
Lawrence Berkeley National Laboratory
LBL Publications

Title
Performance Analysis of Speculative Parallel Adaptive Local 
Timestepping for Conservation Laws

Permalink
https://escholarship.org/uc/item/57c2184c

Journal
ACM Transactions on Modeling and Computer Simulation, 32(4)

ISSN
1049-3301

Authors
Bremer, Maximilian
Bachan, John
Chan, Cy
et al.

Publication Date
2022-10-31

DOI
10.1145/3545996

Copyright Information
This work is made available under the terms of a Creative Commons 
Attribution-NonCommercial License, availalbe at 
https://creativecommons.org/licenses/by-nc/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/57c2184c
https://escholarship.org/uc/item/57c2184c#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/


26

Performance Analysis of Speculative Parallel Adaptive Local

Timestepping for Conservation Laws

MAXIMILIAN BREMER, JOHN BACHAN, and CY CHAN, Lawrence Berkeley National

Laboratory

CLINT DAWSON, The University of Texas at Austin

Stable simulation of conservation laws, such as those used to model fluid dynamics and plasma physics ap-

plications, requires the satisfaction of the so-called Courant-Friedrichs-Lewy condition. By allowing regions

of the mesh to advance with different timesteps that locally satisfy this stability constraint, significant work

reduction can be attained when compared to a time integration scheme using a single timestep size. However,

parallelizing this algorithm presents considerable difficulty. Since the stability condition depends on the state

of the system, dependencies become dynamic and potentially non-local. In this article, we present an adaptive

local timestepping algorithm using an optimistic (Timewarp-based) parallel discrete event simulation. We in-

troduce waiting heuristics to limit misspeculation and a semi-static load balancing scheme to eliminate load

imbalance as parts of the mesh require finer or coarser timesteps. Last, we outline an interface for separating

the physics of the specific conservation law from the temporal integration allowing for productive adoption

of our proposed algorithm. We present a misspeculation study for three conservation laws, demonstrating

both the productivity of the local timestepping API, for which 74% of the lines of code are reused across

different conservation laws, and the robustness of the waiting heuristics—at most 1.5% of element updates

are rolled back. Our performance studies demonstrate up to a 2.8× speedup versus a baseline unoptimized

local timestepping approach, a 4x improvement in per-node throughput compared to an MPI parallelization

of synchronous timestepping, and scalability up to 3,072 cores on NERSC’s Cori Haswell partition.

CCS Concepts: • Mathematics of computing→ Partial differential equations; • Computing method-

ologies → Discrete-event simulation; Massively parallel and high-performance simulations; • Applied com-

puting→ Earth and atmospheric sciences;

Additional Key Words and Phrases: Local timestepping, parallel discrete event simulation, Timewarp, shallow

water equations, conservation laws
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1 INTRODUCTION

Simulation of systems of hyperbolic conservation laws remains a core area of interest to the scien-
tific computing community, providing insights to fields ranging from computational fluid dynam-
ics to plasma physics. These methods describe the local exchange of conserved quantities such
as mass, momentum, or energy between regions of space. The well-known Courant-Friedrichs-

Lewy (CFL) condition has formed the basis of numerous popular explicit timestepping schemes
for modeling convection-dominated flow [22, 39, 49, 53, 64]. The CFL condition for conservation
laws is defined to be

Δt ≤ CCF L
Δx

|Λ| ,

where Δt is the proposed timestep, Δx is the length scale, |Λ| is the local wave speed, andCCF L is
a discretization-dependent constant. By bounding the allowable timestep as a function of element
size and local wave speed, one can limit the difference in element-wise averages of conserved quan-
tities between neighboring elements, preventing spurious oscillation that may amplify indefinitely,
making the scheme unstable.

Traditional synchronous timestepping schemes use a single timestep that must guarantee the
satisfaction of the CFL condition for all elements. In the presence of large variations of both Δx and
|Λ|, high percentages of elements will update with smaller than necessary timesteps. By allowing
local regions of the mesh to take different timesteps, the computational work required by the
simulation can be significantly reduced.

This article is a conference extension of our previous work [9] and belongs to a larger effort
to make the Runge-Kutta discontinuous Galerkin (RKDG) finite element method a viable al-
ternative to current storm surge simulation codes such as ADCIRC [15, 27, 28]. The RKDG finite
element method has advantageous numerical characteristics that improve the fidelity and stabil-
ity of generated solutions but currently requires too much computational work to be usable in
an operational setting. In a forecasting scenario, the simulation must be able to produce multiple
surge forecasts within a 2-hour time budget using up to hundreds of cores after the hurricane wind
forecasts are released to be useful for emergency managers [4]. Since elements only require infor-
mation from face-connected neighboring elements to update, the RKDG finite element method can
be parallelized to satisfy the time-to-solution constraint, but current implementations require too
many cores to be competitive when running on shared resources such as university clusters. Work
reduction through local timestepping reduces computational resource requirements, potentially
making RKDG storm surge codes competitive for real-time forecasting.

Parallelizing adaptive local timestepping (ALTS) is particularly difficult when the propaga-
tion speed Λ depends on the solution itself. Proposed timestep sizes may change as updates from
neighbors are processed. A reduction of an element’s timestep may cause a reduction in the neigh-
bor’s timestep and a reduction of the neighbor’s neighbor’s timestep and so on, leading to un-
certainty in the number of messages from neighbors that must be processed before a submesh
can update. In a distributed computing environment, we need to incorporate possibly non-local
information when determining if a region can be updated.
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The aim of this work is to optimize the parallel performance of ALTS over core counts relevant
for operational surge forecasting. In this article, we present results for the Burgers’, Euler, and
shallow water equations, demonstrating the robustness of the method for different conservation
laws and initial conditions. Performance results shown here are limited to the shallow water equa-
tions, as these results most directly emulate storm surge simulation. However, with properly man-
aged task granularity, these results should generalize to other conservation laws as well. Dawson
et al. [28] examined local parallel timestepping for storm surge. However, without the capability
to dynamically adjust timesteps, the implementation required frequent restarts due to instabili-
ties caused by changing wave speeds, undermining the stability argument for using discontinuous
Galerkin finite elements and limiting performance gains. Following the discrete event-based for-
mulation of Bremer [8], we implement ALTS as a discrete event simulation and parallelize it using
an optimistic parallel discrete event simulator based on Jefferson’s Timewarp algorithm [44]. The
contributions of this article are as follows: (1) a set of optimizations to identify and reduce misspec-
ulation; (2) a semi-static load balancer to resolve dynamic load imbalance; (3) a proposed API to
separate the physics from the timestepping logic to facilitate productive adoption of the algorithm;
and (4) a detailed characterization of the performance of ALTS, including descriptions of event
overheads, misspeculation, strong and weak scalability, optimization impact, and comparison ver-
sus a state-of-the-art synchronous approach. The parallel efficiency improvements achieved in
this work are well suited to enable the use of the discontinuous Galerkin finite element method
for operational hurricane storm surge forecasting and other large-scale flow simulations that are
otherwise intractable due to required computational work.

1.1 Previous Work

The idea of allowing different subsystems to advance with different timesteps has been extensively
examined for Runge-Kutta methods [38, 60]. Extending these methods to conservation laws has
seen considerable work [16, 23, 26, 42, 48, 58, 61, 66]. In addition, other fields have arrived at
related time integration schemes. Quantized state systems [19, 31, 47] have been used to model
systems of ordinary differential equations (particularly for power electronics modeling) by
approximating state values with time-dependent polynomials and updating estimates when they
deviate more than a given threshold. Those systems focus on enforcing bounds on state variable
deviations, as opposed to enforcing particular mathematical constraints, such as a CFL condition.
Asynchronous variational integration is another locally timestepped method designed for linear
elastodynamics [50]. Whereas local timestepping for conservation laws is focused on maintaining
non-linear stability, asynchronous variational integration focuses on preserving the total energy
of the system.

Beyond the various applications, parallelizations share common motifs based on the charac-
terization of the algorithm. By assuming constant timesteps or variations in timestepping sizes,
local timestepping methods—also known as multi-rate integrators—can be parallelized using task-
graph-like approaches (e.g., [13, 43, 67]). However, the inability to account for variations in the
wave speed limits the practicality of these approaches for non-linear problems. Methods such as
quantized state systems and the solver in the work of Omelchenko and Karimabadi [55–57] rely on
a discrete event simulation framework to account for changes in timestep and correctly resolve de-
pendencies in a parallel context. Our ALTS implementation differs from these other discrete event
simulation based approaches in that (1) ALTS strictly satisfies the total variation diminishing CFL
condition leading to a different control flow and (2) previous approaches have not utilized and ex-
amined the performance of ALTS using optimistic parallel discrete event simulation (PDES).

To arrive at a performant implementation of ALTS, we employ two types of optimizations: throt-
tling of optimistic execution and dynamic load balancing. The limiting of the progress logical
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processes are able to make to improve the performance of optimistic PDES simulators is an exten-
sively studied subject. Many previous approaches throttle optimistic PDES by inspecting either
simulator state (e.g., [30, 65]) or hardware resource utilization [25]. We refer the reader to the re-
view of Das [24] and therein cited works for a comprehensive overview. A common limitation of
these methods is that they fail to fully exploit application specific knowledge but rather can only
infer it through statistical methods. In the work of Bauer et al. [3] and Lindén et al. ??, application-
specific knowledge is used to provide upper bounds by which neighboring communication must be
received. These dynamic local time windows block logical process execution once further progress
is guaranteed to result in rollback. This technique is used to improve the performance of PDES-
based simulation of the reaction-diffusion master equation. Simulation of conservation laws shares
two important characteristics with reaction-diffusion master equation simulation: (1) it is not pos-
sible to place a lower bound on event arrival times (precluding the use of lookahead), and (2) it
is possible to easily predict scheduling times of future events. Our optimizations rely on a similar
mechanism to identify and eliminate misspeculation for the local timestepping algorithm.

Dynamic load balancing for PDES has also been examined extensively in previous work. Ear-
lier work focused mostly on measured compute load of the cores to determine when and how to
rebalance. For example, in the work of Boukerche and Das [7], a process migration strategy was
presented that balanced workload based on CPU-queue length. Glazer and Tropper [35] present
a method to dynamically load balance by migrating processes based on measurements of local
clock progress and a bin packing algorithm. The approach presented by Avril and Tropper [2]
uses the number of events processed but added estimates of the change in communication as an
imbalance metric within the context of digital circuit simulation. In the work of Lindén et al. [52], a
voxel-based, load balancing protocol was introduced using an imbalance metric based on rollbacks.
More recently, Mikida et al. ?? examined the use of load balancing capabilities in the Charm++ [45]
runtime to provide dynamic load balancing capabilities to PDES simulation models in ROSS [17].
They examined the efficacy of both a centralized greedy heuristic as well as a distributed strategy
that utilizes a gossip protocol to avoid the synchronization cost of more centralized methods [54].
Our technique has some similarities to these previous methods but offers a more tailored approach
given the specific characteristics of our application (e.g., handling wet and dry cells separately) and
takes advantage of the 1D spatial domain topology to compute partitions extremely efficiently.

A key outstanding issue has been the adoption of adaptive locally timestepped methods by the
scientific computing community. PDES as well as the mathematical foundations of ALTS have
been around for more than 30 years, yet neither have managed to gain substantial traction in the
scientific computing community [33]. Key barriers to entry remain the productive and maintain-
able introduction of ALTS into an existing code base while still meeting the performance needs of
the higher-performance computing community [40]. Adaptive mesh refinement packages such as
Clawpack [21] and ExaHyPE [59] solve conservation laws by requiring the user only to specify key
characteristics of the conservation law. Other packages try to provide isolated functionality that
can be integrated into a larger software stack—for example, SUNDIALS [41] provides optimized
routines for timestep integration of initial value problems. Our proposed API most closely follows
the second approach. The objective being to rapidly introduce ALTS into existing applications to
demonstrate advantageous speedup and to contain the complexity of ALTS within a timestepping
layer.

2 OPTIMIZING ALTS

The ALTS method for conservation laws is designed to ensure that the solution remains free of
spurious oscillations by producing a total variation diminishing solution [49]. A detailed discussion
on the justification for the ALTS algorithm can be found in the work of Bremer et al. [10]. In
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this section, we will present a high-level overview of discretizing conservation laws, the ALTS
algorithm, and performance optimizations for running ALTS using an optimistic PDES engine.

2.1 Numerical Solutions to Conservation Laws

Conservation laws model the evolution of conserved quantities between regions of the domain.
As a partial differential equation, these laws are represented as

∂tu + ∂x f (u) = S, (1)

where u is our conserved quantity (e.g., mass or momentum) and f is the flux, which encodes how
those quantities are exchanged with the surrounding region, and S is the source term (e.g., friction).
These equations are notoriously difficult to stably simulate, as their solutions may form disconti-
nuities. When discretizing these methods, particular care must be taken to faithfully approximate
the exchange of conserved quantities between regions of the domain.

In this work, we only consider first-order methods for 1D domains. Consider a grid, xlb = x0 <
x1 < . . . < xn = xub . The first-order finite volume method will approximate the evolution of the
average conserved quantity in cell j as

Uj (t ) −Uj (s ) = Δx j

∫ t

s

S j (τ ) −
F̂j+1/2 (τ ) − F̂j−1/2 (τ )

Δx j
dτ . (2)

Our discretization will assume that conserved quantities are piecewise constant in time. The use
of a continuous integral is meant to save on indexing headaches but should be practically under-

stood as a discrete sum that can be evaluated exactly. The numerical flux F̂j+1/2 approximates the
exchange of conserved quantities between cells j and j +1. The maximum speed at which informa-
tion can pass from one cell into another is denoted as |Λ|, which is computed to be the magnitude
of the largest eigenvalue of the Jacobian of the flux, ∂u f (u).

The purpose of local timestepping is to not require each cell to update at each discrete time. To
help identify when cells update, let tm

j denote the simulation time of the m-th update on cell j.

Note that the state Uj must satisfy Equation (2) at these update times.
To ensure that the solution is free of oscillations, we require two conditions to be satisfied.

These restrictions arise due to mathematical constraints, not limitations of the implementation.
First, updates must obey the CFL condition, which limits the allowable time between successive
updates [39]. Consider an element j and its neighbors N , and define t∗ as the most recent time that
every element has updated—that is,

t∗ = min
n∈N

max
m
{tm

n }. (3)

A proposed update advancing element j from tm
j to tm+1

j satisfies the CFL condition if

tm+1
j − t∗ ≤ CCF L

Δx j

maxn∈N |Λn |(τ )
for all t∗ ≤ τ < tm+1

j , (4)

where CCF L is a discretization specific constant, |Λ| is the largest wave speed over the element’s
stencil, and Δx j is the size of the element. This inequality limits the allowable change of the con-
served quantities within an element between successive updates by restricting the timestep size
relative to flow rates. Second, elements must update in a locally ordered manner. In the ALTS
setting, not every element updates at every timestamp. Given two adjacent elements, only one
element may update more frequently than the other. To flip which element substeps relative to the
other element, the two elements must pass through a synchronization time where both elements
update at the same timestamp. We refer to element update traces that obey this behavior as locally

ordered.
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1 def update(forced_update ):

2 #read simulation time and actor from DES context

3 t,submesh = get_state ()

4

5 if (submesh.t_prev ==t or

6 (not forced_update and sbumesh.t_next != t ) or

7 n_outstanding_msgs(t,submesh) > 0):

8 return

9

10 advance(t, submesh)

11 submesh.t_prev = t

12 submesh.t_next = compute_t_next(submesh)

13

14 for neigh in submesh.get_neighbors ():

15 requires_update = inhibits_progress(submesh ,neigh)

16 schedule(t+eps , neigh.get_id(),

17 push_flux(make_metadata(submesh , neigh),

18 requires_update ))

19

20 if (submesh.t_next > t and

21 n_outstanding_msgs(submesh.t_next , submesh) == 0):

22 schedule(submesh.t_next , submesh , update(False))

Listing 1. Update event.

For performance purposes, we partition elements into submeshes. Submeshes update constituent
elements using a single timestep, which is limited by the most stringent local CFL condition. Since
elements within the submesh step synchronously, local ordering is trivially satisfied within the
submesh. By changing the number of elements per submesh, we gain the ability to tune the com-
putational cost of submesh updates to amortize simulator overheads. As we show later, balancing
simulator overheads with computational work is essential to obtaining good performance.

As a discrete event simulation, each actor corresponds to a submesh along with information
about neighboring submeshes required to update element densities and compute the CFL condi-
tion at the boundary of the submesh. Also referred to as logical processes, actors contain the state
of the system, interacting with one another only through messages managed by the PDES en-
gine. Events are scheduled using a schedule routine that accepts a timestamp, actor, and functor
as arguments or can be executed within the same event using a schedule_inline routine. The
algorithm consists of two types of events: update shown in Listing 1 and push_flux shown in
Listing 2. A submesh executes an update event to advance the submesh state to the event execution
time (Listing 1, line 10). The updated halo state needs to be shared with neighboring submeshes,
which is done via push_flux events (Listing 1, line 16). Note that updates can be scheduled as
part of the push_flux event (Listing 2, line 9), leading to a potential cascade of updates. Show-
ing that this interleaved execution of update and push_flux events utilizes the correct state and
terminates has been carefully examined in the work of Bremer et al. [10]. The eps delay in sched-
uling the event push_flux is a small amount of subtime used to correctly order updates and push
fluxes. The advance, accumulate, and make_meta_data functions encapsulate the mathematical
discretization of the conservation law. The halo regions computed as part of make_meta_data
for discontinuous Galerkin-based approaches consist of the state variables evaluated at shared
interfaces. Higher-order finite volume methods would require sending larger halo regions. As pre-
sented here, ALTS does assume that the halo region is entirely contained in a single neighbor-
ing submesh. The next timestep is computed in compute_t_next to be the largest timestep that
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1 def push_flux(metadata , forced_update ):

2 #read simulation time and actor from DES context

3 t,submesh = get_state ()

4 accumulate(t, submesh , metadata)

5 if n_outstanding_msgs(t,submesh) > 0: return

6

7 submesh.t_next = compute_t_next(submesh)

8 if ( forced_update ):

9 schedule_inline(submesh , update(True))

10 elif (submesh.t_next > t and

11 n_outstanding_msgs(submesh.t_next , submesh) == 0):

12 schedule(submesh.t_next , submesh , update(False))

Listing 2. Push flux event.

satisfies (4). Since the timestep depends on the boundary metadata, the next update time may
change as push_flux events are processed and the update event must be rescheduled. We know
that the most recent actor state will have access to all relevant metadata, and thus we only execute
the update consistent with the current submesh.t_next. All other updates become no-ops, either
because their scheduled execution time does not match submesh.t_next or the update has already
been executed.

The two functions n_outstanding_msgs and inhibits_progress examine the local represen-
tation of the distributed state of the system to determine what events should be scheduled next. The
n_outstanding_msgs function provides a lower bound on the number of outstanding messages to
be processed on the actor by time t . By knowing that a message will be processed before the next
update time, we defer scheduling updates until the waited upon messages are received, as any
event executed after n_outstanding_msgs that returns a number greater than zero is guaranteed

to be rolled back. The inhibits_progress function checks to see whether the actor is unable to
make progress without forcing its neighbor to update. Forcing a neighbor to update may arise due
to a local ordering violation, an inability to propose a CFL-stable next timestamp, or performance
benefits of having the neighbor prematurely update.

2.2 The Devastator Runtime

To measure the performance of the ALTS algorithm, we implemented it using the Devastator PDES
runtime (first described and used in the work of Chan et al. [20]). Devastator is a general-purpose,
optimistic PDES engine that coordinates event execution and rollback required by Jefferson’s Time-
warp protocol. Devastator is built using the GASNet-EX runtime [6] and utilizes light-weight active
messages (RPCs) to invoke events on remote logical processes. Since GASNet-EX active messages
are tailored to the specific interconnect hardware, they are efficient at delivering the small asyn-
chronous events required of PDES. It is implemented with modern C++ to improve programmer
productivity, uses parallel threads and processes to enable distributed memory execution, and in-
cludes several optimizations to improve communication and synchronization efficiency. The mod-
ern C++ interface allows clean specification of event classes, their serialization, and their execute
and rollback functions. Since conservation laws are not reversible in general, portions of the ac-
tor state are logged during execute, and the actor state can be restored to the state prior to the
execute call by calling the rollback function.

To illustrate the parallel efficiency of the runtime, Figure 1 shows weak scaling performance
of Devastator running a modified version of the well-known PHOLD benchmark [32]. PHOLD
consists of a number of rays that bounce between actors. The ray arrival times are distributed
exponentially, and a ray terminates after a fixed number of events. To determine a ray’s next

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 4, Article 26. Publication date: November 2022.



26:8 M. Bremer et al.

Fig. 1. Weak scaling performance for the modified PHOLD benchmark on NERSC’s Cori-Haswell partition.

destination, the actors are lexicographically sorted based on rank ID and then local actor ID, and
the target rank is selected by using a wrapped normal distribution with standard deviation of 16
and a mean of the sending actor ID. This modification allows us to tune the communication pattern
of the benchmark to more closely resemble applications with locality, such as the ALTS simulations
studied here. In the figure, we show the per core event commit rate as the number of cores is varied
(with the number of logical processes per core fixed at 1,000). The different series in the figure vary
the number of active events (rays) per logical process in the system (corresponding to the average
event queue depth for each logical process). Each configuration is run three times, with each trial
represented as a point and the line representing the average commit rates of the trials. As can be
seen in Figure 1, parallel efficiency (performance per core) decreases to approximately 55% to 75%
as the number of cores increases from 32 cores to 16,384 cores, corresponding to a 270× to 3800×
overall speedup in aggregate event commit rate. In certain cases, significant variance is observed.
Determining whether the jagged nature of the scaling results is due to specific paths taken by the
rays or due to system noise will be addressed in a more thorough future treatment of Devastator.

2.3 Performance Optimizations

Although satisfying the CFL condition and local ordering leads to stable computation, careful man-
agement of PDES overheads is required to achieve expected speedups. In this section, we introduce
a set of performance optimizations focused on eliminating bad speculation (Sections 2.3.1—2.3.4)
and a dynamic load balancing scheme (Section 2.3.5).

2.3.1 Binning Timestep Sizes. The need for local ordering of events leads to potentially in-
creased forced synchronizations. For example, given submeshes stepping with timesteps 17 and
18, the submesh stepping with size 17 would step to time 17 and then have to update again at time
18 to maintain local ordering. To address this, we bin future timesteps into powers of 2 times a
fixed user-supplied Δtmin. In this example, both submeshes would take binned timesteps of size
16. To simplify computation all timestamps are kept as integers with units of Δtmin. The Pythonic
pseudocode for timestep binning is

dt_unbinned = t_next - t_prev

dt = power(floor(log2(dt_unbinned )), 2)

t_next = dt * (t_next //dt).

In practice, we implement this efficiently using bit shifts. The impact of this optimization is that
we reduce forced updates by having submeshes with roughly the same timestep step to the same
timestamps. This also concentrates updates to certain multiples of Δtmin leading to improved
simulator parallelism and reduces the depth of the algorithm. The downside of this approach is
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that we are unable to take the largest feasible timestep, potentially increasing the total number of
updates.

2.3.2 Waiting on Forced Updates. When a submesh sends a push_flux with the requires_
update argument as true, we know that the submesh will receive a push_flux from the neighbor-
ing submesh at the current time. Since any updates speculatively executed before the neighbor’s

push_flux event has arrived would be rolled back, the function n_outstanding_msgs examines
the submesh’s state and delays scheduling further updates until after the waited upon messages
have arrived.

2.3.3 Forcing Neighbors to Update. Since the CFL condition is taken relative to the last update
time of the submesh or its neighbor, once a submesh updates it to its binned timestamp, it can still
make further progress. As an example, consider two submeshes both with an unbinned timestep
of 14 starting at time t = t∗ = 0. If one submesh is delayed, the other can execute binned updates at
times 8 (dt = 8), 12 (dt = 4), and 14 (dt = 2), before being unable to schedule another update. Once
the delayed submesh updates to time 8, the resulting push_fluxwill lead to rollback of two updates
on the other submesh. To address this, we examine the difference in the proposed next timestep
based on the current t∗ as defined in Equation (3) and if t∗ were equal to the submesh’s current
simulation time (i.e., the submeshes are synchronized). If the ratio of the synchronized timestep size
versus the unsynchronized timestep size exceeds 2, we force the submeshes causing the timestep
reduction to update. In the example, the not-delayed submesh would update at time 8, and the
proposed next update has a timestamp dt = 4 using the current t∗ = 0. However, if the submeshes
were synchronized (i.e., t∗ = 8), the next timestep would be dt = 8 ≥ 2 · 4. Hence, the submesh that
updated to t = 8 would force its neighbor to update. By waiting on submeshes that have been issued
push fluxes that require updating as part of Section 2.3.2, forcing the neighbor to update leads to
waiting on the neighboring submesh rather than incorrectly speculatively executing updates at
times 12 and 14.

2.3.4 Establishing Upper Bounds on Neighboring Updates. When Λ and Δx j are constant in time
but vary significantly spatially, message arrival times are independent of the dynamic state of the
neighboring submeshes, and it should be possible to recover an efficient task-graph-like execution.
To recover this behavior in our more general discrete event simulation setting, we note that the
next update time for a submesh must be less than the next unbinned update time required by the
internal elements of that submesh. This upper bound is shared with neighboring submeshes as
part of the make_metadata message. By incrementing n_outstanding_msgs if the time argument
exceeds the upper bound, the neighboring submesh pauses scheduling of further events until the
submesh’s push_flux event is processed.

2.3.5 Dynamic Load Balancing. Last, as the simulation advances and simulated regions are
flooding or draining, the load will need to be rebalanced. Dynamic load balancing for hurricane
storm surge for synchronous timestepping has been explored in the work of Bremer et al. [12].
Findings indicate that although the compute load changes substantially, it does so in a slow grad-
ual manner, and a semi-static-based approach performs roughly as well as a fully asynchronous
load balancing strategy. Here we use a semi-static approach due to its relative simplicity compared
to the fully asynchronous load balancer.

At a high level, the simulation will be broken into epochs of a fixed size. At the end of each epoch,
we approximate the computational work of a submesh as nelem (1/Δt − 1/Δtepoch), where Δt is the
next proposed timestep size for that submesh (i.e., submesh.t_next minus the epoch’s timestamp).
All load information will be aggregated on rank 0. There the submesh to rank assignment will be
recalculated to minimize load imbalance, and all submesh relocations will be issued. By fixing the
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Fig. 2. Stack diagram for ALTS.

element to submesh mapping and only having to assign submeshes to ranks, the complexity of
the load balancing problem is considerably reduced, enabling more frequent load balancing. We
emphasize that we oversubscribe compute resources—that is, assign multiple actors to each rank to
hide message latencies and ensure consistent utilization of compute resources. The load balancing
problem must satisfy two constraints: (1) compute loads must be balanced between ranks, and
(2) the total number of elements assigned to a rank must not exceed the local memory capacity.
The second constraint is required since idle regions of the mesh do not update, so they could
potentially be assigned to a single rank.

For 2D simulations such as those performed by Bremer et al. [12], standard multi-constraint
graph partitioning solutions such as Metis [46] are able to rebalance the problem. However, for
the 1D shallow water problems considered in this work, we found that Metis struggled to generate
partitions with low load imbalance. Instead, we used a custom partitioner for this work. Submeshes
are classified as either wet or dry. A submesh is dry if it has zero work (i.e., only updates once
per epoch) and is otherwise wet. Wet submeshes are partitioned by balancing the work across
each rank. In addition, each rank is then assigned roughly the same number of dry submeshes
(some ranks may receive an extra submesh due to discrete effects). For 1D problems, wet and dry
partitions can be efficiently represented with the use of splitters of the global submesh graph,
where rank r is assigned the submeshes between the r -th and (r + 1)-th splitter. By assigning
each rank two contiguous sets of submeshes, we reduce inter-rank communication as each rank
contains no more than four submeshes that send their push_flux events to another rank. Upon
computing a new submesh-to-rank mapping, we greedily permute the new map’s rank IDs to
minimize the number of submeshes that need to be moved between ranks.

3 SEPARATING PHYSICS FROM TIMESTEPPING

In this section, we outline implementation details to help the adoption of ALTS. Both PDES sys-
tems as well as asynchronous runtimes require substantially more thought to correctly program
than the MPI+X programming model commonly used in scientific computing. Often, debugging
is difficult due to the presence of bugs arising from strange event orderings that only show up
during optimized parallel runs. This presents a considerable speed bump to the adoption of PDES-
based local timestepping as application developers will be loath to maintain this timestepping
code themselves. What we propose is a strict interface to separate the application physics from
the timestepping logic, as shown in the stack diagram in Figure 2. The proposed interface in this
section abstracts the physics via a Problem class with certain required type definitions and mem-
ber functions. We have prioritized minimizing the intrusiveness of the API into the application
layer. Often, applications have complicated application-specific physics terms that represent the
result of substantial investment of resources. One of the goals of this interface is as follows: given
a flat MPI implementation with a “nice” data layout, the porting of the application to an ALTS
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class Problem {

typename bdry_t

typename msg_t

typename dynamic_t

typename dynamic_bdry_t

dynamic_t& get_dynamic_state ()

void initialize(uint64_t id)

void build_u_next(double t, double dt , dynamic_t& u_old)

msg_t make_message(uint id_me , uint id_to)

void lift_bdry(uint id_me , uint id_from , const bdry_t& bdry)

double compute_K_internal(double t)

double compute_K_bdry(uint id_me , uint id_from ,

const msg_t& bdry , double bdry_dx)

};

Listing 3. Problem class interface.

integrator should merely require removing existing timestepping logic and implementing new
functions associated with determining allowable timestep sizes. This would allow domain experts
to continue developing code for a programming model that looks like flat MPI while reaping the
benefits of the more efficient ALTS time integration. A side effect of this objective is that we are
also able to implement synchronously timestepped (STS) MPI and serial versions without mod-
ifying the problem class. In this section, we will provide a detailed discussion of the problem class
and the functionality of the member methods and type definitions, discuss how the state is made
roll-backable, and discuss performance trade-offs with cleaner abstractions.

3.1 Computation Required by ALTS

The purpose of the Problem class is to specify the physics required to update the conserved vari-
ables and compute local wave speeds required to determine timestep restrictions. We present the
Problem class interface in Listing 3.

We begin by focusing on the physics information required during a push_flux event. When
a submesh updates, the numerical fluxes on neighboring submeshes must be updated to ensure
that Equation (2) continues to hold. To achieve this, the updated submesh calls the make_message
function to construct a message of type msg_t, which encapsulates the information needed by its
neighbors to update their fluxes accordingly. Note that often there is an opportunity to reduce
the required message sizes by computing derived quantities before sending them to neighbor-
ing submeshes. For example, in the case of the discontinuous Galerkin method, where conserved
quantities are approximated by polynomials, the numerical flux only depends on the value of the
conserved quantity at the shared interface. In this case, the make_message function computes
the necessary derived quantities and sends only those to the submesh’s neighbors as part of the
push_flux event.

When the neighboring submesh executes the push_flux event, it accumulates the flux ex-
changed based on the previous state up until that point in time and computes a new flux as part of
the process_message routine. The representation of this partially computed right-hand side is en-
capsulated with the bdry_t type. Since the integration of this state is done in the local timestepping
application layer, the bdry_t type must support standard vector space operations (multiplication
by a scalar and addition of two bdry_t objects). Finally, when the neighboring submesh is updated,
the boundary flux values are applied to all dependent degrees of freedom as part of the lift_bdry
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function. To make the preceding processes concrete, for the methods considered in this work, the
make_message routine would simply identify the average conserved quantity associated with the
cell neighboring the submesh and send that state as a msg_t. When the neighbor executes the as-
sociated push_flux event, the previous flux at the shared interface is updated by scaling it based
on the elapsed time, and a new current flux is computed in process_message.

Next, we turn to the physics required by the update event. The build_u_next function takes
the state’s current time and the desired timestep as an argument and then returns the internal state
at time t + dt. In this case, the implementation is left to the domain scientists. We implement this
as a simple forward Euler step. In addition, build_u_next is responsible for integrating boundary
conditions. The build_u_next function in conjunction with the lift_bdry function discussed in
the previous paragraph computes all of the necessary terms required to satisfy Equation (2) for a
particular submesh.

One critique of the build_u_next abstraction is that it requires the application to understand
how to perform a simple sequential integration, undermining the physics/timestepping separa-
tion. However, we believe that existing applications (e.g., flat MPI code) would already have imple-
mented this functionality, therefore not imposing a significant burden on domain scientists. The
advantage of this approach is that it allows for loop fusion. Low-order methods such as the ones
considered in this article are memory bound. So requiring the entire computation of the right-hand
side followed by scaling the result by the timestep and adding it to the previous state would incur
additional memory traffic. Given the emphasis on performance, we have chosen the less clean but
more performant option for the abstraction.

The second functionality that the problem layer must supply are the CFL-related constraints.
Similar to the state updates, we partition the computation into two calls based on whether the
CFL condition depends on solely local or distributed information. We refer to K as the wave speed
|Λ|/Δx . The local CFL bound is computed as part of compute_K_internal. From an implemen-
tation perspective, the computation of the CFL condition tends to be quite expensive. Thus, we
opt to fuse the computation of the internal K with the build_u_next call and cache the result.
When computing the internal K value, the only additional information that requires consideration
are the domain’s boundary conditions that may depend on the time argument, t. Note that these
evaluations are only at snapshots in time, the control flow associated with properly evaluating the
CFL condition, Equation (4) is delegated to the timestepping layer.

When a neighbor updates and the associated push_flux is processed, we need to recheck the
CFL condition. Since the neighboring state only affects a limited number of cells, we introduce
an additional call compute_K_bdry, which will recompute |Λ|/Δ, based on the neighbor’s updated
wave speed. Note that we assume that the relevant neighbor’s |Λ| can be computed based on the
received msg_t. In our experiments, we have always found this to be the case.

We conclude with a remark on the extension of this API to higher-order timestepping meth-
ods. One approach is based on ADER methods [29]. These are single-step methods that rely on a
polynomial space-time representation of the state. To implement ADER timestepping, we would
only need to implement a single ADER timestep along with the relevant boundary types at the
application layer. The helper function implementation could then be passed to the unmodified
timestepping layer.

Alternatively, high-order strong stability preserving Runge-Kutta methods [23, 36] are also com-
monly used due to their non-linear stability for conservation laws. The key property of these meth-
ods is that they can be represented as convex combinations of Euler steps. Implementing this class
of Runge-Kutta methods would require modifications to the timestepping layer. Advancing a sub-
mesh would require a second small subtime quantity ϵ2, which would be used to identify which
stage is currently being processed. Each update would cause several halo exchanges to occur at
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Table 1. Lines of Code Associated with

Different Modules in the ALTS Code

Problem

Burgers’ 618

Shallow Water 773

Euler 652

Timestepping Layer

ALTS-deva 2,934

STS-MPI 566

STS-serial 466

Common 245

time t with the final state being updated at the update time t + dt. All of the control flow details
are managed in the timestepping layer, and the forward Euler implementation of build_u_next
function is sufficient for supporting this class of Runge-Kutta methods. Introduction of multi-stage
Runge-Kutta methods introduces considerable complexity, but the hope is by sequestering the im-
plementation details from users, we hope to promote adoption of these techniques.

3.2 Rolling Back the Application Layer State

The discussion up until this point has been agnostic to PDES. However, one important aspect
of the API is how the application deals with rollback. The API has been designed to allow the
user to optimize the amount of state required to be captured by separating data members that
vary between updates (e.g., state variables) from those that remain constant (e.g., mesh geometry).
Since the computations associated with build_u_next are not reversible, Devastator is required
to store the entire dynamic state until global virtual time (GVT) passes the event time and the
memory can be reclaimed. For this reason, we return the next state by value, which we will swap
with the old state. Afterward, the current dynamic state will be stored in the Problem class and
the old dynamic state will be managed by the Devastator runtime, which will deallocate it once it
is safe to do so. Similarly, for the push flux event, we split apart the dynamic state of the boundary
from things that remain unchanged during the simulation. By explicitly requiring these types to be
defined, we enable Devastator to ensure that events remain reversible. With these dynamic types,
rollback can simply be performed by swapping old dynamic types into the problem class, restoring
the state prior to an event.

Last, we require that the msg_t and Problem types be serializable. Since push fluxes are sent
between nodes and submeshes are migrated during load rebalancing phases, we need to ensure
that the state can be serialized into a buffer and sent across the wire.

To understand the practical impact of this interface, we have collected lines of code for the var-
ious modules. Using the Problem API, we have implemented three different sets of conservation
laws, which will be outlined in more detail in the next section. In addition, we have also used the
code to implement a serial synchronously stepped implementation as well as an MPI-based imple-
mentation. In Table 1, we compare the lines of code for each module. Note that problem classes are
specified by the equation they solve (Burgers’, Shallow Water, Euler), and the timestepping layer
is labeled according to the algorithm (STS or ALTS) and how it is run (Devastator, which we ab-
breviate as deva, MPI, or serial). We additionally note a block of code as common. This code is used
across all denoted modules and thus cannot be assigned merely to a single group. From the data,
we remark that the ALTS implementation is significantly larger than the STS implementation.
This is in part due to more features including performance instrumentation and load balancing
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Table 2. Conservation Laws and Their Configurations

Name State Flux Source Wave Speed Numerical Flux

Burgers’ u u2/2 0 |u | Godunov

Shallow Water
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γ P

ρ
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capabilities as well as more complexity when compared with the STS-based implementations. How-
ever, we observe that using this abstraction layer, we achieve significant code reuse with a single
problem class consisting of approximately 1,000 lines of code being able to leverage three different
runtimes. In other words, across the three different conservation laws, no less than 74% of the code
is reused.

4 NUMERICAL EXPERIMENTS

To demonstrate the robustness of our timestepping algorithm and the proposed performance op-
timizations, we present results for three different 1D non-linear conservation laws. We present
a high-level overview of the equations considered in this section in Table 2. The state column
corresponds to u and the flux to f (u) in Equation (1).

Burgers’ equation may be thought of as the simplest non-linear conservation law with the local
wave speed being proportional to the density itself. For Burgers’ equation, we consider two initial

conditions: a shockwave problem ush
0 (x ) = 1 − sign(x )/2 and a rarefaction problem u

r f
0 (x ) =

sign(x ).
The second set of conservation laws are the shallow water equations. These are depth-averaged

equations whereh models the water column height andq models the horizontal momentum. When
the seafloor bathymetry (given as z) is non-flat, we rely on the hydrostatic reconstruction of
Audusse et al. [1]. The acceleration due to gravity, д, is set to 1. We consider three initial con-
ditions. The first is the lake at rest (lar) problem for which the solution is a constant. This problem
is notable because |Λ(x , t ) | is a constant for all space and time. Hence, any local timestepping ben-
efit is derived solely from variation in element sizes, Δx j . The other problem we consider is the
Carrier-Greenspan (cg) problem [18] as configured in the work of Bokhove [5]. This is a π -periodic
solution to the shallow water equations that simulates water flowing up and down a sloped beach.
For clarity, we have included three snapshots in Figure 3. The Carrier-Greenspan problem serves
as a good proxy for hurricane storm surge. In both cases, the large variations in wave speed Λ are
being driven by coastal flooding. Last, we consider the dam break problem, wherein a discontinuity
in water column height on a flat bathymetry (z = 0) is simulated, specifically,

h0 (x ) =
⎧⎪⎨⎪⎩

1 if x < 0

1/16.1 if x > 0
and q0 (x ) = 0.

The final set of equations we consider are the Euler equations, used to simulate compressible gas
dynamics. The conserved quantities correspond to fluid density (ρ), momentum (ρu), and internal

energy per unit volume (E). We relate the internal energy to pressure via P = (γ − 1)
(
E − ρu2/2

)
,

whereγ = 1.4 is the heat capacity ratio. For this problem, we consider two sets of initial conditions,
the Sod shock tube problem [63] and the interacting blast wave problem [68]. For completeness,
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Fig. 3. Water surface height (in blue) and seafloor (in black) relative to mean geoid for the Carrier-Greenspan

problem at various time points.

the initial conditions for the Sod problem are

ρ0 (x ) =
⎧⎪⎨⎪⎩

0.125 if x < 0

1 if x > 0
, ρu0 (x ) = 0, E0 =

1

γ − 1

⎧⎪⎨⎪⎩
1 if x < 0

0.1 if x > 0
, (5)

and for the blast wave problem are

ρ0 (x ) = 1, ρu0 (x ) = 0, E0 (x ) =
1

γ − 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1000 if x < −0.4

0.1 if |x | < 0.4

100 if x > 0.4

. (6)

Although the real-world applicability of these discretizations is limited, we expect performance
trends to be largely the same for 2D problems with more sophisticated discretizations. Efficient
execution of ALTS fundamentally relies on selecting an appropriate task granularity to amortize
runtime overheads. As the number of push fluxes sent per update changes (as we go to higher
dimensions, each neighbor receives one message) and local updates become more expensive due
to more sophisticated discretizations, the key parameters that determine task granularity (e.g.,
minimum number of elements required per submesh) may change, but the performance trends
will ultimately remain similar. Section 4.1 details the process of selecting the task granularity to
balance the impact of event overheads with other factors.

Boundary conditions are weakly enforced by setting the boundary values on the outside of the
numerical flux to the analytic value for all problems with the exception of the blast wave problem.
For the blast wave problem, we set reflective boundary conditions—that is, ρ∂Ω = ρ, ρu∂Ω = −ρu,
and E∂Ω = E.

Meshes are generated by warping uniformly distributed points on the interval [−1, 1]. The only
exception to this is the blastwave problem for which we scale the domain to [−0.5, 0.5]. We consider
a uniform mesh for which the warp function is the identity map, and a polynomial warp function,
p (x ) = C (x3/3 + εx ), where ε = 0.02 and C is chosen so that p (1) = 1 and p (−1) = −1. The
ratio of largest element to smallest element is approximately ε−1. These kinds of locally refined
meshes are common for fluid simulations where high accuracy is only needed near regions of
interest. We specify submeshes via an iterative procedure designed to balance the work performed
by each submesh during the simulation. For stencil-like kernels, the cost of performing an update
is O (nelem). The total work per submesh is approximated as the number of elements assigned
to a given submesh times the inverse binned timestep of the submesh, assuming |Λ| = 1. The
iterative submesh partitioning process updates the weight associated with a given element and
then repartitions the submeshes. This process is repeated until a fixed point is achieved or a preset
number of iterations has been computed.
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Beyond the mesh, submeshes, and initial conditions, we need to specify a few inputs. The
smallest timestep size Δtmin is set through the parameter ( |Λ|/Δx )max, which specifies the largest
expected value of |Λ|/Δx j during the simulation. Note that setting this parameter is not very
onerous, as the simulation will still perform well if this value is set significantly below the true
( |Λ|/Δx )max. This value determines the smallest timestep size, by quantizing the simulation in
2�tend ( |Λ|/Δx )max� steps. The extra factor of 2 is the inverse of the CCF L factor required for total
variation diminishing timestepping. The minimum timestep size is set to tend/nsteps . In addition,
we specify the epoch time as Δtepoch . To avoid issues with timestep binning, Δtepoch is rounded
down to the nearest power of 2 times Δtmin.

All numerical results here are run on NERSC’s Cori-Haswell partition. Each node consists
of two Intel Xeon Processors E5-2698 v3. Each Xeon processor has 16 cores. When running
Devastator, there are two parallel settings: (world=threads) runs with a single process and uses
shared memory parallelization where each thread participates in executing simulation events,
and (world=gasnet) is used for distributed simulation with multi-threaded processes. In this case,
one thread per process is dedicated to sending and receiving messages, whereas the remaining
worker threads execute simulation events. To avoid NUMA effects, we assign a separate process
to each processor on a node.

4.1 Event Overheads

What makes ALTS different from traditional PDES applications is that we can freely manage event
granularities by tuning the number of elements assigned to each submesh. We solve the lake at
rest problem on a fixed mesh with 20,000 elements for the uniform mesh and 75,000 elements
for the polynomial mesh. We selected the simulation time to be sufficiently long so that reliable
measurements could be made. We set tend = 64, ( |Λ|/Δx )max = 20,200 for the uniform mesh, and
tend = 1, ( |Λ|/Δx )max = 1,115,208 for the polynomial mesh. The simulation is run varying the
number of submeshes, ranging from one to eight submeshes per worker thread. As the number
of submeshes increases, the concurrency available to the discrete event simulator increases (i.e.,
overdecomposition), allowing useful work to occur while waiting for messages to arrive. Further-
more, each submesh must satisfy the CFL condition for fewer elements, leading to a more optimal
local CFL condition. This is an important performance tuning knob for irregular algorithms, as we
are able to weigh the benefits of increased irregularity versus reduced PDES overheads.

We ran the following experiments on 64 cores on Cori. Each run consists of four processes—one
per NUMA domain—with 15 worker threads per process. Enumerating the submeshes from left
to right, we assign submeshes in contiguous chunks—that is, rank k is assigned submeshes CFk
through CF (k + 1), where CF is the number of submeshes per rank. The critical path will lie on
the rank with the submeshes with the fewest elements. Since the work performed per submesh is
balanced for the lake at rest problem, the ALTS-related work completed on this rank is comparable
to that of other ranks. However, this rank must execute more updates and therefore incurs more
event overheads.

In Figure 4, we plot execution time versus the lowest number of elements assigned to a sub-
mesh. Each configuration was run five times, and the standard deviation of each set of runs was
within 0.99% of the respective means. For either configuration, we see that once the element size
per submesh drops below 70 elements, event overheads begin to dominate the execution time. Al-
though there is a slight benefit to oversubscribing compute resources for the uniform mesh, for
the polynomial mesh we observe a speedup of 1.26 going from an oversubscription factor of 1
(407 minimum elements per submesh) to 2 (196 minimum elements per submesh). For the uniform
mesh, dependencies are approximately satisfied at the same time, but for the polynomial mesh, a
neighboring submesh that is substepping must first make progress before the submesh with the
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Fig. 4. Execution time versus smallest number of elements assigned to a submesh.

larger timestep is able to progress causing the performance degradation for the largest minimum
submesh in Figure 4(b). Oversubscription allows us to update a different submesh while waiting
for the substepped submesh to satisfy the stalled submesh’s dependencies.

Last, we build a cost model that approximates the time elapsed updating a submesh of nelem.
Since the cost of the update kernel is O (nelem), we assume a linear model of the form cost (nelem) =
C2nelem + C1, where C2 corresponds to the cost to update one element and C1 to roughly be the
event overhead. Using the data for the polynomial mesh runs and omitting the data point for an
oversubscription factor of 1 due to the aforementioned discrete effects impeding performance, we
estimate the average task execution time by dividing the overall execution time by the largest num-
ber of updates committed on any rank, then use the average number of elements per submesh on
that rank as the nelem input. Due to the smooth nature of the mesh refinement, we assume that all
submeshes on the selected rank update the same number of times. Via linear regression, we find
C2 = 0.0438μs/element andC1 = 1.474μs with R2 = 0.999. We note that we do not expect this cost
model to generalize to larger problems. The selected problem sizes fit in the core’s local L1 cache.
As elements spill out of the local caches, we expect the cost to update an element,C2, to increase, re-
flecting the reduced memory bandwidth. Using this cost model as a lower bound, we approximate
that roughly 100 elements are needed to achieve a good resource utilization. At this task granular-
ity, 74.8% of the time is spent doing useful work. This corresponds to an event size of 5.9μs.

If we think of the lake at rest problem as an ordinary 1D stencil dependency graph, we can
compare Devastator’s event execution overheads with the large number of existing task-based
runtimes using the analysis described in the work of Slaughter et al. [62]. The figure of merit in this
analysis is the minimum effective task granularity (METG). Specifically, METG(50%) is the
smallest task size, in our case cells per submesh, for which half the time is spent doing useful work.
In our case, the METG(50%) is extrapolated to 3μs (i.e., 2C1), making it competitive with the fastest
reported implementations in the work of Slaughter et al. [62]. It is in some sense unsurprising that
Devastator would do well in this metric since, like many other PDES engines, it trades off some task
scheduling flexibility (e.g., local work stealing) for the ability to efficiently execute small events,
where execution time is largely driven by C1. This poses interesting performance trade-offs for
the PDES and task-graph runtime communities. If the irregularity of applications is determined to
be limited, optimizing for small event execution may lead to better strong scaling properties. The
other interesting question is how this efficiency changes as we scale out. As shown in Figure 1,
the commit rate drops as we scale out to larger node counts. Quantifying the impact of the GVT
reduction on METG(50%) is an important research question we will pursue in future work.

4.2 Description of Misspeculation

To explore when and where misspeculation is occurring, we consider a single-node
(world=threads) problem with a 300,000 element mesh with a 6x oversubscription factor. We use
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Table 3. Total Number of Updated Elements Committed and Rolled Back for Different ALTS Configurations

Configuration Element Updates

Problem Initial Conditions Warp tend ( |Λ |/Δx )max Committed Rollback Rollback/Commit

Burgers Shockwave Uniform 1 6.060e+05 5.705e+10 2.094e+05 3.670e-06

Burgers Shockwave Polynomial 1 1.070e+07 4.126e+11 9.729e+04 2.358e-07

Burgers Rarefaction Uniform 0.75 6.060e+05 5.992e+10 2.253e+07 3.760e-04

Burgers Rarefaction Polynomial 0.75 1.070e+07 5.745e+10 1.510e+07 2.629e-04

Euler Sod Uniform 0.5 6.060e+05 1.008e+11 1.174e+07 1.165e-04

Euler Sod Polynomial 0.5 1.070e+07 4.077e+11 9.763e+06 2.395e-05

Euler Blast wave Uniform 0.038 2.240e+07 1.767e+11 2.601e+09 1.472e-02

Euler Blast wave Polynomial 0.038 4.000e+08 5.388e+11 1.137e+09 2.110e-03

SWE Dam break Uniform 0.75 6.060e+05 7.864e+10 1.276e+07 1.622e-04

SWE Dam break Polynomial 0.75 1.070e+07 4.701e+11 2.536e+07 5.394e-05

SWE Carrier-Greenspan Uniform 2π 1.599e+05 3.086e+11 1.795e+07 5.816e-05

SWE Carrier-Greenspan Polynomial 2π 1.584e+06 1.137e+12 7.277e+07 6.399e-05

SWE Constant Uniform 2 6.060e+05 1.818e+11 0.000e+00 0.000e+00

SWE Constant Polynomial 0.2 1.070e+07 8.696e+10 0.000e+00 0.000e+00

a trivial actor partitioning, leading to imbalanced work-to-rank assignments. However, as a study
of speculation, this serves as a stress test since underworked ranks have the possibility to do more
work that could be rolled back while waiting on messages from overworked neighbors. We run
multiple configurations of the Burgers’, Euler, and shallow water equations with several initial
conditions and mesh types. We report the number of element updates committed and rolled back
for each configuration as well as the ratio of the two statistics in Table 3. At a high level, we re-
mark that the waiting heuristics outlined in Section 2.3 work remarkably well. For the SWE-lake
at rest problem, no rollback of updates occurred during the simulation. For this configuration, the
only source of variation in timestep sizes is due to variation in element sizes, not the local wave
speed, which equals 1 throughout the entire domain. Insofar, the information sent via the upper
bound messages anticipates when messages will arrive and allows the submesh to avoid perform-
ing updates that would be rolled back. Otherwise, the highest observed rate of rollback was for the
Euler-blast wave problem with 1.5% and 0.2% of element updates rolled back for the uniform and
polynomial meshes, respectively. Beyond the blast wave problem, all other configurations had a
rollback rate of less than 0.05%.

To help understand where and why rollback is occurring, Figure 5 shows the number of rollbacks
per second occurring on each submesh (actor) versus wall clock time compared to the timestep
sizes taken by the submeshes versus simulated time for three of the problem configurations. Since
we are considering problems where the critical path goes through a single actor, the simulated and
wallclock times are roughly proportional. We claim that the cause for misspeculation arises from
the unanticipated changes in timestep size and the resulting rollback cascade. When a submesh is
stepping with a larger timestep than its neighbor, it will try to speculate ahead of its neighbors.
While the neighbor’s timestep remains stable, the submesh can use its knowledge of the neighbor’s
timestep along with the upper bound mechanism (see Section 2.3.4) to avoid misspeculation by
waiting on an appropriate number of messages. However, due to the evolution of the equations,
that neighbor may ultimately require a smaller or larger timestep, leading to unanticipated push
flux events and corresponding rollbacks.

Consider the case of a timestep restriction where two neighbors are updating alongside one
another, and one suddenly requires a smaller timestep. This is the case for the SWE dam break
problem in Figure 5(a) and (b). In this problem, there are two waves emanating from the initial
discontinuity for which the emergent interior region requires a more strict timestep than either
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Fig. 5. Visual comparison for three different problems on a uniform mesh. The left column shows the rate

of element updates being rolled back at a given actor and elapsed time during the simulation. The right

column shows the timestep size taken at a given actor and simulation time. For these configurations, actor

ID is linearly related to x-position in the domain.

side of the initial conditions. As seen in Figure 5(a), rollback occurs in elements in front of the
shockwave. With the more strict timestep moving through the domain, coarser timesteps need to
be rolled back and re-executed with finer timesteps. Since all cells in a submesh are updated as
a unit, these rollbacks only occur when the timestep change lines up precisely with a submesh
boundary.
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At the coarse-fine timestep boundary, when the finely timestepped region updates, it relaxes
its neighbor’s upper bound, eventually permitting a coarse timestep update in the neighboring
submesh. The process of each submesh updating and relaxing its neighbor’s upper bound then
propagates away from the boundary, creating a work cascade, whereby a set of tasks along the
coarsely stepped light cone become executable. The speed of the work cascade propagation vw is
determined by the wall clock time required to execute update events and send push-flux events
to neighboring submeshes. So long as the submeshes’ timesteps do not change, the work done in
each work cascade is useful work that does not need to be rolled back. However, when a submesh’s
timestep must be refined due to the simulated shockwave’s propagation, it induces a rollback cas-

cade along another light cone with speed vrb . Since executing an update is more computationally
expensive than processing a rollback, vw < vrb , allowing the rollback cascade to catch up with
and terminate the work cascade. We can observe this effect in Figure 5(a), where rollbacks emanate
from the timestep differences into the less frequently stepped regions.

But the interesting question is this: why does the cascade emanate further from the shock front
in the more coarsely stepped region of the mesh (i.e., the actors with higher IDs)? The work as-
sociated with either work cascade is the same, although the cascade with the larger timestep will
advance further in simulation time. Letting δrb be the delay between the misspeculated work cas-
cade and the subsequent rollback cascade, the rollback cascade would terminate at a distance from
the shock of (vrbvwδrb )/(vrb − vw ). We hypothesize that this delay varies based on the ratio of
timestepping groups. When there is a larger difference in timesteps, there is more work to be per-
formed at the shockwave interface that must now advance GVT at a slower rate. This leads to a
longer delay before the rollback is issued, causing more rollback for the high ID actors than the
low ID actors in Figure 5(a).

This speculation distance is particularly important for the Euler-blast wave problem, shown in
Figure 5(e) and (f). This problem consists of two shockwaves meeting in the middle of the domain
and interacting. The high actor IDs are simulating the lower energy blast, whereas the low actor
IDs are simulating the higher energy blast. The two blasts are separated by a low pressure region,
which is able to take a large timestep. In this case, the timestepping ratio is so large that the
work cascade is able to make it across the entire vacuum state and cause erroneous events to be
scheduled for the lower energy blast. Although not visible in Figure 5(e), the vacuum region does
experience a rollback (O (10−2)−O (102) rollbacks per second). Since the work associated with this
lower energy blast is non-trivial, most rollback is observable in the lower energy blast. We also see
substantially more rollback when compared to the other two configurations in Figure 5(a) and (c).
We determine that there is relatively limited benefit to speculating ahead of the high energy blast
(i.e., independently advancing the lower energy blast). Rollback cascades from the misspeculation
of the more computationally intensive higher energy blast undo speculative work of the lower
energy blast. We also observe that the misspeculation substantially reduces once the two shocks
meet and the discrepancy in timestep reduces. From the mathematical perspective, it is interesting
to note that these rollback cascades are unphysical. The work done for the lower energy blast
should be independent of what is happening far away. We believe that for most of the rollback
cascade, the re-executed push flux has an identical state to the unexecuted push flux. One area of
future work is implementing lazy cancellation [34] in Devastator to disrupt these rollback cascades.

These experiments showcase the latent irregularity in the application. We see that timestep
changes are relatively infrequent and localized, although they may move throughout the domain.
The benefits of speculation are less about doing useful work while being uncertain if it will need
to be rolled back, but rather avoiding paying the expensive synchronization overheads required to
prove that no causality violations occur.
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Fig. 6. The cumulative element updates and rollbacks for the Euler-blast wave problem on the uniform mesh.

The occurrence of speculation is fairly limited in all of these configurations. When the local pre-
diction of incoming messages is accurate, we are able to prevent bad speculation by waiting rather
than executing updates that will inevitably be rolled back. The execution of the local timestepping
algorithm is equivalent to that of the task-graph-based implementations of local timestepping for
linear problems for which |Λ| is independent of the submesh state. Furthermore, in this section,
we have artificially aggravated misspeculation by running an imbalanced configuration. However,
most often the misspeculation happens off the critical path. In Figure 6, we show the cumulative
element updates and rollbacks for each actor for the uniform Euler-blast wave problem. Rolled
back element updates are concentrated on actors that are idly waiting for updates. If we identify
the rank with the most work (consisting of actors 18 through 23), we note that only 3.1 · 10−3% of
element updates are rolled back.

4.3 Strong Scaling Comparison to STS-MPI

We turn to distributed performance with a strong scaling study of the Carrier-Greenspan problem
on a polynomial mesh with 1.2 million elements. We compare the performance of the ALTS Dev-
astator (ALTS-deva) to a synchronously stepped MPI implementation (STS-MPI). At 1.2 million
elements, the smallest submesh size is 99 elements, limiting Devastator overheads per Section 4.1.
For the MPI version, each submesh steps at each timestep (i.e., synchronously). To ensure a fair
comparison over the existing baseline parallelization, STS-MPI implementation utilizes point-to-
point non-blocking messages and overlaps communication with available local work, consistent
with previous work [11, 14]. Furthermore, both implementations use the same actor data structures
and application layer helper functions.

Since ALTS improves performance via work reduction, we use a throughput measure that ap-
proximates the throughput as work done for a synchronous problem divided by the execution
time—that is,

TP =
tendnelem

ΔtminT n
X

,

where tend = 2π is the simulation time, nelem = 1.2 · 106 is the number of elements in the mesh,
Δtmin = 7.8125 · 10−8 (( |Λ|/Δx )max = 6.4 · 106) is the smallest timestep taken, and T n

X
is the exe-

cution time measured in seconds with n cores using parallelization X—either Devastator or MPI.
Figure 7 compares the output of the MPI-synchronous timestepping (STS-MPI) implementation
to the Devastator-ALTS (ALTS-deva) implementation. For the MPI implementation, the 32 core
run has been omitted since it was unable to finish within queue time constraints. The core counts
are chosen to highlight the scaling behavior of the ALTS-deva implementation. At 1,024 cores,
the oversubscription factor is three submeshes per rank. Scaling out further without modifying
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Fig. 7. Comparison of throughput (TP ) versus the number of cores for the ALTS-deva implementation �

versus the STS-MPI implementation �.

submesh sizes would lead to discrete load balancing issues, degrading performance. Since ALTS
achieves its speedup through work reduction, we observe an improvement in per core throughput

when run on 128 to 1,024 cores rather than an improvement in the maximum number of cores to
which we are able to scale out. At 128 cores, the ALTS-deva implementation has a speedup of 3.75x
over the STS-MPI implementation. This speedup degrades to 2.57x at 768 cores. Nonetheless, at
768 cores, the ALTS-deva implementation achieves a time to solution comparable to the 2,048-core
STS-MPI configuration.

This strong scaling study is designed to show tangible benefits of ALTS to accelerate effective
per core throughput. However, the more regular workload of the STS-MPI application remains
more scalable. We have shown that the 2,048-core MPI run matches the best throughput of the
ALTS-deva implementation. At 6,144 cores, the STS-MPI implementation has a parallel efficiency
of 80% and a speedup over the best ALTS-deva time to solution of 2.42. This result is important
to emphasize. If fastest time to solution remains the primary objective, synchronous timestepping
remains the best option. However, if the problem exhibits large spatial variance in the wave speed
|Λ|, can be solved within provided time constraints (e.g., supercomputer queue time limits), and
can efficiently utilize compute resources—by breaking the mesh into sufficiently large submeshes
while retaining sufficiently many submeshes per core—we expect ALTS to substantially reduce the
requisite computational effort to simulate the given configuration.

The speedups obtained are ultimately determined by the distribution of element sizes {Δx j }
and problem dynamics. Taking the ratio of element updates for the synchronous timestepping
method divided by the number of element updates for ALTS, we find a theoretical speedup based
on work estimates of Swork = 5.38. The remainder of this section will focus on explaining the
discrepancy between the observed speedups between the STS-MPI implementation and the ALTS-
deva implementation. There are five contributors worth examining when comparing the two
implementations:

(1) Time spent load balancing: Due to Amdahl’s law as well as the growing cost of the load bal-
ancing problem as the number of ranks increases, increasing amounts of time may be spent
inside of the load balancing phase rather than advancing the state of the system. Between
the 32-core and 512-core configuration, time spent load balancing went from 15 seconds to
17.9 seconds, a modest increase but less than 1% of the total execution time.

(2) ALTS overhead: The cost of computing the CFL condition for the shallow water equations
requires evaluation of an additional square root, which causes divider-related stalls in the
CPU. These computations are omitted for the STS-MPI implementation, which steps with a
fixed step size. Since |Λ| is constant for the lake at rest problem, we run the problem with
and without the CFL computation on one node. To avoid running into issues with Devastator
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overhead, we partition the 1.2 million element mesh into 180 actors. Comparing the execu-
tion times, we determine that 25% of the execution time is spent on the CFL computation.
We remark that core utilization could be improved by leveraging approximate inverse square
root algorithms or vectorizing the code, which we leave as topics for future investigation.
Last, more complicated discretizations, such as high-order spatial discretizations, addition of
slope limiters, and more complex stencils, would all increase the cost of the baseline’s local
compute and lower the percentage of time spent on CFL computation.

(3) Rollback: When bad speculation is detected, the updates performed will have to be undone,
and the time spent executing those updates is essentially wasted. Similar to Section 4.2, only
very few updates are rolled back. At 32 cores, 0.005% of element updates were rolled back, and
at 512 cores, 0.009% of element updates were rolled back, suggesting that our performance
optimization heuristics do a good job of identifying and preventing mis-speculation.

(4) Event scheduling overhead: The minimum mesh size has been chosen to limit the impact of
Devastator runtime event scheduling overheads. These overheads are small but non-trivial
and may degrade performance if many small submeshes are on the critical path.

(5) Imbalance: Given the fact that the load balancer must assign submeshes (rather than ele-
ments) to ranks as well as the dynamic changes in the work associated with each submesh,
the load balance will not be perfect after each load balancing phase. Using the imbalance of
the problem going into and out of the load balancing phase, we can approximate the time
averaged imbalance during the simulation—that is, I = (wa∗ −wa )/wa , wherewa∗ is the max-
imum work per rank and wa is the average work. At 32 cores, the problem is well balanced
with I = 0.02. The load imbalance for the 512-core run worsens to 0.43. This is partially to be
expected because at 512 cores, there are only six submeshes per rank. With only half of the
mesh being wet on average, the number of submeshes available for load balancing is effec-
tively halved. However, this imbalance is more pessimistic than the observed performance
(i.e., a parallel efficiency of 83.7%). This discrepancy arises due to a mismatch between the
actual work associated with a submesh and our cost model outlined in Section 2.3.5. First,
Devastator overheads such as performance costs that are fixed per submesh are ignored in
the load balancing problem. Second, as we strong scale, cache effects may be causing the
code to run faster than expected. Nonetheless, the imbalance metric indicates that the load
balancer begins to struggle as we strong scale to fewer submeshes per thread. Although there
exist discrepancies between the modeled imbalance and the actual imbalance, the fact that
the 32-core configuration has low imbalance and performs well suggests that our approach
is able to effectively balance compute loads across ranks.

(6) Worker thread mismatch: Another loss of performance is caused by the fact that Devasta-
tor dedicates one thread per socket for communication management. Thus, per node on
Cori, ALTS-deva only uses 30 worker threads to execute events, whereas STS-MPI uses all
32 cores.

Based on these analyses, we determine that the primary drivers of performance loss are computing
the CFL condition and worsening load balance. Nonetheless, at low core counts, the problem can
be sufficiently balanced, and the ALTS-deva implementation achieves throughput improvements
of up to 4× over the STS-MPI implementation, which is 74.5% of the peak theoretical speedup.
4.4 Weak Scaling Performance

To show that ALTS can be scaled to larger distributed problems, we perform a weak scaling study
using the Carrier-Greenspan problem on the uniform mesh. Since the performance of the ALTS
method strongly depends on the distribution of the wave speed, |Λ|, it is important to simulate
the full 2π time to compare performance across different problem sizes. Due to the fact that the
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Fig. 8. Weak scaling performance for the Carrier-Greenspan problem on the uniform mesh.

amount of computational work scales quadratically with the number of elements, and the fact
that the polynomial mesh is computationally too expensive, using the uniform mesh allows us to
consider a larger range of problem sizes.

We consider four submeshes with 500,000, 1 million, 2 million, and 4 million elements. The prob-
lem is partitioned into 2,880 actors per 500,000 elements. For reference, storm surge simulation
meshes have O (106) elements [27]. This leads to a minimum submesh size of 174 elements, en-
suring that simulator overheads are reasonably amortized. The rebalance frequency is taken to be
once every 8,192 Δtmin. As the number of elements doubles, Δtmin is halved, and the total number
of load balancing phases doubles. With the work per core per epoch remaining constant across
weak scaling configurations, we observed that this rebalance frequency provided the optimal
performance.

Each configuration is run over a few core counts to demonstrate strong scaling characteristics.
The parallel efficiency versus core count is shown in Figure 8. The simulation weak scales well
with the 4 million element mesh obtaining 90% of ideal per core throughput at 1,024 cores and 68%
of ideal per core throughput at 3,072 cores. Looking at the imbalance across the runs, we see that
the average imbalance for the 32-core 500,000 element mesh was 0.03. For the 4 million element
mesh, the imbalance increases to 0.14 for the 1,024-core configuration to 0.33 for the 3,072-core
configuration, leading to a slight degradation in scalability. The choice of a uniform mesh will lead
to higher fractions of elements updating each timestep than a polynomial mesh. Thus, the average
number of elements per core may not be a good indicator of work required to achieve good scaling
behavior, and nonetheless we conclude that if the problem is load balanced and sufficiently large,
the ALTS method can be scaled out.

4.5 Impact of Performance Optimizations

To help quantify the impact of the performance optimization strategies described in Section 2.3,
we consider a few problems and then enable the strategies to observe their impact. This section is
split into two sections highlighting the benefits of waiting on misspeculation and load balancing.

4.5.1 Waiting Heuristics. To determine the impact of the performance optimizations outlined
in Sections 2.3.1 through 2.3.4, we incrementally enable them and report the impact on speedups
relative to a local timestepping baseline with no waiting heuristics enabled. We consider a 512-core
lake at rest problem (nelem = 6 · 105, ( |Λ|/Δx )max = 1,370,368,000, tend = 0.1, nactors = 1,440) and
768-core lake at rest problem (nelem = 1.2 · 106, ( |Λ|/Δx )max = 2,740,736,000, tend = 0.05, nactors =

1,440). The ( |Λ|/Δx )max parameters have been chosen to be intentionally large—that is,
( |Λ|/Δx )max ≈ 256/Δxmin. To avoid exaggerating the impact of the waiting heuristics, these prob-
lems have been sized to be sufficiently large to sustain a reasonable parallel efficiency. The lake
at rest configurations achieve 90% of the throughput rate of lake at rest problems with twice the
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Fig. 9. Speedup obtained by incrementally enabling optimizations: binning timesteps (Section 2.3.1), waiting

on updates (Section 2.3.2), forcing updates (Section 2.3.3), and upper bounds on updates (Section 2.3.4).

number of elements. We also consider two 512-core Carrier-Greenspan configurations: one that
exactly mimics the strong scaling configuration and the second the same as the first except load
balancing is disabled. For the Carrier-Greenspan configurations, ( |Λ|/Δx )max is chosen to be close
to the optimal value. The cumulative speedups for each configuration relative to a baseline without
any optimizations enabled are presented in Figure 9. For these bar graphs, cumulative implies that
the preceding optimizations remain enabled (e.g., the speedup for Section 2.3.3 has also enabled
Sections 2.3.1 and 2.3.2).

For the lake at rest problems, we observe the largest benefits occur when binning timesteps to
powers of 2 (Section 2.3.1) and forcing neighbors to update (Section 2.3.3). The large ( |Λ|/Δx )max

values cause a substantial number of local ordering updates to occur as described in Section 2.3.1
and impede the submesh partitioner, as the expected number of element updates is not well ap-
proximated by the local CFL condition. Introducing timestep binning (Section 2.3.1) elides local
ordering-related updates with CFL-condition-related updates and causes the number of element
updates committed per rank to become roughly equal. For the 512-core lake at rest problem, this
corresponds to the most overworked rank committing 1.67x the average number of element up-
dates before timestep binning is introduced and 1.01x the average number of element updates after
timestep binning is introduced. Forcing neighbors to update (Section 2.3.2) and waiting on those
updates (Section 2.3.2) eliminates most misspeculation, causing a second increase in improvement.
For the Carrier-Greenspan problem, the close-to-optimal ( |Λ|/Δx )max reduces the extra updates
associated with enforcing local ordering. In that case without Section 2.3.1, timesteps are binned
into multiples of Δtmin (rather than 28Δtmin). In conjunction with a more optimal timestep taken
at the critical path, we observe that the time to solution slightly increases after binning timesteps
into powers of 2. Similar to the lake at rest problem, a large performance improvement is only
observed after the first three optimizations have been enabled.

Another takeaway from these results is that misspeculation impacts time to solution only when
it delays the critical path. Since rollback is triggered by arrival of delayed push fluxes from neigh-
boring submeshes, when the simulation is very imbalanced, the rank which is on the critical path
has the slowest rate of advancing the simulation time, and as this rank makes progress, messages
that would incur rollback have most likely already arrived. The unbalanced Carrier-Greenspan
configuration with no performance optimizations enabled executed 1.3x more element updates
than the configuration with all optimizations enabled yet ran 10% faster. Only when considering
load balanced problems, either through construction (lake at rest) or via load balancing (Carrier-
Greenspan), do we observe performance improvements by reducing misspeculation. In these cases,
the rollback-causing messages have not necessarily arrived, and anticipating and waiting on these
messages, when feasible, leads to improved time to solution. For the 768-core lake at rest problem,
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Fig. 10. Impact of load balancing frequency on time to solution.

the percentage of the cell updates rolled back on the critical path goes down from 46% down for
the Section 2.3.1 configuration to zero for the fully optimized case.

4.5.2 Load Balancing. For the 512-core strong scaling problem, load balancing plays a signifi-
cant role, delivering a speedup of 1.8x over a run without dynamic load balancing. In Figure 10, we
compare the impact of rebalancing frequency on time to solution. We note that the problem has a
relatively wide minimum. With only 614 epochs, the time to solution is only 13% larger than the
optimal time to solution, which occurs with 9,818 epochs. To understand this behavior, note that
the worst case imbalance corresponds to when all submeshes on a rank are wet. In that sense, once
the rebalance frequency begins to significantly exceed the rate of flooding, the problem becomes
effectively balanced.

Thus, it is important to emphasize that while the algorithm is and must be stable under very
rapidly changing values of |Λ|, these scenarios are rarely seen in practice. Rather, we see gradual
shifts in timestepping group membership, which if not accounted for will lead to instabilities but
are nevertheless gradual enough that these simulations can be load balanced effectively. Although
we have only considered a 1D problem, the simulated dynamics—local refinement in the middle
of the domain and flooding moving into the refined region—represent a worst case scenario for
hurricane storm surge modeling. Rarely would all inundation be concentrated in a single submesh;
rather, inundation would be spread out over a large front, lowering the overall rate of imbalance
generation.

5 CONCLUSION

In this article, we analyze the parallel performance of ALTS using a Timewarp-based optimistic
PDES. We introduce several performance optimizations, including load balancing and waiting
heuristics, for the ALTS implementation that provide a 1.6× to 2.8× speedup over a baseline PDES
implementation. With these optimizations, ALTS achieves up to 4× speedup (74.5% of the theoret-
ical speedup) in time to solution over the state-of-the-art MPI parallelization and weak scales over
core counts of interest to hurricane storm surge forecasting. Furthermore, analysis of misspecula-
tion shows that for fluid simulations with gradually locally refined meshes and sufficiently large
event sizes, rollback has a minor impact on performance.

We conclude with some remarks about the generalizability of the method to higher dimensions
and the presented results. The timestepping algorithm as presented is designed to hold for higher
dimensions. The boundary types would become conserved quantities evaluated at shared submesh
faces or edges. The CFL condition has been presented to support multiple neighbors as the wave
speeds continue to be evaluated over the adjacent neighbors. Similarly, the local ordering con-
straint is a pairwise relation between submeshes. Thus, the local ordering constraint naturally
extends to support more than two neighboring submeshes.
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Moving to higher dimensions introduces considerable complexity in the application layer. Spa-
tial derivatives become gradients, and geometric information is required to properly compute in-
tegrals. However, all of these details are well established (e.g., [22]) and restricted to the applica-
tion layer. The ALTS software stack has been specifically designed to facilitate reuse of existing
software.

From a task-graph topology standpoint, the timestepping layer continues to update a submesh
and then share coupled values with neighboring submeshes. Thus, the extension to higher dimen-
sions has limited impact on the other layers of the ALTS stack. This underpins why we expect
performance results here to generalize as well. In previous work characterizing the performance
of task-based implementations of 2D discontinuous shallow water solvers [11], METGs were found
to be consistent with the METGs for a 1D finite difference scheme [37]. The important discovery
in this work is establishing that changing of submeshes’ timesteps is limited and gradual. With
this limited irregularity and heuristics to identify the majority of misspeculation, the presented
parallelization is able to load balance and efficiently utilize hardware resources.
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