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Abstract

The frequency and intensity of drought are expected to increase in the future, yet the 

consequences for soil microbial communities and functioning remain unclear. Processes 

such as decomposition could be maintained if microbial communities become more 

drought tolerant. However, increased drought tolerance might involve physiological costs 

with uncertain consequences for ecosystem processes. Here we used the trait-based model 

DEMENT to quantify the sensitivity of microbial traits, community dynamics, and litter 

decomposition to variation in drought tolerance costs. These costs were imposed as a 

physiological tradeoff between drought tolerance and carbon use efficiency. We ran 

simulations across a range of drought tolerance costs and with climate forcing from 

ambient and drought treatments in a Southern California grassland that experiences 

seasonal summer drought. As expected, zero or low costs of tolerance allowed drought-

tolerant taxa to increase in abundance under ambient simulation conditions. More drought 

tolerant communities had greater microbial biomass but lower extracellular enzyme 

investment due to biological feedbacks involving enzyme production. These two responses 

counteracted one another, leaving decomposition unchanged relative to virtual microbial 

communities with no drought tolerance. Simulated decomposition rates were one-third 

lower under drought treatment, but there were no differences in microbial drought 

tolerance compared to simulations forced with ambient climate. This model result suggests 

that seasonal drought is a more important environmental filter than reduced precipitation 

during the wet season in our Mediterranean climate system. Overall, our simulations 

indicate that microbial community responses to drought are not likely to increase 

decomposition rates, even if CUE costs are low. Using the simulation approach described 

2

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

2



here, the DEMENT model could be modified to incorporate additional mechanisms of 

microbial drought tolerance and their associated physiological costs as new empirical data 

become available.

Keywords: Carbon use efficiency; Drought tolerance; Extracellular enzyme; California 

grassland; Litter decomposition; Trait-based model
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1. Introduction

Microbes regulate multiple aspects of ecosystem response to environmental variation, 

including climate change (Allison and Martiny, 2008; Bardgett et al., 2008). In many areas 

of the globe, especially southwestern North America, drought frequency and intensity are 

increasing (Cayan et al., 2010; Cook et al., 2015; Seager et al., 2007). These climatic changes

could alter microbial communities (Cregger et al., 2012; Sheik et al., 2011) and inhibit 

microbial processes such as decomposition and respiration that determine carbon fluxes in 

surface soils (Allison et al., 2013; Evans and Burke, 2013; Manzoni et al., 2012a; Zeglin et 

al., 2013). 

On the other hand, microbes have evolved mechanisms to survive and metabolize at low 

water potential (Potts, 1994). Such mechanisms could enable microbial communities to 

sustain biogeochemical fluxes in the face of drought. For example, microbes can accumulate

osmolytes (Harris, 1981; Schimel et al., 2007; Warren, 2014), produce exopolysaccharides 

(EPS) (Roberson and Firestone, 1992), form thick cell walls, or enter a dormant state (Jones

and Lennon, 2010; Potts, 1994). At the same time, desiccation tolerance mechanisms could 

trade off against other aspects of physiology (Raven, 1985; Schimel et al., 2007). For 

example, microbial taxa that survive better under drought might have lower growth 

efficiency due to increased metabolic costs (Killham and Firestone, 1984a) or fewer 

resources to invest in enzymatic machinery (Sardans and Peñuelas, 2010).

Predicting biogeochemical responses to drought requires a framework for linking microbial

physiology with community and ecosystem processes (Schimel et al., 2007). Desiccation 
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tolerance and associated physiological tradeoffs should affect microbial competitive ability 

and community interactions (Lennon et al., 2012). Changes in the microbial community 

should in turn influence ecosystem processes such as decomposition under drought

(Bouskill et al., 2016). The goal of this paper is to develop a theoretical basis for predicting 

how microbial physiological responses might structure communities and their associated 

decomposition rates under drought. To accomplish this goal, we incorporate drought 

tolerance mechanisms and tradeoffs into a trait-based model of microbial community 

dynamics. We aim to generate model predictions that can be compared with molecular-

based surveys of microbial drought tolerance strategies (Evans and Wallenstein, 2014; 

Placella et al., 2012) and field data on decomposition rates under drought conditions

(Allison et al., 2013). 

Trait-based models are relevant for this aim because they can account for tradeoffs among 

environmental tolerance and other physiological traits that affect biogeochemical cycling

(Bouskill et al., 2012; Follows et al., 2007). Building on prior models of drying and 

rewetting responses with simplified soil microbial communities (Evans et al., 2016; Zhang 

et al., 2014), here we update the DEMENT model (Allison, 2014, 2012) to represent drought

tolerance traits and tradeoffs in diverse microbial communities with explicit spatial 

structure. To mimic real communities, DEMENT represents feedbacks and interactions with

enzymatic traits involved in decomposition of organic compounds found in litter and soil. 

Here we focus on predicting decomposition rates in surface leaf litter in Southern California

because microbial decomposers in this environment likely experience very low water 

potentials for much of the year (Dirks et al., 2010; Newell et al., 1991).
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Using DEMENT as a conceptual tool, we tested four hypotheses related to microbial drought

tolerance and litter decomposition (Fig. 1). Because greater ability to tolerate desiccation 

should reduce microbial mortality under drought, we hypothesized that 1) introducing trait

variation for drought tolerance into the model community should increase litter 

decomposition rates. However, if there are physiological costs associated with drought 

tolerance (i.e. a trait tradeoff), the positive effects on decomposition might diminish. 

Therefore we hypothesized that 2) community drought tolerance, microbial biomass, and 

litter decomposition should decline with increasing tradeoff costs in terms of carbon use 

efficiency (CUE). We framed the tradeoff this way because CUE may decline with increasing 

osmolyte production (Killham and Firestone, 1984a), but we recognize that different costs 

may apply to other drought tolerance mechanisms (such as dormancy). Because lower 

moisture levels should select for microbial taxa with greater drought tolerance, we 

additionally hypothesized that 3) drought treatment (a ~50% reduction in precipitation) 

would increase the average level of drought tolerance in the microbial community. 

Following the same rationale, we hypothesized that 4) increasing the sensitivity of 

microbial death rate to desiccation would increase average drought tolerance.

2. Material and Methods

2.1. Modeling drought responses

In the DEMENT model, a large number of bacterial and fungal taxa (combined n = 100) 

compete on a spatial grid representing the surface of a decomposing leaf. Microbial growth 

in DEMENT is a function of multiple factors, including substrate type and stoichiometry, 
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enzyme production rates, uptake investment, and temperature. Cells divide when they 

reach a threshold biomass and disperse to adjacent grid points. Enzymes produced by the 

microbial taxa interact locally with substrates to generate monomers for uptake. Simulated 

extracellular enzymes have a range of kinetic properties, substrate specificities, and 

constitutive versus uptake-driven mechanisms. Model parameters are described in Table 1, 

and model code is available on GitHub (https://github.com/stevenallison/DEMENT).

The updated version of DEMENT used here introduces moisture sensitivity of microbial 

mortality, enzyme kinetics, uptake, and abiotic pathways of monomer loss (leaching, 

gaseous emissions, physical movement, etc.). Microbial death rates () are assumed to 

increase as water potential (, in MPa) declines:

τ=τB (1−β ∙Ψ (1−α ) ) (1)

where B is the bacterial death rate at  = 0 (F is the analogous rate for fungi),  is a scalar 

that represents death rate sensitivity to water potential, and  is a drought tolerance 

parameter that can vary between zero and 1. Increasing values of  imply that death rates 

increase more sharply as water potential declines. As  approaches 1, sensitivity to water 

potential approaches zero, and  converges on B. The parameter  is intended to represent

drought tolerance, whereby values approaching 1 represent increasing investment in 

drought tolerance mechanisms. The exact mechanism (osmolytes, EPS, cell walls, etc.) is not

specified, so the current representation of drought tolerance is intended to be generic.

Moisture sensitivity of enzyme and uptake kinetics is represented through modification of 

the per-enzyme reaction velocity V:
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V=
V max [S] f (T ) ekV Ψ

Km+[S]

(2)

where Vmax is the maximum reaction velocity per enzyme mass, f(T) is an Arrhenius 

function of temperature T, Km is the half-saturation constant, [S] is substrate concentration, 

and kV is a scalar on the water potential. For instance, a value of 0.05 for kV would result in a 

92% decline in V at  = –50 MPa (very dry) compared to  = 0 MPa (very wet). Zero values 

for kV result in no moisture sensitivity of V. Abiotic monomer loss rates L are parameterized

with a similar moisture sensitivity function:

L=L0 e
kLΨ (3)

where kL is a scalar on the water potential that results in L = L0 when set to zero. The one-

parameter moisture sensitivity functions for V and L are highly simplified and only 

intended to represent a general reduction in process rates as water potential declines. We 

do not attempt to parse out changes in diffusion rates, tortuosity, and effective substrate 

concentrations. Although relevant, these mechanisms would require a substantial increase 

in model complexity to parameterize. However, we do assume that  moisture constraints 

are more severe for uptake and abiotic monomer loss than for extracellular enzymes that 

may still interact with substrates in thin water films (Zhang et al., 2014). Therefore kV for 

uptake and kL were set to 0.10 as opposed to 0.05 for kV of extracellular enzymes (Table 1), 

meaning that a 92% decline in uptake or abiotic monomer loss occurs at –25 MPa.

Costs for drought tolerance were implemented through a tradeoff with carbon use 

efficiency (CUE). CUE is defined here as 1 – the fraction of carbon uptake that is associated 

with growth respiration (Allison, 2014); it does not account for other processes such as 
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cellular maintenance or enzyme production that also generate respiration (Manzoni et al., 

2012b). CUE () is assumed to decline with increasing drought tolerance () according to:

ε=ε0−mDα (4)
where 0 is the reference CUE and mD is the parameter that controls the cost of drought 

tolerance.

2.2. Model forcing

Simulations were forced with temperature, moisture, and litter chemistry data from a 

grassland ecosystem at Loma Ridge, CA, USA (Allison et al., 2013; Parolari et al., 2015). A 

drought manipulation at this site achieves a 40-50% reduction in precipitation by excluding

selected storm events during the winter rainy season (Fig. S1, Parolari et al. 2015). 

DEMENT requires daily temperature and water potential data for the litter layer (Fig. S1). 

Water potentials were estimated with fuel moisture sensors that detect the water content 

of a standardized 1 cm diameter wooden dowel (Campbell Scientific, CS506-L). In each of 

the ambient and drought treatments, water contents () were averaged from two sensors 

with continuous records from 14 December 2010 to 13 December 2013, aggregated to daily

averages, and converted to water potential values (MPa) based on birch wood relationships 

described in Dix (1985):

Ψ=−100.118−0.114log10 θ (5)
Water contents generally ranged from 0.05 to 0.70 g water g-1 wood. The fuel moisture 

sensors are subject to instrument drift that could bias the calculated water potentials 

across the treatments. To correct for this potential bias, we scaled the datasets such that 

ambient and drought treatments reached equivalent minimum water potentials during the 
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driest summer (2013). Litter chemistry data were taken from ambient conditions in a 

previous study (Allison et al., 2013) and are also given in Table S1.

2.3. Model simulations

Simulated microbial communities were initiated with 50% bacteria and 50% fungi (by 

biomass) and total biomass densities of ~1 mg cm-3. Although bacteria dominate leaf litter 

in our system (Alster et al., 2013), simulations were initiated with 50% fungal biomass 

because fungi in the model are more vulnerable to extinction due to their larger cell sizes 

and correspondingly smaller population sizes. Note that DEMENT simulates saprotrophic 

fungi, as mycorrhizal fungi are rare in grassland leaf litter (Matulich et al., 2015).

Trait values for each taxon were assigned at random from uniform distributions as in 

Allison (2012, 2014). The limits of the distributions were based on literature values where 

available, and some traits were assigned based on correlations with other traits. A negative 

relationship is assumed between enzyme specificity and enzyme efficiency, and a positive 

relationship is assumed between Vmax and Km as in Allison (2012). In contrast to the original 

model, we do not assume a positive relationship between CUE and enzyme production; 

there is no direct effect of enzyme traits on CUE. However, the metabolic costs of enzyme 

production tend to reduce growth efficiency and likely trade off indirectly with drought 

tolerance. Initial trait values are fixed for each taxon, but community-average trait values 

change throughout simulations as taxa with different trait values shift in abundance.
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For each field treatment, ambient and drought, we conducted 9 simulation scenarios with 

13 replicates each (Table 2). The “base” scenario assigned a drought tolerance of zero to all 

taxa. For the remaining 8 scenarios, drought tolerance was assigned to taxa based on a 

uniform distribution between zero and 1. Each of the 8 scenarios corresponds to a different 

magnitude of drought tolerance cost ranging from zero (mD = 0) to high cost (mD = 0.35). We

chose this range because the true costs are poorly known but probably cannot represent 

more than 35% of the substrate uptake rate without severely constraining growth. We also 

tested the consequences of an increase in drought sensitivity of mortality by conducting 

additional simulations (10X Beta) under ambient forcing in which  was increased from 0.2

to 2.0, and B (and F) were decreased by a factor of 5.

All simulations were initiated on 14 December 2010 and run on a daily timestep. A new 

cohort of litter was input to the model every 365 days. There is no dispersal of new taxa 

into the simulations; however, cell locations are randomized at the start of each year, and 

taxa that go extinct (reach zero biomass) during a given year may in some cases be 

reintroduced at the start of the next year. Reintroduction can occur because taxa are 

assigned to the model grid at the start of each year based on their average frequencies (not 

their final frequencies) from the prior year. Simulations were run for 3 years (through 13 

December 2013) except for the simulations under ambient conditions which were extended

to 12 years and forced with the ambient climate record recycled 4 times. The extended 

simulations were run to test whether communities and average trait values would continue 

to change after 3 years.

11

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

11



2.4. Model output analyses

Output variables for analysis included drought tolerance, CUE, microbial biomass, enzyme 

investment, and litter mass loss. All analyses were conducted on the third year of the 

simulation. For drought tolerance, CUE, and enzyme investment, we calculated average 

values for the initial community as well as community averages weighted by taxon biomass 

integrated across the third litter cohort. Our metric of enzyme investment was calculated as

the sum of constitutive and inducible enzyme production rates across all enzymes, 

weighted by each enzyme’s Vmax. Microbial biomass is reported as a total carbon 

concentration (mg cm-3) averaged across the third simulation year. Litter mass loss is the 

percentage of initial litter mass lost by the end of the simulation (for the third litter cohort);

microbial by-products were not counted as mass lost. We also analyzed shifts in microbial 

trait values with seasonal changes in moisture by plotting biomass-weighted drought 

tolerance versus enzyme investment for taxa from all 13 ambient replicates at the end of 

the wet versus dry seasons.

Across all scenarios and treatments, replicate number was treated as a random factor, such 

that all simulations with the same replicate number started with the same random number 

seed and thus the same initial conditions (taxon traits, cell positions, etc.). Paired t-tests 

were therefore used to compare means among scenarios and treatments. To account for 

multiple comparisons, we used 0.05/n as the threshold for statistical significance where n =

the number of comparisons (Bonferroni correction).

3. Results
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3.1. Model dynamics

Microbial activity in DEMENT was greatest late in the wet season (Fig. 2). Turnover of litter 

chemical substrates and formation of microbial byproducts was greatest between March 

and June (Fig. 2C). Likewise, microbial biomass (Fig. 2B) and respiration (Fig. 2D) were 

elevated during this time period as substrate was converted into microbial biomass and 

CO2. In most simulations, there was a pulse of respiration in October corresponding to the 

first rain event of the wet season that mobilized monomers accumulated during the 

preceding dry season.

3.2. Drought tolerance

Relative to the base scenario with no drought tolerance, the inclusion of drought tolerance 

traits in the microbial community had consequences for DEMENT predictions of microbial 

functioning. After three simulation years, drought tolerance increased in the ambient 

community only if there was no tradeoff with CUE (i.e. drought tolerance cost = zero, Fig. 3).

With weak tradeoffs (low cost scenarios, mD = 0.05-0.15), drought tolerance did not differ 

significantly from the initial community average. Stronger tradeoffs (costs of 0.20 or 

greater) resulted in significant selection against drought tolerance.

3.3. Carbon use efficiency

Average CUE of the initial community reflects the tradeoff with drought tolerance imposed 

in the model (Fig. 4). With zero tradeoff, there was no effect of including drought tolerance 

on CUE. As the CUE cost of drought tolerance approached 0.15 in the ambient simulations, 

biomass-weighted CUE declined to 0.4370.005 (meanSEM), which was not significantly 
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different from the initial community value. As tradeoff costs increased beyond 0.15, 

biomass-weighted CUE stabilized around 0.434, meaning that taxa with high drought 

tolerance and therefore low CUE were increasingly selected against.

3.4. Microbial biomass, enzyme investment, and litter mass loss

Relative to the base scenario with no drought tolerance, including zero-cost tolerance in the

ambient simulations resulted in greater microbial biomass, although the difference was 

only marginally significant (P = 0.00625) after Bonferroni correction (Fig. 5A). With further

cost increases, microbial biomass declined. In contrast to microbial biomass, enzyme 

investment declined under low-cost scenarios but then rebounded as costs increased 

further (Fig. 5B). Trends in litter mass loss reflected offsetting changes in microbial 

biomass and enzyme investment. Despite higher biomass, there was no significant effect of 

zero- or low-cost drought tolerance on mass loss (Fig. 5C). Higher costs of drought 

tolerance reduced mass loss relative to the base scenario, consistent with reduced 

microbial biomass.

3.5. Drought responses

Simulated drought had almost no effect on biomass-weighted physiological traits yet had 

strong negative effects on microbial biomass and litter mass loss. Relative to ambient 

conditions, drought treatment elicited no significant differences in drought tolerance, CUE, 

or enzyme investment under any of the model scenarios (Fig. 3, Fig. 4, Fig. 5B). In contrast, 

drought treatment significantly reduced microbial biomass by 24-34% (Fig. 5A) and 

significantly reduced mass loss by 28-37% (Fig. 5C) across the model scenarios.
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3.6. Increased moisture sensitivity of mortality

Increasing the sensitivity of microbial death rate to desiccation resulted in significantly 

greater selection for drought tolerance (Fig. 3) but had no significant effect on litter mass 

loss (Table S2). Biomass-weighted drought tolerance was significantly greater than the 

initial community average under zero- and low-cost scenarios (Fig. 3). Under the non-zero 

cost scenarios, increased sensitivity of death rate to desiccation resulted in lower CUE 

relative to the ambient and drought simulations with less sensitive death rates (Fig. 4). 

Although variation in enzyme investment across the cost scenarios was more pronounced, 

there were no major effects of increased sensitivity to desiccation on trends in enzyme 

investment, microbial biomass, or decomposition (Table S2).

3.7. Seasonal changes in traits

Biomass-weighted trait values shifted across wet versus dry seasons (Fig. 6). Although a 

tradeoff between drought tolerance and CUE is imposed in the model, a tradeoff also 

emerges between drought tolerance and enzyme investment due to the metabolic costs of 

enzyme production. After the wet season, communities were dominated by taxa with low 

drought tolerance and high values for CUE and enzyme investment (Fig. 6A). After the dry 

season, communities shifted to have higher drought tolerance but lower values of enzyme 

investment and CUE (Fig. 6B). This seasonal shift was observed consistently across the 

extended simulations, and there was no evidence for a continued directional change in trait 

values after 3 years. After only 1 year, drought tolerance and enzyme investment traits 

continued to converge on similar wet and dry season values year after year (Fig. 6C).
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4. Discussion

The physical effects of seasonal and experimental drought were well-represented in 

DEMENT. Consistent with empirical data from Loma Ridge, CA (Allison et al., 2013; Alster et

al., 2013), live microbial biomass declined sharply and there was almost no microbially-

driven litter decomposition during the dry season (Fig. 2B, C). However, the decline in 

microbial biomass may be unique to litter because microbial biomass measured by 

chloroform fumigation does not decline during the dry season in California grassland soils

(Boot et al., 2013). Following the first rains, DEMENT predicted a pulse of respiration due to

metabolism of labile organic carbon accumulated throughout the dry season, consistent 

with observations and models of ongoing enzymatic activity during drought periods in 

semi-arid soils (Zhang et al., 2014). In the drought treatment, which is only imposed during 

the wet season, empirical data from Loma Ridge show that litter decomposition rates 

decline by ~25%, which is consistent with the magnitude of decline predicted by DEMENT 

(Fig. 5C). Thus even small reductions in moisture availability during the wet season have a 

large impact on decomposition because microbial activity is relatively high.

Surprisingly, model outputs did not support the hypothesis that introducing drought 

tolerance would increase litter decomposition rates, even when there was no cost for 

tolerance. Instead our results suggest that biological feedbacks may constrain the effects of 

drought adaptation on decomposition, consistent with previous studies in which 

antagonistic microbial interactions limit functioning (Allison, 2005; Gore et al., 2009). 

Although microbial biomass increased somewhat in communities with drought tolerance 

16

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

16



traits, biological feedbacks led to an offsetting reduction in enzyme investment (Fig. 5). The 

feedback involves a shift toward “cheater” strategies in the microbial community, whereby 

taxa with lower enzyme production (and lower associated costs) increase in abundance. 

Cheating is favored because higher biomass densities increase access to the enzymatic 

products of neighboring cells (Allison, 2012). Reductions in enzyme activity have also been 

observed empirically in response to drought (Sardans and Peñuelas, 2010, 2005).

Consistent with hypothesis 2, our results indicate that drought tolerance traits and 

decomposition rates decline with increasing tradeoff costs in terms of CUE. CUE is an 

important determinant of growth rate and therefore competitive ability in real microbial 

populations and the DEMENT model (Allison, 2014; Sinsabaugh et al., 2013). Our model 

formulation reflects evidence that strategies such as osmolyte and EPS production require 

additional metabolic machinery whose maintenance reduces growth efficiency (Killham 

and Firestone, 1984a, 1984b; Schimel et al., 2007). Still we recognize that our version of the

drought tolerance-CUE tradeoff is a simplification of many physiological mechanisms 

potentially involved in drought tolerance (Manzoni et al., 2014). 

Nonetheless, any drought tolerance strategy is likely to involve physiological costs. Under 

desiccating conditions, microbial respiration declines (Manzoni et al., 2012a) and cells 

must maintain protein conformation, membrane integrity, and other vital functions to avoid

death. In a classic review, Potts (1994) described the physiological challenges of desiccation

and emphasized osmolyte and EPS production as strategies to stabilize proteins and 

membranes through water replacement. More recently, osmolyte production has been 
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observed in drying soils, but with increased costs in terms of carbon demand (Bouskill et 

al., 2016; Warren, 2016, 2014). Biofilm production also promotes drought tolerance but 

reduces microbial growth potential under culture conditions (Lennon et al., 2012). 

Alternative strategies such as dormancy may entail unique physiological costs, such as 

synthesis and maintenance of spore structures (Lennon and Jones, 2011).

Aside from drought tolerance costs, other factors also influenced the average level of 

drought tolerance observed in our model simulations. Even with cost-free tolerance and 

high sensitivity to desiccation, not all taxa remaining in the community were completely 

drought tolerant after 3 years. The maximum biomass-weighted average drought tolerance 

achieved by a single community was 0.927, and the average maximum across communities 

was 0.776, not 1.0 (Fig. 3). Our extended simulations suggest that these values do not 

increase further over time (Fig. 6C), meaning that the simulated communities will never 

become completely drought tolerant. The reason is probably that in DEMENT and in real 

communities, multiple traits determine taxon performance (Martiny et al., 2015). Due to 

stochastic trait assignment in DEMENT and evolutionary history in real microbes, taxa with

optimal drought tolerance traits (i.e.  = 1.0) need not have optimal values for other traits, 

such as resource acquisition potential.

In contrast to our third hypothesis, simulated drought treatment had essentially no effect 

on drought tolerance traits, although there were clear negative effects of drought on 

microbial biomass and decomposition rate. This result can potentially be explained by 

strong seasonal variation in moisture availability. Microbial taxa in DEMENT, and in the 
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field, experience intense drought every summer season. Seasonality explains the majority 

of variation in microbial community composition at Loma Ridge (Matulich et al., 2015), and

seasonal shifts in drought tolerance and enzyme investment are evident in DEMENT. 

Together these patterns suggest that drought treatment (40-50% reduction in annual 

precipitation) is a much weaker selective force on microbial communities than seasonal 

drought (Matulich et al., 2015). Microbial taxa that can survive the seasonal drought are 

probably pre-adapted to survive experimental drought, especially given the high degree of 

interannual precipitation variation in this system (Parolari et al., 2015).

Consistent with hypothesis 4, increasing the sensitivity of microbial death rate to 

desiccation resulted in stronger selection for drought tolerance across cost scenarios. This 

result provides insight into the level of CUE cost that microbes might tolerate under 

different conditions. Reducing the baseline death rate while increasing the desiccation 

sensitivity of mortality effectively increased the survival benefit of the drought tolerance 

trait by a factor of two. This benefit can be expressed as the change in death rate for an 

increment in drought tolerance, or the derivative of Eq. 1 with respect to , which equals 

B. This value is two-fold greater under the high-sensitivity scenario, explaining why 

more sensitive communities tolerated nearly two-fold greater costs for the same level of 

drought tolerance (Fig. 3).

4.1. Conclusions

This modeling exercise shows how tradeoffs in microbial traits might affect ecosystem 

processes such as respiration and litter decomposition. Although the true costs of drought 
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tolerance are uncertain, the DEMENT model predicts that moderate to high CUE costs 

severely constrain drought tolerance within the microbial community. Surprisingly, at low

—even zero—costs, increasing drought tolerance may not help maintain decomposition 

rates under dry conditions. Although DEMENT predicts increased survival and greater 

biomass in microbial communities with traits conferring drought tolerance, microbial 

interactions in the model reduce enzyme investment, effectively canceling out any biomass-

driven impacts on decomposition. These feedbacks suggest a potential mechanism for 

sustaining carbon storage in surface litter under drought. Future empirical studies of 

drought tolerance mechanisms, physiological tradeoffs, and community consequences 

would be useful for validating and generalizing DEMENT model predictions.
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Table 1. Values and units for model parameters.

Variable Value Units Interpretation (with reference if available)
t 365 day number of iterations
NE 50 number of enzymes in community
N S 12 number of substrates
NU 14 number of uptake transporters
NB 100 number of taxa
Ea 35 kJ mol-1 activation energy for uptake
EaK 20 kJ mol-1 activation energy for Km (German et al., 2012)

KmESlope 1 mg enzyme day cm-3 slope for Km – VmaxE relationship

KmEInt 0 mg cm-3 intercept for enzyme Km – VmaxE relationship
KmUSlope 0.2 mg biomass day cm-3 slope for Km – VmaxU relationship
KmUInt 0 mg cm-3 intercept for uptake Km – VmaxU relationship
V maxE 5 - 50 mg substrate mg-1 

enzyme day-1
Vmax for enzymes

V maxU 1 - 10 mg substrate mg-1 
biomass day-1

Vmax for uptake

λSlope –0.8 fractional change in cellulose decay per unit 
lignocellulose index

ES 1 minimum number of enzymes capable of degrading 
each substrate

U M 1 minimum number of uptake transporters capable of
taking up each monomer

Emax 40 maximum number of enzymes a taxon may produce
SE 1 coefficient determining strength of specificity-

efficiency tradeoff
α 0 - 1 drought tolerance level
ε0 0.5 mg mg-1 intercept for C use efficiency function (Thiet et al., 

2006)
mT –0.016 mg mg-1 ºC-1 C use efficiency temperature sensitivity (Allison et 

al., 2010)
mE 0 mg mg-1 C use efficiency change with enzyme investment
mU 0 mg mg-1 C use efficiency change with uptake investment
mD –0.35 - 0 mg mg-1 C use efficiency change with drought tolerance
Z EC 110-6 -

110-5
mg C mg-1 per enzyme production cost as a fraction of C 

uptake rate (inducible)
BEC 110-6 -

110-5
mg C mg-1 day-1 per enzyme production cost as a fraction of biomass

C (constitutive)
REC 5 mg C mg-1 enzyme C respiration cost of enzyme production
BUC 0.01 - 0.1 transporter mg-1 

biomass C
allocation to each uptake transporter as a fraction 
of biomass

RUC 0.01 mg C transporter-1 
day-1

respiration cost of uptake transporters

Z EN 0.3 mg mg-1 per enzyme N cost as a fraction of C cost (Sterner 
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and Elser, 2002)
L0 0.1 day-1 abiotic monomer loss rate
τ E 0.04 day-1 enzyme  turnover rate (Allison, 2006)
τ B 0.001,

0.005
day-1 bacterial death rate

τ F 0.2B day-1 fungal death rate
FMS 0 mg mg-1 initial monomer present as a fraction of initial 

substrate
DB 0.01 initial bacterial cell density per lattice point
DF 0.0004 initial fungal cell density per lattice point
CB 0.825 mg mg-1 bacterial C fraction (Sterner and Elser, 2002)
NB 0.160 mg mg-1 bacterial N fraction (Sterner and Elser, 2002)
PB 0.015 mg mg-1 bacterial P fraction (Sterner and Elser, 2002)
CF 0.900 mg mg-1 fungal C fraction (Sterner and Elser, 2002)
NF 0.090 mg mg-1 fungal N fraction (Sterner and Elser, 2002)
PF 0.010 mg mg-1 fungal P fraction (Sterner and Elser, 2002)
Cl 0.090 mg mg-1 tolerance on C fraction
N l 0.040 mg mg-1 tolerance on N fraction
Pl 0.005 mg mg-1 tolerance on P fraction
Cmin 0.086 mg cm-3 threshold C concentration for cell death
Nmin 0.012 mg cm-3 threshold N concentration for cell death
Pmin 0.002 mg cm-3 threshold P concentration for cell death
CBmax 2 mg cm-3 C concentration threshold for bacterial 

reproduction
CFmax 50 mg cm-3 C concentration threshold for fungal reproduction
β 0.2, 2 MPa-1 desiccation sensitivity of death rate
kVE 0.1 MPa-1 moisture sensitivity of enzyme Vmax

kVU 0.05 MPa-1 moisture sensitivity of uptake Vmax

k L 0.1 MPa-1 moisture sensitivity of abiotic monomer loss rate
FB 0.5 initial biomass fraction of fungi
ρ y 0.05 probability of fungi dispersing in y direction
δ 1 lattice point maximum dispersal distance
x 100 lattice length
y 100 lattice width
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Table 2. DEMENT model simulation set-up and forcing.

Simulation type Parameters Forcing Replicates Scenarios
Ambient Ambient Ambient 13 9a

Drought Ambient Drought 13 9
10X Beta =2, 

B=0.001
Ambient 13 9

12-year extendedb Ambient Ambient 13 9
a Includes base and mD = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35
b Continuation of the ambient simulations
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Figure 1. Conceptual illustration of expected patterns in A) litter decomposition rate and B) 

community drought tolerance as a function of differing model assumptions. “No tolerance” 

assumes that there are no drought tolerance traits in the community: mortality rate 

increases similarly with drought stress across all microbial taxa. “Zero cost” assumes that 

members of the microbial community possess varying levels of a drought tolerance trait 

that reduces mortality under dry conditions, but there are no physiological costs. 

“Increasing cost” assumes that greater drought tolerance correlates with greater 

physiological cost, and the magnitude of cost increases from left to right. Circled numbers 

correspond to hypotheses proposed in the main text.
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Figure 2. DEMENT model forcing and outputs from the third year of simulated litter 

decomposition. Time course of A) litter water potential, B) live microbial biomass, C) 

substrate pools, and D) respiration. Outputs are from a selected ambient simulation of the 

base scenario with no drought tolerance. For microbial biomass, lines correspond to 

individual taxa, and colors correspond to the number of enzymes possessed by each taxon. 

Total initial biomass density was set to 1 mg cm-3, and initial taxon frequencies were set to 

the averages across the prior year.
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Figure 3. Biomass-weighted drought tolerance (meanSEM) as a function of tolerance cost 

(Base indicates no drought tolerance in the simulation). Drought simulations were forced 

with fuel moisture data from a field experiment. 10X Beta corresponds to simulations with 

B = 0.001 and  = 2. Open symbols indicate no significant difference (P > 0.005, paired t-

test) from the initial community average (dashed line).
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Figure 4. Biomass-weighted carbon use efficiency (meanSEM) as a function of drought 

tolerance cost (Base indicates no drought tolerance in the simulation). 10X Beta 

corresponds to simulations with B = 0.001 and  = 10. Open symbols indicate no 

significant difference (P > 0.005, paired t-test) from the initial community average (dashed 

line).
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Figure 5. Mean (SEM) microbial biomass (A), biomass-weighted enzyme investment (B), 

and litter mass loss (C) as a function of drought tolerance cost (Base indicates no drought 

tolerance in the simulation). Drought simulations were forced with fuel moisture data from 

a field experiment. Open symbols indicate no significant difference (P > 0.005, paired t-test)

from the base scenario. Asterisks indicate significant differences between ambient and 

drought simulations.
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Figure 6. Community-level tradeoffs among drought tolerance and enzyme investment for 

microbial taxa at (A) the end of the wet season (13 March 2013) versus (B) the end of the 

dry season (16 September 2013) in 13 replicate ambient simulations (drought tolerance 

cost = 0.10). Each point corresponds to an individual taxon, and point sizes are 

proportional to taxon biomass normalized to the most abundant taxon within each 

simulation at each time point. (C) The biomass-weighted average drought tolerance and 

enzyme investment for the same simulations run for 12 years. Points represent daily 

averages across the 13 simulations. Discontinuities occur between years because each year 

was re-initiated with taxon frequencies averaged across the prior year. Note difference in x- 

and y-axis scales.
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Figure S1. Daily precipitation inputs along with DEMENT forcing data for litter layer water 

potential and daily air temperature derived from sensors at Loma Ridge, CA, USA. Water 

potential values were derived from fuel moisture content.
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