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MATHEMATICAL MODELS FOR EXCHANGE OF SUBSTANCES 
IN REGIONAL VASCULAR BEDS--MEASUREMENT OF THE 
RATES WITH IN VIVO COUNTERS 

Howard G. Parker, M.D., Ph.D., 
Ernest L. Dobson, Ph.D. 
Donner Laboratory and Lawrence Radiation Laboratory, 
University of California, Berkeley, California 

J. Robert Hippensteele, Ph. D. 
Department of Anatomy and Physiology, 
University of Indiana, Bloomington, Indiana 

Abstract. Sangren and Sheppard developed a mathematical mod-

el for first-order processes taking place in the regional circula-

tion, applicable--for example--to tracer studies of potassium 

transport. It permits calculation of specific activity at any point 

along a "tube of flow" or in the cuff of tissue surrounding it as a 

function of time following a spike injection of tracer. In efforts 

to relate, to the exchange rate curves obtained with in vivo count-

ers pointed at the region of interest, we developed a compartment-

system model of the process. In investigating the properties of 

the Sangren and Sheppard model integrated over an entire circu-

latory bed, as the in vivo counter would see it, we found that when 

the distribution of transit times of the "tubes of flow" can be ap-

proximated by an exponential sum, the solution reduces to that of 

the compartment system model. This results in an important 

simplification in the calculation, and insight into the assumptions 

underlying the two different models. A curve-fitting computer 

program for the compartment model has been written and applied 

to double-isotope studies of potassium transport in the hind leg of 

the dog. 
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Introduction. In a series of double-isotope experiments involv-

ing radioactive sodium and potassium injected simultaneously into 

the femoral artery of dogs, an effort is being made to interpret 

data from in vivo counters and femoral venous blood in terms of 

the kinetics of these ions in the hind leg of the dog (Hippensteele 

et al. , 1969). One line of thought in modeling such a process is 

that developed by Dobson and Warner (1957), who initiated in vivo 

monitoring of extremities following intr a-arterial injection of ra-

dioactive tracers. They fitted exponential sums to such curves, 

after correction for the recirculated radioactivity, and interpreted 

them in terms of the size and flow rate of a group of parallel uni-

formly mixed compartments, IT  each of which is washed out ac-

cording to an exponential process. There is evidence that this 

conception is adequate for sodium, which can leak out of the blood 

vessels into extracellular space, as well as for materials that can-

not leave the blood vessel. This appears to be the case because 

blood flow is a rate-limiting step, so the effect of diffusion rate 

cannot be seen in such curves. In working with potassium, how-

ever, with the cell membrane known to be a significant diffusion 

barrier, and active transport of potassium taking place, a further 

elaboration of such models to account for diffusion or transport 

seems necessary. The problem of.  modeling potassium transport 

in and out of the circulation has been considered by many, but not 

in a form directly applicable to in vivo counting. A natural elab-

oration of the Dobson and Warner model that appears to have the 

requisite properties is a multi compartment system such as that 

shown in Figs. I and 2. In this conception, the sodium can enter 

only the compartments labeled A, whereas the potassium can en-

ter both A and B. The B compartments can be conceived of as the 

potassium pool within cells. A single pair of compartments will 

not suffice to explain the multiexponential curves for the sodium as 

well as potassium in the dog hind leg. Hence the parallel com- 
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partment pairs, or parallel "flow beds." The differential equa-

tions for this model and their solutions are presented. 

One alternative approach involves a modification of the 

treatment by Sangren and Sheppard (1953) and Sheppard (1962) of 

a capillary bed as parallel "tubes of flow" from which the ions 

can leak and return along the length of the tube according to first-

order kinetics (see Figs. 3 and 4). They derived an expression 

for the specific activity of a substance as a function of time and 

distance along a tube following a spike injection. Their expres-

sion can be applied to in vivo counting-rate data by modification 

to represent the fraction of the injected dose present per unit tra-

versal time, rather than specific activity, followed by integration 

over tube transit time and over the distribution of transit times in 

parallel tubes. There is a striking resemblance between the par-

tial differential equations and the ordinary differential equations 

of the "parallel compartment" model proposed here. If we fur-

ther assume that the transit time distribution function is an expo-

nential sum, the equations and solutions for the total content of 

tracer in and surrounding the tubes reduce to those resulting from 

the parallel-compartment model. 

It has been widely appreciated (Zierler, 1962) that for a 

nondiffusible substance, an exponential distribution of transit 

times through a circulatory bed is equivalent for some purposes 

to a well-stirred compartment. The present result extends this 

notion to another type of substance: one that can leak from and re-

turn, to the paths followed by nondiffusible substances. This per-

mits an important simplification in calculation of such transport 

rates, and puts the result in a form directly applicable to fitting 

curves from in vivo counters. It suggests greater validity of the 

results of the compartment- system calculation than one might at 

first expect if thinking in terms of discrete well-mixed gross re-

gions within the circulatory bed. 





The equations for a reference tracer (such as radioactive 

sodium ion) that cannot enter the cells, as well as for the tracer 

that can "leak" (potassium), are developed here because our inter-

pretation of the invivo curves requires use of the double-isotope 

experiment and the particular interrelationship of the kinetics of 

the two tracers. This is explained in the Discussion. The com-

partment model is presented first, followed by the "tubes of flow" 

model. 

Either of these models might find application to any sub-

stance introduced into the regional circulation that undergoes a 

first-order process of removal, or removal and return. It has 

been preferred to present them here, however, in the phraseology 

of the more restricted case of steady-state exchange or transport 

of substances and the first-order processes undergone by the trac-

ers used in studying the exchange. 

In each model, the reference tracer can be handled simply 

as a degenerate case of the diffusable tracer, with zero rate of 

diffusion and return. For purposes of exposition, however, it ap-

pears desirable to develop the subject for the simpler case of the 

reference tracer before taking up the complications of the diffus-

ible one. 

I. The Compartment-System Model. The steady-state 

transport of substances such as sodium and potassium can be con- 

ceived as indicated in Figs. i and 2. Figure 2 is an arbitrarily 

chosen pair of compartments, or "flow bedf," from the complex  

of beds with varying volumes and perfusion shown in Fig. 1. The 

reference tracer (Na +) enters only the compartments labeled A, 

directly accessible to the circulation. The "diffusible" tracer 

(K+) is being transported from A to a compartment B and back. 

(For K+,  B is many times as large as A.) It is assumed that the 

rate constant XV,  determined by blood circulation to the ith flow 



bed, applies equally to reference and diffusble tracer. Note that 

) and \1,  the fractional turnover rates indicated, are the same 

for all flow beds (see Discussion), whereas Xe.' is different in each 

flow bed. The fraction f. of the arterial blood flow to each bed is 
1 

arbitrary and not necessarily related to the volume of the bed. 

If is the amount of K in the ith A compartment and 

the amount in the corresponding B compartment, the steady-

state assumption implies 

X =XtQ 
A, i B,i 

This permits determination of relative compartment sizes from 

the ratio of the rate constants, or vice versa. We are otherwise J 
not concerned here with the nontracer material, -rnp  or with spe- 

cific activities. The equations are presented in terms of quanti- 

ties q of tracer substances, all as a fraction of the injected dose. 

A "spike" injection is assumed, where a fraction f1  of the injected 

dose appears in compartment A. instantaneously at time zero. 

A. The reference tracer. The differential equations for 

this simpler of the two tracer cases take the form 

d 
= - x,.t 

--d-t— .1 A, i
(i) 

with the boundary conditions 

(0) 
= 

f. 

The total amount of reference tracer in the system is 

Although this is a case of simple exponential processes in parallel, 

the solution is presented in Laplace transforms, for comparison 

with later results. The equations in transform space are 
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Sq 1 = _X' 
A,i' 

where s is the variable in transform space corresponding to t, 

and a symbol with a bar over it indicates the Laplace transform of 

the corresponding unmarked symbol (Carsiaw and Jaeger, 1959; 
Churchill, 4958). Then 

(s + X') q = 

1. 

s+q" ' (2) 

q 
TOT s+XY 

Using a standard inverse transform, we obtainfi 
X. 

q 
TOT  = f 

t
e 1 (3) 

1 

B. The diffusible tracer. The pair of simultaneous differ- 

ential equations for each flow bed in this case is 

dq 1 
 -  X1q (X 

dt - B, . 

+ Xtt) q (4) 

dq. 
- 

dt 
- X cIA i. 

-. ' 
(5) 

with boundary conditions 

= 

(0) = 0. 

The equations in'  transform space are 

Sq. 
= 

Xq - (X + X's) 
A, i ,i 

Sq. ,1(0) = '"lA,i - 
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Substituting the above boundary conditions and solving for 

and q we let 

d. = s 2  + (X + X' + X) s + 

then 

f.(s+X') f.X f.(s+X+Xt) 

d. ' d.' q ,1
+q

,1 d. 

and 

- 

f.(s+X+X') 

'TOT = L d. 
1 

(6) 

1 

Factoring d. by means of the quadratic theorem and using standard 

inverse transforms, we obtain the following, where b. and c. are 

convenient intermediate variables and r . and r
2, 

 . are the roots 
1,1 i 

of the auxiliary equation d. = 0: 

If we let b. = X + V + X'.' and C. = X' X'.' 
1 1 1 1 

the roots are 

r 1 

{. 
+Jb-4c.J. r21 {b1Jb -4ci) 

and 

f 
1 

I 
r 4  

- (X+X' +r -.) e -(X+X'+r ) 
er2 'it TOT

}].  

[ 
. 

- 

.t 

r -r 
• 

1,i 2,i  

(7) 

For purposes of comparison of this result with a later one 

from the second model, note that if a variable C(s) is defined as 

• XXI  
c(s) = S + X 

- s+X' 

then equation (6) can be changed by algebraic manipulation into the 

form 
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f. 

TOT (1+ s+x' £ c+X" 
(8) 

i 
1 

Inverse transformation of this expression could be done by means 

of standard transforms, resulting in a very complicated expression 

in exponentials, Bessel functions, and their integrals, resembling 

the general result from the "tubes of flow" model. The previous 

result in closed form, equation (7), is greatly preferable for most 

purposes. 

II. The Model Based on "Tubes of Flow". In this model 

the exchange process takes place in a regional circulatory bed con-

sisting of "tubes of flow" or trajectories along which the refer-

ence tracer (Na +) can pass, and from which the "diffusible" tracer 

(K
+ + 
) can leak (or be transported) and return. For Na the trajec- 

tories are limited to blood and interstitial fluid. Figure 3 indi-

cates a general conception of the multiple trajectories available, 

and shows that in the case of greatest interest to us, there are 
E/ 

many short trajectories and few long ones, such that the tra-n-o4t I) 

distribution of transit times might be fitted by an exponential sum. \) 
The identical distribution could be visualized for patength only I 

if linear velocity were constant throughout the bed). Figure 4 

shows a detailed view of one of the tubes. It indicates that "A" 

refers to tracer within the tube and "B" to tracer in the cuff of 

fluid surrounding the tube. Nothing akin to laminar flow takes 

place in this model, but merely bulk transfer down the tube, with 

a risk X of leaking out of the tube per unit time, together with a 

probability X' of returning from the surrounding cuff per unit time. 

An important restriction of this model, in order to obtain any an-

swer with known methods, is that in the cuff around the tube, no 

diffusion of tracer is allowed in the direction along the axis of the 

tube. Since most of the space in this cuff consists of many mdi- 
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vidual cells fairly close to one or another capillary, this assump-

tion seems not unreasonable. 

Sangren and Sheppard (1953) have treated a single tube from 

this model in some detail, deriving an expression for specific ac-

tivity at any length x along the tube with flow having velocity v, 

as a function of time. They also point out the close relationship 

of such equations to those for heat transfer in heat exchangers, 

as presented by Car slaw and Jaeger (1959).  For detailed presen-

tation of this model and justification of the assumptions, the 

papers by Sangren and Sheppard (1953), Sheppard (1962), and 

Car slaw and Jaeger (1959) should be consulted. 

Although the initial part of our derivation is closely pat-

terned on those of Sangren and Sheppard (1953) and Car slaw and 

Jaeger (1959), it differs in the following respects: 

1.. A notation more in keeping with one for compartment sys-

tems is used, to aid in presenting the parallels between them. 

We present virtually the same equations, with small but im-

portant differences in order to account for the amounts of tracer 

as the fraction of injected dose per unit tube length, the latter 

given in units of tube-traversal time. We assume the same rela-

tionship between relative size of tube A and B as was assumed in 

the discussion of Model I for relative compartment size: / 
XQ A = X' Q B , where Q is the amount of nontracer diffusible sub- 

AS— 
stance per unit tube 4egh- 

Since tube length x and velocity v are never measured and 

need never be explicitly considered in application of the model, 

we preferred to omit them. This simplifies the appearance of the 
Ot equations, and emphasizes the fact that one ne ed -t61 know dis- 

tances, areas, or velocities. Instead, the model is derived by 

using tube traversal times and transit time distributions. A var-

iable T indicates the time to reach any point along a tube, and is 

related to distance and assumed uniform velocity within that tube 



-14- 

by the equation T = . . The closely related variable T is used 

for the transit time of any particular tube, the time for complete 

traversal of its length: 

T = tube length 

A. The reference tracer. With ttimeandT and T defined as 

above, let a(t, T) D q /a T, where q is the fraction of injected 

tracer in the tube; a is then the fraction of injected dose traveling 

at velocity v present per unit tube-traversal time. The partial 

differential equation governing travel of the reference tracer (Na  +) 

is 

8  
- 

at - 8T 
(9) 

The boundary condition of interest in the case of spike injection at 

zero time is 

a(O,T) = 0 if T>0 

= I if T = 0. 

In transform space, 
- 

s -a(O,T)-----. 

Rearranging, we have 

-- + sa = a(0, T) = ô(T). 

Integration of this ordinary first-order equation with respect to T 

yields 
- -ST 
a = e . (10) 

This is a particular solution that is of interest to us for spike in-

jection at the beginning of the tubes at time zero. (For more de-

tailed consideration of the boundary conditions giving rise to this 

solution see Sheppard, 1962.) Its inverse transform is 

a q 
- 

a 
- a = 6(t- i), (II) 
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which represents merely a spike of reference tracer, unattenuated, 

coursing down a tube. The amount in a whole tube whose transit 

time is given by the variable T is 

q(tT) = adT = 1 when T t (2) 
0 = O when T<t, 

indicating that a tube contains either all or none of its reference 

tracer, depending on the position of the wave relative to the length 

of the tube. The amount in the whole circulatory bed, assuming a 

distribution of transit time for the tubes F(T), is given by 

00 

F(T) q dt. 

Substituting the results for q 
A P we get 

ç

00 

F(T)dt. (13) 

.Xt' T 
In the case of special interest to us when F(T) = e , a 

1 1 
multi-exponential sum for the frequency function of tube transit 

times for the reference tracer, substitution and integration yield 

= f. e 1 (14) Li 
i 

or, in transform notation, 

= 
s 

(5) 
TO T 

These solutions are identical with those obtained from the differen-

tial equations of the compartment system model, equations (2) 

and (3). The correspondence is obvious for the reference tracer, 

but the result is needed in general form for the double-isotope 



comparisons to be made later. 

B. The diffusible tracer. Closely following the foregoing 

exposition, let 

8q A 

aT 
and 

b(t,T) 

where A and a refer to diffusible tracer in the tube and B and b 

refer to diffusible tracer in the cuff around the tube. The partial 

differential equations for our case are 

a  = aa XtbXa (6) 

ab Xa - X'b; (I7) 

a and b are functions of t and T. 

Boundary conditions are 

a(0, T) = 0 if T>0 

=1 ifT=0, 

b(0, T) = 0 for all T. 

Closely following Sangren and Sheppardt s solution, 

s - a(0, T) = V b - -  aT 

sb - b(0, T) = X - X'b. 

Eliminating b, we obtain 

aa - 

+ ca = a(0, T), 

where 
XX' 

C = s + X + 

A particular solution of this ordinary first-order differential equa- 

tion that pertains to our problem is 
- 
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- 
- CT 

a = e . (18) 

Consult Sheppard for justification of the use of this particular solu-

tion following spike injection. Using standard transforms in the 

manner indicated by Sangren and Sheppard, and defining two con-

venient variables p = XT and q = X"(t- T), we have 

aq 
_____ 

a(t,T) = X' e { 6(q) + 11 (2f) 'Jp/q }, (49) 

where 14  is a standard Bessel function of imaginary argument. 

Following Carslaw and Jaeger (1959), who explicitly con-

sidered the case of the B region, but for different boundary condi-

tions, We have 

aq 
= b(t,T) = (p+q) 10 (2). (20) DT 

Then 
T T 

T) dT = (a +b) dr. (21) 

0 0 

For computational purposes, a and b as derived above in terms 

of exponentials and Bessel functions (as series) can be substituted 

in this expression and integrated by approximate means. If we as-

sume a frequency function of tube transit times F(T), as was done 

for the reference substance, then 

co 00 T 

q0
(t) = F(T)q+dtJ F(T)S  (a+b)dTdT. (22) 

This equation can be programmed for an approximate solution with 

arbitrary F(T). When that is done, a particularly important sim-

plification is possible for the double-isotope case. For all tubes of 

length T greater than t, q must be equal to 1. This is ac-

complished by integrating equation (22) from 0 to t instead of 0 to 

, and letting the integral from t. to co  be given by the sodium- 
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retention curve defined by equation (13). Since f(a+b)dT, that is 

must be i for all tubes where T>t, 400 
F(T) f(a+b)d7dT 

must equal f °  F(T)dT. The F(T) in question is a distribution that 

we assume is shared by reference and diffusible tracers. Hence 
+ 

for K, 

t T 

q TOT, K = 
F(T) (a+b) dTdT + q Na 

(23) 

0 0 

That equation (22) reduces to equation (7) of the compartment- 
)I  T 

system model when F(T) E X Y f. e , the multiexponential fro  - 
1 

quency function, can be shown with the Laplace transforms of the 

above solutions: 

00 T 
q 

TOT = F(T)S (a+b)d -rdT. (24) 

o o 
-CT 

But q = e , and it can readily be shown from equation (17) that 

- X .- Xe - C
T 

b+t a 

Substituting the values of a, , and F(T) into equation (24) and 

evaluating the integrals (now all in terms of simple exponentials), 

we arrive immediately at the result 

f

TOT q X 

 
1 

= (1 
+ 

C + X' 
1 

which is identical with that for the total quantity in the compart-

ment model, equation (8). The result can readily be shown for the 

integral of A or B separately, as well as for the total. Therefore, 

in the "tubes of flow" model (Figs. 3 and 4), when tube length is 

multiexponential in distribution, total quantities of tracer occupy-

ing the sum of all A or of all B portions of the region are described 

by the ordinary differential equations (1), (4), and (5). 
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A simplification in computation based on equation (22) could 
also result if F(T) were a frequency function approximated by sums 
and differences of exponentials, rather than sums alone, but the or-
dinary differential equations (1), (4), and (5) and the model visual-
ized in Figs. I and 2 would then not retain any physical significance; 
negative quantities of tracer in some of the compartments would be 
involved. A group of two-compartment flow beds partly or entirely 
linked in series rather than parallel can be shown to produce a sys-
tem of differential equations with appropriate properties, but finding 
the particular model is irrevelant to the estimate of X and V. 

Discussion. Curve fitting with the above equations depends 
on some further assumptions. Since an in vivo counter records 
something merely proportional to the amount of radioactive tracer 
in a region, the fitting can be done by noting that for equations in 
which we 14 q refer, for example, to counting rates rather than 
quantities, we have Z f. 1. The additional degree of freedom ii 
thus introduced suffices to make the transition. It must be assumed 
that the counting efficiency of either of the tracers is unchanged by 
its being in one or another of the different flow beds, or in the A or 
B parts of the region, an assumption often easy to make because of 
the anatomic nature of the region, such as the dog hind leg. The 
methods of standardization and correction for recirculation in exper-
iments of this type have been presented by Dobson and Warner (1960) 
and by Hippensteele (1967). In the double-isotope experiment we 
have not assumed that an adequate standardization can be done to re-
late counting rate to quantity. Instead it is assumed that the stand-
ardization is adequate to correct for the relative counting efficiency 
of the two tracers. A further reasonable assumption is that the re-
gions occupied by the two tracers are so intermixed anatomically 
that from the point of view of the counter they occupy essentially the 
same volume, whatever that may be. Hence, when the reference 
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tracer curve is multiexponential with n component exponentials, 

the Zn parameters f. and XY are shared by the equations for the 

two tracers, and the diffusible tracer curve has 2n components, 

but only two additional degrees of freedom X and V. 

A program has been written for the CDC 6600 computer, fit-

ting equation (7) to potassium data. It uses the minimization pro-

gram "VARMIT'T (written by Eric Beals, Lawrence Radiation Lab-

oratory, University of California, Berkeley) to determine a weight-

ed least-squares fit to X and Xt,  given the f. and XY from a pre-

vious weighted sum of exponentials fitted to the sodium data. To 

do this one supplies the sum of least squares, readily determined 

from equation (7), together with its partial derivatives with respect 

to X and V. The calculation of the partial derivatives was pro-

grammed in simple piecewise fashion patterned step by step on the 

programming of equation (7) rather than written as a single expres-

sion prior to programming, as this was most economical of effort 

and easiest to check. Given this information at each step in its 

search, VARMIT takes a pair of initial estimates for X and X' and 

finds optimum values for them simultaneously. 

Simple programming in a few lines of a conversational lan-

guage "FOCAL" on the PDP-8 computer has provided curves for 

equations (3) and (7) that have helped verify the calculation. The 

results obtained for the compartment-model fit have been checked 

against the FOCAL result and against a program HMIMICU  on the 

large computer. The latter program provides a language to solve 

ordinary differential equations directly, but only for given param-

eters, lacking the"fitting" feature. The FOCAL programming 

conveniently provides outflow rate for the two tracers as well as 

quantities present. With this conversational language it is easy to 

calculate a number of additional results such as ratios of the two 

isotopes as a function of time. 

When equation (23) from the more complicated "tubes of flow" 
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model is programmed in FOCAL language, with F(T) a multiex-

ponential, it checks against equation (7). It takes a very much 

longer time to calculate each point, however, and with less accu-

racy. It does an approximate double integration, and for each step 

it must calculate Bessel functions and exponential sums for the in-

put. 

The models with multi expo nential F(T) have been fitted to 

data for sodium and potassium ions (Fig. 5). The general nature 

of the fit is satisfactory, giving rise to a potassium leak rate X of 

about the same order of magnitude as the average perfusion rate 

for sodium, and to a cellular potassium space very much larger 

than the extracellular potassium space, as one would expect. We 

have not completely worked out all technical problems in standard-

ization, but the general result obtained here would appear to have 

intrinsic interest and potential applicability to a number of similar 

problems. 

The two models that are presented here share certain as-

sumptions, and not others, as a close review of the differential 

equations and boundary conditions shows. The fact that the "tubes 

of flow" model reduces to the compartment model in the circum-

stances outlined helps complete a clearer picture of what assump-

tions are made when these models are used, and what alternatives 

might be considered among their variants. One can consider the 

use of exponential sums merely an empirical device to approximate 

transit-time distributions and make the solution more tractable. 

Existence of discrete anatomic regions with uniform mixing in the 

ordinary sense is not an assumption essential to employment of the 

equations of the compartment-system model. The mere existence 

of trajectories of various lengths through a circulatory bed gives 

rise to a type of mixing indistinguishable from it for our purposes. 

In either model, there also remains the assumption that a tracer 

ion is at a fixed risk of undergoing a first-order process removing 
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it from the flow while it is in the region, and with a fixed probabil-

ity of returning to that flow. 

In the compartment model, restrictions were placed on X 

and X1  more or less arbitrarily at first, in order to keep the num-

ber of parameters to a minimum. A number of alternative ways to 

assign X and Xt  for each flow bed, relate them to perfusion, or 

give them a distribution of values readily suggest themselves. 

With the tubes of flow, on the other hand, it is necessary to con-

sider X and Xt constant along any tube in order to derive the above 

result. An arbitrary relationship of X and X' to tube transit time 

would not be particularly hard to incorporate. In the simpler case 

in which X is zero (first-order 'removal without return), Sheppard 

(1962) has shown that the method gives a mean value for X even 

though it may vary along the length of the tube (Use of this latter 

model, incidentally, may offer a way to make a simplified fit to' 

only the initial portions of curves, in order to estimate X alone. 

We have restricted the presentation here to the. more general case. 

The simplified one should be most' applicable when X' is known to 

be much smaller than X, as for potassium transport.) Though the 

constancy of X and X.' assumed in these models was arbitrary, and 

for purposes of simplification, as one thinks about alternatives it 

soon appears that this simple approach is hard to improve on with-

out further arbitrary assumptions that cannot flow be checked. Also, 

potassium transport may be a function of cell surface or volume, 

and the ratio of cellular to extracellular potassium can probably 

best be assumed at present to be constant over the various flow 

beds. Hence it appears that the particular models presented here, 

with their restrictions on X and X,  may presently be the most rea-

sonable approach to finding average values for them. 

One further result from the above models: When the refer-

ence tracer curve is rnultiexponential, the probability that a dif-

fusible tracer ion enters a B compartment (enters a cell) one or 



From data of the type shown in g/5 the parameter P can be measured. 

C~~ ~~~ 

R  ~' .1 

It is the fraction of the diffusible substance entering the cells on 

passage through the tissue. When the intracellular pool is very large, 

P corresponds to the approximate notion of the 'fraction of the injected 

tracer trapped inthe tissue which has been of particular interest in the 

use of radioactive potassium in circulatory studies. In the dog leg it 

appears that only about one-fourth of the K*  is so trapped. 

. 
C 
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more times on single passage through the region of interest is 

given by 

Xf. 
1 

£ x+xy 
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FIGURE CAPTIONS 

Figure 1. Compartment-system model of a region of the cir-

culatiOn consisting of parallel sets of two-compartment flow 

beds. 

Figure 2. Enlargement of the ith flow bed from Fig. 1., indi-

cating the relationship of the parameters and compartment 

labels as they appear in the equations. The reference tracer 

can enter only A, whereas the diffusible tracer enters both A 

and B. - 

Figure 3. The regional circulatory bed visualized as com-

pounded of a number of "tubes of flow" of varying length, 

from each of which "leakage" and return of diffusible tracer 

are possible along its length. 

Figure 4. Enlargement of a portion of one of the "tubes of 

flow" in Fig. 3, indicating the "A" region .within the tube, 

occupied by both tracers, and the "B" region or cuff of fluid 

around the tube, into which only diffusible tracer can, leak and 

return. 

Figure 5. Equations (3) and (7) fitted by weighted least squares 

to in vivo counter data from the dog hind leg, with radioactive 
+ + Na and K injected. simultaneously in the femoral artery. 

The counting rate has been corrected for counter cross-talk, 

radioactive decay, and recirculation, and normalized for in-

jected dose. 
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MATHEMATICAL MODELS FOR EXCHANGE OF SUBSTANCES 
IN REGIONAL VASCULAR BEDS- -MEASUREMENT OF THE 
RATES WITH IN VIVO COUNTERS 

Howard G. Parker, M.D., Ph.D., 
Ernest L. Dobson, Ph.D. 
Donner Laboratory and Lawrence Radiation Laboratory, 
University of California, Berkeley, California 

J.. Robert Hippensteele, Ph.D. 
Department of Anatomy and Physiology, 
University of Indiana, Bloomington, Indiana 

Abstract.. Sangren and Sheppard developed a mathematical mod-

el for first-order processes taking place in the regional circula-

tion, applicable--for example--to tracer studies of potassium 

transport. It permits calculation of specific activity at any point 

along a tube of flow" or in the cuff of tissue surrounding it as a 

function of time following a spike injection of tracer. In efforts 

to relate to the exchange rate curves obtained with in vivo count-

ers pointed at the region of interest, we developed a compartment-

system. model of the process. In investigating the properties of 

the Sangren and Sheppard model integrated over an entire circu-

latory bed, as the in vivo counter would see it, we found that when 

the distribution of transit times of the tubes of flow" can be ap-

proximated by an exponential sum, the solution reduces to that of 

the compartment system model. This results in an important 

simplification in the calculation, and insight into the assumptions 

underlying the two different models. A curve-fitting computer 

program for the compartment model has been written and applied 

to dduble-isotope studies of potassium transport in the hind leg of 

the dog. 
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Introduction. In a series of double-isotope experiments involv-

ing radioactive sodium and potassium injected simultaneously into 

the femoral artery of dogs, an effort is being made to interpret 

data from in vivo counters and femoral venous blood in terms of 

the kinetics of these ions in the hind 'leg of the dog (Hi.ppensteele 

et al., 1969). One line of thought in modeling such a process is 

that developed by Dobson and Warner (1957), who initiated in vivo 

monitoring of extremities following intra- arterial injection of ra-

dioactive tracers. They fitted exponential sums to such curves, 

after correction for the recirculated radioactivity, and interpreted 

them in terms of the size and flow rate of a group of parallel uni-

formly mixed "compartments," each of which is washed out ac-

cording to an exponential process. There is evidence that this 

conception is adequate for sodium, which can leak out of the blood 

vessels into extracellular space, as well as for materials that can-

not leave the blood vessel. This appears to be the case because 

blood flow is a rate-limiting step, so the effect of diffusion rate 

cannot be seen in such curves. In working with potassium, how-

ever, with the cell membrane known to be a significant diffusion 

barrier, and active transport of potassium taking place, a further 

elaboration of such models to account for diffusion or transport 

seems necessary. The problem of modeling potassium transport 

in and out of the circulation has been considered by many, but not 

in a form directly applicable to in vivo counting. A natural elab-

oration of the Dobson and Warner model that appears to have the 

requisite 'properties is a multicotnpartment system such as that 

shown in Figs. 1 and 2. In this conception, the sodium can enter 

only the compartments labeled A, whereas the potassium can en-

ter both A and B. The B compartments can be conceived of as the 

• potassium pool within cells. A single pair of compartments will 

not suffice to explain the multiexponential curves for the sodium as 

• well as potassium in the dog hind leg. Hence the parallel com- 
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partment pairs, or parallel "flow beds. U  The differential equa-

tions for this model and their solutions are presented. 

One alternative approach involves a modification of the 

treatment by Sangren and Sheppard (4953) and Sheppard (1962) of 

a capillary bed as parallel "tubes of flow" from which the ions 

can leak and return along the length of the tube according to first-

order kinetics (see Figs. 3 and 4). They derived an expression 

for the specific activity of a substance as a function of time and 

distance along a tube following a spike injection. Their expres-

sion can be applied to in vivo counting-rate data by modification 

to represent the fraction of the injected dose present per unit tra-

versal time, rather than specific activity, followed by integration 

over tube transit time and over the distribution of transit times in 

parallel tubes. There is a striking resemblance between the par-

tial differential equations and the ordinary differential equations 

of the "parallel compartment" model proposed here. If we fur-

ther assume that the transit time distribution function is an expo-

nential sum, the equations and solutions for the total content of 

tracer in and surrounding the tubes reduce to those resulting from 

the parallel-compartment model. 

It has been widely appreciated (Zierler, 4962) that for a 

nondiffusible substance, an exponential distribution of transit 

times through a circulatory bed is equivalent for some purposes 

to a well-stirred compartment. The present result extends this 

notion to another type of substance: one that can leak from and re-

turn to the paths followed by nondiffusible substances. This per-

mits an important simplification in calculation of such transport 

rates, and puts the result in a form directly applicable to fitting 

curves from in vivo counters. It suggests greater validity of the 

results of the compartment-system calculation than one might at 

first expect if thinking in terms of discrete well-mixed gross re-

gions within the circulatory bed. 
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The equations for a reference tracer (such as radioactive 

sodium ion) that cannot enter the cells; as well as for the tracer 

that can "leak" (potassium), are developed here because our inter-

pretation of the invivo curves requires use of the double-isotope 

experiment and the particular interrelationship of the kinetics of 

the two tracers. This is explained in the Discussion. The com-

partment model is presented first, followed by the "tubes of flow?? 

model. 

Either of these models might find application to any sub-

stance introduced into the regional circulation that undergoes a 

first-order process of removal, or removal and return. It has 

been preferred to present them here, however, in the phraseology 

of the more restricted case of steady-state exchange or transport 

of substances and the first-order processes undergone by the trac-

ers used in studying the exchange. 

In each model, the reference tracer can be handled simply 

as a degenerate case of the diffusable tracer, with zero rate of 

diffusion, and return. For purposes of exposition, however, it ap-

pears desirable to develop the subject for the simpler case of the 

reference tracer before taking up the complications of the diffus- 

ible one.. . -. 

I. The Compartment-System. Model. The steady- state 

transport of substances such as sodium and potassium can be con-

ceived as indicated in Figs. i and 2. Figure 2 is an arbitrarily 

chosen pair of compartments, or "flow bed," from the complex 

of beds with varying volumes and perfusion shown in Fig. t. The 

reference tracer (Na +) enters only the compartments labeled A, 

directly accessible to the circulation. The 'diffusible" tracer 

(K+) is being transported from A to a compartment B and back. 
+  (For K , B is many times. as large as A. It is assumed that the 

rate constant X", determined by blood circulation to the ith flow 
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bed, applies equally to reference and diffusible tracer.. Note that 

X and X', the fractional turnover rates indicated, are the same 

for all flow beds (see Discussion), whereas Xt.' is different in each 

flow bed. The fraction f. of the arterial blood flow to each bed is 
1 

arbitrary and not necessarily related to the volume of the bed. 

If A  is the amount of K in the ith A compartment and 

the amount in the corresponding B compartment, the steady-

state assumption implies 

X  
A, i = XQB i. 

This permits determination of relative compartment sizes from 

the ratio of the rate constants, or vice versa. We are otherwise 

not concerned here with the nontracer material, or with spe-

cific activities. The equations are presented in terms of quanti-

ties q of tracer substances, all as a fraction of the injected dose. 

A "spike" injection is assumed, where a fraction f. of the injected 

dose appears in compartment A. instantaneously at time zero. 

A. The reférencé tracer. The differential equations for 

this simpler of the two tracer cases take the form 

d  A, i 
- - 

dt - 

with the boundary conditions 

(0) = f. 

The total amount of reference tracer in the system is 

• 

• 

1 

• • Although this is a case of simple exponential processes in parallel, 

the solution is presented in Laplace transforms, for comparison 

with later results. The equations in transform space are 
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sq_A, i q 1(0) = -X' 

where s is the variable in transform space corresponding to t, 

and a symbol with a bar over it indicates the Laplace transform of 

the corresponding unmarked symbol (Carslaw.  and Jaeger, 1959; 

Churchill, 1958). Then 

(s + X.). q. 
= 

f. 

5+q"

q TOT 

 

V
fi  = L s+XY 

1 
1 

Using a standard inverse transform, we obtain 

q TOT f. e 1  . (3) 

B. The diffusible tracer. The pair of simultaneous differ-

ential equations for each flow bed in this case is 

dq 

dt 
1 

= xIq 
i - (X + X1t) (4) 

dq. 

dt 1A,1 Xtq. (5) 

with boundary conditions 

(0) = fi  
(0) = 0. 

The equations in transform space are 

Sq. ,1(°) = Xq. 
1 - 

(X + XU) 

Sq. 
= A, i - 
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Substituting the above boundary conditions and solving for 

and q we let 

d. = s2  + (X + X' + X) s+ XX 
1 1 1' 

then 

f.X f.(s+X+X') 

A, i d. ' d.' d. 

and 

- V TOT d. 
6 

 
1 

1 

Factoring d. by means of the quadratic theorem and using standard 

inverse transforms, we obtain the following, where b. and c. are 

convenient intermediate variables and r . and r 
2,i  are the roots 

of the auxiliary equation d. = 0: 

If we let b. = X + X' + X') and C. = t )I 
1 1 1 1 

the roots are 

ri{-bi-Jb-4ciJ 

and 

r2, {(X+Xt.+r
,i
) e'

it   -(X+X'+r21) r21t)] 

(7) 

For purposes of comparison of this result with a later one 

from the second model, note that if a variable C(S) IS defined as 

XX,  
c(s)=s+X- s+X' 

then equation (6) can be changed by algebraic manipulation into the 

form 
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f. 

TOT = (i+ s+ X' c:x" (8) 
i 

1 

Inverse transformation of this expression could be done by means 

of standard transforms, resulting in a very complicated expression 

in exponentials, Bessel functions, and their integrals, resembling 

the general result from the "tubes of flow" model. The previous 

result in closed form, equation (7), is greatly preferable for most 

purposes. 

II. The Model Based on "Tubes of Flow". In this model 

the exchange process takes place in a regional circulatory bed con-

sisting of "tubes of flow" or trajectories along which the refer-

ence tracer (Na +) can pass, and from which the "diffusible" tracer 

(K
+ + 
) can leak (or be transported) and return. For Na the trajec- 

tories are limited to blood and interstitial fluid. Figure 3 indi-

cates a general conception of the multiple trajectories available, 

and shows that in the case of greatest interest to us, there are 

many short trajectories and few long ones, such that the 

distribution of transit times might be fitted by an exponential sum. 

(The identical distribution could be visualized for path length only 

if linear velocity were constant throughout the bed). Figure 4 

shows a detailed view of one of the tubes. It indicates that "A" 

refers to tracer within the tube and "B" to tracer in the cuff of 

fluid surrounding the tube. Nothing akin to laminar flow takes 

place in this model, but merely bulk transfer down the tube, with 

a risk X of leaking out of the tube per unit time, together with a 

probability X' of returning from the surrounding cuff per unit time. 

An important restriction of this model, in order to obtain any an-

swer with known methods, is that in the cuff around the tube, no 
- 

diffusion of tracer is allowed in the direction along the axis of the 

tube. Since most of the space in this cuff consists of many mdi- 
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vidual cells fairly close to one or anothercapillary, this assump-

tion seems not unreasonable. 

Sangren and Sheppard (1953) have treated a single tube from 

this model in some detail, deriving an expression for specific ac-

tivity at any length x along the tube with flow having velocity v, 

as a function of time. They also point out the close relationship 

of such equations to those for heat transfer in heat exchangers, 

• as presented by Car slaw and Jaeger (1959).  For detailed presen-

tation of this model and justification of the assumptions, the 

papers by Sangren and Sheppard (1953), Sheppard (1962), and 

Car slaw and Jaeger (1959) should be consulted. 

Although the initial part of our derivation is closely pat-

terned on those of Sangren and Sheppard (1953) and Car slaw and 

Jaeger (1959), it differs in the following respects: 

A notation more in keeping with one for compartment sys-

tems is used, to aid in presenting the parallels between them. 

We present virtually the same equations, with small but im-

portant differences in order to account for the amounts of tracer 

as the fraction of injected dose per unit tube length, the latter 

given in units of tube-traversal time. We assume the same rela-

tionship between relative size of tube A and B as was assumed in 

the discussion of Model I for relative compartment size: 

XQA = Xf Q BP where Q is the amount of nontracer diffusible sub-

stance per unit tube traversal time. 

Since tube length x and velocity v are never measured and 

need never be explicitly considered in application of the model, 

we preferred to omit them. This simplifies the appearance of the 

equations, and emphasizes the fact that one need not know dis -

tances, areas, or velocities. Instead, the model is derived by 

using tube traversal times and transit time distributions. A var-

iable T indicates the time to reach any point along a tube, and is 

related to distance and assumed uniform velocity within that tube 
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by the equation T = . The closely related variable T is used 
for the transit time of any particular tube, the time for complete 
traversal of its length: 

T = tube length 

A. The reference tracer. With ttime and T and T defined as 
above, let a(t, T) a q/a T, where q is the fraction of injected 
tracer in the tube; a is then the fraction of injected dose traveling 
at velocity v present per unit tube-traversal time. The partial 
differential equation governing travel of the reference tracer (Na+) 

is 

a  
- aa 

at aT (9) 

The boundary condition of interest in the case of spike injection at 
zero time is 

a(O,T) 0 if T>0 

f if T = 0. 
In transform space, 

- aa s -a(O,T)-----. 

Rearranging, we have 

• 3a
aT 

- 

• 
---- + sa = a(0, T) = 

Integration of this ordinary first-order equation with respect to T 

yields 
- -ST a = e . (0) 

This is a particular solution that is of interest to us for spike in-
jection at the beginning of the tubes at time zero. (For more de-

tailed consideration of the boundary conditions giving rise to this 
solution see Sheppard, t962.) Its inverse transform is 

aq 

aT 
a = ö(t-T), (11) 



which represents represents merely a spike of reference tracer, unattenuated, 

coursing down a tube. The amount in a whole tube whose transit 

time is given by the variable T is 

T 

q(t1 T) adT = 1 when Tt 

0 0 when T<t, 

indicating that a tube contains either all or none of its reference 

tracer, depending on the position of the wave relative to the length 

of the tube. The amount in the whole circulatory bed, assuming a 

distribution of transit time for the tubes F(T), is given by 

Co 

F(T) qA  dt. 

Substituting the results for we get 

00 

TOT F(T)dt. (13) 

t 

In the case of special interest to us when F(T) = Z X. e , a 
1 

multi-exponential sum for the frequency function of tube transit 

times for the reference tracer, substitution and integration yield 

-xtt 
TOT

= f. e (14) Li , 

i 

or, in transform notation, 

• 

-

q  TOT  = s+X' •• 

(15) 

• These solutions are identical with those obtained from the differen- 

tial equations of the compartment system model, equations (2) 

and (3). The correspondence is obvious for the reference tracer, 

• but the result is needed in general form for the double-isotope 
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comparisons to be made later. 

B. The diffusible tracer. Closely following the foregoing 

exposition, let 

aq 

a(t,T) 

and 
aq 

b(t,T) ar 

where A and a refer to diffusible tracer in the tube and B and b 

refer to diffusible tracer in the cuff around the tube. The partial 

differential equations for our case are 

= K'b - Xa - , (16) 

= )a - X'b; (17) 

a and b are functions of t and T. S  

Boundary conditions are 

a(0,T) = 0 if T>0 

=1 if T0, 

b(0, T) = 0 for all T. 

Closely following Sangren and Sheppard's solution, 

- - - aa sa-a(0,'r)=X'b-Xa- 
aT 

sb - b(0, T) = - X's. 

Eliminating b, we obtain 

aa - 

- 

+ ca = a(0, T), 

where S  
xx, S  

c = s+ X+ 

- S -- A particular solution of this ordinary first-order differential equa-

tion that pertains to our problem is 
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- 
- CT 

a = e (18) 

Consult Sheppard for justification of the use of this particular solu-

tion following spike injection. Using standard transforms in the 

manner indicated by Sangren and Sheppard, and defining two con-

venient variables p = XT and q = X'(t- T), we have 

a q 
____ 

aT 
a(t,T) X' e { ô(q) + eI1  (2ij 'sfp/q }, (19) 

where 1 is a standard Bessel function of imaginary argument. 

Following "Car slaw and Jaeger (1959), who explicitly con-

sidered the case of the B region, but for different boundary condi-

tions, we have 

B = b(t,T) = (p+q) 102 (). (20) 

Then 
T T 

= dT (a+b)dT. (21) 

0 0 

For computational purposes, a and b as derived above in terms 

of exponentials and Bessel functions (as series) can be substituted 

in this expression and integrated by approximate-means. If we as-

sume a frequency function of tube transit times F(T), as was done 

for the reference substance, then 

00 00 T 

q Q (t) = (22)'  

This equation can be programmed for an'approximate solution with 

arbitrary F(T). When that is done, a particularly *important sim-

plificationis possible for the 'double-isotope case. For all tubes of 

length T greater than t, q must be equal to 1. This is ac-

complished by integrating equation (22) from 0 to t instead of 0 to 

, and letting the integral from t. to oo  be given by the sodium- 
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retention curve defined by equation (13). Since f(a+b)dT, that is 

must be I for all tubes where T>t, 
4a0 

 F(T) f(a+b)dTdT 

must equal f°°  F(T)dT. The F(T) in question is a distribution that 

we assume is shared by reference and diffusible tracers. Hence 
+ 

for K, 

t T 

K = F(T) (a+b) dTdT + q 
Na (23) 

0 0 

That equation (22) reduces to equation (7) of the compartment- 

system model when F(T) = E X Y f. e , the multiexponential fre- 
1 

quency function, can be shown with the Laplace transforms of the 

above solutions: 

00 T 

TOT F(T)Y (—a+—b)   d TdT. (24) 

0 01 
-CT 

But q e , and it can readily be shown from equation (17) that 

- CT 
- X - Xe 

s+Xj a= 

Substituting the values of a, , and F(T) into equation (24) and 

evaluating the integrals (now all in terms of simple exponentials), 

we arrive immediately at the result - 

f. 
- X i 
TOT - (1 + S+Xt) c + x" 

which is identical with that for the total quantity in the compart-

ment model, equation (8). The result can readily be shown for the 

integral of A or B separately, as well as for the total. Therefore, 

in the "tubes of flow" model (Figs. 3 and 4), when tube length is 

multiexponential in distribution, total quantities of tracer occupy-

ing the sum of all A or of all B portions of the region are described 

by the ordinary differential equations (1), (4), and (5). 
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A simplification in computation based on equation (22) could 
also result if F(T) were a frequency function approximated by sums 
and differences of exponentials, rather than sums alone, but the or-
dinary differential equations (1.), (4), and (5) and the model visual-
ized in Figs. I and 2 would then not retain any physical significance; 
negative quantities of tracer in some of the compartments would be 
involved. A group of two-compartment flow beds partly or entirely 
linked in series rather than parallel can be shown to produce a sys-
tem of differential equations with appropriate properties, but finding 
the particular model is irrevelant to the estimate of X and X'. 

Discussion. Curve fitting with the above equations depends 
on some further assumptions. Since an in vivo counter records 
something merely proportional to the amount of radioactive tracer 
in a region, the fitting can be done by noting that for equations in 
which we let q refer, for example, to counting rates rather than 
quantities, we have Z f. I. The additional degree of freedom 
thus introduced suffices to make the transition. It must be assumed 
that the counting efficiency of either of the tracers is unchanged by 
its being in one or another of the different flow beds, or in the A or 
B parts of the region, an assumption often easy to make because of 
the anatomic nature of the region, such as the dog hind leg. The 
methods of standardization and correction for recirculation in exper-
iments of this type have been presented by Dobson and Warner (1960) 
and by Hippensteele (1.967). In the double-isotope experiment we 
have not assumed that an adequate standardization can be done to re-
late counting rate to quantity. Instead it is assumed that the stand-
ardization is adequate to correct for the relative counting efficiency 
of the two tracers. A further reasonable assumption is that the re-
gions occupied by the two tracers are so intermixed anatomically 
that from the point of view of the counter they occupy essentially the 

- - - 

same volume, whatever that may be. Hence, when the reference 
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tracer curve is multiexponential with n component exponentials, 
the 2n parameters f. and XY are shared by the equations for the 
two tracers, and the diffusible tracer curve has 2n components, 
but only two additional degrees of freedom X and M. 

A program has been written for the CDC 6600 computer, fit-
ting equation (7) to potassium data. It uses the minimization pro-
gram "VARMIT" (written by Eric Beals, Lawrence Radiation Lab-
oratory, University of California, Berkeley) to determine a weight- 
ed least-squares fit to X and X', given the f. and from a pre-
vious weighted sum of exponentials fitted to the sodium data. To 
do this one supplies the sum of least squares, readily determined 
from equation (7), together with its partial derivatives with respect 
to X and V. The calculation of the partial derivatives was pro-
grammed in simple piecewise fashion patterned step by step on the 
programming of equation (7) rather than written as a single expres-
sion prior to programming, as this was most economical of effort 
and easiest to check. Given this information at each step in its 
search, VARIVIIT takes a pair of initial estimates for X and X' and 
finds optimum values for them simultaneously. 

Simple programming in a few lines of a conversational lan-
guage "FOCAL" on the PDP-8 computer has provided curves for 
equations (3) and (7) that have helped verify the calculation. The 
results obtained for the compartment-model fit have been checked 
against the FOCAL result and against a program "IvlIMlC" on the 
large computer. The latter program provides a language to solve 
ordinary differential equations directly, but only for given param-
eters, lacking the "fitting" feature. The FOCAL programming 

• conveniently provides outflow rate for the two tracers as well as 
quantities present. With this conversational language it is easy to 
calculate a number of additional results such as ratios of the two 
isotopes as a function of time. 

- - • 

When equation (23) from the more complicated "tubes of flow" 
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model is programmed in FOCAL language, with F(T) a multiex-

ponential, it checks against equation (7). It takes a very much 

longer time to calculate each point, however, and with less accu-

racy. It does an approximate double integration, and for each step 

it must calculate Bessel functions and exponential sums for the in-

put. 

The models with multiexponential F(T) have been fitted to 

data for sodium and potassium ions (Fig. 5). The general nature 

of the fit is satisfactory, giving rise to a potassium leak rate X of 

about the same order of magnitude as the average perfusion rate 

for sodium, and to a cellular potassium space very much larger 

than the extracellular potassium space, as one would expect. We 

have not completely worked out all technical problems in standard-

ization, but the general result obtained here would appear to have 

intrinsic interest and potential applicability to a number of similar 

problems. 

The two models that are presented here share certain as-

sumptions, and not others, as a close review of the differential 

equations and boundary conditions shows. The fact that the "tubes 

of flow" model reduces to the compartment model in the circum-

stances outlined helps complete a clearer picture of what assump-

tions are made when these models are used, and what alternatives 

might be considered among their variants. One 'can consider the 

use of exponential sums merely an empirical device to approximate 

transit-time distributions and make the solution more tractable. 

Existence of discrete anatomic regions with uniform mixing in the 

ordinary sense is not an assumption essential to employment of the 

equations of the compartment-system model. The mere existence 

of trajectories of various lengths through a circulatory bed gives 

rise to a type of mixing indistinguishable from it for our purposes. 

In either model, there also remains the assumption that a tracer 

ion is at a fixed risk of undergoing a first-order process removing 
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it from the flow while it is in the region, and with a fixed probabil-
ity of returning to that flow. 

In the compartment model, restrictions were placed on X 
and X' more or less arbitrarily at first, in order to keep the num-
ber of parameters to a minimum. A number of alternative ways to 
assign X and X  for each flow bed, relate them to perfusion, or 
give them a distribution of values readily suggest themselves. 
With the tubes of flow, on the other hand, it is necessary to con-
sider X and X' constant along any tube in order to derive the above 
result. An arbitrary relationship of X and X' to tube transit time 
would not be particularly hard to incorporate. In the simpler case 
in which ?' is zero (first-order removal without return), Sheppard 
(:1962) has shown that the method gives a mean value for ?s. even 
though it may vary along the length of the tube. (Use of this latter 
model, incidentally, may offer a way to make a simplified fit to 
only the initial portions of curves, in order to estimate X alone. 
We have restricted the presentation here to the more general case. 
The simplified one should be most applicable when X is known to 
be much smaller than X, as for potassium transport.) Though the 
constancy of X and X assumed in these models was arbitrary, and 
for purposes of simplification, as one thinks about alternatives it 
soon appears that this simple approach is hard to improve on with-
out further arbitrary assumptions that cannot now be checked. Also, 
potassium transport may be a function of cell surface or volume, 
and the ratio of cellular to 'extracellular potassium can probably 
best be assumed at present to be c-onstant over the various flow 
beds. Hence it appears that the particular models presented here, 
with their restrictions on X and Xt,  may presently be the most rea-
sonable approach to finding average values for them. 

One further result from the above models: When the refer-
ence tracer curve is rnultiexponential, the probability that a dif-
fusible tracer ion enters a B compartment (enters a cell) one or 
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more times on single passage through the region of interest is 

given by 

=; 
M•• 

From data of the type shown in Fig. 5 the parameter P can be 

measured. It is the fraction of the diffusible substance entering 

the cells on passage through the tissue. When the intracellular 

pool is very large, P corresponds to the approximate notion of 

the "fraction of the injected tracer trapped in the tissue, " which 

has been of particular interest in the use of radioactive potassium 

in circulatory studies. In the dog leg it appears that only about 

one-fourth of the K+  is so trapped. 
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FIGURE CAPTIONS 

Figure 1. Compartment-system model of a region of the cir-

culation consisting of parallel sets of two-compartment flow 

beds. 

Figure 2. Enlargement of the ith flow bed from Fig. i, indi-

cating the relationship of the parameters and compartment 

labels as they appear in the equations. The reference tracer 

can enter only A, whereas the diffusible tracer enters both A 

and B. 

Figure 3. The regional circulatory bed visualized as com-

pounded of a number of "tubes of flow" of varying length, 

from each of which "leakage" and return of diffusible tracer 

are possible along its length. 

Figure 4. Enlargement of a portion of one of the "tubes of 

flow" in Fig. 3, indicating the "A" region within the tube, 

occupied by both tracers, and the "B" region or cuff of fluid 

around the tube, into which only diffusible tracer can leak and 

return. 

Figure 5. Equations (3) and (7) fitted by weighted least squares 

to in vivo counter data from the dog hind leg, with radioactive 

Na+ and  K+  injected simultaneously in the femoral artery. 

The counting rate has been corrected for counter cross-talk, 

• radioactive decay, and recirculation, and normalized for in-

jected dose. 




