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Predicting Learned Inattention from Attentional Selectivity and Optimization 
 
 
 

Abstract 
Although selective attention is useful in many situations, it also 
has costs. In addition to ignoring information that may become 
useful later, it can have long term costs, such as learned 
inattention – difficulty in learning from formerly irrelevant 
sources of information in novel situations. In the current study we 
tracked participants’ gaze while they completed a category 
learning task designed to elicit learned inattention. During 
learning an unannounced shift occurred such that information that 
was most relevant became irrelevant, whereas formerly irrelevant 
information became relevant. We assessed looking patterns 
during initial learning to understand how different aspects of 
attention allocation contribute to learned inattention. Our results 
indicate that learned inattention depends on both the overall level 
of selectivity (measured as entropy of proportion of looking to 
each feature) and the extent to which participants optimized 
attention (becoming more selective over time). 

Keywords: selective attention; categorization; learning; 
attention 

Introduction 
Category learning is a critical cognitive process that enables 
abstract thought and allows for generalization of knowledge 
to novel situations. Since the early work by Shepard, 
Hovland, and Jenkings (1961) selective attention has been 
considered a critical component of categorization and 
category learning. Selective attention refers to the ability to 
prioritize task-relevant information and filter out task 
irrelevant information (Desimone & Duncan, 1995; Hanania 
& Smith, 2010; Plude, Enns, & Brodeur, 1994; Pashler, 
Johnston, & Ruthruff, 2001; Yantis, 2000). 

Most models of categorization and category learning adopt 
the Shepard et al. (1961) view and consider selective 
attention a critical contributor to human categorization. 
Exemplar models (Hampton, 1995; Medin & Schaffer, 1978; 
Nosofsky, 1986), prototype models (Smith & Minda, 1998), 
clustering models (Love, Medin, & Gureckis, 2004), and dual 
process models (Ashby, Alfonso-Reese, Turken, & Waldron, 
1998) all include some form of selective attention as a factor 
determining the influence (or weight) of stimulus dimensions 
on categorization. According to some of these models, as 
participants learn categories, they tend to shift attention to 
features that are more likely to predict category membership, 
while attending less to less predictive features, the idea 
known as attention optimization. This idea has been 
confirmed empirically: there is eye-tracking evidence 
indicating that when learning categories, people indeed tend 
to optimize their attention over time, increasing fixating at the 
features most predictive of a category and decreasing fixating 
at irrelevant features (Rehder & Hoffman, 2005; Blair, 
Watson & Meier, 2009). 

Costs and Benefits of Selectivity  
Although selective attention is often beneficial in many 

learning scenarios (e.g. faster, efficient processing of 
attended information), selective attention also has costs 
(Best, Yim, & Sloutsky, 2013; Hoffman & Rehder, 2010; 
Plebanek & Sloutsky, 2017; Rich & Gureckis, 2018). Some 
of the costs are relatively short-term: people miss non-
selected information. Other costs are longer term in that they 
affect future learning. One such short-term cost is that non-
selected information is filtered out. Focusing attention is a 
tradeoff in that it results in efficient learning and 
performance, but it also results in missing information that 
could be used later.  

While short-term costs of selectivity affect only the task at 
hand, longer term costs also affect performance on future 
tasks. One type of long-term cost has been recently discussed 
by Rich & Gureckis (2018), who referred to it as a “learning 
trap”. The authors demonstrate that under certain 
circumstances selective attention can be a trap in that it can 
result in getting stuck on inaccurate representations of the to-
be-learned structure and preventing the exploration needed to 
discover the correct structure. This happens particularly when 
there are possible negative outcomes to exploring, in which 
case selective attention results in overgeneralizing which 
things should be avoided. 

A more general long-term cost is that selective attention 
may result in learned inattention (see Hoffman & Rehder, 
2010, for a review) – difficulty in learning from sources of 
information that were uninformative in a previous situation. 
Optimizing one’s attention to the currently most relevant 
sources of information can result in not only learning to 
ignore currently irrelevant sources of information, but 
continuing to ignore these sources in novel situations in the 
future (Kruschke & Blair, 2000). As a result, if those sources 
of information become relevant later, learning is more 
difficult than it would have been if one had not first learned 
to ignore them. Learned inattention can be detrimental when 
task demands change, or when a new classification contrast 
depends on previously irrelevant features.  

For example, Hoffman & Rehder (2010) had participants 
learn to classify stimuli consisting of three dimensions. 
Learning occurred in either a classification condition or a 
feature inference condition. In classification, participants 
predict the category label from all of the stimulus’ features. 
In inference they predict one missing feature from the label 
and the remaining features. 

In the first phase of the experiment only dimension 1 was 
relevant to distinguish two categories, while the other two 
were irrelevant. In a second phase, only dimension 2 was 
relevant for distinguishing two new categories, while in a 
third phase dimension 3 was relevant for a novel contrast 
between categories. Classification encourages selective 
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attention since only a single feature predicts category 
membership. Inference, on the other, encourages distributed 
attention, since participants may need to predict any of the 
three features. 

Participants performing the classification task were 
impaired at learning the new contrast when the relevant 
dimension changed compared to participants doing the 
feature inference task. Additionally, eye-tracking showed 
that the classification participants were much less likely to 
fixate the relevant dimension after learning it was irrelevant 
in a prior phase of the experiment compared to baseline levels 
at the start of the experiment. These costs occurred because 
learners selectively attended the relevant feature while 
classifying the stimuli—optimizing their attention to ignore 
(or inhibit) the other features.  

The Current Study 
The goal of this study is to further investigate learned 
inattention during category learning by examining how 
different aspects of attention allocation contribute to learned 
inattention. This study also serves as a first step toward a 
larger investigation of developmental differences in attention 
allocation and optimization and their consequences. The 
current study investigates only adults, but developmental 
implications and predictions for children are touched on in 
the Discussion. 

In our experiment, we presented participants with a 
category learning task while tracking their gaze. The to-be-
learned categories had a rule-plus-similarity structure, with 
one deterministic feature perfectly predicting category 
membership and multiple probabilistic features, providing 
good, but imperfect prediction (see Deng & Sloutsky, 2016, 
for a similar structure). In addition, one feature was 
completely irrelevant to categorization.  

Given the structure, participants could either form a rule-
based representation (by relying on the deterministic feature) 
or a similarity-based representation (by relying on all 
features). So, either selective or distributed attention could 
lead to effective learning. Once participants mastered the 
categories in this initial phase, there was an unannounced 
shift in the category learning task. After the shift, feature 
dimensions that had been deterministically predictive in 
became irrelevant, and features that had been irrelevant in 
became deterministically predictive. 

Learned inattention was expected to produce costs on 
learning in Phase 2, making participants less likely to attend 
to and learn to use the new deterministic feature. We 
examined what aspects of attention during initial learning 
were most likely to manifest these costs. In particular we 
investigated the effects of overall selectivity and of attention 
optimization (increase in selectivity over time).  

 

 
Figure 1. Examples of stimuli. The stimuli were creatures 
composed of seven discrete-valued dimensions differing in 
shape and color. One Deterministic feature perfectly 
predicted category membership (the tail in this example). One 
Irrelevant feature was the same across both categories (the 
button on the neck here). Five Probabilistic features predicted 
category membership with 80% accuracy. After an 
unexpected shift occurred, the Deterministic became 
Irrelevant, and the Irrelevant feature became Deterministic 
Probabilistic features were unchanged by the shift. 

Method 

Participants 
A total of 38 adults (26 women) participated in the 
experiment. Participants were undergraduate students 
participating for course credit.  

Materials and Design 
Stimuli were colorful images of creatures composed of seven 
discrete-valued dimensions (see Figure 1). The creatures 
were divided into two categories, referred to as Flurps and 
Jalets. Of the seven features (antenna, head, body, button, 
hands, feet, and tail), one feature deterministically predicted 
category membership (henceforth the Deterministic feature), 
five features were probabilistically predictive with 80% 
accuracy (the Probabilistic features), and one feature was 
non-predictive—having the same value across all exemplars 
of both categories and therefore irrelevant to classification 
(i.e., the Irrelevant feature). Table 1 shows the stimulus 
structure used in the task. 

Stimuli were organized into pairs of complementary sets. 
Each set in a pair was identical to its counterpart except that 
the Deterministic and Irrelevant features swapped roles. 
Probabilistic feature values and the category labels remained 
the same. As discussed below, participants learned one set in 
Phase 1 of the experiment (i.e., before the shift), and then the 
stimuli were unexpectedly replaced with the complimentary 
set for Phase 2 (i.e., after the shift). There were two pairs: one 
where feet and hands were the Deterministic/Irrelevant 
features, one where tail and neck button were the 
Deterministic/Irrelevant features. Which pair was presented 
and which set in that pair was learned in Phase 1 were 
counterbalanced between participants. 
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Stimulus sets also contained Ambiguous items. These were 
hybrid items having the Probabilistic features from one 
category and the Deterministic feature from the other 
category. These items were presented only during the testing 
sessions and were designed to test which features controlled 
categorization. There were 10 Ambiguous items total per 
set—one corresponding to each exemplar seen during 
training (i.e. with identical Probabilistic features but with the 
Deterministic feature from the opposite category). These 
items allow us to determine whether participants’ category 
judgments were based more on the single Deterministic 
feature or on one or more of the Probabilistic features. 
 

Table 1. Stimuli structure during training 
 

 

Procedure 
Adult participants conducted a classification procedure 

while their gaze was monitored with an EyeLink 1000 
hydraulic-arm eyetracker at 500Hz (SR research, Ontario, 
Canada). The experiment was divided into two phases. Both 
phases contained a training section (with feedback) followed 
by a testing section (no feedback). In Phase 1 participants 
learned to classify two categories of creatures (and then were 
tested), and then in Phase 2 an unannounced shift occurred 
wherein the previously Deterministic feature and the 
previously Irrelevant feature swapped roles.  

The formerly Deterministic dimension took on a new, 
previously unseen, value that was fixed across all stimuli of 
both categories, while the formerly Irrelevant dimension now 
had two new potential values that perfectly predicted 
category membership. Participants were given no warning 
that this shift would occur at any point. Like Phase 1, Phase 
2 consisted of training followed by testing. 

At the beginning of the experiment participants were given 
information about the Deterministic and Probabilistic 
features. For Probabilistic features they were told that most 
of the members of the category had that particular feature 
value. For the Deterministic feature they were told that all 
members of category A have one value while those of 
category B have another value, while being shown both. The 
Irrelevant feature was never mentioned in the instructions. 
These informative instructions were included to ensure good 
learning in Phase 1, since any expected costs due to the shift 
rely on the categories initially being learned well. 
Additionally, as noted above we plan to eventually 

investigate developmental differences, and young children 
require this type of informative instructions and feedback in 
order to learn well within the timeframe of the experiment. 
 
Training Training in each phase consisted of 30 trials (in 3 
blocks of 10 trials). In each block of 10 trials the ten training 
exemplars, five from each category, were presented in 
random order, so participants saw each exemplar three times 
throughout training (see Table 1 and Figure 1).  

On each training trial, one stimulus was presented in the 
middle of the screen and participants indicated which 
category they thought it belonged to. Corrective feedback 
was then given which tried to equally encourage attention to 
general appearance (similarity-based responding) and to the 
Deterministic feature (rule-based responding). For example 
feedback would be “Correct this is a Flurp. It looks like a 
Flurp and has the Flurp hands.”, or “Oops this is actually a 
Jalet. It looks like a Jalet and has the Jalet hands.”, in the case 
where hands were the Deterministic feature. 

In Phase 2, after the unannounced shift, feedback was 
simplified to mention only the correct category without 
drawing attention to the features (e.g. “Correct this is a 
Flurp.”). While this change in feedback may have given 
participants some indication that a change had occurred, it 
was necessary so that participants would need to figure out 
on their own the new contingencies between features and 
categories. That learning process in Phase 2, discovering 
what is informative, is the critical area of interest, while 
parity between Phase 1 and 2 is not critical. 

 
Testing Testing in each phase consisted of 20 trials. Again, 
participants saw the stimuli one at a time and classified each 
one, but no feedback was provided during the test. The 10 
items seen during training (henceforth the High Match items) 
and 10 Ambiguous items were each presented once, in 
random order. These two types of items, respectively, were 
the basis for the behavioral measures of general shift costs 
and shift costs due to learned inattention. 

Accuracy on High Match items indicates how well each 
participant learned during the immediately prior training 
session. A decrease in accuracy from Phase 1 to Phase 2 on 
these items would indicate a general cost (in terms of poorer 
learning) due to the unexpected shift, which may occur for a 
number of reasons. 

Responses to the Ambiguous items, in contrast, provide the 
cornerstone of our behavioral analyses related to learned 
inattention. Prior to the shift they provide the baseline level 
that each participant tended to categorize based on the single 
Deterministic feature. After the shift responses to the 
Ambiguous items tell us whether participants learned and 
used the rule on the new Deterministic (formerly Irrelevant) 
feature. Low deterministic responses indicate learned 
inattention since it suggests that the participant had difficulty 
finding the new rule on the feature that was previously 
irrelevant. 
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Results 

Behavioral Results 
Initial learning in Phase 1 was good overall (see Figure 2). 
Mean accuracy was 92.1% correct. A repeated measures 
ANOVA found a main effect of block [F(1,75) =. 14.74, p = 
0.0003, partial h2 = 0.164] suggesting that participants 
learned well during training. Categorization accuracy on 
High Match items during the test was also high (M =  93.9% 
correct). 

Responses to the Ambiguous items provide insight into 
which features controlled participants’ categorization: 
Responding based on the Deterministic feature points to rule-
based categorization, whereas responding based on the 
Probabilistic features suggests similarity-based (or at least 
non-rule-based) categorization. Distributing attention during 
training could lead to either type of responding (since all 
features were attended), but selective attention to the 
Deterministic feature should only result in rule-based 
categorization. Participants were overwhelmingly 
deterministic in their categorization of the Ambiguous items: 
88.4% deterministic responses, which was well above 
chance, t(37) = 9.69, p < 0.001, d = 1.57.  

 
Post-shift Learning Participants learned well in Phase 2 
after the shift (77.0% correct), which was above chance, t(37) 
= 19.09, p < 0.001, d = 3.10, but accuracy was lower than 
prior to the shift, t(37) = 6.91, p < 0.001, d = 1.12, which is 
expected—even in the absence of learned inattention—due to 
less informative feedback in Phase 2 compared to Phase 1 and 
any general costs of adapting to the shift. A repeated 
measures ANOVA on Phase 2 training accuracy found a main 
effect of block [F(1,75) = 7.192, p = 0.009, partial h2 = 
0.087], suggesting accuracy increased over time. Accuracy 
on High Match items during the test was significantly higher 
than chance (M = 81.3% correct), t(37) = 10.06, p < 0.001, d 
= 1.63, but was also lower than in Phase 1, t(37) = 3.52, p = 
0.001, d = 0.571, suggesting a learning cost due to the 
unexpected shift. This represents a general shift cost which 
may be due to a variety of factors including learned 
inattention. We assess costs specific to learned inattention in 
the next section. 

 
Shift Costs Due to Learned Inattention We assessed effects 
of learned inattention by examining responses to the 
Ambiguous items in the Phase 2 test (Figure 3). Learned 
inattention would result in relatively low levels of 
deterministic responses on the post-shift test, since 
participants would be less likely to attend to the previously 
Irrelevant (now Deterministic) feature, and thus would have 
difficulty learning the new rule on that feature. This would 
result in participants relying primarily on the Probabilistic 
features instead when making category judgments after the 
shift. Participants were significantly below chance, M 
=36.6%, t(37) = 2.53, p = 0.016, d = 0.41, suggesting that 
they primarily relied on Probabilistic features to categorize 
after the shift, in contrast to their behavior prior to the shift. 

Figure 3 shows individual participants proportion of 
classifying Ambiguous items based on the Deterministic 
feature in the post-shift test. 

 
 

 
Figure 2. Behavioral results. During initial training 
participants learned well and achieved high accuracy. A 
substantial drop occurred after the shift. Accuracy during test 
was high for old (High Match) items, and was lower after the 
shift, displaying a general cost of the shift. Responding based 
on the Deterministic feature was very high prior to the shift, 
but dropped substantially in the post-shift test, suggesting 
effects of learned inattention. Error bars represent standard 
error of the mean. 

 
 

 
Figure 3. Individual participants’ post-shift deterministic 
responding. Responses to Ambiguous items on the post-shift 
test varied widely between individuals. The majority 
classified based on the Probabilistic features, with some 
intermediate, and less than one-quarter of participants 
classifying based on the new Deterministic feature. 
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Eye-Tracking 
Regions of interest isolating each feature were used to 
calculate the proportion of each trial spent looking at each 
feature for each subject. Timepoints where participants were 
not looking at any of the features were removed. Figure 4 
shows the average proportion of looking at each feature type 
during training. Prior to the shift the proportion of the trial 
spent looking at the Deterministic feature increased over 
trials, while time spent looking at Probabilistic features 
decreased. Looking at the Irrelevant feature was extremely 
low throughout all of training (M = 2.82% of total looking 
time), but did decrease over the course of training—as 
measured by comparing block 1 (M = 3.60%) to block 3 (M 
= 1.52%), t(37) = 3.39, p = 0.002, d = 0.161. 

After the shift, looking at the previously Deterministic 
(now Irrelevant) feature dropped off rapidly, while looking to 
the Probabilistic features shot up. Critically, looking at the 
newly Deterministic feature (that was previously Irrelevant) 
did not increase from block 1 to block 3, t(37) = 0.53, p = 
0.600, demonstrating the effects of learned inattention. They 
continued to ignore this feature despite the high level of 
information it now contained. 

We assessed attentional patterns during initial learning by 
calculating the entropy (Shannon, 1948) for each trial. 
Entropy was defined as, 

 

𝑆 = −$𝑝& ∗ log(𝑝&)
-

&./

 

 
where pi is the proportion of the trial spent looking at feature 
i. Higher entropy indicates more distributed attention, where 
maximum entropy is produced by looking at all seven 
features equally, and lower entropy indicates more selective 
attention—focusing on a smaller number of features. We use 
entropy as a measure of selectivity rather proportion of 
looking at the Deterministic feature since some participants 
may have optimized their attention to one of the Probabilistic 
features, and that selectivity should still produce learned 
inattention despite being suboptimal. Entropy for each trial 
was normalized by dividing by maximum possible entropy, 
such that all values were between 0 and 1. 

Drop in entropy was calculated as average entropy per trial 
in block 1 minus average entropy in block 3. This served as a 
measure of attention optimization, since greater drops 
indicate an increase in selectivity of attention.  

We performed a logistic regression predicting 
classification of Ambiguous items on the post-shift test from 
average entropy during pre-shift training, the drop in entropy 
over training, and their interaction. This analysis revealed a 
significant interaction, z = 3.318, p = 0.001. To better 
understand the interaction, we divided participants into low 
and high entropy groups based on a median split. We then 
performed a logistic regression on Ambiguous item 
responses predicted from the drop in entropy for each group. 
For the low entropy group, there was a significant negative 
relationship between entropy drop and Ambiguous item 

responses, z = -3.153, p = 0.002, indicating that those who 
optimized their attention in the initial training were less likely 
to use the new Deterministic feature to categorize items after 
the shift (see Figure 5). In contrast, participants in the high 
entropy group did not show a relationship between the drop 
in entropy and responses to Ambiguous items, z = 1.899, p = 
0.0575. 

In other words, attention optimization was associated with 
greater learned inattention in the low entropy (selective 
attention) group, but not in the high entropy (distributed 
attention) group. This interesting interaction has important 
implications. It implies, not surprisingly, that a certain level 
of selectivity is necessary to produce learned inattention. But 
more importantly, this high level of selectivity is not enough. 
Learned inattention seems to also require that attention 
allocation be incrementally learned over time. This suggests 
that it occurs when people initially consider multiple features, 
but learn through experience to ignore them (in contrast to a 
top-down strategy implemented from the beginning to focus 
on one or few features). 
 

 
Figure 4. Proportion looking at each feature type during 
training. Note that the proportion for Probabilistic features is 
summed across all five Probabilistic features. During initial 
training looking to the Deterministic feature increased, while 
looking to the other features decreased (i.e. attention 
optimization occurred). Post-shift looking to the previously 
Deterministic feature quickly dropped and was replaced by 
increased looking to the Probabilistic features, while the 
previously Irrelevant (now Deterministic feature) remained 
low. Error bars represent standard error of the mean. 
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Figure 5. The role of selectivity and attention optimization. 
Overall entropy (how distributed attention was) interacted 
with the change in entropy (attention optimization) to 
produce costs consistent with learned inattention. 
Participants who were both highly selective (low entropy) 
and who optimized (large drop in entropy) were the least 
likely to categorize based on the new deterministic feature 
after the shift. Line shown the fit line of logistic regression. 
Dot color indicates deterministic responders (blue), 
probabilistic responders (red), intermediate (grey). 
 

Discussion 
Although selective attention is often effective and efficient, 
there are potential costs. One particular (longer-term) cost is 
that selective attention can result in learned inattention to 
non-selected information, which in turn affects future 
learning. In the current study, participants performed a 
category learning task designed to induce learned inattention 
while we tracked their gaze. Both behavioral and eye-
tracking measures showed evidence of learned inattention. 
When making category judgments after the unexpected shift, 
participants were less likely to use a stimulus dimension that 
was previously irrelevant, but was now highly informative. 
Eye-tracking showed that after the shift occurred, participants 
quickly shifted attention away from the previously 
informative (and now irrelevant) feature. Their attention 
instead shifted to probabilistically predictive features, but 
they continued to ignore the previously irrelevant, now 
perfectly predictive, feature—with looking to that feature 
remaining low and not increasing over the course post-shift 
training. Participants simply ignored this feature despite its 
potential usefulness in their task. 

The level of learned inattention that was exhibited varied 
across individuals, though. We used measures of selectivity 
and attention optimization for each individual to determine 
what aspects of initial learning best predicted the level of 
learned inattention that occurred. Our results suggest an 
interaction between these two measures, such that learned 
inattention was most likely for participants who were overall 
highly selective, but importantly, who optimized their 
attention over time. Participants who were highly selective 
from the beginning, and so did not optimize attention over 
time, did not show high levels of learned inattention (see 
Figure 5). These results suggest that learned inattention 

crucially depends on incremental learning over time, and is 
not simply an effect of ignoring sources of information, but 
of learning to inhibit them after initially considering them. 

Participants who did optimize attention over time, but 
whose attention was overall relatively distributed (having 
high entropy), also did not show high levels of learned 
inattention. One possibility is that these participants needed 
more time to optimize attention before reaching the level 
required for substantial learned inattention to occur, and that 
with more training trials they would reach that level. 

That both the level of selectivity and attention optimization 
predict individual differences in learned attention has 
important implications for cognitive development. Young 
children tend to distribute their attention broadly and do not 
optimize attention as much as adults do (Best, Yim, & 
Sloutsky, 2013; Deng & Sloutsky, 2016), so they may be 
largely protected against the adverse effects of learned 
inattention.  

Allocating attention is always a tradeoff: selective attention 
results in more efficient processing of attended information, 
but has several potential pitfalls, including learned 
inattention. In contrast, if attention is distributed, processing 
is less efficient, but these traps are avoided. Therefore, to 
allocate attention effectively estimations must be made about 
information’s potential future relevance. With less general 
knowledge, children have less basis to make solid 
conclusions about what might and might not be useful to 
know later. Additionally, these types of costs could be 
particularly damaging early in the learning process, and so 
perhaps children’s tendency to distribute attention may be not 
only a result of immature control, but also adaptive for their 
particular situation. Understanding the developmental 
differences in this process is an important direction for future 
research. 
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