
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Smooth Dynamics, Good Performance in Cognitive-Agent Congestion Problems

Permalink
https://escholarship.org/uc/item/57b632sz

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 35(35)

ISSN
1069-7977

Authors
Reitter, David
Scerri, Paul

Publication Date
2013
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/57b632sz
https://escholarship.org
http://www.cdlib.org/


Smooth Dynamics, Good Performance in Cognitive-Agent Congestion
Problems

David Reitter, Penn State University
Paul Scerri, Carnegie Mellon University

Abstract

In a congestion game, individuals exhaust a common re-
source out of selfish behavior. In this scenario, drivers
create traffic jams by choosing the shortest route accord-
ing to their individual knowledge. They can avoid them
by communicating their belief states about the traffic
situation in real-time through a peer-to-peer network,
assuming unlimited bandwidth. We study two poten-
tial, cognitively inspired models of human behavior: 1)
categorization (quantized memorization and communi-
cation), which dampens communication and belief adop-
tion, but leads to undesired oscillations and lower perfor-
mance. 2) Instance-based blending with memory decay,
which achieves good dynamics and near-optimal perfor-
mance without the same bandwidth needs. We argue
that this supports our hypothesis of co-adaptation of
cognitive function and communicating communities.

Introduction
In many situations, crowds of interacting human indi-
viduals share resources such as food, roads, electricity,
internet bandwidth, or airtime in a conversation. Sim-
ilarly there are many interesting domains that require
robots or agents to simultaneously learn to utilize com-
mon resources. When the actions of one agent impact
the outcomes of another agent, individual learning often
leads to complex system dynamics. A canonical example
of this problem is cooperative path planning(Burgard,
Moors, Fox, Simmons, & Thrun, 2000), where agents
using the same routes negatively interfere with one
other, but many other domains have been studied includ-
ing soccer(Kalyanakrishnan, Liu, & Stone, 2007) and
markets(Tesfatsion & Judd, 2006).

Computational-cognitive models of social behavior re-
quire a combination of cognitive architectures and multi-
agent design and analytics. In this paper, we investigate
the effect of memory decay and instance-based learning
and decision-making a system of communicating, simu-
lated individuals.

Based on the rational assumption that human cog-
nitive function has adapted to its environment, we hy-
pothesize that memory function improves system dy-
namics in communication networks. We predict that
forgetting improves, rather than impedes, performance
in situations where crowds use finite common resources.
This is also a core problem in multi-agent learning: one
agent’s behavior may impact the outcome for another
agent. The collective behavior of a learning system and
individual reward can vary wildly and unpredictably.
Human-controlled road networks exhibit similar traffic
jams, though rarely with the same catastrophic conse-
quences the multi-agent simulations suggest. An emerg-

ing property of the human-based system is adaptation
and damping. We will use a multi-agent system in which
each agent is implemented as a model of (relevant) hu-
man behavior, namely learning from observations and
information obtained by others, and estimating quanti-
ties (or categorizing) based on current knowledge.

In our scenario, individual models repeatedly choose
roads in a road network to get them from home to work.
The time taken to traverse a road is a function of the
number of other agents on the road when the agent be-
gins to traverse the road.

The first contribution of this work is to apply human-
inspired instance-based learning (IBL, Gonzalez, Lerch,
& Lebiere, 2003) algorithm to the problem of multi-agent
learning on the road congestion problem. The IBL model
treats each trip from home to work as several instances of
road segments and weighs instances based on several fac-
tors including recency when estimating time to traverse a
road. We found that the agents using IBL do much bet-
ter than the agents using an alternative, category-based
model and about the same as agents using a communi-
cation intensive averaging model.

Second, this paper examines the dynamics of mixed
human-machine systems. We demonstrate that the over-
all system performance is improved by even a relatively
small number of the IBL agents and that there were no
negative effects on either type of agent. When there were
only a few IBL agents in the system, they performed rel-
atively better than the ternary agents, but when there
were many IBL agents all agents performed about the
same.

Finally, the third contribution of this work is to show
how changes to the underlying system, in addition to
changes due to learning, impact performance. One might
expect that more numerical approaches will respond to
change more quickly and effectively than a learner re-
lying on experiences. However, we found no evidence
of this. Instead, IBL agents reacted very quickly and
appropriately to underlying change, far better than the
ternary agents. From these experiments we can see po-
tential for using IBL in multi-agent learning settings and
exploring these other settings is a key area of future fo-
cus.

Cognitive models have been combined to explain
learning in team settings, primarily in a qualitative way
(Sun, 2008). Reitter and Lebiere (2012) used decay
in a model implemented within a cognitive architecture
to show that decayed memory improves agent perfor-
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mance in a foraging scenario with multiple, communi-
cating agents. Instance-based learning within cognitive
models has been shown to explain human behavior in
a number of cognitive decision-making tasks (Lebiere,
Wallach, & West, 2000; Erev et al., 2010).

Scenario Framework

The framework for the scenario (Scerri, to appear) con-
sists of agents A, places P and edges G over some num-
ber of iterations. Each agent a ∈ A has some place,
phome ∈ P where it starts each iteration and some place
pwork ∈ P where it must get to each iteration or day.
To get to pwork it must use edges connecting places. In-
dividual edges g ∈ G connect exactly two places. The
agents task is to get from phome to pwork most quickly
each iteration.

The time that it will take an agent to traverse an edge
depends purely on the number of agents already on the
edge when it gets to the edge. Specifically, we choose a
simplified function to model limited resources that are
affected by congestion: the time taken by an agent is
10 + n3already, where nalready is the number of agents
on the edge when the agent reaches it. The simulation
randomizes the order the agents execute so that in one
iteration an agent might be the first on the edge and have
a very short travel time and another iteration it might
be tenth onto the edge and have a very long travel time,
even if none of the agents change their routes.

This framework has two important features. First,
the agents will get very different perspectives on speed
of a edge, based on exactly when they get onto the edge.
Hence, either many iterations or cooperation is needed
to create an accurate model. Second, busy edges heavily
penalize the agents, just a few extra agents on a edge
will dramatically slow the last few agents down again
making cooperation important.

For experimental purposes, there are only ten different
phome and pwork for 200 agents. This makes for more in-
teresting traffic congestion problems, with more extreme
cases, and requires more coordination among the agents,
but, as was shown in (Scerri, to appear) does not quali-
tatively change the system dynamics.

In every iteration, each agent uses a model of the
graph to plan a path from phome to pwork. The agents
use a standard A* algorithm (Russell, Norvig, & Artifi-
cial Intelligence, 1995) to do the planning based on their
current model of edge traversal times. Agents are risk
neutral, trying to minimize expected travel time. They
then execute their plan without adapting to observed
conditions. At the end of an iteration, the agents can
communicate about what they observed. The model the
agent plans with and the information it communicates
are described below.

It is assumed that each agent plans selfishly, but com-
municates truthfully and cooperatively. We are inter-

ested in two primary metrics. First, the average time
it takes for an agent to get from phome to pwork. Sec-
ond, as the agents build their models and adapt their
plans to the changing models, the average transit time
will change. As a secondary measure, we are interested
in the change in average transit time over time.

Communication Network The agents are organized
into a social network where they can only communicate
directly with a small subset of the rest of the agents.
Information is propagated through the network in a peer-
to-peer manner. Unless otherwise noted below, we use a
random network with degree 5 to connect the agents.

Model Path Planning

The cognitive agents have to choose a path that will most
quickly get them to their destination, based on experi-
ences so far and from experiences communicated from
other agents. The optimal strategy might be one that
considers likely plans by others and the changes they will
make, given their previous experiences. However, this is
typically infeasible, and theoretically the game-theoretic
Traveller’s Dilemma (Basu, 1994) applies: If one agent
A anticipates another agent B’s reaction, A would also
anticipate B’s anticipation of A’s reaction, and so on.
Rational players will end up with a poor solution (finite
game), or they will be faced with a computation that
does not scale.

Any accurate model of crowd cooperation needs
to deal with limited communication bandwidth, learn
(quickly) to achieve acceptable performance, adapt to
changing network dynamics. In the following we describe
two cognitively plausible models for reasoning about the
road network, as well as an optimal one with high band-
width needs. Earlier work has shown path-planning in
a model in the cognitive architecture ACT-R (Reitter &
Lebiere, 2010). However, here we focus on the memory
components only and keep the path planning algorithm
(A* planning) constant to facilitate meaningful compar-
ison.

Categorizing Model: Ternary We include two cog-
nitively plausible models at the agent level. The first,
ternary, forms its belief about a road segment as a cat-
egory: slow, medium or fast. The model keeps, for each
edge, a normalized frequency distribution of the observed
categories, decayed over time. Specifically, for each edge
e, the model is Me = {pslow, pmedium, pfast}, pslow +
pmedium + pfast = 1. When an individual gets an ob-
servation of a particular category it adds βlocal for a
local observation and β for a communicated observation
to the relevant p and then normalizes.

The models assume the most probable category,
maxM for planning. In the following experiments, an
edge in a particular category is assumed to take time 300,
156 and 12 for pslow, pmedium and pfast, respectively, cor-
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Figure 1: Ternary, IBL and Average models.

responding to the average time when approximately 3, 7
and 11 agents also use the edge reasonable approxima-
tion of the typical expectations. When maxM changes
for an edge, i.e., when the individual’s belief about an
edge changes categories, it communicates the new cate-
gory to its direct neighbors in the social network.

Instance-based learning model The second model
implements a cognitively motivated aggregation mecha-
nism that forms their beliefs. As in the ternary model,
its communications are quantized and occur whenever
its belief about a road changes. The same A* algorithm
is used to plan paths. However, this model’s estimates
about the speed of each road are based on instance-
based learning. IBL stores a datapoint (episode) with
the speed of a road whenever it is traveled or when
agents receive a communication. (A commute involves
many such roads.) A speed estimate can then be de-
rived as the average of all episodes associated with the
road, weighted by the episode’s activation. Activation
is determined by a function that rewards experience (a
large set of episodes), but discounts older information
(decay). Activation has been shown to predict the avail-
ability of information in human memory (Anderson &
Lebiere, 1998).

In detail, activation of an episode e consisting of a
road speed (utility) and time, < ue, te > is given as

Ae = (t− te)−0.5

t is the current time. The decay exponent is the default
that is empirically realistic in human experiments. Our
implementation uses an highly precise approximation of
the above activation function that omits to store all but
the n latest episodes. If a road is represented by a series
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Figure 2: Rate of belief changes.

Figure 3: A histogram of the variance in estimates per
road for each of the model types.

of episodes R involving the road, then the expected speed
of a road, U(R) is derived as

U(R) =

∑
e∈R uee

Ae/T∑
eAe/T

T = 0.25 is a parameter (temperature). If R is empty,
we assume a default speed, Uβ for the road. The agent’s
performance is sensitive to Uβ , which represents a mea-
sure of pessimism (we do not optimize Uβ and choose 0.0
as the most optimistic value).

Instance-based learning and the activation function
have several desirable properties in our context. Acti-
vation increases during early iterations and allows the
model to quickly differentiate between fast and slow
roads. Activation is less affected by presentation of
changes concerning frequently travelled roads.
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Figure 4: Average travel times for IBL model agents as
the communication network is varied.

Averaging Model The Averaging Model is included
to provide a form of non-cognitive empirical ceiling: it
is information-hungry, assuming that communication is
free and unconstrained. It is the simplest model an agent
can have of the graph is to store the average time taken
by agents traversing that edge. Since the utilization of
an edge will change over time, a moving average is used
to keep the model updated with respect to the current
situation.

The agents estimate for an edge is simply e′i = αei +
(1− α)obs, where ei is the current estimate for the edge
and obs is the new observation for the edge, whether
communicated or observed locally. In this paper, we use
α = 0.95.

Empirical Evaluation

In this section, we empirically examine the three models
on the congestion problem described in Section 2. The
evaluation is split out into three parts, with each part
aimed at looking in depth at one of the hypotheses in-
troduced in Section 1. Unless otherwise stated, for each
experiment below we use the following experimental pa-
rameters.

Instance-Based Multi-Agent Learning

The key challenge for multi-agent learning is that all the
agents are simultaneously learning, making the learning
environment non-stationary. Learning from instances
in a non-stationary environment is not an intuitively
effective technique. However, humans, who arguably
use a type of IBL, are highly capable of learning in
non-stationary environments. Our first experiments are
aimed at looking at the performance of IBL on the con-
gestion problem. Figure 1 compares the IBL, Ternary
and Average models. Each model shows some improve-

ment over time and some initial poor performance as the
space is explored. The highly communication intensive
and, for a human, computationally challenging Average
model and the IBL model achieve about the same final
level of performance and have about the same initially
poor performance. Both do better than the Ternary
model in the long run, although the Ternary model more
quickly finds decent solutions.

Since the IBL and Average models end with about
the same performance, it is tempting to conclude that
they work in about the same way. However, Figures 2
and 3 show that they actually achieve the result with
quite different dynamics. Figure 2 shows the average
number of agents that change the path they take from
the day before. The ternary model oscillates because
beliefs take some time to change. More interestingly,
IBL consistently changes more than Average. IBL agents
change paths substantially more often, but the net result
is the same as the Average agents. It is infeasible to
determine exactly what is occurring, but it appears that
IBL agents switch between approximately equal paths
due to the noise in their relatively sparse data, while the
Average agents have aggregated more data leading to
more stable choices.

Figure 3 shows a snapshot of the variance in beliefs
of the agents at the end of the 200 days. Specifically,
for each road segment we computed the variance in the
time the agents estimate it would take to traverse that
road. These variances were then discretized and pre-
sented as a histogram, with variances > 50 put in the
last bin for clarity. The higher the variance the more
the agents disagreed about how long it would take to
traverse the road. Each of the three models lead to dis-
tinctly different patterns. The Ternary case often has all
agents in agreement and never has large disagreements
between agents due to the way beliefs cascade across the
network and because the agents only allow a road esti-
mate to have one of three values. The Average model
shows slightly lower variance overall than IBL, though
the IBL has many more roads with very high variance,
indicating complete disagreement. It is insightful to see
that better performance was had when the agents had
different models of the environment, many of which must
actually be wrong. We can conclude that Average and
IBL achieve approximately the same results, with very
different algorithms and with distinctly different internal
dynamics.

Conceptually, the cognitive model (IBL) does several
things differently to Ternary. To try to understand what
the cause of the different behavior was, we manipulated
Ternary in several different ways. First, we artificially
prevent Ternary agents from changing each step to mimic
the IBL’s preference for reusing previous paths. Sec-
ond, we decay the learning rate so later data has less
effect on Ternary, to mimic the way IBL instances aggre-
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Figure 5: Travel times for different arrangements (lefts) of IBL and Ternary agents. Adding roads over time (right).

gate. Finally, we change the default value for Ternary
for unknown roads to match the default for IBL. We
found that each of these changes improved Ternary per-
formance, but preventing them from changing each step
had the biggest effect. The qualitative equivalent of this
in human decision-making would be status-quo effects
or confirmation biases, while IBL’s implementation more
directly reflects properties of human memory.

Figure 4 shows how communication networks influ-
ence the IBL agents. Curiously, blocking communication
works similarly well as communication on fully connected
and random network structures. These networks share
information most evenly across the team, while ring and,
to a lesser degree, small worlds networks compartmental-
ize information into neighborhoods. Although the effect
is not very big, the data represents many simulation runs
so the differences are not due to noise.

We see that complete, random networks do very well.
A post-hoc explanation is that these networks enable
the agents to communicate freely; agents have up-to-
date information about congested roads. (The random
networks were dense - each node has a degree of 5.) The
networks without connections also do well, perhaps sur-
prisingly so. Here, agents may adapt more slowly, and
only to first-hand experience. In conjunction with the
instance-based learner, this may also be a working strat-
egy to avoid congestion. However, communication helps
avoid a consistent initial spike, which we expect to be
due to decision-making based on shared ground truth:
everyone decides to use the fastest roads.

IBL and Ternary Models Interacting

IBL agents can be thought of as a simple model for how
human learning might occur and Ternary agents can be
thought of as a reasonable, low communication agent
approach to cooperative learning. Future systems are
likely to have humans and agents learning together and

influencing each other. Hence, it is informative to look at
what happens when IBL and Ternary agents are learning
on the network at the same time. Varying the ratio of
IBL to Ternary agents, we found that it takes relatively
few IBL agents to give the whole system an improvement
in performance. Having different types of learners in
the same system not only does not hurt performance, it
actually helps the weaker learners do better.

In the case of mixed Random graph networks of IBL
and Ternary agents, we find that when there are only a
few IBL agents they have a noticeable advantage over the
Ternary agents, i.e., although they are using the same
roads and are all interfering with each other, the IBL
agents do relatively better. This advantage has disap-
peared when there are equal numbers of IBL and Ternary
agents. The effect disappears smoothly as the number of
IBL agents increases. If we think of IBL agents as being
similar to humans and Ternary as being more like agents,
this experiment hints that a small number of humans in
an otherwise agent-dominated environment may do rel-
atively better than the agents, and that they, as shown
above, may improve the whole system’s performance.

Disruptions

Intuitively, learning from instances is likely to behave
differently to learning moving numerical estimates when
there are changes to the underlying system. Here we
look at two different types of disruption to the under-
lying system, the addition of roads and the addition of
agents, and the effects on the dynamics for each of the
agent types. In the first case, one new road is randomly
added every 20 days. The resulting dynamics are shown
in Figure 5 over 200 days (left) and just for an early (cen-
ter) and a late (right) road addition. Both Average and
IBL spike dramatically as they try to exploit the new
road, but then go back to their original paths after find-
ing it to be unhelpful – for most of them because they
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Figure 6: The impact of adding agents over time on
average performance.

all tried it at once. The Ternary model is more robust
because of the information sharing, but also takes longer
to recover. Figure 6 shows the travel times as five new
Ternary agents are added each 20 days, starting with 150
agents to make the result more comparable to other re-
sults. Both the Average and IBL agents jump when the
new agents are added, but then smoothly improve per-
formance. The Ternary agents are more dramatically
effected by the change and do not adapt quickly. As the
environment gets more congested and the original agents
have built up more learning data, it is appears that IBL
is more affected by the disruptions. This is unsurprising
as its learning rate is effectively lower at this point.

Discussion and Future Work

The cognitive, IBL agents benefit from a relatively sim-
ple learning model, combining a preference for well-
known roads and exploration of unseen roads. These
cognitive agents can, with relatively limited communi-
cation volume, spread across the road network and ef-
ficiently use shared resources. What may be key to
the cognitive agent’s performance is limited sharing of
knowledge: because agents do not have access to precise
road utility estimates of their neighbors, and because
they only receive updates when the neighbor’s (quan-
tized) beliefs change, they may arrive at heterogeneous
conclusions about which roads are best. This leads them
to spread out more, without sacrificing much individual
performance. Under this scenario, agents do not need to
misrepresent their knowledge states to their neighbors.

When combined in the same system, IBL agents
and ternary agents actually helped each other rather
than hurting performance. This is promising for future
human-agent systems that will learn with distinctly dif-
ferent approaches. Notice that the agents are generally

moving to a Nash Equilibrium, where, at least according
to their local models, they have no incentive to change
behavior. However even if the agents do reach an equilib-
rium, the outcome may be far from the socially optimal
solution (Hagstrom & Abrams, 2001).

Understanding the emerging effects of cognitive
decision-making in these networked simulations will al-
low us to spell out clear predictions to investigate
crowd behavior empirically. The performance of cogni-
tive agents that are based on empirically informed con-
straints of memory decay, instance-based learning and
blending suggests that the mechanisms are not merely
a rational adaptation to static information in the envi-
ronment, but to dynamic resources and a social commu-
nication system. They enable us to maintain external,
distributed memory without the devastating effects of
cyclic, mutual adaptation.
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