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Air pollution has been a significant problem in California’s South Coast Air Basin for many 

years due to the region’s unique topography, high anthropogenic emissions, weather patterns, and 

population density. Fine particulate matter and ozone are the two most concerning pollutants 

causing serious public health risks. 

Chemical transport models and machine learning approaches enable an effective way to 

study air pollution. By looking at a large domain, scientists gain insights into the transport of 

precursor substances in heavily polluted areas. The methods facilitate the examination of ozone’s 

response to emissions and meteorological factors. The main objectives are: (1) to enhance the 

prediction of ozone levels in the South Coast Air Basin, (2) to investigate the role of meteorology 

in ozone formation, and (3) to determine the most critical factors influencing ozone exceedance 

hours. The results showed that ozone has a strong relationship with meteorology, in which wind 

speed and wind direction contribute mainly to the transport and mixing of precursors, while 

temperature can directly contribute to ozone formation. Climate-related increases in temperature 

would therefore be expected to increase future ozone levels in the absence of emission changes. 

Control strategies from the Air Quality Management District have improved the air quality 

in general. However, it did not ensure the air quality also got better for minority groups. Many 
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polluted areas are associated with industries, shipping activities, and warehouses that mostly 

affect the underrepresented communities. These communities frequently face social exclusion, 

yet there has been limited attention and research dedicated to understanding and addressing their 

specific needs and challenges. 

Air pollution research often used crowdsourced data which generally reflected a higher 

socioeconomic status population. A data-driven approach powered by low-cost sensors showed 

underrepresented groups suffered higher indoor PM2.5 due to high frequent indoor emissions 

from cooking, cleaning, or dusting without sufficient filtration or air exchange rate, which can be 

concluded that ambient and indoor PM2.5 exposures for disproportionately impacted groups 

cannot be generalized in population-wide. Personal exposure studies showed that people spent 

over 90% of their time staying indoors, emphasizing the crucial role of indoor air quality in 

impacting human health to a greater extent. 
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Introduction 

This dissertation seeks to address the pollution exposure disparities in the Inland Empire 

(Chapter 1), the role of meteorology in ozone formation (Chapter 2), and the improvement of the 

CMAQ computational efficiency by porting the intensive science process on the GPU (Chapter 3). 

Chapter 1 utilizes low-cost sensors to study pollution exposure disparities in the Inland 

Empire. Ambient particulate matter (PM) has been widely studied to examine the impact of PM 

exposure on human health. Many air monitoring stations are operated in the U.S. to measure the 

trends and composition of ambient PM in support of the National Ambient Air Quality Standards 

(NAAQS). However, ambient PM concentrations may not reflect actual daily personal exposure 

(PE) (Koistinen et al., 2004). Further, the sparseness of the monitoring network leads to low spatial 

resolution data and necessitates gap-filling, which also affects the accuracy of PM exposure 

assessments that are based on ambient measurements (Yu et al., 2019). Wearable PM2.5 sensors 

in real-time are used to detail a pilot-scale personal exposure campaign for five inland Southern 

California cities to capture the spatial and temporal variability of PM2.5 exposures over multiple, 

consecutive 24-hr periods. The main objective of this pilot study was to develop and implement a 

high-resolution monitoring and analysis framework for characterizing PM2.5 exposure variability 

for individuals from different cities of residence and subsequently different socioeconomic status 

(SES) neighborhoods. High concentrations of PM2.5 can be found around industrial and shipping 

facilities where residential areas with low median household income are located (Houston et al., 

2004; Ivey et al., 2020). These houses were built with many missing features which ensure good 

indoor air quality. Centering the BNSF railyard, many residential dwellings do not have an air 
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conditioning unit exposed to high PM2.5 levels due to their living conditions and locations, 

increasing inequality and disparity. 

Chapter 2 investigates the role of meteorology on ozone formation. The poor air quality 

in the South Coast Air Basin can be explained by the unique topography and high anthropogenic 

emissions. Meteorological variables and synoptic patterns greatly influence air pollution in SoCAB 

(Ulrickson & Mass, 1990a, 1990b). Los Angeles’ temperature inversions resulting from high-

pressure systems over SoCAB combined with a mountain wave-induced downslope flow create a 

trap that accumulates air pollutants near the ground, leading to degraded air quality (Lu & Turco, 

1994, 1996). The relationship between ozone (O3), its anthropogenic precursors, nitrogen oxides 

(NOX), and volatile organic compounds (VOC) has been well studied by means of environmental 

chamber experiments, field studies, and air quality modeling, yet new modeling methods are still 

needed to better understand why rates of ozone reduction in the SoCAB have been lower than 

previously predicted (Baidar et al., 2015; Pusede & Cohen, 2012; Qian et al., 2019). Examining the 

ratio of NOX/VOC emissions and identifying VOC and NOX limited regimes are useful practices for 

creating surface ozone reduction strategies, which is one approach for developing SoCAB 

emission-control strategies. Chemical transport modeling is considered the most advanced 

approach for evaluating emission-control strategies, but is subject to uncertainties in emission 

rates, chemical reaction rates, and representation of meteorological influences. To further 

understand the quantitative relationship between ambient ozone concentrations and emission 

precursors, heatmaps are developed from data or modeling to capture the ozone’s sensitivity due 

to the change in NOx and temperature. Meteorology’s role in changing ozone concentrations and 

ozone exceedances in SoCAB can be explored by integrating machine learning and CMAQ. The 
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approach in investigating meteorology-ozone sensitivity is to apply machine learning to predict 

Fontana (inland Southern California) ozone concentrations based on Los Angeles and Ontario 

meteorology. The machine learning results are analyzed against CMAQ simulations and 

observational data to evaluate the model performance and explore the common findings between 

the two approaches. 

Chapter 3 presents a new approach to improving chemical transport model simulation 

time. Deterministic air quality models (AQMs) are designed to simulate complex physical and 

chemical processes taking place in the Earth’s atmosphere with mathematical presentations of the 

atmospheric transport, diffusion, dispersion, and chemical reactions, which are solved by 

analytical and numerical techniques and based on the conservation of mass principle for 

pollutants (Lamb & Seinfeld, 1973). Handling large datasets is a challenge, given the limitation of 

computational efficiency and the data’s complexity. Moreover, CTMs apply complex governing 

equations to solve for the output concentrations using the CPUs. Regarding runtime, a 12-km, two-

way coupled WRF-CMAQ simulation using 34 layers of variable thickness with a domain size of 

279x251 grid cells requires over 3 hours of work for 32 CPU cores per one simulated day over the 

five-month period (Wong et al., 2012). Simulating 12 months of ozone concentrations over 

Southern California using 4-km resolution with 156x102 grid cells took 20 days with 16 MPI 

threads. The computational efficiency of CMAQ largely suffers from solving a set of stiff differential 

equations when computing the gas phase chemical concentrations. For example, with the 

SAPRC07 chemical mechanism, the systems of photochemical reactions are calculated using Euler 

Backward Iteration, SMV Gear, or Rosenbrock solver (ROS) for every time step and grid cell (row x 

column x height) for all species in the SAPRC07 family until a specified convergence tolerance is 
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met. The running time is linearly proportional to the simulated domain and exponential with 

increased chemical species. The CMAQ simulation time can be improved by porting intensive 

computational processes onto GPUs. With thousands of Compute Unified Device Architecture 

(CUDA) cores in a single GPU, many independent arithmetic operations can be carried out 

simultaneously. By exploring the computer architecture, the advantages, and the disadvantages 

of GPU programming, a ported version of the partial derivative, decomposition, and back 

substitution subroutines of the ROS3 (Rosenbrock) solver to the CUDA platform reduce the 

computation time greatly. 
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Chapter 1  

Part 1 

A data-driven approach for characterizing community scale air pollution exposure 
disparities in inland Southern California  

The works used in this chapter were previously published in Journal of Aerosol Science. 

Abstract 

In 2017, Assembly Bill 617 was approved in the state of California, which mandated the 

allocation of resources for addressing air pollutant exposure disparities in underserved 

communities across the state. The bill stipulated the implementation of community scale 

monitoring and the development of local emissions reductions plans. The aim was to develop a 

streamlined, robust, and accessible PM2.5 exposure assessment approach to support 

environmental justice analyses. The search is to characterize individual PM2.5 exposure over 

multiple 24-hr periods in the inland Southern California region, which includes the underserved 

community of San Bernardino, CA. Personal sampling took place over five weeks in Spring of 2019, 

and personal PM2.5 exposure was monitored for 18 adult participants for multiple, consecutive 24-

hr periods. Exposure and location data were available at five-second resolution, and participant 

data recovery was 50.8% on average. A spatial clustering algorithm was used to classify data points 

as one of seven microenvironments. Mean and median personal-ambient PM2.5 ratios were 

aggregated along SES lines for eligible datasets. GIS-based spatial clustering facilitated efficient 

microenvironment classification for more than 920,000 data points. Mean (median) personal-

ambient ratios ranged from 0.02 (0.00) to 3.49 (0.55) for each microenvironment when aggregated 
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along SES-lines. Aggregated ratios indicated that participants from the lowest SES community 

experienced higher home exposures compared to participants of all other communities over 

consecutive 24-hr monitoring periods, despite high participant mobility and relatively low 

variability in ambient PM2.5 during the study. The methods described here highlight the robust and 

accessible nature of the personal sampling campaign, which was specifically designed to reduce 

participant fatigue and engage members of the inland Southern California community who may 

experience barriers when engaging with the scientific community. This approach is promising for 

larger-scale, community-focused, personal exposure campaigns for direct and accurate analysis of 

environmental justice. 

Introduction 

Ambient particulate matter (PM) has been widely studied, and researchers have carefully 

examined the impact of PM exposure on human health. Many air monitoring stations are operated 

in the U.S. to measure the trends and composition of ambient PM in support of the National 

Ambient Air Quality Standards (NAAQS). However, ambient PM concentrations may not reflect 

actual daily personal exposure (PE) (Koistinen et al., 2004a). Further the sparseness of the 

monitoring network leads to low spatial resolution data and necessitates gap-filling, which affects 

the accuracy of PM exposure assessments that are based on ambient measurements (Yu et al., 

2019).  

People spend most of their time indoors (approximately 85-90%) and are most frequently 

exposed to indoor pollutants(Long et al., 2001). Home and workplace are the two most dominant 

indoor microenvironments. Indoor PM originates from cooking, smoking, cleaning products, 

vacuuming, and dusting; while in offices, PM is emitted from printing, mechanical grinding, 
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consumer products, and dusting. The Environmental Protection Agency (EPA) carried out the 

particulate total exposure assessment methodology (PTEAM) study on 178 non-smoking randomly 

selected homes in Riverside, CA. The study showed that indoor PM2.5 (PM with an aerodynamic 

diameter less than or equal to 2.5 µm) levels were slightly lower than outdoor levels during the 

day. However, the indoor PM2.5 levels were higher than ambient levels at night (Clayton et al., 

1993; Özkaynak et al., 1996; Thomas et al., 1993a). Although ambient PM2.5 penetrates into indoor 

environments, individual behaviors and living conditions are found to be the most important 

factors that affect indoor concentrations of PM (Kulmala et al., 1999; Long et al., 2001; Wallace, 

1996). 

Further, human mobility must also be taken into account for accurate exposure 

assessment. Yu et al. compared call detail record and home-based methods to estimate biases in 

exposure methods. The study showed that the home-based method both over- and under-

estimates air pollutant exposure levels (Yu et al., 2018). In addition, many studies have used 

outputs from chemical transport models to verify the misclassification when using central monitor 

concentrations (CMC) to represent the exposure near the monitoring sites. Hu et al. showed that 

the population weighted concentrations of primary PM2.5 of the model differ from the CMC values 

by -40 to +60%. The misclassification could be significant when assuming the same representative 

distance across central monitoring sites for multiple pollutants in a large-scale, spatial and 

temporal epidemiology studies (Hu et al., 2019). 

Advancements in low-cost environmental sensing technologies have enabled the 

development of small, portable, and relatively precise PM sensors for personal exposure 

assessment. In a recent study by Quinn et al., filter-based, wearable, automated 
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microenvironmental aerosol samplers (AMAS) were used to conduct a personal exposure study 

with 25 high school students in Fresno, CA (Quinn et al., 2018). The wearable AMAS enabled the 

measurement of black carbon and oxidative potential in targeted microenvironments, but the 

measurements were coarsely-resolved in time. Further, low-cost optical PM sensors have very high 

sampling frequencies, and low-cost sensing measurements are moderately accurate (Feenstra et 

al., 2019). The Plantower PMS (v. 1003/3003) is a commonly used optical sensor, and has a 

correlation coefficient of 0.88 with the federal reference method (FRM), which reflects the viability 

of the sensor for exposure measurements (Kelly et al., 2017). Combined with Internet of Things 

(IoT) technology, the Plantower PMS can be further integrated to deliver more functionalities to 

end users. Data collected from a low-cost sensing device or IoT network can be uploaded to the 

cloud and made available in near-real-time to users. Despite all the conveniences of low-cost 

sensing, there are still room for improvements of PM sensor accuracy. Sensors require consistent 

calibration, and the measurements may require additional post-processing (Zheng et al., 2018a). 

In this paper, a pilot-scale personal exposure campaign was detailed using wearable PM2.5 

sensors with real-time, remote monitoring capability. The study engaged residents of five inland 

Southern California cities and captured spatial and temporal variability of PM2.5 exposures over 

multiple, consecutive 24-hour periods. The main objective of this pilot study was to develop and 

implement a high-resolution monitoring and analysis framework for characterizing PM2.5 exposure 

variability for individuals from different cities of residence and subsequently different 

socioeconomic status (SES) neighborhoods. As Southern California historically has high ambient 

PM2.5 levels, the search to understand which microenvironments posed the greatest exposure risk 
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in the region. The study elucidates the behavior-dependent patterns of PM2.5 exposure in a high-

traffic, industrialized region of Southern California.  

Materials and Methods 

Study Area 

The personal exposure study was conducted in inland Southern California, better known 

as the Inland Empire, covering an area of approximately 200 square miles (Figure 1.1). More 

specifically, the study area includes the cities of Moreno Valley (2018 U.S. Census population of 

209,050), Redlands (71,596), Riverside (330,063), San Bernardino (215,941), and Yucaipa (53,682), 

CA (Table 1.1). In 2018, median household income estimates were $63,572, $72,523, $65,313, 

$43,136, and $63,657; and poverty rates were 19.9%, 13.6%, 15.6%, 28.4%, and 12.3%, 

respectively (U.S. Census Bureau). The major routes that service these cities include interstate 

routes 10, 15, and 215, and U.S. highways 60, 66, 91, and 210. The major air pollution sources in 

inland Southern California are on-road traffic, off-road mobile sources (e.g., railyard equipment), 

industrial point sources (e.g., cement manufacturing and power generating facilities), and smaller 

point sources (e.g., auto body shops, residential combustion, and restaurants). In recent years, the 

logistics industry has expanded in the region, prompting the construction of large warehouses that 

rely on heavy-duty vehicles for goods transport. 

The recently implemented California Assembly Bill 617 was designed partially to address 

disproportionate impacts of air pollution in environmental justice communities, and San 

Bernardino was selected as a Phase 1 community in 2018 (Garcia, 2017). Previous studies have 

highlighted health disparities in the San Bernardino community due to its proximity to a large 

railyard (Spencer-Hwang et al., 2016, 2015). Through the study, the search is to understand 
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personal exposure patterns as they relate to the unique environmental and socioeconomic 

characteristics of inland Southern California.  

Sampling Campaign 

For the sampling campaign, 18 adult participants (18 years and older; 61% males; 55% 

Latinx) with varied occupations (50% identified as college students) were recruited. All sampling 

activities and interactions with participants were pre-approved by the University of California, 

Riverside Institutional Review Board (protocol number: HS 18-206). The overall campaign took 

place over a five-week period from 03-10-2019 to 04-14-2019. Each week on Sunday, a PM 

monitoring pack to four participants was distributed, except for the first week which had two 

participants (Figure 1.2). Participants kept the packs for a duration of seven days, allowing the 

assessment of inter- and intra-day exposure variability for each individual.  

Participant locations were tracked with GPS data loggers. Participants were required to 

carry the packs during the day, and packs were placed in their bedroom or living spaces at night. 

After the seven-day deployment, the packs were returned to the research facility. The GPS data 

from the data loggers was retrieved and removed before the next deployment for privacy. One 

participant’s GPS data was missing, so this dataset was removed, and subsequent analyses were 

carried out for 17 datasets. The participant breakdown by city was the following: two from Moreno 

Valley, two from Redlands, five from Riverside, six from San Bernardino, and two from Yucaipa. 

The uncertainty introduced by the sample size and city breakdown is noticed. However, the pilot 

study generated useful insights that will be leveraged during the larger phase two sampling 

campaign.  
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Monitoring Equipment 

Each monitoring pack (total = 4) included a battery-powered PM monitor, a GlobalSat-DG-

500 (New Taipei City, Taiwan) GPS module, a Huawei Wi-Fi hotspot, Elitech temperature log, and 

necessary accessories. The PM monitors are developed by Applied Particle Technology (APT, St. 

Louis, Missouri, USA) and utilize the Plantower PMSA003 optical sensor (Figure 1.2). The monitors 

are commercially available, and our research team was not directly involved with monitor 

development. The dimensions of the PM monitors are 2 in. x 1 in. x 2.25 in. (L x W x H). The APT 

monitor provided four PM1, PM2.5, and PM10 measurements per minute, but onlyPM2.5 

measurements were analyzed due to the extensive literature and relevance of PM2.5 exposure and 

health, and due to the availability of suitable reference measurements for monitor evaluation. The 

APT monitors also provide measurements of relative humidity and temperature, and the data are 

uploaded in real-time via the mobile hotspot to the vendor-hosted web interface. The size, 

simplicity, mobility, and accessibility of the APT device was ideal for community engagement. The 

sampling rate of the PM monitor was once every 15 seconds, totaling a maximum of approximately 

40,320 possible measurements at the end of the seven-day sampling period, plus or minus a few 

hours of measurements depending on the scheduled pick-up and drop-off times. Measurements 

were made every 15 seconds, and data were immediately pushed to the cloud if Wi-Fi connectivity 

was available. If Wi-Fi connectivity was unavailable, all data are stored locally then pushed once 

connectivity resumed. All data were retrieved from the cloud via the vendor-managed user 

interface.  
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Data Processing 

Although a uniform usage protocol was established for the study, datasets had varying 

degrees of availability due to the operating habits of the participants. All missing PM 

measurements were assigned as “-9999”, then PM data were synced with the GPS data by their 

dates and timestamps. Since the GPS data logger’s sampling rate was once every five seconds, a 

linear interpolation was performed on the PM data from 15 to five second intervals to obtain the 

highest resolution for the datasets. The resulting combined datasets provide the date, time of day, 

PM2.5 concentrations, relative humidity, temperature, and the corresponding latitude and 

longitude. As a note, the GPS position was intermittently measured at times because the data 

logger stopped recording if the no movement was detected after 30 seconds. To account for the 

idling periods, the previous latitude and longitude were assigned to the missing timestamp if the 

distance between the two intervals was less than 20 meters (Figure 1.3). When the distance was 

greater than 20 meters and less than or equal 50 meters, linear interpolation was performed 

between the two points. A distance greater than 50 meters was assigned “NaN” and considered 

an invalid data point due to uncertainty in participant mobility during the idle period. The five-

second syncing lends a maximum of approximately 120,960 possible data points for each 

participant. 

Co-location and Adjustments 

The personal PM monitors were co-located at the Mira Loma Van Buren (MLVB, AQS ID: 

060658005) air monitoring site to evaluate the hourly performance of the monitors. The wearable 

monitors were housed in a home-built enclosure and positioned the enclosure near the site’s 

federal equivalent method (FEM) PM2.5 samplers (Figure 1.4). The enclosure was built using steel 
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mesh panels to maximize the air flow over the monitors. The monitors were kept on-site for two 

weeks, and the activities of each sensor were continuously monitored through the web server to 

ensure that each device was operating optimally. At the end of the co-location period, PM2.5 

reference data was obtained for the performance analysis. For the study, polynomial fitting was 

used to adjust the raw data to the FEM reference data. The measurements were determined to 

be uninfluenced by relative humidity and temperature, hence the polynomial fittings were solely 

based on two parameters: reference measurements and raw measurements (Note S1). The fitting 

method is well described in a paper by Zheng et al. (Zheng et al., 2018b). 

Data Analysis 

Microenvironments of five-second all data points were classified based on the GPS 

measurements. The density-based spatial clustering of applications with noise (DBSCAN, 

(Schubert et al., 2017)) algorithm in the QGIS (https://www.qgis.org/) open source GIS platform 

and DBSCAN clusters points based on a two-dimensional implementation (QGIS Development 

Team, 2019) were used. Each spatial cluster was defined by mandating a minimum size of 120 

PM2.5/GPS measurements within a maximum distance of 0.0005 degrees (~55 meters). This 

minimum size corresponds to a minimum of 120 * 5 seconds = 10 minutes of personal exposure 

data, and 55 meters is roughly the range of uncertainty of the GPS data logger. The clusters were 

manually evaluated and assigned a microenvironment class and activity by overlaying the clusters 

onto Google Maps. Microenvironment classes included home (H), work (or university, W), 

restaurant (R), retail (RE), leisure indoor (LI), leisure outdoor (LO), and transient (T); and 

microenvironment was classified and assigned to the cluster based on the proximity of the cluster 

center to labels available in Google Maps. The home and work/university clusters are identified 

https://www.qgis.org/
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using the address and work/school status information provided by the participants, respectively. 

Restaurant and retail clusters are identified by their proximity to points of interest on Google 

Maps. Leisure indoor includes all clusters in proximity to non-work, non-retail indoor locations 

(e.g., churches and recreation centers), and leisure outdoor clusters are non-work, non-retail 

locations in the outdoors (e.g., parks and trails). If a participant’s workplace was reported as a 

retail or a restaurant, then those clusters were classified as retail or restaurant. The “transient” 

classification indicates that the speed measurement was greater than 10 kilometers per hour, 

regardless of prior cluster classification. The “unclassified” classification was given to non-

clustered, non-transient data points. There are no assumptions about participant mobility within 

the microenvironment. Further, clusters are identified and classified for each individual 

participant, therefore no clusters have influences from multiple participants. An example of spatial 

clusters can be found in Figure 1.5.  

Ambient PM2.5 Contour Fields 

A PM2.5 contour mesh over Southern California was constructed to compare the personal 

exposure of PM2.5 to ambient PM2.5. Participant mobility varied, and measurement locations were 

up to 100 miles away from the main study location. The input data for the ambient PM2.5 spatial 

fields were accessed from the regulatory monitoring network of the South Coast Air Quality 

Management District. To construct hourly contour fields, cubic interpolation was performed on 

hourly PM2.5 measurements from 18 monitoring stations. Participant coordinates were paired to 

the corresponding contour location, resulting in corresponding ambient and personal PM2.5 data 

points for all participants. 
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Results  

Personal and Ambient Data Overview 

Calibration of PM monitors using the polynomial fittings resulted in good agreement 

between the adjusted personal measurements and reference PM2.5 measurements. The mean bias 

for the four monitors ranged from -0.11 to 0.61, slopes ranged from 0.99 to 1.10, intercepts ranged 

from 0.012 to 0.75, and R2 ranged from 0.41-0.45 (Note S2).  

For interpolated personal measurements, data recovery is defined as the percentage of 

five-second data points available out of the total possible data points for each participant’s 

sampling period (range: 0.5 – 95.6%). Mean data recovery was 50.8%, corresponding to 54,120 

valid data points per participant; and median data recovery was 51.8%, corresponding to 

53,921valid data points per participant (Table 1.2). Further explanation of data missingness is 

provided in the Discussion. In comparison to prior studies the approach was successful in 

collecting an exceptionally large amount of data, where valid personal data points from all 17 

participants totaled 920,045 (Bekö et al., 2015; Li et al., 2017; Minet et al., 2018; Piedrahita et al., 

2017; Quinn et al., 2018; Thomas et al., 1993b). 

During planning for the sampling campaign, one concern was week-to-week variability in 

ambient PM2.5, which may bias indoor-outdoor ratios. Ambient PM2.5 concentrations are lowest in 

the spring season in southern California. Springtime ambient PM2.5 concentrations are stable and 

not heavily affected by exceptional events and meteorology-induced aerosol formation. 

Therefore, the chosen sampling period was optimal for a multi-week pilot study. Ambient data 

were extracted from contours of hourly measurements from regulatory monitoring stations 

(Figure 1.6) and paired with the corresponding personal measurements. Median ambient PM2.5 
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concentrations for each sampling week ranged from 4.4 to 10.2 µg m-3, and maximum 

concentrations ranged from 22.3 to 28.2 µg m-3 (Figure 1.7). Weekly concentrations ranged from 

near-zero to ~30 µg m-3 every week, and therefore week-to-week variability was not considered a 

confounder in this study.  

Exposure and Activity 

Time series of individual personal exposure measurements identify acute PM2.5 exposure 

episodes (less than one hour, > 35 g m-3), and acute exposures were highly variable for all 

participants. Time series of consecutive, 24-hour personal measurements at 5-seconds resolution 

along with the corresponding ambient hourly measurement for four participants are highlighted. 

Maximum acute exposures ranged from approximately 70 (Redlands) to 2500 (Moreno Valley) g 

m-3, further justifying the need for individual level analysis of exposure risk. 

Participant 2 (San Bernardino) experienced the highest exposures in the home 

microenvironment in the late afternoons and early evening, as well as in an indoor residential 

microenvironment that was not classified as home. Participant 5 (Redlands) experienced all acute 

episodes in the work/university microenvironment, and the residential location university 

housing. Participant 5 exposures were not as severe as the other highlighted exposures.  

Participant 13 (Moreno Valley) experienced frequent, extreme exposures with 

consistently high measurements greater than 500 g m-3 in the home and leisure indoor 

microenvironments. High measurements were observed in short intervals in the restaurant 

microenvironments, specifically a popular burger and coffee chain. High measurements were also 

infrequently observed in the transient and work microenvironments. Based on the short duration 

(< 10 minutes) of the extreme exposures and the occurrence in the majority of 
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microenvironments, it is suspected that the participant is a smoker. Participant 15 (Riverside) 

experienced exposures greater than 100 g m-3 in the home microenvironment, and consistently 

elevated PM2.5 was observed during time spent in a restaurant microenvironment (range 20–50 

g m-3). Time series for all participants can be found in Note S3 in the Supplementary Material.  

Inter-City Comparative Analysis 

Personal and ambient PM2.5 data were aggregated for cities with two or more participants 

with 50% or greater data recovery, which was the criteria for inclusion in the inter-city analysis 

(Table 1.3). Results from those participants were then stratified along SES lines: 

Redlands/Riverside (N = 5, high SES) and San Bernardino (N = 4, low SES); there were no datasets 

from Moreno Valley and Yucaipa that met the aggregation criteria. Average data recovery for these 

participants was 73% (Redlands/Riverside) and 72% (San Bernardino). Aggregated median 

ambient concentrations were consistently higher than median personal concentrations, and the 

highest median personal concentrations were observed in home microenvironment for both SES 

groups. San Bernardino personal medians in the home microenvironment were higher despite 

having slightly lower ambient medians than Redlands/Riverside. Short-term personal exposures 

were higher than 20 µg m-3 in work, university, restaurant, retail, leisure indoor, and transient 

microenvironments for aggregated datasets (Figure 1.9). 

For SES-aggregated datasets, mean personal-ambient (P-A) ratios for each 

microenvironment ranged from 0.02 to 3.49, and median ratios ranged from 0.00 to 0.55 (Table 

1.4). Higher mean ratios compared to median ratios reflect the influence of the outliers in the 

personal measurements. Ratios less than one indicate that personal environments had lower 

PM2.5 levels than those derived from ambient data. For classified microenvironment clusters, the 
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highest mean P-A ratios were observed in the retail 1.45 (0.60, Redlands/Riverside) and home 

(3.49, San Bernardino) microenvironments (Table 1.4). Redlands/Riverside had ratios greater than 

one for transient (1.17) and unclassified data points (2.81), while the mean home ratio was 0.76. 

San Bernardino retail ratio was 2.47. The highest median P-A ratios were observed in the home 

microenvironments for both Redlands/Riverside (0.16) and San Bernardino (0.55) for classified 

clusters. Wilcoxon rank sum tests indicated significant (p < 0.05) differences between non-outlier 

personal-ambient data pairs for all microenvironments and for every participant with the 

exception of the leisure indoor and restaurant microenvironments for Participants 5 and 8, 

respectively. Outlier personal data and corresponding ambient data were excluded from the 

Wilcoxon tests. Mean and median ratios for all participants can be found Table 1.5 and Table 1.6 

in the Supplementary Material.  

Discussion  

The majority of data points were classified as home for the highlighted participants (mean: 

65%, median: 69%) (Table 1.2). This is slightly higher, but consistent with previous personal 

exposure studies (Bekö et al., 2015; Hsu et al., 2020; Quinn et al., 2018). Data points were classified 

in these microenvironments at an average of 31% (median: 16%) of the time, therefore non-home 

exposures may be significant in the long-term (Table 1.2). Transient PM2.5 measurements were 

within range of a previous personal exposure study conducted in California (Ham et al., 2017). 

Microenvironment distributions of personal and ambient measurements can be found in Note S4 

in the Supplementary Material.  

Calculations of time spent in each microenvironment are impacted by data recovery, and 

charging protocols were best adhered to in the home environments near a convenient supply of 
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electricity. There were compliance issues during sampling that affected data recovery, which is 

common in human subjects research (Chenail, 2011; Mehra, 2001). Monitor mobility and real-

time data transfer of PM monitors enabled the high-resolution personal sampling of the study. 

However, data collection was impeded when component batteries drained, although a charging 

schedule was provided but not always adhered to. At times the hardware stalled, or data transfer 

was limited by availability of Wi-Fi signal. Participant accidents with the monitors, while rare, also 

interrupted sampling; minor damages to the protective casings were mended before 

redeployment.  

The monitoring approach intuitively identifies participants that may be actively or 

passively exposed to cigarette or vaping smoke, as very high personal measurements (> 100 µg m-

3) are classified as outliers in a five-second resolution dataset (Figure 1.9) (Götschi et al., 2002; 

Koistinen et al., 2004b; Salmon et al., 2018; Slezakova et al., 2009). Suspected smoking events 

occur at relatively shorter time scales throughout the day and are easily identified in the time 

series and boxplots of personal measurements. Consequently, median P-A ratios derived from high 

temporal resolution data are useful for evaluating non-smoking related PM2.5 exposures when 

smoking status is undisclosed. Therefore, when comparing the bulk (non-outliers) of personal and 

ambient measurements for Redlands/Riverside microenvironments, personal PM2.5 

measurements are much less than ambient PM2.5. Conversely, the San Bernardino median home 

microenvironment exposure was most similar to the corresponding median ambient exposure 

(Table 1.3). Undisclosed smoking adds uncertainty to this study is recognized; however, the 

temporal resolution of the data enables the identification of potential smokers. In future efforts, 

smokers or individuals living in a smoking household will be pre-identified or excluded. 
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Considering the relatively small number of participants in the study, definitive 

generalizations cannot be made regarding influences of residential location. However, the large 

amount of measurements analyzed here provides a preliminary, yet robust, investigation of 

exposure disparities. San Bernardino (highest poverty rates, lowest median household income) 

participants with greater than 50% data recovery experienced higher home exposures compared 

with participants from other cities. Redlands/Riverside (second/third lowest poverty rate, 

highest/second-highest household incomes) participants overall had lower home personal 

exposures and experienced higher personal exposures outside of the home. Since most time was 

spent in the home microenvironment for the majority of participants, San Bernardino participants 

were more likely to be exposed to higher PM2.5 concentrations, even when taking into account the 

high degree of mobility of participants which is reflected in the diversity of classified 

microenvironments.  

Conclusions 

The pilot study highlights the variability in community-scale exposure in a 

socioeconomically diverse air basin that is heavily burdened by air pollution. A novel spatial 

clustering approach was applied to classify the microenvironments of more than 900,000 high 

temporal resolution personal exposure data points. Results from the study indicate that 

participants from the lowest socioeconomic status community experienced overall higher 

personal exposures over consecutive 24-hr monitoring periods, despite high participant mobility 

and low variability in ambient PM2.5 during the study. The inclusive monitoring protocol minimizes 

participant fatigue and is well-suited for real-time, long-term characterization of PM2.5 exposure 

disparities in underserved communities. PM2.5 serves as a useful surrogate species for many other 
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air pollutants that may influence disproportionate exposures. The application of the streamlined, 

data-driven methods in a larger-scale exposure study will further elucidate personal exposure 

disparities along racial and socioeconomic lines. 

Data Availability 

In accordance with the University of California, Riverside Institutional Review Board, 

personal data may only be distributed in an aggregated form to preserve participant privacy. All 

aggregated and anonymized data are summarized in the Supplementary Material. 
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Tables 

Table 1.1. Demographics of the cities included in the personal exposure sampling. 

City Population (2018) 
Median Household 

Income 
Poverty Rate 

Moreno Valley 209,050 $63,572 19.9% 

Redlands 71,596 $72,523 13.6% 

Riverside 330,063 $65,313 15.6% 

San Bernardino 215,941 $43,136 28.4% 

Yucaipa 53,682 $63,657 12.3% 

 

 
Table 1.2. Percent data recovery from participants, and the percentage of time participants spent in each 
microenvironment. The table header indicates the microenvironment classifications: home (H), work (or 
university, W), restaurant (R), retail (RE), leisure indoor (LI), leisure outdoor (LO), transient (T), and 
unclassified (U). The bold number indicates the microenvironment of longest time spent for each participant. 
Participant 12’s dataset was not recovered. Star (*) indicates that the participant is a part-time or full-time 
student. Total valid data points = 920,045. 
 

Participant 
Valid 
Data 

Points 

Recovery 
(%) 

H (%) W (%) R (%) RE (%) LI (%) LO (%) T (%) U (%) 

1* 12160 11.7 31 37 12.6 0.0 0.0 0.0 10.9 8.5 

2 95982 94.5 69.7 16.1 0.4 1.2 5.5 2.4 0.3 4.5 

3* 85596 89.3 72 0.0 12.5 6.0 2.5 0.0 0.4 6.6 

4 507 0.5 0 88.8 0.0 0.0 0.0 0.0 0.0 11.2 

5* 92648 74.2 0 97.9 0.0 0.0 1.3 0.0 0.3 0.6 

6* 88883 92.3 75.2 0.3 0.7 1.4 5.9 0.0 15.2 1.4 

7 66098 51 72 0.0 0.0 22.1 2.2 0.1 0.2 3.5 

8* 50847 52.7 75.3 18 1.2 0.6 0.7 0.4 0.7 3.1 

9 56500 55.4 95.8 0.0 0.0 0.0 2.6 0.0 0.0 1.6 

10 28378 27.7 93.3 0.0 0.7 0.0 0.0 2.1 0.1 3.9 

11 51342 50.6 60.3 19.1 2.6 4.1 1.3 0.0 0.6 11.9 

13* 78261 76.9 71.2 15.3 1.1 1.7 4.3 0.0 0.9 5.4 

14* 18794 18.5 93.5 0.0 0.0 0.1 0.0 0.6 0.1 5.6 

15* 102190 95.6 88.5 0.0 1.7 3.7 1.2 0.0 0.2 4.6 

16 48823 38.5 62 0.7 3.5 12.7 4.6 2.4 0.1 14 

17 33679 25.2 76.7 2.7 0.0 2.2 4.8 0.0 2.3 11.2 

18* 9357 9.0 97.9 0.0 0.0 0.0 1.0 0.0 0.9 0.1 

Average 54120 50.8 66.7 17.4 2.2 3.3 2.2 0.5 1.9 5.8 

Median 53921 51.8 72 1.7 0.7 1.3 1.8 0.0 0.3 5.0 
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Table 1.3. Summary of the total number of valid data points, average data recovery, and median personal 
(ambient) PM2.5 concentrations (µg m-3) for Redlands and Riverside (N = 5), and San Bernardino (N = 4) 
participants with data recovery greater than 50%.  
 

City Redlands and Riverside San Bernardino 

Number of Data Points  

(Average Data 
Recovery) 

387,781 (73%) 302,305 (72%) 

 Personal 
(Ambient)  

(µg m-3) 

% Time Spent Personal 
(Ambient)  

(µg m-3) 

% Time Spent 

Home 1.67 (8.66) 66 5.33 (7.69) 69 

Work or University 0.00 (8.91) 23 0.00 (3.85) 9 

Restaurant 1.00 (9.36) 3 0.00 (4.50) 1 

Retail 1.00 (8.64) 2 0.00 (7.48) 7 

Leisure Indoor 0.00 (11.3) 2 2.00 (6.52) 4 

Leisure Outdoor 0.00 (6.17) 0 0.00 (1.68) 1 

Transient 1.00 (7.49) 0 0.00 (9.79) 4 

Unclassified 1.00 (6.22) 3 0.00 (5.20) 5 

 
 

Table 1.4. Mean (median) personal-ambient ratios by city of residence for Redlands and Riverside (N = 5) 
and San Bernardino (N = 4) participants with data recovery greater than 50%. Bold indicates higher personal 
PM2.5 concentrations than the corresponding ambient concentrations. 

City Redlands and Riverside San Bernardino 

Home 0.76 (0.16) 3.49 (0.55) 

Work or University 0.30 (0.00) 0.06 (0.00) 

Restaurant 0.35 (0.12) 0.48 (0.22) 

Retail 1.45 (0.15) 0.09 (0.00) 

Leisure Indoor 0.28 (0.00) 2.47 (0.29) 

Leisure Outdoor 0.22 (0.00) 0.02 (0.00) 

Transient 1.17 (0.08) 0.14 (0.00) 

Unclassified 2.81 (0.21) 0.23 (0.00) 
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Table 1.5. Mean of personal-ambient ratios for each participant. A ratio greater than one (bolded) indicates 
a higher personal exposure compared to exposure derived from ambient PM2.5 concentrations. The table 
header indicates the microenvironment classifications: home (H), work (or university, W), restaurant (R), 
retail (RE), leisure indoor (LI), leisure outdoor (LO), transient (T), and unclassified (U). Participant 12’s dataset 
was not recovered. Star (*) indicates that the participant is a part-time or full-time student. Blanks indicate 
that no data points were classified for the microenvironment.  
 

Participant City H W R RE LI LO T U 

1* Riverside 0.40 0.29 0.38 - - - 0.29 0.33 

2 San 
Bernardino 

7.92 0.00 0.00 0.00 5.27 0.02 0.11 0.11 

3* Riverside 0.35 - 0.24 2.45 0.07 - 0.67 0.61 

4* San 
Bernardino 

- 0.00 - - - - - 0.87 

5 Redlands - 0.31 - - 0.96 - 0.04 0.10 

6* San 
Bernardino 

1.18 0.01 0.38 0.88 0.50 - 0.14 0.20 

7 San 
Bernardino 

2.80 - - 0.03 0.09 0.15 0.31 0.27 

8* Riverside 2.67 0.23 0.94 1.72 0.36 0.22 1.43 6.31 

9 Redlands 0.09 - - - 0.15 - 0.48 1.05 

10 Yucaipa 0.31 - 1.47 - - 1.27 0.85 1.22 

11 San 
Bernardino 

0.22 0.15 0.76 0.08 0.22 - 0.36 0.30 

13* Moreno 
Valley 

392.0 16.96 126.0 1.13 3.13 - 7.55 31.1 
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Table 1.6. Median of personal-ambient ratios for each participant. A ratio greater than one (bolded) 
indicates a higher personal exposure compared to exposure derived from ambient PM2.5 concentrations. The 
table header indicates the microenvironment classifications: home (H), work (or university, W), restaurant 
(R), retail (RE), leisure indoor (LI), leisure outdoor (LO), transient (T), and unclassified (U). Participant 12’s 
dataset was not recovered. Star (*) indicates that the participant is a part-time or full-time student. Blanks 
indicate that no data points were classified for the microenvironment. 
 

Participant City H W R RE LI LO T U 

1* Riverside 0.42 0.30 0.25 - - - 0.31 0.30 

2 
San 

Bernardino 
0.16 0.00 0.00 0.00 0.35 0.00 0.00 0.00 

3* Riverside 0.18 - 0.11 0.35 0.00 - 0.50 0.47 

4* 
San 

Bernardino 
- 0.00 - - - - - 0.90 

5 Redlands - 0.00 - - 1.07 - 0.00 0.00 

6* 
San 

Bernardino 
0.93 0.00 0.23 0.65 0.31 - 0.00 0.09 

7 
San 

Bernardino 
0.86 - - 0.00 0.00 0.15 0.00 0.00 

8* Riverside 0.64 0.11 0.80 0.87 0.28 0.00 0.12 0.61 

9 Redlands 0.00 - - - 0.15 - 0.45 1.09 

10 Yucaipa 0.18 - 1.47 - - 1.18 0.82 1.15 

11 
San 

Bernardino 
0.00 0.00 0.57 0.00 0.13 - 0.00 0.00 

13* 
Moreno 
Valley 

5.24 0.31 2.23 0.00 0.24 - 0.00 0.50 

14* 
Moreno 
Valley 

0.21 - - 0.00 - 0.00 0.00 0.00 

15* Riverside 0.13 - 0.17 0.00 0.00 - 0.00 0.00 

16 Riverside 0.27 0.65 0.27 0.14 - - - 0.18 

17 
Moreno 
Valley 

0.31 0.07 - 0.42 0.42 - 0.18 0.16 

18* Yucaipa 2.84 - - - 0.00 - 0.00 0.00 
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Figures 

 

Figure 1.1. Map of the personal exposure study (Google Maps, 2019). Red stars delineate an area of 
approximately 200 square miles (520 square km). 

 

 

Figure 1.2. (Left) Wearable particulate matter monitors from Applied Particle Technology (St. Louis, MO). 
Data was transmitted via Wi-Fi hotspots and was accessible online in real-time. (Right) PM sampling pack 
used in the personal exposure study. The monitors were clipped outside of the pack, and the Wi-Fi and GPS 
data loggers were housed inside of the pack. 
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Figure 1.3. Details of the processing of GPS data obtained from the Global-Sat data loggers, which were set 
to sample every five seconds. GPS locations were classified as being measured more than or less than 10 
seconds after the previously measured location. For locations measured more than 10 seconds after the 
previous location, spatial separation was also taken into account (greater than or less than 20 meters 
between the previous location). All locations separated by a distance of greater than 50 meters were 
assigned the value “NaN,” and all other positions were linearly interpolated. Levels 1 to 3 indicate highest 
to lowest data quality, respectively.  
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Figure 1.4. Collocation of APT monitors at the Mira Loma Van Buren air monitoring site. 

 

 

Figure 1.5. An example of spatially clustered personal measurements generated using the DBSCAN 
approach. 
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Figure 1.6. Contour spatial fields of ambient PM2.5 overlaid with monitor values (circles) for a 2:00 AM (top) 
and 9:00 AM (bottom) hour during the five-week study period.  
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Figure 1.7. Distributions of ambient PM2.5 concentrations (µg m-3) corresponding to participant locations 
during each week of the study. Median concentrations were 4.4, 8.5, 10.2, 5.9, and 7.5, for weeks 1-5, 
respectively. All ambient data are retreived from regulatory monitoring stations. 
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Figure 1.8. Sample time series of 5-second personal (black) and hourly ambient (red) monitoring data for 

four participants from San Bernardino (top-left), Redlands (top-right), Moreno Valley (bottom-left), and 

Riverside (bottom-right). Data are presented in log scale and maxium personal exposures are indicated in 

each plot. 
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Figure 1.9. Distributions of personal and ambient PM2.5 measurements for Redlands and Riverside (N = 5), 
and San Bernardino (N = 4) participants with data recovery greater than 50%. The labels indicate the 
microenvironment classifications: home (H), work (or university, W), restaurant (R), retail (RE), leisure indoor 
(LI), leisure outdoor (LO), transient (T), and unclassified (U). Personal exposure measurements are labeled “-
PE,” and ambient data are labeled as “-AM.” 
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Part 2 

Ambient and Indoor Influences on PM2.5 in Rail-Impacted Homes in San Bernardino, CA  

Abstract 

Ambient air quality metrics are generally used to quantify the impact of air pollution on 

human health. However, people spend over 90% of their time in indoor environments, for which 

ambient air pollution may not always have the highest influence. Further, indoor and ambient air 

pollution analyses are rare for historically impacted communities in the U.S., and crowdsourced 

indoor air quality data is generally representative of higher income and less-impacted households. 

In this study, Indoor and ambient PM2.5 levels were monitored for five households (ten total 

households for ambient monitoring) over six months using PurpleAir monitors in West San 

Bernardino, California, which is a state-designated community for disproportionate impacts from 

air pollution sources. The selected households are feet away from the Burlington Northern Santa 

Fe intermodal facility, which is estimated to emit air pollutants all day due to 24/7 operation. The 

influence of ambient PM2.5 on indoor environments was studied using a mass balance approach. 

The analysis shows that household PM2.5 levels had a higher-than-expected average infiltration 

factor of 0.70. Approximately 33% of the time, indoor PM2.5 levels were greater than ambient 

PM2.5 levels due to high frequent indoor emissions from cooking, cleaning, or dusting without 

sufficient filtration or air exchange rate. The indoor 98th percentiles across the households far 

exceeded a healthy level at an average of 61 𝜇g/m3. A linear regression model confirms that the 

98th percentile can be reduced by increasing the air exchange rate, filtration, or reducing indoor 

emissions. It can be concluded that ambient and indoor PM2.5 exposures for disproportionately 

impacted groups cannot be generalized in population-wide, crowdsourced applications due to lack 
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of availability of indoor low-cost monitoring in these communities. I recommend localized indoor 

monitoring efforts that are tailored to a community’s needs and historical source burdens. 

Introduction 

Fine particulate matter (PM) is the term to describe liquid or solid particles with an 

aerodynamic diameter less than or equal to 2.5 microns (PM2.5). Studies have shown that exposure 

to high levels of PM2.5 can adversely affect human health, causing asthma, respiratory disease, and 

cardiovascular disease (Brown et al., 1950; Deng et al., 2019; Maté et al., 2010; Wang et al., 2019). 

In the United States, primary PM2.5 is directly emitted from a source into the atmosphere, and 

sources include construction sites, smokestacks, or wildfires. PM2.5 is also generated through 

complex chemical reactions in the atmosphere, known as secondary PM, which is highly correlated 

with urban PM2.5 (Zawacki et al., 2018; Zhang et al., 2015). High concentrations of PM2.5 are found 

in urban areas with a high volume of anthropogenic activities (Fruin et al., 2014; Gildemeister et 

al., 2007; Hasheminassab et al., 2014). Spatial distributions of PM2.5 in the U.S. exhibit significant 

racial-ethnic disparity (Ivey, 2020; Wang et al., 2022). Specifically, highly polluted areas are often 

in low-income and non-white neighborhoods that are surrounded by industrial factories, shipping 

facilities, warehouses, and railyards (Allen, 2010a; Bluffstone and Ouderkirk, 2007; deSouza et al., 

2022; Houston et al., 2004). 

Additionally, people spend over 90% of the time indoors(Do et al., 2021; Long et al., 2001) 

and are subsequently exposed to indoor air pollutants that are generated from multiple sources. 

Indoor activities, such as vacuum cleaning, cooking, dusting, use of consumer products, and 

smoking are the primary sources of indoor PM2.5 (Mattila et al., 2020). These activities can raise 

indoor PM2.5 levels to peak concentrations in a very short period of time, approximately 10 to 30 



41 
 

minutes (Stephens and Siegel, 2012). An effective range hood can remove a significant amount of 

PM2.5 generated during cooking activities. During high PM2.5 episodes, air ventilation also 

effectively reduces indoor PM2.5 levels by diluting with fresh outdoor air (Kang et al., 2019; Xiang 

et al., 2021). Further, baseline indoor PM2.5 levels are highly influenced by the penetration of 

ambient PM2.5 into the indoor environment. Although indoor air quality can be improved with 

proper air exchange and filtration systems, numerous studies have shown a strong relationship 

between indoor and ambient PM2.5 levels (Freijer and Bloemen, 2000; Lee et al., 1997; Leung, 

2015; Mousavi and Wu, 2021; Poupard et al., 2005). In particular, indoor PM2.5 concentrations 

highly correlated with ambient PM2.5 when wildfires occur (Liang et al., 2021). Closing the windows 

and minimizing the air exchange rate can decrease the penetration of ambient particles during 

such an event. 

This study considers ambient and indoor PM2.5 for a disproportionately impacted 

community of inland Southern California, which is located near the northern and southern borders 

of Riverside and San Bernardino Counties, respectively. For reference, this region is historically 

known for its agricultural economy and more recently for freight shipping activities and a growth 

of warehouses, creating a significant shift in the region’s economy (Allen, 2010b; deSouza et al., 

2022). The nationwide shift towards more online shopping in the United States has resulted in 

further expansion of freight shipping activities in the region. Roughly 45% of products imported 

from Asia are shipped through inland Southern California each year(Patterson, 2016) and 

distributed across the United States via heavy-duty diesel trucks and railway systems. The 

Burlington Northern Santa Fe (BNSF) intermodal facility, which is directly adjacent to residential 

areas within the San Bernardino community (within 200 feet of the fence line), has long been 
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determined as a major air pollution source and health hazard for neighboring communities 

(Spencer-Hwang et al., 2019, 2016, 2015, 2014). The facility’s emissions are generated from diesel 

trucks entering and leaving the facility, equipment to load and unload containers, and locomotives 

(South Coast Air Quality Management District, 2019). 

In this study, indoor and ambient PM2.5 are investigated for a low-income community near 

the BNSF facility. Most homes were missing features that ensure good indoor air quality, such as 

central air conditioning. Some homes required cooling through window air conditioning units or 

through open windows at night to cool the indoor environment during summer, which increases 

ambient PM2.5 penetration. Using a mass balance approach, the penetration, indoor emission rate, 

and air exchange rate, and filtration factors were estimated and compared the findings with 

previous work that characterized indoor air quality in California homes using crowdsourced data. 

Study Area 

 The study was conducted in the West San Bernardino community, located in the southern 

region of San Bernardino County, California (inland southern California) and classified as hot-

summer Mediterranean climate, with mild winters and hot, dry summers. The West San 

Bernardino community is bounded by a highway network of U.S. Interstates 10 to the south, 210 

to the north, and 215 on the east, which are always in heavy use due to the rapid expansion of 

freight infrastructure. Fifteen PurpleAir (PAII) monitors were deployed in the community in ten 

households to assess trends in PM2.5 over seven months (July 2023 – January 2023). Specifically, 

five homes were selected for the installation of indoor and ambient monitors, while the other five 

homes had only ambient PM2.5 monitoring. The sample size was impacted by funding limitations, 

but nonetheless this effort has been of great benefit for all community members involved. The 
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deployment area was divided into three zones based on the distance to the BNSF facility, in which 

zone 1 has five PurpleAir located within 450 meters from the railyard. Zone 2 has six PurpleAir 

located within 1,000 meters from the railyard, and zone 3 has four PurpleAir that is further than 

1000 meters from the railyard (Figure 1.10). The average household income for the participants is 

$50,000 (2022), which is 32% lower compared to the median household income in San Bernardino 

County ($72,300 in 2021). 

Data and Methods 

Measurements and Data Processing 

 Ambient PurpleAir monitors were installed in the back yard or front yard, and indoor 

monitors were installed in the living room (i.e., main room). The sensors were powered 

continuously by 120V outlets. Sampling took place over seven months, from July 2022 to January 

2023. The monitors provided measurements every 120 seconds for temperature (°F), relative 

humidity (%), and PM2.5 concentration (𝜇g/m3). 10-minute averages were used to compute indoor 

emission and decay rates. The data were averaged hourly to remove noise before computing 

statistical summaries. Hourly averages were used to evaluate data against the National Ambient 

Air Quality Standards (NAAQS) for 24-hour PM2.5. A linear correction factor was applied to the raw 

PurpleAir PM2.5 measurements based on recommendations by Barkjohn et al. (Eq. 1), where PM2.5 

is the corrected concentration, PA is the average raw PM2.5 concentration from PurpleAir channels 

a and b, and RH is relative humidity (Barkjohn et al., 2021). 

𝑃𝑀2.5 = 0.524𝑃𝐴 − 0.0862𝑅𝐻 + 5.75 (1) 
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Indoor PM2.5 Modeling 

 Simultaneously indoor and ambient PM2.5 sampling enabled the derivation of a simple 

mass balance to estimate the loss rate constant, indoor emission rate constant, and penetration 

for the homes with paired monitors. The loss rate constant is the combination of the air exchange 

and filtration rate constant, which are responsible for the decay of indoor PM2.5 concentrations. 

The indoor emission rate constant is the magnitude of indoor emissions, and the penetration rate 

constant represents the effectiveness of PM2.5 transfer from the outside to the indoor 

environment. The mass balance applied in this study is expressed in Eq. 2: 

𝑑𝐶𝑖𝑛

𝑑𝑡
= 𝑎𝑃𝐶𝑜𝑢𝑡 − (𝑎 + 𝑘)𝐶𝑖𝑛 + (

𝐸𝑖𝑛

𝑉
) (2) 

where 𝐶𝑖𝑛 is indoor PM2.5, 𝐶𝑜𝑢𝑡 is ambient PM2.5, 𝑎 and 𝑘 are the air exchange rate and filtration 

constant, 𝑃 is the penetration factor, 𝑉 is the volume of the house, and 𝐸𝑖𝑛 is the indoor emissions. 

 Emission event: To compute indoor emission rates, the assumption was the penetration 

was negligible. When an emission event occurs, the rate of change in 𝐶𝑖𝑛 is steep, and the 

penetration amount is minimal compared to indoor emissions. The solution to the ODE in Eq 2. is 

shown in Eq. 3, where 𝐸/𝑉 is the indoor emission rate per m3 (𝜇𝑔 ∗ ℎ𝑟−1 ∗ 𝑚−3): 

𝐸

𝑉
=

𝐶𝑖𝑛(𝑡) − 𝐶𝑖𝑛(𝑡 = 𝑡𝑝𝑒𝑎𝑘)𝑒𝛼Δ𝑡

1 − 𝑒𝛼Δ𝑡
𝛼 (3) 

For each home, multiple values were computed for 𝛼, which is (𝑎 + 𝑘), and 𝐸/𝑉 based on a set 

of criteria (See SI).  
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Decay event: After an indoor emission event, zero PM2.5 generation was assumed at the 

peak of 𝐶𝑖𝑛 (the intersection of the green and red lines, as shown in the top panel of Figure 1.11). 

The decay of 𝐶𝑖𝑛 only depends on the loss due to air exchange and filtration rates. At the time of 

peak 𝐶𝑖𝑛, the indoor PM2.5 concentration is much higher than ambient PM2.5. Eq. 4 can be 

simplified to 

 
𝑑𝐶𝑖𝑛

𝑑𝑡
= −(𝑎 + 𝑘)𝐶𝑖𝑛 (4)  

implying that right after the peak of an emission event, the change in indoor PM2.5 depends only 

on the air exchange and filtration rate constants. The solution to the ODE in Eq. 4 during periods 

dominated by decay is Eq. 5. 𝐶𝑖𝑛(𝑡 = 𝑝𝑒𝑎𝑘) occurs when indoor PM2.5 is maximum at the 

intersection of the red and green lines, as shown in Figure 1.11. Δ𝑡 is the difference in time 𝑡 

between 𝐶𝑖𝑛(𝑡) and 𝐶𝑖𝑛(𝑡 = 𝑝𝑒𝑎𝑘). 

𝛼 = −
ln (

𝐶𝑖𝑛(𝑡)
𝐶𝑖𝑛(𝑡 = 𝑝𝑒𝑎𝑘)

)

Δ𝑡
(5)

 

Baseline indoor model: The indoor PM2.5 was constructed to validate the estimated 

penetration and air exchange constant based on Eq. 6, where 𝐶𝑚𝑜𝑑𝑒𝑙 is the modeled indoor PM2.5 

concentrations, 𝛼 is the combination of air exchange rate and filtration constant, and 𝑎𝑃 is the 

penetration factor which is equal to 𝐶𝑖𝑛/𝐶𝑜𝑢𝑡. Eq. 6 is valid if there are no indoor emissions and 

when the ambient PM2.5 is greater than indoor PM2.5 in the absence of indoor emission events. All 

ODE solution derivations can be found in the Supplemental Information. 
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𝐶𝑚𝑜𝑑𝑒𝑙(𝑡) = 𝐶𝑚𝑜𝑑𝑒𝑙(𝑡 − 1)eαΔt +
𝑎𝑃𝐶𝑜𝑢𝑡(𝑡)

𝛼
(6) 

Overall, the peaks of indoor PM2.5 were ten times greater than the indoor average, and 

the slopes were steep. Typically, indoor emissions were generated in 10 to 20 minutes, and the 

decay lasted about 10 to 50 minutes. The red lines from the bottom panel in Figure 1.11 were used 

to calculate average indoor emissions and decay constants.  

Results and Discussion 

Analysis of indoor and ambient PM2.5: The analysis of indoor PM2.5 was presented for the 

five homes where indoor and ambient pairs of PurpleAir were installed. Based on an evaluation 

indoor and ambient temperature (and verified by household data collected at the start of 

community engagement), house 3 did not use an air conditioning unit as its indoor temperature 

was approximately greater than the ambient temperature during summertime (Figure 1.12). The 

histograms in Figure 1.13 show the ratio of indoor and ambient PM2.5 (I/O ratio). The peaks of the 

histogram distribution are centered around the value of one. For homes 1, 3, and 5, the mode for 

I/O ratio (most frequent occurrence) occurs when the indoor PM2.5 is nearly the same as ambient 

PM2.5, which contradicts previous studies, for which the distribution modes were approximately 

0.62 using crowdsourced information (Liang et al., 2021). 

The I/O ratios from crowdsourced data generally reflect a higher socioeconomic status 

population with high accessibility to indoor air quality monitoring. Further, population-based 

studies will likely not reflect the lived experiences of disproportionately impacted communities 

that have more limited access to indoor monitoring equipment. Historically, racial-ethnic minority 
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groups are the most sensitive and highly affected by the poor ambient air quality (Ivey, 2020; 

Patterson and Harley, 2019; Wang et al., 2022). 

The findings also suggest that elevated ambient PM2.5 levels directly influence indoor air 

quality in West San Bernardino homes (Table 1.7), which is further evidenced by the seasonal 

statistics (Table 1.8, Table 1.9, and Table 1.10). The consistent values across all PurpleAir monitors 

for the corrected 25th, 50th, and 98th percentile ambient PM2.5 reflect good performance for 

ambient measurements in the West San Bernardino area. For the 50th percentile across all months, 

indoor PM2.5 was less than ambient for all homes except for house 3 (no air conditioning or 

filtration), where indoor PM2.5 levels were higher than ambient levels for all quartiles. Indoor mean 

and 98th percentile was significantly higher than corresponding ambient levels for all five houses, 

reflecting the influence of indoor emissions.  

Seasonal variations between summer (Jul – Sep 2022) and fall (Oct 2022– Jan 2023) are 

provided in the Supplemental Information (Table 1.8 and Table 1.9). Summer temperatures were 

high, with an average of 82°F and exceeding 100°F around 5% of the time. During high-

temperature periods, four out of five houses used air conditioning to regulate indoor 

temperatures resulting in their indoor PM2.5 being less than ambient PM2.5 levels (Table 1.8). This 

indicated that filtration systems from air conditioning units effectively reduced concentrations. 

The average temperature was 60 °F in the fall/winter, allowing open-window ventilation to 

regulate indoor environments and increasing air exchange rate and penetration. Due to increased 

penetration, indoor PM2.5 baseline levels rose, leading to indoor levels exceeding ambient PM2.5 

across all quartiles (Table 1.9). 
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Estimated indoor emissions: Four out of five homes had an indoor 98th percentile that 

exceeded the 24-hour PM2.5 NAAQS level (35 𝜇𝑔/𝑚3). High 98th percentiles resulted from high 

indoor emissions and poor ventilation, which can be explained by the average decay constants 

(Homes 1 and 5 in Table 1.11). Houses with low decay constant suffered from prolonged periods 

of high PM2.5 episodes after indoor emission events (Homes 2, 3, and 4 in Table 1.11). An indoor 

emission event is defined as when indoor PM2.5 levels are significantly higher than ambient PM2.5 

levels. The frequencies of indoor emissions were also estimated for the homes, considering the 

instances where indoor PM2.5 concentrations peaked at levels five times higher than the average 

indoor PM2.5 concentrations. Indoor emission rates per m3 were estimated to be a minimum of 

619 𝜇𝑔 ∗ ℎ−1 ∗ 𝑚−3 and a maximum of 1190 𝜇𝑔 ∗ ℎ−1 ∗ 𝑚−3 for houses 2 and 1, respectively. 

Estimated decay and infiltration constants: The average decay constants, average indoor 

emissions per m3, and infiltration factors for all five homes were calculated based on the mass 

balance (Eq. 2) and the set assumptions discussed in the Data and Methods section. Indoor 

activities, air exchange rates, and filtration rates were highly variable, resulting in different 

infiltrations values across the study period. The average infiltration values for each house also 

represent family habits during the community engagement period. Infiltration value ranges from 

zero to one, where zero represents no penetration, and one indicates the indoor PM2.5 and 

ambient PM2.5 levels. In our study, the lowest infiltration value is 0.57 the highest is 0.84 for houses 

1 and 4, respectively, implying the vulnerability of indoor environments to the changes in ambient 

conditions (Table 1.11). The infiltration values of this study are significantly higher than those in 

the previous studies that rely on crowdsourced data or a test house. Stephens et al. used a mass 

balance, and the calculated infiltration factor was 0.34 for a test house (Utest House) (Stephens 
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and Siegel, 2012). Liang et al. used a similar approach and utilized the PurpleAir sensor network 

in California that monitored more than 1400 buildings to assess the impact of wildfire smoke on 

indoor air quality, and the derived average infiltration factor was 0.45 (Liang et al., 2021). The 

average infiltration factor in this study across the five homes is 0.70, which is relatively higher 

compared to previous studies, indicating a more significant impact of ambient air quality on the 

indoor environments of this rail-impacted community. 

 Baseline indoor PM2.5 model: To evaluate the calculated infiltration and decay constant, 

indoor PM2.5 concentrations were constructed using the mass balance. Here, emissions in the 

baseline model were not considered. Therefore, the model is only a function of decay constant, 

penetration, and ambient PM2.5, as described in Eq. 6. The model gave good predictions and 

captured the trend of occurrences (Figure 1.14). Although the model successfully reconstructed 

the distribution of indoor PM2.5 for homes 3, 4, and 5, it did not capture the peak for house 2 and 

high concentrations in homes 1 and 4. The errors were caused by indoor minor emission events, 

which were not accounted for as long as the indoor PM2.5 was still less than ambient PM2.5. Minor 

emissions are difficult to trace with the time series without additional activity information from 

home occupants. Uncertainties in participants’ habits, such as opening the windows, turning on 

the fume hood, and using air conditioning, largely contributed to the model’s errors. 

98th percentile regression model: Intuitively, indoor PM2.5 levels are managed by the decay 

constant, (𝛼 = 𝑎 + 𝑘) and the frequency, 𝑓. Linear regression with the two dependent variables 

was performed to predict the indoor 98th percentiles, for which 𝐼𝑛𝑑𝑜𝑜𝑟 98𝑡ℎ %𝑖𝑙𝑒 = 𝑐1𝛼 + 𝑐2𝑓 +

𝑐3, where 𝑐1and 𝑐2 are the coefficients for decay constant and frequency, respectively, and 𝑐3 is 

the bias. The values for 𝑐1, 𝑐2, and 𝑐3 are listed in Eq. 7, and the 𝑅2 for the regression model is 
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0.84. The scatter plot for the prediction and actual indoor 98th percentile is provided in the 

Supplemental Information (Figure 1.15). The regression model shows that the indoor 98th 

percentile has a negative correlation with the decay constant and a positive correlation with 

indoor emission frequency. 

𝐼𝑛𝑑𝑜𝑜𝑟 98𝑡ℎ  %𝑖𝑙𝑒 = −11.1𝛼 + 0.12𝑓 + 49 (7) 

where 𝛼 is the decay constant (𝛼 = 𝑎 + 𝑘), and 𝑓 is the frequency accounting for the PM2.5 peaks, 

which are identified when indoor PM2.5 is greater than five times the indoor average. Interestingly, 

the computed average indoor emission rates (E/V) had relatively little impact on the modeled 

indoor 98th percentile, for which house 1 with the highest average emission rate still had the 

lowest indoor 98th percentile PM2.5. 

Recommendation and model uncertainties: Our analyses show a strong effect of ambient 

PM2.5 on the indoor levels for five community homes that are near the BNSF facility with an 

average infiltration of 0.7, a value higher than that previously published using crowdsourced data. 

The 98th percentile regression model implies 98th percentile concentrations are linearly correlated 

with the air exchange rate, filtration, and indoor emission frequency. Indoor PM2.5 concentrations 

can be regulated by increasing ventilation during indoor emission events or minimizing the air 

exchange rate when outdoor PM2.5 concentrations are high (during daytime peaks in fall/winter). 

It is strongly recommended that impacted homes near the BNSF facility have adequate air filter to 

minimize penetration and indoor levels. The suggestion is that PurpleAir sensors be permanently 

installed in impacted homes near the BNSF facility (or any large industrial source) to continuously 

monitor residential indoor and ambient air quality and provide real-time feedback for mitigating 
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indoor pollution. For instance, occupants should increase filtration and ventilation during indoor 

emission events when ambient PM2.5 levels are low.  

The uncertainties of estimated constants arose from the assumption that there were no 

emissions at the peaks (inflection points) and no penetration when indoor PM2.5 levels were high. 

Infiltration uncertainty is derived from omitting minor indoor emissions from consideration, 

causing a slight overestimation of infiltration factors.  

Supplemental Information 

 The Supplemental Information provides details of the mass balance derivation; statistical 

tables for the summer and fall periods; scatter plot for the 98th percentile model estimates and 

actual values; time series plot for ambient, actual indoor, and baseline model PM2.5 

concentrations; histogram plots for indoor and ambient PM2.5 concentrations; hourly averaged 

PM2.5 concentration time series plots for outdoor and indoor throughout the study; and hourly 

averaged ambient and indoor temperature time series throughout the study. 
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Tables 

Table 1.7. Statistics based on hourly averaged indoor (In) and ambient (Out) PM2.5 concentrations (in µg/m3) 
for five homes. The sampling duration is seven months (July 2022 to January 2023) spanning the summer 
and winter periods. The table includes the 25th, 50th, 75th, and 98th percentiles, mean, and standard deviation 
(STD). 

 
25%ile 50%ile 75%ile 98%ile Mean STD 

In Out In Out In Out In Out In Out In Out 

House 1 2.4 5.9 5.1 8.5 9.2 11.7 26.2 22.6 7.4 9.5 10.8 5.1 

House 2 5.3 6.2 7.1 9.2 11.3 13.7 49.3 25.3 11.0 10.5 13.5 6.0 

House 3 7.7 6.5 11.1 9.1 20.7 13.0 100 24.0 19.2 10.2 26.7 5.3 

House 4 5.6 6.7 7.8 9.3 14.0 13.1 93.7 25.9 14.9 10.8 23.1 7.0 

House 5 6.8 6.8 9.3 9.7 14.0 13.5 34.9 25.4 11.9 10.8 10.0 5.7 

 

Table 1.8. Statistical summary of indoor and outdoor sensors for five houses. Sampling duration is three 
months from Jul 2022 to Sep 2023 spanning over the summer period. Based on 10 minute average. 

Summer 
 

25%ile 50%ile 75%ile 98%ile Mean STD 

In Out In Out In Out In Out In Out In Out 

House 1 6.2 7.1 8.1 9.1 10.7 11.2 23.9 18.9 9.3 9.6 6.0 4.2 

House 2 5.4 7.1 6.9 9.1 10.2 11.2 34.5 18.0 9.9 9.4 11.7 3.3 

House 3 7.3 7.3 8.9 9.1 11.7 11.3 65.9 19.1 13.1 9.7 17.0 3.8 

House 4 5.0 7.4 6.7 9.2 10.5 11.2 62.4 18.5 11.8 9.7 20.7 4.1 

House 5 6.4 7.6 8.1 9.6 10.1 11.8 25.0 19.3 9.3 10.1 6.8 3.8 

 

Table 1.9. Statistical summary of indoor and outdoor sensors for five houses. Sampling duration is four 
months from Oct 2022 to Jan 2023 spanning over the winter period. Based on 10 minute average. 

Fall 
 

25%ile 50%ile 75%ile 98%ile Mean STD 

In Out In Out In Out In Out In Out In Out 

House 1 2.0 5.2 2.6 7.3 4.2 12.6 31.7 24.7 6.1 9.4 16.6 5.9 

House 2 5.1 5.7 7.1 9.2 11.5 15.6 61.5 26.3 11.8 11.0 16.8 7.0 

House 3 8.1 5.7 13.5 8.9 24.6 14.9 120.3 25.6 23.0 10.6 33.2 6.3 

House 4 5.7 5.8 8.3 9.3 15.3 15.8 113.3 27.8 17.0 11.6 29.3 10.7 

House 5 6.8 5.5 11.1 9.4 16.9 15.8 43.2 27.3 13.8 11.2 14.0 7.4 
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Table 1.10. Statistical summary of indoor and outdoor sensors for five houses using hourly average PM2.5 
concentrations. Sampling duration is six months from July 2022 to January 2023 spanning over the summer 
and winter periods. Based on 10 minute average. 

 

25%ile 50%ile 75%ile 98%ile Mean STD 

In Out In Out In Out In Out In Out In Out 

House 1 2.4 5.8 4.9 8.4 9.1 11.7 26.7 23.0 7.4 9.5 13.4 5.2 

House 2 5.3 6.1 7.0 9.2 10.9 13.8 49.6 25.6 11.0 10.5 14.9 6.2 

House 3 7.6 6.3 10.7 9.1 20.0 13.0 104 24.5 19.2 10.2 28.5 5.5 

House 4 5.4 6.5 7.5 9.2 13.3 13.1 99.0 25.8 14.9 10.8 26.3 8.6 

House 5 6.6 6.5 9.0 9.5 13.8 13.7 36.6 26.1 11.9 10.8 11.7 6.2 

 

Table 1.11. Summary of calculated average decay constants, average indoor emissions per m3, and 
infiltration factors for all five participant houses. Indoor peaks account for values greater than five times the 
indoor average PM2.5. 

 House 1 House 2 House 3 House 4 House 5 

Indoor 98th Percentile (𝜇𝑔/𝑚3) 26 49 100 94 35 

Exceed Ambient PM2.5 % 20 27 45 36 35 

Indoor Emission Peaks (frequency, 𝑓) 263 417 533 719 160 

Infiltration (𝐹𝑖𝑛 = 𝐶𝑖𝑛/𝐶𝑜𝑢𝑡) 0.57 0.65 0.84 0.67 0.78 

Avg Decay Constant, 𝛼 (ℎ𝑟−1) 4.8 2.7 2.7 3.2 3.3 

Avg Indoor Emissions, E/V (𝜇𝑔 ∗ ℎ𝑟−1 ∗ 𝑚−3) 1190 619 663 863 779 
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Figures 

 

Figure 1.10. BNSF facility and household sampling locations, which are divided into three zones. Zone 1 is 
located within 450 meters, zone 2 is located within 1,000 meters, and zone 3 is more than 1,000 meters from 
the railyard. Source: map.purpleair.com 
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Figure 1.11. Sample time series for one home from 2022 Aug to 2023 Jan (bottom); the red lines are the data 
used to compute average indoor emissions. Zoom-in on the time series (top); the red line is used to calculate 
the indoor emissions (𝐸/𝑉) and green line is used to calculate the decay constant (𝛼) based on Eqs. 3 and 5, 
respectively. 
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Figure 1.12. Hourly average time series plots for indoor (blue) and outdoor temperature (orange) for five 
participant houses. During the summertime, there were active air conditioning units to regulate indoor 
temperature for house 1, 2, 4, and 5. However, the indoor temperature in house 3 consistently exceeded the 
ambient temperature indicating there was no active air conditioning in the house. 
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 Figure 1.13. Indoor/outdoor PM2.5 ratios for the five participant houses. The 
histogram was limted to 4 due to the high values when ambient 
concentrations were very small. Ratios are based on 10 minute average. 
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Figure 1.14. Actual indoor PM2.5 (blue) and model PM2.5 (orange) based on 
Eq. 6 based 10 minute average data. The distribution only shows the data 
when indoor PM2.5 levels were less than ambient PM2.5 levels. 
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Figure 1.15. Model vs actual 98th percential of indoor PM2.5 in five homes 
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Chapter 2  

Part 1 

 

A Machine Learning Approach to Quantify the Impact of Meteorology on Tropospheric 
Ozone in the Inland Empire, CA 

The works used in this chapter were previously published in Environmental Science: Atmospheres. 

Abstract 

The role of meteorology in facilitating the formation and accumulation of ground-level 

ozone is of great theoretical and practical interest, especially due to changing global climate. In 

this study, with appropriate machine learning algorithms, Large meteorology and air quality 

datasets were analyzed to train machine learning models to (1) enhance the prediction of ozone 

levels in the South Coast Air Basin of California, (2) investigate the impact of recent meteorological 

shifts on ozone formation, and (3) determine the most critical factors influencing ozone 

exceedance hours. Random forest regression was used to predict historical and future trends of 

ozone levels, and k-nearest neighbor was used as a binary classifier for ozone exceedance 

prediction. The models were trained on meteorology data from Ontario and Los Angeles 

International Airport stations and air quality data from the Fontana, California air monitoring 

station, and data were collected for the 1994 to 2018 time period. Upon model evaluation, the 

correlation of the RFR model was 0.92, and the probability of detection for ozone exceedances 

using k-nearest neighbors was 0.81 for the most recent years of the analysis (2014-2018). A four 

km Community Multiscale Air Quality model simulation generated air pollution estimates over 

Southern California. As expected, ozone in Fontana was positively correlated with temperature. 
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The ozone exceedance hours usually occurred when the temperature was above 25 oC, and the 

wind direction was from 270o (westerly). Ozone sensitivity as a function of temperature and NOX 

was also examined. Observed troughs in hourly NOX concentrations during midday under high 

temperatures suggests that most of the ambient NOX reacted, also as expected. The results 

indicate that machine learning can support state implementation planning by complementing 

traditional air quality modeling, reducing simulation time, and exploiting large datasets for 

historical simulations and future air quality predictions. 

Introduction 

California’s South Coast Air Basin (SoCAB) is well-known for its poor air quality due to its 

unique topography and high anthropogenic emissions. Meteorological variables and synoptic 

patterns greatly influence air pollution in SoCAB (Ulrickson and Mass, 1990a, 1990b). Los Angeles’ 

temperature inversions resulting from high-pressure systems over SoCAB combined with a 

mountain wave-induced downslope flow creates a trap that accumulates air pollutants near the 

ground, leading to degraded air quality (Lu and Turco, 1995, 1994). The relationship between 

ozone (O3), its anthropogenic precursors, nitrogen oxides (NOX) and volatile organic compounds 

(VOC), has been well studied by means of environmental chamber experiments, field studies, and 

air quality modeling, yet new modeling methods are still needed to better understand why rates 

of ozone reduction in SoCAB have been lower than previously predicted (Baidar et al., 2015; 

Pusede and Cohen, 2012; Qian et al., 2019). Examining NOX-VOC emission ratios and identifying 

VOC- and NOX-limited regions are useful practices for creating surface ozone reduction strategies, 

thereby supporting the development of SoCAB emission-control strategies. Chemical transport 

modeling is generally considered the most advanced approach for evaluating emission-control 
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strategies, but is subject to uncertainties in emission rates, chemical reaction rates, and 

meteorological parameterizations. To further understand the quantitative relationship between 

ambient ozone concentrations and emission precursors, isopleths are developed from observed 

or modeled data to visualize ozone’s sensitivity due to changes in NOx and VOCs (Kinoslan, 1982; 

Qian et al., 2019; Sierra et al., 2013). 

In recent years, SoCAB ozone has significantly decreased as a result of emissions control 

programs implemented by the South Coast Air Quality Management District (SCAQMD), the state 

of California, and the U.S. EPA. Between 1993 and 2012, NOx and reactive organic gas (ROG) 

emissions in SoCAB decreased from 1,425 to 651 tons per day (tpd) of NOx and from 1,522 to 535 

tpd of ROGs (Lurmann et al., 2015). In response to the reductions, the annual average ozone from 

1994 to 2011, only considering hourly concentrations between 10 am and 6 pm, decreased by 

12% (64 to 57 ppb) in Riverside, CA (Lurmann et al., 2015). To achieve the 0.07 ppm 2015 National 

Ambient Air Quality Standard (NAAQS) for 8-hour ozone by the attainment deadline of 2037 

(Figure 2.1 and Figure 2.2), SCAQMD proposed further reduction in NOX emissions down to 250 

tons per day by 2023 and 200 tons per day by 2031 by shifting from conventional fossil fuel to 

alternative clean fuels for mobile sources (South Coast Air Quality Management District, 2017). 

Since 2014, the 8-hour ozone design value for SoCAB has marginally increased despite the 

continuous reduction in emissions (South Coast Air Quality Management District, 2017). The 

emissions mitigation has unquestionably improved 8-hour ozone design value over the past 

several decades. However, it is conjectured that shifts in meteorology have impacted ozone 

improvements in recent years. Environmental researchers commonly use statistical models (i.e., 

multiple linear regression, generalized additive models, etc.) to predict changes in ozone 
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concentrations with respect to changes in meteorology and investigate the influence of synoptic 

and local meteorological parameters on surface ozone concentrations (Camalier et al., 2007; 

Gardner and Dorling, 2000; Kavassalis and Murphy, 2017; Ooka et al., 2011; Otero et al., 2016; Rao 

et al., 1996). The uptick in ozone concentration in recent years despite continued reductions in 

emissions suggests that meteorological influences should be considered when evaluating the 

effectiveness of control strategies in locations that are working towards NAAQS attainment. In this 

paper, the response of ozone to meteorology is investigated in SoCAB over a 25-year period (1994-

2018) using new data-driven methods and photochemical modeling. Chemical transport models 

(CTMs), such as the Community Multiscale Air Quality (CMAQ) model, Goddard Earth Observing 

System model with atmospheric chemistry (GEOS-Chem), and the Comprehensive Air Quality 

Model with Extensions (CAMx), are useful tools for air quality researchers to simulate air quality 

trends and study the sensitivities of air pollutant levels to changes in emissions and meteorology. 

Although CTMs are relatively precise in representing atmospheric physics and chemical processes, 

handling the large datasets can be challenging given the limitation of computational efficiency and 

the complexity of input data. Moreover, CTM software applies complex governing equations to 

resolve concentrations, and most CTMs are designed for use solely with central processing units 

(CPUs) to carry out the simulations.  

In contrast with CTMs, which solve mathematical equations to estimate the outputs, 

machine learning uses data to discover underlying patterns or substitute functions that mimic 

complex mathematical functions. CTM processes can also be optimized with modern hardware, 

such as graphical processing units, to reduce computation time while retaining the results’ 

integrity (Keller et al., 2018). Presently, with many air monitoring stations across the U.S., air 
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quality datasets are available with high temporal resolution (hourly data). The study utilizes 

machine learning and air quality datasets to identify the pattern of the natural processes and 

explores the links between meteorology and ozone concentrations, leveraging empirical models 

and observational data. Previous work has been done to forecast air pollutant exceedances using 

supervised machine learning algorithms. For example, ozone levels have been predicted with 

reasonable accuracy using a feedforward neural network (Corani, 2005; Xie et al., 2009). Further, 

Hajek et al. (2012) presented a different approach for ozone prediction using support vector 

regression, which showed a significant improvement in the root mean square error (RMSE) 

compared to neural networks (Hájek and Olej, 2012). 

 The objective of this study is to explore the role of meteorology in changing ozone 

concentrations and ozone exceedances in SoCAB by leveraging results of machine learning and 

CMAQ. Meteorology-ozone sensitivity is investigated by applying machine learning to predict 

ozone concentrations in Fontana, California (inland Southern California), using meteorological 

inputs for Los Angeles and Ontario, California. The two meteorological sites represent distinct 

conditions due to their proximity to or distance from the Pacific Ocean. The machine learning 

results are analyzed against CMAQ simulations and observational data to evaluate the model 

performance and explore the common findings between the two approaches. 

Study Location and Measurements 

The California study sites include Los Angeles International Airport (LAX) and Ontario 

International Airport (ONT) meteorological sites and the Fontana air quality monitoring site 

(Figure 2.3). LAX is an upwind urban center near the coast of the Pacific Ocean, and use of LAX 

meteorology enables us to investigate the sensitivity of ozone concentrations at the downwind air 
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monitoring site with respect to upwind conditions. The temperature at LAX in the summer is lower 

and relative humidity is higher than the other two sites. The meteorology in ONT and Fontana is 

very similar because they are both in inland Southern California and are located seven miles apart, 

and they are approximately 50 miles from LAX. In 2018, LAX’s annual average temperature was 1.0 

°C lower than ONT (17.9 °C for LAX and 18.9 °C for ONT). During the 2010 to 2019 period, the 8-

hour ozone design value concentration for LAX fluctuated around 80 ppb, whereas the value for 

Fontana was consistently above 100 ppb (Figure 2.1 and Figure 2.2).  

Methods 

The machine learning (ML) models presented in this paper were trained on Fontana air quality 

data with both LAX and ONT meteorological data. The models were evaluated using data from the 

Fontana air monitoring station. The ML models enabled the examination of the relationship 

between meteorology at any location (e.g., ONT/LAX) and Fontana’s air quality. CMAQ simulation 

with 4 km horizontal spacing for the 2017 ozone season (May 1–Sep 30) in SoCAB provided a 

comparison dataset based on a deterministic model. 

Data Processing 

 Meteorology and air quality datasets were obtained from the NOAA Climate Data Office 

and EPA Air Quality System (AQS) database, respectively. The AQS database provides air quality 

measurements for all valid EPA air monitoring sites in the United States. The meteorology datasets 

comprised multiple years of observations at LAX and ONT. Meteorological data were obtained for 

the years 1994 through 2018. Some AQS measurements were made using different samplers; 

therefore, to ensure uniformity of the data, records were selected from the same instrument 

whenever possible. Days where data were missing were marked as “NA.” The data was temporally 
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synced from different locations based on their hourly, local timestamp. The data was randomly 

selected 80 percent from every year to create a training set, and the remaining 20 percent was 

used for ML model testing and evaluation. 

Machine Learning Overview 

Multiple regression-based ML algorithms were explored (e.g., neural network, support 

vector machine, k-nearest neighbors (K-NN), random forest) by training the models with processed 

air quality and meteorology data and evaluating predicted ozone concentrations. The RFR 

evaluation is mainly focused in this study, as its prediction of ozone concentrations is more 

accurate for SoCAB. Next, Binary classification was used to assign an ozone exceedance label when 

the observed and predicted hourly ozone concentrations are greater than 70 ppb. Further, 

Different classification methods were tested (e.g., support vector machine, logistic classification, 

perceptron) to choose the most suitable model for SoCAB. 

The main difference between classification and regression is in the input and output. The 

output of classification of any input vector comes from a finite dictionary, 𝑦 ∈  {1, … , 𝑚}, where 

𝑦 can be one of the 𝑚 entries. In this study, the binary classification labels are exceedances and 

non-exceedances (m = 2) and the output, 𝑦 can be either exceedances (labeled as 1) or non-

exceedances (labeled as 0), whereas in regression, the output can be a real value number, 𝑦 ∈ 𝑅. 

For regression, the input and output data are provided during training to build a function that 

correctly predicts the outputs for independent input data that were not used for training. 

Random Forest Regression 

Random forest regression (RFR) is a tree-based ensemble method, and each tree is trained 

on an independent collection of random input variables. In the study, the feature vector was 
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definded as 𝑋 = (𝑋𝑖, … , 𝑋𝑛)𝑇 where 𝑛 is the number of 𝑋 features. A function 𝑓(𝑥) for predicting 

the ozone concentration, 𝑌 can be solved. For a random forest of 𝑱 trees, assuming the decision 

trees are split into 𝒋 branches ℎ1(𝑥), … , ℎ𝑗(𝑥), the learning function computes the average from 

all decision trees, 𝑓(𝑥) =
1

𝐽
∑ ℎ𝑗(𝑥)

𝐽
𝑗=1 . Thus, the final prediction is based on the average of all 

outputs from the regression trees. (Rodriguez-Galiano et al., 2015; Zhang and Ma, 2012) 

Due to the nature of regression trees, RFR decision trees can have similarities in tree 

structures. Shown in Figure 2.4 is a three-node decision tree that assists RFR with predicting hourly 

ozone concentrations (between 12:00 noon and 5:00 PM) based on nitric oxide (NO) and nitrogen 

dioxide (NO2) concentration and temperature. If a collection of trees in the RF has similar features, 

the model results are largely biased. To avoid a high correlation in their predictions, the RFR 

develops the algorithm such that predictions in their subtrees are less correlated by only allowing 

the trees to have access to a limited number of random samples from a pool of features (Breiman, 

2001; Raschka and Mirjalili, 2006). The features used in the RFR model are temperature (T), 

relative humidity (RH), surface pressure (P), wind speed (WS), wind direction (WD), visibility (Vis), 

dewpoint temperature (DT), NO, and NO2, with hourly ozone (O3) as the target variable. To reduce 

bias, RFR selects a random number of features, and the maximum number of features is defined 

by the user. Since the concentration of ozone largely depends on precursor emissions and surface 

meteorology, ML was performed on a predetermined set of meteorological and air quality data to 

better capture the interactions of meteorology and emissions in an empirical model (Gao et al., 

2022). 
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RF Algorithm Tuning (Model Descriptions) 

Python RandomForestRegressor package from the scikit-learn 0.22 library was used. RFR 

was tuned with multiple configurations to choose the appropriate set of hyperparameters. Seven 

hyperparameters were varied to build the RFR model. A grid search was used for multiple 

combinations resulting in the optimal hyperparameters for the most accurate predictions. Figure 

2.5 shows the mean absolute error (MAE) in ozone prediction when the RFR model is tuned with 

various configurations. For example, to find the best fit for the n_estimators parameter, Constant 

values were hold for the other options (e.g., max_features = 'auto', max_depth = None, 

min_samples_split = 5, and min_samples_leaf = 10) and vary n_estimators from 1 to 100. The 

results show the improvement of the trained model as the number of trees increases. However, 

when n_estimators approaches 16, the model shows no improvement in the overall performance. 

Based on the tuning exercise, the optimal values were picked for each hyperparameter that 

returned the lowest MAE. The optimal configurations are also informed by the scikit-learn 

documentation (Pedregosa et al., 2011). Further, while splitting each node during decision tree 

building, RFR picks the best split from the nine input features or a random subset of max_features 

(Table 2.1). Each tree is trained on a randomly drawn bootstrap sample with replacement from 

the original training dataset. 

K-Nearest Neighbor Classifier 

 For any given prediction, the model needs to find the closest sample in the training dataset 

and assign its classification to the prediction label. There is no learned model for K-NN, and the 

algorithm has to search the entire training set for every test vector (Hastie et al., 2009). Figure 2.6 

shows a binary classification in two dimensions with NO2 on the x-axis and temperature on the y-
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axis. The green dots are non-exceedances, the purple dots are exceedances, and the red dot is the 

datum needing to be classified. If k is 5, for example, K-NN searches throughout the training 

dataset to choose five closest data points and assigns the label by the majority vote amongst the 

5 nearest neighbors. Selecting the correct nearest neighbor is crucial to train this model 

successfully. The model is overfitted when k is small and underfitted when k is large. By varying k 

from 1 to 8000 and keeping other parameters constant, the optimum k can be found that gives 

the best accuracy and probability of detection for specific K-NN models (Figure 2.7). 

Neural Network 

 Other ML methods used in this study are neural network (NN) and support vector 

machines (SVM). NN is a multilayer perceptron, where each perceptron is a linear transformation 

followed by a nonlinear activation (e.g., signum, logistic, rectified linear activation function (ReLU)) 

(Sharma et al., 2020; Sharma and Sharma, 2017). Each perceptron can be expressed as 𝑦𝑖
[𝑘]

=

𝜑 (𝑤𝑖
[𝑘]𝑇𝑥 + 𝑏[𝑘]), where the superscript 𝑘 denotes the nodes of hidden layers, 𝑤𝑖

[𝑘]𝑇𝑥 + 𝑏𝑖
[𝑘]

 is 

a linear combination model, subscript 𝑖 is the perceptron at layer 𝑘, and 𝜑 is the nonlinear 

activation. NN is a deep network architecture with the depth of the network derived from the 

level of hidden layers (Hastie et al., 2009; Wang et al., 2020). Figure 2.8 shows the diagram for a 

fully connected 2-layer neural network. All the inputs 𝑥 are connected to every perceptron in the 

hidden layer. 𝑎1
[1]

 is the perceptron 1 in hidden layer 1, which can be expressed as 𝑎1
[1]

=

𝜑 (𝑤1
[1]𝑇𝑥 + 𝑏1

[1]
). In this paper, ReLU was used as the activation function defined as 𝜑 =

max (0, (𝑤1
[1]𝑇𝑥 + 𝑏1

[1]
)). In terms of matrix representation, the output of the 1st hidden layer is 

𝑦[1] = 𝜑(𝑊[1]𝑥 + 𝑏[1]), and the output layer is �̂� = 𝜑(𝑊[2]𝑦[1] + 𝑏[2]). the weights 𝑊[1] and 
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𝑊[2] that give the best prediction can be found. In general, for multi-layer neural network the 

output can be expressed as �̂� = 𝑤𝑇𝜑 (𝑊[𝐿]𝜑 (𝑊[𝐿−1] … 𝜑 (𝑊[2]𝜑(𝑊[1]𝑥)))), where 𝑤 is the 

weight of the final layer. After computing the predicted output �̂�, the loss function is used to 

evaluate the difference between the predictions and actual values, 𝐿(𝑊) = 𝑙(𝑦, �̂�). The gradient 

descent is used to update the weight, 𝑊 to obtain better predictions for the next iterations. The 

process repeats with the new updated 𝑊 until the loss no further substantially decreases. 

Support Vector Machines 

SVM is a learning algorithm that optimizes a hyperplane to maximize the margin between 

different data types. The property required for SVM is to find the supporting hyperplanes and 

maximize the gap between them (Hastie et al., 2009; Hearst et al., 1998). Figure 2.9 shows the 

separating hyperplane (solid line) in the center of the two supporting hyperplanes (dash lines) that 

maximize the margin between the black dots and white dots. The supporting hyperplanes can be 

expressed as 𝑤𝑇𝑥 + 𝑏 = 𝑐 for black dots and 𝑤𝑇𝑥 + 𝑏 = −𝑐 for the white dots, where 𝑤 is the 

weight, 𝑥 is the input, 𝑏 is the bias, and 𝑐 is the arbitrary distance which can be set to 1. The 

distance (
2𝑐

||𝑤||
2

) between two supporting hyperplanes can be maximized by solving the 

optimization problem, as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑤, 𝑏

1

2
||𝑤||

2

2
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. 
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CMAQ Model Descriptions 

CMAQ version 5.2.1 was used to carry out the simulation, as the CMAQ model is one of 

the EPA regulatory methods used to develop ozone attainment control strategies in SoCAB. The 

CMAQ simulation was carried out for the ozone season of 2017 (May-01 to Oct-01) to concurrently 

examine the trends that are driving NAAQS nonattainment using a first principles model alongside 

empirical approaches. The details of CMAQ descriptions can be found in the SI. 

CMAQ Model Evaluations 

Nine key monitoring stations were chosen in SoCAB to evaluate the CMAQ simulation, and 

the stations are located in Anaheim, Azusa, Crestline, Fontana, Los Angeles, Pasadena, Redlands, 

Rubidoux, and San Bernardino, California (Figure 2.10). The EPA guidelines (Usepa, 2009) and 

computed a set of unbiased metrics were followed to evaluate the model (Yu et al., 2006). The 

metrics include correlation coefficient (CC), mean bias error, mean absolute error (MAE), root 

mean square error (RMSE), relative root mean square error, mean normalized bias, mean 

normalized absolute error, normalized mean bias (NMB), normalized mean absolute error, 

fractional bias, fractional absolute error, model mean, and observational mean; the formulas are 

listed in the SI. the regression algorithms were evaluated using the intrinsic metrics of linear fit 

(e.g., R2, slope, and intercept), CC, RMSE, and MAE. Different classification algorithms were 

evaluated based on probability of detection (PoD), accuracy, model error, and failure to predict 

(Eqs. 14-17 in the SI). 
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Results 

Machine Learning Model Evaluation 

 Before choosing RFR as the principal regressor and K-NN as the principal classifier for the 

ML applications, the predictions were evaluated for a total of five different models using data for 

the 1994 to 2018 period (Tables 2.2 and 2.3). RFR had the best performance out of four models 

with the highest CC and R2 and the lowest RMSE and MAE. For classifiers, PoD is the model’s ability 

to detect ozone exceedances for exceedance hours only, and accuracy reflects the performance of 

the prediction for both exceedances and non-exceedances. Both K-NN and perceptron had 

reasonable evaluation results. Perceptron had a higher PoD but was less accurate and overfitted 

the data. K-NN was chosen as the principal classifier for the model, as model accuracy was 

prioritized. 

A ten-fold cross-validation was carried out to further evaluate the skill of the RFR model. 

First, the data were shuffled randomly and split into ten groups of equal size. Nine groups were 

chosen to train the model, and one group was used for evaluation; this was repeated such that 

each group served as the evaluation group one time. The model prediction was evaluated by 

comparing the slope, intercept, R2, RMSE, and MAE (Table 2.4). The ten-fold cross-validation gave 

consistent performance for each testing group (K) and returned the same RMSE and MAE. 

The performance of the RFR model was evaluated for five-year time periods, as ozone 

concentrations exhibited trend changes roughly every five years (Table 2.5). The model was 

trained on 80% of hourly data from 12:00 noon to 5:00 PM during the period of 1994 to 2018, and 

the remaining 20% of the data were used to test the model in five-year increments (e.g., 1994-

1998). In the three periods 1994-1998, 2004-2008, and 2009-2013, the NMB values were negative, 
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indicating that the model underestimates by a factor of 1.069, 1.041, and 1.029, respectively. In 

the other two periods from 1999-2003 and 2014-2018, NMB values were positive, and the model 

generally overestimated by a factor of 1.002 and 1.003. A small NMB and a consistently high CC 

above 0.87 suggests the high performance of the model. Therefore, it is recommended that 

suitable RFR evaluation metrics for ozone are |𝑁𝑀𝐵| ≤  1.07 and a 𝐶𝐶 ≥ 0.85. 

Historical Trends with the RFR Model 

Results here reflect the trained RFR model for the timespan from 12:00 PM to 5:00 PM 

when ozone concentrations are high. Figures 2.12 and 2.13 show the three most important 

variables influencing modeled ozone concentrations in Fontana based on a feature importance 

screening. Ozone exceedances (defined as hourly observations greater than 0.070 ppm) are 

associated with high temperature, moderate wind speeds, and lower observed NOx (Figure 2.11). 

High temperatures accelerate ozone’s photolytic cycle, while moderate wind speeds 

accommodate mixing and transport of precursor pollutants. Low NOx conditions suggest that 

during high ozone hours, NOx is depleted due to the rapid atmospheric turnover of NO2. In the 

presence of sunlight, NO2 is converted to NO and triplet oxygen, where the triplet oxygen reacts 

with O2 to form O3. The model performance metric R2 was improved when the model was trained 

on ONT meteorology, which is most representative of Fontana meteorology, reflecting the 

dependence of model performance on local meteorology. 

Figure 2.14 highlights the dynamic application of the RFR model for the 2014-2018 period. 

Since all-weather elements (e.g., temperature, RH, and surface pressure) are interdependent, 

varying one strongly affects others. To create the contours, not only temperature and NOx were 

varied but also dynamic pressure and RH arrays were created by taking the average of the 
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observed RH and pressure at a certain temperature interval. A series of ozone sensitivity tests was 

performed by continuously feeding desired datasets to the RFR model with varied values of NOx, 

temperature, temperature-dependent RH, and temperature-dependent pressure while keeping 

wind speed constant at 9 m/s. Figure 2.14 shows the behavior of ozone with changes in NOx and 

temperature for four different wind directions (90°, 180°, 270°, and 360°). Ozone concentration 

reached its maximum at the mid-NOx and high-temperature regime, as predicted by the dynamic 

RFR model. Ozone significantly decreased as the conditions moved orthogonally in the opposite 

direction of the high ozone region. Figure 2.14d shows that the exceedance usually occurred when 

NOx concentration was around 10 ppb and the temperature was higher than 35 °C. More than 60% 

of the time, the wind direction in ONT was from the west, and 25% of the time it was between 

254o and 273° (Figure 2.15), which occurred during highest concentration for the region. Ozone 

concentrations ranged from 0.06 ppm to 0.14 ppm, depending on wind direction. Concentrations 

were highest when the wind direction was 270° but reached a low for 90° wind direction. The RFR 

model predicted that the exceedances started to develop at a temperature greater than 30 °C. The 

ozone concentration gradient (i.e., the change in ozone concentration per unit change in 

temperature) was small at low temperatures. However, when the temperature approached 30 °C, 

the gradient became large, and the ozone concentration increased significantly. Ten percent of 

observed data were plotted on the top of the contour plots in Figure 2.16 to validate the observed 

likelihood of the prediction. The observational data were unevenly spread throughout the domain 

of the plots. However, the sparseness of observational data was found at the extremely low and 

high regimes of temperature. 
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Initially, the RFR model utilized all nine features to predict ozone concentrations. To test 

ozone prediction sensitivity, the model was trained with nine, eight, seven, and six features after 

selectively dropping features. The predicted results from each iteration were evaluated against 

observations using the Wilcoxon rank sum test. If the output from this test was less than or equal 

to 0.05, two samples were independent of one another, indicating the significance of the dropped 

feature(s) for the model prediction. The list Wilcoxon tests were computed. The three most 

important meteorological parameters were wind speed, RH, and temperature as they appeared 

most frequently in the significant Wilcoxon rank sum tests, suggesting that if they are absent from 

training features, the RFR model would likely fail to perform with similar accuracy. Also, the two-

sample t-test strongly points out that if the three dropped features are RH, wind speed, and 

temperature or wind speed, NO, and NO2, the model would likely have poor agreement with 

observations. Feature drop test shows three-feature removal combinations where the CC is less 

than or equal to 0.8. 

Predicting the Exceedance Hours Using K-Nearest Neighbors 

RFR underestimates high ozone concentrations and fails when it comes to extreme ozone 

levels. The k-nearest neighbor algorithm overcame this barrier when predicting exceedances and 

proved its accuracy for binary classification (Table 2.6). The K-NN model was evaluated for 1994-

2018 in five-year intervals, similar to the procedure for the RFR model. The PoD of K-NN ranged 

from 0.58 for the earliest period to 0.81 for the latest period, indicating the improving model 

performance in later years (Table 2.6). The accuracy was above 0.71, and only 19% of the time did 

K-NN not detect the exceedances in the 2014 to 2018 period. Because the dataset was unbalanced 

due to a higher frequency of non-exceedances, the accuracy yields can be slightly misleading. Even 
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though the model obtained high accuracy, it failed to detect ozone exceedances for up to 42% of 

the time in earlier years. Figure 2.17 shows 2 x 2 confusion matrices for every five years from 1994 

to 2018. The dominance of correct non-exceedance prediction (quartile I) and correct exceedance 

prediction (quartile IV) confirms the overall satisfactory performance of the K-NN model. 

Even though NOx and VOCs are two significant components influencing ozone formation, 

meteorology is also a crucial driving force. Figure 2.18 shows an oscillating pattern of temperature, 

alternating between winters and summers from 2014-2018 as expected. Below 22oC, no 

exceedances occurred, and most exceedances occurred during the summertime. The K-NN model 

successfully explained the link between temperature and exceedances and accurately predicted 

the exceedances when the temperature is high and predicted no exceedances when the 

temperature fell below 22oC. The exceedances did not usually occur for high NOx, high RH, or low 

wind speed. As evident in Figures 2.16 2.23, high RH was associated with low temperatures and 

ozone, and lower NOx concentrations were associated with high temperatures in this analysis. 

Figure 2.18 shows a strong relationship between specific meteorological regimes and exceedance 

hours. The marine layer penetration on foggy days might cause high RH. During these episodes, 

the marine layer is deep and moves farther inland with the clean air. 

CMAQ Evaluation 

The CMAQ simulation provides a deterministic evaluation for comparison with the ML 

predictions. The daily average ozone concentrations from the 2017 CMAQ simulation were 

extracted and evaluated against observational data at nine air monitoring sites (Table 2.7). Positive 

MB for all evaluation sites suggest the overall overestimates of the model with a maximum MB of 

16 ppb (Fontana) and a minimum of 6 ppb (Crestline and LA). The overestimation occurred 
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because the model did not capture the low ozone concentrations at night (Figure 2.19), which 

significantly increased the CMAQ daily average ozone concentrations. Since this paper focuses on 

ML, the details of the comparative CMAQ evaluation can be found in the SI. 

Methods Strengths and Limitations 

The ML model nimbly predicts the changes of the target variable with respect to a 

perturbation in input features (i.e., ozone response to changing in temperature). The effect of 

meteorology can also be determined by examining trends over a long period of time. When using 

average temperature and RH from 1994 to 2018, the ML prediction minimized the effect of 

meteorology extremes on ozone formation (i.e., heat waves, foggy days). Figure 2.20 shows the 

annual 90th percentile (blue), annual 98th percentile (black), and the annual average (orange) 

ozone trends at the Fontana location for 1994 to 2018. The dashed lines are the ML prediction 

with the average temperature and RH, and the solid lines are the prediction with the actual 

features. The adjusted line shows a strong downward ozone trend from 1994 to 2010, but 

resisting further decrease in later years. The distance between the 98th and 90th ozone percentile 

was narrow, indicating the high frequency of high ozone concentrations in Fontana. The average 

meteorology had minor effects on the annual average prediction. Despite the downward trend of 

ozone concentrations for the 90th and 98th percentile, the annual average increased. 

In contrast with ML, which focused on a targeted pointwise location, CMAQ simulations 

covered a large spatial domain (102 x 156 grid cells with 4 km spacing) over the South Coast air 

basin. As expected, model performance is variable when evaluated at specific locations. Despite 

the less-than-favorable performance at the Fontana location in terms of mean bias error (Table 

2.7) compared to nine other sites, CMAQ performed better in other locations. Further, Figure 2.21 
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shows monthly spatial evaluations for June and July 2017 for 25 air monitoring sites in SCAQMD, 

which demonstrates CMAQ’s utility in enabling simultaneous detailed examinations of different 

areas for multiple species, while covering a sizeable spatial area. This paper examines how ML vs. 

first principles modeling performs for a similar analysis, providing useful insight into the strengths 

and weaknesses of the methods for the application detailed here.  

Discussion 

The RFR model was the preferred regressor model for this application. However, the RFR 

model underestimated high ozone levels and overestimated low ozone levels due to the nature of 

RFR, in which the model takes the average of all the decision trees. To compensate for this 

limitation when predicting ozone exceedance hours, binary classifications were used. The high 

PoD and accuracy of the K-NN model suggested that K-NN was better suited for ozone exceedance 

prediction. It can be improved and fine-tuned to achieve better results by optimizing the number 

of neighbors, leaf size, and the algorithm to compute the nearest neighbors.  

 Evaluation of ML and CMAQ results showed that the temperature was the most significant 

contributing factor to high ozone concentrations, resulting in spikes of exceedances during the hot 

summer days. The relationship of temperature with ozone exceedances also varies in different 

topological regions. A. K. Gorai et al., showed that temperature had no uniform correlations and 

effects on the ozone trend in eastern Texas in May 2012 (Gorai et al., 2015). However, in SoCAB, 

RFR and CMAQ models strongly suggest that temperature is the primary driving force. In the VOC-

limited SoCAB (Benosa et al., 2018; Heuss et al., 2003) urban area, a reduction in NOx or increase 

in VOCs may increase ozone formation. During the most severe California drought years (2011-

2015), isoprene decreased by more than 50% (Demetillo et al., 2019), resulting in a considerable 
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reduction in ozone levels. Figures 2.22 and 2.23 show the daily average emissions of biogenic 

isoprene and NOx in 2012 (South Coast Air Quality Management District, 2017). From January to 

April, isoprene emissions slowly increase and surpass NOx emissions in May. Emissions remain 

high throughout the summer and decrease after October. Vegetation emits a large amount of 

isoprene and other biogenic BVOCs at high temperatures (temperature-dependent isoprene 

emissions) (Coates et al., 2016), causing an increase in total VOC levels in the summer. NOx 

emissions during 2012 were roughly constant, with the lows at 130 moles/s and the highs at 210 

moles/s due to the estimated constant contributions from traffic and industrial activities 

throughout the year. Thus, the high summertime ozone concentration can be partially explained 

by increased reactions between excess BVOCs emitted from vegetation and NOx, resulting in 

increased ozone levels in such a VOC-limited regime. 

Wind speed and wind direction also influences ozone levels, as shown in the contour plots. 

Ozone precursors accumulate at low wind speeds, and high ozone levels occur when the wind 

speed is between 2 - 4 m/s. This is optimal wind speed and wind direction to accelerate chemical 

transport and mixing. More than 64% of the time, the direction of the wind in ONT is from the Los 

Angeles city center to the east, which transports ozone and precursors to Fontana and further 

contributes to ground-level ozone formation. High ozone levels occur in the summer when the 

temperature exceeds 25 oC, and the NOx concentration is low due to the reaction of NO2 with the 

OH radical. 

 Results here corroborate the previously demonstrated strong relationship of ozone with 

meteorology in a data-driven framework. Wind speed and wind direction contribute mainly to 

transport and mixing of precursors, while the temperature can be a direct contributing factor for 
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catalyzing ozone formation. Climate-related increases in temperature would therefore be 

expected to increase future ozone levels in the absence of emission changes. The time series from 

the RFR and CMAQ models shows spikes in temperature that correspond to ozone concentration 

peaks. Low RH occurs during high-temperature periods, and high RH is observed during low-

temperature periods. The predicted effect of RH on ozone level as small, and when RH reached 

100%, predicted ozone dramatically decreases. (Jia and Xu, 2014) RH is a significant feature for 

ensuring model accuracy based on significance tests. 

Conclusion 

 Large, publicly available meteorological databases and open-source libraries (TensorFlow, 

scikit-learn, and PyTorch) have made ML an efficient and complementary modeling approach for 

studying long-term air pollution trends, compared to CTMs. CTMs and ML serve different 

purposes, where CTMs are useful for predicting future pollution levels in response to emission 

controls. This paper has shown that the RFR and K-NN models were satisfactory for ozone 

exceedance prediction in SoCAB during the 2017 ozone season. From significance testing and 

feature importance screening, meteorology data improved model prediction accuracy. In Fontana, 

ozone exceedances occurred at high temperatures, during periods of lower observed NOx, wind 

speed above three m/s, and the RH between 10% to 50%. RFR ML models can be improved by 

choosing the minimum set of features spanning the tree dependency (Juszczak et al., 2009). It is 

of further interest to create ML models that take input from weather forecasting models to predict 

ozone concentrations in three dimensions. In future applications, the configurations will be tuned 

on multiple ML algorithms to obtain the most suitable model that accurately predicts ozone 

exceedances based on meteorology inputs. 
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Tables 

Table 2.1. Final configurations for RFR model 

Hyperparameter Description 

n_estimators = 16 The number of trees in the forest. 

max_features = ‘auto’ The number of features to consider when looking for the best split. 

max_depth = None The maximum depth of the tree. 

min_samples_split = 5 The minimum number of samples required to split an internal node. 

min_samples_leaf = 30 The minimum number of samples required to be at a leaf node. 

min_weight_fraction_leaf = 0 The minimum weighted fraction of the sum total of weights required 
to be at a leaf node. 

max_leaf_nodes = None Best nodes are defined as relative reduction in impurity. 

n_jobs = 8 The number of jobs to run in parallel. 

 

Table 2.2. Ozone prediction evaluation metrics for four regression models (random forest, neural network, 
support vector machine, and K-nearest neighbors). The models were trained on nine features from 1994 to 
2018. The models were constructed using 80% of data and evaluated using 20% of the data from the 2014-
2018 period. The evaluations are in the unit ppm. 

Regressor CC Slope Intercept R2 RMSE MAE 

RFR 0.927 0.875 0.00605 0.861 0.009 0.006 

Neural Network 0.860 0.807 0.00703 0.689 0.014 0.011 

SVR 0.787 1.03 0.0194 0.619 0.028 0.024 

K-NN 0.921 0.869 0.00702 0.848 0.010 0.007 

 

Table 2.3. Ozone prediction evaluation metrics for four classifier models (support vector machine, neural 
network, k-nearest neighbors, and perceptron). The models were trained on nine features from 1994 to 
2018. The models were constructed using 80% of data and evaluated using 20% of the data from the 2014-
2018 period. The evaluations are in the unit ppm. 

Classifier PoD Accuracy Failure to Predict 

SVM 0.07 0.83 0.93 

Neural Network 0.76 0.71 0.24 

K-NN 0.81 0.71 0.19 

Perceptron 0.83 0.69 0.17 
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Table 2.4. Ten-fold cross-validation evaluation metrics for the RFR model for the period from 1994 to 2018. 

Metrics K1 K2 K3 K4 K5 K6 K7 K8 K8 K10 

Slope 0.798 0.798 0.786 0.794 0.786 0.789 0.788 0.787 0.791 0.789 

Intercept 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

R2 0.768 0.769 0.767 0.763 0.773 0.759 0.765 0.765 0.763 0.764 

RMSE 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 

MAE 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 

 

Table 2.5. Five-year summary statistics for the RFR model vs. observational data from the Fontana air quality 
monitoring station. The differences between the model and observational means were minimal. Biases and 
errors are in units of ppm. 

Year CC MB MAE RMSE MNB MNAE NMB NMAE FB FAE �̅� �̅� 

1994-1998 0.88 -0.004 0.013 0.018 0.035 0.263 -0.069 0.214 -0.039 0.234 0.055 0.059 

1999-2003 0.882 0 0.01 0.014 0.101 0.276 0.002 0.203 0.028 0.235 0.048 0.048 

2004-2008 0.884 -0.002 0.009 0.013 0.011 0.19 -0.041 0.165 -0.025 0.182 0.052 0.054 

2009-2013 0.884 -0.002 0.008 0.011 -0.009 0.147 -0.029 0.142 -0.024 0.15 0.055 0.057 

2014-2018 0.927 0 0.006 0.011 0.036 0.151 0.003 0.142 0.017 0.143 0.058 0.058 

 

Table 2.6. Summary statistics for K-NN exceedance hour predictions. Exceedance hours occurred when ozone 
concentrations were greater than 70 ppb. The K-NN model was evaluated using 20% of the data from 1994-
2018. The probability of detection was calculated as the number of correct exceedance predictions divided 
by the total actual exceedances. Failure to predict is 1 – PoD. Accuracy is the correct predictions for non-
exceedance and exceedance hours divided by the total hourly observations. 

Year PoD Accuracy Failure to Predict 

1994-1998 0.58 0.84 0.42 

1999-2003 0.69 0.87 0.31 

2004-2008 0.69 0.86 0.31 

2009-2013 0.74 0.87 0.26 

2014-2018 0.81 0.71 0.19 
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Table 2.7. CMAQ benchmarking statistical summary of ozone simulation for nine SCAQMD air monitoring 
stations. Units are in ppm. 

Stations Max Min Mean Median Q1 Q3 RMSE rRMSE MAE MBE 

Anaheim 0.107 0 0.037 0.041 0.032 0.053 0.014 0.391 0.012 0.009 

Azusa 0.114 0 0.042 0.046 0.033 0.060 0.017 0.402 0.014 0.008 

Crestline 0.12 0.004 0.060 0.062 0.055 0.069 0.023 0.499 0.020 0.006 

Fontana 0.116 0 0.045 0.050 0.036 0.065 0.022 0.567 0.019 0.016 

LA 0.101 0 0.033 0.037 0.023 0.051 0.015 0.757 0.013 0.006 

Pasadena 0.111 0 0.043 0.046 0.035 0.058 0.018 0.433 0.016 0.012 

Redlands 00.108 0 0.053 0.056 0.046 0.067 0.021 0.413 0.018 0.008 

Rubidoux 0.118 0 0.045 0.049 0.035 0.065 0.018 0.762 0.015 0.009 

SB 0.119 0 0.047 0.052 0.038 0.066 0.020  0.449 0.017 0.007 
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Figures 
 

 

 

Figure 2.1. 8-hour ozone design value concentrations in Los Angeles. The red dash line is the National 
Ambient Air Quality Standard (NAAQS) for 8-hour ozone (0.070 ppm, 2015). Source: California Air Resources 
Board. 

 

Figure 2.2. 8-hour ozone design value concentrations in Fontana. The red dash line is the National Ambient 
Air Quality Standard (NAAQS) for 8-hour ozone (0.070 ppm, 2015). Source: California Air Resources Board. 
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Figure 2.3. Site location map highlighting the Los Angeles (LAX) and Ontario (ONT) International Airports 
and the Fontana air monitoring site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Three node decision trees based on air quality and meteorological input from 2014-2018. The 
meteorology data is from LAX, and air quality data is from Fontana. The predictions were made based on 12:00 noon 
to 5:00 PM training data. 
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Figure 2.5. RFR mean absolute error (MAE) with different hyperparameter values. The value of the tuning 
parameter was varied from 1 to 100 while keeping others constant. MAE is in units of ppm. 

 

 

Figure 2.6. Classification in two dimensions, coded as a binary variable (green = non-exceedances, purple = 
exceedances). The predicted class of the red point is chosen by the majority vote amongst the 5 nearest 
neighbors. 
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Figure 2.7. Testing the performance of K-NN by varying the number of nearest neighbors while keeping other 
parameters constant. 
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Figure 2.8. A fully connected 2-layer neural network diagram with inputs 𝑥, four perceptrons in the hidden 
layer, and one in the output layer. 

 

 

Figure 2.9. Support vector machine separating black dots and white dots. The separating hyperplane (solid 
line) is in the center of the two supporting hyperplanes for which the margin is maximized. 
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Figure 2.10. Nine evaluation sites from SCAQMD. From left to right, LAX, Pasadena, Anaheim, Azusa, 
Fontana, Riverside, San Bernardino, Crestline, and Redlands 

 

Figure 2.11. Feature importance generated from the RFR model. NO, T, and wind speed are the three most 
important features. 

 

 

 

 



100 
 

  
 

 
 

 

 
Figure 2.12. Observational O3 (x-axis) and RFR predictions (y-axis) for Fontana air quality and meteorology 
from the LAX international airport monitoring station. The plots are for the most recent five-year 
increment from 2014-2018. The color bars show temperature (a), wind speed (b), and NO (c). Plots for 
other periods are provided in the SI. 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 



101 
 

 
 
 

 

 
 

 
 

 

Figure 2.13. Observational O3 (x-axis) and RFR predictions (y-axis) for Fontana air quality and meteorology 
from the ONT international airport monitoring station. The plots are for the most recent five-year 
increment from 2014-2018. The color bars show temperature (a), wind speed (b), and NO (c). Plots for 
other periods are provided in the SI. 

(a) (b) 

(c) 
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Figure 2.14. Contour plots generated by the RFR model trained on ONT meteorology and Fontana air quality 
at constant wind speed (9 m/s), visibility (16000 m), dynamic pressure, dynamic relative humidity, and for 
four discrete wind directions: (a) 90°, (b) 180°, (c) 270°, and (d) 360°. 

(a) (b) 

(c) (d) 
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Figure 2.15. Wind direction in Ontario international airport. 25% of wind directions are from 254-273 
degrees, and 64% of wind directions are from 225-273 degrees. 
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Figure 2.16. Contour plots generated by the RFR model trained on ONT meteorology and Fontana air quality 
at constant wind speed (9 m/s), visibility (16000 m), dynamic pressure, dynamic relative humidity, and at 
four discrete wind direction levels (90, 180, 270, 360). The dots are observational data plotted on the top of 
the contours. 
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Figure 2.17. Confusion matrices for ozone exceedances evaluated for the K-NN model for the periods (a) 
1994-1998, (b) 1999-2003, (c) 2004-2008, (d) 2009-2013, and (e) 2014-2018. N is the total number of valid 
data points. 
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Figure 2.18. Non-exceedance and exceedance hours for observed input variables: (a) temperature in ˚C, (b) 
wind direction in degrees, (c) NO in ppb, (d) NO2 in ppb, € wind speed in m/s, and relative humidity in %. 
Predictions were made using K-NN for the years 2014-2018 for Fontana using ONT meteorology. Hourly data 
from 12 pm to 5 pm are highlighted to reflect the peak ozone period. 
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Figure 2.19. Time series of ozone concentration in Fontana, CA. The blue line is CMAQ simulation results, 
and the dots are observational data. 
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Figure 2.20. Fontana trends for 90th (black), 98th (blue) percentile, and annual average (orange) ozone 
concentration. The dashed lines were predicted with hourly average temperature and RH from 1994 to 2018. 
The solid lines were predicted with actual values. 

 

 

Figure 2.21. Monthly mean bias error for ozone for 25 air monitoring sites in SoCAB; (a) June 2017, (b) July 
2017. 
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Figure 2.22. Daily average NOx and isoprene (ISOP) emissions over the model domain normalized by 
the maximum value in the domain. The periodic oscillation of NOx emissions (blue line) is due to 
weekday/weekend behavior. The black line is the biogenic isoprene emissions in the entire domain. 
NOx and ISOP emissions were extracted from gridded SCAQMD emissions. Twenty-four-hour ozone 
averages were sampled from the Fontana air monitoring station. 

 

Figure 2.23. Contour plots generated by the RFR model trained on ONT meteorology and Fontana air quality 
at constant wind speed (6.0 m/s), visibility (16000 m), wind direction from 260 degree, and 1010 mb 
pressure. The dots are observational data plotted on the top of the contours. 
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Part 2 

Machine Learning with Spatial Interpolation Techniques for Constructing 2-Dimensional 
Ozone Concentrations in Southern California during the COVID-19 Shutdown 

Abstract 

In this study, machine learning and geospatial interpolations is combined to create a two-

dimensional high-resolution ozone concentration field over the South Coast Air Basin for the entire 

year of 2020. Three spatial interpolation methods (bicubic, IDW, and ordinary kriging) were 

employed. The predicted ozone concentration fields were constructed using 15 building sites, and 

random forest regression was employed to test predictability of 2020 data based on input data 

from past years. Spatially interpolated ozone concentrations were evaluated at twelve sites that 

were independent of the actual spatial interpolations to find the most suitable method for SoCAB. 

Ordinary kriging interpolation had the best performance overall for 2020: concentrations were 

overestimated for Anaheim, Compton, LA North Main Street, LAX, Rubidoux, and San Gabriel sites 

and underestimated for Banning, Glendora, Lake Elsinore, and Mira Loma sites. The model 

performance improved from the West to the East, exhibiting better predictions for inland sites. 

The model is best at interpolating ozone concentrations inside the sampling region (bounded by 

the building sites), with R2 ranging from 0.56 to 0.85 for those sites, as prediction deficiencies 

occurred at the periphery of the sampling region, with the lowest R2 of 0.39 for Winchester. All 

the interpolation methods poorly predicted and underestimated ozone concentrations in Crestline 

during summer (up to 19 ppb). Poor performance for Crestline indicates that the site has a 

distribution air pollution level independent from all other sites. Therefore, historical data from 

coastal and inland sites should not be used to predict ozone in Crestline using data-driven spatial 



111 
 

interpolation approaches. The study demonstrates the utility of machine learning and geospatial 

techniques for evaluating air pollution levels during anomalous periods. 

Introduction 

In the atmosphere, the non-linear relationship between nitrogen oxides (NOX), volatile 

organic compounds (VOCs), and ozone is complex. In the United States, the COVID-19 pandemic 

and the ensuing shutdown presented an unintentionally optimal period to observe, revise, and 

improve our existing air quality models and observe the sensitivity of the NOX-VOC-ozone 

relationship in real time. In California, the pandemic shutdown began on March 16, 2020, resulting 

in a significant drop in traffic volume. In Los Angeles and Ventura Counties, there was 

approximately a 30% decrease in vehicle miles traveled (VMT) on weekdays and up to a 40% 

decrease on weekends in 2020 (Caltrans, 2023). This unusual event temporarily changed the 

conventional distribution of primary and secondary air pollutants in the South Coast Air Basin 

(SoCAB). NOx and VOC emissions declined with the reduction in traffic flow (Jiang et al., 2021). As 

a result, a drop in ozone concentrations was expected in Southern California. Several studies were 

published regarding the pandemic that investigated the effects of the COVID-19 shutdown on air 

pollutants. Jiang et al., used WRF-Chem to simulate the major air pollutants under two scenarios 

(i.e., before lockdown and during lockdown) and found an increase in ozone in urban areas due to 

emission reduction during the lockdown (Jiang et al., 2021). The COVID-19 shutdown provided an 

estimation of the impacts of future large-scale emission reductions strategies on ozone formation 

in SoCAB (Ivey et al., 2020). 

Over the past several decades, ozone levels in Southern California significantly decreased 

as a result of emissions control programs implemented by the South Coast Air Quality 
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Management District (SCAQMD), thereby reducing emissions from mobile sources and shifting to 

renewable energy sources (Lurmann et al., 2015; South Coast Air Quality Management District, 

2017). However, during the past decade, ozone concentrations in the SoCAB have slightly 

plateaued despite further emissions reductions (Figure 2.24) (Do et al., 2023). 

This paper focuses on the performance of deterministic and statistical models under rapid 

changes in emissions and meteorological conditions. Chemical transport models (CTM) are 

conventionally used for air quality research and regulatory purposes. The Community Multiscale 

Air Quality (CMAQ) modeling system, developed by the U.S. Environmental Protection Agency 

(EPA), is well-known for multi-day air quality simulations to estimate air pollutant concentrations 

with prescribed emissions and meteorology inputs (Ooka et al., 2011; Rao et al., 1996; Wong et 

al., 2012). From the model outputs, scientists and regulators can better predict the interactions 

between future emissions, meteorology, and air pollutants to strengthen recommendations for 

emissions control programs. Zhu et al. used CMAQ to investigate the sensitivity of ozone and 

particulate matter less than 2.5 microns (PM2.5) to incremental changes in volatile organic 

compounds (VOC) by updating the VOC emissions from recent literature, and simulated maximum 

daily 8-hour ozone concentrations increased by 17.4 ppb and 15.6 ppb in summer and winter, 

respectively (Zhu et al., 2019). With a similar approach, Karamchandani et al., found that near-

recent regulatory modeling for SoCAB generally underestimated the response of ozone design 

values to the changes in precursor emissions (Karamchandani et al., 2017). 

Recently, machine learning (ML) as an alternative modeling approach has attracted more 

attention from air quality researchers. Although ML and chemical transport models have a similar 

goal to accurately predict air pollution, ML heavily depends on the quality and quantity of data 
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available. Conversely, CTMs are based on first principles equations and are initiated with 

interpolated observation data, hence avoiding most obstacles introduced by data missingness in 

observations. In contrast with CTMs, which produce larger scale, spatially resolved outputs, ML 

only provides predictions strictly at trained locations when used for ambient air quality 

applications. SCAQMD operates 38 air monitoring stations in Southern California over an area of 

approximately 10,743 square miles, including SoCAB, portions of the Salton Sea Air Basin, and 

Mojave Desert Air Basin, with an average of 283 square miles per monitoring station (Miyasato et 

al., 2016; South Coast Air Quality Management District, 2017). Due to the relative sparseness of 

monitoring stations and locality of air pollutants, using air monitoring stations to represent 

spatially-varying air quality over a large area may result in incorrect information (Apte et al., 2017). 

To overcome this limitation when high-resolution measurements are not available, researchers 

opt to use spatial interpolation methods (e.g., nearest neighbors, linear or polynomial 

interpolation, continuous natural neighbor interpolation, etc.) (Joseph et al., 2013). Yu et al., 

evaluated 14 unique spatial modeling methods for eight air pollutants in Atlanta, Georgia for 

developing spatiotemporal air pollutant concentrations fields (Yu et al., 2018). Wong et al., 

assessed four spatial interpolation methods (spatial averaging, nearest neighbor, inverse distance 

weighting (IDW), and kriging) to estimate ozone and PM10 air concentrations (Wong et al., 2004). 

In this paper, three spatial interpolation techniques are compared to the CMAQ model and 

evaluated biases related to COVID-19 lockdown anomalies. 

Study Area and Datasets 

 This study targeted the Southern California region, including Los Angeles, Orange County, 

Riverside, and San Bernardino counties. The region has been historically challenged with poor air 
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quality, with especially higher ozone concentrations than the rest of the United States. The coastal 

areas tend to have higher relative humidity (RH) and lower temperatures than inland Southern 

California. Since the turn of the century, SoCAB has been designated as a nonattainment area for 

the 1997 8-hour ozone standard (80 ppb), with design values for ozone well above the 2015 

standard of 70 ppb (Figure 2.24). In 2019, the maximum daily 8-hour average (MDA8) ozone 

concentration in SoCAB 108 ppb at the design value location with a classification of “extreme” 

(Redlands, California) (California Air Resources Board, 2023). 

Model Input Data 

The input meteorological data for the CMAQ simulation were generated using the 

Weather Research and Forecasting (WRF) model. WRF was initiated using data from the North 

American Mesoscale (NAM) Forecast System integrated with high-resolution sea surface 

temperature (SST) from the Group for High Resolution Sea Surface Temperature. The WRF 

Objective Analysis program was used to improve the meteorological simulation, and this step 

blends observed surface and upper air observations with background WRF fields. The surface and 

upper air observations are sourced from ds461 and ds351 datasets via the National Center for 

Atmospheric Research’s Research Data Archive, respectively (Wang et al., 2017). 

Gridded 4 km emissions were projected from 2019 for the year 2020 using a two-step 

adjustment to account for changes due to the COVID-19 (Zhu et al., 2023). In the first step, a linear 

projection factor (Eq. 1) was applied to 2019 gridded emissions based on SCAQMD basin-wide, 

total annual emissions spanning from 2012 to 2034, where the District’s future projections began 

at year 2020). The correction factor was calculated for seven air pollutant groups (total organic 

gases, reactive organic gases, CO, NOX, SOX, NH3, PM). 
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𝐿𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
2020 𝑒𝑚𝑖𝑠 − 2019 𝑒𝑚𝑖𝑠

2019 𝑒𝑚𝑖𝑠
(1) 

The second step accounted for traffic reductions due to the COVID-19 lockdown, and 

reductions were highest from March to May 2020 then slowly but not fully rebounding to pre-

lockdown levels toward the end of 2020 (Caltrans, 2023). SCAQMD basin-wide projections 

understandably did not reflect the decrease in mobile source emissions due to traffic reductions. 

Moreover, weekly traffic metrics in 2020 were acquired for the total flow, flow change, and speed 

change at 2991 locations in Southern California (Tanvir et al., 2023). Since the traffic data were not 

evenly distributed over the study domain, k-nearest neighbors (k-NN) was used to obtain the 

traffic data for grid cells (locations) that had no more than five reported data points (k value ≤ 5). 

For the grid cells with more than five reported data points, traffic volume was normalized and 

then averaged the normalized data. 

Machine Learning Inputs 

Meteorological and air quality data from 15 air monitoring sites in SoCAB were used (Figure 2.25). 

Hourly meteorological and air quality data used for ML training and validation were obtained from 

the Air Quality System (AQS) data mart 

(https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw, last access Jan 19th, 2023). Data 

was checked to ensure the hourly data was available for all training features. If there was a missing 

data point for one of the features, the invalid hour and all corresponding features were removed. 

The date range of the model training data was 2009-2010 and 2016-2019 for all 15 sites (Figure 

2.25). The period from 2011-2015 was not included in the models due to the limited availability 

of wind direction and wind speed at the sites. The 2020 data was used for model testing and 

evaluation (Table 2.8). 

https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw
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Methods 

CMAQ Modeling 

In this study, the performance of both CMAQ and ML was compared with spatial 

interpolations of ozone concentrations in SoCAB for the year 2020. The CMAQ simulation covered 

three distinct periods to study the impact of COVID-19 lockdown on air pollutant concentrations: 

pre-lockdown (Jan 1st to Mar 18th), lockdown (Mar 16th to May 15th), and post-lockdown (after May 

16th) periods. Meteorological modeling was carried out using the Weather Research and 

Forecasting (WRF) model version 3.9 with 4 km horizontal grid spacing, 11 vertical layers for the 

finest domain (10 layers near the surface), and 156 x 102 grid cells (Figure 2.26). There were two 

parent domains with coarser horizontal grid spacing (36 km and 12 km for domain 1 and domain 

2, respectively). WRF configurations were optimized for SoCAB, and they included use of USGS 

land use, the thermal diffusion surface layer scheme, and the Yonsei University planetary 

boundary layer scheme (Hong et al., 2006; Huang et al., 2014). The CMAQ simulation used the 

modified 2020 emissions and previously described WRF simulations as inputs. The choice of 

chemical mechanism was SAPRC07tc_ae6_aq, i.e., SAPRC07tc photochemical mechanism, aerosol 

module 6, and aqueous chemistry (Byun & Schere, 2006; Carter, 2010).  

Machine Learning 

 In a preceding study, multiple ML algorithms were tested to obtain a better method that 

resulted in the highest prediction accuracy for ozone concentrations in the SoCAB. Those included 

neural network, support vector machine, k-nearest neighbors, and random forest (Do et al., 2023). 

Here, random forest regression (RFR) was selected, as RFR is the most suitable ML algorithm for 

predicting ozone concentrations in SoCAB (Do et al., 2023). For reference, RFR is a supervised 
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learning algorithm with a tree-based ensemble method, i.e., a combination of multiple decision 

trees trained on an independent collection of input variables. In this application, RFR selected a 

random collection of features from the six input features for each decision tree to reduce bias, 

and the output of RFR is the average result from all decision trees (Rodriguez-Galiano et al., 2015; 

Zhang and Ma, 2012).  

In this study, six training features were selected to predict ozone concentrations, which 

included two air quality features (NO and NO2) and four meteorological features (temperature, 

relative humidity, wind speed, and wind direction). The two air quality features are directly related 

to ozone formation in the troposphere. Ozone undergoes the photolytic cycle during the day and 

is removed by NOx during nighttime (Brune, 2001; Liu et al., 1980; Trousdell et al., 2019). The four 

meteorological features were well studied in our previous work and were shown as the most 

important features to capture the variability in annual ozone, especially in SoCAB (Camalier et al., 

2007; Gao et al., 2022; Jaffe, 2020).  

 The scikit-learn 0.22 library supported by the Python programming language was used to 

train the RFR model. Again, the input features are NO2, NO, temperature, relative humidity, wind 

speed, and wind direction, and the label is ozone. The algorithm was tuned by varying the number 

of decision trees, the depth of the tree, sample split, and the sample leaf to obtain the best 

prediction accuracy. The same model tuning approached described in Do et al.was used (Table 2.9) 

(Do et al., 2023). 

Spatial Interpolation 

To generate a two-dimensional ozone concentration map, the RFR model was carried out 

to obtain the ozone concentrations at each air monitoring location (15 sites), which served as the 
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model building sites. In other words, a pointwise ML algorithm was applied to predict ozone 

concentration at each trained location. Next, the output was spatially interpolated over the target 

Southern California region. Three different spatial interpolation methods (ordinary kriging, inverse 

distance weighting (IDW), and bicubic interpolation) were applied and comparatively evaluated 

the performance of each method. Each interpolation approach is described below. 

Ordinary kriging was applied to interpolate the ozone concentration at the 10 km 

resolution over the study area. Ordinary kriging is a well-known spatial interpolation method 

developed by Danie G. Krige. Generally, kriging predicts the values for unknown locations by 

performing a series of linear combinations of values at known locations. Equation 1 expresses the 

generic form of the estimator to predict the optimum value 𝑍∗of an unknown location by 

combining the known values 𝑍𝑖  with their weights 𝜆𝑖 (Oliver and Webster, 1990). The variance 𝜎2 

can be written as an optimization problem (Eq. 2) that can be solved using the Lagrange multiplier 

𝜇 (Eq. 3). 

𝑍∗(𝑢) = ∑ 𝜆𝑖𝑍(𝑢𝑖)

𝑛

𝑖=1

 (1) 

𝜎2(𝑢) = 𝑉𝑎𝑟[𝑍(𝑢) − 𝑍∗(𝑢)] = − ∑ ∑ 𝜆𝑗𝜆𝑖𝛾(𝑢𝑖 − 𝑢𝑗) + 2 ∑ 𝜆𝑖𝛾(𝑢𝑖 − 𝑢)

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑗=1

 (2) 

∑ 𝜆𝑗(𝑢𝑖 − 𝑢𝑗) + 𝜇 = 𝛾(𝑢𝑖 − 𝑢)

𝑛

𝑗=1

 (3) 

and 

∑ 𝜆𝑗 = 1

𝑛

𝑗=1

 (4) 
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𝜇 is the Lagrange multiplier, 𝑢𝑖 and 𝑢𝑗 are the distance of known locations from unknown locations 

𝑢, 𝛾 is the variogram, and 𝑖 = 1, … , 𝑛. Equations 1 and 2 are called the kriging system, and 𝜆 is the 

kriging weight. The values for 𝜆𝑖 and the optimum value 𝑍∗ are obtained by solving the kriging 

system and Equation 1 (Yamamoto, 2000). 

 Bicubic interpolation is another method for interpolating data points on a two-

dimensional grid. The interpolated surface can be written in terms of two variables (Eq. 5). The 

polynomial 𝑝 consists of sixteen coefficients 𝑎𝑖𝑗  that are solved with sixteen boundary conditions 

(i.e., (𝑥 = 0, 𝑦 = 0), (𝑥 = 1, 𝑦 = 0), (𝑥 = 0, 𝑦 = 1), (𝑥 = 1, 𝑦 = 1)) and its derivatives with 

respect to 𝑥, 𝑦, and 𝑥𝑦 (Seiler and Seiler, 1989). 

𝑝(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑦𝑗

3

𝑗=0

3

𝑖=0

 (5) 

 The IDW interpolation method accounts for the distances between the interpolated points 

and the measured locations. The assumption for IDW is that points close to each other are more 

alike and have more significant influence than those farther apart. Thus, the nearest measured 

values have greater weights assigned. Equation 6 shows that the predicted value 𝑍(𝑥) is inversely 

proportional to the distance between the measured and interpolated points 𝑑(𝑥, 𝑥𝑖). 

𝑍(𝑥) =

∑
𝑍𝑖

𝑑(𝑥, 𝑥𝑖)𝑝
𝑛
𝑖=1

∑
1

𝑑(𝑥, 𝑥𝑖)𝑝
𝑛
𝑖=1

(6) 

where 𝑍(𝑥) is the predicted value, 𝑑 is the distance, 𝑥 is the unknown point, 𝑥𝑖 is the known 

location, 𝑍𝑖  is the value of a known location, and 𝑝 is the power (Bartier and Keller, 1996). 
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Model Evaluation and Discussion 

 Figure 2.27 shows a snapshot of the ozone concentrations over the interpolation region 

at 4:00 PM on June 22, 2020 (highest ozone episode of the day), using ordinary kriging. The colored 

dots with a white border are the actual values at the evaluation sites, and those without a white 

border are the RFR predicted values for training sites. The model successfully reconstructed the 

spatial trends in the region where the lowest ozone levels were in the southwest (coastal) and the 

highest were in the east (inland), and there was good agreement with the actual ozone 

concentrations. Figure 2.28 and Figure 2.29 show the heatmap for bicubic and IDW interpolation for 

the same timestamp. Although all interpolation methods predicted the lowest ozone 

concentrations in the Southwest, the highest ozone concentrations were predicted in the 

Northeast of the study region for bicubic and in the North for IDW. The concentration gradient 

increased from south to north for bicubic and IDW, but from west to east for ordinary kriging.  

The performance of the models was evaluated based on commonly-used statistical 

metrics: mean bias (MB), correlation coefficient, root mean square error, and R2 (equations listed 

in SI). The models were evaluated based on data from 27 air monitoring stations in SoCAB, of 

which 15 sites were used to evaluate the training sites and the other 12 sites were used to evaluate 

the performance of the three interpolation methods at non-training sites. Table 2.10 and Table 2.11 

highlight R2 for daily average ozone for the bicubic, IDW, and ordinary kriging interpolations, as 

well as R2 for the CMAQ comparison. the entire year was used to evaluate the interpolation 

methods, but the five highest ozone months from May to September were used for the CMAQ 

evaluation.  
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The bicubic R2 indicates the poorest performance of the three interpolation methods. The 

lowest R2 values for the 12 evaluation sites were 0.15 and 0.29, Mission Viejo and West LA, 

respectively (Table 2.11). The poor performance resulted from the method used to calculate the 

coefficients 𝑎𝑖𝑗  (Eq. 5), for which the values of coefficients did not depend on the distance 

between interpolating points but were dependent on the formation of a smooth curve. Bicubic is 

best for evenly distributed points, such as interpolating image pixels. IDW showed a significant 

improvement compared to bicubic interpolation. The lowest R2 was 0.36 for Mission Viejo, and 

the highest R2 was 0.83 for Pomona. Since IDW accounts for the distances between the 

interpolation points and the data points, farther data points have less influence on the 

interpolation points. Ordinary kriging resulted in the best interpolation method, with the lowest 

R2 of 0.39 for Winchester and the highest R2 of 0.84 for Pomona. Kriging not only accounts for the 

distance between building points and interpolated data by assigning larger weight 𝜆𝑖 to the near 

neighbors, but it also considers the variability of data by considering the variance of input data, 

𝜎2. The basis of the variogram function represents the spatial variability of data. The variance 

depends not on observation values but on the variogram model and geometry (Kebaili Bargaoui 

and Chebbi, 2009) (Eq. 2).  

ML with interpolation gave a poor performance for Crestline and Winchester locations. 

Crestline is located in the mountains and to the northeast of SoCAB , which is elevated terrain 

associated with upper air and a different air mass at times. Crestline ozone was not well-

correlated with coastal or inland sites. Thus, interpolated Crestline ozone based on coastal or 

inland data points will likely yield poor results. The Winchester air monitoring site is located near 

the Skinner Reservoir (Figure 2.30), far away from other data points (Lake Elsinore and Banning). 

Low R2 for Winchester can be explained by the influence of the lake and local meteorology and 
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air quality. The ordinary kriging model performed well for locations bounded by data points with 

R2 above 0.56. However, poor interpolation results occurred for peripheral locations in SoCAB 

(Crestline, Mission Viejo, and Winchester). LAX ozone levels were not well correlated with 

meteorology, and training the ML model with fewer meteorological features did not affect the 

performance of the LAX location. Overall, model performance increased from the West to the 

East, with better prediction for inland sites. 

The distribution of the monthly mean bias (MB) for ordinary kriging interpolation centered 

around zero with the range between +9 ppb for Compton (August) and -11 ppb for Glendora 

(October). Eleven building sites have a net positive monthly MB, and four have a net negative 

monthly MB (Figure 2.31). The results from the CMAQ simulation overestimated the ozone levels. 

CMAQ's best performance was from May to October when the MBs were the smallest. In general, 

ozone concentrations in the SoCAB are highest during the summer and lowest in the winter, 

corresponding with the temperature. Even though the CMAQ simulation captures diurnal 

variation, the seasonal variation is not as well-represented (Figure 2.32, Figure 2.33, Figure 2.34, and 

Figure 2.35). Lower performing CMAQ results could come from uncertainties in emissions 

estimates. CMAQ generally overestimated ozone concentrations because the simulated nighttime 

ozone concentrations were higher than those observed, potentially due to underestimated 

nighttime NOX emissions (Zhu et al., 2023). In other words, that there was not enough NOx emitted 

in the model during the daytime for ozone formation and at night for ozone removal (Awang and 

Ramli, 2017; Brown et al., 2004). 

Training features can be varied to study the sensitivity to modeled ozone response. For 

example, the temperature, RH, or emissions values can be perturbed to examine the ozone levels 

corresponding to the change in the features. However, because the formation of ozone results 
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from a complex combination of chemical reactions, resulting impacts are nonlinear and 

interdependent. Therefore, when using ML to test for sensitivity to a feature, one should consider 

feature dependencies. For example, in testing temperature impacts on ozone concentration, both 

how temperature impacts photolysis rates (NO2 degradation) as well as simultaneous 

correlations/anticorrelation with other meteorological variables, such as RH or wind speed must 

be considered. 

The reduction in traffic volumes during the lockdown from March to May led to a decrease 

in observed CO and NOX (Ivey et al., 2020; Tanvir et al., 2023). As a result, an overall reduction in 

ozone levels was expected over the SoCAB region. The average diurnal ozone concentrations 

before the lockdown (Jan - Feb) in 2020 were noticeably greater than the average from 2016 – 

2019 for all 15 building sites. Figure 2.36 shows the averaged diurnal profiles of three 2020 periods 

for inland sites, Rubidoux and Fontana: pre-lockdown (a, d), lockdown (b, e), and post-lockdown 

(c, f) periods. During lockdown, observed 2020 ozone levels (red line) marginally dropped in 

Rubidoux but still were higher than Fontana's four-year average (blue line). Post-lockdown 

differences compared to the four-year average were not significant across the 15 sites. The RFR 

model captured ozone trends throughout 2020, although slightly lower during and despite the 

observed reduction in NOx, suggesting that besides the air quality features (NO and NO2), 

meteorology would play an important role in predicting ozone levels during anomalous episodes. 

Actual and modeled discrepancies also indicate anomalous ozone behavior during lockdown. For 

instance, several sites in the SoCAB showed an increase in ozone levels based on the diurnal profile 

implying that the urban locations in the SoCAB were VOCs-limited regimes, where reduction in 

NOx reduction-initiated ozone enhancement (Parker et al., 2020). 
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Conclusion 

This study highlights the advantages of spatial interpolation methods for ozone 

predictions during anomalous environmental events. With modern processor architectures (e.g., 

AMD Zen 3 or Intel Alder Lake), training RFR model and performing high-resolution interpolation 

over the SoCAB region for one prediction year took less than five minutes of walltime with a 16-

core processor. In contrast, CMAQ walltime was 16 days for a year-long simulation for the SoCAB 

region. Further, ozone modeling for 2020 was challenging because of expected emissions 

conditions from March to September, during which traffic volume significantly decreased (up to 

40% reduction in some locations). The hypothesis was that mid-2020 ozone levels would decrease 

semi-proportionally to the decline in traffic volume. However, the changes in ozone levels in the 

SoCAB was small in magnitude, but directionally the changes were informative for future 

emissions reductions planning (increased ozone indicates VOC limitations). Ordinary kriging 

interpolation using ML building provided daily data, addressed data missingness, and captured 

2020 ozone trends with fairly low bias despite the sudden change in emissions. 
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Tables 

Table 2.8. Data summary for machine learning modeling. 

Ground 

Monitoring 

Locations 

Anaheim, Azusa, Banning, Compton, Fontana, Glendora, Lake Elsinore, LAX, LA 

North Main Street, Mira Loma, Rubidoux, San Gabriel, Santa Clarita, San 

Bernardino, Upland 

Features NOx, NO, temperature, relative humidity, wind speed, wind direction 

Label Ozone 

Data sources EPA AQS data mart, CARB AQMIS 

Training years 2009, 2010, 2016, 2017, 2018, 2019 

Evaluation year 2020 

 

 

Table 2.9. Optimal RFR configurations for the study 

Hyperparameter Description 

n_estimators = 16 The number of trees in the forest. 

max_features = ‘auto’ The number of features to consider when looking for the best 

split. 

max_depth=None The maximum depth of the tree. 

min_samples_split=5 The minimum number of samples required to split an internal 

node. 

min_samples_leaf=30 The minimum number of samples required to be at a leaf 

node. 

min_weight_fraction_leaf=0 The minimum weighted fraction of the sum total of weights 

required to be at a leaf node. 

max_leaf_nodes=None Best nodes are defined as relative reduction in impurity. 

n_jobs=8 The number of jobs to run in parallel. 
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Table 2.10. Daily average R2 at the 15 building sites for three interpolation methods for the year 2020. R2 
for CMAQ was computed using the five highest ozone months May - September of 2020. 

Sites Bicubic R2 IDW R2 Ordinary 
Kriging R2 

CMAQ R2 

Anaheim 0.66 0.67 0.74 0.41 

Azusa 0.52 0.64 0.77 0.59 

Banning 0.17 0.46 0.73 0.26 

Compton 0.65 0.67 0.77 0.48 

Fontana 0.88 0.89 0.87 0.59 

Glendora 0.46 0.53 0.72 0.52 

Lake Elsinore 0.52 0.70 0.79 0.56 

LA North Main ST 0.36 0.67 0.78 0.48 

LAX 0.31 0.48 0.65 0.25 

Mira Loma 0.56 0.71 0.86 0.67 

Rubidoux 0.46 0.65 0.86 0.68 

San Bernardino 0.68 0.85 0.86 0.67 

San Gabriel 0.53 0.77 0.81 0.62 

Santa Clarita 0.27 0.72 0.84 0.61 

Upland 0.76 0.80 0.86 0.61 

 

 

Table 2.11. Daily average R2 at 12 evaluation sites, and these were not used spatial interpolation. R2 for 
CMAQ was computed using the five highest ozone months, May - September of 2020. 

Sites Bicubic R2 IDW R2 Ordinary 
Kriging R2 

CMAQ R2 

Crestline 0.35 0.42 0.42 0.23 

La Habra 0.75 0.80 0.77 0.44 

Long Beach 0.46 0.60 0.56 0.30 

Mission Viejo 0.15 0.36 0.49 0.39 

North Hollywood 0.67 0.67 0.79 0.59 

Pasadena 0.55 0.71 0.78 0.57 

Perris 0.55 0.72 0.80 0.56 

Pomona 0.71 0.83 0.84 0.68 

Redlands 0.60 0.74 0.71 0.57 

Reseda 0.63 0.63 0.71 0.01 

West LA 0.29 0.56 0.60 0.28 

Winchester 0.37 0.40 0.39 0.45 
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Figure 2.24. Ozone design values for the South Coast Air Basin from 2006 
to 2020 ( https://www.epa.gov/air-trends/air-quality-design-values).  

Figure 2.25. Data from 15 air monitoring stations (Anaheim, Azusa, Banning, Compton, Fontana, 
Glendora, Lake Elsinore, LAX, LA North Main Street, Mira Loma, Rubidoux, San Gabriel, Santa Clarita, 
San Bernardino, Upland) were used for ML model predictions of ozone concentrations. 

https://www.epa.gov/air-trends/air-quality-design-values
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Figure 2.26. The third and inner-most domain (blue boundary) with 4 km. 
Horizontal grid spacing covered the entire SCAQMD region (thick black lines). 

Figure 2.27. Hourly ozone heatmap (16:00 on June 22, 2020) using ordinary kriging. The 
dots with white borders are the evaluation sites, and dots without borders are the training 
sites. 
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Figure 2.28. Hourly ozone heatmap (@16pm June 22, 2020) using cubic interpolation. 

 

 

Figure 2.29. Hourly ozone heatmap (@16pm June 22, 2020) using IDW interpolation. 
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Figure 2.30. The map shows 27 air monitoring sites in the SoCAB. Blue labels were used for interpolation 
points, and red labels were used for interpolation performance evaluation. 
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Figure 2.31. Monthly mean bias of the ordinary kriging application (dashed lines) and CMAQ simulation 
(solid lines). 
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Figure 2.32. Time series plotting ozone concentrations for 
CMAQ model, cubic interpolation, and observation 

Figure 2.33. Time series plotting ozone concentrations for three 
different interpolation methods (kriging, cubic, and IDW) with 
observation 
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Figure 2.34. CMAQ (solid lines) vs. ML building sites (dash lines) model mean.  



138 
 

 

Figure 2.35. CMAQ (solid lines) vs. ML building sites (dash lines) from 9AM to 4Pm. 
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(a) (d) 

(b) 

(e) 

(c) (f) 

Figure 2.36. Averaged diurnal profiles of 2016 - 2019 (blue), actual 2020 (red), and ML predicted 2020 
(black) ozone concentrations (ppm) at Rubidoux (a, b, c) and Fontana (d, e, f) for three different periods: 
(a,d) pre-lockdown (Jan to Feb), (b,e) lockdown (Mar to May), and (c,f) post-lockdown (after May). The 
shaded area is the standard deviation of the 2016 - 2019 measurements.  
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Chapter 3  

GPU-Assisted Computation for a Gas-Phase Chemical Solver in CMAQ 

Abstract 

The Earth’s atmosphere is extremely complex. Mimicking the atmosphere involves many 

scientific processes, such as dispersion, diffusion, deposition, and chemical reactions. Researchers 

improve the predictability of air quality models by integrating more scientific processes with 

increasing the number of chemical reactions by adding a significant number of species to the 

mechanisms, which degrades the computational efficiency for the most comprehensive modeling 

applications. The disadvantage of the method is the worsening of simulation time. Offline 

chemical transport models spend much time simulating large atmospheric domains, with the most 

time solving for the gas-phase chemistry. To improve the simulation time while maintaining the 

integrity of the models, graphics processing units (GPU) were utilized to replace the central 

processing units (CPU) for computing the most extensive science process. The gas-phase chemistry 

solver has been successfully ported onto a GPU to reduce computational time. The actual kernel 

computing time for the solver is twice as fast as the CPU with the BLKSIZE of 8,000. However, the 

GPU solver suffers from moving data back and forth between the system memory to the GPU 

memory. This paper focusesthe details of (1) the compilation of the Community Multiscale Air 

Quality (CMAQ) model with CUDA kernels, (2) porting the gas-phase chemistry solver onto the 

GPU, and (3) optimizing the solver to improve GPU computational efficiency. The good results from 

the ported solver show the promising future for intensive parallel computing applications 

benefiting researchers in reducing the simulation time and accelerating the research. 



141 
 

Introduction 

Deterministic air quality models (AQMs) are designed to simulate complex physical and 

chemical processes taking place in the Earth’s atmosphere with mathematical presentations of the 

atmospheric transport, diffusion, dispersion, and chemical reactions, which are solved by 

analytical and numerical techniques and based on the conservation of mass principle for 

pollutants (Lamb & Seinfeld, 1973). Recently, with the rapid growth of machine learning, AQM can 

be fully based on empirical statistical relationships between historical data. However, ML models 

have not been ready to involve in U.S. regulatory decision-making but for research purposes. 

AQMs do not have all the features of a real system. Depending on the research and regulatory 

purposes, AQMs were designed to focus on a set of interesting substances, which were used for 

decision-making on environmental problems and predicting future pollution levels in response to 

emission controls. 

AQMs operate on a set of input data, including meteorology (e.g., wind information, 

temperature, relative humidity, and turbulent coefficients), emissions of harmful air pollutants 

and their precursors, topography, and land uses. The outputs usually are mass concentrations of 

air pollutants, such as ozone, particulate matter (PM), simulated NOx, and VOCs (Haurie et al., 

2004), closely matching measurements from air monitoring stations over the entire simulation 

domain. AQMs are often used to predict the trends of criteria pollutants for environmental 

compliance and attainment purposes, which were established by the United States Environmental 

Protection Agency for six common air pollutants (i.e., PM, O3, CO, SO2, NO2, and Pb). 

There are two common types of AQMs. (1) Atmospheric quality dispersion models are 

dispersion models defined as mathematical descriptions of transport and dispersion using 
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emission sources and meteorology data. Dispersion models are used to estimate the downwind 

concentrations of air pollutants and operate on emissions, meteorology, and topography (Hennig 

et al., 2016; Jerrett et al., 2005). In general, dispersion models are designed for atmospheric 

dispersion. A few dispersion models account for chemical reactions during the dispersion process. 

However, most dispersion models consider only inactive species. (2) Atmospheric chemical 

transport models (CTM) are deterministic models that simulate the atmosphere. CTMs account 

for space and time in the simulation domain using three-dimensional numerical models to 

simulate the change of air pollutant concentrations by solving a set of mass balance equations. 

CMAQ is one of the Environmental Protection Agency (EPA) regulatory methods used to 

develop attainment control strategies for criteria air pollutants (Foley et al., 2015; Kim et al., 2010; 

Yu et al., 2008) for evaluating pollution control, new science processes, and the sources of air 

pollution. The model is the most widely used in air quality modeling systems in recent years (Simon 

et al., 2012). The advances in chemical mechanisms and transport have improved the accuracy of 

the air quality model and the ability to reproduce atmospheric air pollution concentrations. The 

advances in the science processes in CMAQ successfully mimic the processes in the atmosphere. 

Zhang et al. carried out a seven-year CMAQ simulation in which the simulated concentrations were 

within the model performance criteria based on the EPA criteria (Zhang et al., 2014). 

CTMs include multiple science processes which accurately simulate the states of air 

pollutants in the atmosphere, such as transport, photolysis, radiation, multiphase chemistry, and 

cloud formation, in which photolysis provides the energy from the sun that is sufficient for many 

chemical reactions, multiphase chemistry used data from laboratory experiments to obtain 

reaction rates and chemical mechanisms to predict the products from chemical reactions (Al-
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Abadleh, 2022; Byun et al., 1998; Dütsch, 1971; Mebust et al., 2003; Søvde et al., 2012). The CMAQ 

model has two popular chemical mechanisms: Carbon Bond (CB) and the Statewide Air Pollution 

Research Center (SAPRC). SAPRC was developed to tackle the reactions of emitted volatile organic 

compounds (VOCs) in the presence of NOx to form O3 and other secondary air pollutants. The 

updated versions of the SAPRC mechanism in the later year give better predictions for secondary 

pollutants by adding a significant number of species. The numbers of model species for SAPRC-99, 

SAPRC-07, and SAPRC-18 are 82, 126, and 516, respectively. With the increase in the model 

species, chemical reactions exponentially increase, with 211 reactions for SAPRC-99, 569 reactions 

for SAPRC-07, and 1772 reactions for SAPRC-18 (Carter, 2023). Undoubtedly, the simulation time 

of CMTs is proportional to the chemical reactions. CMAQ is precise in representing atmospheric 

physics and chemical processes.  

Handling large datasets is a challenge, given the limitation of computational efficiency and 

the data’s complexity. Moreover, CTMs apply complex governing equations to solve for the output 

concentrations using the CPUs. Regarding runtime, a 12-km, two-way coupled WRF-CMAQ 

simulation using 34 layers of variable thickness with a domain size of 279x251 grid cells requires 

over 3 hours of work for 32 CPU cores per one simulated day over the five-month period (Wong 

et al., 2012). From our previous work, 2020 ozone concentrations were simulated over Southern 

California using 4-km resolution with 156x102 grid cells took 20 days to simulate 12 months with 

16 MPI threads.  

The computational efficiency of CMAQ largely suffers from solving a set of stiff differential 

equations when computing the gas phase chemical concentrations. For example, with the 

SAPRC07 chemical mechanism, the systems of photochemical reactions are calculated using Euler 
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Backward Iteration, SMV Gear, or Rosenbrock solver (ROS) for every time step and grid cell (row x 

column x height) for all species in the SAPRC07 family until a specified convergence tolerance is 

met. The running time is linearly proportional to the simulated domain and exponential with 

increased chemical species. 

In this paper, the CMAQ simulation time is improved by porting intensive computational 

processes onto GPUs. With thousands of Compute Unified Device Architecture (CUDA) cores in a 

single GPU, many independent arithmetic operations can be carried out simultaneously. The 

computer architecture, the advantages, and the disadvantages of GPU programming are closely 

examined. The partial derivative, decomposition, and back substitution subroutines of the ROS3 

(Rosenbrock) solver were successfully converted to the CUDA platform. Our CPU-GPU version of 

the CMAQ model is tested with SAPRC07 for a simulation over Southern California with 102 x 156 

x 11 grid cells. 

CMAQ on CPU using MPI: All air quality models were designed to utilize CPUs to calculate 

the science processes. With a set of instructions, scheduler, and high clock speed, CPUs are 

superior for arithmetic operations, and all programming languages are naturally compiled and 

executed by CPUs. CMAQ is a grid model in which the 3-dimensional space is subdivided into 3-

dimensional grid cells, and the resolution of the simulation domain is defined by user inputs. 

CMAQ uses Message Passing Interface (MPI) to parallel its simulation process, where multiple 

grids are executed simultaneously by the number of available CPU cores, local memory, and data 

must be explicitly shared by passing messages between processes (Clarke et al., 1994; Gropp et 

al., 1996; Lusk et al., 2009). Even though CPUs are fast for arithmetic operations and CMAQ 

simulation time is linearly inversely proportional to the number of CPU cores, CPU threads are 
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limited and expensive. For a modern consumer CPU lineup, the most core CPU consists of 24 cores 

for Intel (Core i9-13900K) and 16 for AMD (Ryzen 9 7950X). The best CPU for server platforms is 

AMD EPYC 7773X with 64 cores and costs $8,800 (as of April 2023). To accelerate the simulation, 

researchers can purchase expensive clusters or pay the premium for cloud services (e.g., AWS, 

Azure). Somehow, this seems less feasible for small research and consultant groups with less 

funding in the United States or developing countries. 

GPU Advantages: Modern GPUs are capable of computing vector operations with floating-

point arithmetic. New-generation GPUs can handle double-precision floating point numbers to 

improve model accuracy (Nvidia et al., 2009; Whitehead, 2011). Despite low clock speed and naïve 

scheduler (Guevara et al., 2009), GPUs still outperform the CPUs for multithreaded applications. 

Ada Lovelace architecture GPUs from NVIDIA have up to 16,384 CUDA cores with a 2.52 GHz boost 

clock and 24 GB of GPU memory (NVIDIA RTX 4090). Many CUDA cores enable a GPU to perform 

thousands of arithmetic operations simultaneously, significantly benefiting from parallelized 

computing and handling extensive data. Multiple GPU streams perform simple operations; all 

processes in all GPU threads are identical. GPU computing is more affordable and scalable than 

high-performance computers with numerous nodes. The cost of an RTX 4090 is $1599 (as of April 

2023), and installing a GPU into an existing computer is quite simple. 

Related work: GPUs were traditionally developed to accelerate graphic rendering for 

output to display devices. The rendering executes a single set of instructions on multiple GPU 

cores, emphasizing parallel processing on one specific task. In 2006, NVIDIA launched CUDA, the 

first commercial solution for general-purpose computing on GPUs (GPGPU). CUDA has provided 

unique frameworks that allow developers to integrate GPU computing across different 
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programming languages. CUDA has become an effective tool for training deep learning and 

machine learning models. In recent years, with the popularity of GPGPU and the improvement of 

CUDA from NVIDIA, air quality researchers have sought alternative solutions to accelerate 

chemical transport models. Delic has shown that porting a selected loop of CMAQ to a GPU was 

feasible (Delic, 2010). In 2023, Kai Cao et al. successfully ported the horizontal advection process 

(HAVDPPM) from CAMx onto a GPU. The gain for GPU-HAVDPPM was substantial compared to the 

original HAVDPPM on the CPU (Cao et al., 2023). However, the port of HAVDPPM to the GPU was 

incomplete and not native to the Fortran programing language. Kai Cao translated HAVDPPM to C 

programming languages before using CUDA C to execute the process on the GPU. This method 

reduced the overall efficiency of the computing time due to the heterogeneity in programming 

languages between Fortran and C. 

The work introduces the port of the CMAQ chemical solver onto the GPU using CUDA 

Fortran, the native programing language of the model. The method (1) simplifies the compilation 

process, (2) improves the overall model simulation time, and (3) increases readability for future 

development. One step compilation of the CMAQ’s CCTM was developed by embedding CUDA 

Fortran into the Makefile, in which the original CMAQ modules were compiled with GNU or Intel 

compiler, and CUDA subroutines were compiled with CUDA Fortran. 

CMAQ Model Descriptions 

CMAQ describes the dynamics of the atmosphere with a set of governing equations on 

grid cells in terms of the column, row, and layer. Figure 3.1 shows the simplified overview of CMAQ’s 

modules, in which the science processes operate in series. The science process module calls 

vertical diffusion (vdiff), horizontal advection (hadv), vertical advection (zadv), horizontal diffusion 
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(hdiff), cloud process (cldproc), and chem (chem) (Byun et al., 1999; EPA, 2019). The first four 

processes imitate the transport of the model using meteorological data inputs from WRF or other 

meteorology models. The cloud process computes the concentration changes in the cloud due to 

aqueous chemistry, scavenging, and wet deposition. The chem process calculates the gas phase 

concentrations based on the chemical mechanism provided by user input (SAPRC or CB). 

Three ordinary differential equation (ODE) solvers built-in CMAQ are Euler Backward 

Iteration (EBI), Rosenbrock (ROS), and Sparse Matrix Vectorized Gear (smvgear) (EPA, 2019). The 

default solver method in CMAQ is EBI due to its superior computing time. However, EBI is prone 

to inaccurate results and convergence errors with small time steps for steep differential equations. 

On the other hand, smvgear has the most accurate results (CMAQv5.2 Operational Guidance 

Document, 2017). However, the prolonged computing time of the gear method is a big 

disadvantage. Figure 3.2Figure 2.32 shows the overall CMAQ simulation time for three solvers with 

different MPI threads. EBI is 2.5x and 2.1x faster than smvgear and ROS3 solver, respectively. 

Increasing the number of MPI threads improve the overall simulation time; however, the time 

differences between the solvers remain the same. 

Descriptions of ODE solvers: The EBI solver is the default CMAQ method due to its 

computational efficiency. However, considering accuracy and data structure, the EBI method is 

unsuitable for GPU computation. The general differential equations for a chemical system can be 

expressed in Equation 1, in which the change in concentration of specie 𝑖 equals the difference 

between the production and the loss of specie 𝑖. 

𝑑𝑐𝑖

𝑑𝑡
= 𝑃𝑖 − 𝐿𝑖𝑐𝑖  𝑎𝑛𝑑 𝑖 = 1, … , 𝑠 (1) 
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where 𝑃𝑖 is the production, 𝐿𝑖 is the loss term of specie 𝑖, and 𝑠 is the number of chemical species 

(Jacobson, 2005). The numerical solution using EBI approximation is shown as 𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 +

𝑃𝑖
𝑛+1Δ𝑡 − 𝐿𝑖

𝑛+1Δ𝑡𝑐𝑖
𝑛+1, and can be written in the form: 

𝑐𝑖
𝑛+1 =

𝑐𝑖
𝑛 + 𝑃𝑖

𝑛+1Δ𝑡

1 − 𝐿𝑖
𝑛+1 Δ𝑡

 (2) 

The solution using the EBI method is just a simple linear combination, which makes the method 

effective in solving ODEs. To solve the concentrations in the gas phase, CMAQ iterates Equation 2 

through all the gas species until the criteria are met. Because the correct concentrations depend 

on the order of the species, Equation 2 must be carried out in order to obtain the correct solution. 

The EBI method is configured in series means porting EBI to the GPU is not beneficial. 

The Rosenbrock and SMVGEAR solvers were designed based on the code originally developed by 

M. Jacobson by adding a sparse-matrix package and vectorized loops about the grid-cell dimension 

to improve computational burden (Z. Jacobson & Turco, 1994). For a set of ODEs as 
𝑑𝒄

𝑑𝑡
= 𝑓(𝑡, 𝒄), 

the prediction matrix is 𝑷 ≅  𝐼 − ℎβo𝐽, where 𝒄 is the concentration vector, 𝐼 is the identity matrix, 

ℎ is the time step, 𝛽 is the scalers, and 𝐽 =
𝜕𝒄

𝜕𝑡
 is the Jacobian matrix. The Gear method uses 

decomposition with back-substitution to solve for the concentrations (Jacobson, 2005; Z. Jacobson 

& Turco, 1994). The calculation of the Gear method can be carried out independently with matrix 

and vector operations. The method has a high degree of parallelization and favors GPU 

computation. 
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Methods 

Determine the slowest science process: The science process modules in CMAQ have 

different computational times and require various hardware resources. The time for one 

simulation day of five science processes was measured, as shown in Figure 3.3. The gas phase 

chemistry was the most time-consuming step, taking five times longer than VDIFF and HADV and 

significantly impacting the overall CMAQ simulation duration. Successfully porting the CHEM 

module onto the GPU essentially improves the model performance. 

Compilation: CMAQ was written in Fortran and compiled using Intel Fortran or the open-

source GNU Fortran compiler. The CMAQ compilation process is straightforward, with appropriate 

pre-install libraries. The port of CMAQ subroutines onto GPU requires heterogenous compilers, in 

which Fortran compiler is used to compile traditional CMAQ modules (.F files), and nvfortran is 

used to compile CUDA subroutines (.cuf files). The data flow between .F and .cuf subroutines is 

strictly enforced, in which .cuf subroutines cannot directly inherit variables from CMAQ data 

modules. 

Parallelization independent loops: Parallelizing dependent loops result in inaccurate 

outputs. In gas-phase chemistry, concentrations of several species must be computed in priority. 

For example, in the EBI method, the concentrations of NO2, NO, O3, and O3P need to calculate first 

before computing HO, HO2, HONO, and HNO4. In the ROS method, the order of the decomposition 

loop needs to be executed in series. Therefore, performing loop-dependent analysis before 

porting to the GPU is essential to maintain the model’s integrity. Bernstein’s conditions were used 

to test for statements or operations that can be interchanged without altering the model’s 
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outputs. The conditions state that if neither Equation 3 to Equation 5 holds, the statements can 

be interchangeable. 

𝑂𝑈𝑇1 ∩ 𝐼𝑁2 = ∅ (3) 

𝐼𝑁1 ∩ 𝑂𝑈𝑇2 = ∅ (4)  

𝑂𝑈𝑇1 ∩ 𝑂𝑈𝑇2 = ∅ (5) 

where IN and OUT are the inputs and outputs of task 1 and task 2. 

Effects of BLKSIZE: BLKSIZE parameter can be set before compiling CMAQ for the smvgear 

and ROS solvers. The default BLKSIZE is 50. BLKSIZE influences the way CMAQ handles the grid 

cells. Large BLKSIZE results in fewer function-call for a given domain, but the solver effectively 

deals with big matrices and data promoting GPU computing. In the CMAQ configurations, the grid 

dimension is 102 x 156 x 11 (row x column x layer), resulting in a total number of grid cells of 

175,032. If the BLKSIZE is 50, CMAQ calls the gas-chem solver 3,500 times. When the BLKSIZE is 

set to 2,000, the gas-chem solver is called 88 times. However, the concentration matrix is 40 times 

larger than the BLKSIZE 50. Figure 3.4 shows the effect of the BLKSIZE on CMAQ simulation time. 

The gas-chem module and other science process modules were timed for one iteration timestep. 

Larger BLKSIZE degraded CMAQ performance; with 10,000 BLKSIZE, CMAQ is about 3.5 times 

slower than the default BLKSIZE. Increasing the BLKSIZE would not influence CMAQ simulation 

time in an ideal condition. However, because of the limitations of hardware, big concentration 

matrices due to large BLKSIZE overflow CPU cache (Matam et al., 2012; Ristov et al., 2014; 

Sulatycke & Ghose, 1998), and when the CPU performs matrix operations, the CPU has to retrieve 
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the data from the system memory which is much slower compared to CPU cache explaining 

increasing the BLKSIZE has a negative effect of the overall CMAQ simulation time. 

Figure 3.4 shows the BLKSIZE parameter impacts the gas-phase chemistry process. The simulation 

time of the science processes increased solely due to the computation time of the gas-phase 

chemistry, and other science processes’ computing time, such as diffusion, advection, or aerosol, 

is unaffected by the BLKSIZE. 

GPU Computing: A GPU can be seen as a computing unit with its own instruction sets, 

arithmetic-logic units (ALUs), GPU cache, and GPU memory. The GPU (device) communicates with 

the CPU (host) through a peripheral component interconnect express (PCIe) (Figure 3.5). Carrying 

out an operation on a GPU has to follow three steps: (1) send a copy of the data from the host to 

the device, (2) launch a CUDA kernel for instruction to compute on the GPU, and (3) send the GPU 

computed data (results) from the device to the host. Each step adds to the overall computing time 

of the system. The general limitation of GPU computing is the bottleneck of the PCIe bandwidth 

for data transferring between the host and the device. 

System Configurations: The simulation from CMAQ and CMAQ-CUDA was carried out on 

a consumer desktop computer with an Intel Core i5 8400, 16GB of system memory, and NVIDIA 

RTX 3090 GPU. The low-end computer was used to ensure the performance of CMAQ on a wide 

range of devices, including high-performance computers and regular desktops with upgraded 

graphics cards. The CMAQ test domain over Southern California with 4 x 4km resolution consists 

of 156 x 102 x 11 grid cells. The input meteorological data for CMAQ simulation were the North 

American Mesoscale Forecast System (NAM) integrated with NOAA high-resolution sea surface 

temperature (SST). OBSGRID was used to improve meteorological analyses, incorporating the 
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observed surface and upper air to correct the NAM data corresponding to the ds461 and ds351 

datasets, respectively (Wang et al., 2017). 

Results and Discussion 

Figure 3.6 shows the timing breakdown of the GEAR subroutines for one timestep over 

the computational domain. The slowest subroutines are the calculation for decomposition 

(DECOMP) and partial derivative (PDERIVE), in which the concentration matrix is computed a 

partial derivative with respect to the species and decomposed into lower and upper matrices. The 

GPU porting of the solver prioritizes the slow subroutines/loops to optimize the model’s 

performance.  

Figure 3.7 shows a block diagram of the CUDA Rosenbrock solver for CMAQ-CUDAv1.0. 

The codes from blue blocks are executed using the CPU. The CUDA kernels are the red blocks that 

are executed using the GPU. Ideally, more ported GPU subroutines significantly improve the 

computing time. However, only selected subroutines can be parallelized due to the data 

dependence. Because .cuf subroutines (compiled with nvfortran) cannot understand .F (compiled 

with Fortran compiler), an intermediate.F was introduced (compiled with nvfortran), which can 

communicate with both subroutines. The intermediate.F is the bridge between the host and the 

device where data and variables must pass through intermediate.F. The calculation of rbfeval.F, 

rbjacob.F, rbdecomp.F, and rbsolve.F is repeated until tolerance is met. 

Table 3.1 summarizes the computing time for the four subroutines from the Rosenbrock 

solver performed on conventional CMAQ and CMAQ-CUDAv1.0 for 2,100 BLKSIZE and 10,000 

BLKSIZE. The actual GPU computing time (kernel time) is much faster than CPU time with the same 

arithmetic operations. With 10,000 BLKSIZE, GPU computing is about 91% faster for the RBFEVAL 
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subroutine, 86% for the RBJACOB subroutine, 93% for RBDECOMP, and 92% for RBSOLVE. Even 

though the computation carried out on the GPU outperformed CPU performance, the overall 

CMAQ simulation time severely suffered from data transferring between the host and the device. 

The gain from the kernel was offset by the data allocation, increasing CMAQ simulation time. 

CMAQ-CUDAv1.0 implemented a naïve version of the Rosenbrock solver on the GPU, in 

which every subroutine on the solver has its kernel and requires multiple data transfer through a 

PCIe (Figure 3.7). When the dimension of concentration matrices is larger with large BLKSIZE, GPU 

computing experiences loss due to the bottleneck of the PCIe bandwidth. 

A new algorithm was developed to minimize data transfer and optimize parallel 

computing in CMAQ-GPUv2.0. In the second version, the four subroutines of the solver were 

vectorized and combined to enhance the data transfer. The initial subroutine prepares all required 

data used by the solver and sends the data to the GPU memory. After the kernel calculation, the 

RBSOLVE returns the results to the host (Figure 3.8). This version still requires sending the results 

from the GPU back to the host for convergence check. This optimization requires only a one-time 

data transfer between the host and the device. The disadvantage of the method is that the size of 

each copy of data is large and requires greater GPU memory. For CMAQ-CUDAv1.0, each copy of 

data is 3.5GB and will be cleared after the kernel is finished. For CMAQ-CUDAv2.0, the size of the 

data is 6.7GB per copy. If launching three kernels in parallel, the amount of data exceeds 20GB 

when dealing with large BLKSIZE. NVIDIA’s latest GPUs for data centers offer an impressive 48GB 

of memory at a substantial cost. 

Figure 3.9 shows the average time of the Rosenbrock solver for one iteration for CMAQ, 

CMAQ-CUDAv1.0, and CMAQ-CUDAv2.0 for 8,000 BLKSIZE. The actual computation time (orange 
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bar) is faster with CMAQ-CUDA than with traditional CMAQ. The gain from the kernel for CMAQ-

CUDAv1.0 was offset by the transferring time to the device (blue bars) and the host (yellow bars). 

The implementation of CMAQ-CUDAv2.0 optimized the transferring time and showed a significant 

improvement. However, the kernel of CMAQ-CUDAv2.0 experienced longer computation time due 

to extended arithmetic operations added to the kernel. Because more codes from the RBSOLVER 

were ported to the kernel of CMAQ-CUDAv2.0, the kernel had to compute a large number of series 

operations, in which the slow clock speed from the GPU harmed the overall computation time. 

CMAQ-CUDAv2 allocated a large amount of data on the kernel, causing the GPU memory 

management to be less efficient and adding extra time for searching through the memory to 

acquire the data (Fauzia et al., 2015; Winter et al., 2021). CMAQ-CUDAv2.0 also performed better 

with large BLKSIZE. The total time for one iteration of the Rosenbrock solver, including data 

transferring and computation time, is shown in Figure 3.10. The traditional CMAQ gave a good 

performance with a small data size (BLKSIZE), but when the BLKSIZE was greater than 3700, CMAQ-

CUDAv2.0 had better computation time. 

The accuracy of CMAQ-CUDA was evaluated by carrying out the simulation for 24 hours 

and comparing the outputs with the original CMAQ version. Figure 3.11 shows the simulated 

concentrations of the most common species for CMAQ and CMAQ-CUDA. The left panels are the 

output concentrations from CMAQ, the middle panels are CMAQ-CUDA simulation, and the right 

panels are the concentration differences between CMAQ and CMAQ-CUDA. The two CMAQ 

versions produced very similar concentrations across all the species, including the maximum and 

minimum values of the entire simulated domain. The mean bias over the domain is small, and the 

maximum errors between the two values are about 0% for SO2 and CO, 5% for O3, and 7% for NO. 
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The errors between CMAQ and CMAQ-CUDA came from the differences in hardware architecture. 

Numerical discrepancies between CPU and GPU are merging double-precision multiplication and 

addition into double-precision fused multiply-add (FMA) architectures to improve accuracy by 

reducing rounding and preventing subtractive cancellation (Blanchard et al., 2020; Quinnell et al., 

2008, 2015; Zhang et al., 2019). Calculation errors from the differences between GPU and CPU 

architectures will not be significant. However, dealing with extremely small numbers for 

concentrations and small timesteps for solving stiff ODEs will magnify the errors. Another 

uncertainty contributing to the errors could be the definition and allocation of double precision 

floating point for GCC compiler and CUDA Fortran platform. 

Future work: Typically, the solution for the ODEs must go back and forth in the 

Rosenbrock solver more than six times until the numerical solution meets a set of criteria. With 

CMAQ-CUDAv2.0, the solution from the kernel has to copy to the host for convergence check and 

upload to the device again for the next iteration. In future work, CMAQ-CUDAv3.0 will be 

introduced to overcome this limitation. Implementing CMAQ-CUDAv3.0 will port the convergence 

check of the solver onto the kernel for further optimizing the transferring time (Figure 3.12), and 

the outputs from the kernel are the final solution to reduce the transferring time by a factor of 

five. This version will optimize the number of selected variables that need for the kernel 

computation. The constant data, such as reaction rates, will be stored on the GPU memory 

permanently. 

Hardware Optimization: The CMAQ-GPU is currently limited to computer hardware. The 

major disadvantage of GPU computing is the transferring time between the host and the device. 

Even though the GPU kernel performs much faster than the CPU for parallel applications, the 
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moving and reallocation of data can offset any gain from the GPU kernel. The data moving time 

can sometimes be even greater than the actual computing time. The bottleneck comes from the 

PCIe bandwidth, system memory speed, and GPU memory speed. In the future, the release of 

newer hardware will lift the bottleneck limitation for GPU computing. The release of PCIe 7.0 

(Table 3.2) and DDR6 in 2025 is twice faster as DDR5 and four times faster than DDR4, and the 

PCIe bandwidth is sixteen times faster than PCIe 4.0 in the test system. With the better-supported 

hardware framework, CMAQ-GPU will be about four times faster than the current version. 

Conclusion 

Results from CMAQ-CUDAv2.0 show a promising future of GPU computing for CTMs. An 

optimized ported kernel significantly reduces the computation time for large data sizes. The actual 

computation time from the GPU kernel is much faster than on the CPU. However, the time for 

moving the data between the host and the device added a significant amount of time to the overall 

results. The CMAQ-CUDAv3.0 algorithm are proposed to minimize the transfer time by porting the 

convergence check loop onto the kernel. The current limitations of the test system are the PCIe 

bandwidth and memory speed bottleneck. In the future, with the newer generation of PCIe and 

DDR, remarkable improvements can be obtained in GPU computing for scientific applications. The 

development of CMAQ-CUDA provided the framework for GPU computing, in which newly 

developed highly parallel computing for science process modules can be easily written for GPUs 

and compiled using the one-step compilation method for Fortran modules and CUDA kernels. 

Scientists can turn on and off GPU computing options with a flag in the build scripts. 
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Tables 

Table 3.1. Computing time for RBFEVAL, RBJACOB, RBCECOMP, and RBSOLVE subroutines for CMAQ and 
CMAQ-CUDAv1.0. The time was measured in seconds and was the average of a CMAQ timestep for 2,100 
and 10,000 BLKSIZE. CTD (copy to device) is the time for transferring data from host to device. CTH (copy to 
host) is the time for copying the results from the device to the host. KER (kernel) is the GPU computing time. 

 RBFEVAL (s) RBJACOB (s) RBDECOMP (s) RBSOLVE (s) 

CTD KER CTH CTD KER CTH CTD KER CTH CTD KER CTH 

CMAQCUDAv1.0 
2,100 BLKS 

3.8 
*10-3 

2.5 
*10-3 

3.9 
*10-4 

1.2 
*10-2 

1.4 
*10-2 

1.3 
*10-2 

1.1 
*10-2 

1.1 
*10-2 

9.8 
*10-3 

9.9 
*10-3 

1.6 
*10-3 

1.1 
*10-2 

CMAQ 
2,100 BLKS 

0 4.0 
*10-3 

0 0 1.2 
*10-2 

0 0 3.8 
*10-2 

0 0 4.1 
*10-3 

0 

CMAQCUDAv1.0 
10,000 BLKS 

2.4 
*10-2 

1.9 
*10-3 

1.7 
*10-3 

5.0 
*10-2 

7.6 
*10-3 

5.8 
*10-2 

5.3 
*10-2 

1.3 
*10-2 

4.5 
*10-2 

4.6 
*10-2 

1.7 
*10-3 

5.3 
*10-2 

CMAQ 
10,000 BLKS 

0 2.3 
*10-2 

0 0 5.6 
*10-2 

0 0 1.9 
*10-1 

0 0 2.1 
*10-2 

0 

 

 

Table 3.2. Improvement of data transfer rate over PCIe generations. 

Generation Year of Release Data Transfer 
Rate 

Bandwidth x1 Bandwidth x16 

PCIe 3.0 2010 8.0 GT/s 1.0 GB/s 16 GB/s 

PCIe 4.0 2017 16.0 GT/s 2.0 GB/s 32 GB/s 

PCIe 5.0 2019 32.0 GT/s 4.0 GB/s 64 GB/s 

PCIe 6.0 2022 64.0 GT/s 8.0 GB/s 128 GB/s 

PCIe 7.0 2025 128.0 GT/s 16.0 GB/s 256 GB/s 
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Figures 

 

Figure 3.1. CMAQ’s CCTM science process modules. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. CMAQ simulation time for 1 simulated date were carried out 
using EBI (blue), ROS3 (orange), and SMVGEAR (green) solver with 
different number of MPI threads. 
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Figure 3.3. Module timing of a single simulated day for five science modules 
in CMAQ. Gas phase chemistry (purple line) is the slowest module across all 
CPU cores. 

Figure 3.4. Effect of BLKSIZE on CMAQ’s science processes per 
simulation timestep. The blue line is gas-phase chemistry process, and 
the orange line is the entire science processes 
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Figure 3.5. Scheme of a computer with a GPU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Timing of GEAR subroutines. 
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Figure 3.7. CUDA Rosenbrock solver block diagram for CMAQ-CUDAv1.0. The blue blocks are executed using 
the CPU (host), and the red blocks are executed using GPU (device). Because of the different compilers, the 
.cur and .F can communicate through intermediate.F. 

 

 

Figure 3.8. CUDA Rosenbrock solver block diagram for CMAQ-CUDAv2.0. The blue blocks are executed using 
the CPU (host), and the red blocks are executed using GPU (device). The four subroutines (red blocks) operate 
on the GPU without requiring data transfer between each subroutine. 
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Figure 3.9. Average time for Rosenbrock solver for one iteration step for 
CMAQ-CUDAv1.0, CMAQ-CUDAv2.0, and CMAQ. Blue bars are the time 
to copy data to the device (CTD), orange bars are the actual computing 
time (KER), and yellow bars are the time for copying data from the 
device to the host (CTH). 

Figure 3.10. Average time for Rosenbrock solver for one iteration with 
different BLKSIZEs. Blue line is convention CMAQ, orange line is CMAQ-
CUDAv1.0, and yellow line is CMAQ-CUDAv2.0. 
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Figure 3.11. The outputs after 24-hour simulation of CMAQ-CUDA and CMAQ. The results were compared 
among common species (SO2, O3, NO2, NO, CO, OH, HNO3, Isoprene, H2O2, and PAN). The left panels are 
CMAQ simulation, the middle panels are CMAQ-CUDA simulation, and the right panels are the differences 
between CMAQ and CMAQ-CUDA in ppb. 
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Figure 3.12. CUDA Rosenbrock solver block diagram for CMAQ-CUDAv3.0. The blue blocks are executed using 
the CPU (host), and the red blocks are executed using GPU (device). The convergence check is ported to the 
kernel to optimize the transferring time. The outputs from the kernel are the final solutions. 

 

 




