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Abstract

Trustworthy Machine Learning for Experimental Characterization of Ceramic Matrix

Composites

by

Caelin Muir

SiC/SiC composites are refractory, damage tolerant, high-strength materials that are

ideal for use in turbine engines. Although these properties allow engineers to design

aircraft with better fuel efficiency, the safety-critical nature of their application space

necessitates a detailed understanding of how damage initiates and progresses. Recent

advances in machine learning (ML) and related statistical tools have created novel char-

acterization pathways for understanding damage accumulation, however their widespread

adoption is limited due to a lack of interpretability. This work lays the foundation for

trustworthy ML for interpreting acoustic emissions (AE) that are produced when SiC/SiC

composites sustain damage. A modified signal representation scheme was combined with

unsupervised clustering to form the spectral framework. This represents the first AE-ML

approach that can distinguish between fiber break and matrix crack signals in SiC/SiC

minicomposites. The spectral framework was then benchmarked against 4 state-of-the-art

AE-ML frameworks and shown to achieve superior performance. Community guidelines

for standardized benchmarking were proposed to promote greater transparency. Finally,

an in situ x-ray computed tomography experiment demonstrated that matrix crack sig-

nals overlap with early fiber breaks, and prevents the use of unsupervised clustering for

realistic composite geometries. An autoencoder framework was created to overcome this

limitation and used to demonstrate that the frequency distribution of fiber break signals

is compact. These findings establish a pathway for real-time health monitoring.
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Chapter 1

Introduction

1.1 Ceramic Matrix Composites

Fiber-reinforced ceramic matrix composites (CMCs) are a class of lightweight, damage-

tolerant, refractive structural materials for extreme environments. Their architected de-

sign consists of an array of ceramic fibers connected to a ceramic matrix via a weak

interphase (Fig. 1.1). Such design allows for substantial damage tolerance in the form of

crack deflection and arrest, which allows engineers to leverage the desirable properties of

monolithic ceramics while preventing catastrophic failure [15]. As a result, CMCs have

been incorporated into the hot section of turbine engines as high pressure temperature

vanes, shrouds, and combustor liners, and are being considered for fuel cladding in gener-

ation IV nuclear reactors [16–18]. However, despite their desirable properties, the safety

critical nature of their application spaces necessitates a detailed understanding of how

CMCs respond to thermo-mechanical and environmental loads.

As a result, micromechanical modeling of damage chronology in CMCs has been the

subject of extensive research and has provided valuable insights into how constituent

properties influence crack formation and growth. For example, Aveston, Cooper, and
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Kelly (ACK) and Marshall have shown that there exists a finite range of damage tolerant

CMC microstructures [10, 19]. Fiber volume fractions must be sufficiently high such

that fibers remain intact in the wake of matrix cracking, and interfacial shear stresses

between the fibers and matrix must be large enough to resist crack opening, but not

so large as to completely prevent fiber debonding and sliding. Hutchinson and Jensen

extended the ACK theoretical framework to include the effects of energy absorption from

interfacial debonding, compressive thermal mismatch stresses, and non-uniform friction

between the fiber and the matrix [11]. They used this framework to analyze steady-state

cracking for two spatial distributions of fibers, a hexagonal and square array, and an

arbitrary combination of elastic parameters. Their analysis quantified microstructural

effects on crack opening displacements (CODs), and provided guidance on the optimal

interfacial parameters and critical processing temperatures needed to obtain a damage

tolerant microstructure.

More recent numerical simulations of composite damage by Chateau et al. led to the

hypothesis that heterogeneities in fiber distributions and interfacial properties need to be

considered to explain CMCmechanical behavior [20]. They found that the experimentally

measured stress-strain response of their CMC could only be modeled when effects from

asymmetrical interfacial shear stresses and cascading fiber breaks were included. These

hypotheses arise from heterogeneities which lead to local load sharing and were supported

by in-situ x-ray computed tomography observations. In turn, they provide evidence that

models must include effects from microstructural heterogeneities. Models that do not,

such as that of Hutchinson and Jensen, are expected to not be sufficiently complex to

describe damage progression or severity in as-processed composite structures.

These and other foundational studies provide important insights, but the complex

and interacting factors within real microstructures restrict predictive models to order-of-

magnitude COD estimates [21–27]. Validation of models, for the purpose of obtaining
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accurate COD calculations, is critical for the characterization and mitigation of environ-

mental effects [28, 29]. Despite its key importance, there are a limited number of in-situ

studies that can be used for this purpose [30–33]. As a result, it is unknown which

modeling choices are most appropriate and how inhomogeneities present in real CMC

microstructures influence crack growth.

1.2 Acoustic Emission Based

Damage Mechanism Identification

When a structure sustains damage, accumulated strain energy is rapidly released into

the surrounding medium in the form of elastic waves. These waves, as well as the non-

destructive evaluation (NDE) technique used to record these waves, are called acoustic

emission (AE) [34]. AE is uniquely powerful because it allows researchers to triangulate

damage source locations [34], identify areas of concern in the material bulk [35], and

evaluate the severity of incurred damage [36] in real time using a relatively inexpensive

(<$10,000) array of piezoelectric transducers affixed to the structure. Moreover, AE

allows researchers to identify damaged areas in the material bulk down to the order of

nanometers in size [37], with a time resolution on the order of 100s of µs, allowing for

rapid real-time damage detection of events below the optical limit of methods such as

x-ray computed tomography [12, 30].

Because of its unique capabilities, AE research efforts have been on-going since the

1980s [38–40]. However, initial studies were limited by both the experimental hardware

and data storage limitations of the time. The narrow frequency response of resonant

transducers forced waves to be recorded as dampened sine waves, losing detailed fre-

quency (and therefore time domain) resolution. Moreover, storage and memory con-
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straints mandated that the full waveform could not be preserved. Instead, waves were

stored as a list of time-domain parameters such as first peak amplitude, energy, and

duration (Table 1.1), which resulted in further information loss [34]. The development

of broadband transducers, combined with advances in computer hardware during the

1990s, enabled researchers to record the full frequency spectrum of a signal and digitally

store the waveform. This method, known as modal AE (MAE), is now standard practice

[13, 34, 41].

The advent of MAE spurred renewed interest in AE with a specific focus on evaluat-

ing the chronology of damage progression as a function of specimen geometries [41–43],

architectural and processing choices [44], and loading conditions [45]. These efforts laid

the foundation for the hypothesis that damage mechanisms in multi-phase structural ma-

terials, such as composites, can be identified directly from their acoustic emission (AE)

[46–49]. Developing this capability has wide-reaching ramifications for lifetime prediction

investigations and in operando monitoring of advanced structural materials. It would al-

low researchers to augment damage triangulation [34, 35], lifetime prediction [33], and

high-resolution optical studies [12, 30] with complementary mechanism-informed data

streams. Moreover, it would facilitate investigations on how processing paths and mi-

crostructural landscapes are tied to the failure response of advanced structural materials,

and would significantly broaden the potential application space of CMCs [16, 18, 50–52].

As such, the high-fidelity damage mode identification of AE signals has become a core

objective of modern AE investigations.

Yet, despite the growing availability and abundance of statistical ML tools [6, 53],

there has been sparse analysis of their strengths, limitations, or trustworthiness when

applied to AE data. As a result, it is unclear if the approaches adopted in the literature

are suited for the task of damage mechanism identification in CMC systems, where the

elastic, and therefore acoustic, properties of the constituents are similar [54–57]. In order
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to understand the limitations of existing damage mechanism identification frameworks

in composite systems, it is necessary to understand how AE are influenced by their

local environment and how each step in the damage mechanism identification pipeline

impacts the ability to do such identification. To this end, I will briefly discuss wave

propagation in solids and identification of relevant waveform characteristics as they relate

to the original damage mechanism (Chapter 1.2.1). I will then outline the creation of a

damage mechanism identification pipeline, survey the most commonly used featurization

schemes (Chapter 1.3.1), clustering algorithms (Chapter 1.3.3), and data-visualization

methods (Chapter 1.3.5). Strengths and limitations of each step in a damage mechanism

identification pipeline will then be used to contextualize prior investigations, and to

highlight existing challenges which this dissertation addresses (Chapter 1.4).

1.2.1 Wave Propagation in Solid Materials

Historically, researchers have used Lamb’s homogeneous equations to understand AE

phenomena [13, 58], where it is assumed that acoustic waves are confined to a thin

plate of thickness h. This model has been useful for engineering applications as many

modern manufactured composites typically follow this constraint [59]. When waves are

modeled this way, the predicted out-of-plane flexural (w) and in-plane extensional (u0, v0)

displacements are governed by:

D∇4w + ρ
∂2w

∂t2
= 0 (1.1)

∂2u0

∂x2
+

(
1− ν

2

)
∂2u0

∂y2
+ (1 + ν)

∂2v0

∂x∂y
=

ρ

A

∂2u0

∂t2
(1.2)
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∂2v0

∂y2
+

(
1− ν

2

)
∂2v0

∂x2
+ (1 + ν)

∂2u0

∂x∂y
=

ρ

A

∂2v0

∂t2
(1.3)

with constants A and D (the bending stiffness):

A =
Eh

1− ν2
(1.4)

D =
Eh3

12(1− ν2)
(1.5)

where ρ is the density, E is the elastic modulus, and ν is the Poisson ratio.

While this model is a powerful tool for predicting the basic properties of elastic waves

in solids, its assumptions of elastic isotropy and material homogeneity are often violated.

It fails to describe the effects pores, grain boundaries, and architectural/processing het-

erogeneities influence wave propagation [41, 42, 60–62].

To account for these effects, current modeling efforts simulate AE in real microstruc-

tures by solving Lamb’s homogeneous equations via finite element method (FEM) calcu-

lations, a process known as forward modeling [63–69]. This allows researchers to compu-

tationally explore the effects of microstructural heterogeneities, complex geometries, and

determine how waveform characteristics are impacted by these factors [70–73]. Recent

studies suggest that frequency and time-frequency representations encode information

related to the emitting damage mechanism, and that time domain features are impacted

by factors unrelated to the damage mechanism. Sause and Horn demonstrated differ-

ences between damage modes in the time-frequency domain with an FEM model of a

carbon fiber reinforced composite [67]. Their model produced frequency spectra in good

agreement with experiment and supported the claim that changes to power carried by

a frequency band are minimal in the near field [67, 74]. Gall et al. showed that in the
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absence of defect structures, rise time, amplitude, and energy scatter are dependent on

source-to-sensor distance, while partial power is not [71]. Similarly, Aggelis et al. used

numerical simulations to show that rise angle values (Table 1.1) increase with increas-

ing source-to-sensor distance [72] and provide evidence that the density of scattering

interfaces distorts the waveform in the time-domain.

Forward modeling studies guide us to two complementary conclusions: (i) if there is

information encoded in AE which enables damage mode discrimination, it likely exists

within the frequency domain; and (ii) the high degree of perturbation imposed on time-

domain features by experimental factors likely renders them inadequate for differentiating

source mechanisms. These deductions highlight the necessity for determining salient

features for machine learning applications, where the accuracy of the output is directly

dependent on the quality of feature choice.

1.3 Machine Learning

Machine learning (ML) is the set of statistical tools for building a model to approx-

imate a function; it can be thought of as a set of non-linear curve fitting methods [75].

Subsequently, the set of tasks which an ML model can accomplish is broad and can range

from clustering, where similar objects are grouped together, to the prediction of future

events. Regardless of the exact details of the task, any ML algorithm can be classified

as an unsupervised, semi-supervised, or supervised algorithm depending on what data is

available at the time of model fitting [4, 5, 76–79]. For the case of AE damage mecha-

nism identification, direct correlations between waveforms and damage mechanisms are

unavailable, and ML models are typically restricted to the class of unsupervised clustering

algorithms whose workflow follows [78, 80]:

1. Experimentation: An experiment is conducted and n waveforms are collected
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(Figure 1.2a)

2. Feature Extraction: Waveforms are vectorized by extracting d pertinent features,

i.e. each waveform is represented by a d-dimensional vector (Figure 1.2b)

3. Pre-processing: A metric or similarity function is chosen, and the set of feature

vectors undergoes an optional transformation, such as re-scaling (Figure 1.2c)

4. Clustering: A clustering algorithm is selected and applied to group waveforms by

their similarities, as defined by the previously chosen similarity function (Figure

1.2d)

5. Error Analysis: Post-clustering analysis is performed to assess the validity of

results (Figure 1.2d)

The following sections present an overview of the most common feature extraction

techniques, pre-processing methods, and clustering algorithms. The strengths and weak-

nesses of each choice are discussed, followed by a critical review of existing damage

mechanism identification studies.

1.3.1 Feature Extraction

Importance of Salient Features

The accuracy of an AE-ML framework is interdependent on each step described above,

however it is foremost contingent on feature choice; waveforms must be represented by

features which are salient in order to find meaningful partitions. To illustrate this,

consider a researcher who aims to differentiate a set of ducks and cats (Figure 1.3a). The

researcher could represent each animal by color, resulting in the partition in Figure 1.3b,

or by their ability to fly (Figure 1.3c). While both partitions are valid, only Figure 1.3c is

8



Introduction Chapter 1

a useful result if the researcher aimed to differentiate species. This example illustrates the

more general principle that when objects are described by improper features, it is possible

to obtain compact and well separated clusters not representative of desired categories,

and a substantial loss in discriminating power will occur [78, 81].

Traditional Features

Historically, AE waveforms have been represented by parameters in the time domain

(Figure 1.4a), the frequency domain, or by composite values comprised of two or more

base values [13, 46, 49, 82–92]. Table 1.1 lists common time domain, frequency, and

composite features, where x(t) is the measured signal and F [∗] is the Fourier transform

operator. It is worthwhile to note that the predominance of time domain features appears

to be due to the ease with which they are extracted, either via commercial AE software

or in-house programs. However, the efficacy of these features is currently unclear, as are

the impacts when used in an AE-ML framework.

Continuous Wavelet Transform

Because the impacts of time domain features is unclear, investigators additionally

include frequency domain features to represent acoustic waveforms. While this practice

is supported by forward modeling studies which show frequency features contain salient

information, the optimal way to extract meaningful frequency information remains un-

clear. This is because AE waveforms are non-stationary, meaning that their frequency

content changes in time. When this is the case, the use of the usual fast Fourier transform

(FFT) to extract frequency information may not be the optimal solution, as it system-

atically misrepresents frequency content for non-stationary waves [93]. Because of this,

researchers have espoused time-frequency representations such as the continuous wavelet

transform, wavelet packet transform, and Hilbert-Huang transform, which are described
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in detail below [1, 64, 94–97].

The continuous wavelet transform (CWT) is a popular time-frequency representation

for inspecting non-stationary signals, whose frequency content changes in time (Figure

1.4b). It can be used for either qualitative AE analyses [64, 94, 98] or quantitative

characterization [1, 99]. The CWT is described by:

CWT (a, b) =
1√
a

∫ ∞

−∞
x(t)ϕ∗

(
t− b

a

)
dt (1.6)

where ϕ∗ is the complex conjugate of the mother wavelet ϕ (a function satisfying certain

criteria [1]), a is the scale parameter corresponding to a pseudo-frequency, and b is the

translation parameter. Common choices for ϕ include the Debauchies wavelet and the

Morlet wavelet [1, 2].

Eqn. 1.6 is a convolution calculation, however when a and b are considered fixed,

Eqn. 1.6 is the inner product of the time series with the mother wavelet. This leads to

an intuitive interpretation; high values of the CWT at time b indicate a large frequency

content corresponding to a. The author is aware of only one method to extract features

with the CWT: calculate all desired values of CWT (a, b) and represent them as a column

vector [1, 100]. For example, if an AE signal has 1000 time domain samples, CWT (a, b)

can be calculated for N values of frequency, resulting in a feature vector whose length is

1000×N .

Wavelet Packet Transform

An alternate method for interrogating non-stationary signals is the wavelet packet

transform (WPT)[2, 101–103]. The WPT is a set of decompositions of the original signal,

x(0,0). At each decomposition iteration, two down-sampled signals containing the originals

low frequency (approximation) and high frequency (detail) components are retrieved. The
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decomposition process is applied all sub-signals until a specified decomposition level is

reached. This is shown schematically in Figure 1.4c.

A signal decomposed to level j will produce 2j waveforms, x(j,i), i ∈ [1, 2, ..., 2j] with

non-overlapping frequencies in each sub-signal [102, 104]. The relative energies (the

portion of the original signals energy contained within each down-sampled signal at the

final decomposition level) are then extracted and used as features [2, 102, 104].

Hilbert-Huang Transform

The Hilbert-Huang transform (HHT) is a data-adaptive method for extracting instan-

taneous frequencies in the time-frequency domain that is well-suited for non-stationary

signals [3, 93, 95]. An HHT analysis consists of two steps: (i) empirical mode decompo-

sition (EMD) of a signal into a set of intrinsic mode functions (IMFs), and (ii) a Hilbert

transformation of the IMFs.

In a well-behaved time series x(t) (symmetric about 0 with no superimposed waves),

the Hilbert transform y(t) is defined as [93, 95]:

y(t) =
1

π
PV

[∫ ∞

−∞

x(τ)

t− τ
dτ

]
(1.7)

where PV is the Cauchy principal value of the improper integral. From this, the analytic

function z(t) is defined:

z(t) = x(t) + iy(y) (1.8)

This has a natural phasor representation:

z(t) = a(t)eiθ(t) (1.9)
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where a(t) is the instantaneous amplitude of x(t), and θ(t) is the instantaneous phase of

x(t).

a(t) = |z(t)| = (x2(t) + y2(t))1/2 (1.10)

θ(t) = arctan

(
y(t)

x(t)

)
(1.11)

The instantaneous frequency ω(t) is then calculated:

ω(t) =
dθ

dt
(1.12)

In practice, x(t) is unlikely to be well behaved, however EMD ensures that each IMF, ci,

is. By EMD, the frequency content of the first IMF is the highest and decreases mono-

tonically with index i. For AE data, the lowest order IMFs isolate frequency information

from the signal, thereby expelling statistical noise. An analogous approach is ensemble

empirical mode decomposition (EEMD), which provides a superior level of robustness to

EMD and should be used when computationally affordable [93]. The readers are referred

to Huang et al. [93] for details of executing E/EMD; additionally, there are available

MATLAB[104] and Python[105, 106] packages that readily perform both E/EMD and

the Hilbert transform.

After EMD, the Hilbert transform is applied to each IMF. For a given IMF, we can

define:

Hi(t, ωi(t)) = ai(t) (1.13)

which assigns a time value and its related instantaneous frequency to the instantaneous

amplitude of ci. The sum of allHi is the Hilbert spectrum, which represents the extracted
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instantaneous frequency and amplitude from all ci [95].

An alternative visualization of the Hilbert spectrum is the marginal Hilbert spectrum,

defined as:

h(ω) =

∫ T

0

H(t, ω)dt (1.14)

where T is the length of signal x(t) (Figure 1.4d). The marginal Hilbert spectrum is the

probability of finding an instantaneous frequency at any given point in the signal, which

Huang et al. differentiated from the FFT, which represents the total energy persisting

from a frequency throughout the signal [95].

While the HHT has the potential to reveal hidden insights in the data, its applicability

for feature extraction is uncertain [3, 107–109]. Though previous work by Hamdi et

al. suggested that HHT features could be used for unsupervised ML, their findings are

inconclusive[3]. Their input data included labeled data from other studies [7, 110] that

employed ML techniques unverified with experiments, as a basis for labeling their own

data sets. In general, HHT properties are not as well characterized as the FFT, CWT,

or WPT. For this reason, it has not as been as widely adopted.

1.3.2 Metrics and Transformations

Once features are extracted, a metric, or similarity function, d(∗, ∗), is used to define

the degree of similarity between observations. In general, d must satisfy:

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇔ x = y

3. d(x, y) = d(y, x)
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4. d(x, y) ≤ d(x, z) + d(z, y)

however some clustering algorithms, such as those using linkage-based distances or those

working on local neighborhoods, relax requirement 4 [111–113]. It should be noted that

the efficacy of a given metric is tied to the geometry of the input data, which manifests

itself in the quality of the resulting partition [78]. For example, neighborhood-based

distances are better suited for grouping nested circles than Euclidean distance [111].

While there is flexibility in choosing a metric, an alternative strategy is to pre-process

feature vectors by a transformation [4, 78, 79]. In general, many transformations are

available, but the business of choosing an appropriate one is tricky because they alter

the geometry of the input data. While this is desired, a complete understanding of

the transformation’s effect on the input data is contingent on knowledge of the starting

geometry. This is problematic, as data living in a high dimensional space and can never

be viewed in its natural setting. As a result, the choice of transformation is typically

empirical, with the final decision being justified via a (semi-)exhaustive searches over

common methods.

Principal component analysis (PCA) among the most commonly employed transfor-

mations, whereby a linear and orthogonal change of basis is carried out such that axes of

the new coordinate system are oriented along the directions of maximum variance. PCA

transforms the original ordered basis (e⃗1, e⃗2, ..., e⃗d) to a new basis, (e⃗′1, e⃗
′
2, ..., e⃗

′
d), with the

property that e⃗′1 is oriented along the direction of greatest variance, e⃗′2 is oriented along

the direction of second greatest variance, and so on, with a diagonal covariance matrix

(i.e. no correlation).

The usefulness of the PCA transformation is two-fold. First, by dropping the last

d − q basis vectors, data can be represented in a lower dimensional space with minimal

reconstruction error. It is worth noting this projection could obscure clusters and is not
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recommended, as the accuracy of k-means is not strongly tied to the input dimension

[5]. Second, PCA acts to decorrelate and rescale data [1, 56, 114, 115]. Since features

with large correlation and variance tend to dominate clustering results, decorrelation

and rescaling, also called PCA whitening or sphering, often increases performance of

clustering methods [1, 78, 116]. Major programming languages offer packages to execute

both PCA and whitening [104, 106, 117]. The reader is referred to MacGregor et al.[118]

for further details.

1.3.3 Clustering Algorithms

After pre-processing, a clustering algorithm must be chosen that should complement

the new geometry of the processed data. It is stressed that if an informed decision is not

made at this juncture, an accurate partition cannot be achieved, even if the initial data

is properly represented.

K-means and Variants

K-means is among the earliest clustering techniques and has positioned itself as the

default clustering method for AE applications [80]. In order to leverage the strengths and

characterize the efficacy of AE frameworks commonly used, it is necessary to understand

how clustering algorithms partition waveforms. To this end, this section will detail k-

means and Gaussian mixture models.

The k-means algorithm seeks to partition a set of observations into k clusters by

(Figure 1.5a):

1. Initializing k centroids µj ∈ {1, k}

2. Attaching each feature vector, x⃗i, to the closest centroid, µj
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3. Moving each centroid, µj to the center of mass of the data points to which it is

attached

4. Repeating steps 2 and 3 until a user-defined stopping criterion is reached

Stepping through this algorithm is equivalent to minimizing the L2 loss function:

L2 =
k∑

j=1

∑
i

|µ⃗j − x⃗i|2 (1.15)

via gradient descent. For this reason, k-means tends to fall into local minima which are

dependent on how cluster centroids are initialized. [119].

In practice, this means that for any given run of k-means there is likely a better

partition to be found (Figure 1.5b). To avoid falling into such local minima, variants of

k-means modify the initialization scheme [7, 84, 120]. Among those, the maxmin and

k-means++ variants are the most robust [5, 106, 119], as both initialize well dispersed

seeds. Maxmin selects a point for the first cluster center, and at each subsequent step,

the following centroid is calculated as the farthest distance from the nearest centroid. K-

means++ selects subsequent seeds from a statistical distribution with farther distances

being preferred [119]. Sibil et al. developed an approach using a genetic algorithm, where

multiple runs of k-means are initialized, and the best results are cross-bred according to

a set of user-defined rules [120]. While this genetic algorithm allows k-means to find an

optimal solution with fewer restarts, appreciable gains in runtime or accuracy are not

achieved by its use.

An alternative to modifying the initialization scheme is to alter how centroids move

after initialization. One such approach is fuzzy c-means (FCM), in which a feature vec-

tor (xj) is assigned a membership grade (ui) to cluster i such that ui(xj) ∈ [0, 1]. FCM

updates centroids according to weighted (rather than absolute) membership, which re-
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duces the tendency to fall into local minima [78]. Despite these benefits, it is unclear if

FCM is superior to k-means [110, 121–125] due to difficulties in verifying cluster results.

Ultimately, the user can opt for another strategy altogether: restarting k-means multiple

times and selecting the best run. When the number of clusters is low and data is poorly

separated, as is often the case with AE data, this strategy yields acceptable results pro-

vided that the number of restarts is sufficiently large (>1000) [5]. Given that clustering

via k-means tends to have short runtimes, this is a feasible strategy.

However, none of the aforementioned techniques address the issue of data geometry.

The k-means algorithm finds spherical clusters and can therefore only cluster convex

data [4]. However, AE data does not necessarily abide by this constraint and thus k-

means should be the default choice. To illustrate this, two commonly used features are

extracted from waveforms gathered in Chapter 4 (Figure 1.6). When plotted as a function

of frequency centroid and partial power, these waveforms adopt a circular, non-convex

geometry and as a result, distance-based clustering methods, such as k-means, will fail

to accurately partition these waveforms by the angle of incidence. Therefore, alternative

algorithms must be considered that are suited for larger ranges of data geometries at

similar computational costs.

Gaussian Mixture Model

One such viable alternative to k-means is the Gaussian mixture model (GMMs)[92].

In contrast to k-means, GMMs find Gaussian distributions that model the input data and

thus are well-suited to clustering data sampled from Gaussian distributions. Moreover,

they provide greater flexibility for clustering anisotropic data, or data with different scales

(Figure 1.5c).

GMMs model input data as belonging to a set of d-dimensional Gaussian distributions

and search for the set of related parameters [77, 126]. The probability of finding feature
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vector x⃗j ∈ X where X is the set of feature vectors sampled is:

p(x⃗j|λ) =
M∑
i=1

wigi(x⃗j|µ⃗i,Σi) (1.16)

where M is the number of component Gaussians, and wi is the weight associated with

the multivariate Gaussian distribution:

gi(x⃗|µ⃗i,Σi) =
1

(2πd/2)|Σi|1/2
exp

(
−1

2
(x⃗j − µ⃗i)

TΣ−1
i (x⃗j − µ⃗i)

)
(1.17)

parameterized by covariance matrix Σi and mean µ⃗i. The weights are normalized such

that their sum is unity. The Gaussian mixture is then completely described by the set of

parameters:

λ = {wi, µ⃗i,Σi}, i ∈ {1, 2, ...,M} (1.18)

The GMM searches for λ which maximizes the likelihood of sampling X by way of the

Expectation-Maximization (EM) algorithm [127]. Once the EM reaches a set stopping

criterion, feature vectors are labeled according to the Gaussian that provides the highest

likelihood of sampling it. Final GMM partitions are also sensitive to initialization, and

therefore multiple restarts are recommended. For an in-depth discussion of GMMs, the

reader is referred to Reynolds et al. [77].

1.3.4 Selection Clusters Number

Once a suitable clustering algorithm has been chosen, the number of clusters that are

being searched for must be specified. In the context of damage mechanism identification,

this is analogous to asking, ”how many unique damage modes are discernible?”. This is
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an open question which is the subject of Chapter 3.

To understand this question, it is worthwhile to revisit two hypotheses developed by

the AE community: (i) an AE waveform has distinct features corresponding to the dam-

age mode that emitted that waveform; and (ii) an individual AE waveform is generated

by only one damage mode. If both (i) and (ii) are true, then follows that the number

of clusters should correspond with the number of detectable damage modes. However,

experimental variance can mask the true damage mechanism (further discussed in Chap-

ter 1.4), and cause distinct clusters to overlap. Moreover, it is unclear if hypothesis (ii)

holds. It has been experimentally shown in-situ that more than one damage mechanism

can be active within the timeframe of a single AE event [36]. For example, in the case of

a fiber-bridged matrix crack, the damage mechanisms of transverse matrix fracture, fiber

debonding, and interfacial sliding all occur simultaneously and are captured by a single

AE signal.

Ultimately, although the number of clusters will be between 1 and the number of

unique damage modes, the true number of clusters is unknown. In order to estimate the

correct number of identifiable damage mechanisms, researchers employ heuristic func-

tions. These measure intercluster/intracluster spread, and operate on the premise that

the optimal number of clusters yields the highest intercluster separation and lowest intr-

acluster variance [128–134]. The true number of clusters is estimated where the function

is extremized.

The Silhouette Value (SV) is a popular heuristic function[130]. It is a staple in

unsupervised clustering because of its ease of use and natural graphical representation.

For a feature vector x⃗k, the SV is defined as:

s(x⃗k) =
b(x⃗k)− a(x⃗k)

max{a(x⃗k), b(x⃗k)}
(1.19)
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where a(x⃗k) is the average distance of x⃗k to all objects in its cluster, and b(x⃗k) is the

minimum of the average distance from x⃗k to all objects in a different cluster. While

defined for a single feature vector, the SV of a partition is the average SV over all feature

vectors; this is the value used to estimate the number of clusters. The SV is bounded

such that SV ∈ [0, 1], with 1 corresponding to perfectly compact clusters. The SV is

applicable to evaluate clusters independent of their geometry, but it is best suited for

convex and spherical data.

When non-convex data is clustered, other heuristic functions should be considered.

In GMMs, both the Akaike information criterion (AIC) and Bayesian information cri-

terion (BIC) are established model selection techniques [106]. It has been shown that

AIC generally overestimates the true number of mixture components, whereas there is

considerable evidence that BIC consistently selects the correct number[135].

The author stresses that heuristic functions are estimates. When possible multiple

heuristic functions should be used, and their results compared. Moreover, researchers

cannot only rely on heuristic functions to evaluate clustering success; it is possible to

obtain compact and well separated clusters whose membership does not reflect dam-

age modes. To ensure that this is the case, investigators should compare their results

to micromechanical expectations and justify their choices with secondary experimental

evidence, as discussed in Chapter 1.4.

1.3.5 Manifold Learning Techniques

In addition to quantitative assessments of partition quality, such as those described

in Chapter 1.3.4, it is often useful to visualize data with manifold learning techniques.

These are a set of methods with act to map a high-dimensional object, e.g. waveform,

to a lower dimensional space so that it may be visualized.
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Self-Organizing Maps

The self-organizing map (SOM) is a type of neural network used for dimension reduc-

tion and data visualization [136]. SOMs maintain their topology, meaning that nearby

points in the reduced representation correspond to similar feature vectors. Unlike PCA,

SOMs are non-linear and thereby better suited to visualize a wider variety of data ge-

ometries.

The SOM consists of a grid G of l × l nodes, hij. The grid architecture describes

node connections and dictates which nodes move when the SOM is learning the structure

of the input data. Finally, each node has an associated weight vector, w⃗ij. This can

be considered the node’s position within the high-dimensional feature space. The SOM

learns the structure of the input data as follows:

1. Weights w⃗ij are randomly initialized

2. A random observation, x⃗k is selected and its distance from the high-dimensional

embedding of node ij is calculated as:

dij = |x⃗k − w⃗ij|2 (1.20)

3. Step 2 is repeated for all nodes, and the closest node is identified by:

h∗
ij = min

(i,j)∈G
dij (1.21)

4. The weight of node h∗
ij is updated according to:

w⃗∗
ij(t+ 1) = w⃗∗

ij(t) + η(t)
[
x⃗k(t)− w⃗∗

ij(t)
]

(1.22)
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where t is the time step and η is the learning gain factor which starts at 1 and

monotonically decreases with t

5. The weights of nodes in the neighborhood of h∗ are updated according to Step 4,

and t is incremented

6. Steps 2-5 are repeated until all data points have been selected at least once

Once completed, the high-dimensional data can be visualized by assigning a grey

value to the 2D grid of the SOM according to the maximum distance of a node from its

neighbors (Figure 1.7a)[137]. Thus, the SOM effectively has 2 representations: a high-

dimensional representation and a 3D representation (2D grid + 1D grey values). The

strength of the SOM is rooted in the fact that the high dimensional representation adapts

to the structure of the feature vectors, while maintaining a meaningful 3D representation

[136].

Previously, AE studies have used SOMs to pre-process data by associating input

data to the closest w⃗ij and clustering these weight vectors with k-means [7, 138, 139].

However, approximating points by their closest node can only reduce the amount of

available information, thereby degrading the fidelity of k-means. For this reason, the

author recommends that data be clustered and subsequently visualized with a SOM,

rather than clustering SOM nodes directly.

T-Distributed Stochastic Neighbor Embedding

Another method for visualizing high-dimensional data is t-distributed stochastic neigh-

bor embedding (t-SNE), which is a manifold learning algorithm. T-SNE is powerful due

to its ability to outperform other manifold learning techniques such as the SOM, Sammon

mapping, Isomap, and local linear embedding [140–142] (Figure 1.7b),
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At the highest level, t-SNE maintains all pairwise distances between the high dimen-

sional and low dimensional representation of feature vectors, xi and yi, respectively [9].

The fundamental assumption in t-SNE is that for given a feature vector, xi, all other

points follow a Gaussian distribution with standard deviation σi centered at xi. The

conditional probability of finding another feature vector xj is then:

pj|i =
exp(−|xi − xj|2/2σ2

i )∑
k ̸=i exp(−|xi − xj|2/2σ2

i )
(1.23)

There does not exist an optimal value for σi that describes all data points. Instead,

this is estimated with a hyperparameter termed ”perplexity,” which is a measure of how

much of the local structure is retained in the final low-dimensional map. As perplexity

increases, local structure information is exchanged for global structure information [9].

Pairwise probabilities in the high dimension, pj|i, are translated to pairwise probabilities

in the low-dimension, qj|i. If the low dimensional representation has correctly maintained

the same pairwise distances as the high dimensional representation, then pj|i = qj|i for

all pairs i, j. In contrast to the high dimensional representation, where similarities are

calculated according to a Gaussian distribution, pairwise similarities in low dimension

are calculated according to a student t-distribution with a single degree of freedom.

This alleviates the crowding problem in traditional SNE while permitting for tractable

runtimes. T-SNE is described in greater detail in van der Maaten and Hinton [9], and a

practical guide is provided by Wattenberg et al. [143]. It should be noted that despite its

benefits over other manifold learning techniques, t-SNE suffers from long runtimes when

large (n > 20, 000) datasets are considered. When this is the case, the reader is referred

to the recently created technique, UMAP, which has been shown to outperform t-SNE

in runtime with competitive visualization performance [144].
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1.4 Towards Improved AE-ML Frameworks

Many investigators have leveraged ML tools to infer damage mechanisms from AE.

However, there is little overlap between experimental systems and analysis methodolo-

gies. This introduces difficulties for isolating how experimental factors, such as the effect

of sensor coupling, impact the ability to fingerprint AE. Despite this lack of standard-

ization, there is consensus on the following: (i) damage modes are distinguishable by

the frequencies of their AE signatures, and (ii) robust methods for verifying results are

needed. This section presents a survey of previous studies focusing on these two points.

Advantages and limitations are discussed, issues that must be addressed moving forward

are highlighted.

Frequency-based Fingerprinting

First, there is overwhelming agreement that damage modes can be fingerprinted from

frequency-based features. There is significant evidence from both experiment [44, 45,

47, 55, 145–147] and modeling [67, 68, 71, 114, 148] indicating that damage mechanisms

exhibit distinguishable differences in frequencies. Subsequently, the most suitable rep-

resentations of waveforms will use methods that encode frequency information such as

partial powers, CWT coefficients, or HHT spectra. The optimal representation scheme

is still in dispute, as it is not known how these features are impacted by experimental

configuration [72, 149, 150]. As an example, changes to the sample geometry affect wave-

form features, even when the dominant damage mode has not changed [68, 90, 151, 151].

Ospitia et al. demonstrated that AE generated from pencil lead breaks, and material

damage, exhibited lower frequencies in plate geometries than to beam geometries [151].

This difference was attributed to the unrestricted crack extension in the beam geometry

compared with incremental extensions in the plate geometry.
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Moreover, variations in propagation pathways distort acoustic waveforms, resulting

from a single event recorded at different sensors [65, 68, 90, 151]. Hamstad showed,

via FEA calculations, that excitations will produce lower frequencies corresponding to

the flexural wave mode when the excitation is farther away from the midplane of the

plate [65]; this has been experimentally verified [149]. Maillet et al. experimentally

demonstrated that path lengths shift frequency centroids to lower values for larger source-

to-sensor distances [90]. Thus, an event not emitted from the center of a specimen will

have different frequency content depending on which sensor is used to analyze the wave.

Finally, the sensor contact is also known to influence the frequency spectra of a signal[152–

154]. Theobald et al. showed that the acoustic impedance matching between a couplant

and the sensor significantly influences the recorded frequency spectra [153]. Future AE

studies aiming to study point-by-point AE information across specimens must standardize

methods for ensuring experimentally consistent sensor contact, specimen geometry, and

loading conditions.

Robust Verification

The verification of ML results is a closed loop problem. The optimal feature rep-

resentation and ML algorithm are not known a priori, motivating the need for manual

verification which in turn requires a priori knowledge of the optimal feature representa-

tion. Breaking this loop necessitates strategies that bring outside information, such as

existing domain knowledge or secondary corroborating experimentation. The simplest of

these approaches is the use of existing domain knowledge to correlate clusters to dam-

age modes by inspecting average frequency values of a cluster, or the cluster activity

[1, 3, 57, 85, 86, 97, 110, 125, 155].

When the average frequency characteristics of a cluster are used to verify cluster
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membership, conclusions should be treated with caution as there is little accounting for

the large experimental variance of such characteristics. For example, singleton frequency

values (e.g. peak, average, or centroid) are influenced by factors such as source-to-sensor

distance and the state of damage accumulation; both affect waveform and frequency

attenuation in unknown ways, and therefore reduce the robustness of verification [72,

115, 149, 150]. When cluster activity is considered, there is often considerable overlap in

ways that are not physically expected. For example, Lyu et al. concluded that all modes

of damage in 0/90 woven Cf/SiC CMCs, including fiber bundle failure, are active from the

beginning of a creep test [156]. It is unclear if this is a real phenomenon, or if fewer damage

modes are active and are instead being incorrectly distributed across all clusters. Few

studies show distinct differences in chronological cluster activation [100, 155, 157, 158].

Similarly, more complex fiber architectures often show simultaneous cluster activation,

however, these findings have not been verified experimentally [56, 85, 159, 160]. When

corroborating experimentation is used to break the loop, high-resolution postmortem

techniques (namely, microscopy) are popular for justifying cluster labels [84, 88, 139, 161–

164]. However, these postmortem methods are insufficient for informing on damage

chronology and can only provide information on what labels are available to be assigned.

More complex solutions involve the creation of AE libraries to serve as ground truth

data sets [54, 87, 165, 166]. This is a particularly powerful approach because once ground

truth sets have been established, there is no difficulty in the interpretation of final re-

sults and refinement of the learning procedure becomes possible. One method of library

creation is to isolate 1-2 damage modes by using specialized sample geometries, and then

leverage signal characteristics to label damage modes in more relevant geometries. For

example, Godin et al. used AE from pure epoxy resin and single fiber microcomposites

to label the unsupervised results from unidirectional composites [54]. Another method

is to test full-scale samples in ways that promote one damage mechanism. Gutkin et al.
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tested full-scale composite laminates under monotonic tension, compact tension, compact

compression, double cantilever beam, and four-point end notch flexure tests [87].

The most promising library creation method involves testing specimens with known

damage modes, and using secondary high-resolution in-situ methods to assign labels to

individual signals. While such studies should elucidate the nature of the AE-mechanism

relationship, they are highly non-trivial to conduct due to time and resource constraints.

As a result, existing studies which attempt this lack one-to-one correlation between events

and damage modes, limiting the usefulness of the library. For example, the library created

by Tat et al. [166] is composed of a single tomographic scan in the period of interest,

which does not meaningfully increase temporal resolution compared to a post-mortem

image and is geometry-specific. Moreover, [166] used an open hole dogbone specimen

geometry, which is known to alter waveform characteristics in a way such that it cannot

be used to classify waveforms from other geometries [167].

The inability to use signals gathered from one experimental configuration to classify

signals gathered from another experimental configuration points to a more general prob-

lem: there is no overlap between material systems, experimental configurations, and no

framework which currently exists to address these differences [54, 100, 103, 120, 165, 168].

This prevents meaningful comparison of the efficacy of different representation schemes

and choice of ML algorithms, and is the subject of the study presented in Chapter 4.

1.5 Objectives and Outline

Expanding the space in which ceramic matrix composites can be used hinges on the

ability to accurately predict their damage progression. However, due to their hetero-

geneous microstructure, quantitative descriptions of damage are non-trivial to obtain.

To this end, the primary focus of this dissertation is the development and utilization of
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novel trustworthy ML tools which can be used to obtain such quantitative descriptions of

damage progression. Herein, the first framework for fingerprinting AE signals to identify

their source damage mechanism in elastically similar composites is proposed and charac-

terized. Guidelines for the development of trustworthy ML in the physical sciences are

established, and perspective on the future of ML-based solutions in mechanics is offered.

In Chapter 2, I will first present an in-situ study of crack growth rates in SiC/SiC

minicomposites, and show that current canonical models do not accurately predict crack

growth rates or crack opening displacements. Results are contextualized in terms of mi-

crostructural heterogeneities, which are found to be the primary cause of discrepancy

between model and measurement. Such heterogenities are non-trivial to capture in ana-

lytical and numerical models and motivate the need for high-fidelity damage mechanism

identification from AE.

Chapter 3 presents a novel ML-based method for damage mechanism identification

from AE in elastically similar composites via a spectral framework. AE waveforms were

collected from SiC/SiC ceramic matrix minicomposites loaded under uniaxial tension.

The signals were then encoded with a modified partial power scheme and subsequently

clustered via spectral clustering. Matrix cracking and fiber failure were successfully

identified based on the frequency information contained in the AE event they produced,

despite the similar constituent elastic properties of the matrix and fiber. Importantly, the

resultant identification of AE events closely followed CMC damage chronology, wherein

early matrix cracking is later followed by fiber breaks, even though the approach is fully

domain-knowledge agnostic. The presented approach is promising for CMCs and other

composite systems with elastically similar constituents.

Following the development of the spectral framework, a broad need for characteriza-

tion of AE-ML frameworks was identified. However, the lack of ground truth datasets

and the limited overlap between experimental configurations has thus far precluded any
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direct, quantitative benchmarking of their accuracy. In Chapter 4, a ground truth dataset

is generated and used to benchmark our new ML framework and currently existing frame-

works for AE identification. This dataset is comprised of pencil lead breaks with known

angles of incidence, θ, where each angle generates a unique frequency spectrum that

changes continuously with θ; this can be considered analogous to attributes of AE sig-

nals generated from failure processes, such as those that occur in CMCs. Five frameworks

from the literature, all using various clustering approaches, are benchmarked according

to their ability to discriminate between two sets of signals with a fixed ∆θ. Their per-

formance as related to choice of features is discussed, a set of best practices for feature

selection is proposed, and guidelines to facilitate widespread use of AE-ML frameworks

are provided.

While the work in Chapter 4 represents a first step in creating ground truth libraries

of acoustic signals, it is likely that signals from the PLB library do not share character-

istics which can be used for damage mechanism identification in CMCs. To address this

shortcoming, Chapter 5 presents and discusses preliminary work targeted at creating a

ground truth library of signals from CMCs. Here, SiC/SiC minicomposites are subjected

to uniaxial tension and imaged via x-ray computed tomography. Broad damage mech-

anism trends are identified, allowing a training library primarily composed of matrix

crack signals to be curated. An autoencoder architecture is then leveraged to perform

anomaly detection to identify fiber break signals. It is found that fiber break signals

have unusually low reconstruction errors, indicating a high degree of homogeneity within

these signals. This behavior is contextualized by the composite microstructure, lends

support to hypotheses developed in Chapter 3, and motivates choices for future AE-ML

frameworks.

In Chapter 6, I discuss the implications of the research findings presented in this dis-

sertation, provide perspective on how ML tools can be effectively leveraged to investigate
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the mechanical behavior of materials, and propose recommendations for future scientific

investigations into the analysis of acoustic emission characterization of composites using

machine learning.
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Figure 1.1: Cross-section of a SiC/BN/SiC minicomposite. SiC fibers are
coated in a 300±80 nm BN interphase are surrounded by a SiC matrix. The inset has
been artificially colored to highlight the fiber, interphase, and matrix constituents.
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Table 1.1: Common AE time-domain, frequency-domain, and composite features
ID Feature Units Description
1 Duration[85, 120, 155] µs Time difference between first and last threshold

crossing
2 Amplitude[85, 120] dB, V Maximum signal amplitude
3 Energy[85, 120] attoJ Area under signal envelope or

∫
x(t)2dt, depend-

ing on software
4 Zero crossing rate [103, 159] % -
5 Zero crossings [169] - -
6 Rise time[85, 120] µs Time from start of signal to maximum amplitude
7 Decay time [159] µs Time from maximum amplitude to end of signal
8 Temporal centroid µs

∫
tx(t)dt/

∫
tdt

9 Entropy [159] - -
10 Counts[85, 155] - Number of signal peaks above a threshold
11 Counts to peak[85, 120] - Counts from signal onset to maximum amplitude
12 Rise angle (RA) [155, 169] - tan−1(Amplitude/Rise time)
13 Decay angle (DA) [155, 169] - tan−1(Amplitude/Decay time)
14 RA value [91, 92] V/µs Rise Time/Amplitude
15 Rise time/Duration [159] - -
16 Duration/Amplitude [159] µs -
17 Energy/Amplitude [159] attoJ/V -
18 Non-dimensional amplitude

[169]
- Maximum amplitude/mean amplitude

19 Counts/duration[85] - -

20 Partial Power [49, 169] %
∫ b

a
F [x(t)](k)dk/

∫ fN
0

F [x(t)](k)dk, a, b ∈
[0, fN ].

21 Average frequency [92, 155] kHz
∫
F [x](k)dk/

∫
kdk. This is the mean frequency.

22 Frequency centroid, fcentroid
[85]

kHz
∫
kF [x](k)dk/

∫
kdk. The center of gravity of

the frequency spectrum.
23 Peak frequency, fpeak[85] kHz Frequency with maximum FFT power
24 Spectral spread[159] kHz Standard deviation of F [x(t)]
25 Spectral skewness [159] - -
26 Spectral kurtosis [159] - -
27 Roll-on frequency [159] kHz Frequency at which 10% of total FFT power has

been accumulated
28 Roll-off frequency[159] kHz Frequency at which 90% of total FFT power has

been accumulated
29 Initiation Frequency [49, 120] kHz Average frequency from signal onset to maximum

amplitude
30 Reverberation frequency [120,

169]
kHz Average frequency from maximum amplitude to

end of signal
31 Weighted peak frequency [49] kHz

√
fcentroidfpeak

x(t) is the signal, F [∗] is the FFT, and fN is the Nyquist frequency.
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Figure 1.2: Workflow diagram of an AE-ML framework. (a) Waveforms are
collected and (b) pertinent features are extracted from the waveforms, which are then
represented as vectors in feature space. (c) Feature vectors can then be re-scaled
and/or re-mapped before (d) the clustering algorithm is applied and feature vectors
are labeled. Every AE-ML framework follows this procedure.
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Figure 1.3: Feature selection determines the quality of clusters. (a) The
initial group of objects is partitioned in (b) based on color and in (c) based on flight
capability. The researcher must tailor the feature set to achieve the desired partition.
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Figure 1.4: Common feature extraction methods. (a) Parameter features are
readily extracted by means of commercial or in-house software.(b) The continuous
wavelet transform is applied to the signal using Eqn. 1.6. CWT coefficients are
then used as feature vector entries. (c) Wavelet packet decomposition down-samples
the original signal to 2j sub-signals containing non-overlapping frequency content.
Energy contained in each of these subsignals is used as feature vector entries. (d) The
marginal Hilbert spectrum is calculated and the frequency centroid of each IMF is
used as feature vector entries. Panel b is adapted from Ref. [1] with permission from
Elsevier. Panel c is adapted from Ref. [2] with permission from Elsevier. Panel d is
adapted from Ref. [3] with permission from Elsevier.
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Figure 1.5: A visual guide to k-means and other ML algorthms. (a) When
clustering data with k-means, seed points are selected to represent the initial data,
which are then labeled according to the closest seed point. The seeds are then moved
to the centroid of the labeled data, and points are re-labeled until a user-defined
stopping criterion is reached. (b) K-means often falls into local minima, resulting
in sub-optimal partitions. An initialization with 15 centroids is shown, where two
centroids have fallen into a local minima (denoted with minuses) and are unable to
move to their optimal position (denoted with pluses). (c) The performance of k-means,
GMM, and spectral clustering is demonstrated on a Gaussian dataset (row 1), an
anisotropic dataset (row 2), and a concentric circle dataset (row 3). The performance
of an ML algorithm is dependent on the data scale and geometry. Panel (a) is adapted
from Ref. [4] with permission from Elsevier. Panel (b) is adapted from Ref. [5] under
creative commons license. Panel (c) is generated from the sci-kit learn toolbox [6].
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Figure 1.6: AE waveforms generated in Chapter 4 adopt a non-convex ge-
ometry when plotted in feature space. Waveforms are plotted as a function
of frequency centroid, partial power, and colored by the angle of incidence. In this
feature space waveforms adopt a circular, non-convex geometry. Unique angles of
incidence occupy unique arcs on this circle, denoted by dashed lines.
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Figure 1.7: Roadmap and comparison of data visualization techniques. (a)
The weight vectors of the SOM are initialized and then adapt to the structure of
the input data in the high-dimensional feature space. The weight vectors are then
represented by a grid in 2D, where each point on the grid is either assigned a grey
value or a label. (b) The same set of 6000 handwritten digits is visualized using 4
common manifold learning techniques: t-SNE, Sammon mapping, Isomap, and local
linear embedding. Only t-SNE maintains distinct clusters in the plane, thereby out-
performing the other data visualization techniques. Panel (a) is adapted from Ref.
[7] with permission from Elsevier and from Ref.[8] with permission from the Journal
of Acoustic Emission. Panel (b) is adapted from Ref. [9] with permission from the
authors.
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In situ Crack Opening Displacement

Growth Rates of SiC/SiC Ceramic

Matrix Minicomposites

2.1 Scope

In this chapter, I will present an in-situ study of crack growth rates in SiC/SiC mini-

composites. In CMCs, environmental degradation rates are heavily influenced by crack

opening displacements (CODs) and as a result, strategies for extending CMC lifetimes

are driven by understanding COD evolution. While many models describe COD growth,

few experimental studies exist to validate their accuracy. The goals of this chapter

are three-fold: 1) compare experimentally observed crack-growth to two canonical COD

growth models, 2) contextualize deviations from these models in terms of microstructural

heterogeneity, and 3) motivate the need for ML-based characterization tools.

To this end, four SiC/SiC minicomposites fabricated by two different sets of processing

conditions were imaged as they were loaded under uniaxial tension in a scanning electron
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microscope (SEM). The COD of each crack was tracked as a function of stress, and

compared to predictions from the Marshall model [10] and the Hutchinson and Jensen

model [11]. It is experimentally demonstrated that > 45% of CODs can deviate from the

classical σ2 dependence typically proposed in these models. Evidence is provided for the

hypothesis that such deviation is a result of crack geometry, proximity to neighboring

cracks, and intact subsurface matrix content.

2.2 Materials, Methods, and Modeling

2.2.1 In-SEM Tensile Testing and COD Measurements

Two SiC/SiC minicomposite systems, fabricated by Rolls-Royce HTC, were incre-

mentally loaded to failure in-SEM (MAIA3, Tescan, Kohoutovice, Czech Republic) using

the method described in [33]. Images of the specimen surface were captured at each load

increment and stitched to form gauge-length (≈ 25 mm span) micrographs of surface

damage accumulation. The minicomposite test specimens consisted of a Hi-NicalonTM

Type S (HNS) (NGS Advanced Fibers Co., Ltd., Toyama, Japan) 500 filament SiC fiber

tow, a boron nitride (BN) interphase, and a chemical vapor infiltrated SiC matrix. In-

terphase thicknesses and matrix volume fractions varied between systems. As such, one

system is referred to as low fiber content (LFC) due to its relatively low fiber and high

matrix content compared to the other system, whereas the other system is referred to as

high fiber content (HFC) (Figure 2.1).

For the LFC and HFC systems, the fiber volume fractions were nominally 22.8±1.0%

(LFC) and 34.1± 1.3% (HFC), and the interphase volume fractions were ≈ 2.5% (LFC)

and ≈ 25% (HFC). In both cases, the interphase volume fraction was consolidated into

the volume fraction of the matrix. This was done because when a rule-of-mixtures was
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applied between the interphase and the matrix, the COD predictions changed by less

than 250 nm, an amount less than the resolution limit of the micrographs captured.

Therefore in both systems, the matrix volume fraction Vm was defined in terms of the

fiber volume fraction Vf as Vm = 1 − Vf . The interfacial shear stress τ and interfacial

debond energy Γc were previously determined by fiber push-in tests [33]. In the LFC

system, Γc = 1.2± 0.5 Jm-2 and τ = 18.1± 4.8 MPa. In the HFC system Γc = 5.5± 3.9

Jm-2 and τ = 34.5± 13.0 MPa.

Crack opening displacements (CODs) were measured with ImageJ for each visually

identifiable through-thickness crack at each load state (Figure 2.2) [170]. For each crack,

20 measurements were taken at approximately equal spacing across the entire profile of

the crack, at each load state. If the crack had bifurcated, measurements were not taken in

the bifurcated region. The average value of those measurements is plotted as a function

of stress for each system in Figure 2.3.

2.2.2 Modeling

In minicomposites, damage chronology typically begins with the formation of a matrix

crack at a surface flaw. This crack grows until it reaches a fiber and the crack is deflected

orthogonal to the initial growth direction via an interface debonding mechanism. This

debonding dissipates energy that would otherwise contribute to continued crack growth,

thereby slowing, and in some cases completely arresting [32], the crack. Upon further

loading the crack grows, the composite reaches a state of matrix crack saturation, and

the traction forces which oppose COD growth reach a maximum [22, 23, 171]. After

matrix crack saturation, further loading cannot increase stresses in the matrix. Instead,

fibers begin to bear further increases to the load, fail and reduce the structure’s ability

to withstand further mechanical stresses. Within each of the two seminal models that
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describe this process, the microstructural properties dictating COD are the volume frac-

tion of fibers and the interfacial parameters τ and Γc. The primary differences only arise

when considering the state of pre-existing damage within the minicomposite.

The Marshall Model

The first model, developed by Marshall et al., assumes a pre-existing steady-state

crack with an infinitely long debond region. In this model, the only toughening phe-

nomenon is a result of fibers resisting crack growth via friction at the interface. CODs

are determined by [10]:

δ = 2
rfσ

2

4τV 2
f Ef

(
1 +

EfVf

Em(1−Vf )

) (2.1)

where rf is the fiber radius, τ is the interfacial shear stress, and σ is the far-field stress.

For the LFC and HFC system respectively, τ was 18.1 ± 4.8 MPa and 34.5 ± 13.0 MPa

[33].

The Hutchinson and Jensen Model

The second modeling approach, from Hutchinson and Jensen, makes similar assump-

tions but allows for a finite, pre-existing debond region. In this model, the energy needed

to continue debonding along the fiber-matrix interface and frictional stresses act to re-

duce the COD [11]. To best match the minicomposite geometry tested, their solution

for a hexagonal fiber array subject to constant interfacial shear stress was used. For this

case, Hutchinson and Jensen derived an estimate for the COD as [11]:

δ = 2b2

[
1− Vf

Vfc1c3

(
Γc

Emrf

)1/2

l +
τ l2

Emrf

]
(2.2)
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where l is the debond length and Γc is the interfacial debond energy:

l =
rfEm(1− Vf )(σ − σi)

2VfτEc

(2.3)

The debond stress σi is given by:

σi = Emϵ
T

[
1

c1

(
Γc

EmrfϵT2

)1/2

− c2
c1

]
(2.4)

where ϵT is the thermal residual mismatch strain of the fiber and matrix. Coefficients

bi, ci are detailed in [11].

Note that δ has been defined as the full opening of the crack (hence the factor of two

included in each model) to correspond with what has been measured. This is in contrast

to the original models, which defined δ to be the half-opening of the crack. Finally, in

each model the effects of microstructural properties on COD growth, as compared to

experiment, are discussed in Section 2.3.3.

2.3 Results and Discussion

2.3.1 Sources of Error

Agreement between experimental data and model predictions depends on how well a

model has captured the underlying physics, and also on the fidelity with which measure-

ments can be made. In this study, it was found that discrepancies could be explained by

both measurement limitations and model limitations. To deconvolute these two discrep-

ancies, it is necessary to identify sources of measurement error that persist through the

study and limit their effect on the analysis of measured CODs.

Inspection of Figure 2.4 suggests that each model significantly underpredicts CODs
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at the earliest loads (<700 MPa) and only matches the lowest measured CODs at higher

loads. While only shown for HFC in Figure 2.4, it was also present in the LFC system.

This underprediction has been determined to be the result of image resolution limitations.

At loads below 700 MPa, HFC CODs are less than 2 µm, and the spatial resolution of

the micrographs was 0.3-0.4 µm/pixel. This has two implications. First, although it is

possible to identify the existence of a crack whose COD is less than 0.3 µm, it is not

possible to measure the true COD if it is less than this value (Figure 2.5a). Second,

the crack faces can only be identified to the nearest pixel. Often, the true position of

the crack face will be somewhere in the interior of the pixel, rather than the edge. On

average, it should be expected that the true position of the crack face is in the middle

of the pixel which has been identified as a crack-face pixel. Therefore, the true COD

should be expected to be 1 pixel larger (0.5 pixel at each crack face) than what can be

experimentally measured (Figure 2.5b).

For both cases, resolution artifacts can be addressed by including a constant term in

Eqns. 2.1 and 2.2 which is equal to the resolution limit (0.3− 0.4 µm). At the low loads,

this offset directly accounts for the first effect. At higher loads, the single pixel offset

accounts for the average 1-pixel bias resulting from imprecise crack-face identifications.

In both cases the single pixel correction yields excellent agreement between model and

experiment (Figure 2.4). Thus, the observed discrepancies between the average behavior

in the HFC system and the model-predicted behavior can be explained by the resolution

limit. The resolution-corrected models will be used in the following discussion.

2.3.2 COD Measurements From In-SEM Observations

Crack opening displacements (CODs) in the low fiber content (LFC) specimen were

larger than those in the high fiber content (HFC) specimen for the same stress state
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throughout the loading profile (Figure 2.3). This is a result of lower bridging tractions

in the LFC system (Γc = 1.2 ± 0.5 Jm-2 in LFC versus Γc = 5.5 ± 3.9 Jm-2 in HFC)

[172, 173].

In the LFC system, cracks with the largest openings, including the failure crack,

occurred relatively far from their nearest neighboring cracks (>500–700 µm) compared

to the average crack spacing at matrix crack saturation, ≈ 400µm (Figure 2.6a). This

observation is consistent with experiments reported by Chateau et al. for minicomposite

specimens [20, 32], who found that cracks with large CODs were relatively far from

other cracks. This can be understood by first observing that the debonded region of a

crack that is spatially isolated from all other cracks is unlikely to overlap with another

debonded region. This allows for the debonded region of that isolated crack to grow in

a manner that is unconstrained by its proximity to the debonded region of an adjacent

crack. As COD is a monotonic function of the debond length in the Hutchinson model, it

follows that maximizing the size of the debond region maximizes the COD. In the HFC

system the same correlation was not observed. This is hypothesized to be the result of

the HFC system’s highly discontinuous microstructure [33] and is the subject of ongoing

investigation.

A significant number of CODs did not evolve according to the expected σ2 depen-

dence from fracture mechanics models. Their evolution clearly did not follow a σ2 law,

but instead appeared to more closely follow a linear or σ1/2 law (Figure 2.3). Similar

deviations from a σ2 dependence have been previously observed by the authors, but the

origin of these deviations was unclear [31]. In the LFC system, 75% (12/16) and 60%

(6/10) of the measured cracks in sample 1 and 2 respectively did not follow a σ2 depen-

dence. In HFC system, 45% (10/22) and 57% (8/14) of the measured cracks in samples

1 and 2 respectively did not follow a σ2 dependence. Cracks showing this anomalous

behavior had either bifurcated or were in sufficiently close proximity to a neighboring
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crack, such that their debond lengths overlapped (as estimated from Eqn. 3). Therefore,

we attribute the deviation from σ2 to stem from the effects of overlapping debond lengths

and crack bifurcations. It must be noted that it is usually assumed that cracks cannot

form within the debond region of another crack, but this is only valid when the minicom-

posite is under a uniform tensile stress at all locations in the cross-section. In realistic

systems, geometrical variations in the cross-section due to heterogeneous pore and fiber

distributions could result in local stress states that would violate this assumption and

permit crack formation within debonded regions.

In the four samples tested (two LFC and two HFC), the existence of nearby neigh-

boring cracks/bifurcations (NNCB) was a necessary but not sufficient condition to cause

the deviation from σ2. All of the 62 (26 LFC and 36 HFC) cracks whose CODs deviated

from σ2 had NNCBs, but not all of cracks with NNCBs exhibited this deviation. There

were case exceptions. Over all samples, 12 cracks with NNCBs (6 in LFC and 6 in HFC)

still demonstrated the canonical σ2 dependence. The mechanism that drove these case

exceptions is currently unclear.

2.3.3 Comparison of Experimental Measurements

to Model-Based CODs

In this section, we investigate how the microstructural assumptions of the Marshall

and Hutchinson models influence their predictive capability. We demonstrate that match-

ing model assumptions to specimen microstructure, specifically the state of pre-existing

debonding, results in better prediction of the experimentally measured average COD be-

haviors. This is particularly important when interfacial parameters are higher, such as

in the HFC system investigated herein (Figure 2.3). It is also demonstrated that simpler

models incorporating less physics are likely to be more useful for lifetime prediction, as
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they provide more conservative estimates and are less likely to underpredict CODs.

In the LFC system, the Hutchinson model is more suited to predict average CODs

as compared to the Marshall model (Figure 2.3). This is attributed to the initial state

of fiber debonding in the microstructure. Fiber push-in testing revealed the majority

(90%) of fibers tested were completely bonded to the matrix via the interphase. The

assumptions of the Marshall model, specifically that fibers are already debonded, do not

match the microstructure. As a result, the predictions of the Marshall model fall further

above the statistical average of CODs in the LFC system (Figure 2.3). In contrast,

the state of the microstructure more closely matches the assumptions of the Hutchinson

model, where fibers are not assumed to be debonded prior to loading.

In the HFC system, the Marshall model is more appropriate for predicting average

COD behavior (Figure 2.3). Part of the reason for this is due to the state of fiber bonding

within the HFC system. During fiber push-in testing, it was discovered that only a small

portion of fibers (43%) were bonded to the matrix via the interphase with the others

debonded prior to loading. As a result, the Hutchinson model, which assumes bonded

fibers, the crack closure effect due to energy absorbed during debonding predicted by the

model is larger than what is expected in the minicomposite (Figure 2.3). Instead, since

about half of the fibers are debonded prior to loading, the effects from debonding are

reduced, and frictional coupling of the fibers to the matrix becomes more dominant for

determining CODs, as is assumed in the Marshall model. Here it is noted that unbonded

fibers were excluded from interfacial parameter calculations, meaning that the values of

Γc input to each model are likely higher than the true global average. Reducing the value

of ΓC for the HFC system to 43% of its original value (i.e. the estimated ratio of fibers

bonded) causes CODs to increase by no more than 0.1 µm. This indicates that the value

of Γc is not the only factor which contributes to the underprediction by the Hutchinson

model. Other factors which contribute are hypothesized to also be a result of the highly
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heterogeneous microstructure of the HFC system.

These findings highlight that canonical models can accurately predict COD trends

when the microstructure matches model assumptions; this is true even when crack paths

are non-linear [32], have bifurcated, or the crack has a nearby neighbor. Additionally, the

assumption that all fibers bear load through the whole lifetime of the composite appears

to be valid for COD prediction. If this assumption did not hold, then each model would

tend to underestimate CODs. It should be noted that while such progressive fiber failure

does not appear to have a significant impact on the evolution of CODs, it may play a

role in the site of final failure [12].

2.3.4 Effects of Interfacial Parameters

While COD models accurately capture the average behavior of cracks, as described

in Section 2.3.3, they fail to account for the range of CODs observed in experiment. To

explain the observed ranges of CODs, it is helpful to consider the simplifications assumed

by the models. In these models, and more broadly [174–176], architectural simplifications

are used, such as: homogeneous interphase volumes, an unchanging microstructure, and

uniformly distributed fibers. These simplifications do not hold for CMCs in practice.

Processing considerations dictate that interphase volumes are non-negligible and often

non-uniform, the microstructure evolves as damage accumulates, and fibers are rarely

distributed uniformly.

Here, the effects of simplification of homogeneous interphase volumes are exoplored.

It is shown that the largest CODs can be accounted for by permitting variable interfacial

parameters, while the smallest CODs cannot. This suggests that some of the issues

related to modeling CODs, such as neglecting progressive fiber failure, can be attributed

to other factors such as constituent property variations. Similarly, the existence of CODs

48



In situ Crack Opening Displacement Growth Rates of SiC/SiC Ceramic Matrix Minicomposites
Chapter 2

below the prediction envelope (Figure 2.7) suggests that the growth rate of some cracks

is impeded by effects not related to constituent properties. With respect to the neglect of

progressive fiber failure, it must be noted that it exists in real systems [12, 20], but cannot

currently be deconvolved from local variations in interfacial parameters. Additionally,

the effects of non-uniform fiber distributions cannot currently be captured with analytical

models and are not considered here.

The assumption that composites can be described by a single valued interfacial prop-

erty at every location in the minicomposite sample is only valid when interfacial properties

come from a single statistical distribution. In the course of CMC processing, non-uniform

interphase properties can arise at different locations in the minicomposite specimen due

to heterogeneities in the processing environment. It follows that one cannot assume that

interfacial properties will be drawn from the same distribution at each location in the

minicomposite. For example, the LFC system has thin interphases in comparison to the

HFC system, which has a significant interphase volume (> 2µm thickness or ≈ 25%

volume fraction). As a result, interfacial parameters are less likely to vary in the LFC

system as there is less volume that can contain defects in the interphase and the coating

thickness is relatively uniform. This is in contrast to the HFC interphase, which is large

(≈ 25% by volume) and non-uniform (Figure 2.1). As a result, the averaged interfacial

values used as inputs to the model may not represent the local values at each crack,

particularly in the HFC system.

To explore the reality of local variations in both τ and Γc arising from non-uniform

processing, the full range of interfacial values (described in section 2.2) was used as input

into the Hutchinson model for the LFC system, and the Marshall model for the HFC

system (Figure 2.7). This procedure provides bounds for the smallest and largest COD

that is expected to be measured.

Sweeping the full range of interfacial parameters suggests that microstructural effects
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not related to constituent properties (e.g. crack geometry, heterogeneous fiber distribu-

tion) play a significant role in how cracks grow. If constituent properties were the main

driver in COD growth rates, then it would be expected that the full range of measured

CODs could be captured by using the full range of interfacial parameters as model in-

puts. In contrast to this, only the upper middle portion of measured CODs was captured

with the full range of interfacial parameters. Therefore, a significant number of cracks

had growth rates lower than those that could be predicted by variations in intrinsic

constituent properties.

Impeded COD growth could not be solely attributed to the effects of constituent

property variations and was instead attributed to restricted debond lengths and crack

geometry. With respect to the limited debond length, many cracks that formed were not

isolated. As previously discussed, this serves to limit the size of the debond region. Since

CODs are dependent on the size of the debond region in the Hutchinson model, a limited

debond length would limit CODs and cause them to grow less quickly than more isolated

cracks. The second effect which is hypothesized to be the cause of restricted COD growth

is a consequence of crack-growth geometry. In minicomposites, cracks initiate at the

surface forming a circumferential ring which then grows inward towards the center [32].

Therefore, many cracks which present as through-thickness, when observed by surface-

only SEM measurements, likely have significant matrix content which is uncracked in the

bulk [32, 172]. This would restrict COD growth, due to the enhanced stiffness that the

additional intact matrix provides past the proportional limit of the minicomposite [172].

Therefore, cracks with intact matrix below the surface would have CODs falling below

model-predicted values.

While the method used to interrogate the effect of non-homogeneous interfacial prop-

erties provides bounds on what can be expected to be measured, the exact effects remain

unknown. For example, a distribution of values exists within a single plane, but it is un-
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clear how large deviations between planes should be. There are no known studies which

investigate distributions of interfacial parameters across the whole gauge length, as well

as in-plane surface of a minicomposite. Further work is needed to assess the degree to

which non-uniform processing changes local interfacial parameters.

2.4 Conclusions

In this chapter, in-situ matrix crack opening displacements (CODs) were character-

ized for two systems of SiC/SiC minicomposites containing a low fiber volume fraction

(LFC) and high fiber volume fraction (HFC). The measured CODs of both LFC and

HFC were compared to two seminal models: (i) by Marshall [10] and (ii) Hutchinson

and Jensen [11]. The CODs of a large proportions of cracks, 69% (18/26) and 50%

(15/36) in the LFC and HFC system respectively, were observed to deviate from the

canonical σ2 dependence. Such cracks were in close proximity to a neighboring crack,

or had bifurcated. Although this had been previously observed by the authors [31] for

macrocomposite systems, this is the first known report in minicomposites. Further work

is being conducted to understand this.

The predictive power of each CODmodel depended on how well the state of debonding

in the real microstructure matched the assumption of the model, rather than the geometry

of the crack plane or existence of NNCBs. When the state of debonding in a sample is

unknown, or interfacial parameters are large, models that do not account for finite debond

lengths (such as the Marshall model [10]) should be used, as they will provide conservative

COD estimates. In the LFC system, the Hutchinson and Jensen model better reflected

observed crack behavior because the majority of fiber/matrix interphases (90%) were

intact. In contrast, 43% of fiber/matrix interphases in the HFC system were undamaged,

which in turn led to led to the excellent agreement between experiment and the Marshall
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model where the effects of debonding were negligible compared to the effects of frictional

shear resistance.

To account for spatial heterogeneities in the interphase resulting from realistic pro-

cessing conditions, an envelope of CODs was created using the distribution of interfacial

parameters which was experimentally measured. When this modification is made, the

models adequately explained the upper/middle range of observed CODs but were unable

to explain the lower range of CODs. These smaller-than-predicted CODs were attributed

to the cracks being proximity to a neighboring crack, as well as undamaged matrix con-

tent below the surface which could not be characterized via SEM measurements.

Future exploration of these hypotheses will lead to better modeling choices and im-

proved lifetime prediction of CMCs however, the ability to rapidly image subsurface

damage represents a significant barrier to conducting such investigations. Studies which

make use of laboratory scale x-ray computed tomography machines may take weeks to

fully test a single sample. This renders their use infeasible, since many of these machines

exist in user-facilities where acquiring such extended instrument time is not possible.

While the capability for rapid imaging exists at synchrotron facilities, the accessibility of

these tools is limited by long queues (≈ 2 years) and small number of facilities (8 located

in the USA according to the International Atomic Energy Agency). As a result, it is

highly desirable to develop the capability to interrogate subsurface damage without the

use of such tools. Consequently, the following chapters focus on the creation and use of

trustworthy ML tools, which have the unique potential to enable large-scale subsurface

damage mechanism identification in SiC/SiC CMCs.
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Figure 2.1: Constituent distribution in LFC and HFC specimens. In both
systems, the fiber distribution was heterogeneous, in contrast to fundamental modeling
assumptions. LFC and HFC specimens exhibited closely spaced regions of fibers,
which resulted in uneven matrix and interphase deposition.
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Figure 2.2: The progressive crack opening behavior of the LFC failure crack.
By high-resolution SEM, in situ behavior of these CODs can be measured, which has
the potential to advance understanding of why some cracks evolve to become more
probabilistic locations for failure than other cracks.
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Figure 2.3: Experimentally measured and resolution-corrected model-pre-
dicted CODs in two samples of the LFC and HFC systems. Experimentally
measured CODs for the LFC and HFC system are shown, with grey polynomial re-
gression lines. CODs as predicted by [10] and [11] are overlaid. In the LFC system,
the Hutchinson model accurately captures the average behavior of the cracks, while
the Marshall model overpredicts CODs. In the HFC system, the Marshall model accu-
rately predicts the average CODs while the Hutchinson model tends to underpredict
average CODs. This is attributed to the different microstructures.
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Figure 2.4: Experimentally measured CODs for sample 2 of the HFC system
with (a) original models and (b) resolution-corrected models overlaid. The
arrow denotes magnitude of the correction. Experimental CODs, particularly at the
lowest stress states, measure 1-2 pixels in width. When this is the case, Measurements
are, on average, a single pixel larger than what will be predicted by models (discussed
in detail in Section 2.3.1).

Figure 2.5: Example of crack that can be identified, but cannot be accurately
measured because the COD is below the resolution limit. This presents issues
related to identification of (a) the position of the crack face, whose true position resides
somewhere in the interior of the pixel and (b) the COD when its value is less than
the resolution limit (.449 µm).
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Figure 2.6: Maximum crack opening displacement of all cracks in the (a)
LFC and (b) HFC system as a function of distance to nearest neighboring
crack. (a) The CODs measured in the LFC system were found to be correlated to
distance to neighboring cracks. (b) The same correlation was not observed in the
HFC. This is hypothesized to be a result of the HFC’s discontinuous microstructure,
and is the subject of ongoing investigations.
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Figure 2.7: | Resolution-corrected model-predicted CODs using the measured range
of interfacial values as inputs compared with experimental data. (a) The envelope
Hutchinson-predicted CODs for the lower and upper interfacial values are shown
alongside the nominally predicted CODs for the LFC system. (b) The envelope of
Marshall-predicted CODs in the HFC system. While the range of interfacial parame-
ters explains the upper middle range of measured CODs, a large number of cracks fall
below model predictions. This is hypothesized to be a result of overlapping debond
lengths and intact matrix below the surface of the minicomposite.
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Chapter 3

ML-Enabled Damage Mechanism

Identification From AEs in SiC/SiC

Minicomposites

3.1 Scope

In the previous chapter, I have highlighted the need for novel tools to character-

ize subsurface damage in SiC/SiC composite structures. Among the most promising

methods is acoustic emission (AE), however this technique is limited in that it cannot

be used to identify damage mechanisms in elastically similar composites. Here, I will

demonstrate that damage mechanism identification from acoustic emission (AE) signals

generated in minicomposites with elastically similar constituents is possible. AE wave-

forms were generated by SiC/SiC ceramic matrix minicomposites (CMCs) loaded under

uniaxial tension and recorded by four sensors (two models with each model placed at

two ends). Signals were encoded with a modified partial power scheme and subsequently

partitioned through spectral clustering. Matrix cracking and fiber failure were identified
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based on the frequency information contained in the AE event they produced, despite

the similar constituent elastic properties of the matrix and fiber. Importantly, the re-

sultant identification of AE events closely followed CMC damage chronology, wherein

early matrix cracking is later followed by fiber breaks, even though the approach is fully

domain-knowledge agnostic. Additionally, the partitions were highly precise across both

the model and location of the sensors, and the partitioning was repeatable. The pre-

sented approach is promising for CMCs and other composite systems with elastically

similar constituents.

3.2 Methods

3.2.1 Experimental Configuration

SiC/SiC minicomposites (Rolls Royce High Temperature Composites, Cyprus, CA)

were loaded under uniaxial tension using a custom load frame built in-house with a 220

N load cell and a cross-head displacement rate of 0.120 mm/minute, corresponding to a

nominal strain rate of 7.5×10−5 s-1. Specimens consisted of 500 Hi-Nicalon Type STM

SiC fibers (HNS fibers), a boron nitride (BN) interphase, and an overlayer of chemical

vapor infiltrated (CVI) SiC matrix. The microstructural and damage characteristics of

these minicomposites are described in Chapter 2.2 and [33], where they are referred to

as low fiber content (LFC) minicomposites. Three tension tests on LFC minicomposites

are presented here to demonstrate the ML framework.

AE activity was recorded using a four-channel fracture wave detector acquisition

system (Digital Wave Corporation, Centennial, CO). The threshold voltage was set to

0.1 V, the number of pre-trigger points was set to 256, and the total length of signal

captured was 1024 points at a rate of 10 MHz. Two sets of AE sensor models were
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mounted (Figure 3.1) on Duralco 132 epoxy tabs with vacuum grease (Figure 3.1b). The

tab thickness was 0.35mm, as measured from the surface of the minicomposite to the

sensor. Tabs were created using 3D-printed molds of 10mm in diameter.

The choice of coupling medium is significant for waveform transmission through

an interface. The transmission coefficients are determined by how closely the acous-

tic impedance of the specimen and the couplant match. As the impedance mismatch

between the two increases, the transmission coefficient decreases [154]. Of the available

medium choices examined, Duralco 132 exhibited the lowest impedance mismatch to

SiC/SiC.

Additionally, the thickness of the epoxy tabs controls the quality of data collected.

Previous work has reported that transmission coefficients decrease as a function of cou-

pling medium thickness[154]. Thinner epoxy tabs resulted in more consistent labeling

(discussed in Chapter 3.3.3), which is hypothesized to be a result of the higher transmis-

sion coefficients at all frequencies as compared to thick (>1.5mm) epoxy tabs.

AE signals were recorded using two miniature S9225 piezoelectric AE transducers

(Physical Acoustics, Princeton, NJ) with a broadband response of 300-1800 kHz and

two B1025 transducers (Digital Wave Corporation, Centennial, CO) with a broadband

response of 50-2000 kHz. The sensors were designated S9225-a, S9225-b, B1025-a, and

B1025-b, where the I.D. letter corresponds to the position on the minicomposite (Figure

3.1). The acquisition system was synchronized; when one sensor was triggered, all sensors

recorded waveform data simultaneously.

3.2.2 Data Processing

After acquisition, the raw AE data was cleaned to remove events not suitable as input

to the ML framework. First, clearly identifiable noise events were removed (Figure 3.2a).
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These events were either characterized by a single voltage spike in the time-domain of the

waveform, or they presented with energies less than 0.001 V (low signal-to-noise ratio).

Recorded waveforms that showed multiple damage events within the same time window

(Figure 3.2b) were also not considered; less than 1% of all recorded waveforms were of

type (b). If the signal saturated the sensor (Figures 3.2c and 3.2d), the event was not

considered. The majority of waveforms removed were of types (a), (c), and (d). Then, a

location analysis was performed to remove out-of-gauge events [145] using:

location =
x

2

(
∆t

∆tx

)
(3.1)

where x is the sensor separation distance, ∆t is the difference in time-of-arrival, and ∆tx

is the difference in time-of-arrival for an out-of-gauge event as a function of the damage

parameter. This analysis ensured that only signals arising from in-gauge damage events

were analyzed. During this process it was found that the majority of type (a) waveforms

(> 90%) came from out-of-gauge events. This cleaning removed approximately 35% of

all recorded AE waveforms, including out-of-gauge events.

3.3 Unsupervised Classification of Acoustic Spectra

AE data collection and preliminary filtering (Chapter 3.2.2) represent Step 1 of the

general unsupervised AE-ML framework which proceeds as follows:

1. Experimentation: A number, n, waveforms are collected

2. Feature Extraction: Waveforms are represented in feature space by extracting d

pertinent features (i.e. each waveform is represented by a d-dimensional vector)

3. Machine Learning Algorithm: An algorithm is selected to partition waveforms
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into clusters that are representative of damage mechanisms

4. Labeling and Error Analysis: Post-clustering analysis is performed to assign

damage mechanism labels to clusters and assess the validity of results

At each step, considerations must be made to ensure the framework functions prop-

erly. The following section describes Steps 2-4. The code created for this investigation

utilizes the Scikit-learn toolbox [6] and is available without restriction [177].

3.3.1 Feature Extraction

After AE waveforms are collected, suitable representations to encode damage mech-

anism information must be determined. Appropriate waveform features are those that

are more dependent on the generating damage mechanism than on extrinsic factors, such

as propagation distance. Prior finite element analysis studies, supported by experimen-

tal evidence, indicate that partial power is one such feature, provided that signals are

recorded in the near-field [67, 74].

Here, AE waveforms are encoded with a modified partial power scheme, where the

ith component of the feature vector is:

Featurei =

∫ ki
ki−1

F [x(t)]dk∫ kd
k0

F [x(t)]dk
(3.2)

where F [∗] is the Fourier transform operator, x(t) is the recorded signal, and d is the

number of entries in the feature vector.

We set k0 = 200 kHz and kd = 800 kHz for all specimens. To determine the value of k0

a parametric sweep from k0 = 50−350 kHz in increments of 50 kHz was conducted. The

value optimizing validity metrics (Chapter 3.3.3) was chosen. Including partial powers

above 800 kHz did not improve clustering quality. This was attributed to the fact that
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the power of a frequency spectrum above 800 kHz approached zero and thus could not

provide additional discriminating power.

The frequency bounds encompass the pre-amplifier bandpass on the Digital Wave

system and the flat frequency response of the B1025 sensors. While the frequency range

includes values outside the flat frequency response of the S9225 sensors, this does not

impact discriminating power. Any partitions made by the ML algorithm result from dif-

ferences between waveform characteristics. The only stipulation is that recorded wave-

forms should be clustered independently for each sensor to capture the shift in damage

mechanism (i.e. the singular set of all waveforms are not clustered together).

Another parametric study was conducted to determine d, where d was swept from

d = 2 to 45. When all other parameters are fixed, d = 26 (∆k = 23 kHz) optimized

validity metrics (Chapter 3.3.3) for all specimens.

Though previous investigations have included the partial power approach as part of

their representation schemes [49, 89, 115, 159, 169], the representation scheme described

here is unique in that it uses a comparatively much finer resolution and only uses partial

power. Typically the partial power bandwidth used is 200-600 kHz, whereas the approach

herein uses a width of 23 kHz.

3.3.2 Spectral Clustering

Once AE data is properly represented, a suitable ML algorithm for clustering can

be chosen. For this task, spectral clustering was used. This is an unsupervised learning

technique that has been shown empirically to outperform k-means [76, 178] and is less

restrictive with respect to assumptions about input data geometries.

Spectral clustering models the input dataset as a graph with nodes (data points)

connected by edges whose weight is 1 if the nodes are nearest neighbors (NNs) and 0 if
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they are not. The algorithm finds the optimal place to remove edges and segment the

original graph into a user-specified number of sub-graphs (i.e. clusters) [76].

Both the number of clusters and the number of NNs are considered hyperparameters

(i.e. a set of user-selected parameters). One common method for estimating the number

of clusters is through use of the eigengap heuristic, a measure of differences between

successive eigenvalues of the graph Laplacian of the data [179]. However, noisy data can

reduce differences between successive eigenvalues, which is often the case for AE data. In

this case, the eigengap heuristic is not sufficient for determining the number of clusters.

Instead, a parametric sweep from 2-5 clusters is performed and a drop in validity metrics

is used to indicate the optimum number of clusters (Chapter 3.3.3). A steep drop is

observed after 2 (Figure 3.3), corresponding with the hypothesis that matrix cracking

and fiber failure events (the dominant damage mechanisms in SiC/SiC minicomposites)

can be differentiated.

It is important to note there are other less dominant damage mechanisms active in

minicomposites during loading (e.g., interfacial debonding and frictional sliding). It is

well-established from a micromechanics frame that when matrix cracking occurs, there is

simultaneous debonding and sliding in the crack wake; it is also understood, that when

fibers fail, there is simultaneous fiber sliding and pullout [23, 180]

When dominant and non-dominant mechanisms occur simultaneously, their wave-

forms become superimposed [181]; when non-dominant mechanisms occur independently,

they likely do so in quantities too small for recognition by the ML algorithm. As such,

it is currently infeasible to isolate events resulting from damage to the BN interphase or

determine which AE features are characteristic of such damage. This is expected to be

a source of error. Moreover, the inability to discriminate interfacial damage from other

types of damage is reflected by the steep drop in validity metrics seen after two clusters

in Figure 3.3.
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Similar to the determination of d and the number of clusters, a parametric study from

NN= 5 − 20 was performed. The value of NN that optimized validity metrics slightly

varied between studies (5, 5, 7 for three experiments respectively), however there was a

range of values for NN that produced acceptable results. To demonstrate the effectiveness

of our approach, the number of NN is fixed to be 5 for all specimens resulting in sub-

optimal validity metrics (Section3.3.3) for Experiment 3, particularly between sensors

B1025-a and S9225-a (Table 3).

3.3.3 Validity Metrics for Error Analysis

To evaluate the efficacy of our AE-ML framework, events at each sensor were clustered

according to the steps described above, the results of which are called a partition. The

desired outcome is that all partitions for AE data from a given specimen are the same

and are independent of both the sensor model and sensor location.

To quantify partitioning success, the total matching rate is first considered, which is

the percentage of events assigned the same label by the clustering routine. As clusters

have unbalanced sizes (fewer fiber break events are expected than matrix crack events),

it is possible to be unable to discriminate between damage mechanisms and retain high

matching rates. For example, if 90% of AE events come from matrix cracks, then clas-

sifying every AE event as a matrix crack would yield a 90% matching rate, yet the ML

framework would have no discriminating power.

Therefore, it is also useful to consider the permutation model of the adjusted Rand

Index (ARI) which makes considerations for unbalanced cluster sizes[131, 134]. The ARI

is an adjusted-for-chance version of the Rand Index (RI), a metric for comparing the

similarity of a partition to the ground truth. First, the RI for two different partitions,
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(A,B), is calculated as:

RI(A,B) =
N11 +N00(

N
2

) (3.3)

where N is the number of elements, N11 is the number of element pairs which are grouped

into the same cluster in both partitions, and N00 is the number of element pairs that are

grouped into different partitions in both A and B. The ARI is then calculated as [6]:

ARI(A,B) =
RI(A,B)− E[RI(A,B)]

max[RI(A,B)]− E[RI(A,B)]
(3.4)

where E[RI(A,B)] is the expected value of the RI under a random model. The ARI

is bound between 0 and 1, with 0 corresponding to random label assignments, and 1

corresponding to perfectly matching labels.

This metric is useful for comparing a partition to the ground truth and is also useful

for comparing two partitions that are assumed to be drawn from the same random model

[134]. This makes it an effective tool to compare similarity between two partitions whose

ground truth is not known a priori. ARI values exceeding 0.40 are correlated with high

values of other classification metrics [133].

3.3.4 T-Distributed Stochastic Neighbor Embedding

A final, necessary step in this study was to confirm that the AE data forms identifi-

able clusters in the chosen feature space. To this end, t-distributed stochastic neighbor

embedding (t-SNE) was employed. T-SNE is a manifold learning algorithm used to pro-

duce a low-dimensional visualization of high-dimensional data. Although t-SNE axes,

inter-cluster separation, and cluster size have no intrinsic meaning, t-SNE has been em-

pirically shown to be a powerful tool for the identification of natural cluster structures
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in high-dimensional data [9].

T-SNEmaintains pairwise distances between the high-dimensional and low-dimensional

representation of feature vectors, xi and yi, respectively [9]. For a given feature vector,

xi, t-SNE models pairwise distances in the high-dimensional representation according to

a Gaussian probability distribution with standard deviation σi, centered at xi. Under

this model, the conditional probability of finding another feature vector xj is then:

pj|i =
exp(−|xi − xj|2/2σ2

i )∑
k ̸=i exp(−|xi − xj|2/2σ2

i )
(3.5)

and pairwise distances in the high-dimensional space are:

pij =
pj|i + pi|j

2N
(3.6)

The pairwise distances in the high dimension are then translated to similar pairwise

distances in the low dimension, qij, which follow a student t-distribution with a single

degree of freedom:

qij =
(1 + |yi − yj|2)−1∑
k ̸=l(1 + |yk − yl|2)−1

(3.7)

If the low-dimensional representation has correctly maintained the same high-dimensional

pairwise distances, then pij = qij for all pairs i, j.

An important consideration for t-SNE plots is the choice of ”perplexity.” This hyper-

parameter estimates a global value of σi, as there is no single value of σi to describe all

data points. Perplexity measures how much of the local structure is retained in the final

low-dimensional map; as perplexity increases, local structure information is exchanged

for global structure information [9]. Typical values of perplexity range from 5-50; a

perplexity value of 15 is chosen as this best shows the cluster structure within our data.
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3.4 Results and Discussion

Matching rates and ARIs for AE data from three SiC/SiC specimens are presented

(Tables 1, 2, and 3) for partitions made from: (i) sensors of the same model fixed on

opposite ends of the specimen gauge, and (ii) sensors of different models fixed at the

same gauge location. Specimen 1 was found to have a misaligned sensor on its larger

epoxy tab wherein it did not fully overlay the minicomposite and is included to show

that the ARI metric can also be used to detect experimental issues such as these. The

ARI of zero for sensor pairs that included sensor S9225-b are the result of this improper

placement.

From the high values of matching rates and ARIs obtained across specimens, we

conclude that labels are not assigned randomly between sensors based either on model or

location. A corollary of this observation is that stochastic experimental effects that are

known to influence frequency spectra, such as source-to-sensor distance [149] or proximity

to a free surface [65], do not drive label assignment when using the approach presented

herein.

The clustered events at each individual sensor exhibit distinct activities in the stress

domain, which are strongly characteristic of how damage progresses in a CMC (shown for

Specimen 3 in Figure 3.4). These clusters follow the established chronology of damage

accumulation in CMCs, wherein cracks initiate in the SiC matrix early in the loading

profile and evolve throughout the specimen lifetime. As such, the initially activated

cluster is designated as matrix cracking. After the onset of major matrix cracking,

fiber failure begins and fibers continue to fail until rupture [182]. The secondary cluster

becomes significantly active at 70-85% of the ultimate tensile strength (UTS), which

agrees with experimental observations of fiber failure in SiC/SiC [12].

To further explore the hypothesis that there are frequency trends which allow for
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discrimination between matrix cracking and fiber failure, it is useful to inspect the partial

powers of AE signals (the input representation) as a function of stress. It was found that

select frequency bands exhibited similar behaviors, as shown in Figure 3.5. Specifically,

AE events occurring at stresses > 70% UTS exhibited tighter distributions in partial

power. A two sample Kolmogorov-Smirnov test shows that the partial powers, for the

selected frequency bands, sampled below 70% UTS come from a different distribution

than the partial powers sampled above 70% UTS at a significance level of α = 0.01

(Figure 3.5). This decrease in partial power scatter coincided with the activation of the

fiber failure cluster, but it is currently unclear whether this correlation is (i) characteristic

of the damage mechanism or (ii) characteristic of the differential strain-at-failure of the

constituents [173, 183] (e.g. a weak fiber failing at low strain is indistinguishable from

matrix cracking at the same strain). The second option is possible while still allowing

for the stepped activity observed as the strain-to-failure of the fiber and matrix are

disparate. The former possibility is more consequential, as it would indicate that the ML

algorithm is learning the differences between dominant damage mechanisms. Given that

the homogeneous orthotropic model of wave propagation does not predict meaningful

frequency trends for elastically similar material systems, additional experimentation and

explicit modeling of AE in SiC/SiC minicomposite geometries is needed to understand

the physical origins of the observed trends.

The partitioning of each AE event into its associated cluster is the result of the

intrinsic cluster-like structure and not an artifact of the chosen algorithm. This finding

is evident in the visualization of the input feature vectors via t-SNE. In Figure 3.6, the

left-hand column shows the raw feature vectors plotted via t-SNE, and the right-hand

column shows the same feature vectors subsequently colored according to the labels

assigned by our ML framework. In Figures 3.6a and 3.6b, the two clusters are sufficiently

distinct to be visually identified in the unlabeled data. The unlabeled cluster structures
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in Figures 3.6c and 3.6d are less readily discernible, yet still evident. This behavior is

likely a result of dimension reduction rather than an intrinsic lack of cluster structure,

as validity metrics show the events are given the same labels.

3.5 Conclusions

Damage mechanism identification in SiC/SiC CMCs from acoustic emission data is

of interest for both lifetime prediction and structural health monitoring. While compu-

tational frameworks exist for damage mechanism identification, these are predominantly

successful only when the composite constituents are elastically dissimilar. As such, dif-

ferentiating between the dominant damage mechanisms in SiC/SiC architectures has

remained a long-standing challenge.

In this chapter, an AE-ML framework capable of overcoming these difficulties was

developed and evaluated. A modified partial power representation scheme is adopted

which allows inspection of local changes to frequencies. This representation scheme is

combined with the spectral clustering algorithm, which is well-suited for partitioning AE

data. This framework is then applied to waveforms collected by our unique 4-sensor

configuration, which allows us to draw the following conclusions:

1. Damage mechanism identification in elastically similar composite systems is possi-

ble, when salient features are chosen to represent AE waveforms and a suitable ML

approach is applied.

2. Partial power is a salient feature for damage mechanism discrimination. It is not

significantly perturbed by stochastic experimental factors, as is evidenced by consis-

tent labeling between sensors, independent of both location and model. Moreover,

t-SNE plots show AE data intrinsically adopts cluster-like structures when repre-
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sented by this scheme.

3. There are meaningful frequency trends, which are not predicted by the orthotropic

model of wave propagation, which enable damage mechanism discrimination in

SiC/SiC CMCs. Further investigation is needed to determine the physical basis of

this.

This AE-ML framework is domain-knowledge agnostic, yet when contextualized with

domain knowledge it is clear that cluster activities follow a domain-based assessment of

accuracy, indicating promising robustness of this approach. Still, a full characterization

of this framework’s behavior is needed before it can be more broadly applied. While

precision of clustering results is high in our model minicomposite system, it is unclear

how precision will be affected when this framework is applied to more complex CMC

architectures, where more damage mechanisms are active. Additionally, it is not known

how specimen geometry, architecture, and scale influence AE features [151, 184]; this is an

active area of research. Both of these questions will require testing large scale composites

in conjunction with in situ microstructural observations for error quantification, and is

the subject of future work. Finally, it is desirable to understand the drivers for observed

trends in partial power to remove irrelevant frequency bands from the feature space and

increase precision. Future investigations will aim to address this.
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Table 1: Validity metrics for Experiment 1
Sensor pair Matching rate (%) ARI
B1025-a, B1025-b 96.4 0.78
B1025-a, S9225-a 92.1 0.62
B1025-b, S9225-b* 81.0 0.0
S9225-a, S9225-b* 73.0 0.0

* This test had a misaligned sensor on its larger epoxy tab wherein it did not fully overlay the
minicomposite and is included to show that the ARI metric can be used to detect experimental issues such
as these. The ARI of zero for sensor pairs that included sensor S9225-b are the result of this improper
placement. (Chapter 3.2).

Table 2: Validity metrics for Experiment 2
Sensor pair Matching rate (%) ARI
B1025-a, B1025-b 87.1 0.42
B1025-a, S9225-a 82.9 0.31
B1025-b, S9225-b 86.1 0.45
S9225-a, S9225-b 84.0 0.40

Table 3: Validity metrics for Experiment 3
Sensor pair Matching rate (%) ARI
B1025-a, B1025-b 88.4 0.55
B1025-a, S9225-a 81.2 0.27
B1025-b, S9225-b 94.4 0.73
S9225-a, S9225-b 91.7 0.53
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Figure 3.1: Diagram of the experimental setup. (a) Two sets of AE sensors were
coupled to the minicomposite whose length is nominally 20mm. When any sensor was
triggered, all sensors began recording, ensuring that each AE event could be correlated
between all sensors. (b) A photograph of a sample. Epoxy tabs used to mount AE
sensors are denoted with arrows.
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Figure 3.2: Examples of removed waveforms. (a) Low signal to noise ratio, (b)
Two distinct damage events occurring in the same time window, and (c,d) events that
saturated the AE sensor. The majority of removed waveforms were of type (a), (c),
and (d). Less than 10 waveforms were of type (b) across the 3 specimens.
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Figure 3.3: Adjusted Rand Index as a function of the number of clusters.
When more than 2 clusters are used to initialize spectral clustering, the steep drop
in ARI corresponds to a decrease in precision. As such, when more than 2 clusters
are specified, the spectral clustering algorithm is forced to find clusters, which are
not correlated with damage mechanisms. This drop occurs in all experiments and is
corroborated by results shown in Figure 3.4.
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Figure 3.4: Damage mechanism identification from AE signals. AE wave-
forms were generated by SiC/SiC ceramic matrix composites (CMCs) loaded under
uniaxial tension and recorded by four sensors; (a) B1025-b and S9225-b, (b) B1025-a
and S9225-a, and at different locations (c) B1025-a and B1025-b and (d) S9225-a
and S9225-b. The resultant identification of AE events closely follows CMC damage
chronology, wherein early matrix cracking is later followed by fiber breaks. The cluster
that becomes active at ≈ 85% of the UTS is labeled as fiber failure, consistent with
experiment [12]. Cluster assignment of individual AE events was independent of both
the sensor model and location of the sensors
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Figure 3.5: The partial power for four selected frequency bands in Specimen
3. Events occurring below 70% UTS are sampled from a different distribution than
events occurring above 70% UTS at a significance level of α = 0.01 in these bands.
This is not predicted by the orthotropic model of wave propagation. We hypothesize
that the shift in partial power is a result of a shift in active damage mechanism from
matrix cracking to fiber failure; however, further experimentation and modeling is
needed.
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Figure 3.6: Dimensionality reduction by t-SNE of Specimen 3 feature vec-
tors. Plots for the raw feature vectors are shown for each sensor on the left, and are
subsequently colored on the right according to the labels given after spectral clustering
as described in Figure 3.4. While the t-SNE axes have no intrinsic meaning, well–
formed clusters indicate that partitions were made according to similarity between
feature vectors and are not an artifact of the clustering routine.
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4.1 Scope

In Chapter 1.4, a distinct lack of ground truth data sets was identified. This gap

has precluded any quantitative benchmarking of framework accuracy and prevents op-

timizations for existing strategies AE-ML frameworks. In this chapter, I address this

challenge by creating a set of experimentally generated signals which form a ground

truth library. This ground truth data set is comprised of pencil lead breaks with known

angles of incidence, θ, where each angle generates a unique frequency spectrum that

changes continuously with θ. which could be analogous to attributes of acoustic emission

signals generated from failure processes, such as those that occur in composites. Five

frameworks are then applied to the ground truth dataset and benchmarked according to

their ability to discriminate between two sets of signals with a fixed ∆θ. A discussion

of their performance as related to choice of features is given, and a set of guidelines for

best-practices for feature selection and standardized practices are proposed.

4.2 Methods

4.2.1 Data Collection

All pencil lead breaks (PLBs) were conducted with Pentel 0.5 mm HB leads and a

nominal free lead length of 4 mm [14]. A Pentel GraphGear 500 mechanical drafting

pencil was fixed to a custom-built, displacement controlled, load frame (Figure 4.1). The

load frame was composed of a rotational stage, which allowed for angle adjustments

in increments of 2◦ (corresponding manual angle measurement error is 1
2
the unit of

measurement, or ±1◦), and two precision-adjust linear stages. The aluminum plate on

which the PLBs were conducted had an unsupported span of 200.7 mm, width of 51.0

mm, and thickness of 1.2 mm.
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PLBs were recorded at 20◦, 22◦, 26◦, 30◦, 36◦, and 40◦. PLBs were generated by low-

ering the pencil via the linear Z stage until the lead fractured on the aluminum plate.

For each angular condition, the rotational stage was fixed using a set screw and the set

screw was loosened only to change angles. During an angle change, the linear X stage

was adjusted to maintain a nominal distance of 25 mm from the PLB source to the sen-

sor. Upon inspection of collected AE signals, some were found to be reflections. These

reflections presented themselves as a second, low amplitude signal occurring immediately

after the initial PLB, and were excluded from the data set. Due to the exclusion of these

reflections, each angle has a differing number of signals, between 75-111. For the pur-

poses of this analysis, only the first 75 signals of each angle were clustered by an AE-ML

framework.

AE were recorded using a piezoelectric B1025 transducer (Digital Wave Corporation,

Centennial, CO) with a broadband response of 50-2000 kHz (Figure 4.1). The threshold

voltage was set to 0.1 V, the number of pre-trigger points was set to 256, and the total

length of signal captured was 1024 points at a rate of 10 MHz. The sensor was fixed to

the aluminum plate with an alligator clamp using vacuum grease as a coupling agent.

The sensor was not remounted at any point during the experiment, meaning PLBs at all

angles were conducted for a fixed sensor coupling. The authors note here that because

the coupling is unchanging during all data collection, an absolute calibration of the

sensor as described in [185] is not necessary. Additionally, all signals were collected

within a single 3-hour span in a temperature controlled laboratory where environmental

factors which might otherwise affect the absolute sensor calibration, such as temperature,

were assumed to be unchanging. Unsupervised frameworks group signals according to

differences in signal features, rather than the absolute values of those features. Since

the absolute sensor calibration is unchanging, any differences in signal features can be

attributed changes in the angle of incidence.
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Signals collected at the reference angle θ0 = 20◦ and signals at a single benchmarking

angle θb ∈ [22◦, 26◦, 30◦, 36◦, 40◦] were clustered using each of the frameworks described

in Chapter 4.3, and relative discriminating power was assessed quantitatively using the

procedure described below.

4.2.2 Quantitative Benchmarking

The permutation model of the adjusted Rand index (ARI) was used to benchmark

frameworks. The ARI, which ranges from 0 to 1, measures accuracy of ML-calculated

clusters as compared to the ground truth in a label-agnostic way. It compares the mem-

bership similarity of objects in the ML-calculated clustering, A, to the membership sim-

ilarity of objects in the ground-truth clustering, B, and assigns a higher number if sim-

ilarities are high [132]. In the context of this work, signals from θ0 and θb are fed to an

AE-ML framework. These signals are then assigned a label by the framework, either 0

or 1, depending on if the framework believes the signal should be grouped with θ0 or θb.

The ML-assigned label of each signal is then compared to the ground truth, the known

angle at which the signal was collected. If the membership similarity of the ML-assigned

labels and the true angles are similar, then the ARI will take on higher values.

The ARI is an adjusted-for-chance version of the Rand index (RI) and is calculated

as [132]:

RI(A,B) =
N11 +N00(

N
2

) (4.1)

where N is the number of signals, N11 is the number of signal pairs which are grouped

into the same cluster in A and B, and N00 is the number of signal pairs that are grouped
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into different clusters in both A and B. The ARI can then be calculated as [6, 134]:

ARI(A,B) =
RI(A,B)− E[RI(A,B)]

max[RI(A,B)]− E[RI(A,B)]
(4.2)

where E[RI(A,B)] is the expected value of the RI under a random model. The ARI

is bound between 0 and 1, with 0 corresponding to random label assignments and 1

corresponding to perfectly matching labels. While many cluster similarity metrics exist,

the ARI was chosen to compare partitions because it can be calculated for any number

of clusters (provided the number of clusters in each partition is equal), and it accom-

modates unbalanced cluster sizes [131, 134]. Signals from θ0 and θb were clustered by

each framework. The value of ∆θ = θb − θ0 at which the ARI vanished represents the

point at which the framework has lost all discriminating power and is unable to identify

differences between two groups of different signals.

4.3 Framework Descriptions and Accuracy Metrics

A general AE-ML framework pipeline has been described in Chapter 1.3, schemati-

cally shown in Figure 1.2. Following data collection (Figure 1.2a), the most important

step in the framework is the selection of the feature set (Figure 1.2b). Waveforms can

only be sorted according to their source mechanism if the feature set captures something

fundamental about the waveform-mechanism relationship. Features can be classified as

belonging to the time domain, frequency domain, or time-frequency domain. However,

there is little consensus as to which category is best suited for damage mechanism iden-

tification. In fact, even when two frameworks leverage features within the same domain,

their feature sets differ. Consequently, each framework uses a unique feature set, where

d pertinent features are identified, extracted, and stored as a feature vector v ∈ Rd (Fig-
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ure 1.2b). The reader is referred to the original investigations for discussions on why

particular feature sets were chosen [2, 49, 86, 186, 187].

Next, individual features of a feature vector may be re-scaled or re-mapped with a

transformation (Figure 1.2c). Similar to the variations in feature sets, each framework

utilizes a different set of pre-processing steps. Finally, the ML algorithm is applied to

partition feature vectors by assigning them to clusters, where feature vectors in the same

cluster are proximal under a chosen distance metric (Figure 1.2d).

The frameworks described in the following sub-sections follow this workflow and were

adopted directly from literature. They were chosen to span the current space of diverse

feature set types and ML algorithms [188]. The key differences between frameworks are

the choice of feature sets, preprocessing steps, and ML algorithm. The specific choice of

feature set, pre-processing steps, and ML algorithm are further summarized in Table 1.

In Chapter 4.4, we provide key findings and discuss the impact of feature selection.

4.3.1 Base Framework

We define a Base Framework relative to subsequent frameworks, which are variations

on this base (either by swapping out the feature set, ML algorithm or both). This

framework employs a time-domain feature set as investigated in [86]:

1. average frequency (number of counts/signal length)

2. rise frequency (average frequency from signal start to maximum amplitude)

3. ln(energy)

4. ln(rise time/duration)

5. ln(amplitude/rise)
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6. ln(amplitude/decay time)

7. ln(amplitude/average frequency)

The start and end time of an experimental signal was determined by the first and last

crossing of a floating 10% voltage threshold.

Each feature was scaled by the maximum observed value of that feature, using the

MaxAbsScaler method in [106], such that they fell in the range [-1,1]. A principal compo-

nent analysis (PCA) transformation was performed, and principal components containing

≥ 95% of the variance were retained. Distances, d, between any two feature vectors, x,y

were calculated using a modified Euclidean metric:

d(x,y) =

√∑
i

λi(xi − yi)2 (4.3)

where xi and yi are the ith vector components of the feature vectors in the PCA basis,

and λi is the eigenvalue of the ith PCA axis. As the Scikit-learn implementation of k-

means enforced the standard Euclidean metric, a rescaling of feature vectors was required

to accommodate the modified Euclidean metric:

x′
i =

√
λixi (4.4)

It should be noted that the distance metric in Eqn. 2 differs from the standard PCA

whitening approach, where distances along axes with large eigenvalues are contracted,

rather than elongated [78].

K-means was then applied to the feature vectors. For a detailed description of the

k-means algorithm, the reader is referred to [78]. Because k-means is not guaranteed to

converge to an optimum solution, it is typically run many times and the initialization

with the lowest value of loss function is taken [5]. To determine the number of re-
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initializations needed convergence checks were performed by increasing the number of

re-initializations until the loss remained unchanged. The minimum objective function

did not change after 2×103 re-initializations. To conservatively ensure a global optimum

of the objective function had been reached, the number of re-initializations was set to

2×104. Similarly, an error tolerance of 0.0001 and 300 iterations were sufficient to ensure

a local optimum was reached within a single initialization of k-means.

4.3.2 Agglomerative Framework

The agglomerative framework [186] used the feature set:

1. amplitude

2. peak frequency

Rather than partitioning feature vectors by k-means as in the Base framework, the

Agglomerative framework uses a hierarchical agglomerative approach. In this approach,

each data point is initially defined as a cluster. Clusters are then iteratively merged such

that the chosen objective function (usually the sum of squared distances) is extremized.

For a discussion of this algorithm, the reader is referred to [106, 186].

The linkage type, the parameter defining pairwise distances between points, was not

reported in the original work. Here, each linkage type was tested and no linkage type

outperformed another.
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4.3.3 Spectral Framework

The Spectral framework [187] used the partial power feature set. The ith component

of the feature vector is:

xi =

∫ ki
ki−1

F [s(t)]dk∫ kd
k0

F [s(t)]dk
(4.5)

where F [∗] is the Fourier transform operator, s(t) is the recorded signal, ki and ki−1 are

the frequency bounds over which integration is performed, and d is the number of entries

in the feature vector. We set k0 = 200 kHz, kd = 800 kHz, and d = 23. The width of

integration bounds, ki − ki−1 was set to be equal for all i as in [187].

The sklearn implementation of spectral clustering was used to cluster the feature vec-

tors [106]. A detailed explanation of the algorithm can be found in [76]. The ARPACK

eigensolver was used and the number of nearest neighbors was set to NN = 5. To ensure

cluster membership did not depend on initialization parameters, convergence checks were

performed for error tolerance and maximum number of iterations. The cluster member-

ship stabilized after 10 re-initializations. To conservatively ensure stability, the number

of re-initializations was set to 100.

4.3.4 Frequency Framework

The frequency framework used a feature set in the frequency domain [49]:

1. average frequency

2. reverberation frequency

3. rise frequency

4. peak frequency
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5. frequency centroid

6. weighted peak frequency

7. partial powers from 0-150 kHz, 150-300 kHz, 450-600 kHz, 600-900 kHz, and 900-

1200 kHz

Features were independently normalized with the variance scaler, which centers fea-

tures to have zero mean and scales them to unit variance. Feature vectors were then

clustered with k-means. The same convergence checks as the Base framework were con-

ducted, and identical parameters were sufficient for convergence.

4.3.5 WPT Framework

The wavelet packet transform (WPT) framework extracted features through appli-

cation of a WPT [2]. Waveforms were subjected to a WPT on three levels using the

Daubechies wavelet of order 2 as the mother wavelet. Fractional energies carried in

each node were calculated, and the five least correlated values were retained. These,

in addition to the waveform energies read by the AE software, were used as features.

Feature vectors were then normalized with the maximum value scaler and subjected to

PCA. Principal components containing ≥ 95% of the variance were retained. The feature

vectors were then partitioned via k-means, using the modified Euclidean metric (Eqn.

4.3).

Convergence checks were conducted and parameters identical to the Base framework

were sufficient for convergence. It should be noted that the algorithm described by [120]

and used by [2] is k-means optimized by a genetic algorithm. Thus, a fully converged

k-means solution will not differ from a fully converged genetic solution.
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4.4 Results and Discussion

The frequency content of PLB signals from our experimental configuration were able

to be precisely controlled by varying the angle of incidence. Signals generated followed

expectations from plate-wave theory [13, 14]; as the angle of incidence increased, the

low-frequency components of the signal were observed to increase in power Figure 4.3.

Moreover, little variation in PLB signals was observed within each angular condition.

The mean signal and its standard deviation envelope are shown in Figure 4.4. As a

result of the small variation between signals for a single angular condition, when signals

are represented in feature space (Figure 4.2b), the standard deviation of those features

is smaller than if signals had a large variability. If a benchmark set were constructed

from more repeatable acoustic signals, it would be expected that signals at different

angles would form tighter clusters in feature space, and subsequently the ARI of each

framework at each value of ∆θ would increase.

By comparing ARI values at a fixed value of ∆θ, it is possible to quantitatively

evaluate the relative discriminating power of various frameworks. The frameworks listed

in Table 1 were applied to group signals according to the procedure described in Chapter

4.2.2. The accuracy of each framework was plotted as a function of ∆θ (Figure 4.5). The

discriminating power of each framework increased with ∆θ which can be attributed to

increasing differences in the signal structure as a function of ∆θ. Frameworks exhibiting

higher ARI values at lower values of ∆θ, such as the Spectral and Frequency frameworks,

have higher overall discriminating power, and will likely be able to distinguish between

damage mechanisms that emit similar signals.
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4.4.1 Saliency of Features

Across the five frameworks no feature set was shared. While this is common in

the broader context of AE-ML frameworks [188, 189], the lack of consensus raises an

important question: ”What features should be used for the purposes of AE signal dis-

crimination?”. Addressing this question is of utmost importance, since the discriminating

power of a framework hinges on how signals are represented [81, 188].

For signal discrimination, both exclusion of noisy features and inclusion of useful fea-

tures is necessary: a principle known as the Ugly Duckling theorem [81]. To highlight the

degree to which this principle impacts discriminating power, features were parametrically

excluded from the Frequency framework and Base framework. In the Frequency frame-

work, ARI was maximized when clustering was performed using average frequency, rise

frequency, and partial power from 150-300 kHz. When these three optimal features were

used to encode signals, the ARI at ∆θ = 2◦ increased from 0.681 to 0.973, representing

a change from modest to high discriminating power. A similar procedure was conducted

for the Base framework, and when only the average frequency and log(amplitude/average

frequency) were included, the ARI increased from 0.325 to 0.82.

While such parametric studies can yield insight into which features are useful for a

specific dataset, they are less effective in identifying universally salient features. For this

purpose, it is necessary to consider the physics of the emitting source on a case-by-case

basis and when possible, exclude features that are dependent on external and uncontrol-

lable factors unrelated to the source mechanism. For example, although amplitude is

correlated to the angle in this dataset (Figure 4.6a), it should not be used for sorting

signals from multi-phase materials because it is convolved with factors, such as crack

area formed and the source to sensor distance, which are unrelated to individual mech-

anisms [190]. Similarly, even though rise time is commonly used in AE-ML frameworks,

91



Quantitative benchmarking of acoustic emission machine learning frameworks for damage
mechanism identification Chapter 4

[87, 108, 110, 120, 139, 159], it is more strongly related to the source to sensor distance,

due to the different velocities of the flexural and extensional wave components [34]. Con-

sequently, two signals emitted from similar locations will have similar rise times, even if

the emitting mechanisms are different (Figure 4.6b).

4.4.2 Limitations of the PLB Dataset

Intuitively, a framework with higher ARI values is a promising candidate for dam-

age mechanism identification when signals from different mechanisms are expected to be

similar. However, the degree to which performance on the PLB dataset translates to

performance under more realistic conditions and material systems is unknown. Specifi-

cally, the PLB signals in this dataset are collected under the strictest possible conditions;

signals are from a single source-to-sensor distance, sensor coupling, and source type (e.g.

pencil lead), removing the effect of factors that influence a signal such as dispersion, at-

tenuation, and absolute frequency response. ML approaches for mechanism identification

must ultimately be robust to these effects. Although this dataset represents a first step

towards quantitative benchmarking, a full characterization of framework performance

under realistic conditions is still required.

Another limitation of the dataset we have collected is the angular resolution; the ±1◦

tolerance of the rotational stage has implications on the measured ARI. For example, if

the true ∆θ between two angular conditions was less than the reported value, due to the

±1◦ tolerance, signals generated at these angles would be more similar than expected.

Consequently, the ARI measured would be lower than if the signals had been collected

from a true angular condition with a larger value of ∆θ. The exact degree to which the

ARI would change is highly dependent on how each feature varies with θ, and subject to

any data dependent pre-processing, such as PCA, which would further impact framework
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performance.

Finally, also due to the angular resolution, the current experimental setup prevents

collecting signals from values of ∆θ < 2◦. In order to properly benchmark frameworks,

there must be at least one value of ∆θ where ARIs are not saturated at 1. For example,

for ∆θ = 20, the Spectral, Frequency, and Base frameworks all perform equally well, but

∆θ = 6 allows for comparison of discriminating power (Figure 4.5). As the community

continues to improve the discriminating power of frameworks, ARI values will increase.

Consequently, it will become necessary to collect signals from values of ∆θ < 2◦, below

what we have allowed for in this study, to ensure frameworks’ performances can be

separated.

4.5 Conclusions

While many AE-ML frameworks have been developed and implemented, the lack of

ground-truth datasets has restricted discussions of their strengths and limitations, par-

ticularly with respect to feature choice, and has prevented development of standardized

quantitative benchmarking procedures. In this chapter, a method for quantitative bench-

marking procedures has been proposed, and used to analyze the effectiveness of existing

AE-ML frameworks. Below, considerations for the quantity of data in benchmarking sets,

types of features that should be included in a framework, and transparent benchmarking

practices are discussed.

The performance of an unsupervised framework is intrinsically tied to how well the

sampled data represents its population distribution. In the context of AE-ML bench-

marking datasets, it is critical to ensure enough signals have been collected to capture

statistical variations. If too few waveforms are collected at any angle, it is unlikely that

the sampling distribution will represent the population distribution of waveform features
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(Figure 4.2b). Consequently, the addition on new waveforms will lead to spurious per-

formance of an AE-ML framework. To ensure enough signals are in a benchmarking set,

a framework’s performance must be shown to be independent of the number of signals

collected. For this benchmarking set, it is demonstrated that 75 signals per angle are

sufficient to ensure the ARI values we calculate are independent of the amount of data

(Figure 4.7).

Feature selection is of critical importance with respect to maximizing the discrimi-

nating power. As demonstrated in Chapter 4.4.1, the inclusion of non-salient features

was directly correlated with poor framework performance. Despite the importance of

feature selection, there is little discussion within the literature as to why certain features

were chosen [188]. As a result, many modern frameworks continue to include non-salient

features (e.g. rise time) which negatively impact framework performance.

Towards better feature selection, universal features should be prioritized, and when

possible, choice of feature set should be explicitly motivated. If it is possible to construct

cases where a given feature cannot reliably discriminate between signals emitted by two

unique sources, then the feature is likely convolved with factors unrelated to the source

mechanism and are therefore not universal. The use of such non-universal features must

be treated with caution. For example, although small amplitudes and large rise times

have been correlated with Mode II cracks, these features are not universal because they

are also a strong function of the source-to-sensor distance [72]. This makes it possible

to construct a dataset where unique signals can appear artificially similar resulting from

little to no statistical difference between features (Figure 4.6).

Although universally salient features will not change between material systems or

loading configurations, the values of the features might vary. For example, partial power

appears to be a universally salient feature [49, 159, 187], but every frequency band does

not provide equal discriminating power. As demonstrated by the parametric removal of
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Frequency framework features, the frequency band from 150-300 kHz was the most useful

for signal discrimination. In this case, 150-300 kHz was useful for discrimination between

two PLB signals, however different frequency bands will be useful when the material

system or loading conditions changes [67, 151].

Finally, publicly available standardized datasets should be used for quantitative bench-

marking of frameworks. Although these types of benchmarking tools are common in other

fields [191–194], they are absent in the AE community. Development and continued main-

tenance of benchmarking datasets will provide the tools necessary to assess the strengths

and limitations of AE-ML frameworks and will allow for detailed discussions regarding

the specific strengths and weaknesses. In turn, this will provide transparency and trust in

the results obtained from such frameworks, promoting their broader use in both scientific

and engineering applications.

95



Quantitative benchmarking of acoustic emission machine learning frameworks for damage
mechanism identification Chapter 4

Table 1: Investigated framework summaries
Framework Feature set ML algorithm
Base [86] Time-domain k-means
Agglomerative
[186]

Mixed Agglomerative

Spectral [187] Frequency-domain Spectral clustering
Frequency [49] Frequency-domain k-means
WPT [2] WPT Energies k-means
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Figure 4.1: Photograph of experimental setup. A mechanical pencil is attached
to a rotational stage which controls the angle of incidence θ. The linear X stage is used
to position the tip of free lead at a consistent location on the aluminum plate. The
linear Z stage is used to lower the pencil lead until fracture. The resultant waveform
generated is recorded by the piezoelectric B1025 transducer, located approximately
25mm from the tip of free lead.
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Figure 4.2: Workflow diagram of an AE-ML framework. (a) Waveforms are
collected and (b) pertinent features are extracted from the waveforms, which are then
represented as vectors in feature space. (c) Feature vectors can then be re-scaled
and/or re-mapped before (d) the clustering algorithm is applied and feature vectors
are labeled. Every AE-ML framework follows this procedure.
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Figure 4.3: Fourier transform (FFT) of average signals at each angular con-
dition. As the angle of incidence increases, the low frequency components increase
in power following the findings of [13] and [14].
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Figure 4.4: The mean PLB signal and point-wise standard deviation at each
angular condition. Signals generated using the experimental fixture shown in Figure
4.1 were repeatable, while still containing variation that might be expected from
signals collected during in operando health monitoring.
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Figure 4.5: The ARI of each framework as a function of ∆θ. ARI values
exceeding 0.4 are correlated with good discriminating power, whereas values near 0
correspond to no discriminating power. The discriminating power of each framework
increases with ∆θ and high ARIs at low values of ∆θ are better suited for clustering
signals whose differences are minor. The ability to directly compare accuracy between
frameworks allows researchers to choose an appropriate framework for their specific
needs.
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Figure 4.6: The (a) average maximum amplitude and (b) average rise time
of signals generated at each angle of incidence θ. Error bars correspond to 1
standard deviation. There is no consistent difference between values in either feature.
Because it is possible to construct many sets of unique signals with indistinguishable
amplitudes and rise times, they should not be considered salient features and their
use should be taken with caution.
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Figure 4.7: Adjusted Rand index vs. number of signals per angle. Signals
from θ0 = 20◦ and θb = 26◦ (∆θ0 = 6◦) were clustered using an increasing number of
signals per angle. As the number of signals increased, the performance of frameworks
becomes independent to the addition of new signals, indicating enough data is present
to capture stochastic waveform variations.
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Chapter 5

Supervised Damage Mechanism

Identification in SiC/SiC

Composites

5.1 Scope

The work in Chapter 4 is a first step in developing the ability to benchmark AE-ML

frameworks. However, the usefulness of this benchmarking set is limited because acoustic

signals generated from PLBs are unlikely to share all characteristics with acoustic signals

generated from damage in brittle composites like SiC/SiC. This presents two problems:

the first is that while the library in Chapter 4 can be used to evaluate how well AE-ML

frameworks perform relative to one another, it cannot be used to evaluate how well a

framework will perform during real-time monitoring. This is because the benchmarking

set was captured in an environment which controls for a large number of factors seen by

in-service parts, such as external noise. The second problem is that this library cannot

be used to train supervised ML damage identification models. Any model trained using
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the PLB library will learn characteristics of acoustic signals emitted by PLBs rather than

damage mechanisms.

As a result of these shortcomings, ground truth libraries composed of signals from

real damage are needed. However, gathering and curating these libraries is prohibitively

expensive in time and money. Few optical methods can visualize subsurface damage,

and none of them can do so with the necessary time resolution. For example, laboratory

scale x-ray computed tomography studies may take as long as four days to acquire a

single scan. When two or more scans are needed, acquiring the necessary instrument

time quickly becomes intractable. The use of synchrotron light sources, which can scan

composites at much higher rates, but are even more expensive and less accessible. As

of the writing of this dissertation, there is only one facility equipped for in-situ AE

mechanical testing [30, 195], and length of time needed to acquire the necessary beam

time precludes its use.

This chapter presents and discusses initial work to gather labeled acoustic signals

emitted during damage in CMCs to address these difficulties in library curation. SiC/SiC

minicomposites are subjected to uniaxial tension and imaged via x-ray computed tomog-

raphy. Signals are separated into two sets, based on general damage mechanism trends

that are observed by XCT. An autoencoder architecture is then leveraged to perform

anomaly detection to clean these two sets by identifying outliers in each group. Error

quantification is performed via 100 repeats of 5-fold CV, and it is found that fiber break

signals have unusually low reconstruction errors, indicating a high degree of homogeneity

within these signals. This behavior is contextualized by the composite microstructure,

lends support to hypotheses developed in Chapter 3, and motivates choices for future

AE-ML frameworks.
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5.2 Experimental Methodology

5.2.1 Materials

SiC/SiC minicomposite specimens were manufactured by Rolls Royce High Tem-

perature Composites (Cyprus, CA) and consisted of a single-tow, 500 Hi-Nicalon Type

S™(Nippon Carbon, Tokyo, Japan) SiC fibers, coated with a chemical vapor infiltrated

(CVI) boron nitride (BN) interphase and an overlayer of CVI SiC matrix. The tested

system was from the low fiber content (LFC) specimens described in Chapter 2. The

nominal cross-sectional area was Atotal = 0.253 mm2 with a fiber volume fraction (Vf ),

matrix volume fraction (Vm), and interphase volume fraction (Vi) of 25.4%, 72.1%, and

2.4 % respectively calculated using the same method as [33, 173]. This simplified compos-

ite system was chosen because its damage progression characteristics (e.g. proportional

limit, onset of matrix crack saturation, activation of fiber failures) are well characterized

[33, 188].

5.2.2 Tabbing and Acoustic Emission

Prior to tensile testing, collection of AE, and imaging, the minicomposite was tabbed

using a custom 3D printed structure consisting of a reservoir and sensor housing (Figure

5.1a). The minicomposite was inserted into the hollow tabs through the slot in the

housing. The reservoir was subsequently filled with Duralco 132 epoxy until the epoxy

was level with the reservoir walls and allowed to cure for a minimum of 24 hours. The

tabs and sample were placed in a laser-cut acrylic aligner during the curing process

to ensure a 10mm gauge length and minimal off-axis loading. Two B1025 transducers

(Digital Wave Corporation, Centennial, CO) with a broadband response of 50-2000 kHz

were then affixed to the sample in the housing area by a layer of Crystal Bond 509
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coating the sensor housing (Figure 5.1b). This allowed for the removal of sensor wiring

between load and image steps, without changing how the sensor was coupled to the

sample. Thus, differences in waveform frequency content are a result of differences in

damage mechanism, and not a result of differences in sensor coupling [80]. AE activity

was recorded using a synchronized four-channel fracture wave detector acquisition system

(Digital Wave Corporation, Centennial, CO); when one sensor was triggered, the other

sensor recorded waveform data simultaneously.

5.2.3 Tensile Testing and X-ray Computed

Tomography Imaging

To accommodate acoustic wiring in the XCT, the minicomposite had to be loaded

and imaged in a two-step process. First, the minicomposite was loaded to 564 MPa,

66.9% ultimate tensile stress (UTS), under uniaxial tension using a Kammrath and Weiss

microtensile stage equipped with a 500N load cell (Figure 5.1b). The initial maximum

load stress was chosen because it had previously been identified as the matrix crack

saturation load [36], and was confirmed to be the point of matrix crack saturation by the

stagnation of incoming AE signals (Figure (cm) fig). The cross-head displacement rate

was 0.5 µm/s, corresponding to a nominal strain rate of 5×10−5 s-1. The sample was

then unloaded to 0 MPa at the same rate. Acoustic sensor wiring was detached, leaving

sensors in place, and the sample was transferred into a Deben CT5000 load frame (Figure

5.1c).

The sample was then loaded to 475 MPa and imaged in a Zeiss Xradia 520 Versa

(Carl Zeiss AG, Oberkochen, Baden-Württemberg, Germany) at the Air Force Research

Laboratory. Projections were taken with a 115s exposure time, and pixel size of 1.16 µm

over a 1mm x 1mm field of view (FOV) (Figure 5.1d). Three FOVs were stitched together
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along the gauge length of the minicomposite, yielding an imaged section just exceeding 2.5

mm in length (due to overlap of FOVs). Collection took 3.5 days. Over the scan period,

the sample relaxed from 475 MPa to 275 MPa. After imaging the minicomposite was

transferred to the microtensile stage, acoustic wires were re-connected, and the sample

was loaded to 731 MPa (86.8% UTS). No acoustic signals were recorded before 564 MPa,

indicating that re-loading the specimen below its previously seen maximum stress does

not induce more damage. This also serves as evidence that damage observed during

imaging was not due to loading within the Deben CT5000. The stress-displacement

curve for both load steps, and the final load-to-failure step is shown in Figure 5.3.

Scans were reconstructed using the Zeiss Scout-and-Scan software and segmented with

Dragonfly ORS (Dragonfly 2022.2, Comet Technologies Canada Inc., Montreal, Canada).

For each of the two scans, the deep learning toolkit in Dragonfly was leveraged to identify

regions of matrix, fibers, matrix cracks, and fiber breaks (Figure 5.4). The segmented

scans were then used to highlight individual fiber breaks, which were manually confirmed.

Finally, a shared gauge section within both scans was identified and manually registered

between the two load states. Fiber breaks in this shared section were counted, and are

plotted as a function of position (Figure 5.5).

5.2.4 Acoustic Data Processing

After acquisition, the raw AE data was cleaned to remove waveforms with sufficiently

low signal-to-noise ratios (energy < 0.001V), waveforms showing multiple damage events

within the same time window, and signals which saturated the sensor according to the

same procedure in Chapter 3.2.2. Then, a location analysis was performed to remove
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out-of-gauge events [145] using:

location =
x

2

(
∆t

∆tx

)
(5.1)

where x is the sensor separation distance, ∆t is the difference in time-of-arrival, and ∆tx

is the difference in time-of-arrival for an out-of-gauge event as a function of the damage

parameter. This analysis ensured that only signals arising from in-gauge damage events

were analyzed. This cleaning removed approximately 20% of all recorded AE waveforms,

including out-of-gauge events.

5.2.5 The Autoencoder

The autoencoder deep learning architecture is a neural network which acts as a sur-

rogate for the identity function I : x⃗ 7→ x⃗ [75]. Typically, autoencoders consist of two el-

ements: (1) The encoder function, f : x⃗ 7→ f(x⃗), and the decoder function, g : f(x⃗) 7→ x⃗.

During the training phase, the weights and biases of f and g are adjusted to minimize

the reconstruction error, L(x⃗, g(f(x⃗)), where L is the chosen loss function. One of the

more common autoencoder architectures is the undercomplete autoencoder, in which a

fully connected feedforward network is broken into two parts: the encoder, f , which maps

the input data to a latent space whose dimension is less than the input space, and the

decoder g which maps the encoded representation back to the original input space (Fig.

5.6). By splitting the network this way, the encoder is able to represent the most salient

features of the original high-dimensional input data in the compressed latent space, and

the decoder is able to take the compressed representation back to its original form.

However, the ability to reliably compress and decompress is predicated on the as-

sumption that the training data is representative of population distribution fed to the

autoencoder during inference. If the autoencoder is shown test data which falls signifi-
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cantly outside the training distribution, it will fail to compress and reconstruct the test

data with low error. This principle serves as the basis for their use as time-series anomaly

detectors [196–200], and motivates their use for cleaning imperfect training libraries [201].

Here, we leverage this use of autoencoders to deconvolve matrix crack acoustic signals

from fiber break acoustic signals. As discussed in Chapter 5.3, the acoustic signals ob-

tained from load step 1 (564 MPa) are a mix of primarily matrix crack signals, with

small quantities of fiber break signals. While using this relatively small and imperfect

library to train a supervised classification model risks teaching the model incorrect at-

tributes of matrix crack signals, it is possible to use the imperfect library to identify fiber

break signals. Because fiber breaks are under-represented in acoustic signals collected

from load step 1 (Chapter 5.3), they will have higher reconstruction errors compared to

matrix cracks. The autoencoder anomaly detector architecture is schematically shown in

Figure 5.6.

5.2.6 Training, Error Quantification,

and Secondary Verification

Prior to training, each signal, xi(t) is normalized linearly such that the range of each

signal falls between 0 and 1, this is equivalent to normalization by the MinMax scaler

in Sklearn [6]. The signals are then split into two sets: the matrix set, comprised of

signals gathered up to matrix crack saturation (load step 1, 0 to 564 MPa) and signals

gathered after matrix crack saturation (load step 2, 564 to 731 MPa). These two sets

will be referred to as the matrix set and the fiber set respectively, because the XCT

observations indicate the acoustic signals in these sets are a result of the respective

damage mechanisms. The autoencoder was trained on the matrix set for 500 epochs
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(Figure 5.7a) using the Mean Absolute Error (MAE) loss function:

MAE =
1

n

1

T

n∑
i=1

T∑
t=1

|xi(t)− x̂i(t)| (5.2)

where xi(t) is the value of signal i at time t, x̂i(t) is the reconstruction of signal i, T is the

total number of discrete time samples, and n is the number of signals. The formula in

Eqn. 5.2 is the average point-wise absolute difference between the original signal and the

reconstruction (Figure 5.7b). The Adam optimizer with default learning hyperparameters

and a batch size of 32 was used for training. Training was ended at 500 epochs, a form

of regularization known as early stopping; while the training loss continued to decrease

past this point, the results were unchanged with longer training times (Figure 5.7a). To

show the efficacy of signal reconstruction, an example waveform and reconstruction is

shown in Figure 5.7b.

After training, the autoencoder can be used to compress and reconstruct signals in

the fiber set. The MAE of a reconstruction is calculated, and the signal is labeled as

an anomaly if the MAE exceeds a pre-set threshold. In order to choose this threshold

appropriately, it is necessary to know the MAE distribution of signals seen during the

training phase, i.e. matrix crack signals. Once this distribution is known, it can be

reasonably assumed that values falling outside this distribution have not been seen during

the training phase, and can therefore be considered anomalous, i.e. fiber break signals.

To estimate the MAE distribution of a matrix crack signal, 100 runs of 5-fold cross

validation (5-fold CV) were performed on the matrix set. During a single run of 5-

fold CV, the training dataset is shuffled, and split into 5 mutually exclusive folds. The

autoencoder is then trained on four folds, with the fifth fold being left out to calculate the

MAE. This process is then repeated, systematically holding out another fold each time

[202]. Applying this procedure allows estimation of the reconstruction error distribution
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and helps inform the choice of threshold at which a signal is labeled an anomaly.

Once the error distribution has been estimated with 5-fold CV and a threshold is

chosen, signals can be labeled. However, the fidelity of the labels must be checked.

Although broad trends have been identified via XCT observations, the low temporal

resolution of XCT prevents a more detailed analysis. Therefore, in order to assess the

accuracy of the labels, each signal from the fiber set is also labeled by the spectral

framework described in Chapter 3. The details of processing are identical to Chapter

3.2 with one exception, the frequency range used was lowered from 200-800 kHz to 50-

550 kHz. This adjustment was necessary as the Crystal Bond layer (1-2mm thickness)

between the sensor and sample attenuated the high frequency components of the signal.

When this adjustment is made, the spectral-labeled signals followed the expected damage

chronology (Figure 5.8), demonstrating that the correct hyperparameters were identified

for this experimental configuration. The autoencoder labels were then compared to the

spectral framework labels using the adjusted Rand index (described in Chapter 3.2).

5.3 Results and Discussion

5.3.1 X-ray Computed Tomography and Acoustic Emission

Acoustic signals during the first and second load step were correlated via XCT obser-

vations to matrix cracking and fiber break damage mechanisms, respectively. After initial

loading to matrix crack saturation (564 MPa) the minicomposite was scanned over three

1× 1mm FOVs. Due to a FOV stitching failure at this step by the automated program

during the first scan, for this scan the FOVs had to be manually registered to the scan

from the next load step. In order to minimize error due to manual registration, fiber

breaks from 1 FOV were compared over two load steps (Figure 5.5). Up to matrix crack
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saturation, the majority of damage to the minicomposite was from matrix cracking, and

the number of fiber breaks tended not to exceed 6-8 in a given region (Figure 5.5a).

Additionally, fiber breaks clustered near the plane of a matrix crack, previously observed

by [12, 30]. After matrix crack saturation, the quantity of both single and clustered fiber

breaks increased (Figure 5.5b). Negligible damage to the matrix was observed during

this load step, implying that acoustic signals are primarily the result of fiber failure.

When taken in context with results from the spectral framework, XCT observations

provide evidence that it is not possible to identify fiber breaks when matrix cracking is

a primary damage mechanism. To understand why this is the case, it is necessary to

recognize that fiber breaks occurring at low loads are likely due to dynamic cracking

effects where crack propagation through the matrix initiates simultaneous fiber breaks

[20]. The acoustic signals from these simultaneous damage events are superimposed and

when this is the case, the spectral framework is expected to assign labels according to

the mechanism which contributes the most energy to the frequency spectrum [188].

For these superimposed signals it is likely that the energy of the matrix crack will

always exceed the energy of the fiber break, contribute the majority of acoustic energy to

the frequency spectrum, and drive label assignments. Considering a signal that is com-

posed of a matrix crack and fiber break, whose energies are Ematrix and Efiber respectively,

a ratio of

Ematrix

Efiber

>> 1 (5.3)

implies the signal will be labeled as a matrix crack. Similarly, if the ratio is less than

unity,

Ematrix

Efiber

<< 1 (5.4)
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the signal will be labeled as a fiber break. To estimate the range of values that this ratio

can take, the acoustic energy of a signal is assumed to be proportional to the energy

release rate of the constituent material, Γmatrix/fiber, and the damaged area, Ad
matrix/fiber

[203].

Ematrix/fiber ∝ Γmatrix/fiberA
d
matrix/fiber (5.5)

⇒ Ematrix

Efiber

=
ΓmatrixA

d
matrix

ΓfiberAd
fiber

(5.6)

If the energy release rates of the fibers and matrix are taken to be equivalent, then

Ematrix

Efiber

=
Ad

matrix

Ad
fiber

(5.7)

A reasonable estimate for Ad
matrix is 5% of the in-plane matrix content (Figure 5.9),

yielding a damaged area of 0.05AtotalVm. If a matrix crack of this size initiates a cluster

of 25 fiber breaks, more than twice as large as the maximum observed clustered fiber

breaks (Figure 5.5), the mechanism ratio becomes

Ematrix

Efiber

=
0.05AtotalVm

25πr2f
(5.8)

Substituting the nominal fiber radius of rf = 5µm:

Ematrix

Efiber

= 4.65 >> 1 (5.9)

As such, even low-energy partial matrix cracking will dominate the energy landscape

during early loads and control the labels of signals (Figure 5.9). Therefore it is only

possible to identify fiber failures if the matrix crack mechanism is exhausted.
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5.3.2 Autoencoder Signal Labeling

After acoustic signals had been correlated to load states and labeled with the spectral

framework, the autoencoder was used to generate labels. To do this, the MAE distribu-

tion of unseen matrix crack signals was estimated by performing 100 runs of 5-fold CV

on the matrix set (Figure 5.10a). The average 5-fold CV error over 100 runs was 0.0185,

and the average of the standard deviation was 0.00256. With the empirical error distri-

bution, an initial threshold was chosen to be 0.47, such that it marked the 95th percentile

(Figure 5.10a). Choosing this threshold allows for the identification of fiber breaks with

reasonable certainty, in that if a matrix crack was reconstructed with the autoencoder,

there would only be a 5% chance its MAE would exceed this threshold [204]. Therefore,

signals with MAEs exceeding this threshold are unlikely to be the result of a matrix crack

and more likely to be from a fiber break. Once this threshold was chosen, signals from

the fiber set were compressed and reconstructed by the autoencoder.

Surprisingly, every reconstructed signal fell below the 95% threshold, indicating that

there were no fiber break signals contained within the fiber break set; a conclusion

which contrasts with both optical XCT observations and spectral framework signal labels.

These results prompted a secondary verification of the code base to ensure it was bug-

free; no bugs were found. Following code verification, a threshold scan was conducted

on the fiber set to determine if there was a threshold that existed which would yield

the same labels as the spectral framework. A threshold which permitted for accurate

signal labeling was MAE= 0.0075, just below the 5th percentile of MAEs in the 5-fold

CV error distribution. More than this, signals with MAEs below this value, rather than

above, were labeled as fiber breaks. This finding shows that the autoencoder was able to

reconstruct fiber break signals to a high degree of fidelity.

To interpret this, it is important to remember that the fidelity of an autoencoder
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reconstruction depends on how well the training distribution represents the population

distribution of training signals. With this in mind, there are two possible reasons for the

unusually low reconstruction errors: 1) the matrix set was incorrectly assumed to be com-

posed primarily of matrix cracks, or 2) the population distribution of fiber break signals

is compact compared to matrix crack signals, and therefore few fiber break exemplars

are needed to achieve low reconstruction errors. The first hypothesis can be dismissed.

There are visual observations, along with the secondary verification from the spectral

framework, which show limited fiber failures in the presence of extended matrix cracking

(Figure 5.5a, Figure 5.8). Therefore, the more likely hypothesis is what is termed here

as the compact distribution hypothesis.

Compact Distribution Hypothesis: The distribution in excited frequencies emit-

ted by fiber break signals is compact relative to the distribution of matrix crack signals.

If this hypothesis is true, then a limited number of fiber break signals in the training

set can be sufficiently large to represent the population distribution of fiber breaks. To

test this hypothesis and confirm that the low MAEs are a result of compact fiber signal

distribution, it is useful to treat the autoencoder labels as a function of the training set.

When viewed this way, the the correspondence between the autoencoder and the spectral

framework labels will increase as the number of fiber signals in the training set increases,

the ARI (i.e. correspondence) between autoencoder labels and spectral framework labels

also increases. This hypothesis was tested by:

1. Begin with an empty training set

2. Add the signal recorded at the next lowest stress to the training set

3. Shuffle the training set
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4. Train a new, previously untrained autoencoder according to Chapter 5.2.6

5. Reconstruct signals from the fiber set and record their MAEs

6. Label signals with an MAE of < 0.0075 as fiber breaks

7. Measure correspondence with spectral framework labels using the ARI

8. Repeat 2-7 until all signals are contained in the training set

As signals were added to the training set at progressively higher stresses, and the likeli-

hood of fiber break signals being included increased, the ability to reconstruct fiber signals

increased as did the correspondence between autoencoder labels and spectral framework

labels (Figure 5.11a). To further demonstrate that the distribution of fiber breaks is

compact compared to matrix cracks, the above training protocol was modified to reverse

the order in which signals were added to the training set. This is equivalent to steps 1-8

above where step 2 is replaced with:

2. Add the signal recorded at the highest stress to the training set

Following this procedure, the ARI between the autoencoder and the spectral frame-

work labels immediately takes on a value exceeding 0.4, only dropping below this value

due to the stochastic nature of training. This provides two key pieces of support for the

compact distribution hypothesis. First, it shows faithful fiber break signal reconstruc-

tions can be achieved with few training exemplars, which subsequently implies a tight

distribution of signals. Second, it shows that the low ARIs when fewer than 60 training

signals are used in Figure 5.11a are not a result of the small training set size, and rather

lack of fiber breaks contained within the training set.
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5.4 Conclusions

While progress has been made towards AE-ML damage mechanism identification

(DMI) in SiC/SiC composites, existing frameworks have substantial limitations which

preclude their broader use in real-time structural health monitoring. For example, while

the work in Chapter 3 presents the spectral framework, a method for DMI in SiC/SiC

composites, the spectral framework cannot be used to identify damage mechanisms while

a mechanical test is on-going. Since clustering methods will always find the number

of clusters that is specified, the spectral framework can only accurately identify dam-

age mechanisms if both matrix crack and fiber break signals are present which requires

mechanical tests to be run to very high stresses > 85% UTS, or completion. Consider-

ing this, the spectral framework can only be used for DMI after the composite is close

to failure or has already failed. Furthermore, due to the safety-critical nature of these

technologies, the error rates of AE-ML frameworks must be robustly characterized in

conditions that accurately represent operating environments. This requires libraries of

ground-truth acoustic signals gathered under operating conditions, which are currently

infeasible to acquire.

To address these challenges, SiC/SiC minicomposites were subjected to uniaxial ten-

sion and imaged via x-ray computed tomography. Signals were separated into two sets,

based on general damage mechanism trends observed by XCT, and an autoencoder archi-

tecture was used to identify matrix cracks and fiber breaks. Error quantification, via 100

runs of 5-fold CV, was performed and when combined with XCT observations allowed us

to conclude that:

1. Early fiber breaks are obscured by matrix crack signals, preventing identification

from their acoustic signal

2. The distribution of fiber break acoustic signals is small compared to matrix crack
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signals

3. Autoencoders can be leveraged to label signals under realistic operating conditions

These findings are used to support and explain previously developed hypotheses [20, 30,

187]. Moving forward, the obscuring of fiber break signals will be the largest challenge

with implementation of any DMI framework. In full-scale composite layups, matrix

cracking is a function of the layup geometry, and may never reach saturation [205]. In

such cases, DMI is not possible without temporal deconvolution of signals. While not

currently feasible, this capability will be needed to leverage AE-ML framework in full-

scale composites and is an avenue for future work.
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Figure 5.1: Photograph of mechanical test. (a) Top-down view of custom mini-
composite grips, inset is an isometric view of the tab. Tabs featuring an epoxy reservoir
and AE sensor housing were 3D printed. Tabs and sample were aligned in a laser-cut
acrylic mold to mitigate off-axis loading. (b) AE sensors are attached to the minicom-
posite via Crystal Bond. Removable wiring allows transfer to XCT without sensor
removal. (c) Side view of in-situ load frame with X-ray transparent housing. The
lack of wiring ports necessitates disconnectable AE wiring. (d) Zeiss Xradia 520 CT
scanner. The load frame sits in the center between the source and the detector.
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Figure 5.2: Normalized Cumulative AE energy. The minicomposite was loaded
to 564 MPa during the first load step. Immediately after this load, there is a lack
of AE activity, indicating that matrix crack saturation has been reached. Further
loading activates fiber failures, and AE activity increases.
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Figure 5.3: Stress-Displacement of tested minicomposite. During the first and
second load step, the minicomposite was loaded to 564 MPa and 731 MPa respectively
before being unloaded. XCT scans were taken after each load step. Following this,
the sample was loaded to failure.

122



Supervised Damage Mechanism Identification in SiC/SiC Composites Chapter 5

Figure 5.4: Minicomposite XCT cross-section after loading to matrix crack
saturation (564 MPa). (a) After loading to 564 MPa, the specimen was transferred
to the XCT, loaded to 475 MPa to re-open cracks, and scanned. (b) A U-net segmen-
tation model was trained using the deep learning toolkit in Dragonfly. Matrix, fibers,
matrix damage, and fiber damage are identified, allowing for rapid identification of
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Figure 5.5: Damaged minicomposite and its fiber break spatial distribution.
(a) Radiograph of minicomposite after loading to matrix crack saturation (564 MPa),
with matrix cracks denoted by arrows and fiber breaks denoted by boxes. (b) Radio-
graph of the same minicomposite, noting the slight change in FOV, after loading to
731 MPa. During the second load step, fiber break activity increased while the extent
of matrix cracking was relatively unchanged. Accordingly, the majority of acoustic
signals gathered from the second load step result from fiber breaks.
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Figure 5.6: Schematic diagram of the autoencoder architecture. The encoder
function maps the waveform to a 32 dimensional latent space in a single step before a
2-step decompression by the decoder function. Signals with large differences between
the original waveform are considered anomalous.
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Figure 5.7: Training loss history of the autoencoder and example of an
autoencoder reconstruction. (a) Training loss history of the autoencoder. Early
stopping was implemented at 500 epochs as a form of regularization. Longer training
times did not change autoencoder-generated signal labels; (b) Example of an input
waveform, its autoencoder reconstruction, and error. Training protocol prevented
overfitting while allowing for faithful waveform reconstruction
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Figure 5.8: Cumulative signals as clustered by the spectral framework. Fiber
break events become identifiable after matrix crack saturation. Due to the higher
energy content of a matrix crack acoustic signal, fiber failures cannot be identified
when matrix cracking is the dominant mechanism.
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Figure 5.9: Energy of acoustic signals normalized by the highest energy event
as a function of stress. Before matrix crack saturation, low energy microcracks
obscure fiber break signals and drive label assignments by the spectral framework.
After matrix crack saturation, fiber failures occur in the absence of microcracking,
and can be identified by the spectral framework.
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Figure 5.10: The Mean Absolute Error (MAE) distribution of reconstructed
signals. (a) The empirical MAE distribution estimated by 100 runs of 5-fold CV.
The dashed line demarks the 95% threshold. Signals exceeding this threshold are
considered anomalous. (b) The MAE distribution of signals from the fiber set when
reconstructed during inference. No signal exceeds the 95% threshold indicating no
anomalous signals.
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Figure 5.11: The Adjusted Rand Index (ARI) between autoencoder labels
and spectral labels as a function of the number of signals included in the
training set. Few fiber break exemplars are needed to enable low MAE-reconstruc-
tions. (a) Signals gathered at increasing stresses were progressively added to the
training set. As signals at higher stresses were included, the likelihood of a fiber
break signal being included increased, as did the ability to reconstruct fiber break
signals. (b) Signals gathered at decreasing stresses were progressively added to the
training set. This shows the ARI is dependent on the type of signal seen during train-
ing, not the number of signals contained in the training set.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions and Impact

Fiber-reinforced ceramic matrix composites (CMCs) are industrially relevant and sci-

entifically interesting structural materials for extreme environments. Their heterogeneous

microstructure prevents unstable crack propagation and runaway failure of parts made

from these materials. Yet, the same heterogeneous microstructure complicates lifetime

prediction and limits the use of CMCs in safety-critical applications. The work in this

dissertation: 1) explored the limitations of well-established damage models, 2) developed

trustworthy machine learning (ML) tools for damage mechanism identification (DMI) 3)

leveraged the newly developed ML tools together with x-ray computed tomography to

precisely characterize damage progression in SiC/SiC minicomposites.

The experimental study in Chapter 2 demonstrated that common microstructural het-

erogeneities in SiC/SiC minicomposites led to substantial differences between observed

crack opening displacements (CODs) and predictions from well-established monotonic

tension models. Independent of microstructure, these heterogeneities resulted in incom-

plete and non-planar cracking, which in turn led to COD growth rates that deviated from
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the expected σ2 dependence. Across four lengths of SiC/SiC minicomposites, with two

different microstructures, the CODs of 62 cracks were measured as a function of stress.

More than 50% of all observed cracks were found to deviate from this σ2 dependence and

fell below the range of CODs that could be explained by using any set of interfacial pa-

rameters. The results from this study substantiated hypotheses from previous literature

that these underpredictions were the result of intact subsurface matrix content. However,

this study was conducted via scanning electron microscope (SEM) observations which are

unable to directly observe subsurface damage.

As a result, subsequent studies which aim to characterize subsurface damage require

the use of high-fidelity subsurface interrogation techniques. However, there are few of

these techniques that exist and even fewer that are easily accessible. Acoustic emission

(AE) is one such method that satisfies both these requirements; it is capable of charac-

terizing subsurface damage with high temporal resolution, experimental setups are cheap

(< $10, 000), and the hardware is compatible with other high-resolution characteriza-

tion methods such as SEM or tunneling electron microscopy. Yet despite the advantages

of AE, the ability to identify damage mechanisms from their acoustic signal is under-

developed, and developing this capability is critical if AE is to be fully leveraged for

subsurface damage characterization. In Chapter 3, a novel machine learning framework

for AE-based damage mechanism identification (DMI) was created. This framework,

termed the spectral framework, is the first demonstration of AE-based DMI in elastically

similar composites. It leverages a frequency-based representation scheme along with the

spectral clustering algorithm to group waveforms based on their damage mechanism.

In Chapter 4 a standardized benchmarking data set was created and used to quan-

titatively rank the spectral framework against four state-of-the-art DMI frameworks.

This data set was used to explore salient signal representation schemes, propose a set of

guidelines for identification of salient features, and quantify the amount of data needed
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to ensure stable framework performance. Moreover, the benchmarking data set in this

chapter offers the AE community a cheap and highly accessible method for creating and

expanding a database which is suitable for benchmarking. The experimental setup used

to gather the data set is replicable with common laboratory equipment and uses com-

mercially available pencil leads to generate acoustic signals. Consequently, the number

and type of acoustic signals within this data set can be readily increased, making this

method a powerful tool for generating the large amounts of data needed for supervised

ML approaches.

While the PLB data set is useful for assessing the relative discriminating power of DMI

frameworks, it cannot be used to assess how a framework will perform when applied to

full-scale composite structures. Moreover, the DMI frameworks in Chapter 4 are unable

to be used for real-time DMI which limits their usefulness. Addressing these challenges in

Chapter 5, an autoencoder-based anomaly detection approach was created and shown to

enable real-time DMI. X-ray computed tomography observations were leveraged alongside

AE to create a library of matrix crack and fiber break signals. When both the autoencoder

approach and the spectral framework were used to label signals in this library, it was

shown that the energy content of early matrix cracks signals prevented labeling of early

fiber breaks. Additionally, uncertainty quantification was carried out which showed that

the distribution of frequency content within fiber break signals is narrow. These findings

indicate that without the ability to deconvolve overlapping fiber break and matrix crack

signals, detection of fiber break onset is not possible in composite layups.

6.2 Future Outlooks

The work found throughout this dissertation raises several interesting questions and

avenues for future work, related to both machine learning and high-fidelity mechanical
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characterization of composites. Based on the findings herein, paths forward which are

expected to be of highest impact are:

1. Temporal deconvolution of acoustic signals

2. ML-enabled high throughput experimentation

3. ML for hypothesis development and testing

These points are discussed in the sections below.

6.2.1 Temporal Deconvolution of Acoustic Signals

In recent years, AE has been combined with optical characterization methods to en-

hance experiments by providing highly time-resolved data streams [12, 30, 33]. These

investigations have shed light on the microstructural factors governing the initiation and

accumulation of damage. However, many of these studies have been limited to uni-

directional SiC/SiC structures. While findings in these studies can inform composite

engineering, this dissertation demonstrated that the mechanics of unidirectional compos-

ites are not representative of what occurs in full-scale laminates. To achieve the goal

of characterizing representative damage accumulation, AE needs to be integrated with

optical studies conducted on full-scale composites. Full utilization of AE requires the

ability to perform Damage Mechanism Identification (DMI). Yet, as demonstrated in

Chapter 5, fiber breaks at low stresses cannot be identified due to the masking effect

of matrix cracks. Therefore, to reliably conduct AE-based DMI, it is essential to de-

velop the capability to deconvolute, or at the very least, identify overlapped matrix crack

and fiber break signals. This is crucial for enabling high-fidelity multi-modal studies of

representative composite structures.
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6.2.2 ML-Enabled High Throughput Experimentation

In the past decade, increases to computing power and storage capacity have trans-

formed the landscape of scientific research. Modern experiments can now explore macroscale

areas and volumes of materials, while simultaneously gathering various types of data (e.g.,

mechanical, chemical, optical, etc.) [206]. While these advancements have resulted in a

wealth of information-rich experimental data, it’s important to note that each experiment

is context-dependent, the underlying mechanics are often unique to specific systems, and

obtaining a statistically significant number of observations can be challenging. Recent

developments in large language models show promise in connecting seemingly unrelated

experiments [207], and generative models have the potential to address issues related to

low counting statistics [208, 209], however both of these approaches are in their infancy,

and the experimental pipelines needed to complement and verify them are underdevel-

oped. As demonstrated in Chapter 5 and elsewhere [210, 211], ML has the ability to

significantly reduce the time required for experimentation and analysis. This, in turn,

permits for rapid collection and analysis of large numbers of observations. By thought-

fully integrating ML into the most time-consuming aspects of experimental pipelines,

such as image segmentation, data analysis, or multi-modal data alignment, time costs

can be substantially reduced enabling high-throughput experimentation.

6.2.3 ML For Hypothesis Development and Testing

Within experimental mechanics, ML is typically regarded as a tool for accelerating the

experimental process, typically by automating time-consuming tasks as discussed earlier.

However, ML is often overlooked as a tool which can be used to directly test scientific

hypotheses; few studies exist in this application space [212–216]. For hypothesis testing,

ML has proven valuable for finding hidden correlations within complex data sets that
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would otherwise be challenging to interpret. As an example, Gronbech et al. utilized

a variational autoencoder (VAE) to show that variations in cancer cell gene expressions

are only weakly linked to cell type [213]. In their study, they showed that classification

accuracy was uncorrelated to how well the VAE had captured the multivariate transcrip-

tion distribution. Similarly, Wang et al. used a deep neural network architecture to test

the hypothesis that compound stability is more influenced by chemical composition than

by crystal structure [216]. To support this, they demonstrated that their architecture

could not predict stability when trained on crystal structure information, indicating that

other factors, such as chemical composition, play a more significant role in determining

compound stability. Finally, as demonstrated in Chapter 5, ML can be applied to test

hypotheses about the acoustic behavior of fiber damage in SiC/SiC composites. In each

of these cases, ML was used to enable testing of hypotheses that would otherwise be pre-

cluded, either due to the volume of data which needs to be parsed or due to the nature

of the experiment itself.
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[97] S. F. Wirtz, N. Beganovic, and D. Söffker, Investigation of damage detectability in
composites using frequency-based classification of acoustic emission
measurements, Structural Health Monitoring 18 (2019), no. 4 1207–1218.

[98] K. M. Bak, K. Kalaichelvan, G. K. Vijayaraghavan, and B. Sridhar, Acoustic
emission wavelet transform on adhesively bonded single-lap joints of composite
laminate during tensile test, Journal of Reinforced Plastics and Composites 32
(2013), no. 2 87–95.

[99] K. Arakawa and T. Matsuo, Acoustic emission pattern recognition method utilizing
elastic wave simulation, Materials Transactions 58 (2017), no. 10 1411–1417.

[100] A. Satour, S. Montrésor, M. Bentahar, and F. Boubenider, Wavelet Based
Clustering of Acoustic Emission Hits to Characterize Damage Mechanisms in
Composites, Journal of Nondestructive Evaluation 39 (2020), no. 2 1–11.

[101] I. Daubechies, The Wavelet Transform, Time-Frequency Localization and Signal
Analysis, IEEE Transactions on Information Theory 36 (1990), no. 5 961–1005.

145



[102] M. Fotouhi, M. Saeedifar, S. Sadeghi, M. Ahmadi Najafabadi, and G. Minak,
Investigation of the damage mechanisms for mode I delamination growth in foam
core sandwich composites using acoustic emission, Structural Health Monitoring
14 (2015), no. 3 265–280.

[103] N. Morizet, N. Godin, J. Tang, E. Maillet, M. Fregonese, and B. Normand,
Classification of acoustic emission signals using wavelets and Random Forests:
Application to localized corrosion, Mechanical Systems and Signal Processing
70-71 (2016) 1026–1037.

[104] The Mathworks, Inc., Natick, Massachusetts, MATLAB version 9.9.0.1462360
(R2020b), 2020.

[105] D. Laszuk, “Python implementation of empirical mode decomposition algorithm.”
https://github.com/laszukdawid/PyEMD, 2017.

[106] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der
Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
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