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Dirac fast scramblers

Jaewon Kim ,1,* Ehud Altman,1,2 and Xiangyu Cao 1,3

1Department of Physics, University of California, Berkeley, California 94720, USA
2Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 

3Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, 
Université de Paris, 75005 Paris, France

We introduce a family of Gross-Neveu-Yukawa models with a large number of fermion and boson flavors as 
higher dimensional generalizations of the Sachdev-Ye-Kitaev model. The models may be derived from local 
lattice couplings and give rise to Lorentz invariant critical solutions in 1 + 1 and  2 + 1 dimensions. These 
solutions imply anomalous dimensions of both bosons and fermions tuned by the number ratio of boson to 
fermion flavors. In 1 + 1 dimension the solution represents a stable critical phase, while in 2 + 1 dimension  
it governs a quantum phase transition. We compute the out of time order correlators in the 1 + 1 dimensional 
model, showing that it exhibits growth with the maximal Lyapunov exponent λL = 2πT in the low temperature 
limit.

Introduction. Since ’t Hooft’s seminal work [1], large N
quantum field theories—those with a large number of local
degrees of freedom—have played a pivotal role in understand-
ing strongly coupled states of matter and their holographic
correspondence to gravity [2–4]. Much of the recent progress
in this area was enabled by analysis of a simple large N
system: the Sachdev-Ye-Kitaev (SYK) model [5–8]. In its
simplest version the SYK model can be written as a quantum
mechanical Hamiltonian of N Majorana fermions with all-to-
all interactions:

H =
N∑

i jk�=1

Ji jk�χiχ jχkχ�. (1)

Ji jk� are random coupling constants. This model is solvable in
the large N limit and has remarkable low energy properties:
as a field theory, it is (nearly) conformal invariant, and related
to 2d dilaton gravity [9–11]; from a condensed matter point of
view, it exemplifies a non-Fermi liquid, with no well-defined
quasiparticles [5,12]. Finally, from a quantum information
perspective, it is a fast scrambler, saturating general bounds
on the rate of quantum information scrambling [6,13].

The SYK model is a 0 + 1 dimensional quantum field
theory. A natural and much-pursued problem is to find
generalizations to nonzero spatial dimensions [14–26]. One
motivation for this effort is to establish concrete realizations of
the AdS/CFT correspondence with richer and more realistic
gravity duals. Another motivation, from the perspective of
condensed matter physics, is to develop controlled theories
for quantum critical points without quasiparticle excitations.

Most of the generalizations of the SYK model that have
been discussed before, consist of a lattice of coupled SYK
quantum dots. The problem with this approach is that the

*On military service for the Republic of Korea.

SYK interaction (1) between the internal degrees of free-
dom of the dots is irrelevant (at most marginal) compared
to quadratic couplings (hopping) between the dots, which
leads to a weakly interacting fixed point, e.g., a Fermi
liquid. On the other hand, coupling the dots through four-
fermion interactions leads to local quantum criticality with
no higher dimensional scale invariance. In attempt to avoid
this fate, some authors considered field theories with non-
local couplings and thus not clearly realizable by a local
microscopic Hamiltonian: for example, interactions with a
“low-momentum filter” [15] or a topological kinetic term [17].
To our knowledge, the only local higher-dimensional the-
ory exhibiting scale invariance, Lorentz symmetry, and fast
scrambling is the supersymmetric (1 + 1)-d model [16,27].
Finding such a model without SUSY or beyond (1 + 1)-d
remains an unrealized goal.

In this Letter we propose a family of solvable models
in (1 + 1)-d and (2 + 1)-d that extend the SYK physics to
higher dimensions. By doing so, we also make connection to
the well-known Gross-Neveu-Yukawa (GNY) theory [28,29].
Specifically, we consider a variant of large N GNY which has
a large number of real bosons φa, a = 1, . . . , M, and massless
Dirac fermions ψi, i = 1, . . . , N . They interact via a local ran-
dom Yukawa coupling. The Lagrangian in d + 1 dimensional
Euclidean space-time is

L =
N∑

i=1

ψ̄i /∂ψi +
M∑

a=1

m2

2
φ2

a +
∑
i ja

ga
i jψ̄iφaψ j . (2)

Here /∂ = γμ∂μ, ψ̄ = ψ†γ0, and γ0, . . . , γd are gamma ma-
trices satisfying the Clifford algebra {γμ, γν} = δμν . The
Yukawa interaction has random (but translation invariant)
coefficients ga

i j , which are zero-mean complex Gaussian vari-
ables satisfying

ga
i j g

b
k� = g2δi�δ jkδab/N2 (no sum). (3) 
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Here g2 is a coupling constant, which can be positive or
negative (g ∈ iR). We work in a large N limit where the
boson/fermion number ratio tends to a constant:

M

NnS
−→ γ (M, N −→ ∞), (4)

where nS is the number of components of each spinor. This
is the main difference from the usual large N limit of GNY,
where the boson number remains finite. We will show that, in
d + 1 < 4 space-time dimensions, our theory admits a family
of Lorentz invariant critical solutions, whose critical expo-
nents depend continuously on γ . Moreover, we show that the
(1 + 1)-d critical points are fast scramblers.

Lattice models. Before analyzing the field theory, let us
discuss its lattice realizations. In (0 + 1)-d, the spinor ψ can
have only one component (γ0 = 1), and thus (2) describes a
“low-rank” SYK dot [30–36] (if γ = 2, the N = 1 supersym-
metric SYK [37]). Indeed, integrating out the bosons leads to
a Hamiltonian

H = −1

2

N∑
i j,k�

Ji j,k�c†
i c jc

†
kc�, Ji j,k� = 1

m2

M∑
a=1

ga
i jg

a
k�. (5)

As an N2 × N2 matrix, the rank of J is at most M = γ N ∝ N ,
instead of ∝ N2 in the standard (complex) SYK4. The low-
energy states of this model differ from that of SYK4 in that the
fermion scaling dimension is not fixed to 1/4, but rather can
be tuned continuously by varying γ . In this sense the model
is similar to SYKq (SYK with q fermion interaction), for q ∈
(2,∞), q �= 4. Like the SYK models, these are fast scram-
blers and have a residual entropy. The higher-dimensional
solutions we shall present are natural generalizations of these
states.

In nonzero spatial dimensions, the field theory (2) can be
obtained as the long-wavelength limit of a lattice of identical
low-rank SYK dots connected by nearest-neighbor hopping:

H =
∑
n.n.

c†
i,x′ci,x − 1

2

∑
xi jk�

Ji j,k�c†
i,xc j,xc†

k,xc�,x
H.S.∼

∑
n.n.

c†
i,x′c j,x

+
∑
xi ja

ga
i jc

†
i,xc j,xϕa,x +

∑
ax

ϕ2
a,x

2
. (6)

Here ci,x are N flavors of lattice fermions, and ϕa,x are in-
troduced in a Hubbard-Stratonovich transformation. We note
however that our IR solution below also applies to physical
bosons with an additional kinetic term O[(∂φa)2].

We illustrate the connection between the microscopic
Hamiltonian and the field theory degrees of freedom in two
examples. In (1 + 1)-d, the field theory can be constructed
from the slowly varying chiral fermion fields near the two
Fermi points, making up the Dirac spinor ψi = (ψL

i , ψR
i )T .

The low energy bosons ϕa that couple between the chiral
fermions carry momenta near 2kF . Finally, the gamma ma-
trices operating in this space are

γ0 = σ x, γ0γ1 = iσ z,

where σ x,y,z are Pauli matrices.
As a (2 + 1)-d example, we take N flavors of fermions

hopping on the honeycomb lattice. Then the two component

spinor ψ = (ψA
i , ψB

i )T is constructed from fermions on the
two sublattices A and B with the linearized dispersion near the
Dirac point K, HK+k = kxσ

x + kyσ
y. The gamma matrices in

this case are taken as

γ0 = σ z, γ0γ1 = iσ x, γ0γ2 = iσ y.

A boson field that couples the two bands in the same valley K
is constructed from the lattice bosons as φa = (ϕA

a − ϕB
a )|k→0,

which is odd under the sublattice symmetry. Our critical
theory then describes a phase transition to a phase with spon-
taneous breaking of the sublattice symmetry.

We note that the choice of lattice realization is not
unique. For example, we could take the fermion fields in
the (2 + 1)-d model to be a four-component Nambu spinor
[ψA, ψB, (ψB)†,−(ψA)†]T coupling to charge-2 bosonic
fields. In this case the theory (2) describes a superconducting
quantum phase transition. With a different choice of four-
component spinor and bosons carrying an angular momentum
quantum number, the theory can describe spontaneous break-
ing of time reversal symmetry and establishment of a quantum
Hall state.

Critical solutions. We now return to the field theory in
general dimension and present its critical solutions in the
IR. For generality, we shall add a boson kinetic term to the
Lagrangian (2),

m2φ2
a � m2φ2

a + b(∂φa)2, b � 0. (7)

In the large N limit, the fermion and boson Green functions
G = 1

N

∑
i 〈ψiψ̄i〉, F = 1

M

∑
a 〈φaφa〉, averaged over the ran-

dom couplings, are related to their respective self-energy �,�

by a set of Schwinger-Dyson (SD) equations:

G(k)−1 = /k − �(k), F (q) = 1

m2 + bq2 − �(q)
,

�(x) = nSγ g2G(x)F (x), �(x) = −g2tr[G(x)G(−x)].

(8)

Above, q = (�, q) and k = (ω, k) denote (d + 1)-momenta,
and “tr” is over the spinor space. Equations (8) generalize the
SD equations of the low-rank SYK dots, and can be derived
following the same steps.

The main point of this Letter is that, in the IR limit, the
SD equations admit critical solutions that have the following
scale-invariant and Lorentz symmetric form [38]:

G ∼ i/k|k|2�−D−1 ∼ /x|x|−2�−1,

� ∼ i/k|k|−2�+D−1 ∼ /x|x|2�−2D−1,

F ∼ |q|D−4� ∼ |x|4�−2D, � ∼ |q|4�−D ∼ |x|−4�, (9)

for a continuous range of the fermion scaling dimension � =
�ψ (the boson scaling dimension is �φ = D − 2�ψ ):

min

(
D

2
,

D + 2

4

)
> � >

D − 1

2
, D := d + 1 < 4. (10)

For D � 4, no � satisfies these inequalities. Moreover, we
have the “rank-exponent relation” (see Fig. 1):

γ = −
B D

2 −�C2�

BD−�C2�− D
2

, (11)
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FIG. 1. The rank (γ ) exponent (�) relation (11) in D = 1, 2, 3
(a)–(c) space-time dimensions.

where B and C are defined as

Ca = (2π )
D
2

2
D
2 −a�

(
D
2 − a

)
2a�(a)

, Ba =
Ca− 1

2

1 − 2a
. (12)

The rank-exponent relation generalizes that in (0 + 1)-d,
which was known previously [30–35,39].

To demonstrate the above claims, suppose, as will be justi-
fied below, that we can ignore the bare terms /k and m2 + bq2

in the IR limit. Then the approximate SD equations become
scale invariant. One may start from a power-law Ansatz

G(k) = iA/k|k|2�−D−1, (13)

and check that it is compatible with the SD equations (8) if
the exponent is fixed by (11). This can be done by using the
gamma-matrix identity /a/a = |a|2I and the Fourier transform
identities

|x|−2aeiqμxμdDx = Ca|q|2a−D, (14)

/x|x|−2a−1eiqμxμdDx = −iBa/q|q|2a−D−1. (15)

The value of the prefactor A depends on UV details and is
unimportant; it suffices to know that A > 0 from the UV limit

G(k)
k→∞∼ 1/(−i/k).

Our neglect of the bare kinetic terms in the Green’s func-
tion is justified if they are irrelevant in the IR, that is if they
vanish in the low energy limit compared to the self-energy
terms. The condition for the fermion kinetic term ∼|k| �
|�(k)| is � > (D − 1)/2. Similarly the condition for the
boson kinetic term bq2 � � ∼ |q|4�−D is � < (D + 2)/4.
Thus, the inequalities (10) emerge as the condition for a
consistent scale invariant solution [40]. Finally, the (renormal-
ized) boson mass term is tuned to zero at criticality, or in the
exceptional cases of D = 1, 2 is even irrelevant and flows to
zero in the IR, as we discuss below.

In (0 + 1)-d, when g2 > 0, the mass is known to be irrel-
evant, and the system always flows to a critical point with
� ∈ ( 1

4 , 1
2 ) determined uniquely by γ [see Fig. 1(a)]. This

“self-tuned” criticality was first noticed in Ref. [34], see
also [41] for a Monte Carlo study. The situation of g2 < 0
is even more special [30]: the boson self-energy diverges
�(q → 0) → −∞ and dominates the mass, and the IR fixed
point has � ∈ (0, 1

4 ).
In (1 + 1)-d, the boson mass flows to zero in the IR

provided g2 > 0. To see why this must happen, let us first
show that the bosons cannot remain gapped in the IR. If that
were the case, the fermions would be noninteracting in the

IR, G ∼ (−i/k)−1 (� = 1/2). However, the boson self-energy
would then have a log divergence, and �(q) ∼ g2 ln(1/|q|) >

m2 at small enough q for any g2 > 0, which makes the
bosons unstable. Could the bosons then condense? In this
case the condensate F (τ ) ∼ const. would generate a mass
in the fermion dispersion leading to G ∼ i/k/|k| (� = 1).
However, this would imply an inconsistent IR divergence
F (x) ∼ ln ln(R/|x|). Since neither conventional state leads to
a self-consistent solution, the IR fixed point must be critical.
[A similar argument can be applied to understand the self-
tuned criticality in (0 + 1)-d.] It should be noted that, since
the back-scattering is relevant, our critical solutions are not
Luttinger liquids.

Another peculiar aspect of (1 + 1)-d is that the critical
solutions we found require a nonzero minimal rank γ > 1

4 .
Indeed, the rank-exponent relation reads [Fig. 1(b)]

γ = 3 − 2�

8� − 4
. (16)

The interval � ∈ ( 1
2 , 1) permitted by (10) is mapped to γ ∈

( 1
4 ,∞), with the limit γ → 1/4 corresponding to � → 1. The

critical points for γ � 1
4 are not included in our solutions;

we speculate that the fermion Green function still has � = 1,
but with nontrivial log corrections. We remark finally that
our theory at γ = 1/2 is akin to the N = 1 SUSY theory of
Ref. [16] with q = 3: they both have �φ = 1/3.

In (2 + 1)-d, the critical points are not self-tuned, but de-
scribe a second-order transition at g2 = g2

c > 0, between a
semimetal with gapped bosons and a marginal Fermi liquid
with broken symmetry. Let us also comment on the rank-
exponent relation [Fig. 1(c)] which reads

γ = (2� − 5)(2� − 3) tan π� tan 2π�

8(� − 1)(4� − 3)
. (17)

In the interval � ∈ (1, 5
4 ) allowed by (10), � is uniquely

determined by γ , and increases from the noninteracting low-
rank limit �γ→0 = 1, to the strongly coupled high-rank limit
�γ→∞ = 5

4 . The latter limit seems to contradict the fact that
a ψ̄ψψ̄ψ interaction is irrelevant in (2 + 1)-d, and that the
high-rank (γ ∼ N → ∞) limit of our model is effectively a
lattice of SYK4 dots. There is however a subtlety: the quartic
couplings Ji j,k� in (5) above have a variance ∼γ N−3, which is
much larger than N−3 in SYK4 if γ ∼ N . Hence, our theory
in the γ → ∞ limit is more strongly interacting than a SYK4

lattice and only the former can approach the � = 5
4 fixed

point (unless one goes beyond the large N limit and lets the
temperature to scale with 1/N).

We now make connection to the standard approach to
the GNY model, i.e., Nf fermions coupled to a single bo-
son. Within the new large N limit with comparably many
bosons, we found, at the classical saddle point, an anoma-
lous fermion scaling dimension, which is only obtained as
1/Nf corrections in the standard approach. Moreover, we
can compare quantitatively the rank-exponent relation (17) in
(2 + 1)-d to the standard large Nf GNY exponent, by iden-
tifying γ = 1/(Nf nS ). Solving for the scaling dimension we
obtain � = 1 + 4/(3π2Nf nS ) + O(1/N2

f ), which matches the
standard 1/Nf result [43]. We also observe a good agreement
with state-of-the-art conformal bootstrap data on the standard



TABLE I. Fermion scaling dimension � in the D = 3 GNY with
Nf fermion flavors found using conformal bootstrap [42] compared
to the result obtained from the rank-exponent relation (17) by setting
γ = 1/(Nf nS ).

Nf 2 3 4 8 10 20

� [42] 1.067 1.054 1.042 1.021 1.017 1.008
� (17) 1.107 1.063 1.043 1.019 1.015 1.007

GNY model [42], see Table I. These results indicate that the
1/N corrections of our large N theory are rather mild.

Residual entropy. A peculiar feature of SYKq is that the
entropy remains nonzero and ∝ N in the zero-T limit, pro-
vided the large N limit is taken first [6,12,44]. Such a residual
entropy is also observed numerically in the D = 1 critical
points [35], and we can now understand it analytically, in
terms of log determinants [45]. In higher dimensions, only the
zero-momentum component of the Green function is critical
at zero temperature and can possibly contribute to the residual
entropy. Therefore, the residual entropy is not extensive in
volume, in contrast to “local critical” SYK lattices [14].

Scrambling. We turn to calculating the out of time order
correlations (OTOCs) [13,46] in the low temperature limit of
the 1 + 1 dimensional field theory. The OTOCs are defined on
a “double” Keldysh contour (Fig. 2):

C(t, x) = V †(t, x)V

(
t + i

β

2
, x

)
φq(0, 0)φq

(
i
β

2
, 0

)〉
,

(18)

where φq(t ) = φ(t + iε) − φ(t − iε), and (V †,V ) can be a
spinor component and its conjugate [(ψA)†, ψA], or the boson
(φ, φ), which is real. The OTOC measures the sensitivity
of an observable V at (t, x) to a perturbation at (0, 0) as
a quantum analog of the butterfly effect; it can grow expo-
nentially in large N systems, defining a Lyapunov exponent
λL. The (0 + 1)-d version of the model are known to be fast
scramblers [31,32,35], saturating the general bound on the
Lyapunov exponent at low temperatures [13]:

C(t ) ∼ 1

N
eλLt , where λL = 2πT . (19)

Here we extend the result to (1 + 1)-d, by a method similar
to that discussed in Refs. [14,26,47]. In the regime where the
OTOC has a well-defined exponential growth, it is given, to

FIG. 2. Left: The Keldysh contour on which the OTOC (18) is
defined, with field locations indicated. Right: The basic rungs that
generate all the ladder diagrams. Straight, wavy, and dashed lines
correspond to fermion, boson propagators, and average over random
couplings.

leading order in 1/N , by the sum of ladder diagrams generated
by a four-point retarded kernel K(t1, x1, . . . , t4, x4) that adds a
rung to the ladder (see Fig. 2). The self-consistency condition
(Bethe-Salpeter equation) is then equivalent to solving for the
OTOC as an eigenvector of the kernel with eigenvalue 1:

Fp(t3, x3, t4, x4) = KFp(t1, x1, t2, x2). (20)

To find a Lyapunov exponent we seek exponentially growing
eigenfunctions with momentum p:

Fp(x1, t1, x2, t2) = Fp eλL (t1+t2 )/2+ip(x1+x2 )/2, (21)

where Fp = Fp(t1 − t2, x1 − x2) only depends on the relative
coordinate. As a result, we determine a p-dependent exponent
λL = λL(p). Then the OTOC in real space can be expressed as
a momentum integral

C(t, x) ∼ 1

N

∞

−∞
ρ(p)Fp(0, 0)eλL (p)t+ipxd p, (22)

where ρ(p) was shown [47] to have a pole where λL(p =
is∗) = 2πT [48]. The integral (22) is analyzed by a steepest
descent method for large x, t , and has maximal growth ∝e2πT t

if it is dominated by the pole in ρ(p). This is the case when
the fields are sufficiently separated in space, |x|/t > v∗, where
the velocity v∗ is defined as

v∗ := [∂sλL(is)]s=s∗ . (23)

Here s∗ > 0 is such that λL(is∗) = 2πT .
For our (1 + 1)-d critical solutions, we can calculate λL(p)

analytically [45]. To compute the kernel we use the finite-T
critical Green’s functions obtained by conformal invariance
from the zero temperature power laws. The calculation is
simplified by factoring of correlators into functions of one
chiral variable x ± t . Now, solving the eigenvalue prob-
lem, we find that for any � ∈ ( 1

2 , 1), λL(p) satisfies the
following:

λL(p = ±i2πT ) = 2πT . (24)

Moreover, we checked that v∗ := [∂sλL(is)]s=2πT < vB = 1
always holds (see Fig. 1 of [45]). Therefore, there is a
nonempty regime of fast scrambling near the light cone:

C(t, x) ∼ e2πT (t−|x|), t ∈
( |x|

vB
,
|x|
v∗

)
. (25)

Such a behavior is qualitatively similar to that in
other higher dimensional generalizations of the SYK
model [14,26,47,49,50]. However, due to lack of Lorentz
symmetry, the butterfly velocity vB in those models has a
model dependent value C(t, x) ∝ e2πT (t−|x|/vB ), while in our
case vB = 1 is the speed of light.

Our result here is a concrete example of the “chiral” scram-
bling modes e2πT (t±x), which are argued to appear in generic
holographic CFTs [51] as a result of broken reparametrization
symmetry. It will be interesting to apply a general theory of
scrambling (e.g., [52,53]) to investigate whether the (2 + 1)-d
critical points are fast scrambling.

Discussion. We proposed a variant of the GNY theory as
a generalization of the SYK physics to higher dimensions.
The model is solvable in the large N limit and presents a
strongly coupled Lorentz invariant critical point. Furthermore,



direct calculation shows that in (1 + 1)-d the model exhibits
maximal scrambling. A natural next step, beyond the critical
saddle point solutions presented in this paper, is to derive a
low-energy effective theory of the dominant fluctuations in
analogy with the Schwarzian effective theory of the SYK
model [54].

The model introduced here can serve as a new starting
point for understanding strongly coupled quantum critical
points or phases. In (1 + 1)-d we have strongly correlated
gapless phases that are holographic CFTs. It will be in-
teresting to study the effect of various perturbations, such
as quenched disorder. The (2 + 1)-d solution exemplifies
a strongly coupled quantum critical point with itinerant

fermions. We may add a gauge field to obtain a new large
N limit of QED3. Finally, our conformal solutions also gives
a new paradigm for investigating how superconductivity can
emerge from critical fluctuations in the absence of quasipar-
ticles: indeed, if the coupling constants ga

i j in (2) are chosen
from the GOE ensemble, with ga

i j = ga
ji ∈ R, instead of GUE

as in (3), the theory allows superconducting solutions de-
scribed by Eliashberg equations [33,34].
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