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PART I

A PRECONDITIONED CONJUGATE GRADIENT METHOD
FOR SOLUTION OF FINITE ELEMENT EQUATIONS



ABSTRACT

A desirable advantage of iterative methods is that they provide means of
controlling the accuracy of the solution. In particular, when low levels of accu-
racy are required this can result in faster algorithms than the direct methocis.
The use of the conjugate gradient algorithm to solve the linearized system of
equations is considered. A preconditioning matrix based on a splitting method
is constructed. The outcome is an algorithm which results in substantial reduc-
tion in storage over direct methods. The above method is compared with its
rivals on several quite different problems in structural mechanics and favour-

able results were obtained.
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1. Introduction

The finite element method of discretization is used to reduce many complex
continuum problems to discrete systems. Although this reduction is the most
important step in the overall analysis of a structure, solving the discrete prob-
lem is far from trivial. In general, the reduced system is nonlinear and an itera-
tive method must be employed to arrive at the solution. Most solution methods
are based on some form of Newton's method in which the nonlinear probiem is
linearized using an initial approximation to arrive at a linear set of simultaneous
equations. The solution of the set of linear equations leads to a correction of the
initial approximation. When solving the linear equations, one should not loose

sight of the primary objective: solving the nonlinear problem.

lterative methods, such as the conjugate gradient or Lanczos method, are
among the many methods that may be used to solve systems of linear equations.
The advantage of these methods, when used as the inner loop of the Newton

iteration, is twofold.

(i) The linear equation may be solved to any desired level of accuracy as

governed by the Newton iteration.

(ii) A considerable reduction in storage can be achieved when no triangular fac-

torization need be performed.

In [4] a method was developed, based on the preconditioned Lanczos
method, to realize some of the advantages of iterative methods. In this previous
study, the triangular factors of the initial tangent matrix were used to form a
preconditioning matrix for the subsequent solution steps. In the present we
have eliminated factorizations by employing other preconditioners and further,

have reduced the storage needs of the method.
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2. APreconditioned Conjugate Gradient Method

An essential step in nonlinear analysis of structures is solving a linear sys-
tem of algebraic equations. The preconditioned conjugate gradient method
(hereafter called PCG) is one of the many procedures for solving

r=b-Ax=0 (2.1)
where A is an nxn symmetric positive definite matrix (which is sparsely popu-
lated) and b is the right-hand side vector. In the case of static analysis, Ais the
current tangent matrix and in the case of dynamic analysis, A depends on the

mass, damping and stiffness matrices, as well as the time increment.

The initial popularity of the conjugate gradient method was due to a
number of factors. In exact arithmetic the method required a maximum of n
iterations to solve (2.1) which made the method superior to other iterative
methods. In fact conjugate gradient is in the class of semi-iterative methods
which also includes the Lanczos algorithm [8]. The disadvantage of direct
methods is their large storage demands for keeping the factors of A The only
interface between the conjugate gradient method and A is through the product
Av for a given vector v. This is an elegant way of taking advantage of sparsity of
A which has the added advantage that A need not be known explicitly but only a
means of computing the matrix-vector product is required.

The popularity of the conjugate gradient method vanished once it was found
that under certain conditions the method required as many as 5n or 6n steps to

reduce the residual to the desired level. This blemish is accounted for by the

strong influence of round-off error.

The addition of preconditioning eliminated this difficulty. Instead of solving

(2.1) we solve

P lAx =P b (2.2)
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for some appropriate choice of P. The object then is to choose P such that the

coefficient matrix of (2.2) is well conditioned.
Theoretical considerations suggest that at the end of each iteration of CG

-—gj—g——f—-—i—-when solving (2.1) where « is

the residual norm is reduced by a factor
the condition number of A defined by « = ||A]| |A™'{. See [1] for more details.
Note that when « = 1, one iteration is sufficient to solve the equation. This pro-
vides us with a guideline for choosing P. For a well chosen P only a few iterations

reduce the residual norm to the desired level. Here we give an outline for the

preconditioned conjugate algorithm:

Given an initial guess X, a positive definite preconditioning matrix P, the matrix

A and the right hand side b:

(1) Setpy=r;=b - Axy,
(2) Solve Pdy = ro, for dy

(3) fork =0,1,2, --- until convergence do

(a) ax = (re.dp)/ (pr.Apr)

(b) Xes1 = X + e

(c) Ty = rp—a Apy

(d) Solve Pdgy; = rpsy

(e) Br = (Te+1des1)/ (re.dy)

() Pes1 = des 1 +Be e

The operation (v,u) denotes the inner product v'u The algorithm gen-
erates a sequence of approximations to the solution x with a corresponding resi-
dual vector r;. The termination criterion can be chosen based on these quanti-
ties. In addition to storage demands for A and P the algorithm requires storage
for 4 vectors. The total number of operation per iteration is NZA + NZP + 5N,
where NZA and NZM are the number of operations for forming Au and P~ v for a

given u and w.



3. Splitting Methods
Here we turn to a topic which at first sight may seem unrelated to the solu-
tion of nonlinear algebraic equations. Consider the system of first order
differential equations
x = f(x.t) (3.1)
where x is an n-dimensional vector, the superposed dot, { ~ ), denotes
differentiation with respect to time and f is a function of the unknown vector x

and ¢.

We consider a special form of f which can be written as a sum of its subcom-

ponents f;.

t= 3, (3.2)
{ =
Under these conditions the original problem can be thought as a sum of s sub-
problems
x=f(xt) i=1,..s (3.3)
In the case of finite element discretization of the spatial domain the sum in (3.2)
ranges over the elements. In other cases the splitting may be formed by other

means, one of which is demonstrated in the following section.

A consistent algorithm for the solution of (3.1), based on the notion of a
splitting technique [3], can now be constructed as a product of algorithms for

the sub-problems. In other words, write the algorithm for (3.3) as

Zm a1 = S®[xm] (3.4)
where S{#) is an operator denoting the algorithm and the index m ranges over

the increment in time, h. Then the algorithm for (3.1) can be written as

Em+1 S(h)[xm] (3.5)

where

Sh) = (3.8)

i

h—

o
z
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One of the disadvantages of the splitting method is its low accuracy. The
best that these methods can achieve is second order accuracy. That is the trun-
cation error is of the order of k3 at best. In the sequel we will use the above pro-
cedure to construct a preconditioning matrix for the conjugate gradient algo-
rithm described in section 2. The inherent inaccuracy of the splitting method
poses no problem since the algorithm is used only as a preconditioner and
therefore one can obtain very high accuracies through the conjugate gradient

iteration.



4. Solution of Static Problems

Consider the system of linear first order differential equations

Tk +Ax=b (4.1)

where T is a given parameter. Formally the solution to equation (4.1) is

x(t)=e ™ 7(x,— A'b) + A'b (4.2)
where xy = x(0), is an initial condition. We observe from (4.2) thet as { ends to
infinity x(¢) converges to the solution of (2.1) for 7 > 0. Consiquently {4.1) may
be utilised to solve the linear equations (2.1). Indeed this approach has been
suggested previously (e.g., see [5]). In general the exponential of a large matrix
cannot be easily computed and a numerical solution of (4.1) must be used. In
order to achieve a soluion of (2.1) a numerical solution to (4.1) must he assymp-
totically correct for infinite Af, or a very large number of time steps must be
used to compute the solution at infinite time. Here we are not concerned with
constructing accurate solution to (4.1) rather we consider the method as a
means of constructing a suitable preconditioning matrix for the conjugate gra-

dient algorithm described above.

Splitting methods may be applied to any problem of the form

¥ = Bx (4.3)

where Bis an additive operator defined by

B= ) B (4.4)
i1=1
such that the equations
x=Bx i=1,..s5 (4.5)

are significantly easier to solve than the original equations. The time stepping
algorithm for the global problem is then the product of all the time stepping

algorithms for the subproblems with a fractional time step A/ s [3].

The coeflicient matrix A in (2.1) may be written as the sum of its diagonal

matrix, D, a strictly lower triangular matrix, 1, and a srictly upper triangular



matrix such that

A=%D+ L)+ (4D + L)7 (4.8)
The associated subproblems, x = —(4D + L)x and x = —(%D + L7 )x can be solved
easily. Applying a backward difference method with a time step A/ 2 to each of
the subproblems, we arrive at

1

RS 0, NN
x,,‘+l—[1+z;(D+2L] IHZT_{D+2L )J -é-;b+xm (4.7)

where X,, is an approximation to x(mh). For initial condition X = 0 we get an

approximation to x(h)

-1 -1
_| A [ h [ h 7 !
X = {E‘r—l] + Z;,_—(D + 2L) [I + Z}—(D + 2L )} b (4.8)
which is compared to the exact solution
x(h) = [I - e ®/7|a1 b (4.9)

Comparing equations (4.8) and (4.9) suggests that the coefficient matrix in (4.8)

may be a good approximation to A~! for largevh. and may therefore be an
eflective preconditioning matrix. The scalar factor EI}; may be ignored for
preconditioning purposes.

When using this in conjunction with conjugate gradient algorithm of section
2 the preconditioning matrix becomes

P=(1+ 0w/ 2D+ wL)(I + w/2D + oLT) (4.10)

where w = h/ 27 is now a free parameter.

To simplify the choice of w we scale the stiffness matrix A such that diagonal
of Ais unity. The resulting matrix is A= D¥AD % The system of equations (2.1)

now becomes

i
bl
n
o

(4.11)
where & = D¥x and b = D %b.

The preconditioned matrix must now be applied to (4.11) resulting in
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P=(1+ol)({+ oLl (4.12)
where A=L+ LT. It is easy to show that preconditioning (4.11) using P is
equivalent to preconditioning (2.1) with

P = (D + wL)DYD + oLT) (4.13)
This can be identified as a member of the class of incomplete Choleski precondi-
tioners [2]. Note that when w = 0, P becomes the diagonal matrix D, resulting in
the simplest form of preconditioning; diagonal scaling. When @ =1 then
P=A+ LD 'L7. The error matrix LD™'L7 is rank deficient since L has zero diag-
onals. If the norm of D is larger then the norm of L then the norm of the error
matrix will be small compared to the norm of A consequently, for most prob-

lemns it is expected that the optimum w will be close to unity.



5. Solution of Dynamic Problems

We construct a preconditioning matrix for the linear system of equations
arising in a step-by-step algorithm for dynamic analysis of linear and nonlinear
structures. In particular, we consider the Newmark algorithm and the precondi-
tioning matrix follows from the splitting method of section 3, in much the same

way as for the static problem.

Consider the linear equations of motion
Mu +Ku=t (5.1)
where M is the diagonal mass matrix, K is the stiffness matrix, f is the external
load vector and u is the response of the structure. For simplicity, we ignore the
damping effects, but all the following results may be extended easily to the
damped case. The linear system of equations arising at every time step of the

Newmark method is

Ax=b) (5.2)
where
A=K+ ——M (5.3)
pAt?
and
b=1y.a + Ei—t-é—n[u‘ + Atv, + (% - f)At%a, ] (5.4)
Here v and a are velocity and acceleration vectors, respectively, Af is the

specified time increment, ¢ is the time and x is the increment of displacement
response. The Newmark parameters are chosen such that g> (} + )2/ 4 with
¥ = %. The discretization in time are

e = U+ AtV + +BALZ[(1-28)a, + 28 a0 ) ] (5.5)

v + AL(1 —y)ag + yAtay 4 a (5.8)
The object is to solve (5.2) without forming the factors of A

Vi o+ At

A splitting method similar to the one used for equation (4.1) can now be
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applied to equation (5.1). The matrix resulting from the splitting algorithm can

then be used as a preconditioner for (5.2). Consider

— 1 1/ T 1
P= (L+ EZ?E‘M)M (L + EAt—"é‘H) (5.7)

where K = L + L7. Multiplying out the terms in (5.7), we obtain

1
gAat?
1
pat?
1
Bat?
where E(At2) = gAt2LM LY.

P=

[BAtZLM LT + L+ LT + M]

1
pAt?

[BAt2LM LT + A)

[E(at?) + A) (5.8)

The preconditioned conjugate gradient algorithm of section 2 is invariant
under the scaling of the preconditioning matrix. Therefore, (5.8) shows that P
will tend quadratically to the dynamic stiffness matrix A as the time step dimin-
ishes. In other words, E tends to the zero matrix quadratically in Af. We see
later that this characteristic resuits in an effective preconditioning and the solu-
tion of equation (5.2) is obtained in as few as 2 or 3 iterations of the precondi-

tioned conjugate gradient algorithm with moderately small At.
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8. Numerical Examples

In the following, we present a few numerical examples to illustrate some of
the characteristics of the proposed preconditioning matrices for the PCG algo-
rithm. This algorithm is implemented in FEAP, a Finite Element Analysis Pro-
gram (see [B], chapter 24 for more details). All the numerical tests were carried
out on a VAX 11/780 at the University of California, Berkeley, using double preci-

sion computation.

We first present the results to some static analyses, both linear and non-
linear. In these examples we choose a stopping criterion based on the residual
vector and the algorithm is terminated as soon as the norm of this vector is
reduced by a factor smaller than a specified tolerance. In our calculations we
set the tolerance to 1078, Next we demonstrate our algorithm on a few dynamic
problems. The termination criterion is similar to the static case with a range of

different tolerances to demonstrate the effectiveness of the algorithm.
6.1 Static Examples: Linear elastic
a) 132degree-of-freedom building

The object of the first problem is to determine the influence of the precon-
ditioning parameter, w, in eq. (4.13). The total number of PCG iterations
required to achieve convergence, varies considerably with w. To illustrate this
dependence, we chose the example model shown in figure 1 which is a 132
degrees of freedom, multistory building, discretized by 178 2-node truss ele-
ments each with the same Young's modulus (30x10%). The cross-sectional area
of the girders, columns and diagonals are 20, 40 and 1 respectively. A single load

at the top is applied, as shown in figure 7.

In figure 2, we indicate the number of PCG iterations needed to converge as
a function of the preconditioning parameter. The shape of this curve is charac-

teristic of the proposed PCG algorithm and consists of three zones:
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1)  Small w: The preconditioning matrix approaches the diagonal matrix D. In
this case, the total number of iterations is less than that for diagonal

preconditioning.

2) Optimum w: With this value the algorithm takes the least number of itera-
tions to obtain the solution. Note that the curve is quite flat around wgy
and therefore the total number of PCG steps is insensitive to small changes
in the value of w. Further, as predicted before, the optimum w is close to
unity.

3) large w: In this range the preconditioning matrix approaches LM L7 which
is a singular matrix (diagonals of L are zero). In this example with w > 3.0
the solution may loose accuracy in all significant digits and eventually

floating-point overflow occur.

Figure 3 shows the evolution of the residual norm, | r;||, normalized versus
| roll. at the i-th iteration of the PCG algorithm. The residual at each iterate
exhibits characteristics typical of conjugate gradient method. Namely, residual
norm remains large for a relatively large number of steps before convergence
occurs to the specified tolerénce. Part of this behavior is due to the loss of
orthogonality among the conjugate vectors. Poor preconditioning can also con-

tribute to slow convergence.
b) "Cantilever beam" type structures

From the insight we have gained with the preceding example, we now

proceed to answer the following question: How to select the wyp, ?

No easy analytical solution can be obtained to this question; w,,; depends
on the spectrum of A which is not known apriori. However an initial estimate of
unity as indicated in section 4 is not an unreasonable choice for w. The numeri-
cal test here is to investigate the dependence of the number of iterations on w.

An accurate upper bound to the total number of PCG steps can be obtained if
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the condition number of the preconditioned matrix, P !A, is known. However the

condition number of P"!A depends on w.

The examples we have chosen are summarized in figure 4. Each problem is
computed with a range of w's to obtain w,,. Figure 5 shows the number of itera-
tions as a function of w, for these examples. Notice that all the curves are

rather flat when close to w,, , moreover, that wyy, is close to 1.0.

The following table (I) gives the number of iterations for both Wept a8Nd

w = 1.0.
No. of No. of Iter. for

ko ky
D.O.F. Wopt -k-:—l—— —N-

N Ct)ap‘. kl w= 10, kz
30 1.0 14 14 1.00 | 0.47
40 1.0 23 23 1.00 | 0.57
60 1.0-1.3 20 20 1.00 | 0.33
132 1.3-1.4 37 45 1.22 | 0.28
160 1.25 33 35 1.06 | 0.21
240 1.0 199 189 1.00 | 0.83
300 1.2-1.5 46 50 1.09 | 0.15

Table 1. Comparison of the Number of PCG lterations for Various w's.

The last column of Table I shows the ratio of total number of iterations over
the number of degree-of-freedom. As expected this ratio remains below unity.
The next to last column shows the loss in optimality when using w equal to unity.
Except for the 132 degree-of-freedom system little loss in computational effort

results from using w equal to one.
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6.2 Static Examples: Nonlinear Elastic Problem
a) mnonlinear material problem

In much the same way as the Newton-Lanczos method [4], the PCG algo-
rithm was implemented within a Newton loop. The resulting algorithm possessed
all the properties of the Newton-Lanczos algorithm with the exception that it is
restricted to positive definite matrices. Simplicity of programing various altera-
tions was the motivating factor in restricting attention to the PCG algorithm.
Our primary objective is to compare the PCG algorithm with Newton and
modified Newton strategies. For this comparison we use the 132 degree-of-
freedom truss building described above, but modified to have the same cross-
section for all the members (4 = 20). Nonlinearity is introduced by a simple

yield model in the constitutive equation.

A single load is applied at the top with sufficient magnitude to produce a
nonlinear maximum displacement of about twice the maximum elastic one. Fig-
ure 6 shows the mesh, the deformed structure and the constitutive equation
adopted. In Table II, we indicate the relative computational cost comparisons
for different methods. We modified all the algorithms mentioned above to
include a line search. This was initially expected to reduce the final cost of the
algorithms; in fact, for this problem the three methods were more expensive

when a line search was included.

Looking at the results in Table 1I, it is interesting to note that the PCG algo-
rithm required only one more nonlinear step than the Newton methoud. Also, due
to the fact that only the nonzero terms of the stifflness matrix are stored, the
cost for one matrix-vector operation in the PCG algorithm is smaller than for
the other methods. For this example the number of terms in the matrix stored
in profile form is 16854, however the PCG algorithm requires only 512 nonzero

terms. Therefore the cost of one matrix-vector operation is about a third of a
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profile multiply. More important is the reduction in the over all storage
demand. For this example the storage is reduced to 31% of the amount required

for a proflle stored solution.

No. of | No. of No. of No. of
Method iter. LU function matrix-vec.
factor. | evaluations | operations
Newton 8 6 7 8
Mod. Newton 215 1 216 215
PCG 7 0 8 186
Newton + LS B 8 7 6
Mod. Newton + LS 111 1 112 111
PCG + LS 7 0 8 176

Table 11. Cost Comparisons for different Nonlinear Methods (Truss Example).

The average number of PCG iterations was 27, for a preconditioning param-
eter w = 1.5. This compares with 37 PCG iterations for a linear problem with
much the same structure (see section 6.1a). A lower tolerance for PCG algo-
rithm is used in the earlier stages of the Newton loop which accounts for the

lower average number of iterations (see [4] for more details).

In this test the total cost for the PCG algorithm was twice the Newton cost.
However, this ratio is expected to drop well below 1.0 for three-dimensional
structures where the cost of a factorization is large compared to the matrix-
vector operation. Moreover, as noted previosly we require substantially less

storage space.
b) finite deformation problem

In figure 7, we show a plane strain rubber block subjected to large deforma-

tion. We employ a 4-node element and a Mooney-Rivlin material as described in
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[7]. The rubber block is discretized by 144 elements (12 x 12 mesh) with 286
degrees of freedom. The stiffness matrix stored in profile form requires 7618
storage spaces of which only 1799 are nonzero; corresponding to a 76% saving in
storage when using PCG.

The rubber block is stretched to 50% of its original length in load 5 steps.
The cost comparison of both the PCG and Newton algorithms is summarized in

the following table.

displ. Nonlinear PCG Newton

u No. of | Averg. No. No. of
Iterat. | Matrix op. lter.

0.1 8 43 7
0.2 6 45 8
0.3 7 47 6
0.4 6 47 5
0.5 8 44 5

Table 11I. Comparision of PCG Algorithm and Newton Method (Rubber Block).

Again, both PCG and Newton require almost the same number of nonlinear
steps to converge. What is more interesting is that the number of PCG iterations
is quite constant, even for the highly nonlinear range. When comparing this test
with the previous 132 degree-of-freedom building example, we notice that the
number of iterations in the PCG algorithm, as expected, does not increase as

fast as the number of degree-of-freedom.
8.3 Dynamic example

In this example, we wish to indicate the effectiveness of solving approxi-
mately, a linear elastic dynamic problem using the PCG algorithm. This is done

for a series of time steps and tolerances. Since the PCG algorithm involves no
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factorization steps it can solve nonlinear dynamic problems with the same
amount of effort as for the linear case. However, in this study we select a linear
problem. To limit the computer costs, we selected a structure having 20 4-node
plane stress elements defined in section 6.1(b). The dynamic problern consists of
releasing the structure from an initially deformed configuration and letting it
vibrate freely. The mesh, material properties and initial state are given in figure
8. The time steps chosen are Af = 0.5, 0.2, 0.1, 0.05 and 0.025 seconds, which
correspond to 1/120 < At/ T < 1/6, where 7T = 3.0 sec. is the fundamental
period of vibration of the structure. For comparison, the critical time step for
an explicit analysis would be Af,, = 0.01 sec., for a bulk wave velocity of 91 1/s.
In order to see the effect of solving approximately the set of equations, we use
the three following tolerances: tol = 1074, 1072 and 107! In figure 9, we plot the

y-displacement of node 1 for the time step At = 0.1 for the three tolerances; in

e,

dN(t) - 6pcg (t)
6o

where 8y is the displacement obtained using the Newmark method, dp4 is the

corresponding results obtained using PCG and 6g = 0.172 is the initial applied
displacement. The results clearly show that the tolerance 107! is too large and
leads to inaccurate results. The error using a tolerance of 107% is about 1%, while
there is no visible error for fol = 107# (less than 0.01 percent). When we reduce
the time step to At = 0.05 (half the preceding), the results improve substan-
tially: while we see no difference between tolerances 107 and 107%, there is only
1% error when using 107! (fig. 10). For smaller time steps, no differences are
seen in the first five digits.

Finally, figure 11 shows the average number of iterations as a function of

T/ At. The reduction of the number of iterations as Af tends to zero is quite

interesting: for a tolerance of 107%, this number drops from 30 to 4 iterations
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when At/ T changes from 1/6 to 1/120. This reduction is totally due to the con-
vergence of the preconditioning matrix to the dynamic stiffness matrix, A Such

a small time step is not unusual in many applications, e.g. impact problems.



- 19 .

7. Closure

In this report we have described our initial efforts to construct a solution
method for the algebraic equations arising from finite element solution of l'meaxj
and non-linear problems. Both static and dynamic problems are considered.
For nonlinear problems, Newton's method is used to generate a sequence of
linear problems. A preconditioned conjugate gradient method is used to solve
the linear set of equations. A method for constructing an effective precondition-
ing matrix in terms of an additive decomposition of the coefficient matrix is
introduced separately for the static and dynamic cases. Several example prob-

lems are solved demonstrating the features of the proposed method.

In order to further evaluate the method additional work is required. In par-
ticular we recommend that the conjugate gradient part of the algorithm be
replaced by the Lanczos method as described in [4,8]. This will permit con-
sideration of indefinite problems, such as those resulting from use of Lagrange
multiplier methods (e.g.,contact problems, etc.). In addition it is essential to
test the method on larger problems, preferably some three-dimensional prob-
lems where sparsely populated coefficient matrices with rather large mean
colummn heights occur. Further analyses for significant non-linear problems
should also be performed. Finally, some efforts to adaptively compute an

optimal value for o should be explored.
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INTRODUCTION

In this paper, we present a formulation for a thick plate finite
element with an elastic/viscoplastic material law. The
constitutive law adopted is capable of treating material
behaviors ranging from elasticity to pure plasticity and/or
creep.

After a review of the elastic plate theory, we show that the
response of a plate can be decoupled into membrane, plate bending
and tranverse shear (section 1). Restricting our attention to
problems with no in-plane forces, and assuming a linear elastic
behavior for the transverse shears, we develop the viscoplastic
law to model the plate bending part only (section 2). The
resulting constitutive equation in rate form is integrated using
an unconditionally stable generalized mid-point rule and is
linearized by a truncated Taylor's expansion. In section 3, we
make use of the Principle of Virtual Work to construct a weak
form of the equation of motion; the resulting set of nonlinear
algebraic equations is solved by a Newton-Raphson iteration
scheme at each time step of the solution. We improve the rate of
convergence of the Newton-Raphson scheme by forcing the
constitutive equation to be satisfied within some very small
tolerance, using an 1lnexpensive iteration scheme at the
integration point level.

Special attention is devoted to the numerical integration across
the depth of the plate. It was expected that Gauss-Lobatto
quadrature (with sampling points at the surface and bottom of the
plate) would perform better than the wusual Gauss-Legendre
quadrature; suprisingly, the reverse happens to be true. We
propose a slight modification of the Gauss-Legendre quadrature in
order to better capture the behavior of the plate close to its
collapse 1load.

In section 4, we present some numerical examples to illustrate
the effectiveness of the viscoplastic formulation to simulate
quasi-static elastic-perfectly plastic problems.



1. LINEAR ELASTIC PLATE THEORY

1.1 Basic equations

With the assumption of small displacements and deformations 1/

the linear and angular momentum balance can be written (Mase, 70)

Gij,j + b = e, (1a)

Gij = 0y (1b)
where GL is the indicial notation of the 2nd order 3tress tensor,
b, or p is the body force vector per unit mass, u; or u is the
acceleration and & is the mass density.

A comma denotes partial derivative, i.e.

(#), = ¢/

and repeated (dummy) indices is the summation convention:

2 L
a,' A,' = 2 Q’- L/ = QIL' + 62 -+ QJ’ > p
IR
When neglecting the s8econd order terms, the compatibility
relations become

S.=11y ) = (2)
J 2 \7W LYY X4 a)(J 2 vi T
where §; is the strain tensor and u the displacement vector.

For linear elastic disotropic material, with no temperature
effects, the constitutive relations are

(3)
£l~.: _{t_\? .. —-.\_7.0\ ‘e
v E G’J £ ‘“‘g'd

where E is the Young's modulus, Ythe Poisson's ratio and 5& the
Kronnecker delta.

We shall now specialize the previous relations for the thick
plate domain by introducing some kinematiec and static
conatraints:
a) Kinematic constraints
(i) normals to the undeformed midplane of the plate
remain straight lines after deformation (fig. 1:
abzstraight line)
(ii) the distance between two points on a normal
remains constant (fig. 1: {{ ABil= gabl)

1/ The fundamental laws of continuum mechanics may be stated in

either reference or a spatial gcurrent configuration. Here,
are only concerned with an jipfinitesimal deformation theory,

?

we

hence there is no need to make the distinction between reference

and current configurations.
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Let Jo=(Uo,Vo, WO?»be the motion of the point O located at the
midplane of the plate (fig. 1) and $=(fx,%,0)" be the rotation
of the line initially normal to the midplane. We can represent
the motion on any point of the line by

W= to + 2.9 (4)
Substitution into eq. (2) leads to —/Nmkmne«
52.“:0 - - r— -
P YRR {3 S ezt plate
x = 57 + r I o l ‘/ Lek&\{}
Ve > |
£3z§j~+2:}_35 _|53°!4_,;33€3!
|
B, -2 2% e (26,90 Jig L (5)
Yo By X %y "o 3},‘-“10 Co
u o OW e oW |
§xe = '(%E A = %o+ W | trausverse
r/’ gshear
Qv Dw "P
D —— e = + W
82 2z | 7y BN

where éf:(xx,éQy, &xy) is the curvature vector, and i1 18 the
engineering strain, i.e. 6‘;“- = £;J-+ £l =2 &y J
Note that the transverse shears )Xxz and fyz are independent of z,
which contradicts the boundary conditions on the top and bottom
surfaces. A shear correction factor K=5/6 is usually used to
correct this effect, in an energy sense only.

b) sStatic constraint

Assume that each layer of the plate is in state of plane stress
in the plane of the lamina, i.e. 0z is so much smaller than the
other stresses, that we can neglect it. 1/

The constitutive relations (3) become

)
£x - ‘é‘ (G}~VG5) 6“3 = a" ?XS
EJ :-é (QQ~VG}) Kz = é;:ﬁz
(6)
Eg = Z (B 0y) Py = & T
Where G is the shear modulus: G = E/ZU+V>

Ncte that &z # 0 is in contradiction with the kinematic
constraints (eq. 5); but its effects being small s, wWe will
simply ignore it.

For an applied load Z, Wwe have G}:;?n; ; that means that the
magnitude of the applied load must be much smaller than the norms
of the stresses 0x,0y,Txy, Jyz and Txz.



Inverting relations (6), we have in matrix form:

: 7 o L udina
Gx (4 v o (€. plfe “onlig
(;3 \7 4 O 9 X‘ WCw.Lvaue
3@ = E O o <tif§ { g
AV
‘2 . L RN
'sz P o A=V ¥ rausvevee
A 2 1\ %92 ehear

Before formulating the viscoplastic behavior, we shall take
advantage of the splitting of the response of the plate, namely
membrane, plate bending and transverse shear. This is done next.
Then the viscoplatic description (section 2) and finite element
discretization (section 3) will complete our formulation.



1.2 Uncoupling

Looking at equations (5) and (7), we see that the behavior of the

plate is influenced by three different terms:
(a) membrane effects (in plane force resultants only)

(b) plate bending effects
(¢) transverse shear effects.

It appears then natural to try to uncouple these effects, or at
least to find the bounds between which they uncouple.

Let us look at the intermnal Virtual Work:

T T
VWI = JS;; f dn where .S:é iz an admissible
virtual strain field and ©
- the real stress field.

Using for the virtual strains the same splitting as for the
real strains , we can use equation (5) and write

Gy
VW = j< g&o)g‘f.‘fo,g&jo>' G ) dan (8a) "membrane"
N Bey
( %
+ J<8Wx)gé’€5)gé‘?xj > Gy Zd__Q {Bb) "plate bending®

) Bes)

+ |88, S¥ > Ia d (8c) "t hear™

X2 JZ . ?. Jl e ransverse shear
0y 7*

(a) P"Membrane®™ part

Using the membrane part of the constitutive equation (7) and the
compatibility relations (5), the membrane part of the internal

virtual work is
£X°+23<x
(8a)= J<g£xv)g£j.}gxx‘j°>“%' Ej°+ §Xj d..Q.
A Xxjo-q»i-&y (9)
4 v o
wherve DP=_E_ v 4 o (10)
~ o AvE g g AZY
2

now split the integral:
”Vl

X(.)M _ | | ()az 4n

S A -,



where A= domain of AL where z=0.
Because we integrate between -h and +h, the terms with z in
equation (9) will cancel. 2 2

E)(o
(8a) = §<8&°,gfjb)gxx11,>'%' 4, (11)
Y 8xy,

that is only function of Uo, Vo. This implies that the membrane
term fully uncouples from the plate bending and the transverse
shear. Hence, it can be treated separately. This is true oQnly
if the function (#)is odd in z, that is only if D is symmetric.
Practically, the membrane term will uncouple only for (i) linear
elastic problems or (1i) nonlinear problems where D(z) 1is
symmetric (i.e. no in-plane forces). For the purpose of this
study, we will restrict our attention to problems with no in-

plane forces, hence we can drop the membrane term.
(b) ™"Plate bending" part
Using (7) and (5), the plate bending part of the virtual work is

fxb +2 M«
(8b) = [(8”;)83‘3)8“@>%2 £5° 4+ 2 XH d_ﬂ_
R

Ixy, + 2 Ky

again, splitting the integral and cancelling terms in z, we are
left with

A x
(8b) = [{Sxxlng)gkﬂ:\)-%'zz' sy a1 (12)
2 Ky

Where D=zplane stress
elasticity matrix (equ. 10)

(c) "Iransverse shear®™ part

(8¢c) =J‘<S&<z)”3%>-~' SN2 a (13a)
S

Similarly:

ek |4 0° (13b)

where [¥=5/6 is the shear correction factor.

For linear elastic materials, we could directly go to
external virtual work and construct the finite element
discretization. Our purpose is now to introduce the viscoplastic
behavior. Before doing so, however, we must say a few comments
on the transverse shear part.

the



"Locking®”™ phenomepon

It has been known for some time that the stiffness resulting from

a thick plate theory is dominated by the transverse shear ternm

when the aspect ratio of the element {(length/thickness) becomes

large (Hughes et al., TT7); the corresponding stiffness 1is
overestimated and the ratio ’

£/¢ﬂ, tends to zero.

finite element displacements
displacements resulting from the Kirchhoff plate

A
where @

Pun

theory.
In this study, we shall use the element proposed by Hughes

(Hughes and Tezduyar, 80) which permits a very large aspect ratio
to be used before the element becomes inaccurate (due to round-
off errors).

L1}

2. VISCOPLASTIC BEHAVIOR

2.1 JYiscoplastic model

With the assumption that the total strain rate tensor é is the
sum of an elastic and a viscoplatic parts, i.e.

Qe .V
E = &5+ ETF (14)
P e Ad

Classical plasticity theory postulates the existence of a
yield function F (g,z), where 0 is the stress rate and 9 some
internal variables, such that: ~

F((I,i) <o = évp =0 elastic behavior
F(é'i) >0 :> é"’r ¢9 has a plastic flow
Introducing a MacCauley type operator
<f(F)2 = 0 if F <O (15)
< £(F) > = £(F) if F2 0
and the usual normality rule, we can write (Naghdi, 60):
.
T =¥ <E(E)> 55

where K: material parameter
%(F/ﬁ;) = flow function
Q = viscoplastic potential
Substituting eq. (16) into eq. (14), we get for the general case:



¢ = E_“‘&(%(%))’%% (17)

Fo

where ¢ is the elastic compliance matrix and gf:&e the elastic
part of eq. (14). -

For associated plasticity (Q = F), it can be shown that the
resulting viscoplastic tangent matrix is symmetric, which is
always preferable (Zienkiewicz, 77). For metal plasticity, the
Huber-vonMises yield surface is often used

= 37, - Gy (18)

4 /
where Jz=7éqbqb' = 2nd deviatoric stress invariant
Gy = uniaxial yield stress. 1/

We will also choose a plastic flow coefficient of the form

k
?(E)= -g:) (19)
Y where k21 is a parameter to be chosen.
Substituting eq. (18) into eq. (19) leads to

)> < <J.ﬁ; -’7>k,> (20)

Where the MacCauley operator must be evaluated before performing
the exponentiation.

Remarks : 1) due to the MacCauley operator, we don't
have a smooth function; this may slow
down the rate of convergence of an
iterative process.

2) constant stress states outside the yield
surface are allowed, but only with non-zero
rates of strain (fig. 2). For quasi-static
loads we get an elastic-perfectly plastic
response; for high rates {or for Gy
appropriately high) we get an elastic
response.

3) the flow law selected (eq. 19) overestimates
the apparent yield stress for high strain
rates (Perzyna, 66).

1/ We implicitly assume that we have no hardening in
formulation, i.e. Gy =constant.

our



2.2 Speclalization of the viscoplastic model to thick plates

Recalling the restrictions laid out in section 1.2, mue
consider a viscoplastic behavior for the plate bending part only.
The transverse shear term will always be treated elastically,
hence G =constant in eq. (13a) and (13b). We expect that the
good behavior of the element at the thin plate 1limit will be
preserved.

With the yield surface (eq. 18) and the flow law (eq. 19),
we are able to compute the different terms of the constitutive
equation (eq. 17). The term 2®/20 becomes

"DG}L ’)c/ '751L (where Uﬁ = deviatoric stresses)

= (2 o -
= (—z-g-z- - (T:J-)- (S;u St -3 & 8kL>

?
Using the relation G. =0, we deduce that

L4

- \f-ﬂ @ (21)

r)crkl_ 2 32

In each lamina, the stress tensor can be replaced by its
corresponding vector form (eq. 7, plate bending part only). When
using this vector notation for quantities which are 2nd order
tensor (i.e. GCand £) we can substitute eq. (20) and (21) into eq.
(17) to write the rate form of the constitutive equation:

5'.___90‘.» 5‘<(\/§3§ >> M. (22)

(). [& 0 (23)
£ = 5'3 ) g’ G.‘j awnd E-= Gy
~ X&, ig ?Xl

are the total strain rate, stress rate and stress yecgtors,
respectively. The 2nd dinvariant of the deviatoric stresses

becomes: 2 a2 2
:]2.= %(Gx +Gj-(rx(>\3) +ng

The matrix ﬁ is given by

2 -4 o
M= )M 2 O (24)
o) o} ¢

and 2 is the elastic compliance matrix:



1C

y A =¥ ©
C == =Y 4 o 4 (25)
Elo o 20) aud C =3

It is worth noting that the shear strain Xxy in eq. (23) is the
usual engineering strain, i.e. &ﬁ= 25; ; the ﬁ_and‘g matrices
reflect this choice. 3

For each point in the plate, equation (22) is the constitutive
relation for the plate bending part only. The transverse shear
always remains elastic and is given by

ba | 2@y (3] _ 4 [ (26)

puswey e ————_ Y —"'"l
A‘j@ E. It ?Jz G ’-732
where = 5/6 1is the shear correction factor.
Equations (22) and (26) fully describe the response of the plate.
In the sequel, we will not discuss the elastic transverse shear

since it is identical to (Hughes and Tezduyar, 80), but
concentrate on the bending part only.

Remark: Note that the ratio -M (1,2)/M (1,1) = 0.5, which is

Poisson's ratio for the plastic deformation; it clearly shows
that we have an incompressible behavior during plastic flow.

Integration of the rate form

For computational purposes, the constitutive equation (22) 1is
integrated over a time step.

k
4 (B
= <<(Tv )} (27)

We can then rewrite eq. (22) as

Let us define OP =

£=g0: +X‘vox>-rj-§j (28)

[ d

Suppose that the solution at time th is known, we can integrate
eq. (28) over a time step to obtain the solution at time fh“

Ly
f (E-cT-poPmT)dt =0
£

ar {”*,

(gnfl-gn) -C ‘(gnfl ‘F,,)—()"‘/"'/'/‘OPF dt =0
tn

ol

(29)
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Where the subscript n indicates the "nth" time step. The last tern
of eq. (29) causes some difficulties. Since both OP and E are
function of time, this term cannot, in general, be integrated
exactly. However, using the mean value theorem, we can write

<éhﬂ—§ta)"£'(gnﬁ'9> —X-A't-(@’lg/)tm‘d (gg)

where At=t,, -t, is the time step and (0P.§),  means that both
OP and  are evaluated at some time t=st, , , ty,, € [¥“’{"*ﬁ] .

While the two first bracket terms of eq. (30) are easy to
handle, the last term needs a specilal treatment because tmie is
unknown., Assuming that the stress0 has a smooth variation
between ty, and tn,;, , We can use the generalized mid-point rule
proposed by (Hughes and Taylor, 78) to describe its variation:

E.lﬂrd: (4-d>6:h + o 9714; O.{"(S 4 (31)

Once the stresses are defined, the variable OP 1is
straightforwardly computed (egq. 27). This one~parameter family
of algorithms is consistent for the given range of o, and has
been shown to be unconditionally stable for oS5g£eofg A0 ;

oA=0.5 is known as Crank-Nicholson (or mid=-point) rule, o/=1.0 as
Euler backward difference (or implicit) and ol=0 gives an explicit
algorithm (also known as the "initial stress" technigque
(Zienkiewicz, T7) ).

At this stage, we have fully described the computational form for
the constitutive relation (eq. 30). However, this equation is
nonlinear and requires linearization; its solution will then lead
to an iterative scheme.

Linearization of the constitutive equation

To linearize the constitutive equation (30), we shall use a
Taylor series in both £and $(this method is fully explained in
(Hughes and Pister, T78) ). Let us first rewrite eqg. (30)
introducing the function ¢:

o

~¢(§"*") gml) = (én,,”éh)’“s(g:\fl :_G:’) "dAAéﬂ(O?g)tn-p.{ =0
(32)
we can write the first few terms of the Taylor's series:

¢C,‘cml Mf,EmHAE) = ¢({M')9}4: '/'..?:?i LAE +2:‘%..AG’ + 9‘("‘) (33)
e ~ Qfml G ~

o

where the term & (Ag”,Ag“), with m > 1, regroups the higher
order terms of the series.

The first three terms of eq. (33) defines the linear part of jé.
Setting the linear part to zero defines a Newton-Raphson
iterative method for solving eq. (32).
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Accordingly, let i be the iteration number of the Newton-Raphson
scheme, then eq. (33) reads

: (34%)
I ‘ ‘
¢(£m/, vm) +_= ¢ A{ +’2‘<;i A(Tir/ = O
Bes, M T agr O
: » .
with Af”*’ = f;:/ - §;+/
Ag‘nﬂ = 6:::: - F:w/ (35)

At the beginning of a new step (i=0), the best guess for the
initial values are those of the converged previous step, i.e.

G.

-4

5”,, = én and G,

-~ S =

The partial derivatives of eq. (34) are:

(;fﬁ = I the identity matrix (36)
DL ne
-
D Al fopH =ty M-OTW-”"”) (37)
> Cues ~ ’?’O:nu ~ o~ '39",,“
where
gn-w( (38)
(Bngl T T
A 1 )" k- 4) M
2 of A ¢33 _4 x! it * 1
2er -«{335(@ > (5@
T T
‘20oP = o OP*'G.rwd M (39)
'39_3«. -~ -~
k-
where OP¥X =4 (@-4) '>(_“_‘_/. + 2 (40)
kY Ty oy V33,

Again, the MacCauley operator must be evaluated before performing
the exponentiation.

Substituting eq. (36) through (39) into eq. (34) leads to the
incremental iterative constitutive equation:

{

¢(Z“" ml) + A£n+l - ~h‘+al. A,_th/ =0 (41)

where gnm is the tangent compliance matrix (fully populated
and symmetric) given by

‘ T
C' = C +pAt-oc-jop M +OP MGT M

A ”fd lad
tn+al

(42)
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& -1

;
and :?n-v-d = (Emn()

is the tangent modulus matrizx. ,
The constitutive equation (41) is satisfied when ¢g = 0.

We now have all the necessary relations to construct a finite
element approximation for the plate problem.

3. FINITE ELEMENT DISCRETIZATION

We shall not discuss in detail the finite element method, which
is described in many books (e.g. (Zienkiewicz, T77), (Bathe and
Wilson, 76), etc.); the purpose of this section is to describe
the plate bending part of the response only, being understood
that the transverse part is treated elastically for all stress-
strain states (its description can be found in detail in (Hughes
and Tezduyar, 80) ). The final result will be a displacement
formulation for the viscoplastic plate element.

3.1 Interpolation functions

The element we shall use to implement our viscoplastic behavior

is a 4-pode isoparametric element (fig. 3) with three nodal

parameters at each node: (Yx,%y,w), i.e. two slopes and the
deflection. 1/

The displacement vector of any point inside each element is
approximated by

fx MEL Y

Pyt = 2 Ny (f.‘z)' 3 = NI’(’OI (43)

W I:"‘ WI ~

where I = element node
NEL = number of nodes of the element (here NEL=4)
N; = shape function

‘f2 =local coordinates
/ (see fig. 3)

For the 4-node element, the shape function is bilipnear and is

given by
Ne = 3 (1+555) (4 + 2y1)

where fI and 71 are the local coordinates of the node I.

172 The element is implemented in the FEAP program described in
(Zienkiewicz, T77), chapter 24.
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Looking only at the plate bending part, we have from eq. (5)

@ x

4

‘P')‘3 fcpj)x

Substituting the values of f’given by eq. (43), we obtain

Ey = Z-] 0 NLg o |- qg (4y)
x‘){j NI)j NI,X 0 W I

Note that there is an implied sum due to the repeated index I
(sum over the nodes).

Due to the decoupling of the plate bending from the transverse
shear, we have zeros in the third column of the above matrix.
Hence, we can drop it along with the deflection w

Ex Nrx © @
Sz ey [ e B as)
\nﬁ N%j Ngx ‘!JI

where Bp (x,y) is the strain-displacement matrix for the node I.

Finite element equations

Using the relation (45), valid for the plate bending response,
the internal virtual work can be expressed by

LI jgng s =Jng :fT' 2. & dn (46)
e e

where e represents the element volume.

Taking the virtual nodal values out of the integral and
linearizing the stresses into known and unknown parts at a given
jteration tand time twy , eq. (U46) becomes

Wop = gf?jg’.z.(g;;,+zs$.:'.,) an (47)
| fe

which can be written

g = ST Fe (48)

o N4
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ION
where E.J are the internal forces corresponding to the plate
bending part only:

o T ; ;
.E(n»i' = f § & <gml + AE-”"") 0/‘/2’ (49)

L&
Using the constitutive incremental equation (41), we can write:

¢ ¢ ¢ ¢
4G,,, = D '(Afw + P (50)

¢ ¢ . <

where Dpgwm :(QM,) is the tangent modulus matrix and ¢$;m is

o

the out of balance of the constitutive equation (32).
Using eq. (45) and eq. (50), we can rewrite eq. (49) as

b) e ¢ ‘ T ‘ e ‘
F() = K 'Afnw +f§'2'(gml +3W‘iéw) d-Q
e

~ ~ (51)
and the out of balance forces as
¢ On (b (s)/
Rowr = Fue) = (Fue) +F0) (52)
where EJQ = external applied forces
f(& = internal forces from the plate bending response
E“’ = internal forces from the transverse shear response
R = out of balance forces

and K, in equation (51), is the tangent stiffness matrix:

¢ T <
K13 = f B: 2, 222 da (53)
Beal Ne

Equations (51) and (52) were developed at the element level.
Using the usual assembly process of the F.E. displacements

approach, we will obtain similar expressions (51), (52) and (53)

involving the whole domain of analysis; this standard step is not

described here and can be found in many reference books. The

goal now is to solve the set of algebraic equations X Af: R

using a Newton-Raphson schene. -

At this stage, we have finished with the development of the F.E.
model, We shall first summarize our algorithm and then discuss
in some detall the quadrature adopted for the numerical
evaluation of the integrals. Finally, we shall present some
numerical examples.



3.3 Finite element algorithm i=Newton-Raphson

8.

n=time step

Initialization : set i=n=o, form K and Fo and
compute %o = k! -Fo and @_, DB

e

o

-3
Select At, ;¢ =Y. and PR , set i=1
At each Gauss point, for each nonlinear iteration
3 —-— "-’ .
3a) update the stresses G m, 4"‘2"" * Do " AELL,

3b) compute the elasticity matrix 2 = (C'+d)'/

16
iteration

see
equations:
''53

| 25, us

I
l
g

!
|h2, 35, 50

t 42
|

3c¢) compute the constitutive eq. out of balance ¢,” 32

3d) compute the stresses g:ﬂ*g’n‘ﬂ :,.‘ et

l
l 42, 32, 50

. ?
3e) check convergence on the constitutive eq. 14, /< tl4

if no, go to step 3b. if yes, qt *_v,
and go to step 4. ~™ -

For each element

ba) compute the tangent stiffness 5§J,+. and
assemble into the global K%,

4b) compute the out of balance forces Eﬂﬂ
and assemble into the global ﬁ;“

¢ ¢ n {
Solve the set of equations EnniAfulanU for Afuﬂ

:
Compute the increment of deformation AE e

and update .
P fm""zm""AEm/

R
,‘fnu bt "(wn + A‘evwl

increment i : i< i+1, if i 2 imax s Stop

: ?
Compute Euclidean norm and check: llg"mﬂ < tol2
if no, go to step 3. .
if yes, define @, __l(’m' , Gy = Ener = € ‘pm

~™ ”“ e ~

]
nen+d; [ S4t;<T,,  go to step 2; otherwise,
47!

i

}

l

53
|

52

stop.
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Bemarks about the algorithm

1.

2)

3)

In both steps 3a and 3d, we see a new symbol: E ; it comes fronm

the fact that at the step 3d, we cannot compute the exact
stresses given by eq. (50) because AE is unknown:

eq. (50) : AG = . (AE+¢) = D 4s + D &

then O e+ T +2>46+ 2 & except A& , all the quantities
are known; let us define

.(.T"' E’:"”}? as a predictor type stress; then once the
deformations are known for the current iteration , we shall
update it. This corrector part is done at the beginning of the
next step for ease of implementation (step 3a)

We have not yet discussed step 3e, which is conceptually of

some importance. In our linearization of the viscoplatic
constitutive equation, we note that a small error in Q' may lead
to a very large change in,é ; eventually, this will slow down the
rate of convergence of the Newton-Raphson scheme.

For this reason, we iterate at the Gauss point level in order to
get a sufficiently small out of balance @ (eq. 32) for the

£+,
Equation (41) becomes:
Ty ‘ 4 &4
?mw + Afh«f! - ,.C,hn(' Agml = 0 (53b)

where j is the local iteration counter.
It is shown in section 4.2 that this substantially improves the

global convergence.

In the present stage of development, our element uses a data

base which records the stresses and strains for the current
iteration and the previous converged time step. It also stores
the current tangent elasticity matrix. This is done at each
integration point (i.e. requires 18 storages per point, that is,
216 for 4x=3=212 integration points: 4 in the x-y plane, 3
through the thickness).

Note that it is expected that the introduction of the convergence
on the constitutive equation (step 3e) will allow us to skip step
3a, hence reducing the storage to only 6 values per integration
point (stresses and strains for the previous time).
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Numerical integration

One important aspect of the finite element method is the use of
numerical integration (quadrature) to evaluate the integrals
appearing in both the stiffness (eq. 53) and in the out of
balance forces (eq. 51). These evaluations are usually done
using a local coordinate system.

a) Isoparametric mapping
Splitting the volume integral into the plane of the plate
and its thickness (h), the stiffness given in eq. (53) becomes

4’“/2
T 2 f 2
K1y =f’§;2§, zd_azj‘J Br DRy z da dAf (54)
e A Y,
using an 1soparametric mapping, we have the following relations:
-4 and dz2 =28 d (55)
=3 ] 7 i
also df = lgl-dfdz (56)
where IZI is the determinant of the Jacobian matrix of the
mapping:
X Y
7.7 i (57)
X

s Y
L ‘¢ -')'ZJ

Using the relations (55) through (57), we can express the
stiffness (eq. 54) as
P S Y

K13 =Jf J?I}f:l}l(&z?‘)%dz df J»z (58)

Similarly, the integral appearing in the out of balance forces
(eq. 51), when using 6 =04+ D> ¢ , becomes

2 ¢l

e | emf -

jg&@m .-.—.J jff.‘g.(%?).g d? [ d5 dy (59)
Le
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b) Quadratures

The integrals over the plane §,72 of the plate will be
carried out using Gauss-Legendre quadrature (2 x 2 points will
suffice for our l4-node element).

For the integration through the thickness, the problem 1is

different.

When the plastic zone spreads towards the midplane of the plate,

the function to integrate looks more and more like a step

function (fig. 4a).

Three different quadratures were tested, namely:

1) Gauss~-Legendre (G): standard quadrature. N point integrate
exactly polynomials up to the degree
2+N=1.

2) Gauss-Lobatto (G-L): here, two sampling points must lie at
the endpoints of the interval. N points
integrate exactly polynomials up to the
degree 2-N=-3,

3) Half Gauss-Legendre (H-G): same as (G) above, but applied
to each half thickness of the plate
(i.e.-h<2<e and o¢2<h/2 ). This
allows us to consider a discontinuity
of stresses at z=0.

Notice that an odd number of points for G or G-L will not be
efficient because one point would lie at the midplane of the
plate, where there are no stresses (due to the antisymmetry of
the stresses). The same reason applies to reject the idea of
having a half Gauss~Lobatto quadrature (sampling points at the
ends, hence one at the midplane).

The idea of introducing a quadrature on half the thickness only
was due to the fact that neither G nor G-L are able to compute
exactly the "fully plastic” section (fig. 4b), no matter how many
points we choose.

However, 1if we 1integrate separately the two halves of the
thickness, the fully plastic section would be exactly computed,
even with two point quadrature!

When using the H-G guadrature, the equations (58) and (59) must
be slightly modified:

P =é (F+1) dz = “éa/]’ (60)

+he!

He A +
oAl ol oot
Ay A o iy 4

fsz‘t'?sz =]f2.;f??§—‘_ [*%(?H)]éd? dg dy (62)

2

-l ) -
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In order to compare the three gquadratures, we define the

following test problem:

Thicknessz2, stresses C} = Txy = 0, Cx = Cx(z) =0 at midplane,
linear for 0 £ Z € Zo and Gx=0y for 2Z,¢2<h/s (see fig. 4a).
The normalized moment is computed by

A N
Moy = 2 T8 F W

where I' and W, are the integration abscissae and weights,
respectively (see Appendix I). N 41is the number of integration
points and Uy the yield stress.

A

M“”‘Aoo
The following table gives the error ™ 2 for Zo = 0,

i.e. fully plastic. The exact moment is M :h,Gy
L

#points through | Gauss~-Legendre Gauss~-Lobatto Half Gauss=-
thickness (G) (G=L) Legendre (H=G)
] 4.3 % 7.9 % 0.

) 2.0 % 2.9 ¢ 0.

8 1.1 § 1.5 § 0.

Except for H-G which gives the exact result, all moments are
overestimated. Since G-L iz the first to detect any yielding
(sampling points at top and bottom of the plate), it was expected
to give better results than G; surprisingly they are worse,
confirming the results found by Cormeau (Cormeau, T78).

In figure 5, we see the approximations given by the three
quadratures, for an elastic to a fully plastic section. Again,
the H-G quadrature is superior to the others, almost for all
values of Zo. The result is true for both 4 and 6 points. This
is confirmed in figure 6 where we plot the corresponding errors.

The importance of using H-G quadrature is most evident when we
are close to a mechanism in a structure (i.e. when a small
inecrease of load leads to a very large increase 1in
deformations), as we shall see in the numerical examples
presented in the next section.

NUMERICAL EXAMPLES

In this section we describe three examples, namely (i) a single
plate element subjected to applied boundary displacements, (ii) a
cylindrical bending of a clamped plate subjected to uniform
loading and (1ii) a simply supported square plate subjected to
uniform loading.
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All the tests were computed using K=1 in the plastic flow law
(eg. 19). 1/

Single element test

The motivation to perform a single element test was to gain some
insight of the viscoplastic behavior. By applying constant rates
of deformations (here rotations), we see in Figure 7 that the
response of the plate is almost elastic for very high rates and
elastic-perfectly plastic for small rates of deformations.
Figure 7 was obtained for a copnstant value of YAt (where & is
the material parameter of eq. 16 and At the time step). The
same type of test may be used to select YA+ by fitting
experimental data.

When we are interested only in an elastic-perfectly plastic
behavior, we can modify the test by imposing a large deformation
in one step, and redo the test for different {§'s. The result is
shown in figure 8a, where we plot the moment M at the built-in
end as a function of ¥.

As expected, the moment M tends to Mw when x increases; we
could then select any ¥ >/0°% (fig. 8a). However, if the X} is
too large, the number of the Newton-Raphson iterations needed to
obtain a given accuracy increases (fig. 8b); for very large s,
the tangent compliance matrix (eq. 42) can even become singular.
The best B‘ is the smallest one still giving M=M, , here: YAt = M'?

Cylindrical bending of a clamped plate

In this problem, we want to check if our plate element is
accurate for a cylindrical bending problem, namely a plate
clamped at both ends. The geometry and boundary conditions are
given in figure 9a,. The material properties selected were

Ez 30-10%, V=0.3, 0y =30 and YAt = Afo (selected as explained in
section 4.1).

The uniform load was applied in 11 steps.

We can compute an upper bound estimate of the collapse load (Pu)
using virtual work (fig. 9b):

_ 46 M P
Pu = L’-u = 241 1o (j&k [:249 (63)

2
where Mu-’»(‘g/‘f)-o.Y'ﬁ:' 8.¢€¢ (A =1.155 is used to account for
cylindrical bending, i.e. stresses in the y direction, with
QP =0.5).

1/

In the sequel, we shall use the following terms: My =
uniaxial moment when the first fiber yields; ¢, =
corresponding rotation. Mu = ultimate uniaxial moment of
the section: Mu =®%%) 0y =3 My ; $, = rotation at
which continued flow starts., 2
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Due to the mesh discretization, our solution will exceed this
load; however, we can define two bounds, depending on the value
of 1 in eq. (63):

a) lower bound: 1 =231.5, the distance between the two hinges
close to the supports, assumed at the Gauss points (see fig.
9b) -y
then = 25, 10
e F“4 25.9

b) wupper bound: 1 =220, the distance between the two hinges
close to the supports, assumed at the center of the elements.

s

then Pu, = 28.6 10

These two bounds are indicated in figure 10a where we plot the
load versus center displacement response for the H=G quadrature.
The ultimate load (27.6 45%) compares well with the two bounds;
moreover, both 4 and 6 integration points through the thickness
give the same collapse load, which is very satisfactory.

In figure 10b we show the load-deflection curves obtained using
6 points through the thickness, for the three different
quadratures studied. As expected, H-G quadrature gives better
results than G or G-L, whick still have a positive slope at %zzo.
In figure 10c, the same quadratures with 4 points through the
thickness are shown; again, H-G gives the best results.

In the following table we summarize the results of the three last
load steps for the 6 point quadratures:

vertical deflection at the center: Wo
step # load P G-L G H-G
9 2T .5 14.19 15.29 16.55
10 29 .1 20.83 23.40 375.0
11 30.6 1624.0 2096.0 3128.0

Of course, displacement of 3 digits or more means that we have
reached the collapse mechanism shown in figure gb.

Local iterations for the constitutive equation
In figure 10d, we plot the number of Newton-Raphson iterations

needed at each load step to satisfy the convergence tolerance:
1Rwll < to0-3

where NRw|} is the Euclidean norm of the out of balance forces:
ugu il z( R'.\.\ . g_m)‘/?.

Two curves are plotted: with and without

the step 3e of the Finite element algorithm (section 3.3, eq.

53b), i.e. with and without iterations at the Gauss point level

to approximate the constitutive equation (1 to U4 iterations are

usually enough). The reduction of the number of Newton-Raphson

iterations is quite significant, especially when close to the

collapse load (fig. 10d, step 10).
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Simply supported square plate

This last example concerns a square plate, simply supported,
under uniform pressure applied step=-by-step. Due to the symmetry
of the geometry and load, one guadrant only was discretized with
our ld-node element .
Figure 11 illustrates the mesh layout and boundary conditions: a
coarse mesh (3 x 3 elements) was chosen to limit the computer
cost.
The material parameters are: E:ZJOG , ¥=0.3, G%:ZOOO.
Using the test mentioned in section 4.1, the "optimal™ X'Atwas
found to be YAt =10.
The yield line theory gives the collapse load §Pu= 2% MP/'PZ
when we neglect the corner effects (i.e. the yield
lines coincide exactly with the two diagonals of the plate).
Here, Mp is the unidimensional plastic moment ( Mp=M.=4* (G} ).

‘1’

When taking the corner effects into account, we have

2
upper bound: ﬁrL - 25.05¢ (Leckie and Ranaweera, T70)
Hp

lower bound: “ 2¢.9¢y (Hodge and Belytschko, 68)

The problem was solved for two quadratures (G and H-G), both for
4 and 6 points through the thickness.

The locad~-deflection diagram at the plate center is given on
figure 12, along with the two above bounds. Despite the rather
coarse mesh used, both 4 and 6 points H-G quadrature compare well
with these bounds.

In the same figure, we also report the results from Cormeau
(Cormeau, 78) who uses the same mesh but quadratic elements (2
layers of 8 nodes per element). Our "ultimate®™ load (rl?%¢<2&8)
exceeds the upper bound by about 3%. As expected,

6 point quadrature gives a smoother transition from the elastic
state to the fully plastic regime than 4 point quadrature.

Figure 13 shows the spreading of the yield regions as the load
increases. Starting from the center and corners of the plate,
with some spreading away from the diagonal. At last, the
elements along the diagonal are fully plastic as predicted by
yield line theory.

Finally, figure 14 shows the effect of the quadrature on this
problen. Both G and H-G (with 6 points/thickness) are reported,
and we see that the G quadrature has still some load carrying
capacity (at p17%$ =25.8), while H-G has reached its ultimate
load.

The last figure (fig. 15) illustrates the increase of Newton-
Raphson iterations needed to converge when YAt is selected too
large. Throughout the analysis ¥4% =10 was chosen according to
the procedure of section 4.1; the number of iterations as a
function of the locad steps is shown by a solid line. The dotted
line was obtained for JAt =1000, leading to a substantial
increase of iterations.
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CLOSURE

We have presented a formulation for a thick plate finite element
with an associated viscoplasticity and a Huber-von Mises yield
surface, By treating the transverse shears elastically, it is
expected that the good behavior of the element at the thin plate
limit will be preserved in the nonlinear range.

The viscoplastic finite element has been shown to be reliable for
the elastic-perfectly plastic problems solved; even when very
coarse meshes are used.

The use of our modified quadrature rule (H-G) substantially
improves the behavior of the element, especially when the
structure is close to a collapse mechanism, i.e. when all the
subsequent deformations will be concentrated into yield lines.
It is then important to compute the exact moment of the fully
plastic section. Moreover, the ultimate loads obtained with 4 or
6 H-G integration points across the depth of the plate were
almost identical, which is very satisfactory.

Finally, the use of inexpensive local iterations 1in the
linearization of the constitutive equation substantially reduces
the number of Newton-Raphson iterations, reducing the cost of
analysis.
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Appendix I : Quadrature points and weights

Given below are the abscissae and weights for both Gauss-Legendre
quadrature (up to 12 points) and Gauss-Lobatto (up to 10 points).
If one needs more integration points, they can be found in
(Abramowitz, 64) from which these tables are extracted.

Note: Whenever possible, analytical expressions were used
instead of the numerical values. Reference (Scheid, 68) was
found to be helpful in deriving then.

ABSCISSAS AND WEIGHT FACTORS FOR GAUSSIAN INTECRATION

n

J-:l J(r)dr= Z wif (i)

LHEN ]

Abscissas- +7, (Zeros of Legendre Polynomials) Weight Factors~w;
X wy +ri uy
ne? nw=8
0.18343 46424 95650 0.36268 37833 78362
0,57735 02691 89626 1.00000 00000 00000 0.52553 24099 16329 0.21370 66458 77887
0.79666 64774 13627 0.22238 10344 53374
n=3 0.96028 98564 97536 0.10122 85362 90376
£,00000 00000 00000 0.88888 83888 88889
0.77459 66692 41483 0.55555 95555 55556 ]
0.00000 00000 00000 0.33023 33550 01260
n-4 0.32425 34234 03809 0.31234 73770 40903
0.33998 10435 84856 0.65214 51548 62546 0.61337 14227 00530 0.26061 06964 02935
0.86113 63115 94053 0.34785 48451 37454 0.82603 11073 26636 3.18064 B1606 94857
5 0.96816 02395 07626 0,08127 43883 61574
n:
0.00000 00003 00000 0,56888 38838 88839 n =10
0.53845 93101 05683 0.47862 8£704 99366 0.14837 43389 81631 0.2955%2 472247 14753
0.93617 98459 38664 0.23632 68850 56189 0.43339 53941 29247 0.26%26 67193 09996
0.67940 75682 99024 0.21308 63625 15332
n=0 0.86506 33666 88985 0.14945 13491 50581
0.23861 91860 83197 0.46791 39345 72691 0.97390 65285 17172 0.06667 13442 0888
0.66120 93864 66265 0.36076 15730 481139
0.93246 95142 03152 0.17132 43923 79170 n=12
0.12523 34085 114469 0.24914 70458 13403
=T 0.36783 14989 98180 0.23349 25365 38355
0,03000 00000 00000 0.4179% 91836 734869 0.58731 79542 84617 0,20316 74267 23066
0.40584 51513 77397 0,38183 00505 05119 0.76990 26741 94305 0.16007 83285 433436
0.74153 11855 99394 0.27970 33314 89277 0.3041) 72563 70475 0.10693 93259 95318
0,94310 79123 42759 0,12348 49£61 68870 0,98156 06342 46719 0.04717 53363 86512

ABSCISSAS AND WEIGHT FACTORS FOR LOBATTO INTEGRATION
a1
7 Ry -+ D i f () + il (D

Abscissas=+ #; Weight Factors=wy
4 i wy " T wy
7 1. 00000 000 0.04761 904
0.83022 390 0.27682 604
0. 46884 879 0.43174 538
0.00000 009 0. 48761 904
3 1. 00000 000 0.33333 333
0.00000 000 1.33333 333
8 1. 00000 000 0.03571 428
0.87174 015 0.21070 422
0.5%170 018 0.34112 270
L} 1. 00000 000 0. 16666 667 0,20929 922 0. 41245 880
0. 44721 360 0.83333 333
9 1. 00000 0000C 0.02777 77718
0. 89975 79954 0.16549 53616
5 1. 00000 000 0. 10000 00¢C 0, 67718 62795 0.27453 87126
0. 65465 367 0. 54444 444 0. 36311 74638 0. 34642 85110
0. 00000 000 0.71111 111 0. 00000 0000C 0.37151 92744
10 1. 00000 00007 0. 02222 22222
0.91952 39087 0.13330 59908
& 1. 00000 000 0. 06666 667 0. 73877 38651 0.22488 93420
0. 76505 532 0.37847 496 0.47792 49498 0.29204 26836
0.28523 152 0.55485 838 0.16527 89577 0.32753 97612
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subroutine elmti2(d, ul, xl,ix, ¢tl, 8, p, ndf, ndm. nst, isw)

four node viscoplastic displacement model plate element
with TJR Hughes displacement model shear stiffness

using mindlin plate theory and von mises yield criterion
Infinitesimal theory only (small deforma and displ)

No membrane forces; antisymmetry in z: f(zl=—f{-2)

input data:

young’s modulus e
poisson’s ratio inu
mass density d(4)
number of quadrature points (x—y) 1
number of points for stress output (x—y) ke
plate thickness thick
coeff of thermal expansion (not used) alp

L temperature reference (not used) t0

(next card)
uniform pressure load (pos. upwsard) q0O
quadrature type (l=gauss—lochatto.2=gauss.;
3=half-gavuss) iparam
poeints thru the thickness (4 or 6) 1z
exponent for viscoplastic power law kflow
mid—-point rule coeff (O=explicit, i=implicit) alpha
fluidity factor gamma
yield stress in tension yield
default values:
1 =2
k=1
iparam = 3
1z = 2
kflow = 1
alpha = 1.d0
nodal dof:

1) rotation about x axis theta x
2) rotation about y axis theta y

3) transverse displacement w
interpolation: .
displacement and rotations use bilinear functions
integration:
>in the plane of the plate (x—y). Gauss—lLegendre
quadrature is used. use at least 2x2 for the stiffness
and 2x2 for the stresses (since we have bilinear
interpolation functions, we gain nothing using
2x2 for the stresses. this should be modified)
>for the integration through the thickness., we can
use gauss—lobatto, gauss or half-gauss quadrature,
depending on input "iparam” (=1,2 or 3 respectively).
use 4 or 6 points ("1lz"), if iparam=3, 4 points
are usually enough.
the number of points computed is half the input # due
to the antisymmetry sig(z)=-sig(—z). hence linz=lz/2
sign convention:
rcc coordinate system with x and y in plane of plate
stress resultants are determined according to positive
stress convention: a >0 stress in the + face
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c. produces a >0 stress resultant

c. list of rovtines:

c. elmtiz driver of the element

c. stifvp computes the tangent stiffness + updates
C. the current stresses

C. forcvp computes the internal forces

c. viscop " the viscoplastic state {(gauss pt)
€. momts " the stress resultants (at x—y gauss pt
c. gaulob " the coord and weights {(quadrature)
C. pform ###% slight modif of Taylor’'s

c. the common /bound/bcode is used in stifvp to che
c. whether or not we are computing applied B. C.
C. the MACRO order is:

c

c. dt P XXXX

c. loop. S} as many as load steps

C. time

c. loop, 0 J Newton—Raphson loops

c. tang

C. form

C. solv

C. next

C. disp

c. stre

C. programmed by:

. Carlos Rodriguez

c. January 1983 (UC Berkeley)

€ = e e e e o o i e

implicit double precision (a—h,o0-z)

logical prt, debug
logical mflg, rflg
common /itcsegq/maxit, tolceq
common /debugp/debug. iparam
common /cdata/ o, head(20), numnp. numel, nummat, nen, neq, ipr
common /eldata/ dr.n,ma.mct, iel, nel
common /print/ prt
common /tdata/time,dt,cl,c2,¢3,¢c4,c3
common /mixed/ rm.mflg. vrflg
common /visco/nelem npel,nstp.nste,. nelemz, nelmax, iterno
dimension d(1)., ul(nd®, 1), xl(ndm, 1), ix(1), t1(1),s(nst, 1), p(1)
1 . shp(3,9).8g(16), tg(lé), wa(lé),sig(sé)
2 ,29(3), zwg(3),dnl(b). stk (13824)
data nstp,nste/18, 216/, nelemz/64/
data tolceq/1. d-10/. maxit/20/
data istart, iterno/0,0/
data debug/. false. /
c D S e O R o S S o O TS G0 T SR G e S Gy M S0 i o i AT R GG S WY G S D WO S SR i WD SO o O WD WG TR S v S S W RIS U T D W D W W S R S
4 modify nelemz and stk if 264 elemti2-type
c dimension stki(nelemz#nste)

[ o e e o o o o S e O Shn U G S 20 e o e e o S i e A S SO | O i S S O O S v i . J S o

€.... go to correct array processor

ao t0(1,2: 3, 4,5, 6,7.2:,9:2);, isw

input material properties

read (53, 1000) e, xnu,d¢(4), 1, k, thick,alp. t0

read(%, 1001) g0, ipavam, lz, kflow, alpha. gamma, yield

[l
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if (ipavram. le Q) iparam=3

it (1. le. O) 1=2

if (k.ne. 1) k=l

cappa = 5. /6.

d(1} = /(1. —xnuxxnul#thick#%#3/12. 0
di{2)myxnu#d (1)

di(3) = e/24 /(1. +rxnul#thick#x3
d(7) = e/2 /(1. +xnul#*thick#cappa
d4(8) = g0

1 = min0(4, max0(—-1,1))

d(%) = 1

k= min0(4. maxO(1i, k1))

di{s) = k

lint = O

write(6,2000) e, xnu.d(4), 1, k,alp, tO. thick.q0
write(6, 2C003) kflow, alpha, gamma, yield, iparam, 1z.maxit, tolcegq
d(4) = d{(4)¥thick

d{(?) = toO

d(iO)= exalp/ (1. —xnu)wthick»#3/12.
di{ii)=thick

d(12)=e

d(13)=xnu

d(i14)=1z

d(13)=kflow

d(ié&)=alpha

d(17)=gamma

d{(i8)=yield

rflg=. truse.

if (istart.ne 0) return

linz=0

call pzero(stk,.nelemzi#nste)
istart=1

npel=numel

nelmax=0

return

return

form tangent stiffness matrix

continue
call stifvp (dt.d, xl,s,2g, zwg,-dnl,stk, linz

s+ 1int, shp, sg, £tg, wg, ndm, ix, ndf, nst, ul?
return

compute element moments and strains
-—--forced at the stiffness integration points——-—

continve

define current element
if (n. 1t npel) nelem=0
if (numel. eq. 1) nelem=0
npel=n

nelem=nelem+i
ipos=(nelem—1)#nste
1=d(3)

lz=d(14)
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if(l#1l ne. lint) call pgauss(l,lint,sq, tg,wg)

if (linz.ne. 12/2) call gaulob (lz,1linz, zg, zwg)
do 440 1 = 1,1lint

compute element shape functions

call shape(sg(l}, tg(l), xl,shp: xsj,ndm. nel, ix,. false. )
compute coordinates

xx =0, d0

yy =0.d0O

do 420 j = 1,nel

xx = xx + shp(3, ji*xl{1, j)

yy = yy + shp(3, jr#x1(2, §)

compute moments (sig=mx,mxy, my)

call momts (linz.zg,zwg,d(11),stk, 1, sig)

call pstres(sig,sig(4),s5ig(5),3ig(6))

output moments and sigmas—strains thru thickness
mct = mct —~- 2

if(mct. gt. 0) go to 430

write(é, 2001} o, head

mct = 350

write(6, 2002) n.ma, (sig(ii), ii1=1,3), xx,yy,sig(é)
mct=mct—-linz

do 431 j=1,linz

rz=zg{pIud(iid/2

if (iparam eq. 3) zz={(zg( j)+1. d0O)%d(11)/4.

write (6,20048) 2z, (stk{ipos+ii)., ii=1,6)
ipos=ipos+nstp

continue

return

compute consistent mass matrix

1 = d(3)

if(l#l. ne. lint) call pgauss(l,lint, sg. tg, wg)

do 300 1 = 1,1lint

compute shape functions

call shape(sg(l}, tgl(l), xl, shp, xsj,ndm, nel, ix,. false. )
dv = wg(l)#*xs %d(4)

for each node ) compute db = vho#shape¥dyv

J1 = 3

do 300 j = 1,nel

wili = shp(3, j)*dv

compute a lumped mass

plyl) = p(y1) + wil

for each node k compute mass matrix (upper triangular part)
ki = ;i

do 510 k = j,nel

s{jl, ki) = s(jl, ki) + shp(3, k)#wll

ki = ki + ndf

Ji = 31 + ndf

compute missing parts and lower part by symmetries
nsl = nel#ndé

dli=d(11)%#%2/12.

do 320 ) = 1,nsl, nd#f

pi{y) = p( j+2)%d11

p{g+1) = pd;)

do 320 k = j,nsl, ndé

8Cy, k) = gl j+2, k+2)#dil
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s{j+1, k+1) = s(j, k)

s(k+i, g+1) = s(j, k)

s{k+2, J+2) = g 3+2, k+d)
520 gk, 3) = s(j, k)

return
c
C. compute right hand side (forces)
C
b continue
call forcvp (d,xl,2g. zwg, stk, linz
1 ;s lint, shp, sg, tg, wg, ndm, ix, ndf. nst, ul, p)
return
7 call plot9(ix, xl, ndm, nel)
return
c.... make the suwitch of sigma and eps for next time step
9 iterno=0
1=d (3}
1z=d(14)

if(l#]l. ne. lint) call pgauss(l,lint,sg, tg, wg)
if (linz ne. 12/2) call gavlob (lz,linz,z2g, zwg)
ipog=0
nval=nelmax#*lint#linz
do 480 i=1,nval
iposp=ipos+é
do 473 j=1,6
475 stk(iposp+yi=stkiipos+))
480 ipos=ipos+nstp
return
c.... formats for input-output
1000 format(3Ff10.0,2110,3Ff10. O)
1001 format(+10.0.3i10,3¢f10.0,1i10)
2000 forma%t(/5x, ‘plate bending viscoplastic element’//
1 10x, 7hmodulus, el8. 5/10x, 13hpoisson ratio., £8. 53/10x,
2 7hdensity, el $5/10x, 13hgauss pts/dir, i3/10x, 10hmoment pts, ib&/
3 10x, S5halpha, e20. 5/10x, Phbase temp,elbé. 5/
4 10x, ‘thickness’, elé. 5/10x, ‘uniform load’,el3 5/)
2001 format(al, 20a4//5x, ibhelement stresses//18h element material
1 : 3%, hil-moment, 3x, Ph12-moment, 3x, Ph22-moment, 4x,
2 S8hi-moment, 4x, Bh2-moment/2%x, 7hi-coord, 2x, 7h2~coord, 3x,
3 45y, Shangle/7x, 7hz—coord, 7%, Bhil-sigma, 4x, Bhl2-sigma, 4x,
4 Bh22—-sigma, 17x, 6hil—eps, 4x, Bhi2-gamma, bx, b6h22-eps)
2002 format (/219,5el12 3/2¢9. 3, 36x. £18. 2)
2003 format (10x,
1 17hflow~law exponent, i13/10x, 17halpha (time lin. ), eld 3/
2 10x, 18hgamma (visco—-law) ,el2 3/10x,
3 18huniax yield stress., el 3/10x,
4 18hquadrature type 1127

5 10x%, ~* i.... Gauss—Lobatto’

&/10x, 7 2.... Gauss’

7/10x%x, * 3.... Gauss (half thick)’
B/710x, 18hquadrature points ,il12/

? 10x, ‘Local convergence max iter’, i4/
1 10x, £ * tolerance’, el 3)

2004 format (£f14. 3: 4%, 3el2. 3, 10x., 312 3)
end
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subroutine forcvp {(d,xl, zg, twg, stk, linz
i s 1int, shp, sg, tg, wg, ndm, ix, ndf. nst,ul,:p)
implicit double precision (a—h,o0-2)

c
c. plate bending viscoplastic. element fovrce routine
c. computes internal forces
C
ctommon /cdata/ o, head(20); numnp, numel, nummat, nen, neq, ipr
common /eldata/ dm,n.ma.mct,iel, nel
conmon /visco/nelem. npel, nstp. nste. nelemz, nelmax. iterno
common /prlod/praop
dimension d(1), xl(ndm., 1),ix(1},s(12,12),ul(ndé 1), p(1)
1 .8hp(3,.9),8g(16), £tg(16),wg(ib), bs{2, 3, 4)
2 ,@1(4,2),e2(4,2), h(d),cs(4), sn2(4), 91(4; 2, 92(4.! 2 9(4) 2
4 ,2¢(3), zwg(3),8ig(3),.stk(l)
€ m o o e e e e e o e . e o e o e e e
c define current element
if (n. 1t npel) nelem=0
it (numel. eq. 1) nelem=0
npel=n
nelem=nelem+1
if (nelmax. 1t. nelem) nelmax=nelem
if (nelmax. le. nelemz) go to 100
write (&, 2000)
stop
100 continue
1 = d(3)
lz= d(14)
call pzero (s, 144)
c.... form base vectors at nodes

do 302 i = 1,nel
J = mod(i,nel) + 1
do 301 k = 1,2
301 el (i, k) = x1(k, j) — x1dCk, i)
h{i) = garidel (i, 1)exa2+el (i, 2)#%#2)
do 302 k = 1.2
eldi, k) = el (i, k}/h(i)
302 e2( g, k) = —el (i, k)
c.... form sines and cosine terms
do 303 i = 1,nel
cs(i) = el(i,1)#e2(i, 1) + el(i,2)%e2(i, 2)
303 sn2i) = 1. - cs{iY#cs(i)
c.... form parts of g-vectors independent of space
do 304 i = 1.nel
J = mod{i,nel) + 1
do 304 k = 1,2
gl(i, k) = (el(i, k) — cs(id)*e2(i, k))/sn2(i)
304 g2(i, k) = (e2(y, k) ~ cs{jirell ., k))/sn2( )

c.... force computation (first. loop over x—y plane)
ipos=(nelem—1)#nste
if(l#l. ne. lint) call pgauss(l,lint,sg, tg, wg)
if (linz ne. 12/2) call gaulob (lz,1inz, zg, zwg)
do 320 1 = 1,1lint
call shape(sg(l), tg(l), xl,shp, xsj,ndm, nel, ix,. false. )
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integrate flexure forces thru thick (sig=moments mx, mxy, my
call momts (linz, zg, zwg.d(11):5tk, 1, sig)

now define element shear stiffness, external forces
and flexvure forces

X ] = xsj¥wg(l}

tfac = sqrt(d(7)nxs ;)

do 3035 1 = 1, nel

J * mod(i,.nel) + 1

do 305 k = 1,2

gli, k) = (shp(3,id#gl(i, k) - shp(3, jl#g2(i, k) )#fac

do 306 i = 1,nel

J = mod(i,nel) + i

do 306 k = 1.2

bs(k,3, ) = g(i, k)/h(i) — g(y, k)/h(y)

bs(k, 1, y) = (g(i, k)#e2( 5, 1) - gy, k)#el(y, 1))/2.

bs(k: 2, j) = (gCi, k)*e2(;,2) — g( ), k)=*el(y,2))/2.

loop over rows (bdiy = (b)t = d)
J1 = 1

do 320 3 = 1,nel

2 =31 - 1

minus flexural forces
plyl J=p(y1 ) - (shp(l, y)*sig(1)+shp(2, j)*#sig(2))*xs
plJl+ld)=p(ji1+1) - (shp(1l, y))#sig(2)+shp(2, jl*¥sig(3))#xs

add external forces

pOy1+2)=p(y1+2) + d(B)#shp(3, yl¥xs #prop

loop over columns (symmetry noted) to define shear stiff
k1l = ;1

do 310 k = j,nel

k2 = kit ~ 1

do 307 jr = 1,3

do 307 ke = 1,3

do 307 i = 1,2

s(yr+j2, ke+k2) = s(yv+,2, kce+k2) + bs(i, yr, J)*bs (i, ke, k)
ki = ki + nd#

J1 = 31 + nd#¢

form lower part by symmetry

nsl = peli#nd#$

do 330 j = 1, nsl,ndf

do 330 k = j.nsl, ndf

sk 3 ¥ =98s(3 .k
s(k ,y+1) = s(y+1, k )
stk , y+2) = s(+2, k )
s{k+l, j ) = s(3 ,k+1)
s{k+l, j+1) = s(j3+1, k+1)
a{k+1, J""z) = S(J""Qi k+1)
s(k+2, 45 ) = (3 , k+2)
s(k+2, y+13) = s{j+1, k+2)

s{k+2, j+2)
continue

8 (J+2, k+2)

minus transverse shear forces -
do 340 i=1,nst
do 340 j=1i.nst
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pCidmp(i) = sCi, I#ulCy, 1)

return

2000 format (///° (elmtl12)— too many elements. increase’/
1 ! nelemz and stk array’)
end

MR N

nl

100

[

200

©

subroutine gaulob (lz,1linz, z2g,wg)
implicit double precision (a-h,o0-2)

quadrature points and weights

for iparam = 1... Gauss-Lobatto (symm. versus z)
2 .. Gauss ¢ " 3
3 .. Gauss (full quadr. over hal# thick)

logical debug
comnon /debugp/debug. iparam
dimension 2g(3),wg(3)

o o G T . G SO D AT - A D < W e G S e 8 N B S VA T o S 0 e RO G S v o (o ST R S S S T | S s S o s o

linz=lz/2

call pzero (19.,3)
call pzero (wg,3)

go to (1,2.3),iparam

6 Causs—Lobatto points guadrature (symm.

i (lz.ne. &) go to 100
sq7=dsqrt(7. 0d0)

zg(i)=1.0d0O
2g(2)=dsqrt( (7. dO+2. dO#sq7)/21. d0O)
2g(3)=dsqrt((7. d0-2. dO#*sq7)/21. dOQ)
wg(i1)=1. d0O/15. dO

wg(2)=(14. d0-sq7)/30. d0O
wg(3)=(14.d0+sq7)/30. dO
return

if (lz.ne. 4) stop ‘gaulob’
1g(1)=1.0dO

1g(2)=1. d0/dsqrt (5. dO)
wg{l)=1. d0/6&. 40

wg(2)=3, d0/&. dO

return

Causs quad. (symm. versus z)
if (lz.ne. &) go to 200
2g(1)=0. 932469514203132d0
1g(2)=0. 661209386466265d0
zg(3)=0. 23861918608319740

wg (1)=0. 171324492379170d0

wg (2)=0. 360761573048139d0

wg (3)=0. 467913934572691d0
return

if (lz.ne. 4) stop ‘gaulob’
29(1)=0 B86113631135940534d0

29 (2)=0. 339981043584856d0

wg (1)=0. 347854845137454d0

wg (2)=0. 632143154862546d0
Teturn

Gauss full quad. on halé thick
if (lz.ne 6) go to 300
zg(1)=daqrt(0. &d0O)

versus )
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z2g(2)=0. d0

2g(3)y=—2z2g(1)

wg(i)=3 d40/9. 40

wg(2)=8. d0/9. d0O

wgi(3)=wgi(l)

return

if (lz. ne. 4) stop ‘gauvlob’

1g(1)=1. d0/dsqrt (3. d0)

zg(2i=—z2g(1)

wg(1)=1. d0O

wgi2)=1. dO

return

end

subroutine momts (linz., zg, zwg. thick, stk, 1g; gig)
implicit double precision (a—h.,o0—2z)

prog to compute siress resulteants (sig=mx,my,mxy) at a
given gauss point (x.,y) by integr thru thickness

logical debuag

comcon /visco/nelem, npel,nstp.nste, nelemz, nelmax. iterno
common /debugp/debug. iparam

dimension zg(3), zug(3), stk(1),s8ig(3)

compute starting address of stresses (in stk) : ipos+1
for current gauss (x,y) point : 1g

ipos={(nelem—1)#¥nste +(lg-1)%#linz#nstp

constant t2s2= t##2/4 #2 (symm)
t2s2=thick*%2/2.

if (iparam. eq. 3) t2s2=thick##2/8. d0O
call prero (sig.,3)

integration through the thickness (stk contains sigma)

do 110 i=1.linz

rs y=zglid®zwg(i)ttds2

if (iparam eq. 3) rs=(zg(i)+1. dO)*zwg(i)#t2s2
do 100 J=1' 3

5ig(yl=sig(y) — stk(ipos+}l#xs
ipos=ipostnstp

return
end
subroutine stifvp (dt,d, xl:,s,2g9, zwg, dnl, stk,linz
»lint. shp, sg, tg,wg: ndm, ix. ndf, nst, ul)
implicit double precision (a—h,o—z)

plate bending viscoplastic element stiffness routine
computes the tangent stiffness

logical bcode, debug

common /debugp/debug, iparam

common /bound/bcode

common /cdata/ o, head(20), numnp. numel, nummat, nen, neq, ipr
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common /eldata/ dm.nsma.mct, iel, nel
common /visco/nelem npel,nstp,nste,nelemz, nelmax, iterno
dimension d{(1}, x1{ndm, 1), ix(1),s{nst. 1)
1 ,shp(3.9),8g(16), tg(16), wg(l1é), bs(2,3,4)
& yeil{d, 2, e2(4,2),h{4), cs{d4), sn2(4}, 91(4) 23, 92(41 25 g(-‘h 2)
4 ,zg(3), zwg(3),dnl(é), stk(1). eps(B),sig(3),ullndf. 1)
dimension istate(3 4)
€= e o e o 2 o o e
do 10 i=1,3
do 10 J=104
10 istate(i, ji=1h
< define current element
if (bcode) go to 550
if (n. 1lt. npel) nelem=
if (numel. eq. 1) nelem=0
npel=n
nelem=nelem+l
if (nelmax. 1t. nelem) nelmax=nelem
if (nelmax. le. nelemz) go %to 550
write {(é&,2000)
stop
550 continuve
1 = d(3)
lz= d{(14)
c.... form base vectars at nodes
do 302 i = 1:nel
J = mod(i,nel) + 1
do 301 k = 1,2
301 el (i, k) = x1(k, g — x1¢k, 1)
h(i) = sqrét(el(i, 1)##2+el (i, 2)4%2)
do 302 k = 1,2
eld(l, k) = el (i, k)/h{i)
302 e2(), k) = —el (i, k)
c.... form sines and cosine terms
do 303 i = 1.nel
cs(i) = el(i, 1)#e2(i, 1) + el(i, 2)*e2(i, )
303 sn2(i) = 1. ~ cgl(iY¥cs{i)
c.... form parts of g-vectors independent of space
do 304 i = 1i,nel
J = mod(i,nel) + 1
do 304 k = 1.2
gl(i, k) = (el(i, k) — cs(id®e2(i, k))/sn2(1)
304 g2(i, k) = (e2(j, k) — cs({j)xel(y, k))/sn2( )
if(l#l ne. lint) call pgauss(l,lint,sg, tg, wg)
if (linz. ne. 12/2) call gaulob (lz,1linz, 29, zwg)
call pzero (s, 144)
locitr=0
c.... stiffness computation . first loop over ‘x—y’ plane
ipos=(nelem—1l)#nste + 1
iposmi=ipos—1
t3s4=d (11)#43/4.
if (iparam. eq. 3) t3s4=d(11)##3/32 40
do 320 1 = 1, lint
call shape(sg(l), tg(l}), xl,shp, xsj,ndm: nel. ix, . false. )
call pzero (dnl. é&)
¢c.... skip calculation of sig. eps and call viscop when computing
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the forces for the boundary conditions (becode=. true. )
if (bcode) go to 426

compute strains through the thickness

do 425 ith=1,1linz

call pzero (eps,3)

zr=zg(ithied(i1)/2

if (iparam eq 3) zz=(zg(ithi+1. dO)%d{(11)/4. 40

do 420 ; = 1,nel

eps(i) = eps(1l) — shp(1l, j)xul(l, j)

eps(3) = eps(3) ~ shp(2, jJi#ullZ, j)

eps(2) = eps(2) — shp(i, g)#ul(2, ) - shp(2, yrwulcl, §)

increment of strain (substract previous eps)

ieps=iposmi+3

do 421 =1.3

eps(yl=eps(jl¥zz —stk(ieps+y)

compute stress correction (dsig=dnl#deps)

idnl=iposml+12
sig(l)=stk(idnl+i)¥eps(1)+stk(idnl+2)*eps(2)+stk(idnl+4)%eps(3)
sig(2)=stk(idnl+)#eps(1)+stk{idnl+)#eps(2)+stk(idnl+S5)#eps(3)
sig(3)=stk(idnl+4)#eps(l)+stk(idnl+5)keps(R)+stk(idnl+b&)*eps(3)
update sigma and eps for current iteration

do 422 ;=1,3

stk(iposmli+ d=stk(iposmi+g) + sig(y)

sthk(ieps+j)=stk(ieps+j) + eps(y)

iposmi=iposmli+nstp

continue

integration through the thickness

do 643 i=1l, linz

ZQwg=zg (i) ¥#2%zwg (i)

if (iparam. eq. 3) zgwg=(zg(i)+1. dO)##2%zwg(i)

call viscoplastic routine to get sbar,dtg (stored in stk array)

kflow=d(13)

if (. not. bcode)

call viscop (d(16),d(17), kflow, d(18),dt,d(12),d(13)

+stk(ipos), stk(ipos+3), stkl(ipos+b), stk(ipos+d)
ratk(ipos+12), nelem, 1, i, istate(i, 1), iterno, locitr)

do 3635 j=1,6

Ji=ipos+ll+

dnl(ji=dnl{j)+zgug*stk( )

ipos=ipos+nstp

mult dnl by t#%3/8 & by 2 for sgmm

or by t##3/32 for iparam=3

do 366 ij=1,6

dnl(ij)= dnl(ijp)#%3s4

nou define element stiffness

xs) = x5 j¥wg(l)

fac = sqri(d(7)#xs j)

do 303 i = 1,nel

J = mod{i,nel) + 1

do 305 k = 1,2

g(i, k) = (shp(3,i)#gidi, k) — shp(3, y)#g2(i, k) )*fac
do 306 i = 1, nel
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307

310
320

330

J = mod(i.,nel) + 1
do 306 k = 1,2

badk:3, 3) = gli, k)/h(
bS(kollJ) =
bS(k:z:J) =

loop over rows

i =1

do 320 j = 1,nel

J2 = 31 —~ 1

bdil=(dnid{il)eshp (1, 3}
bdi2={(dnl(2)xshp (1, j)
bdi3={dnl{di%shp{i, j)
bd2i=(dnl{(2)%shp (1, j)
bd22=(dnl(3)xshp (1, j)
bd23=(dnl(3)xnshp(li, j)

{(g(i, k)ned(y, 1)
(g(lt k)*EQ(Ji 2)
(bdiy =
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i)

(bt % d)

dnl(2)#shp (2,
dnl(3)#shp (2,
dnl(3)#shp(,
dnl{4)#shp (2,
dnl(S)*shp (2,
+ dnl(b)#shp (2,

+ o+t

loop over columns (symmetry noted)

ki = ;1

do 310 k =
k2 = k1 —~ 1
do 307 yr = 1,3
do 307 ke = 1.3

Jrnel

- gly kKI/h{)
- gl kl=el{y, 1))/
- gy, ki#el(y,2))72.

JPy#xs
JIIExs
JII#xs
Jyi#zxs
J))#xs
Ji¥#xsy

bdi2#shp (2, k)

do 307 i = 1.2

s(yr+j2, ke+k2) = s(yr+32, ke+k2) + bsli, yr, y)#*bs(i, ke, k)
sl ki ) s(31 ki ) + bdiisshp(l, k) +

s{j1 ., ki+l) s(g1 , ki=1) bdi2%shp (1, k)

s(ji+l,. k1 )
s(gi+1, k1+1)
ki = ki1 + nd+f
Ji = )1 + nd#f

oW oW

4
s(yi+l, k1 ) +
s(ji+1, k1+1) +

form lower part by symmetry

nsl = nel¥nd#f

bd21#shp (1, k)
bd22#shp (1, k)

do 330 j = 1l,nsl,ndf

do 330 k = j.nsl,ndf

sl{k 4 Yy =s() Lk )
s(k ,g+1) = s(y+i,k )
s(k ,g+2) = s(y+2,k )
S(k"'ll‘j ) = S(J » K¥+1)
gs(k+1l, j+i) = s(j+1, k+1)
g(k+i, y+2) = s(3+2, k+1)
s(k+2, 3 ) = sl ,k+2)
s{k+2, J+1) = s(y+1, k+2)
s{ke+, J+2) = s j+2, k+2)

continue

write state of element
if (bcode} return

if (nelem eq. 1) write (6&6.2001)
avlec=1. d0%locitr/(lint#linz)
write (&,2002) n, istate, avloc

return

2000 format (///7

1

2001 format(//’

2002 format(iyx, ’

i

1

¢

{elmti2)—too many elements.
nelemz
state of elemts (exelastic,

;' iter average’)

4

loc

element’, 14, ’
‘o F4. 1)

it av.

and

state

+ bdi13#shp (2, k)
+ bd22%shp (2. k)
+ bd23%shp (2, k)

increase’/

stk array”’)

p=plastic) and local’

", 8(3al,2%);
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Fage 13

end
suybroutine viscop (alpha,gamma, k, y,dt.yg., xnu. snpl.el, s, e, dtg
1 ;nelem; ngavss, nlobat, istate, iterno, locitr)

program to compute phi,d tangent and sigma bar

at given integration point

stresses and strains are stored @ X, %y, y

WITH CONSTITUTIVE LINEARIZATION (iterations till phi=0)

implicit double precision (a-h,o—1)

legical debug

common /itcsegq/maxit, tolcegqg

common /debugp/debug, iparam

dimension $1(3),e1(3),s(3),e(3),dtg{(&),snpl(3),phi(3)

data rmil, rmi3, rm22/1. d0, 0. 540, 3. dO/
data phimax/0. 40/

define current iteration of the time step
if (nelem¥ngauss#nlobat. ne. 1) go to 10
iterno=iterno+l

write (4,2001) iterno

continue

do 13 i=1,3

sl (i)=anpl (i)

for first iter of each time step, we want a linear behavior
if (iterno.eq. 1) go to 100

iter=0

iter=iter+i

if (iter. le.maxit) go to £5

go to BO

continue

compute stresses at time tn+alpha

sx =(1. d0O-alphal)#s(l) + alpha®#sl(l)

sxy =(1. dO—-alphal#s(2) + alpha¥si(2)

sy =(1 dO-alpha)*s(3) + alpha®sli(3)

3% 2nd deviatoric stress invariant + its square root
(at time tn+alpha)

ty2=gsx#sx + sy*tsy — sx#sy +3. dO¥sxy#sxy

st j2=dsqrt(ty2)

test if the point is nonlinear

val=stj2/y —1.d0O

if (val. le. 0. d0) go to 100

point remains plastic once plastic

point is nonlinear
ERFETETE LT EE 2T 2

istate=1hp

compute oper and oper# at time tn+alpha
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oper=(valdsk) /st j2
opster=(val##(k-1))#{{k—1)/y+1.d0O/st 121/t 2

compute phi at time tn+l {(product m#s at time tn+alpha)

tl=rmli¥sx + rml3#sy

t3=rmi3#sx + rmii#sgy

t2srm22#suy

fac=gammandt¥oper

phi(id=el(l)-e(1) ~(sl(i1)~s{1)—xnu#(sl(3)~s(3)))/yg ~facHtl
phi(3)=el(3)-e(3) —(s1(3)~-s(3)—xnur(si(1)~5(1)))/yg ~FacH#t3
phi(2)=el(2)—a(2) —2. dO# (1. dO+xnul®{(si(2)-s(2))/yg ~Ffac#t2

compute ¢ tangent (symm) at time tn+alpha (tixt) = mesn{s)tem)

fac=gammardt#alpha

clii= 1.d0/yqg +fac#(oper#rmll + opstar#tixtl)
cl2= facx( opstars#ti#t2)
ci13= ~Xnu/yg +fac#{oper®#rmi3 + opstarstixt3)
c22=2. do# (1. dO+xnud/yg +fac*(oper#rm22 + opstar#t2#t)
c23= fac#( opstar#®t2#¢t3)
c33= 1.d0/yg +facH(opers#rmil + opstar#*t3xt3)

compute d tangent at time tn+alpha (stored : 11,12,.22,13,23,33)
(by inversion of ¢ tg)

det=cli®c22#c¢33 +2. dO#c12%c23%c13 —ci13#c22%#c 13 —c23#c23#ci
1 ~c33%cl12#cl2

dtg(1)=(c22%c33-c23#c23) /det

dtg(2)=(ci3%#c23-c12#c33)/det

dtg(3)=(cii#c33-ci3%ci3)/det

dtg(4)=(cl12%c23-ci13#c22) /det

dtg(3)=(ci2%cl13-cli#c23)/det

dtg(6)=(cllxc22-c12%ci2)/det

compute sigma bar at time tn+l (predictor for iter i+1)

dsl= dtg(i)#phi(1l) + dtg(2)#phi(2) + dtg(4)#phi(3)
de2= dtg(2)#phi(l) + dtg(3)#phi(Q) + dtg(S5)#phi(3)
ds3= deg(4)#phi(l) + dtg(3)#phi(2) + dtg(é&)#phi(3)
sl(i1)=g1(1)+dsl
sl (2)=¢1(2)+ds2
81(3)=s1(3)+ds3

check convergence

locite=locitr+l
phicur=dot(phi,phi, 3)
if{phimax. 1t. phicur) phimax=phicur
if(phicur. gt . phimax#tolceq) go to 20
continue

do 90 i=1,3

snpl{il)=si(i)

go to 200

istate=1lhe
continue
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point is linear
XTSRRI ST R

locitr=logcitr+l
facmyg/ (1. dO0—xnu*e2)
dtg(1)= fac

dtg(2)= 0. dO

dtg(3)= fac* (1. d0~xnu)/2 d0O
dtg(4)= fac#xnu

dtg(S8)= 0O d0

dtg(béli= fac

phi(li=el(l)~e(1) —(snpl(l)-s{l)—xnurl(snpl(3)-s(3)))/yg
phi(3)=el(3)-e(3) ~(snpl(3)-s(B)—xnu{snpl(l)-s(1)))/yg
phi(2)=el(2)~e(2) ~2 dO*(1l. dO+xnul#l{snpli(2)-s(2))/yg

compute sigma bar at time tn+l (predictor for iter i+i)

snpl(i)=snpl(1) + dtg(1)#phi(1) + dtg(2)#phi(2) + dtg(4)#phi(3)
snpl(2)=snpl(2) + dtg(2)#phi(l) + dtg(3)#phi(2) + dtg(5)#phi(3)
snpl(3)=snpl(3) + dtg(4)*phi(1) + dtg(5)#phi(2) + dtg(&)*¥phi(3)

continue

return

format (/' #&4# iteration =',13)
end





