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ABSTRACT
We present a composable design scheme for the develop-
ment of hybrid quantum/classical algorithms and workflows
for applications of quantum simulation. Our object-oriented
approach is based on constructing an expressive set of com-
mon data structures and methods that enable programming
of a broad variety of complex hybrid quantum simulation
applications. The abstract core of our scheme is distilled
from the analysis of the current quantum simulation algo-
rithms. Subsequently, it allows a synthesis of new hybrid
algorithms and workflows via the extension, specialization,
and dynamic customization of the abstract core classes de-
fined by our design. We implement our design scheme using
the hardware-agnostic programming language QCOR into
the QuaSiMo library. To validate our implementation, we
test and show its utility on commercial quantum processors
from IBM and Rigetti, running some prototypical quantum
simulations.

1 INTRODUCTION
Quantum simulation is an important use case of quantum
computing for scientific computing applications. Whereas
numerical calculations of quantum dynamics and structure
are staples of modern scientific computing, quantum simu-
lation represents the analogous computation based on the
principles of quantum physics. Specific applications are
wide-ranging and include calculations of electronic struc-
ture [1–4], scattering [5], dissociation [6], thermal rate con-
stants [7], materials dynamics [8], and response functions
[9].
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Presently, this diversity of quantum simulation applica-
tions is being explored with quantum computing despite
the limitations on the fidelity and capacity of quantum hard-
ware [10–12]. These applications are tailored to such lim-
itations by designing algorithms that can be tuned and
optimized in the presence of noise or model representations
that can be reduced in dimensionality. Examples include
variational methods such as the variational quantum eigen-
solver (VQE) [13–16], quantum approximate optimization
algorithm (QAOA) [17], quantum imaginary time evolution
(QITE) [18], and quantum machine learning (QML) among
others.

The varied use of quantum simulation raises concerns for
efficient and effective programming of these applications.
The current diversity in quantum computing hardware and
low-level, hardware-specific languages imposes a significant
burden on the application user. For instance, IBM provides
Aqua [19], which is part of the Qiskit framework, target-
ing high-level quantum applications such as chemistry and
finance. The emphasis of Aqua is on providing robust im-
plementations of quantum algorithms, yet the concept of
reusable and extensible workflows, especially for quantum
simulations, is not formally supported. The user usually has
to implement custom workflows from lower-level constructs,
such as circuits and operators, available in Qiskit Terra [20].
Similarly, Tequila [21] is another Python library that pro-
vides commonly-used functionalities for quick prototyping
of variational-type quantum algorithms. Orquestra [22], a
commercially-available solution from Zapata, on the other
hand, orchestrates quantum application workflows as black-
box phases, thus requires users to provide implementations
for each phase.

The lack of a common workflow for applications of quan-
tum simulation hinders broader progress in testing and
evaluation of such hardware. A common, reusable and ex-
tensible programming workflow for quantum simulation
would enable broader adoption of these applications and
support more robust testing by the quantum computing
community.
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In this contribution, we address development of common
workflows to unify applications of quantum simulation. Our
approach constructs common data structures and methods
to program varying quantum simulation applications, and
we leverage the hardware-agnostic language QCOR and
programming framework XACC to implement these ideas.
We demonstrate these methods with example applications
from materials science and chemistry, and we discuss how
to extend these workflows to experimental validation of
quantum computation advantage, in which numerical sim-
ulations can benchmark programs for small-sized models
[12, 23–26].

Upon release of the QuaSiMo library, we became aware
of the additional application modules available to the Qiskit
framework which share a number of features with our pro-
posed composable workflow design. In particular, the Qiskit
Nature module [27] introduces new concepts to model and
solve quantum simulation problems, and reiterates the need
for modular, domain-specific, and workflow-driven quantum
application builders, which the QuaSiMo work addresses.
The key differentiators for our work lie in the performance
and extensibility of the implementation. Since QuaSiMo is
developed on top of the C++ QCOR compiler infrastructure,
it can take advantage of optimal performance for classi-
cal computing components of the workflow, such as circuit
construction [28] or post-processing. Moreover, the plugin-
based extension model of QuaSiMo is distinct from that of
Qiskit Nature. Rather than requiring new extensions being
imported, QuaSiMo puts forward a common interface for all
of its extension points [29], and therefore enables the devel-
opment of portable user applications w.r.t. the underlying
library implementation.

2 SOFTWARE ARCHITECTURE
Cloud-based access to quantum computing naturally dif-
ferentiates programming into conventional and quantum
tasks [31, 32]. The resulting hybrid execution model yields
a loosely integrated computing system by which common
methods have emerged for programming and data flow. We
emphasize this concept of workflow to organize program-
ming applications for quantum simulation.

Figure 1 shows the blueprint of our Quantum Simulation
Modeling (QuaSiMo) library. The programming workflow is
defined by a QuantumSimulationWorkflow concept which
encapsulates the hybrid quantum-classical procedures per-
tinent to a quantum simulation, e.g., VQE, QAOA, or dynam-
ical quantum simulation. A quantum simulation workflow
exposes an execute method taking as input a Quantum-
SimulationModel object representing the quantum model
that needs to be simulated. This model captures quantum
mechanical observables, such as energy, spin magnetiza-
tion, etc., that we want the workflow to solve or simulate
for. In addition, information about the system Hamiltonian,
if different from the observable operator of interest, and

customized initial quantum state preparation can also be
specified in the QuantumSimulationModel.

By separating the quantum simulation model from the
simulation workflow, our object-oriented design allows the
concrete simulation workflow to simulate rather generic
quantum models. This design leverages the ModelFactory
utility, implementing the object-oriented factory method
pattern. A broad variety of input mechanisms, such as those
provided by the QCOR infrastructure or based on custom
interoperability wrappers for quantum-chemistry software,
can thus be covered by a single customizable polymorphic
model. For additional flexibility, the last createModel fac-
tory method overload accepts a polymorphic builder inter-
face ModelBuilder the implementations of which can build
arbitrarily composed QuantumSimulationModel objects.

QuantumSimulationWorkflow is the main extension point
of our QuaSiMo library. Built upon the CppMicroServices
framework conforming to the Open Services Gateway Initia-
tive (OSGi) standard [33], QuaSiMo allows implementation
of a new quantum workflow as a plugin loadable at run-
time. At the time of this writing, we have developed the
QuantumSimulationWorkflow plugins for the VQE, QAOA,
QITE, and time-dependent simulation algorithms, as de-
picted in Fig. 1. All these plugins are implemented in the
QCOR language [28, 34] using the externally-provided li-
brary routines.

At its core, a hybrid quantum-classical workflow is a
procedural description of the quantum circuit composi-
tion, pre-processing, execution (on hardware or simula-
tors), and post-processing. To facilitate modularity and
reusability in workflow development, we put forward two
concepts, AnsatzGenerator and CostFunctionEvaluator.
AnsatzGenerator is a helper utility used to generate quan-
tum circuits based on a predefined method such as the Trot-
ter decomposition [35, 36] or the unitary coupled-cluster
(UCC) ansatz [37]. CostFunctionEvaluator automates the
process of calculating the expectation value of an observ-
able operator. For example, a common approach is to use
the partial state tomography method of adding change-of-
basis gates to compute the operator expectation value in the
Z basis. Given the CostFunctionEvaluator interface, quan-
tum workflow instances can abstract away the quantum
backend execution and the corresponding post-processing
of the results. This functional decomposition is particularly
advantageous in the NISQ regime since one can easily in-
tegrate the noise-mitigation techniques, e.g., the verified
quantum phase estimation protocol [38], into the QuaSiMo
library, which can then be used interchangeably by all exist-
ing workflows.

Finally, our abstract QuantumSimulationWorkflow class
also exposes a public validate method accepting a vari-
ety of concrete implementations of the abstract Quantum-
ValidationModel class via a polymorphic interface. Given
the quantum simulation results produced by the execute
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Figure 1: The class UML diagram of the quantum simulation application. The fully typed version is provided
separately (see [30]).

method of QuantumSimulationWorkflow, the concrete im-
plementations of QuantumValidationModel must implement
its accept_results method based on different validation
protocols and acceptance criteria. For example, the accep-
tance criteria can consist of distance measures of the re-
sults from previously validated values, or from the results
of validated simulators. The measure may also be taken
relative to experimentally obtained data, which, with suf-
ficient error analysis to bound confidence in its accuracy,
can serve as a ground truth for validation. A more concrete
example in a NISQ workflow includes the use of the Quan-
tumSimulationWorkflow class to instantiate a variational
quantum eigensolver simulator, followed by the use of val-
idate to instantiate a state vector simulator. Results from
both simulators can be passed to the QuantumValidation-
Model accept_results method which evaluates a distance
measure method and optionally calls a decision method
which returns a binary answer. Other acceptance criteria in-
clude evaluation of formulae with input data, application of
curve fits, and user-defined criteria provided in the concrete
implementation of the abstract QuantumValidationModel
class. The validation workflow relies on the modular ar-
chitecture of our approach, which effectively means that

writing custom validation methods and constructing user-
defined validation workflows is achieved by extending the
abstract QuantumValidationModel class.

In our opinion, the proposed object-oriented design is
well-suited to serve as a pattern for implementing diverse
hybrid quantum-classical simulation algorithms and work-
flows which can then be aggregated inside a library under a
unified object-oriented interface. Importantly, our standard-
ized polymorphic design with a clear separation of concerns
and multiple extension points provides a high level of com-
posability to developers interested in implementing rather
complex quantum simulation workflows.

3 TESTING AND EVALUATION
Our implementation of the programming workflow for ap-
plications of quantum simulation is available online [39].
We have tested this implementation against several of the
original use cases to validate the correctness of the imple-
mentation and to evaluate performance considerations.
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3.1 Dynamical Simulation
As a first sample use case, we consider a non-equilibrium
dynamics simulation of the Heisenberg model in the form
of a quantum quench. A quench of a quantum system is
generally carried out by initializing the system in the ground
state of some initial Hamiltonian, 𝐻𝑖 , and then evolving the
system through time under a final Hamiltonian, 𝐻𝑓 . Here,
we demonstrate a simulation of a quantum quench of a one-
dimensional (1D) antiferromagnetic (AF) Heisenberg model
using the QCOR library to design and execute the quantum
circuits.
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Figure 2: Simulation results of staggered magnetiza-
tion for an Heisenberg model with nine spins after a
quantum quench. The Trotter step size (𝑑𝑡) is 0.05.

Our AF Heisenberg Hamiltonian of interest is given by

𝐻 = 𝐽
∑︁
⟨𝑖, 𝑗 ⟩

{𝜎𝑥𝑖 𝜎
𝑥
𝑗 + 𝜎

𝑦

𝑖
𝜎
𝑦

𝑗
+ 𝑔𝜎𝑧𝑖 𝜎

𝑧
𝑗 } (1)

where 𝐽 > 0 gives the strength of the exchange couplings
between nearest neighbor spins pairs ⟨𝑖, 𝑗⟩, 𝑔 > 0 defines the
anisotropy in the system, and 𝜎𝛼

𝑖
is the 𝛼-th Pauli operator

acting on qubit 𝑖. We choose our initial Hamiltonian to be
the Hamiltonian in equation 1 in the limit of 𝑔 → ∞. Thus,
setting 𝐽 = 1, 𝐻𝑖 = 𝐶

∑
𝜎𝑧
𝑖
𝜎𝑧
𝑖+1, where 𝐶 is an arbitrarily large

constant. The ground state of 𝐻𝑖 is the Néel state, given by
|𝜓0⟩ = | ↑↓↑ ... ↓⟩, which is simple to prepare on the quantum
computer. We choose our final Hamiltonian to have a finite,
positive value of 𝑔, so 𝐻𝑓 =

∑
𝑖 {𝜎𝑥𝑖 𝜎

𝑥
𝑖+1 +𝜎

𝑦

𝑖
𝜎
𝑦

𝑖+1 +𝑔𝜎
𝑧
𝑖
𝜎𝑧
𝑖+1}. Our

observable of interest is the staggered magnetization [40],
which is related to the AF order parameter and is defined
as

𝑚𝑠 (𝑡) =
1
𝑁

∑︁
𝑖

(−1)𝑖 ⟨𝜎𝑧𝑖 (𝑡)⟩ (2)

using namespace QuaSiMo;
// AF Heisenberg model
auto problemModel = ModelFactory::createModel(

"Heisenberg", {{"Jx", 1.0},
{"Jy", 1.0},
// Jz == g parameter
{"Jz", g},
// No external field
{"h_ext", 0.0},
{"num_spins", n_spins},
{"initial_spins",
initial_spins},
{"observable",
"staggered_magnetization"}});

// Time-dependent simulation workflow
auto workflow =

std::make_shared<TimeDependentWorkflow>();
workflow->initialize({{"dt", dt},

{"steps", n_steps}});
// Execute the workflow
auto result = workflow->execute(problemModel);
// Get the observable values
// (staggered magnetization)
auto obsVals =

result.get<std::vector<double>>("exp-vals");

Figure 3: Defining the AF Heisenberg problem model
and simulating its dynamics with QuaSiMo. In this ex-
ample, g is the anisotropy parameter, as shown in
equation 1, and n_spins is the number of spins/qubits.
initial_spins is an array of 0 or 1 values denoting the
initial spin state. initial_spins was initialized (not
shown here) to a vector of alternating 0 and 1 values
(Néel state). dt and n_steps are Trotter step size and
number of steps, respectively.

where 𝑁 is the number of spins in the system.
Fig. 2 shows sample results for 𝑁 = 9 spins for a three

different values for 𝑔 in 𝐻𝑓 . The qualitatively different be-
haviours of the staggered magnetization after the quench
for 𝑔 < 1 and 𝑔 > 1 are apparent, and agree with previous
studies [40]. We present a listing of the code expressing
this implementation in Fig. 3.

We develop QuaSiMo on top of the QCOR infrastructure,
as shown in Fig. 1; thus, any quantum simulation workflows
constructed in QuaSiMo are retargetable to a broad range of
quantum backends. The results that we have demonstrated
in Fig. 2 are from a simulator backend. The same code as
shown in Fig. 3 can also be recompiled with a -qpu flag
to target a cloud-based quantum processor, such as those
available in the IBMQ network.
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Currently available quantum processors, known as noisy
intermediate-scale quantum (NISQ) computers [41], have
relatively high gate-error rates and small qubit decoherence
times, which limit the depth of quantum circuits that can be
executed with high-fidelity. As a result, long-time dynamic
simulations are challenging for NISQ devices as current
algorithms produce quantum circuits that increase in depth
with increasing numbers of time-steps [42]. To limit the
circuit size, we simulated a small AF Heisenberg model,
eq. 1, with only three spins on the IBM’s Yorktown (ibmqx2)
and Casablanca (ibmq_casablanca) devices.

The simulation results from real quantum hardware for 𝑔
values of 0.0 and 4.0 are shown in Fig. 4, where we can see
the effects of gate-errors and qubit decoherence leading to
a significant impairment of the measured staggered magne-
tization (circles) compared to the theoretical values (solid
lines). In particular, Fig. 4 demonstrates how the quality of
the quantum hardware can affect simulation performance.
The Yorktown backend has considerably worse performance
metrics than the Casablanca backend1. Specifically, com-
pared to the Casablanca backend, Yorktown has a slightly
higher two-qubit gate-error rate, nearly double the read-out
error rate, and substantially lower qubit decoherence times.
While identical quantum circuits were run on the two ma-
chines, we see much better distinguishability between the
results for the two values of 𝑔 in the results from Casablanca
than those from Yorktown.

The staggered magnetization response to a quench for
a simple three-qubit AF Heisenberg model in Fig. 4, albeit
noisy, illustrates non-trivial dynamics beyond that of deco-
herence (decaying to zero). Improvements in circuit con-
struction (Trotter decomposition) and optimization, noise
mitigation, and, most importantly, hardware performance
(gate fidelity and qubit coherence) are required to scale up
this time-domain simulation workflow for large quantum
systems.

3.2 Variational Quantum Eigensolver
As a second use case demonstration, we apply the Varia-
tional Quantum Eigensolver (VQE) algorithm to find the
ground state energy of H2. The VQE is a quantum-classic
hybrid algorithm used to find a Hamiltonian’s eigenval-
ues, where the quantum process side is represented by a
parametrized quantum circuit whose parameters are up-
dated by a classical optimization process[43]. The algorithm
updates the quantum circuit parameters \ to minimize the
Hamiltonian’s expectation value 𝐸\ until it converges.

The performance of the VQE algorithm, as any other
quantum-classical variational algorithms [44], depends in

1Calibration data:
IBMQ Casablanca: Avg. CNOT Error: 1.165e-2, Avg. Readout Error: 2.069e-2,
Avg. T1: 85.68 `s, Avg. T2: 78.5 `s.
IBMQ Yorktown: Avg. CNOT Error: 1.644e-2, Avg. Readout Error: 4.440e-2,
Avg. T1: 50.95 `s, Avg. T2: 34.3 `s.
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Figure 4: Results of simulation an AF model (eq. 1)
for a system with three spins using the code snip-
pet in Fig. 3 targeting the IBMQ’s Yorktown (a) and
Casablanca (b) devices. Each data point is an aver-
age of five runs of 8192 measurement shots each. The
circuits are compiled and optimized using the QCOR
compiler before submitting for execution. The Trotter
time-step (𝑑𝑡) is 0.05.

part on the selection of the classical optimizer and the cir-
cuit ansatz. The design scheme implemented in this work
allows us to tune the VQE components to pursue better
performance. We present a listing of the code express-
ing this implementation in Fig. 5, in which we define the
different parameters of the VQE algorithm in a custom-
tailored way. In the code snippet, @qjit is a directive to
activate the QCOR just-in-time compiler, which compiles
the kernel body into the intermediate representation, and
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from qcor import *
# Hamiltonian for H2
H = -0.22278593024287607*Z(3) + ... + \

0.04532220205777769*X(0)*X(1)*Y(2)*Y(3) - \
0.09886396978427353

# Defining the ansatz
@qjit
def ansatz(q : qreg, params : List[float]):

X(q[0])
...
Rz(q[1],params[0])
Rz(q[3],params[1])
...
Rz(q[3],params[2])
...
H(q[3])
Rx(q[0], 1.57079)

# variational parameters
n_params = 3
# Create the problem model
problemModel =

QuaSiMo.ModelFactory.createModel(ansatz,
H,
n_params)

# Create the optimizer: spsa
optimizer = createOptimizer('nlopt',

{'algorithm':'spsa'})
# Create the VQE workflow
workflow = QuaSiMo.getWorkflow('vqe',

{'optimizer': optimizer})
# Execute
result = workflow.execute(problemModel)
# Get the result
energy = result['energy']

Figure 5: Code snippet to learn the ground state en-
ergy of H2 by the VQE. For the sake of simplicity, we
have omitted most of the terms in the Hamiltonian
and ansatz.

QuaSiMo.getWorkflow is a utility function of the library to
construct and initialize workflow objects of various types.
In Fig. 6(a), we present simulations considering the Simul-
taneous Perturbation Stochastic Approximation (SPSA) for
ansatz updating. There, we show the energy as a function
of the quantum circuits used in the learning process with a
budget of 200 function evaluations with 5000 shots (experi-
mental repetitions) per evaluation by using the QCOR’s VQE
module, QuaSiMo.getWorkflow(’vqe’), and by using the
Qiskit class aqua.algorithms.VQE [19]. In both cases, we
consider (0., 0., 0.) as the initial set of parameters, therefore
the energy values in the first iterations are similar, due to
the SPSA hyperparameter’s calibration. As it is expected,
since we are using the same optimizer in both quantum
simulations, there is not a relevant difference between the
learning paths. However, the execution time in QCOR is
shorter. This feature is presented in Fig. 6(b), where we
show the execution time rate between QCOR and Qiskit as a
function of the classical optimization algorithm. To evaluate
the typical execution time of each optimizer, we consider 51
runs of VQE towards the generation of 𝐻2 quantum ground
state.

Figure 6: Energy ground state estimation for 𝐻2 us-
ing VQE by using QCOR languange and Qiskit soft-
ware. In panel (a), we present the VQE’s learning
path using the stochastic algorithm SPSA to find a
quantum state with minimal energy. This plot shows
how the energy 𝐸\ approaches the exact value 𝐸∗ =

−1.1456295 Ha as the optimizer defines new quantum
circuits, following the variational principle. In addi-
tion, panel (b), presents an execution time ratio be-
tween QCOR’s VQE module and Qiskit’s VQE mod-
ule. The execution times ratio is below 1 (red dot-
ted line) for different classical optimizers. The dots
represent the 50th percentile of the execution time
ratio from 51 independent runs of VQE. Optimizer
labels correspond to Simultaneous Perturbation Sto-
chastic Approximation (SPSA), ADAptive Moment es-
timation (ADAM), Nelder-Mead, also known as down-
hill simplex algorithm (N-M), Constraint Optimiza-
tion By Linear Approximation (COBYLA), and the Se-
quential Least SQuares Programming (SLSQP).

3.2.1 Symmetry reduction. The presence of symmetries,
such as rotations, reflections, number of particles, etc.,
in the Hamiltonian model allows us to map the model
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to a model with fewer qubits [45]. In 𝐻2, we apply the
QCOR’s function operatorTransform(’qubit-tapering’,
H) to reduce the four-qubit Hamiltonian, see Fig. 5, to a one-
qubit Hamiltonian model. We present this implementation
in Fig. 7, in which we transform the Hamiltonian introduced
in Fig. 5 into a one-qubit model, and we redefine the anzats.
In the output section of Fig. 7, we present the one-qubit
model and the VQE’s output that converge to a similar value
of the four-qubit model.

# Now we taper Hamiltonian H2
H_tapered = operatorTransform('qubit-tapering', H)
# For the new Hamiltonian
# we must define an one qubit ansatz
@qjit
def ansatz(q : qreg, phi : float, theta : float):

Rx(q[0], phi)
Ry(q[0], theta)

$ Output:
$ Reduced Hamiltonian:
$ (-0.328717,0) + (0.181289,0) X0 + (-0.787967,0) Z0
$ with energy = -1.13727017466

Figure 7: Symmetry reduction of the Hamiltonian
model. In this snippet, we transform the Hamiltonian
model used in 6 to a one-qubit model following sym-
metry arguments. This feature is implemented in the
function operatorTransform(’qubit-tapering’, H).

3.2.2 Fermion-qubit map. An important feature included
in the QCOR compiler is the fermion-to-qubit mapping that
facilitates the quantum state searching in VQE. In Fig. 8, we
present an example of how to use OpenFermion operators
[47] in the VQE workflow. In that implementation, we define
the ansatz by using Scipy and OpenFermion, the QCOR
compiler decomposes the ansatz into quantum gates; we
follow the same structure presented in Fig. 5 for the VQE
workflow.

3.3 Quantum Approximate Optimization
Algorithm

To further demonstrate the utility of QCOR we present an
implementation of the quantum approximate optimization
algorithm (QAOA) [17]. QAOA translates a classical cost
function into a quantum operator 𝐻𝐶 then uses a variational
quantum-classical optimization loop to find quantum states
that minimize the expectation value ⟨𝐻𝐶 ⟩. The optimized
quantum states are then prepared and measured to ob-
tain bitstrings that correspond to classical solutions to the
optimization problem.

Figure 9 shows example python code that uses QCOR
simulations to find optimized quantum states with QAOA.
Opening lines define the number of qubits 𝑛 and construct
the problem Hamiltonian 𝐻𝐶 for MaxCut on a star graph
𝑆𝑛. The Hamiltonian is then used to create the QuaSiMo

from qcor import *
@qjit
def ansatz(q : qreg, x : List[float]):

X(q[0])
with decompose(q, kak) as u:

from scipy.sparse.linalg import expm
from openfermion.ops import QubitOperator
from openfermion.transforms import \

get_sparse_operator
qop = QubitOperator('X0 Y1') \

- QubitOperator('Y0 X1')
qubit_sparse = get_sparse_operator(qop)
u = expm(0.5j * x[0] * qubit_sparse).todense()

# Define the Hamiltonain
H = -2.1433 * X(0) * X(1) - 2.1433 * \

Y(0) * Y(1) + .21829 * Z(0) - \
6.125 * Z(1) + 5.907

num_params = 1
# Create the VQE problem model
problemModel =

QuaSiMo.ModelFactory.createModel(ansatz,
H,
num_params)

# Create the NLOpt derivative free optimizer
optimizer = createOptimizer('nlopt')
# Create the VQE workflow
workflow = QuaSiMo.getWorkflow('vqe',

{'optimizer': optimizer})
# Execute the workflow
# to determine the ground-state energy
result = workflow.execute(problemModel)
energy = result['energy']

Figure 8: Here we depict how to use OpenFermion
operators to construct the state-preparation kernel
(ansatz) for the VQE workflow. We use SciPy [46]
and OpenFermion [47] to construct the exponential
of (𝑋0𝑌1 − 𝑌0𝑋1) operator as a matrix. The matrix will
be decomposed into quantum gates by the QCOR com-
piler.

model and workflow to simulate 𝑝-step QAOA and return
the expectation ⟨𝐻𝐶 ⟩, similar to the previous VQE example
of Fig. 5.

Figure 10 shows optimized energies ⟨𝐻𝐶 ⟩ computed in
QCOR for star graphs with numbers of qubits 𝑛 = 2, ..., 9 at
various QAOA depth parameters 𝑝. Each time the program
is run it begins with random initial parameters to be opti-
mized, so we used several random starts for some of the
graphs, keeping the smallest result as the ⟨𝐻𝐶 ⟩ shown in the
figure. The QCOR results are in perfect agreement with the
optimized standards [48] of Lotshaw et al. [49]. The results
have interesting features, for example when 𝑛 is odd perfect
ground state energies ⟨𝐻𝐶 ⟩ = 𝐸0 are obtained at 𝑝 = 2, while
when 𝑛 is even the results need 𝑝 = 3 to approach close to
𝐸0. The simplicity of the QCOR code and simulations make
this an attractive route to studying interesting features like
these in future research on QAOA.
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from qcor import *
# QAOA for unweighted MaxCut
# Define a star graph Hamiltonian
n_qubits = 8
H = 0
for n in range(1,n_qubits):

H += -0.5*(1-Z(0)*Z(n))
# create QuaSiMo model
problemModel = QuaSiMo.ModelFactory.createModel(H)
# Create the NLOpt derivative-free optimizer
optimizer = createOptimizer('nlopt')
# QAOA steps p
p = 3
# Quasimo workflow
workflow = QuaSiMo.getWorkflow('qaoa',

{'optimizer': optimizer,
'steps': p})

# Execute the workflow
# to determine the energy expectation value
result = workflow.execute(problemModel)
energy = result['energy']

Figure 9: Code to find the expectation value of the
cost Hamiltonian with QAOA, for a star-graph in-
stance of the unweighted MaxCut problem.

-9
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Figure 10: Optimized expectation values of the
cost Hamiltonian 𝐻𝐶 for star-graph instances of un-
weighted MaxCut with QAOA.

3.4 Quantum Imaginary Time Evolution
Algorithm

To compute the ground-state energy of an arbitrary Hamil-
tonian, in addition to VQE as we have demonstrated in 3.2,
there is another algorithm, so-called Quantum Imaginary
Time Evolution (QITE) [18, 50], which does not require the
use of an ansatz nor an optimizer. In QITE, we evolve the
state through imaginary time 𝑖𝑡 ≡ 𝛽 by applying the time-
evolution operator 𝑈 = 𝑒−𝛽𝐻 , which minimizes the system
energy exponentially. To do so, for each imaginary time-step

// Initial state preparation
__qpu__ void state_prep(qreg q) {

// e.g., |100>
X(q[0]);

}

// Create the Hamiltonian: 3-qubit TFIM
auto observable = -(Z(0) * Z(1) + Z(1) * Z(2) +

X(0) + X(1) + X(2));
// Construct the problem model
auto problemModel =

ModelFactory::createModel(state_prep,
&observable);

// Create the qsearch IRTransformation
auto qsearch_optimizer =

createTransformation("qsearch");
// QITE workflow: 20 steps with dbeta = 0.45
// Also, use qsearch to optimize
// the propagating circuit.
auto workflow =

getWorkflow("qite",
{{"steps", 20},
{"step-size", 0.45},
{"circuit-optimizer",

qsearch_optimizer}});
// Execute
auto result = workflow->execute(problemModel);

Figure 11: Code snippet (in C++) to find the ground-
state energy of a three-qubit TFIM Hamiltonian using
the QITE workflow. In this example, we run the QITE
algorithm for a total imaginary time 𝛽 of 9.0 (𝑑𝛽 = 0.45,
20 steps). Additionally, we use the QSearch algorithm
from BQSKit to optimize QITE circuits during work-
flow execution. The state_prep kernel is used to ini-
tialize the qubits into the desired initial state, e.g.,
|100⟩ in this particular case.

Δ𝛽, we approximate the imaginary time evolution based on
the results of the previous steps.

As shown in Fig. 1, the QITE workflow is integrated into
the QuaSiMo library. In this example, we demonstrate the
use of QITE to find the ground state energy of a three-qubit
transverse field Ising model (TFIM),

𝐻 = 𝐽𝑧

𝑁−1∑︁
𝑖=1

𝜎𝑧𝑖 𝜎
𝑧
𝑖+1 + ℎ𝑥

𝑁∑︁
𝑖=1

𝜎𝑥𝑖 (3)

where 𝐽𝑧 = ℎ𝑥 = −1.0 and 𝑁 = 3 is the number of spins
(qubits).

Fig. 11 is the code snippet to set up the QuaSiMo problem
description and workflow for this problem. The problem
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model is captured by a single Hamiltonian operator con-
structed by direct Pauli operator algebra. We also want to
note that the Pauli operator algebra of QuaSiMo allows for
hierarchical construction of the Hamiltonian, e.g., via for
loops, suitable for generic Hamiltonians similar to the one
described in eq. (3).

For QITE workflow configurations, we set step-size to
0.45 and steps to 20, for a total imaginary time of 𝛽 = 9.0
(ℏ = 1). The system begins in different initial states by using
a state-preparation circuit, as shown in Fig. 11. Similar
to the Python API, users can also use the utility function
getWorkflow to retrieve an instance of the QITE workflow
from the QCOR service registry with the name key "qite"
as shown in Fig. 11.

The main drawback of QITE algorithm is that the prop-
agating circuit size increases during the imaginary time-
stepping procedure. To alleviate this constraint, especially
for execution on NISQ hardware, QuaSiMo’s QITE workflow
implementation support custom, externally-provided circuit
optimizers that will be invoked during the algorithm execu-
tion to minimize the circuit depth. In this demonstration, we
take advantage of the QSearch [51] optimizer from BQSKit
library, which is capable of synthesizing constant-depth
circuits for a variety of common use cases including the
TFIM model in (3). For instance, in this example, the final
QITE circuit (step = 20) has approximately 8,000 gates
(3,000 CNOT gates), which is clearly beyond the capability
of current NISQ devices. Thanks to QSearch, we can always
re-synthesize a constant depth circuit with only 14 CNOT
gates (87 gates in total) for any of the time steps, which
is the theoretical lower bound [52], 1

4 (4
𝑛 − 3𝑛 − 1) = 13.5,

for CNOT gate count in three-qubit circuits. The results of
the QITE workflow execution are shown in Fig. 12, where
we can see the energy value exponentially decays to the
analytically computed ground state energy of -3.49396 for
all initial states.

4 CONCLUSIONS
We have presented and demonstrated a programming work-
flow for applications of quantum simulation that promotes
common, reusable methods and data structures for scien-
tific applications.

We note that while the framework presented here is read-
ily applicable to use cases in the NISQ era - with the Quan-
tumSimulationWorkflow in particular being extendable to
NISQ simulation algorithms such as VQE - the workflow
is also extendable to universal algorithms. Code portabil-
ity is ensured through intermediate representation that is
then implemented for each backend according to specific
APIs, which are accessible in the QuaSiMo library. This en-
ables rapid porting of a simulation algorithm to multiple
machines (write once, run everywhere paradigm). This is an
ideal environment in which to construct both benchmarks
and validation protocols, along with short depth quantum
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Figure 12: QITE results for 3-qubit TFIM with differ-
ent initial states, step size = 0.45. The red dashed line
represents the true ground-state energy of -3.49396.

simulations that can quickly be run on multiple processors
and directly compared.

While we maintain a focus on rapid prototyping of quan-
tum simulation on today’s NISQ devices, we note that the
nature of the intermediate representation and the modular
backend structure enable targeting fault tolerant devices as
well. A fault tolerant (FT) architecture may be represented
as an additional backend with encoding transpiler prepro-
cessing. While this configuration is ideal for QuaSiMo’s un-
encoded qubit targets, we also note that the parent lan-
guage QCOR, is capable of expressing fully quantum-error-
correction-encoded algorithms as well. Therefore, we ex-
pect the framework to be extendable and to find use in
workflows involving universal or FT applications in the fu-
ture.
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