the 9,316 subject-location parameters be-

tween the SES and SENS models, we find that the mean (10th, 90th percentile) difference (SES −
SENS) in posterior means is −0.01(−0.56,0.46) and 0.03(−0.08,0.12) for intercepts and slopes,

respectively. Figure 4.3 plots the posterior means of subject-location intercepts and slopes from

SES against SENS. There is close agreement between the models for the majority of intercepts and

slopes. However, there are some intercepts and slopes with very large differences as highlighted by

the lighter colored dots.

Figure 4.4 provides results from two subjects where the intercepts and slopes differ greatly be-

tween the SES and SENS models at multiple locations. For heat maps of intercepts and slopes,
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Figure 4.3: Scatter plot of (a) intercept posterior means in decibels (dB) and (b) slope posterior
means (dB / year) from the Single Eye Stationary (SES, y-axis) vs. Single Eye Nonstationary (SENS,
x-axis) models. The red dashed line is the x = y diagonal. Some subject-location intercepts and
slopes that differ greatly between the models are highlighted by the lighter colored dots.

the coordinates on the top and left indicate the original X and Y coordinate positions of test loca-

tions, respectively. The posterior mean fitted lines in Figure 4.4 (c, f) show locations where the

SENS model follows the raw data more closely than the SES model. For Subject 1 (Figure 4.4 a-c),

the SENS model allows for more flexibility in intercepts and slopes in locations (-1, 5) to (7, 5),

where intercepts and slopes deviate greatly from the population average. The SES model does not

allow for large differences between neighboring locations. For Subject 2 (Figure 4.4 d-f), the SENS

model more closely follows the data in locations (−5,−7), (−3,−7), (−1,−9), and (1,−9) where

intercepts differ up to 8 dB between the models.

4.4.2 HSLVF results

We run the HSLVF model with 9 chains of 360,000 iterations after a burn-in of 60,000, a thin of

200 for a total of 13,500 posterior samples. We summarize convergence diagnostics in Table 4.1.

Despite the complexity of the model, customized sub-block random walk samplers in NIMBLE prove

to be efficient at sampling highly correlated posteriors. The total runtime for the 360,000 iterations
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Figure 4.4: Comparison of intercepts, slopes, and model fit between the Single Eye Stationary (SES)
and Single Eye Nonstationary (SENS) models on two subjects. Heat maps of intercept posterior
means in decibels (dB) across the 68 locations for (a) Subject 1 and (d) Subject 2. Heat maps of slope
posterior means (dB / year) across the 68 locations for (b) Subject 1 and (e) Subject 2. Posterior mean
fitted lines from the SES (red) and SENS (blue) models for the (c) superior hemiretina of Subject 1
and (f) inferior hemiretina of Subject 2. Posterior mean fitted lines from the SENS model follow the
raw data more closely than SES in multiple locations.
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Table 4.1: The mean minimum/maximum bulk effective sample size (ESS), tail ESS, and poten-
tial scale reduction factor R̂ for the HSLVF model broken down by parameter types. For conver-
gence, R̂ should be < 1.01 and ESS should be > 100 per chain. The first column gives the pa-
rameter types: Hyperparameters include global parameters and Gaussian process hyperparameters;
Population-level includes the population-level intercepts, slopes, and log residual standard devia-
tions (SD) across all locations; Intercepts, Slopes, and Log Residual SDs include the subject-level
intercepts, slopes, and log residual SDs across all locations, respectively; and Log SD Process in-
cludes the spatially varying log SD for the subject-level intercepts and slopes across all locations.
The second column gives the number of parameters summarized.

Bulk ESS Tail ESS R̂

Parameter # Mean Min Mean Min Mean Max

Hyperparameters 19 11532.7 3406.3 12186.8 7632.6 1.000 1.002
Population-Level 204 11944.7 7766.0 12782.2 10984.9 1.000 1.001
Intercepts 9316 12708.3 2134.6 13041.8 5604.4 1.000 1.005
Slopes 9316 10487.1 1972.9 11905.2 4389.8 1.000 1.005
Log Residual SDs 9316 13255.3 7472.8 13183.4 9546.0 1.000 1.002
Log SD Process 136 5048.4 2493.1 8400.7 4986.4 1.001 1.004

is approximately 36 hours (Apple M1 Pro 10-core CPU). The chains achieve R̂ less than 1.01 with

bulk and tail ESS greater than 100 per chain for all parameters, indicating convergence. Visual

assessment of model convergence was satisfactory.

Table 4.2 gives posterior means and 95% credible intervals (CrI) for global and GP parameters

from the HSLVF model. The lengthscales for the intercept and slope GPs are longer for the subject-

level processes than the population-level, suggesting that spatial correlation decays much slower or

noise is higher so smoothing is more appropriate for the subject-level intercepts and slopes. In con-

trast, the lengthscales for the log residual SD processes are not longer for the subject-level process

than the population-level process. The posterior mean and 95% CrI difference in population-level

and subject-level lengthscales (ℓφ − ℓσ ) for the log residual SD processes is 2.24 (−2.10,8.30).

Figure 4.5 displays heat maps of posterior means of population-level intercepts and slopes. There

is more damage in the superior hemiretina and inferior nasal areas, while the central locations

have higher intercepts. To assess glaucoma progression, ophthalmologists are most interested in

the slopes. We declare a slope to be significantly negative or positive when the upper bound or lower
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Table 4.2: Posterior mean and 95% credible interval (CrI) for global parameters and Gaussian pro-
cess (GP) parameters for the HSLVF model. SD stands for standard deviation.

Parameters Symbols Level Mean 95% CrI

Global Parameters
Intercept µ0 20.59 (16.37, 24.43)
Slope µ1 −0.24 (−0.40,−0.08)
Log Residual SD µ2 1.04 (0.81, 1.30)

GP SD Parameters
Intercept σα0 Population 3.06 (2.40, 3.90)
Slope σα1 Population 0.10 (0.08, 0.14)
Log Residual SD σφ Population 0.20 (0.15, 0.28)
Log Residual SD σσ Subject 0.73 (0.70, 0.76)

GP Lengthscale Parameters
Intercept ℓα0 Population 13.06 (8.42, 18.87)
Slope ℓα1 Population 14.91 (9.11, 21.83)
Log Residual SD ℓφ Population 9.01 (4.75, 15.01)
Intercept ℓβ0 Subject 32.11 (28.07, 36.55)
Slope ℓβ1 Subject 32.49 (28.08, 37.15)
Log Residual SD ℓσ Subject 6.77 (6.12, 7.50)

Spatially Varying Log SD GP Parameters
Intercept Mean µλ0 2.36 (2.04, 2.70)
Slope Mean µλ1 −0.52 (−0.74,−0.26)
Intercept SD σλ0 0.41 (0.31, 0.55)
Slope SD σλ1 0.22 (0.15, 0.30)
Intercept Lengthscale ℓλ0 9.01 (5.04, 14.79)
Slope Lengthscale ℓλ1 9.74 (5.31, 15.85)
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Figure 4.5: Heat maps of posterior means of population-level (a) intercepts in decibels (dB) and
(b) slopes (dB / year) across the 68 test locations from the HSLVF model. The asterisk indicates a
significant negative slope, where we define significance when the upper bound of the 95% credible
interval is less than 0. We use a significantly negative slope to indicate progression.

bound of the 95% CrI is less than or greater than 0, respectively. We use a significantly negative

slope to indicate progression. All locations except (1,−1) have significant negative population-level

slopes, with the steepest slopes in the superior locations. Across all 9,316 subject-location series, the

HSLVF model detects 29.9% of slopes as significantly negative and 6.4% as significantly positive.

Figure 4.6 shows heat maps of posterior means of the spatially varying SD parameters for the

nonstationary Matérn covariance functions of the subject-level intercepts and slopes. The SDs for

intercepts are larger in the superior hemiretina and inferior nasal areas, indicating random inter-

cepts are more variable. The SDs for slopes are larger in the superior hemiretina, indicating more

variability in random slopes.

4.5 Discussion

We motivate and develop a Bayesian hierarchical model to analyze VF data from all study sub-

jects, accommodating data censoring, heteroskedasticity, and the spatial structure of test locations.
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Figure 4.6: Heat maps of posterior means of the spatially varying standard deviation (SD) parameters
λβ0k and λβ1k for the nonstationary Matérn covariance functions of the subject-level (a) intercepts in
decibels (dB) and (b) slopes (dB / year), respectively, in the HSLVF model. There is more variability
in random intercepts and slopes in the superior hemiretina than inferior.

Given that measurement variability is known to increase with glaucoma damage, we highlight the

performance of HSLVF in identifying progressing locations in our cohort of moderate to severe glau-

coma subjects. Our model borrows information across subjects, facilitating inference of population-

level parameters and reducing uncertainty in estimating subject-level parameters. Most notably, the

HSLVF model detects significant negative slopes in 29.9% of the 9,316 subject-location VF series.

In contrast, SLR detects only 10.3% of the subject-location VF series as significantly negative.

We take a different approach in handling censored measurements of 0 dB by treating them as

interval censored. While the cutoff of 0 dB is arbitrary in nature, we opt to provide a lower bound

to keep estimated sensitivities within a reasonable range. It is imperative to include data censoring

in our model, especially for subject-specific repeated measures with constant values of 0 dB. With-

out censoring, the model would not be able to provide appropriate inference for subject-location

residual variances in constant repeated measures. Other studies have modeled heteroskedasticity by

estimating the relationship between log(SD) and true sensitivity using frequency-of-seeing and test-

retest datasets (Chauhan et al., 1993; Artes et al., 2002; Henson et al., 2000; Russell et al., 2012a;
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Montesano et al., 2021). In the absence of test-retest data, we instead allow residual SDs to vary

across subject-locations in a principled fashion through our GP prior. This approach accounts for

subject-specific variability arising from the subjective nature of the VF testing procedure.

We account for spatial structure in intercepts, slopes, and log residual SDs through our GP co-

variance functions. By using nonstationary covariance functions with spatially varying SDs to model

subject-specific intercepts and slopes, our model appropriately captures the variation in random in-

tercept and slope SDs across different test locations. The spatially varying SDs provide insight

into which locations are more heterogeneous with more variability in baseline damage and rates

of change, indicating regions of potential progression. There are a variety of approaches to spec-

ify the anisotropy processes as in Risser and Turek (2020). As part of exploratory analyses, we fit

models using nonstationary covariance functions with spatially varying lengthscales. These early

analyses did not convergence, possibly indicating that there is not enough information to estimate

varying lengthscales or that the process is highly spatially correlated. We define our covariances

using displaced distances between locations, combining both functional and structural information.

Our approach facilitates the development towards combined structure-function analyses to further

improve detection of progression.

111



Bibliography

Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions: with Formulas,

Graphs, and Mathematical Tables, volume 55. US Government Printing Office.

Abu, S. L., Marín-Franch, I., and Racette, L. (2020). A framework for assessing glaucoma progres-

sion using structural and functional indices jointly. PLoS One, 15(7):e0235255.

Allison, K., Patel, D., and Alabi, O. (2020). Epidemiology of glaucoma: the past, present, and

predictions for the future. Cureus, 12(11).

Apanasovich, T. V., Genton, M. G., and Sun, Y. (2012). A valid Matérn class of cross-covariance

functions for multivariate random fields with any number of components. Journal of the American

Statistical Association, 107(497):180–193.

Artes, P. H., Hutchison, D. M., Nicolela, M. T., LeBlanc, R. P., and Chauhan, B. C. (2005). Thresh-

old and variability properties of matrix frequency-doubling technology and standard automated

perimetry in glaucoma. Investigative Ophthalmology & Visual Science, 46(7):2451–2457.

Artes, P. H., Iwase, A., Ohno, Y., Kitazawa, Y., and Chauhan, B. C. (2002). Properties of perimetric

threshold estimates from full threshold, SITA Standard, and SITA Fast strategies. Investigative

Ophthalmology & Visual Science, 43(8):2654–2659.

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2014). Hierarchical Modeling and Analysis for

Spatial Data. Chapman and Hall/CRC, 2nd edition.

Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008). Gaussian predictive process

models for large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 70(4):825–848.

Barnard, J., McCulloch, R., and Meng, X.-L. (2000). Modeling covariance matrices in terms of

112



standard deviations and correlations, with application to shrinkage. Statistica Sinica, 10(4):1281–

1311.

Berchuck, S. I., Mwanza, J.-C., and Warren, J. L. (2019). Diagnosing glaucoma progression with

visual field data using a spatiotemporal boundary detection method. Journal of the American

Statistical Association, 114(527):1063–1074.

Betz-Stablein, B. D., Morgan, W. H., House, P. H., and Hazelton, M. L. (2013). Spatial modeling

of visual field data for assessing glaucoma progression. Investigative Ophthalmology & Visual

Science, 54(2):1544–1553.

Bogachev, V. I. (1998). Gaussian Measures, volume 62 of Mathematical Surveys and Monographs.

American Mathematical Society.

Broadway, D. C. (2012). Visual field testing for glaucoma–a practical guide. Community Eye Health,

25(79-80):66.

Bryan, S. R., Eilers, P. H., Lesaffre, E. M., Lemij, H. G., and Vermeer, K. A. (2015). Global visit

effects in point-wise longitudinal modeling of glaucomatous visual fields. Investigative Ophthal-

mology & Visual Science, 56(8):4283–4289.

Bryan, S. R., Eilers, P. H., Rosmalen, J. v., Rizopoulos, D., Vermeer, K. A., Lemij, H. G., and

Lesaffre, E. M. (2017). Bayesian hierarchical modeling of longitudinal glaucomatous visual fields

using a two-stage approach. Statistics in Medicine, 36(11):1735–1753.

Bryan, S. R., Vermeer, K. A., Eilers, P. H., Lemij, H. G., and Lesaffre, E. M. (2013). Robust

and censored modeling and prediction of progression in glaucomatous visual fields. Investigative

Ophthalmology & Visual Science, 54(10):6694–6700.

Castruccio, S., Ombao, H., and Genton, M. G. (2018). A scalable multi-resolution spatio-temporal

model for brain activation and connectivity in fMRI data. Biometrics, 74(3):823–833.

113



Chauhan, B. C., Garway-Heath, D. F., Goñi, F. J., Rossetti, L., Bengtsson, B., Viswanathan, A. C.,

and Heijl, A. (2008). Practical recommendations for measuring rates of visual field change in

glaucoma. British Journal of Ophthalmology, 92(4):569–573.

Chauhan, B. C., Tompkins, J. D., LeBlanc, R. P., and McCormick, T. A. (1993). Characteristics

of frequency-of-seeing curves in normal subjects, patients with suspected glaucoma, and patients

with glaucoma. Investigative Ophthalmology & Visual Science, 34(13):3534–3540.

De Moraes, C. G., Hood, D. C., Thenappan, A., Girkin, C. A., Medeiros, F. A., Weinreb, R. N.,

Zangwill, L. M., and Liebmann, J. M. (2017). 24-2 visual fields miss central defects shown

on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma. Ophthalmology,

124(10):1449–1456.

de Valpine, P., Paciorek, C., Turek, D., Michaud, N., Anderson-Bergman, C., Obermeyer, F.,

Wehrhahn Cortes, C., Rodrìguez, A., Temple Lang, D., and Paganin, S. (2022). NIMBLE: MCMC,

Particle Filtering, and Programmable Hierarchical Modeling. R package version 0.13.1.

de Valpine, P., Turek, D., Paciorek, C., Anderson-Bergman, C., Temple Lang, D., and Bodik, R.

(2017). Programming with models: writing statistical algorithms for general model structures

with NIMBLE. Journal of Computational and Graphical Statistics, 26:403–413.

Drasdo, N., Millican, C. L., Katholi, C. R., and Curcio, C. A. (2007). The length of Henle fibers

in the human retina and a model of ganglion receptive field density in the visual field. Vision

Research, 47(22):2901–2911.

Gardiner, S. K. and Crabb, D. P. (2002). Examination of different pointwise linear regression meth-

ods for determining visual field progression. Investigative Ophthalmology & Visual Science,

43(5):1400–1407.

Garway-Heath, D. F., Poinoosawmy, D., Fitzke, F. W., and Hitchings, R. A. (2000). Mapping the

visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology, 107(10):1809–

1815.

114



Gaspari, G. and Cohn, S. E. (1999). Construction of correlation functions in two and three dimen-

sions. Quarterly Journal of the Royal Meteorological Society, 125(554):723–757.

Ge, T., Müller-Lenke, N., Bendfeldt, K., Nichols, T. E., and Johnson, T. D. (2014). Analysis of

multiple sclerosis lesions via spatially varying coefficients. The Annals of Applied Statistics,

8(2):1095–1118.

Gelfand, A. E., Diggle, P., Guttorp, P., and Fuentes, M. (2010). Handbook of Spatial Statistics. CRC

Press.

Gelfand, A. E., Kim, H.-J., Sirmans, C., and Banerjee, S. (2003). Spatial modeling with spatially

varying coefficient processes. Journal of the American Statistical Association, 98(462):387–396.

Gelfand, A. E. and Schliep, E. M. (2016). Spatial statistics and Gaussian processes: A beautiful

marriage. Spatial Statistics, 18:86–104.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian

Data Analysis. Chapman & Hall/CRC, 3rd edition.

Genton, M. G. and Kleiber, W. (2015). Cross-covariance functions for multivariate geostatistics.

Statistical Science, 30(2):147–163.

Gneiting, T., Kleiber, W., and Schlather, M. (2010). Matérn cross-covariance functions for multi-

variate random fields. Journal of the American Statistical Association, 105(491):1167–1177.

Gordon, M. O., Beiser, J. A., Brandt, J. D., Heuer, D. K., Higginbotham, E. J., Johnson, C. A.,

Keltner, J. L., Miller, J. P., Parrish, R. K., Wilson, M. R., et al. (2002). The Ocular Hypertension

Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Archives

of Ophthalmology, 120(6):714–720.

Gössl, C., Auer, D. P., and Fahrmeir, L. (2001). Bayesian spatiotemporal inference in functional

magnetic resonance imaging. Biometrics, 57(2):554–562.

115



Gracitelli, C. P., Tatham, A. J., Zangwill, L. M., Weinreb, R. N., Liu, T., and Medeiros, F. A. (2014).

Estimated rates of retinal ganglion cell loss in glaucomatous eyes with and without optic disc

hemorrhages. PLoS One, 9(8):e105611.

Guttorp, P. and Gneiting, T. (2006). Studies in the history of probability and statistics XLIX On the

Matérn correlation family. Biometrika, 93(4):989–995.

Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical

Society: Series B (Methodological), 55(4):757–779.

Henson, D. B., Chaudry, S., Artes, P. H., Faragher, E. B., and Ansons, A. (2000). Response variabil-

ity in the visual field: comparison of optic neuritis, glaucoma, ocular hypertension, and normal

eyes. Investigative Ophthalmology & Visual Science, 41(2):417–421.

Kass, M. A., Heuer, D. K., Higginbotham, E. J., Johnson, C. A., Keltner, J. L., Miller, J. P., Parrish,

R. K., Wilson, M. R., Gordon, M. O., Group, O. H. T. S., et al. (2002). The Ocular Hypertension

Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays

or prevents the onset of primary open-angle glaucoma. Archives of Ophthalmology, 120(6):701–

713.

Kim, H. and Lee, J. (2017). Hierarchical spatially varying coefficient process model. Technometrics,

59(4):521–527.

Kingman, S. (2004). Glaucoma is second leading cause of blindness globally. Bulletin of the World

Health Organization, 82:887–888.

Kline, P. (2014). An Easy Guide to Factor Analysis. Routledge.

Liu, Y.-Y., Ishikawa, H., Chen, M., Wollstein, G., Schuman, J. S., and Rehg, J. M. (2013). Longi-

tudinal modeling of glaucoma progression using 2-dimensional continuous-time hidden markov

model. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th

International Conference, Nagoya, Japan, September 22-26, 2013, Proceedings, Part II 16, pages

444–451. Springer.

116



Liu, Z., Bartsch, A. J., Berrocal, V. J., and Johnson, T. D. (2019). A mixed-effects, spatially varying

coefficients model with application to multi-resolution functional magnetic resonance imaging

data. Statistical Methods in Medical Research, 28(4):1203–1215.

Mansouri, K., Leite, M. T., Medeiros, F., Leung, C., and Weinreb, R. (2011). Assessment of rates of

structural change in glaucoma using imaging technologies. Eye, 25(3):269–277.

Matern, B. (1986). Spatial Variation. Springer, 2nd edition.

Medeiros, F. A., Leite, M. T., Zangwill, L. M., and Weinreb, R. N. (2011). Combining structural

and functional measurements to improve detection of glaucoma progression using Bayesian hier-

archical models. Investigative Ophthalmology & Visual Science, 52(8):5794–5803.

Medeiros, F. A., Zangwill, L. M., Bowd, C., Mansouri, K., and Weinreb, R. N. (2012). The structure

and function relationship in glaucoma: implications for detection of progression and measurement

of rates of change. Investigative Ophthalmology & Visual Science, 53(11):6939–6946.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation

of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–

1092.

Miraftabi, A., Amini, N., Gornbein, J., Henry, S., Romero, P., Coleman, A. L., Caprioli, J., and

Nouri-Mahdavi, K. (2016). Local variability of macular thickness measurements with SD-OCT

and influencing factors. Translational Vision Science & Technology, 5(4):5.

Mohammadzadeh, V., Fatehi, N., Yarmohammadi, A., Lee, J. W., Sharifipour, F., Daneshvar, R.,

Caprioli, J., and Nouri-Mahdavi, K. (2020a). Macular imaging with optical coherence tomography

in glaucoma. Survey of Ophthalmology, 65(6):597–638.

Mohammadzadeh, V., Rabiolo, A., Fu, Q., Morales, E., Coleman, A. L., Law, S. K., Caprioli, J., and

Nouri-Mahdavi, K. (2020b). Longitudinal macular structure–function relationships in glaucoma.

Ophthalmology, 127(7):888–900.

117



Mohammadzadeh, V., Su, E., Rabiolo, A., Shi, L., Zadeh, S. H., Law, S. K., Coleman, A. L., Capri-

oli, J., Weiss, R. E., and Nouri-Mahdavi, K. (2022a). Ganglion cell complex: The optimal mea-

sure for detection of structural progression in the macula. American Journal of Ophthalmology,

237:71–82.

Mohammadzadeh, V., Su, E., Shi, L., Coleman, A. L., Law, S. K., Caprioli, J., Weiss, R. E., and

Nouri-Mahdavi, K. (2022b). Multivariate longitudinal modeling of macular ganglion cell com-

plex: spatiotemporal correlations and patterns of longitudinal change. Ophthalmology Science,

2(3):100187.

Mohammadzadeh, V., Su, E., Zadeh, S. H., Law, S. K., Coleman, A. L., Caprioli, J., Weiss, R. E.,

and Nouri-Mahdavi, K. (2021). Estimating ganglion cell complex rates of change with Bayesian

hierarchical models. Translational Vision Science & Technology, 10(4):15.

Montesano, G., Garway-Heath, D. F., Ometto, G., and Crabb, D. P. (2021). Hierarchical cen-

sored Bayesian analysis of visual field progression. Translational Vision Science & Technology,

10(12):4.

Montesano, G., Ometto, G., Hogg, R. E., Rossetti, L. M., Garway-Heath, D. F., and Crabb, D. P.

(2020). Revisiting the Drasdo model: implications for structure-function analysis of the macular

region. Translational Vision Science & Technology, 9(10):15.

Nouri-Mahdavi, K., Hoffman, D., Ralli, M., and Caprioli, J. (2007). Comparison of methods to

predict visual field progression in glaucoma. Archives of Ophthalmology, 125(9):1176–1181.

Paciorek, C. J. and Schervish, M. J. (2006). Spatial modelling using a new class of nonstationary

covariance functions. Environmetrics: The Official Journal of the International Environmetrics

Society, 17(5):483–506.

Penny, W. D., Trujillo-Barreto, N. J., and Friston, K. J. (2005). Bayesian fMRI time series analysis

with spatial priors. NeuroImage, 24(2):350–362.

118



Phu, J. and Kalloniatis, M. (2021). The Frontloading Fields Study (FFS): detecting changes in mean

deviation in glaucoma using multiple visual field tests per clinical visit. Translational Vision

Science & Technology, 10(13):21.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria.

Rabiolo, A., Mohammadzadeh, V., Fatehi, N., Morales, E., Coleman, A. L., Law, S. K., Caprioli, J.,

and Nouri-Mahdavi, K. (2020). Comparison of rates of progression of macular OCT measures in

glaucoma. Translational Vision Science & Technology, 9(7):50.

Rao, H., Kumbar, T., Kumar, A., Babu, J., Senthil, S., and Garudadri, C. (2013). Agreement between

event-based and trend-based glaucoma progression analyses. Eye, 27(7):803–808.

Raza, A. S., Cho, J., de Moraes, C. G., Wang, M., Zhang, X., Kardon, R. H., Liebmann, J. M., Ritch,

R., and Hood, D. C. (2011). Retinal ganglion cell layer thickness and local visual field sensitivity

in glaucoma. Archives of Ophthalmology, 129(12):1529–1536.

Risser, M. D. and Turek, D. (2020). Bayesian inference for high-dimensional nonstationary Gaussian

processes. Journal of Statistical Computation and Simulation, 90(16):2902–2928.

Robert, C. and Casella, G. (2005). Monte Carlo Statistical Methods. Springer, 2nd edition.

Rui, C., Montesano, G., Crabb, D. P., Brusini, P., Chauhan, B. C., Rossetti, L. M., Fogagnolo,

P., Giraud, J.-M., Fenolland, J.-R., and Oddone, F. (2021). Improving event-based progression

analysis in glaucomatous visual fields. Scientific Reports, 11(1):16353.

Russell, R. A., Crabb, D. P., Malik, R., and Garway-Heath, D. F. (2012a). The relationship between

variability and sensitivity in large-scale longitudinal visual field data. Investigative Ophthalmol-

ogy & Visual Science, 53(10):5985–5990.

Russell, R. A., Malik, R., Chauhan, B. C., Crabb, D. P., and Garway-Heath, D. F. (2012b). Im-

proved estimates of visual field progression using bayesian linear regression to integrate structural

119



information in patients with ocular hypertension. Investigative Ophthalmology & Visual Science,

53(6):2760–2769.

Schmidt, A. M. and Gelfand, A. E. (2003). A Bayesian coregionalization approach for multivariate

pollutant data. Journal of Geophysical Research: Atmospheres, 108(D24).

Stan Development Team (2022). RStan: the R interface to Stan. R package version 2.21.7.

Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation and Akaike’s

criterion. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):44–47.

Su, Y.-S. and Yajima, M. (2021). R2jags: Using R to Run ’JAGS’. R package version 0.7-1.

Swaminathan, S. S., Berchuck, S. I., Jammal, A. A., Rao, J. S., and Medeiros, F. A. (2022). Rates of

glaucoma progression derived from linear mixed models using varied random effect distributions.

Translational Vision Science & Technology, 11(2):16.

Tatham, A. J. and Medeiros, F. A. (2017). Detecting structural progression in glaucoma with optical

coherence tomography. Ophthalmology, 124(12):S57–S65.

Tham, Y.-C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., and Cheng, C.-Y. (2014). Global

prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review

and meta-analysis. Ophthalmology, 121(11):2081–2090.

Thompson, A. C., Jammal, A. A., Berchuck, S. I., Mariottoni, E. B., Wu, Z., Daga, F. B., Ogata,

N. G., Urata, C. N., Estrela, T., and Medeiros, F. A. (2020a). Comparing the rule of 5 to trend-

based analysis for detecting glaucoma progression on OCT. Ophthalmology Glaucoma, 3(6):414–

420.

Thompson, A. C., Jammal, A. A., and Medeiros, F. A. (2020b). A review of deep learning for

screening, diagnosis, and detection of glaucoma progression. Translational Vision Science &

Technology, 9(2):42–42.

120



Tibbits, M. M., Groendyke, C., Haran, M., and Liechty, J. C. (2014). Automated factor slice sam-

pling. Journal of Computational and Graphical Statistics, 23(2):543–563.

Traynis, I., De Moraes, C. G., Raza, A. S., Liebmann, J. M., Ritch, R., and Hood, D. C. (2014).

Prevalence and nature of early glaucomatous defects in the central 10◦ of the visual field. JAMA

Ophthalmology, 132(3):291–297.

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-

out cross-validation and WAIC. Statistics and Computing, 27(5):1413–1432.

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Bürkner, P.-C. (2021). Rank-normalization,

folding, and localization: an improved R̂ for assessing convergence of MCMC (with discussion).

Bayesian Analysis, 16(2):667–718.

Ver Hoef, J. M. and Barry, R. P. (1998). Constructing and fitting models for cokriging and multi-

variable spatial prediction. Journal of Statistical Planning and Inference, 69(2):275–294.

Wackernagel, H. (2013). Multivariate Geostatistics. Springer, 3rd edition.

Watanabe, S. and Opper, M. (2010). Asymptotic equivalence of Bayes cross validation and widely

applicable information criterion in singular learning theory. Journal of Machine Learning Re-

search, 11(12):3571–3594.

Weinreb, R. N., Aung, T., and Medeiros, F. A. (2014). The pathophysiology and treatment of

glaucoma: a review. JAMA, 311(18):1901–1911.

Weinreb, R. N. and Khaw, P. T. (2004). Primary open-angle glaucoma. The Lancet, 363(9422):1711–

1720.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian Processes for Machine Learning, volume 2.

MIT Press.

121



Wu, Z. and Medeiros, F. A. (2018). Comparison of visual field point-wise event-based and global

trend-based analysis for detecting glaucomatous progression. Translational Vision Science &

Technology, 7(4):20–20.

Wu, Z., Medeiros, F. A., Weinreb, R. N., Girkin, C. A., and Zangwill, L. M. (2019). Comparing

10-2 and 24-2 visual fields for detecting progressive central visual loss in glaucoma eyes with

early central abnormalities. Ophthalmology Glaucoma, 2(2):95–102.

Wyatt, H. J., Dul, M. W., and Swanson, W. H. (2007). Variability of visual field measurements is

correlated with the gradient of visual sensitivity. Vision Research, 47(7):925–936.

Zhang, F., Jiang, W., Wong, P., and Wang, J.-P. (2016). A Bayesian probit model with spatially

varying coefficients for brain decoding using fMRI data. Statistics in Medicine, 35(24):4380–

4397.

Zhu, H., Fan, J., and Kong, L. (2014a). Spatially varying coefficient model for neuroimaging data

with jump discontinuities. Journal of the American Statistical Association, 109(507):1084–1098.

Zhu, H., Russell, R. A., Saunders, L. J., Ceccon, S., Garway-Heath, D. F., and Crabb, D. P. (2014b).

Detecting changes in retinal function: analysis with non-stationary Weibull error regression and

spatial enhancement (ANSWERS). PloS One, 9(1):e85654.

122


	Introduction
	Overview
	A Bayesian hierarchical spatial longitudinal model for structural data
	A Bayesian spatially varying hierarchical random effects model for structural data
	A Bayesian hierarchical spatially varying coefficients model for functional data
	Outline of dissertation

	A Bayesian hierarchical spatial longitudinal model improves estimation of local macular rates of change in glaucomatous eyes
	Introduction
	Methods
	Macular OCT imaging
	Data management and statistical modeling
	Simulation study

	Results
	Simulation results
	Analysis of AGPS data

	Discussion
	Supplementary material
	Outlier removal algorithm
	Bayesian hierarchical spatial longitudinal model specification
	Bayesian conditional autoregressive model specification
	Supplementary tables
	Supplementary figures


	A spatially varying hierarchical random effects model for longitudinal macular structural data in glaucoma patients
	Introduction
	Ganglion cell complex data
	Macular optical coherence tomography
	Advanced Glaucoma Progression Study
	Data exploration
	Modeling goals

	Methods
	Gaussian processes
	Multivariate Gaussian processes
	Model specification for a spatially varying hierarchical random effects with visit effects model
	Priors
	Computation and inference
	Model comparison

	Advanced Glaucoma Progression Study
	Discussion
	Supplementary material
	Convergence assessment of the SHREVE model
	Additional results for AGPS analysis


	A hierarchical spatially varying coefficients model for longitudinal visual field data in glaucoma subjects
	Introduction
	Visual field data
	Advanced Glaucoma Progression Study
	Visual field threshold sensitivity
	Heteroskedasticity
	Spatial structure of test locations
	Modeling criteria

	Methods
	Gaussian processes
	Nonstationary covariance functions
	Single eye model
	Model specification for a hierarchical spatially varying longitudinal visual field model
	Computation and inference

	Advanced Glaucoma Progression Study
	Single eye model results
	HSLVF results

	Discussion

	Bibliography



