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Abstract

Background—Nonhuman primate models are critical for understanding mechanisms underlying 

human psychopathology. We established a non-human primate model of anxious temperament 

(AT) for studying the early-life risk to develop anxiety and depression. Studies have identified the 

central nucleus of the amygdala (Ce) as an essential component of AT’s neural substrates. 

Corticotropin-releasing hormone (CRH) is expressed in the Ce, has a role in stress, and is linked to 

psychopathology. Here, in young rhesus monkeys, we combined viral vector technology with 

assessments of anxiety and multimodal neuroimaging to understand the consequences of 

chronically increased CRH in the Ce-region.

Methods—Using real-time intraoperative MRI-guided convection-enhanced delivery, 5 monkeys 

received bilateral dorsal amygdala Ce-region infusions of adeno-associated virus serotype 2 
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(AAV2) containing the CRH construct. Their cage-mates served as unoperated controls. AT, 

regional brain metabolism, “resting” fMRI, and diffusion tensor imaging (DTI) were assessed 

before and two months after viral infusions.

Results—Dorsal amygdala CRH overexpression significantly increased AT and metabolism 

within the dorsal amygdala. Additionally, we observed changes in metabolism in other AT-related 

regions, as well as in measures of functional and structural connectivity.

Conclusion—This study provides a translational roadmap that is important for understanding 

human psychopathology by combining molecular manipulations used in rodents with behavioral 

phenotyping and multimodal neuroimaging measures used in humans. The results indicate that 

chronic CRH overexpression in primates not only increases AT, but also affects metabolism and 

connectivity within components of AT’s neural circuitry.

Keywords

central nucleus of the amygdala; AAV2; MRI-guided neurosurgery; FDG-PET; fMRI; DTI

INTRODUCTION

Nonhuman primate models are critical for understanding mechanisms underlying the 

development and expression of human psychopathology (1, 2). This is supported by the 

remarkable correspondence between nonhuman and human primates in brain structure and 

function that underlies their similarities in behavior, rearing methods, psychosocial 

development, and cognition (2, 3). The imperative to identify new molecular treatment 

targets to treat psychiatric disorders (4, 5), along with the evolutionary linkage between 

nonhuman and human primates, provides a compelling rationale to develop techniques in 

nonhuman primates that can alter the function of candidate genes in a targeted brain-region 

selective manner. Furthermore, the ability to use multimodal imaging methods to understand 

the impact of region-specific molecular manipulations in a relevant primate model allows for 

understanding the mechanisms associated with altered neural circuits in psychiatric illnesses.

To date, our nonhuman primate studies have focused on establishing a model for 

investigating mechanisms underlying the development of extreme early life anxiety (2, 6–

15). First, we developed and standardized the no eye contact (NEC) condition of the human 

intruder paradigm to assess individual trait-like differences in anxiety-related behavior in 

response to potential threat (16). This trait-like disposition, termed anxious temperament 

(AT), is a prominent childhood risk factor for the later development of anxiety disorders, 

depression, and comorbid substance abuse (17–21). With our nonhuman primate model, we 

identified the altered neural circuitry that underlies the development of AT and found that it 

is similar to that observed in humans with anxiety disorders (3, 8, 10, 22). This neural 

systems level information provides the critical groundwork for directly testing regionally 

specific molecular hypotheses potentially important in the pathophysiology of AT.

When extreme, AT or its major behavioral component, behavioral inhibition, markedly 

increase a child’s risk for the later development of stress-related psychopathology (17–19, 

23). By combining measures of threat-related behavioral inhibition (increased freezing and 
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decreased vocalizations) and pituitary-adrenal activation (threat-induced cortisol), along 

with 18fluoro-deoxyglucose positron emission tomography (FDG-PET) in rhesus monkeys, 

we characterized a nonhuman primate developmental model of AT (6, 14). Although the AT 

neural circuit is distributed across prefrontal, limbic, and brain-stem regions, neuroimaging 

studies in monkeys and humans point to the dorsal amygdala, a region containing the central 

nucleus of the amygdala (Ce), as a fundamental component of the circuit (8, 10, 11) (see 

Figure 1). The Ce is of particular interest because it is the major outflow region of the 

amygdala with its downstream projections mediating the hypothalamic and brainstem 

contributions to the stress response (24, 25). The Ce is causally involved in mediating AT as 

neurotoxic lesions of the rhesus monkey dorsal amygdala, which encompassed the Ce, 

decreased the expression of behavioral inhibition and pituitary-adrenal activity (26).

The Ce is predominantly composed of GABAergic neurons that also contain numerous 

modulatory neuropeptides and receptors (27). Within the Ce there is expression of 

corticotropin-releasing hormone (CRH; Figure 1), its two receptors, and its binding protein 

(28–31). CRH containing neurons in the paraventricular nucleus of the hypothalamus (PVN) 

play a prominent role in mediating the stress-related pituitary-adrenal response. 

Interestingly, extra-hypothalamic brain CRH neurons, including those in the Ce, can be 

regulated differently (32) and are important in coordinating the autonomic, emotional, 

behavioral and cognitive components of the stress response (33, 34). Rodent studies have 

demonstrated that stress increases the expression of CRH in the PVN and Ce (35), whereas 

corticosterone administration decreases expression of CRH in the PVN while concomitantly 

increasing the expression of Ce CRH (32). In addition to its role in modulating adaptive 

stress responses, overactivity of the CRH system is hypothesized to be an important 

pathophysiological mediator of symptoms associated with anxiety and depressive disorders 

(36). Recent reports suggest that structural variation of genes in the CRH family may 

contribute to the expression and pathophysiology of human depression and anxiety disorders 

(37–43), as well as to extreme monkey AT and its associated altered brain metabolism (44).

In addition to the translational value of nonhuman primate models, it is important to 

emphasize that primates significantly differ from rodents in the distribution and organization 

of brain CRH systems (31). Rodent studies have used transgenic, viral vector and other 

neuronal modulatory strategies to model CRH molecular alterations hypothesized to underlie 

stress-related psychopathology (45–50). However, these mechanistic studies have not been 

translated to primate species. Therefore, using a viral vector gene delivery strategy to 

chronically increase the expression of CRH in the dorsal amygdala of young rhesus 

monkeys, we aimed to identify the role of amygdala CRH systems in the expression of 

primate anxiety.

Here, we demonstrate that regional chronic overexpression of a putative anxiogenic 

neuropeptide results in increased anxiety-like behaviors along with anxiety-related changes 

in primate brain function. Using a viral vector infused with convection-enhanced delivery 

and guided by real-time intraoperative MRI (RT-IMRI), we aimed to chronically overexpress 

CRH in the Ce-region of the amygdala. This approach was combined with multimodal 

functional and structural brain imaging to test the hypothesis that increased dorsal amygdala 

CRH would increase AT, as well as glucose metabolism in the Ce. To allow for new insights 
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into how increased amygdala CRH may influence brain–wide neural alterations underlying 

stress-related psychopathology, we also examined the impact of chronic dorsal amygdala 

CRH overexpression on functional and structural connectivity with other relevant brain 

regions. This study provides a framework for further development of preclinical nonhuman 

primate strategies to evaluate novel, region-specific molecular targets for the treatment of 

human psychopathology.

METHODS AND MATERIALS

Overall study design

Behavioral measures of AT and glucose-based measures of brain metabolism (FDG-PET) 

were assessed during NEC before surgery and again approximately 2 months later in 5 

CRH-overexpressing monkeys, and at similar intervals in their 5 matched unoperated 

controls. Additionally, MRI measures of structural connectivity with diffusion tensor 

imaging (DTI) and functional intrinsic connectivity with 'resting' fMRI, were acquired 

before and after surgery. Paired-sample t-tests controlling for age were used to test for group 

differences in post-pre measures that resulted from CRH overexpression (i.e., CRH 

group(post-pre) – Control group(post-pre)).

The surgeries were performed using RT-IMRI guidance to localize the target. To estimate the 

dispersion of AAV2-CRH we infused the viral vector concurrently with the MR visible 

marker Gadobenate dimeglumine (Gd, MultiHance, Bracco Diagnostics). To characterize the 

pattern of CRH expression, animals were euthanized approximately one year after surgery 

and immunohistochemical staining for CRH was performed approximately 10 months after 

the behavioral assessments.

Note that space limitations do not allow for a complete description of the methods in the 

body of the paper and much of the methodological detail concerning the surgery and brain 

imaging analyses (FDG-PET, fMRI, and DTI) can be found in the supplemental information 

that accompanies this paper.

Subjects

First, two cynomolgus monkeys (Macaca fascicularis) were used in pilot studies to: 1) 

demonstrate the effectiveness of the AAV2-CRH virus to direct CRH overexpression in vivo 
and 2) to visual endogenous CRH expression in the Ce (see supplemental information). 

Next, ten young male rhesus monkeys (Macaca mulatta; 1.76–2.63 years old, 2.77–5.25 kg) 

were used in the CRH overexpression experiment. These animals were screened with the 

human intruder paradigm, and were selected to be in the mid-range for freezing responses. 

Five animals received bilateral infusions (2 infusions per hemisphere) of AAV2-CRH into 

the dorsal amygdala Ce region. The other 5 non-operated control animals were age-matched 

and pair-housed with each of their corresponding transfected monkeys. Because of 

considerations related to performing unnecessary procedures on non-human primates, and 

because we have used non-operated controls to successfully examine lesion-induced effects 

on primate anxiety in previous studies (26, 51, 52), we chose to use non-operated cage-

mates as control subjects. Animals were housed and cared for at the Harlow Center for 
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Biological Psychology and the Wisconsin National Primate Research Center on a 12-h light/

dark cycle, in a temperature and humidity controlled vivarium. For all imaging and surgical 

procedures, the animals were fasted overnight. The experiments were performed according 

to the federal guidelines of animal use and care (53) and with approval of UW-Madison 

IACUC committees.

Characterizing Anxious Temperament (AT) and glucose metabolism during NEC

AT was characterized using the NEC condition of the human intruder paradigm, and was 

computed as the combination of standardized freezing, cooing and cortisol measures (6, 14). 

NEC assessment coincided with the administration of FDG followed by µPET scanning (see 

supplemental information for further detail).

Real-Time Intraoperative MRI (RT-IMRI)

Placement of the MRI-compatible trajectory guide bases followed previously reported 

methods (see (54, 55) for details) modified for Ce targeting (see Figure 2). The 

intraoperative targeting was performed using a platform for real-time MR-guided 

prospective stereotaxy (56) that was initially developed by the University of Wisconsin (57–

60). A detailed description of the RT-IMRI methods can be found in the supplemental 

information. The rhesus Ce is approximately 5 mm long in the A-P plane, and 

approximately 1–2 mm in the D-V and M-L planes. To cover as much of the Ce as possible 

while minimizing treatment to surrounding regions, two 12µl infusions were performed per 

hemisphere (one anterior Ce target, one posterior Ce target), for a total of 24µl per 

hemisphere. After each infusion the catheter was removed, and after all infusions were 

complete the animal was transported back to the surgical suite and the craniotomies were 

closed.

Assessing CRH overexpression

Approximately 1 year after AAV2 infusions the animals were euthanized. The brains were 

extracted and fixed overnight in 4% paraformaldehyde, cryoprotected, and then sectioned at 

40µm. CRH immunoreactivity was assessed as described in the supplemental information. 

1:12 sections through the brain were immunostained for CRH. Adjacent coronal brain 

sections were processed for acetylcholinesterase (AChE), a cholinergic marker that 

facilitates anatomical identification of amygdala nuclei and subnuclei (61).

For each animal, the distribution of CRH-positive cells was charted through the rostrocaudal 

extent of the Ce region using camera lucida techniques. Sections were initially drawn under 

brightfield illumination at 1.6×, to include labeled cells and landmarks such as blood vessels 

and fiber tracks. The distribution of labeled cells was then confirmed under 10× brightfield 

illumination. Adjacent AChE-stained sections were then viewed under darkfield 

illumination, using landmarks in the charted sections for alignment. This permitted overlay 

of AChE-determined boundaries of amygdala nuclei and subnuclei for each section. Finally, 

paper maps were digitized using a drawing tablet in conjunction with the program Adobe 

Illustrator CS2 (Adobe Systems, San Jose, CA).
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To compare the relative distribution of labeled cells resulting from viral-mediated CRH 

expression and/or endogenous CRH expression across animals, we overlaid individual maps 

from each animal upon one another in transparent layers, matching rostrocaudal levels as 

closely as possible. Labeled cells for each pair of animals was color-coded to assist in the 

analysis.

RESULTS

Characterization of CRH overexpression

Post mortem immunocytochemical analyses demonstrated marked overexpression of CRH in 

the dorsal amygdala region of the experimental animals compared to the levels of 

endogenous CRH in the control animals. The RT-IMRI Gd infusion scan from each animal 

was compared to the animal’s pattern of CRH overexpression defined by 

immunocytochemistry (Figure 3). As can be seen in Figure 4A, in all experimental animals 

CRH overexpression was evident in the dorsal amygdala including regions of the lateral and 

medial divisions of the Ce as well as in surrounding areas such as the dorsal regions of the 

accessory basal nucleus, the magnocellular region of the basal nucleus, the amygdala striatal 

transition zone, and portions of the ventral putamen (see Table 1). We found that across all 

transfected animals the extent and location of the infusions as determined by RT-IMRI 

matched the areas of CRH overexpression determined with immunocytochemistry (compare 

Figures 4A and 3E). This demonstrates the ability to use in vivo imaging methods to 

estimate the extent of infusion as well as AAV2-CRH transfection after one year.

Effects of CRH overexpression on AT and brain metabolism

As predicted, compared to controls the CRH overexpressing animals demonstrated a 

significant increase in AT [CRH group(post-pre) – Control group(post-pre)] (p<.05, one-tailed, 

Figure 5). A complementary unpaired between-groups analysis (controlling for age as in the 

paired analysis) revealed significant group differences in the AT phenotype (t = 2.040, p = 

0.0405, one-tailed; see supplemental Figure s3). It is noteworthy that CRH concentrations in 

cerebrospinal fluid (CSF) did not significantly differ between experimental and control 

animals (see supplemental information for methods). Corresponding analyses of FDG–PET 

data revealed that CRH overexpression also resulted in significant increases in dorsal 

amygdala metabolism (p<.01, uncorrected, Figure 6A). Additional whole-brain voxelwise 

analyses revealed that the CRH overexpression animals had significantly greater increases in 

metabolism in orbitofrontal/anterior insular cortices (OPro/AI), and hippocampus (p<.01, 

two-tailed, uncorrected; Figure 6A and supplemental Table s1). It is important to underscore 

that these regions have been implicated as part of the AT network as well as in human 

anxiety disorders. To identify regions across both control and experimental animals in which 

post-pre changes in AT were predicted by changes in metabolism, we looked within brain 

regions that demonstrated an effect of CRH overexpression Figure 6B, yellow outline). This 

analysis revealed that, regardless of treatment condition, changes in AT from the pre- to 

post-surgical assessment were predicted by individual differences in metabolic increases in 

regions of the dorsal amygdala, OPro/AI, and hippocampus (red, p<.05, two-tailed, 

uncorrected, Figure 6B and supplemental Table s2). These findings suggest that the effects 
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of dorsal amygdala CRH overexpression on increasing AT involve activation of this 

distributed neural circuit.

Effects of CRH overexpression on functional connectivity and white matter integrity

The fMRI data demonstrated that chronic CRH overexpression altered resting functional 

connectivity. The dorsal amygdala seed region for the functional connectivity analyses was 

determined by the overlap of the infusion area detected with Gd (see yellow region in Figure 

3E) with that of the metabolic region that was affected by CRH overexpression (see yellow 

region in Figure 6A, right). Results demonstrated that CRH overexpression altered 

functional connectivity such that connectivity with the right dorsal amygdala seed in various 

regions differed between groups (p<.01, two-tailed, uncorrected, see supplemental Table s3). 

Of note, increased connectivity was found between right dorsal amygdala and regions 

encompassing bilateral portions of OPro/AI.

Analyses of the DTI data were performed to examine effects of long-term CRH 

overexpression on white matter microstructure. Voxelwise analyses were performed on 

measures of diffusivity and fractional anisotropy (FA). Investigation of mean diffusivity 

(MD), axial diffusivity (AD) and radial diffusivity (RD) demonstrated significant alterations 

in various regions (see supplemental Tables s4–s6). Of particular interest, CRH 

overexpression in the dorsal amygdala was associated with significant increases in MD, AD 

and RD in a region of the brain that overlaps with the extended amygdala/bed nucleus of the 

stria terminalis (p < 0.005, two-tailed, uncorrected). Such an increase in MD, AD and RD 

can be indicative of decreased density of microstructure, but can also be explained by 

increased levels of CSF. Since this region is proximal to the ventricles this possibility should 

be considered.

Analysis of FA, an overall indicator of white matter integrity, demonstrated that dorsal 

amygdala-CRH overexpression resulted in decreased FA in various regions including 

portions of the medial/midline thalamus (p < 0.005, two-tailed, uncorrected, Figure 7 and 

Supplemental Table s7). This region of medial thalamus encompasses the ventral edge of the 

medial dorsal thalamus, portions of the central medial and paracentral thalamic nuclei, as 

well as the magnocellular division of the ventral anterior thalamic nucleus. Fiber 

tractography enabled an investigation of the connectivity of this region with the rest of the 

brain (see supplementary information and supplemental Figure s4).

Discussion

In this study, we validated methods combining RT-IMRI with convection-enhanced delivery 

to reliably locate and accurately infuse AAV2-CRH into the primate Ce region. This 

demonstrates the feasibility of translating rodent mechanistic studies that directly manipulate 

gene function in the brain to primates, and implicates overactive brain CRH systems in the 

pathophysiology of excessive primate anxiety. These findings further point to the dorsal 

amygdala, Ce region, as a key site involved in determining individual differences in 

dispositional anxiety and the phenotype that represents the risk to develop stress-related 

psychopathology. This study is the first to use viral vector strategies in non-human primates 

to directly manipulate CRH molecular systems hypothesized to be involved in human 
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psychiatric disorders. Our primate model provides a unique opportunity to assess the effects 

of gene manipulation on primate behavior in conjunction with the same in vivo measures of 

brain function and structure that are used to assess human neuropsychiatric patients.

While much of the mechanistic work focused on the role of CRH in anxiety and fear has 

been performed in rodents, a few studies have been done in primates. Because of the 

similarities in brain function and structure, behavior, and social functioning between non-

human primates and humans, rhesus monkeys provide an important and valuable model for 

studying human psychopathology. The marked difference in distribution of brain CRH 

receptors between rodents and primates further supports the use of primates for studies of 

stress-related psychopathology. For example, primates have both CRH R1 and CRH R2 in 

the Ce whereas the rodent Ce is only populated with CRH R1 (31, 62). Early rodent studies 

site-specifically administering CRH or CRH antagonists established a key role for the 

amygdala, including the Ce, as being important in mediating the effects of CRH on anxiety 

and fear responses (63–69). Other studies suggest that within the rodent Ce, it is likely that 

CRH acts via activation of CRH R1 (70–72). Additionally, mouse transgenic and knockout 

studies manipulating expression of CRH or CRHR1 demonstrated an important role for 

CRH systems in mediating adaptive and maladaptive behavioral and physiological responses 

to stress (for review see (73)). Because of the presence of CRH R2 receptors in the primate 

Ce, it is possible that the anxiogenic effects of CRH are mediated by activation of CRH R2 

receptors.

Our early work in rhesus monkeys is consistent with results from the rodent studies. For 

example, we demonstrated that intraventricularly administered CRH increased anxiety when 

administered at low doses and at higher doses resulted in depressive-like behaviors (74). 

Because of the wide distribution of CRH receptors throughout the brain (31, 62, 75, 76), it is 

likely that these effects were mediated by activation of CRH receptors in diverse brain 

regions – a finding that is supported by brain-wide metabolic brain changes seen following 

very high doses of intraventricular CRH (77). In another study, we also reported a relation 

between CSF levels of CRH and threat-induced behavioral inhibition (78), however this 

finding has not been replicated (unpublished data). It is important to note that some, but not 

all, human studies demonstrate increased CSF CRH concentrations associated with 

depression and/or suicide (79) and post mortem analyses of suicide victims have revealed 

increased activity in brain CRH systems (80–84). Neurotoxic lesion studies in primates 

demonstrated that Ce lesions not only reduced anxiety but also decreased concentrations of 

CSF CRH (26). Thus, in the Ce lesion study, the reduction in anxiety could be accounted for 

by the global reduction in CSF CRH. In the current study, in which we use a viral vector 

strategy to overexpress CRH in the dorsal amygdala region, anxiety and brain function were 

affected in the absence of a detectable increase in CSF CRH levels. Taken together, these 

findings suggest that while CRH can have profound impacts throughout the brain, the Ce is a 

site that is critically involved in mediating these effects.

Recent viral vector studies in rodents have implicated the chronic overexpression of Ce CRH 

in inducing anxiety- and depression-related behaviors (46, 48, 49, 85, 86). In general, but not 

always, overexpression of Ce CRH is reported to affect physiological parameters such as the 

Kalin et al. Page 8

Biol Psychiatry. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



startle response and HPA activity (48, 49, 85, 86). Our current findings in nonhuman 

primates are consistent as we demonstrate that overexpression of CRH increases AT.

With the functional and structural brain imaging measures used in our study, we were able to 

extend the rodent studies by examining the impact of chronically increased dorsal amygdala 

CRH on brain metabolism, as well as functional and structural connectivity. These analyses 

provide potential insights into mechanisms underlying the neural circuit alterations 

associated with human anxiety and other stress-related psychopathologies. Our data are the 

first to demonstrate that an overactive amygdala CRH system has local effects on brain 

metabolic activity as well as on other components of the neural circuit associated with 

anxiety and AT. Specifically, we found that CRH overexpression resulted in increased 

metabolism in posterior regions of the orbitofrontal cortex (OPro), anterior insula (AI) 

regions, and hippocampus. Since the areas of overexpression encompassed Ce, other dorsal 

regions of the amygdala, and neighboring structures (e.g., putamen), it is possible that CRH 

expression in these different regions contributed to the observed effects. Additionally, we 

found evidence that in some cases the virus was anterogradely and/or retrogradely 

transported to other brain regions that are monosynaptically connected to the site of 

infusion.

We also found that dorsal amygdala CRH overexpression increased functional connectivity 

between this area and the OPro/AI region of posterior orbital cortex. The findings regarding 

the OPro/AI region may be particularly relevant as this region of the prefrontal cortex is 

highly connected with the amygdala (87). We recently demonstrated in a sample of 592 

young rhesus monkeys that NEC-related glucose metabolism in the OPro/AI region (along 

with the bed nucleus of the stria terminalis (BST) and the periaqueductal gray (PAG)) 

correlated with AT and was heritable (10). Importantly, brain metabolism in these regions 

was also genetically correlated with AT, which implies the involvement of similar genes in 

mediating AT and altered brain function in OPro/AI, BST, and PAG.

Perhaps even more interesting are the structural brain changes that were associated with 

long-term increased CRH overexpression. Using measures of white matter integrity we 

found evidence for decreases in FA in the medial thalamus encompassing portions of the 

central medial thalamic nucleus, paracentral thalamic nucleus, and the magnocellular 

division of the ventral anterior thalamic nucleus. Primate studies demonstrate that these 

regions contain CRH-immunoreactive cell bodies and fibers as well as relatively high 

densities of CRH R1 (31, 88, 89). It is therefore possible that overexpression of CRH in the 

dorsal amygdala could lead to increased activation of medial thalamic CRH R1. 

Tractography methods demonstrated that white matter fibers link the thalamic region of 

significant FA change with other components of the neural network important in the 

expression and regulation of anxiety (see supplemental Figure s4). This is consistent with ex 
vivo tract tracing studies in macaques that demonstrate projections from the dorsal amygdala 

to midline thalamic nuclei (90, 91). Also, medial thalamic nuclei are reciprocally connected 

to posterior orbitofrontal cortex regions that include the OPro/AI (92). Thus, the medial/

midline thalamus may link dorsal amygdala CRH to metabolic changes in the OPro/AI.
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Early excitement related to developing new treatments for human anxiety and depression 

resulted from numerous mechanistic studies, mostly performed in rodents, directly 

manipulating brain CRH systems (for reviews see (93, 94)). Although findings from these 

studies failed to be translated to positive outcomes in human CRH R1 antagonist clinical 

trials (95–97), our current findings suggest that continued pursuit of mechanisms directed at 

altering Ce CRH function in primates might be useful for providing insights into optimizing 

CRH-altering treatments for human disorders. For example, it may be worth performing 

human studies targeting the CRH R2 receptor because of the possibility that CRH R2 could 

mediate the effects we observed. Our study also underscores the potential for gene delivery 

in primate models to elucidate the mechanisms of regional gene-expression on distributed 

brain function, as well as to explore novel treatment strategies for refractory psychiatric 

illnesses. Taken together these results indicate that chronically increased dorsal amygdala 

CRH expression influences AT, metabolic activity within AT’s neural substrates, as well as 

long-range functional connectivity and white-matter microstructure. This work, aimed at 

understanding the effects of increased CRH in the dorsal amygdala, will help motivate the 

design of novel interventions to prevent the development of anxiety disorders and other 

stress-related psychopathology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Endogenous CRH expression in the AT-related Ce-region
(A) Using FDG-PET imaging, we found that metabolism within the Ce predicted individual 

differences in AT in young rhesus monkeys (reprinted with permission (8). (B) The Ce 

region was defined by its overlap (purple) with serotonin transporter ligand binding 

determined with PET imaging (blue). (C) The serotonin transporter binding characterized by 

PET mirrors its neuroanatomical distribution observed with immunohistochemical methods 

(reprinted with permission (98). (D) Within this critical primate Ce region (adapted from 

(99) we found (E) a moderate amount of endogenous CRH immunoreactivity (green) located 

in neurons, as defined by the overlap with NeuN expression (blue).
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Figure 2. Real-time intraoperative MRI guided targeting and infusion monitoring
(A) Prior to surgery a structural MRI was obtained to visualize the target and plan the 

trajectory. (B) A pivot point-based MRI compatible external trajectory guide was mounted 

on the skull (reprinted with permission (54). (C) Precise targeting was performed by imaging 

a plane orthogonal to the long axis of the external trajectory guide, as if it were visualized by 

a camera from above. The inset boxes represent the plane in which the trajectory guide 

(white dot) is visualized and aligned in relation to the target injection point (red dot). (D) 

The depth of the catheter is advanced to approximately 2 mm above the target. Another MRI 

was acquired to make precise measurements between the catheter tip and the target prior to 

advancing the catheter to its final position. (E) Immediately after the AAV2-CRH / 

gadolinium infusion was complete, a final MRI was acquired to verify the infusion delivery 

region.
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Figure 3. In vivo estimation and post mortem verification of dorsal amygdala CRH 
overexpression
(A) The gadolinium clouds in the dorsal amygdala, Ce region, during and immediately 

following AAV2-CRH delivery provided an estimate of the location and extent of the 

infusions. (B) Camera lucida drawings of CRH expression from post mortem tissue reflected 

the extent of viral infusion as estimated from the intraoperative gadolinium signal. Gray 

regions in B represent neuropil staining and the black dots represent CRH overexpressing 

cells. (C) Acetylcholinesterase (AChE) staining defined the boundaries of the amygdalar 

nuclei. Note the relative absence of AChE staining in the CeL. (D) Adjacent sections were 

used for CRH immunohistochemistry demonstrating marked overexpression in the dorsal 

amygdala, Ce region. (E) Quantification of gadolinium diffusion extent and cross-subject 

overlap. Based on the intraoperative gadolinium images, we estimated the infusion extent in 

standard MRI space. This allows for an estimation of the across-subject overlap of CRH 

expression, and provides a link to the post mortem CRH expression data (compare to Figure 

4A). The overlap of the gadolinium injection clouds across all 5 experimental animals 

demonstrates the replicability of the MRI-guided targeting procedure. The colors represent 

the number of animals with gadolinium signal at each voxel. Note the bilateral overlap 

across all experimental animals within the Ce-region (yellow). R = right.
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Figure 4. Quantification of dorsal amygdala CRH expression
(A) Post mortem analyses demonstrated overexpression of CRH in the dorsal amygdala and 

surrounding regions in the experimental animals, compared to (B) the levels of endogenous 

CRH observed in the cage-mate control animals (top = anterior, bottom = posterior). Each 

pair of animals is represented by a different color in the composite image, and each dot 

represents a CRH expressing cell body. Note that endogenous CRH expression levels in 

controls were found in the most posterior regions of the Ce (only the left hemisphere is 

presented), and were substantially lower than that induced by AAV2-CRH transfection. 
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Abbreviations: AAA, anterior amygdaloid area; ABmc, accessory basal nucleus, 

magnocellular subdivision; AC, anterior commissure; Astr, amygdalostriatal transition zone; 

Bmc, basal nucleus, magnocellular subdivision; CeLcn, central nucleus, lateral central 

subdivision; CeLpc, central nucleus, lateral paracapsular subdivision; CeM, central nucleus, 

medial subdivision; H, hippocampus; L, lateral nucleus; M, medial nucleus; nbm, nucleus 

basalis of Meynert; P, putamen; V, ventricle.
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Figure 5. CRH overexpressing animals demonstrated a significant increase in Anxious 
Temperament (AT)
Compared to their matched controls, the CRH overexpressing animals demonstrated 

increased post-surgical levels of AT (mean ± S.E.M). Significance was determined using a 

paired-samples t-test comparing dorsal amygdala CRH animals and their cage-mate controls 

[CRH group(post-pre) – Control group(post-pre)] (p<.05, one-tailed; see inset and methods for 

details).
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Figure 6. CRH overexpressing animals demonstrated significant increases in brain metabolism
(A) Compared to their matched controls, the CRH overexpressing animals demonstrated 

increased post-pre change in metabolism within the dorsal amygdala, orbitofrontal/insular 

cortex (OPro/AI), and hippocampus (yellow, p < 0.01, two-tailed uncorrected; and see 

Supplementary Table s1). All of these regions have been implicated in Anxious 

Temperament (AT). (B) Within regions that were affected by CRH overexpression (yellow 

outline), we identified areas in which the post-pre change in metabolism correlated with the 

post-pre change in AT (red; p < 0.05, one-tailed uncorrected). Across all 10 animals, 

changes in AT were associated with changes in brain metabolism in the dorsal amygdala and 

in bilateral regions of the posterior orbitofrontal/insular cortex (OPro/AI). R = right.
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Figure 7. Diffusion tensor imaging demonstrated altered thalamic structural integrity as assessed 
with FA
Whole-brain voxelwise analyses indicated CRH-induced reductions in FA in a region 

overlapping with the medial dorsal/midline thalamus [CRH group(post-pre) – Control 

group(post-pre)] (p < 0.005, uncorrected). R = right. Deterministic tractography demonstrates 

that this thalamic region is connected to the prefrontal cortex, and medial temporal lobe (see 

supplementary Figure s4).
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