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Shape prediction on the basis of spectrum using neural networks

Y. Zhao and M. M. Fogler
Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

(Received 1 June 2022; accepted 20 December 2022; published 14 February 2023)

We have developed a deep neural network that reconstructs the shape of a polygonal domain given the
first hundred of its Dirichlet Laplacian eigenvalues. Having an encoder-decoder structure, the network maps
input spectra to a latent space and then predicts the discretized image of the domain on a square grid. Tested
on randomly generated pentagons, the predictions prove to be highly accurate for both concave and convex
pentagons. Our analysis indicates that the network has discovered fundamental properties of the Laplacian
operator, the scaling rule, and the continuous rotational symmetry. Additionally, the latent variables are strongly
correlated with Weyl’s parameters (area, perimeter, and a certain function of the angles) of the test polygons.

DOI: 10.1103/PhysRevResearch.5.013110

I. INTRODUCTION

In 1966, Mark Kac raised the famous question “Can One
Hear the Shape of a Drum?” [1]. He wondered if the frequen-
cies of the fundamental vibrational modes, i.e., the Dirichlet
eigenvalues for the Helmholtz equation, uniquely define the
shape of a domain. This question pertains to the important
yet difficult topic of inverse problems in physical sciences. It
was not until 1992 when Gordon et al. finally gave a negative
answer to Kac’s question [2] presenting counterexamples such
as ones shown in Fig. 1. However, only a few families of
such isospectral nonisometric polygon pairs have been found
during the subsequent decades of research [3]. A numerical
study [4] suggested that the set of all counterexamples has
measure zero. In other words, the answer to Kac’s question
is affirmative for a vast majority of shapes [5–10]. It is then
natural to raise a follow-up question of how to reconstruct the
domain shape from its spectrum, or, in more practical terms,
from a finite number of its first Dirichlet eigenvalues. We call
this the inverse Dirichlet problem (IDP).

The IDP is obviously not limited to acoustics but can be
generalized to a wide variety of field and matter wave phe-
nomena. Our own interest in IDP originates from the scanning
near-field optical microscopy (SNOM) of subdiffractional res-
onators. In these types of experiments, one can measure both
the phonon-polariton mode spectra and the real space images
of small samples [11–13]. As their dimensions shrink, it be-
comes difficult to directly resolve the detailed shape of these
nanostructures. However, this geometric information is still
encoded in the mode spectra. We envision that tools developed
to solve the IDP could be utilized to improve the resolu-
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tion limits of SNOM and other scanned probe nanoscopy
techniques.

Inverse problems are commonly solved by iterative numer-
ical methods. For the IDP, one can employ the same strategy.
For example, there exists an algorithm that iteratively morphs
the embedding mesh of the domain until its Dirichlet eigenval-
ues match those of the ground truth (GT) [14,15]. Although
this method seems to perform reasonably well for smooth
and convex drum shapes, it is computationally intensive and
generally requires a good initial guess (see Fig. 9 in the Ap-
pendix).

In recent years, deep neural networks (DNN) have gained
popularity as a new tool for solving a variety of inverse prob-
lems. In physical sciences, examples include optimization of
photonic crystals [16], data analysis in microscopy and spec-
troscopy [17,18], detection of quantum phases [19–21], and
subatomic particles in collision experiments [22–24]. Some
studies in computer vision used DNN to solve problems
conceptually similar to IDP, e.g., reconstruction of three-
dimensional (3D) geometries from two-dimensional (2D)
images or vector encodings [25–28] and 2D images from text
descriptions [29–31]. Recently, the DNN method has been
used to solve the IDP for 3D shapes representing human
facial expressions [32]. That work was motivated by industrial
applications of computer vision techniques. In this work, we
developed a DNN to solve the IDP for randomly generated
pentagons. Additionally, we tried to analyze the physical and
mathematical properties of its latent variables. Interpreting the
knowledge gained by a DNN is in fact a trending topic in the
machine learning community. For example, in computer vi-
sion studies, the DNN latent space has been shown to correlate
with facial details and object symmetries [33,34]. In physical
sciences, the DNN latent variables have been shown to contain
conserved quantities in collisions [35], the heliocentric repre-
sentation of orbits in astronomy [35], symmetries of quantum
field models [36], and order parameters in phase transitions
[37,38]. Here we find evidence that the DNN discovered the
scaling and the rotational symmetry of the Laplacian operator.
We also find a strong correspondence between the DNN latent

2643-1564/2023/5(1)/013110(9) 013110-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.013110&domain=pdf&date_stamp=2023-02-14
https://doi.org/10.1103/PhysRevResearch.5.013110
https://creativecommons.org/licenses/by/4.0/


Y. ZHAO AND M. M. FOGLER PHYSICAL REVIEW RESEARCH 5, 013110 (2023)

(a) (b)

FIG. 1. A nonisometric isospectral pair. The two polygonal
drums (a) “the hawk” and (b) “the seal” share the same spectrum
of vibrational eigenfrequencies. The false color depicts the spatial
distribution of the 9th eigenmodes of each polygon.

variables and the three Weyl parameters of the domain (area
A, perimeter L, and a certain function K of the angles, see
below).

The remainder of the paper is organized as follows. In
Sec. I, we provide details on the data generation and the DNN
design. In Sec. III we discuss the performance of the DNN and
interpret the physics learned by it. We end with concluding
remarks in Sec. IV.

II. DATA GENERATION AND NETWORK STRUCTURE

We now describe the data generation and the structure
of our DNN. The vertices of the pentagons were generated
in polar coordinates with polar distances uniformly sampled
between 0.5 and 2. To ensure the proper size of the pen-
tagons, the corresponding polar angles were generated such
that the included angles between neighboring radii have val-
ues between π/10 and π . The associated first 100 Dirichlet
eigenvalues were calculated using a standard finite-element
solver (Mathematica) [39]. It is important to notice that the
computed eigenvalue spectrum is invariant under any trans-
lations, rotations, and reflections of the pentagon. However,
in IDP these isometric transformations introduce ambiguity in
the DNN output. To eliminate this “gauge freedom,” we did
the following. First, we shifted the centroids of each pentagon
to the origin. Second, we rotated the pentagons such that
the vertex with the smallest inner angle is located on the
x > 0 semiaxis. Finally, the remaining reflection symmetry
was integrated into the loss function to be discussed later in
this section. After the above procedure, the pentagons were
coarse-grained into bitmap images IGT on a 41×41 grid ob-
tained by dividing the square −2 � x, y � 2 into pixels of size
0.1×0.1. For these input images we restricted the pixel values
to be pi = 0 or 1. On the other hand, the output of the DNN
are images I that we allowed to have fractional pixel values
0 � qi � 1.

To quantify the similarity between bitmap images, a com-
monly used metric is the Jaccard index, which is defined as
the ratio of the areas of the intersection and the union of two

Jaccard Index = 0.56

Jaccard Index = 1 Jaccard Index = 0.73

flip

Index = 1Index = 0.75

(b)

(a)

FIG. 2. Illustrations of the Jaccard index properties. (a) The Jac-
card index for the hawk gradually morphing into the GT, the seal.
(b) Reflection of an image with respect to a horizontal axis does not
change its shape yet diminishes its Jaccard index. The GT is the red
pentagon.

sets. As illustrated in Fig. 2(a), the Jaccard index increases as
the “hawk” gradually morphs into the “seal.” For grayscale
images I in our study, a power-2 variant of the Jaccard index
[40,41] is more suitable. This latter metric is defined by

J (I, IGT) =
∑

i piqi∑
i p2

i + q2
i − piqi

. (1)

It coincides with the Jaccard index if the pixel values pi, qi are
restricted to {0, 1} and ensures that 0 � J � 1 if these values
are allowed to be fractional. The maximum possible value
of J = 1 is attained when I and IGT are identical, pi = qi.
The summation index i in Eq. (1) runs over the entire 41×41
image. However, the previously mentioned gauge freedom
still compromises this metric. As demonstrated in Fig. 2(b),
after a reflection, a perfect prediction deviates from the GT
(the red pentagon) and therefore has the Jaccard index J < 1.
To combat this problem we subject I to all possible symmetry
operations π of the square grid (comprising the dihedral group
D4) and pick the one with the largest J . The corresponding
loss function L is given by

L = min
π∈D4

[1 − J (π (I ), IGT)]. (2)

Our DNN has the encoder-decoder structure. Networks
with such a structure have been shown to handle many com-
plicated tasks including detecting abnormal quantum phases
[42], approximating quantum state distributions [43], and
parametrizing nonlinear dynamics [44–46]. Recent studies
have also shown that encoder-decoder DNNs have the ability
to discover key physical parameters of the problem [35,47].
As depicted in Fig. 1(a), the input to the DNN consists of
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Boundary Decoder
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Boundary
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FIG. 3. Structure of the DNN developed in this study. The full architecture contains an eigenvalue encoder, a latent layer, a boundary
decoder, and a latent layer analyzer. The encoder consists of three consecutive LSTM layers (dark blue) that extract information from the input
eigenvalue spacings. This information is then compressed into the latent layer of 10 neurons. The decoder first expands the latent space via
three dense layers (cyan), then reshapes (magenta) the result, then decodes the image using four 2D transpose convolutional layers (brown).
The latent layer analyzer deciphers the latent space using n consecutive hidden dense layers. (a) The encoder and the latent layer are connected
to the decoder for boundary prediction task. Here we train all the sections. (b) The latent layer analyzer is connected to the encoder and the
latent layer for physical parameter extraction. In training, only the weights in the analyzer are adjusted.

the first 100 eigenvalue spacings. The encoder portion is com-
posed of three consecutive long-short term memory (LSTM)
[48] layers of size 128 each. The latent layer directly after
the encoder contains 10 neurons with linear activation. Even
though seven independent parameters are enough to uniquely
determine a pentagon, this slightly larger latent space helps
to increase the DNN approximation capability. The decoder
starts with four dense layers of sizes 50, 512, 1024, and 3200
with LeakyReLu activation (negative slope coefficient set to
0.3 and is the same for the rest of this section) [49]. Next,
the output vector of size 3,200 is reshaped to 128 feature
maps each of size 5×5. Four 2D Transpose Convolution
(TransConv2D) layers with kernel sizes 3×3, 3×3, 3×3, and
1×1 and kernel stride lengths of 2, 2, 2, and 1, then construct
the image up-sampling block. Through such a process, the
number of feature maps reduces to 64, 32, 16, and 1, and
the initial 5×5 image expands to the final prediction of size
41×41. The first three TransConv2D layers have the ReLu
activation while the last one has sigmoid activation to con-
straint the predicted pixel values. Only the last TransConv2D
layer utilizes zeropadding. During training, the loss function
defined in Eq. (2) is applied and 20% of the samples are used
for validation. A total of 1,100,000 training samples are fed
into the network in 11 batches. The training epoch number
for each batch decreases linearly from 50 to 10. We used the
Adam optimization method with an initial learning rate of
10−3 and a decay rate of 10−5. After training, a test data set
containing 100,000 additional samples was used to measure
the prediction accuracy. Our source codes are publicly avail-
able at Github [50].

III. RESULTS

The mean of the loss function L for the entire test dataset
occurs at 0.069 with over 67% of the tested cases achieving a
loss below this value. To better illustrate the relation between
the loss function and the goodness of the DNN fit, we provide
six examples in Fig. 4. These examples are arranged with
increasing loss values, from Figs. 4(a) to 4(f) representing
the lowest 10%, 25%, 40%, 57%, 75%, and 95% of all loss
values, respectively. Their corresponding positions in the cu-
mulative distribution function (CDF) of all loss values are also
highlighted in the bottom subfigure in Fig. 4. Based on vi-
sual inspection, we consider the predictions in Figs. 4(a)–4(c)
“good”, Figs. 4(d) and 4(e) “average”, and Fig. 4(f) “bad.”
The “good” predictions capture almost every detail of the true
polygonal shapes (shown in red), with a sharp boundary and
only a few pixel-level discrepancies present. In the “average”
predictions, the pentagon edges become somewhat blurred. In
the “bad” predictions, however, major discrepancies appear
at multiple edges and vertices. We think that these failures
are characteristic of shapes that were relatively rare instances
in the training set. Overall, since our DNN captures the true
geometry for the majority of the tested samples, we conclude
that it can indeed “hear” the shape of a pentagon from its
overtones.

Next, we address the question whether the DNN is capable
of learning basic properties of the Dirichlet problem. We
attempted to answer this question by investigating the scaling
behavior of the DNN output. The eigenvalues scale inversely
proportional to the square of the linear dimension of the drum.
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Jaccard Index Loss

0
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F

(a) Loss = 0.024 Loss = 0.043(c)Loss = 0.034(b)

Loss = 0.19Loss = 0.056(d) (f)

Loss = 0.080

(e)

(f)
(e)

(d)
(c)(b)

(a)

Mean 
Median

FIG. 4. Typical DNN predictions. The examples (a)–(f) are ordered according to their loss values. The bottom plot shows the cumulative
distribution function (CDF) of the loss function for the entire test dataset. The red crosses mark the positions corresponding to the predictions
(a)–(f). The brown and the purple dots indicate the statistical median and mean, respectively.

Therefore, scaling of the DNN input (level spacings) by a
factor of S should make the predicted area A expand by a
factor of 1/S. To check if the DNN adheres to this rule, we
repeated the simulations applying scaling factors 0.5�S�2.5
to the previous dataset. The results are demonstrated in Fig. 5.
In Fig. 5(a) we show the scaling behavior of a typical good
prediction. In this example, the predicted polygons vary in
size according to the expected scaling rule. The shape of the
drum is maintained in both enlarged and shrunken images.
Surprisingly, the same scaling rule is also exhibited by a bad
prediction. As demonstrated in Fig. 5(b), the DNN changes
the size of this faulty prediction while preserving its shape.
To check the area scaling quantitatively, we defined the area
A of the predicted pentagon to be the sum of all the pixel
values. We observed that it has a power-law dependence on
the eigenvalue scaling factor S with the exponent of −0.93,
which is very close to the expected −1, see Fig. 5(c).

Another surprise is that the DNN also discovers the con-
tinuous rotational degree of freedom beyond the symmetry of
the underlying square grid. As exemplified in Fig. 6(a), after
a counterclockwise rotation of 150◦, a seemingly fallacious
prediction with L = 0.35 shows a much better agreement

with the GT (L = 0.13). Such cases make up more than one
quarter of the worst 3,000 predictions. Additional examples
of such seemingly “bad” predictions include instances where
L can be greatly reduced if a suitable rotation is combined
with a reflection, see Fig. 6(b). It is remarkable that these
predictions exist despite being penalized by the loss function.
They suggest that the DNN must have captured fundamental
information associated with the geometry of the drumheads.

Frequently discussed in the context of the IDP is Weyl’s
formula [3,51,52] for the average number of eigenvalues be-
low a prescribed value E :

N (E ) � A
4π

E − L
4π

√
E + K. (3)

Here L is the perimeter of the polygon, constant K is given by

K = 1

24

∑
i

(
π

αi
− αi

π

)
, (4)

and 0 < αi < 2π are the inner angles. We find evidence that
the DNN discovers Weyl’s expansion and stores information
about the three parameters A, L, and K in the latent neurons.
To do so we utilize the universal approximation property
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FIG. 5. The DNN discovers the scaling property of the Laplacian. (a) Examples of the scaling behavior of the predicted images with the
corresponding eigenvalue scaling factors indicated. The GTs are shown in red for comparison. (b) The scaling law holds even for a poor
prediction. (c) The predicted area as a function of the scaling factor, fitted to a powerlaw (dashed line) with exponent −0.93. The statistical
error is smaller than the symbol size.

Original Prediction
Counterclockwise
Rotation by 150°

Original Prediction
Counterclockwise Rotation by 

30° + Horizontal Reflection

(a)

(b)

FIG. 6. The DNN discovers spatial symmetries beyond the lim-
itations of the underlying square grid. (a) The rotational symmetry
(b) a rotation combined with a reflection. The GTs are shown
in red.

[53] of neural networks to establish a mapping from the la-
tent neurons to Weyl’s parameters. Specifically, we detached
the encoder and the latent layer from the original DNN and
connected it instead to a small latent layer analyzer network
whose outputs were Weyl’s parameters (or other parameters of
interest, see below). To control the complexity of the mapping
function, we varied the number of hidden layers in the small
network but fixed the size of each layer to 50 neurons, see
Fig. 3(b). We kept the output layer activationfree and hence,
the only source of nonlinearity in the small network was
the hidden layers where the LeakyReLu activation function
was applied. During training, we allowed modifications of the
small network parameters only, using the mean squared error
(MSE) as the loss function. In a similar way, we constructed
two other networks, one predicting Cartesian coordinates of
the polygon vertices and another one predicting the edge
lengths and inner angles of the polygons. These more tradi-
tional ways to define shapes were included for comparison.

We used 1,100,000 samples to train the mapping from the
latent space to each of these three sets of boundary descriptors.
The same optimizer with identical learning rate and decay
policy was applied. The testing results from 100,000 samples
are demonstrated in Fig. 7(a), where the mean predicted per-
centage errors for every parameter set are graphed as functions
of the number of the hidden layers. For Weyl’s parameters,
the error is as low as 7% for a simple linear mapping. When
nonlinearity is later introduced, the error plateaus at 1.6%. In
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FIG. 7. Latent space analysis. (a) The prediction accuracy for
different sets of geometric parameters (Weyl’s parameters, blue; the
edge lengths and inner angles, red; the Cartesian coordinates of the
vertices, brown) as a function of the number of hidden layers in
the analyzer. (b) Scaling behavior of the Weyl’s parameters (area,
red; perimeter, blue; inner angle characteristic, brown) predicted by
the analyzer with a single hidden layer. The dashed lines represent
the proper scaling laws. The test set contained 10,074 samples that
remained within the grid boundary in the full range of the eigenvalue
scaling factors shown.

contrast, even equipped with the highest level of nonlinearity,
the network struggles to construct the mapping functions for
the remaining two sets of descriptors. The prediction accuracy
hardly surpass those of random guess. We conclude that out
of these three sets, the latent representation has the closest
relation to Weyl’s parameters.

At this point it still remains a question whether the com-
bined network understands the meaning of A, L, and K.
Since no additional physical information, e.g., measurement
units, was provided during training, it is possible that the
learned mapping treated the Weyl’s parameters as unitless and
hence overfitted them. To check if that is the case we again

FIG. 8. Weyl’s parameters preservation in an “average” predic-
tion. The prediction is approximated by a polygon ABCDE which
has the same Weyl’s parameters as the red polygon (the GT rotated
by a small angle). The blue and green triangles are congruent.

investigated the scaling behavior of the outputs. Unlike the
DNN predictions of the images, the output Weyl’s parameters
should obey different scaling laws: A should scale as 1/S, L
as 1/

√
S, while K should be scale-invariant. As demonstrated

in Fig. 7(b), for a network with one hidden layer, the average
A, L, and K predictions indeed follow the correct scaling
laws. In this figure we included only the samples and scaling
factors S for which the scaled shapes remain within the train-
ing range (for the entire data set, see Fig. 10 in the Appendix).
From these results, we infer that Weyl’s parameters are stored
in the latent space quasilinearly, and so the prediction of the
drum shapes by the encoder-decoder network may be aided
by these parameters. Yet another evidence in favor of this
interpretation is obtained by visually examining the “average”
predictions. As demonstrated in Fig. 8, one such prediction
misses the upper right corner of the pentagon, as outlined
by the green triangle but includes an extra triangular region
depicted in blue. These two regions, the missing one and the
added one, are approximately isometric, and so the predicted
image preserves Weyl’s parameters of the GT. The results
from the latent layer analyzer network further validate the
above analysis: the predicted A, L, and K for this example
are only 0.64%, 1.2%, and 3.2% off the GT. This may be why
the DNN has a difficulty handling this particular case.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have discussed an encoder-decoder DNN
that solves the IDP for simple shapes such as pentagons with
an exceptional accuracy. We presented evidence that this DNN
has learned the scaling properties of the Laplacian operator
and that it stores information about Weyl’s parameters (area
A, perimeter L, and inner-angle characteristic K) in the la-
tent representation. The DNN has discovered a continuous
rotational symmetry of the Dirichlet problem beyond the lim-
itations of the square grid. Note that the latent space must
also contain information about other boundary descriptors,
such as the Cartesian coordinates of the vertices. However, we
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DNN Prediction Traditional Method Prediction

Loss = 0.066 Loss = 0.030(a)

DNN Prediction Traditional Method Prediction

Loss = 0.15Loss = 0.013(b)

FIG. 9. Reconstructions from the DNN and the traditional
method [15] for (a) a regular pentagon and (b) a concave pentagon.

found extracting these more readily interpretable parameters
challenging. We think that one could potentially achieve that
by implementing a mutually independent latent space [35] and
more extensive training. Our DNN should in principle be able
to handle more complicated nonpolygonal shapes if the size
of the output layer, i.e., the resolution of the pixel grid, is
increased further.

To decipher the entangled latent space of our DNN we
utilized an auxiliary neural network. By changing the number
of hidden layers and the type of activation functions, we varied
the complexity of the approximation function and established
the correspondence between the latent neurons and Weyl’s pa-
rameters. Without hidden layers, our method performs similar
to the principal component analysis. However, with additional
hidden layers, our method should be more powerful as it can
model nonlinear relations.

As mentioned in the introduction, there are examples of
eigenvalue spectra [2] for which the solution of the IDP is not
unique (Fig. 1). These examples are rare (of measure zero) but
very interesting from the theoretical point of view [3]. We en-
vision that an improved DNN architecture could discover new
families of such nonisometric isospectral domain pairs, which
may further guide human intuition in solving mathematical
problems [54].

Our study was originally motivated by scanning near-
field optical microscopy experiments that measured collective

FIG. 10. Similar to Fig. 7 of the main text but for the entire
100,000 samples data set.

mode spectra of subdiffractional nanostructures [13]. Methods
we developed to tackle IDP could potentially assist with infer-
ring shapes of such nanostructures when their size becomes
smaller than the real-space resolution limit. Implementation
of such a super-resolution imaging could be an interesting
subject for a future work. We hope that our study would stim-
ulate broad applications of DNNs to theoretical and practical
aspects of solving inverse spectral problems in science and
technology.
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APPENDIX

In Fig. 9 we compare the performance of the DNN and the
traditional method in [15] when predicting two pentagons. For
both examples, the initial guess for the traditional method is
an oval. In Fig. 9(a), the traditional method provides a slightly
more accurate reconstruction than the DNN. However, the
computation time exceeds two mins while that for the DNN
is within a fraction of a second. In Fig. 9(b), the traditional
method does not converge while the DNN gives an excellent
prediction. Figure 10 shows the scaling behavior of Weyl’s
parameters for the entire data set. The small discrepancy in K
at low S is caused by the samples which exceed the 41×41
image range when boosted. Removing such samples restores
the ideal scaling behavior, see Fig. 7.
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