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a benchmark dataset for Hydrogen 
Combustion
Xingyi Guan1,2, Akshaya Das1, Christopher J. Stein1,2,3, Farnaz Heidar-Zadeh1,4, Luke Bertels1, 
Meili Liu1,5, Mojtaba Haghighatlari  1, Jie Li1, Oufan Zhang1, Hongxia Hao1,2, Itai Leven1,2, 
Martin Head-Gordon  1,2 & Teresa Head-Gordon  1,2,6 ✉

The generation of reference data for deep learning models is challenging for reactive systems, and 
more so for combustion reactions due to the extreme conditions that create radical species and 
alternative spin states during the combustion process. Here, we extend intrinsic reaction coordinate 
(IRC) calculations with ab initio MD simulations and normal mode displacement calculations to more 
extensively cover the potential energy surface for 19 reaction channels for hydrogen combustion. A 
total of ∼290,000 potential energies and ∼1,270,000 nuclear force vectors are evaluated with a high 
quality range-separated hybrid density functional, ωB97X-V, to construct the reference data set, 
including transition state ensembles, for the deep learning models to study hydrogen combustion 
reaction.

Background & Summary
The expectation behind training deep learning models to predict molecular energies and atomic forces of mol-
ecules is the requirement of large data sets. However, very recently it has become recognized that deep learning 
methods that are designed with rotationally equivariant operators offer a significant reduction in data needed for 
training relative to invariant ML models1–4, and often outcompete even kernal methods that have traditionally 
been considered advantageous due to their low data requirements5. However, the promise in regards equivariant 
deep learning models must be further validated by construction of more challenging data sets than encountered 
up until now. For example, the recent SN2 data set provides reference energy and forces for more than 450,000 
structures calculated using Density Functional Theory (DFT), but ultimately is data on highly similar individual 
reactions of methyl halides with one of four substituted halogens, F, Cl, Br, and I6.

Capturing the energy release in hydrogen combustion is a proposed energy solution for zero CO2 emissions, 
and many of the elementary reactions of H2 combustion are also present in other types of fuel generation7. Under 
realistic reaction conditions of very high temperature and high pressure make it extremely difficult to study H2 com-
bustion reactions experimentally. Because hydrogen combustion is difficult to study experimentally under these 
extremes8, theoretical models must play an active role in filling the breach, but fundamentally relies on an accurate 
potential energy model of not only the elementary reactions9 but the excursions away from the reaction coordinate.

Hydrogen combustion, despite being the simplest combustion system, is nonetheless still quite chemically 
complicated because it can encounter one or more 19 reaction channels during the combustion event depend-
ing on the physical conditions of high temperatures and pressures8. This compounds the need for high quality 
data that is expensive to generate given the need for extensive sampling and the presence of metastable points 
such as transition states. For non-reacting chemical systems, conventional MD simulations are well-suited for 
generating a large number of configurations, which are then used as input into single point quantum-chemical 
energy and force calculations10–12. However, for reactive systems, conventional force-field based MD simula-
tions are not useful as they don’t allow breaking and forming of chemical bonds. Recent work has attempted to 
address this deficiency through graph-based methods that generate reference data for reactive systems13,14, but 
they are also prone to produce large numbers of specious chemical states and unrealistic intermediates such 
as highly unstable radicals. Therefore fully ab initio sampling methods are a necessity for creation of the many 
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molecular fragments involved in combustion chemistry, including the presence of stable and unstable interme-
diates, high energy transition states, and a variety of product molecules that can be formed during the reaction 
that is dependent on the reactive channel8,9,15–18.

Our goal here is to characterize the potential energy surface (PES) of hydrogen combustion through the 
reaction channels proposed by Li et al.19 using a systematic approach in ab initio data generation that samples 
off the intrinsic reaction coordinate (IRC). This study provides a data set of ∼290,000 potential energies and 
∼1,270,000 nuclear force vectors for structures that are sampled near and far from the IRC for 19 hydrogen 
combustion sub-reactions, some of which are barrierless transitions, others are dominated by large activation 
barriers, and even reactions involving changes in spin state19. This data set offers a new ML benchmark set that 
allows systematic investigation of data reduction when using emerging equivariant deep learning model, as well 
as being of interest in its own right as a source of data for machine learning of energy and forces that drive an 
MD engine for combustion under extreme thermodynamic conditions.

Methods
We have used fully ab initio methods for sampling 19 reactive channels for hydrogen combustion as summarized 
in Table 1. For each reaction we used the ωB97X-V DFT functional20 with the cc-pVTZ basis set. All calculations 
were performed as unrestricted open shell, using an ultrafine integration grid of 99 radial points and 590 angular 
points, with an SCF convergence of −10 8 using the GDM method21. All potential energies for each configuration 
of the 19 reactions are reported as ΔE

∑Δ = −E E E ,
(1)

total
i

atom

using the atomic energies EH = −0.5004966690 a.u. and Eo = −75.0637742413 a.u., and with ΔE converted to 
units of kcal/mole. All calculations were performed using the Q-Chem program22,23.

We have organized the PES data into four categories that classify the reaction mechanism involved in the 
elementary steps for each reactive channel: association/dissociation reactions (channels 5-9 and 15), substitution 
reactions (channel 16), oxygen transfer (channels 1, 11, and 12), and hydrogen transfer (channels 2-4, 10, 13, 14, 
17–19). We have kept the same numbering scheme as Li and co-workers19 in these categories so that readers can 
refer back to any particular IRC of that work if desired.

No. Reaction Atoms IRC MD simulations Normal mode Total energies Total forces

Association/Dissociation

5. →H 2H2 2 53 53 318

6. →O 2O2 2 71 71 426

7. → +OH O H 2 71 71 426

8. + →H OH H O2 3 137 10000 5754 15891 143019

9. + →H O HO2 2 3 60 10000 2520 12580 113220

15. →H O 2OH2 2 4 105 10000 8820 18925 227100

Substitution

16. + → +H O H H O OH2 2 2 5 81 10000 10206 20287 304305

O-transfer

1. + → +H O OH O2 3 58 10000 3248 13306 119754

11. HO H 2OH2 + → 4 94 10000 7896 17990 215880

12. HO O OH O2 2+ → + 4 49 10000 4116 14165 169980

H-transfer

2. + → +O H OH H2 3 29 10000 1624 11653 104877

3. H OH H O H2 2+ → + 4 336 10000 30492 40828 489936

4. H O O 2OH2 + → 4 51 10000 4284 14335 172020

10. + → +HO H H O2 2 2 4 58 10000 4872 14930 179160

13. HO OH H O O2 2 2+ → + 5 51 10000 6426 16477 247155

14. → +2HO H O O2 2 2 2 6 71 10000 11928 21999 395982

17. + → +H O H HO H2 2 2 2 5 58 10000 7308 17366 260490

18. + → +H O O HO OH2 2 2 5 55 10000 6930 16985 254775

19. H O OH H O HO2 2 2 2+ → + 6 74 10000 12432 22506 405108

Total 290418 1267977

Table 1. Data Summary for the Potential Energy Surface of Hydrogen Combustion. Tabulated are the number 
of structures generated for each hydrogen combustion reaction channel using different methods: IRC, normal 
mode displacements, and MD simulations at various temperatures. All 19 reaction channels are classified 
into four mechanistic groups: association/dissociation, substitution, O-transfer and H-transfer. For each 
configuration, energies and nuclear force vectors were computed and their numbers are tabulated.
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The PES for each reaction channel are visualized by means of two collective variables of coordination num-
bers (CN) represented by

CN
r r

2 0
1 exp( ( ))

,
(2)i i i0,

∑ σ
= .

+ ∗ −

where r0 is the equilibrium distance and σ = .3 0 controls the sharpness of the function. Reaction channels 5–7 
involve only two atoms, and thus only a 1-D distance scan is performed.

Finally, we developed a strategy for extensive sampling of the PES for the 19 reaction channels for hydrogen 
combustion as follows:

 1. Transition States and IRCs. Approximate TS structures were found using the freezing string method24,25, 
and refined by the partitioned-rational function optimization eigenvector following method (P-RFO)26. 
An IRC scan is then generated, and vibrational frequency analysis was performed to confirm that reactants 
and products have no imaginary frequencies and the TS has only one imaginary frequency. As the IRC 
configurations connect the minimum energy pathway, and therefore span a meaningful fraction of the 
configurational space of a given reaction, they serve as useful starting geometries for systematic normal 
mode displacements and stochastic generation of structures using AIMD at finite temperatures to explore 
the PES for each reaction channel in more detail.

 2. AIMD Simulations. We employed AIMD simulations to sample configurations around the IRC structures 
using the TS as the initial configuration for each of the reaction channels. The AIMD simulations were 
performed at four different high temperatures by initializing the Maxwell-Boltzmann distribution of veloc-
ities at temperatures of 500 K, 1000 K, 2000 K and 3000 K. Furthermore at each temperature three different 
simulation timescales are performed using a 1.21 fs (1.au.) time step: 10 independent (i.e. reinitialized 
velocities) long simulations of 121 fs, 20 independent short trajectories of 60.5 fs, and finally 25 very short 
simulations of 24.2 fs. In summary, the AIMD calculations yielded a total of 10000 configurations along 

Fig. 1 Potential energy surface for the hydrogen transfer reaction 2 ( + → +O H OH H2 ). (a) showing IRC 
and AIMD sample data only and (b) including normal mode data. CN1 represents the breaking of the H-H 
bond and CN2 represents the formation of the O-H bond. All energies are reported with respect to the 
atomization energies as given in Eq. (1) in units of kcal/mol. The red dots on the energy surface are 
configurations with energies larger than 10 kcal/mol of the energy of the TS structure. The points denoted with 
R, TS and P are corresponds to the reactant, transition state and product, respectively.

https://doi.org/10.1038/s41597-022-01330-5
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with their potential energies and nuclear forces for each reaction channel (see Table 1).
 3. Normal Mode Displacements. Systematic normal mode displacements along the IRC is performed. Starting 

from each IRC structure, the frequencies were calculated and all atoms were displaced along each normal 
mode (NM) with a ± .0 01, ± .0 025, 0 05± . , ± .0 075, ± .0 1, ± .0 125, and ±0.15. increment. These sampled 
structures that compress or expand the IRC structures help to diversify the AIMD geometries for each 
reaction, yielding ∼ 127,000 configurations as summarized in Table 1. The IOData Python library was used 
for parsing the Q-Chem output files in generating these geometries27.

Technical Validation
Figure 1 provides a representative ab initio sampling of one of the hydrogen transfer reactions, + → +H OH HO 2 , 
in which two collective coordinates reasonably capture the potential energy surface of this reaction channel. Upon 
analyzing the AIMD generated geometries and their energies, it is noticed that both the reactant and product end-
point regions are well sampled (Fig. 1(a)). However, near the transition state or in regions of high slope on the poten-
tial energy surface, data points from the AIMD simulations are more sparse. The addition of normal mode 
displacement points greatly improves sampling the configuration space of the PES along the IRC path (Fig. 1(b)).

Figure 2 shows that the AIMD and NM calculations are complementary for sampling different areas away 
from the IRC, particularly evident for reaction channel 1 involving oxygen transfer (Fig. 2(a)), reaction 8 that 
probes the association reaction mechanism (Fig. 2(b)), and for reaction channel 16 pertaining to a substitution 
mechanism (Fig. 2(c)). In all cases the use of two collective coordinates is sufficient to capture the IRC and its 
AIMD and NM extensions, borne out in the supplementary information Figures S1–S4 that provides the poten-
tial energy surfaces generated for the remaining reaction channels for these classes of hydrogen combustion 
reactions.

Figure 3 shows the nature of the alternative potential energy surfaces that are represented by the changes 
in spin state from doublet to quartet for the oxygen transfer reaction channel 12. Figure 3(a) shows that the 
energy difference between the two spin states is very small near the reactant, less than 0.2 kcal/mol, but favors 
the quartet state substantially around the product. Figure 3(b) plots the IRC using either the doublet or quartet 

Fig. 2 Representative potential energy surfaces for oxygen transfer, association, and substitution reactions along 
two reaction coordinates CN1 and CN2. (a) oxygen transfer reaction 1 ( + → +H O OH O2 ), (b) association 
reaction 8 ( + →H OH H O2 ), and (c) substitution reaction 16 (H O H H O OH2 2 2+ → + ). Each CN represents 
the formation or breaking of respective bond involved in the reaction process mentioned in the axes.

https://doi.org/10.1038/s41597-022-01330-5
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spin state energies using the quartet spin state static structures, and similarly Fig. 3(c) represents the two spin 
state energies using the doublet energy configurations. Figure 3(d) shows the minimum energy of the two spin 
states along a single generated IRC. These differences indicate that while the geometric effects may be small, the 
electronic energy differences between spin states are significant. In the supplementary information we also pro-
vides the potential energy surfaces generated for reaction channel 6 which also undergoes a spin state change.

In summary, we generated high quality DFT data for hydrogen combustion reaction channels using range 
separated hybrid meta-GGA functional ωB97X-V with the cc-pVTZ basis set. This level of theory is considered 
highly accurate for thermochemistry and reactive barriers28,29, and the IRC profiles compared against the gold 
standard CCSD(T)/cc-pVTZ methods determined very small errors with the DFT level of theory7. This work 
moves beyond benchmarks such as the IRC for H2 combustion by extensive sampling off the reaction coordinate 
using ab initio MD simulation and normal mode analysis for each of the 19 reaction channels. Furthermore, we 
also consider multiple spin states of the species formed in the hydrogen combustion process. This high quality 
data is now available to benchmark deep learning models for chemical reactivity, and as a model of the PES for 
generating kinetic models of H2 combustion, especially at high pressure.

Data Records
All data can be found in the figshare repository. For each reaction channel the IRC, AIMD and NM generated 
configurations and corresponding energies and atomic forces are provided in.npz file format; for reaction chan-
nel 5, 6 and 7 only IRC generated data are provided as discussed above. Each .npz file contains six keys including, 
“R” (atomic Cartesian coordinates), “Z” (atomic numbers), “N” (number of atoms), “ΔE” (reference potential 
energy), “F” (atomic force vectors), and “RXN” (reaction number). All the atomic position are in Å and energy 
and force vectors are provided in kcal/mol and kcal/mol/Å, respectively. Reaction channels such as 6 and 12 
involve nuclear spin changes during the reaction, and therefore IRC calculations are performed for both spin 
states, with the data sorted to either (1) retain energies and forces consistent with one spin state, or (2) retaining 

Fig. 3 The changes in the PES for reaction channel 12 involving changes in spin state. (a) the spin cross over 
between the two closely spaced doublet and quartet spin state energy levels around the reactant region with 
widening differences progressing to product. (b) the IRC path defined by the doublet energy but geometries 
from the quartet (green), and from the doublet energy and geometries (red). (c) the IRC path defined by the 
quartet energy but geometries from the doublet (green) and from the quartet energies and geometries (red).  
(d) Resultant PES obtained reaction channel 12 ( + → +HO O OH O2 2) by choosing the minimum energy 
between the two spin states. Each CN represents the formation or breaking of respective bond involved in the 
reaction process mentioned in the axes.
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the lowest energy spin state along the IRC for each channel. Furthermore, for reactions 6 and 12 two sets of data 
are provided namely 06a/06b and 12a/12b corresponding to two different spin states involved in the reaction 
process.

Usage Notes
The data set contains 19 folders corresponding to each of the reaction channels. Each reaction channel has three.
npz files storing the geometries and corresponding potential energies energies and atomic force vectors obtained 
from IRC, AIMD and NM simulations separately. Each.npz file contains the “R” (atomic Cartesian coordinates), 
“Z” (atomic numbers), “N” (number of atoms), “ΔE” (reference potential energy), “F” (atomic forces), and 
“RXN” (reaction number) keys and the corresponding values for each configuration.

Code availability
All the data and python scripts used to generate coordination number based PES surface to analyze the data for 
each reaction channel is provided at https://doi.org/10.6084/m9.figshare.1960168930.

Received: 30 September 2021; Accepted: 20 April 2022;
Published: xx xx xxxx
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