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Abstract 

 

The development of environmentally friendly synthetic methodologies is a central and urgent goal 

of modern chemical science and industry. Advancing mechanistic understanding is crucial to 

accelerating the development of new reactions involving biobased platform molecules which can 

be applied to sustainable process design. The ab initio nanoreactor is a method for automated 

generation of mechanistic trajectories, in which high temperatures, high pressures, and external 

forces are applied to assemblies of reactants to advance discovery using first-principles MD 

simulations. I used this ab initio nanoreactor method to solve mechanistic mysteries of green and 

biological chemistry, which has proved pivotal in a synergistic theoretical and experimental 

studies. In another application, reaction design and accurate predictions of ligand-protein/protein-

protein binding energies is critical in pharmaceutical drug development, and can drive efficient 

production from predicted reagents, minimize waste, and elucidate the core organizations of 

biology. Many disease-causing viruses target sialic acids (Sias) on the surface of host cells. Some 

viruses bind preferentially to sialic acids with O-acetyl modification at the hydroxyl group of C7, 

C8, or C9 on the glycerol-like side chain. Binding studies of proteins to sialosides containing O-

acetylated sialic acids are crucial in understanding the related diseases, but experimentally difficult 

due to the lability of the ester group. As such, N-acetyl sialic acids have been proposed as stable 

mimics. I have studied the instability of the ester group across modified Sias, and the structural 

and biological similarities of these Sias in ligand-protein binding with MERS-CoV S and SARS-

CoV-2 S proteins. I have found N-acetyl and O-acetyl Sias interchangeable, suggesting an 

experimentally reasonable mimic to probe viral mechanisms.  
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Chapter 1: Introduction  
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Green Chemistry 

 

The development of environmentally friendly synthetic methodologies is a central and urgent goal 

of modern chemical science and industry.3–6 Major thrusts of this goal involve replacing 

petrochemical feedstocks with renewable resources such as biomass and closer adherence to the 

principles of green chemistry.7–9 A review by Gallezot, et al in 2012 points towards 5 driving forces 

for substituting fossil feedstocks with renewable carbon: increasing public confidence in the 

chemical industry by optimizing sustainable biomass-based chemicals production, industries in 

developed countries promoting the use and relevance of renewable resources in innovation, 

increasing bio-based products market with bulk chemicals, developing a specialized portfolio of 

bio-based products not currently represented in hydrocarbon-based manufacturing, and less 

legislative constraints.9 Relevant bio-mass-derived building block chemicals for industrial 

applications have been screened based on a two-part process to determine the complexity of 

synthetic pathways and relevance of the building blocks and their respective derivatives.10 Twelve 

building block chemicals were identified from over 300 by this process, some of which includes 

malic acids, aspartic acid, glutamic acid, levulinic acid, glycerol, and xylitol.10 

 

Advancing mechanistic understanding is crucial to accelerating the development of new reactions 

involving biobased platform molecules which can be applied to sustainable process design.11  For 

this reason, the pursuit of mechanistic knowledge in organic synthesis, using a synergistic 

combination of experimental and theoretical efforts, is expected to play an important role in 

bringing about the sustainable, carbon cycle-neutral chemical economy of the near future. 
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Computational Chemistry ab initio Methods 

 

Historically, experiment precedes computational studies, where computational methods were 

guided and validated by experimental results. Theoretical simulations yield detailed insight into 

mechanisms that is difficult to experimentally observe, if not impossible at experimental detection 

limits. Increasingly, theoretical simulations are viewed as a source for novel mechanistic 

hypotheses, not limited by precedent, chemical intuition, or extensive human input.  

 

Time constrains this computer-aided molecular design. Improved accuracy of a computational 

method generally increases computational time, and the level of detail required to study a problem 

guides the choice of computational approach. Additionally, computational cost often scales non-

linearly with system size, rendering some questions unsolvable with current methods and computer 

resources. The challenge in reactive computer-aided molecular design is computing interatomic 

forces without prior knowledge of chemical bonding, where these forces are used in resolving 

mechanistic details.12 The electronic Schrodinger equation is often employed to compute these 

forces, using approaches such as semiempirical methods and density functional theory (DFT), to 

name a few.13,14 A few holy grails of computational organic chemistry and biochemistry includes 

accurate predictions of ligand-protein/protein-protein binding energies, which elucidates the core 

organizations of biology and aids pharmaceutical drug development, and reaction design, which 

can drive efficient production from predicted reagents and reduced waste.15  

 

Computational approaches to elucidating reaction pathways have recently been reported by several 

groups including ours.16–24 A reaction pathway involves a single reactant/product combination, 
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connected by a single transition state (TS), where this TS is confirmed to connect the 

reactant/product by intrinsic reaction coordinate (IRC) computations. Given the electronic detail 

(first principles, or ab initio) required to describe a reaction path, and the high dimensionality 

(~3N, where N is the number of atoms in a system) of reaction potential energy surface (PES) to 

search, these calculations are quite expensive, and prohibitive to exhaustively explore.  

 

In general, there are 4 categories of approaches towards automated reaction path exploration by 

elementary steps.25 In one category, reaction networks are based on encoded transformations such 

as from databases or chemical heuristics, where chemical heuristics have long since guided 

mechanistic searches. The quality of predicted reaction pathways depends on the quality of 

existing reactions that are used in this rules-based approach, and the similarity between the 

chemical system being explored and knowledge of similar existing reactions. Additionally, 

reaction barriers may be implicit, based on previous results, rather than explicit ab initio 

calculations. This could speed up reaction exploration at the cost of accuracy. In another, multiple 

transition state (TS) guesses are generated, such as by intuition, and subsequently optimized to 

single reactant/product species connecting the transition state. High quality potential energy 

surfaces (PES) at quantum mechanical level of detail required to describe TS’s is massively 

dimensional. As such, TS approaches need to be reduced to look at smaller PES’s, limiting the 

scope of reaction search. To mitigate the expensive of complete PES search, Maeda and coworkers 

developed an artificial force-induced reaction (AFIR) method, overcoming reaction barriers and 

inducing reactions by applying an artificial external force to push reactants together.26 Methods 

such as AFIR generate TS and respective reaction paths, without necessarily knowing reaction 

pathways a priori. In a 3rd category, methods uncover potential reaction pathways and relevant 
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intermediates, and subsequently optimize TS’s. In one example, generation of potential 

intermediates can be done through connectivity graphs generated from molecular dynamics 

trajectories, where differences in the connectivity graphs indicate bond forming/breakings steps 

for TS analysis.19,27 Efficiency in this approach depends on the efficiency of TS optimization 

algorithms and potential reaction pathway generation. Given the expensive nature of quantum 

chemistry required to optimize TS of previous categories, another category explores reaction 

coordinates by combining MD with coordinate driving (CD), such as by Li et al.28 While this 

method explores conformational isomers efficiency, the scope was limited to organic molecules, 

in part due to the expensive nature of MD.    

 

Strategies employed have been highly diverse, including the use of semiempirical or fully ab initio 

molecular dynamics (MD) simulations to discover new mechanisms independent of pre-existing 

information about the reaction or putative intermediates.29 We previously described the 

development of the ab initio nanoreactor approach to automated generation of mechanistic 

trajectories, in which high temperatures, high pressures, and external forces are applied to 

assemblies of reactants to advance discovery using first-principles MD simulations.17,19 For 

example, such computations have revealed possible new pathways for amino acid synthesis from 

small inorganic compounds proposed to exist on the early Earth, and served as a proof of concept 

for dynamics-based computational reaction discovery.17  

 

The nanoreactor is a specially modified AIMD simulation with the primary goal of inducing 

reaction events on a short simulation time scale, achieved by means of a time-oscillating boundary 

potential that generates high-energy molecular collisions. The initial conditions consist of one key 
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reactant molecule surrounded by other molecules, such as reacting reagents and a few solvent 

molecules, randomly placed within a relatively small sphere using Packmol software,30 followed 

by energy minimization. Reaction events are induced by a time-dependent restraint potential in 

equation (1), where m is the atomic mass, R1 and R2 are radius parameters, and k1 and k2 are force 

constants. The restraint is a flat-bottomed harmonic potential with time-dependent parameters:  

             (1) 

where the values of the radius R and spring constant k oscillate in a square wave pattern, and are 

equal to (R1, k1) for period t1 and (R2, k2) for period t2. Generally, R1 > R2 and during the period t1 

the molecules are free to move within a spherical volume of radius R1 with no restraint force. When 

the radius decreases from R1 to R2, atoms beyond R2 are accelerated inward, with the mass-

dependent force ensuring near-uniform acceleration of atoms within a molecule. It is important to 

include this mass-weighted additional force to simultaneously accelerate all the atoms of a 

molecule inward. Throughout simulations, the key reactant is restrained to the center of the sphere. 

Reaction events are initiated from high velocity collisions of reactants, which generally occur 

within the smaller spherical volume of radius R2. In general, increasing T, R1, k2, and t1 and 

decreasing R2 increases reactivity, but care must be to avoid unreasonably high-energy (explosive) 

simulations. 

 

We varied the simulation setup and nanoreactor parameters to yield chemically reasonable 

reactivity within 2 ps of simulation time for each of our mechanistic studies. This involved 

V r ,t( )=m2 k t( )ρ t( )2 ; ρ =
r −R t( ) if r >R t( )
       0       otherwise

⎧
⎨
⎪

⎩⎪

k t( ) ,R t( )= k1 ,R1 if  t mod t1 +t2( ) < t1

k2 ,R2              otherwise          

⎧
⎨
⎪

⎩⎪
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choosing which reactants and how many of each to model, generating multiple coordinates of 

randomized molecular placement within the initial sphere, and systematically varying nanoreactor 

simulation parameters. Simulations were limited to ~100 atoms for a few tens of picoseconds, 

given the high computational cost of ab initio molecular dynamics (AIMD) simulations. The 

implicit solvent was used in our simulations to relatively stabilize our charged intermediate 

species, compared to gas-phase calculations, while still generating relevant reaction pathway 

information, and without significantly increasing computational time, which would be the case in 

adding additional explicit water molecules. Simulations utilized the TeraChem quantum chemistry 

software31–37 and were run on servers with an Intel Xeon CPU / Nvidia GPU (either E5-2630 v3 

CPU / GTX 980 Ti GPU or E5-2637 v4 CPU / GTX 1080 Ti GPU). Use of TeraChem allowed 

these simulations to run on GPU’s, which increases simulation calculation speeds in time 

compared to CPU’s.  

 

The reaction events observed in the nanoreactor trajectory underwent an energy refinement 

procedure to produce optimized transition states and corresponding reactant/product structures. 

Often, the refinement calculations used the ωB97X-D3/TZVP/PCM level of theory,38–40 which is 

more accurate (and more costly) compared to what was used for the nanoreactor simulations. The 

efficiency of TS optimization heavily depends on initial TS guesses, methods used in the 

optimization procedure, as well as software and hardware Initial transition state guesses were 

optimized using a variety of methods, such as single and double-ended string methods (freezing 

and growing string),41–43 and the nudged elastic band (NEB) method44,45 implemented in a 

development version of the geomeTRIC optimization software46 that calls the TeraChem 

software47,48 for energy and gradient evaluations. The transition state optimizations were performed 
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in Q-Chem49 and TeraChem softwares.47,48 A frequency calculation was used to confirm the 

presence of a single imaginary mode in the optimized transition state, and an intrinsic reaction 

coordinate (IRC) calculation was then performed to connect the optimized transition state with 

reactant to product structures. 

 

I used this ab initio nanoreactor method across multiple projects (Chapters 2 and 3) and have 

presented this work at the following: West Coast Theoretical Chemistry Symposium in Stanford, 

CA in 2018; UC Davis 3rd Year Seminar in Davis, CA in 2019; and CALESS elevator pitch 

competition in 2021. The nanoreactor was pivotal in a synergistic theoretical and experimental 

study of a new ketone oxidation reaction that proceeds under mild conditions involving carbon–

carbon bond cleavage to an alkyl hydroperoxide–carboxylic acid pair. The mechanism was derived 

using levulinic acid, an important biomass-derived platform molecule, then shown to be general 

for other ketones (Chapter 2). The ab initio nanoreactor played a key role in excluding intuitive 

mechanistic proposals and pointing instead to a radical O–O cleavage reaction that generates 

superoxide, a species whose presence in the reaction was ultimately confirmed using EPR 

spectroscopy. The initial analysis was performed on levulinic acid, an important biomass-derived 

platform molecule, but the method can be generalized to other ketones. This study exemplifies 

how combined theoretical and experimental effort can drive rational reaction design to give highly 

useful new products, in this particular case a precursor to biobased acrylic acid. 

 

Sialic Acids in Viral Mechanisms  
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Sialic acids (Sias) are part of a large family of over 50 derivatives of the 9-carbon sugar neuraminic 

acid and 2-keto-3-deoxy-nononic acid (Kdn)50,51. Among these forms, N-acetylneuraminic acid 

(Neu5Ac) is most common. Many disease-causing viruses target Sias, which commonly coat many 

cell surfaces, and is involved in many pathological and physiological processes.52–54 Many disease-

causing viruses target Sias with specific O-acetyl (OAc) modifications, where O-acetylation is the 

most common modification, and can be found at the C-4, 7, 8 and 9 positions (Figure 1.1)50,51.  

 

 

Figure 1.1. N-Acetylneuraminic acid (Neu5Ac where R1 = R2 = R3 =R4 = H). Its derived sialic 

acid forms in α-linked sialosides. R may be modified to O- and N-acetyl. 

 

O-acetyl groups are often found on gangliosides, sialylated glycosphingolipids found in all 

vertebrate cells and in the brain, where the GM3 ganglioside can inhibit tumor cell growth.55,56 In 

another example, betacoronavirus OC43 and HKUI are known to bind to 9-O-acetylated Sias,57,58 

the most common Sia O-acetyl modification found in nature, and is among the three most abundant 

Sias found in mammals: 9-O-Acetyl-Neu5Ac (Neu5,9Ac2), Neu5Ac, and N-glycolylneuraminic 

acid (Neu5Gc).59 Additionally, Neu5,9Ac2 Sias are involved in regulating tissue morphogenesis,60 

binding of influenza C virus hemagglutinin and can mask the recognition of influenza A virus 

hemagglutinin,51 and inhibiting tumor cell growth.51 Sias are also involved in regulating immune 

responses to bacterial polysaccharides,61,62 sialidase recognition, cellular apoptosis, and tumor 
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immunology.63–65 The biological implications of O-acetylation in Sias is extensive, and have been 

reviewed across multiple sources.66–68 

 

While it is important to understand the mechanisms of OAc-Sia binding that cause the diseases, 

many are unknown due to experimental difficulties from O-acetyl ester instability. O-Acetylated 

Sias are sensitive to pH, temperature, and esterases.1,2,69,70 The O-acetyl group in 9-O-acetylated 

sialoglycans on glycan microarrays is prone to cleavage.69 Additionally, the O-acetyl group is 

prone to spontaneously migrate across the exocyclic glycerol-like Sia side-chain; O-acetyl on C-

4, 7 and 8 can spontaneously migrate to C-9. This makes it very difficult to study glycan-protein 

binding using microarrays and characterization of O-acetylation on the other positions that exclude 

O-acetylation on C-9, as the expected O-acetyl group on the glycan may be cleaved or have 

migrated.59,71,72 This spontaneous migration of O-acetyl group also influences many diseases that 

depend on Sias, such as infectious disease, immunology, oncology, cardiovascular disease, etc. 

For example, 9-O-acetylation is required for influenza C and D virus hemagglutinin binding, but 

prevents binding of influenza A and B virus hemagglutinins.73–77 While 9-O-acetyled Sias block 

Siglec-9 binding, 7-O-acetylation Sias blocks binding to a greater extent.78 The reaction 

mechanisms of O-acetyl dissociation and O-acetyl migration among the C-4, 7, 8, and 9 positions 

remained an open question until recently.1  

 

To avoid spurious data resulting from migration and/or cleavage of the 9-O-acetyl group we 

considered replacing the O-acetyl group in these gangliosides by an N-Acetyl group. Chemically 

and biologically stable 9-acetamido-9-deoxy-N-acetylenuraminic acid (Neu5Ac9NAc)-containing 

sialoglycans have been proposed as stable mimics of Neu5,9Ac2-containing sialosides. Similarities 
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and differences of Neu5Ac9NAc and Neu5,9Ac2 were shown by glycan microarray studies, 

mammalian cell incorporation and surface expression studies, as well as sialidase cleavage 

activities2. 

 

Two questions must be addressed when comparing the similarities between experimentally stable 

Neu5Ac9NAc and naturally occurring Neu5,9Ac2, in addition to the non-acetylated Neu5Ac sialic 

acid. First, how similar are the structures between modified sialic acid-containing glycans? We 

studied structural similarity computationally by performing conformational analysis and 

computing subsequent NMR 3J couplings.2 These 3J couplings were compared against experiment, 

and confirmed conformational similarities between Neu5Ac9NAc and Neu5,9Ac2.
2 Secondly, how 

chemically similar in function are these glycans in biological conditions, such as in protein-ligand 

binding? To address this, a relevant system must be chosen. I chose a viral spike protein known to 

preferentially bind to Neu5Ac, with a crystal structure of Neu5Ac in the binding pocket, as well 

as a novel spike protein belonging to a virus that started the COVID-19 pandemic during my 

studies. 

 

Beta coronavirus Middle East respiratory syndrome coronavirus (MERS-CoV) is known to co-

bind to Neu5Ac in addition to its DPP4 primary receptor in a two-step binding mechanism, and 

depletion of Neu5Ac was found to inhibit MERS-CoV entry into human airway cells.79 Severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the beta coronavirus responsible for the 

COVID-19 pandemic, is structurally highly similar to SARS-CoV-1 (73% sequence identity 

between spike proteins), yet is remarkably more infective.58 Both SARS-CoV-1 and SARS-CoV-

2 share the same primary human cellular receptor angiotensin-converting enzyme-2 (ACE-2), but 
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this commonality in binding cannot explain the difference in infectivity. One possible mechanism 

for how SARS-CoV-2 achieves its high infectivity is by binding to Sias. Neu5Ac, Neu5,9Ac2, and 

Neu5Ac9NAc. Thus, I computed and analyzed the binding of Sias to MERS-CoV S and SARS-

CoV-2 S proteins across multiple binding poses, to quantify the binding similarities across Sias, 

especially with Neu5,9Ac2, and Neu5Ac9NAc- containing glycans, elucidating the quality of the 

Neu5Ac9NAc analog in biological applications. 

 

Computational Methods in Ligand-Protein Binding 

 

Accurate predictions of ligand-protein/protein-protein binding energies is an imperative. In the 

pharmaceutical industry, there is an urgent need to understand disease and viral mechanisms, to 

efficiently design drugs to improve lives of many people. Indeed, accurate predictions of ligand-

protein/protein-protein binding energies, needed to describe drug-target interactions, are included 

in a list of holy grails of computational organic chemistry and biochemistry.15 These involve two 

broadly classified computer-aided drug discover/design methods: ligand-based and structure-

based.80 Accurate predictions can greatly accelerate drug discovery by screening candidates against 

drug profile criteria, such as through structure-based approaches. This reduces synthetic targets, 

time, and cost. Improvements in computer hardware, methods, and algorithms have made 

computational approaches more accessible, with molecular dynamics (MD) simulations key in 

bridging electronic-structure and molecular mechanics methods.81  

 

Modern free energy simulation methods are estimated to be accurate to within 1-2 kcal/mol for 

well-behaved82 protein/ligand systems. Ligand-protein complexes can be modelled with explicit 
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water molecules, using classical force-fields in molecular dynamics and Monte Carlo algorithms, 

where currently the most accurate approaches are also the most rigorous.83 SIRE-OpenMM 

molecular dynamics (SOMD)84,85 is a rigorous alchemical simulations method. In alchemical 

ligand-protein binding free energy calculations, chemical groups are changed through unphysical 

states to estimate binding free energies using methods such thermodynamic integration (TI), 

Multistate Bennet acceptance ratio (MBAR), free energy perturbation (FEP), and others.86–89 For 

example, Neu5,9Ac2 was transformed to Neu5Ac9NAc by slowly turning off the interactions of 

Neu5,9Ac2 and slowly turning them on Neu5Ac9NAc, over a set of discrete steps, as described the 

SI of Loeffler et al.90 Based on a recent SAMPL6 challenge that evaluates binding free energy 

prediction methods,91 we chose SOMD as the alchemical method to compute relative binding free 

energies of our modified Sia-containing glycans binding to the S proteins of MERS-CoV and 

SARS-CoV-2. 

 

In SOMD, the unphysical states across the process of chemical modification is discretized into 

separate λ windows. We chose 13-21 linearly-spaced λ windows, depending on the transformation, 

based on a paper using SOMD and other alchemical free energy methods in an assessment of 

binding affinities,92 and following the scheme outlined in the SI of Loeffler et al.90 In my simulation 

cases, increasing λ to 21 did not immediately result in improved simulation results. Rather, a lower 

λ with multiple replicates would likely yield a more rigorous relative binding free energy value 

with an error estimate, and allow for discarding of simulation data without drastically reducing 

sampling size. However, multiple replicate alchemical simulations is indeed quite expensive and 

potentially time-prohibitive. The relative free energy of binding was computed as the free energy 

difference of the alchemical transformation of the ligand bound to the protein and the ligand in 
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solution, i.e. water, using the last 4 of 5 ns simulations.89,92 Reliability of results was determined 

based on similarity between MBAR and TI, and from overlap matrices indicating sufficient 

thermodynamic overlap between simulation windows.  

 

Herein describes studies of Neu5Ac-containing sialoglycans, Neu5,9Ac2-containing sialoglycans, 

and chemically and biologically stable Neu5Ac9NAc-containing sialoglycan counterparts. O-

Acetyl instability and resultant migration across the glycerol-like side-chain was studied, with a 

full mechanism detailed in Chapter 3. Structural similarities between modified Sias have been 

quantified by NMR J-coupling values, known to quantify flexibility across glycosidic linkages,2 

and herein, biological similarities have been analyzed in ligand-protein binding studies in Chapter 

4. Additionally, I have presented this work at the following: 22nd R. Bryan Miller Symposium in  

Davis, CA in 2022 and ACS Spring 2022 Meeting in San Diego, CA in 2022. As a culmination of 

these studies, we find that Neu5Ac9NAc-containing sialoglycans are structurally similar to 

Neu5,9Ac2-containing sialoglycans when studying sialoglycan conformations, and similar in 

function in Sias-protein binding with MERS-CoV S and SARS-CoV-2 S proteins.  
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Chapter 2: Application of the ab initio Nanoreactor to the Development of a New Peroxide-

Driven Ketone Oxidation Reaction 

 

The work in this chapter is based on “Application of the ab initio Nanoreactor to the 

Development of a New Peroxide-Driven Ketone Oxidation Reaction” with Andrew L. Otsuki, 

Aidin R. Balo, Mark Mascal, and Lee-Ping Wang, submitted to Angewandte Chemie. 

 

  



 
 

16 

Abstract 

 

The development of new, synthetically useful reactions in organic chemistry can be effectively 

supported by detailed mechanistic insights from quantum chemistry and molecular dynamics 

simulations. Here we describe a synergistic theoretical and experimental study of a new ketone 

oxidation reaction that proceeds under mild conditions involving carbon–carbon bond cleavage to 

an alkyl hydroperoxide–carboxylic acid pair. The mechanism was derived using levulinic acid, an 

important biomass-derived platform molecule, then shown to be general for other ketones. The ab 

initio nanoreactor, a recently described simulation method for predicting new reaction pathways, 

played a key role in excluding intuitive mechanistic proposals and pointing instead to a radical 

cleavage involving superoxide, a species whose presence was confirmed using EPR spectroscopy. 

This study exemplifies how combining the forces of advanced theory and experiment can drive 

rational reaction design to give highly useful new products. 

 

Introduction 

  

The development of environmentally friendly synthetic methodologies is a central and urgent goal 

of modern chemical science and industry.3–6 Major thrusts of this goal involve replacing 

petrochemical feedstocks with renewable resources and closer adherence to the principles of green 

chemistry.7–9 Advancing mechanistic understanding is crucial to accelerating the development of 

new reactions involving biobased platform molecules which can be applied to sustainable process 

design.11  For this reason, the pursuit of mechanistic knowledge in organic synthesis, using a 
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synergistic combination of experimental and theoretical efforts, is expected to play an important 

role in bringing about the sustainable, greener chemical economy of the near future. 

  

Experimental knowledge constrains the space of mechanistic possibilities and serves as the 

ultimate proving ground of all hypotheses, whereas theoretical modeling is valuable for testing 

hypotheses by providing evidence for intermediates beyond experimental detection limits. For 

most of the history of theoretical chemistry, mechanistic deduction has largely followed this 

paradigm, originating from combinations of empirical data, precedent and, more peripherally, 

chemical intuition. On the other hand, theoretical simulations are increasingly being viewed as a 

source of de novo mechanistic hypotheses to complement and expand mechanistic knowledge. 

Computational approaches for automated discovery of reaction pathways, which are a major 

conceptual advance from traditional hypothesis-based approaches, have recently been reported by 

several groups including ours.16–25 The strategies employed for automated exploration of reaction 

space are highly diverse, including the use of semiempirical or fully ab initio molecular dynamics 

(MD) simulations, which can predict mechanisms independent of pre-existing information about 

the reaction or heuristic reactivity rules.29 We previously described the development of the ab initio 

nanoreactor approach to reaction discovery, in which high temperatures, high pressures, and 

external forces are applied to assemblies of reactants in first-principles MD simulations.17,19 For 

example, such computations have revealed possible new pathways for amino acid synthesis from 

small inorganic compounds proposed to exist on the early Earth, and served as a proof of concept 

for dynamics-based computational exploration of chemical reactivity space.17  
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Herein, we show how the nanoreactor was used, in conjunction with experimental validation, to 

solve a mechanistic problem of strong interest due to the unprecedented nature of the reaction and 

its relationship to sustainable chemistry. We describe a systematic exploration of key steps in the 

production of 3-hydroperoxypropanoic acid (3-HPPA) from biobased levulinic acid (LA) by 

oxidation under alkaline conditions (Scheme 2.1). This reaction was first reported by Mascal et al. 

in a communication on the production of 3-hydroxypropanoic acid (3-HPA), itself a monomer of 

significant interest, but more importantly, a precursor (by dehydration) to acrylic acid, a 

mainstream commodity chemical.93 Preliminary mechanistic proposals were advanced to account 

for the production of 3-HPPA from LA based on intuitive pathways. Subsequent attempts to model 

potential energy surfaces for these hypotheses and a range of alternatives using ab initio methods 

led however to unrealistic transition state (TS) energies. We therefore turned to the ab initio 

nanoreactor in an attempt to refocus the inquiry which, together with experimental confirmation 

of nanoreactor predictions, ultimately returned a supportable hypothesis. 

 

Looking ahead, the reaction mechanism will be shown to feature O–O and C–C bond homolysis 

with an important driving force provided by the thermodynamic stability of superoxide (O2
–●), 

whose presence in the reaction mixture was verified using electron paramagnetic resonance (EPR) 

spectroscopy. The generality of the proposed mechanism was further supported by experiments 

subjecting other ketones to the same reaction conditions, thus establishing a new class of oxidation 

reactions for organic synthesis. 
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Scheme 2.1. Transformation of LA into 3-HPA via 3-HPPA. Conditions: a) 30% H2O2, KOH, 0 

°C to rt, 6 h; b) H2, Pd/C, MeOH, 2 h.19 

This paper is organized in chronological order of the study to highlight the interplay between 

theory and experiment. We first describe the experiment and the initial mechanistic guesswork, 

followed by the development of new insights gained from nanoreactor simulations, and ultimate 

experimental confirmation of the theoretical predictions.  

 

Results and Discussion 

 

Initial mechanistic hypotheses based on 3-APA as an intermediate  

 

It was previously shown that the addition of hydrogen peroxide (H2O2) to a solution of LA under 

acidic conditions resulted in a standard Baeyer-Villager oxidation involving methyl group 

migration where succinic acid is the major product.94 However, as shown in Scheme 2.1, 

conducting the same reaction under basic conditions led to 3-HPPA as the major product in high 

yield.93 Initially, it seemed reasonable to attribute the selectivity to a pH-switchable Baeyer-

Villiger rearrangement that leads to either succinic acid or 3-acetoxypropanoic acid (3-APA) in 

acidic or basic conditions, respectively. The first step would involve nucleophilic addition of 

hydroperoxide anion (HO2
–) at C4 of the levulinate anion to give HP-LA, followed by migration of 

C3 and displacement of hydroxide to first give 3-APA (Scheme 2.2a).  
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Optimized structures, reaction energies (∆E) and activation energies (Ea) with harmonic free 

energy corrections were computed using the ωB97X-V/def2-TZVPD level of theory and SWIG-

PCM polarizable continuum model for water as described in the Methods section. Scheme 2a 

shows that the addition of HO2
– to LA is predicted to proceed rapidly whereas the C3 shift to oxygen 

and synchronous displacement of hydroxide has an activation free energy ∆G‡ = 33.5 kcal/mol. 

Although this was somewhat high for a reaction that takes place at 0 °C, 3-APA was considered 

the most obvious intermediate en route to the 3-HPPA reaction product. 

  

Scheme 2.2b-d shows three chemically intuitive mechanistic proposals for the conversion of 3-

APA to 3-HPPA, two of which (Scheme 2.2b and Scheme 2.2c) were proposed (without support) 

in the original communication.93 Scheme 2.2b involves addition of HO2
–to 3-APA followed by a 

proton transfer and rearrangement, cleaving to form 3-HPPA and acetic acid. However, ∆G‡ was 

calculated to be 57.5 kcal/mol for the rearrangement step, which was clearly prohibitive. Scheme 

2.2c proposes an elimination-addition process, suggesting that acrylate could serve as a secondary 

intermediate. The elimination step appeared to be accessible at the B3LYP/6-31G* level of theory 

(Ea < 10 kcal/mol) but, despite efforts, TS structures could not be found using higher-level 

methods, so we were compelled to abandon this approach. Scheme 2.2d proposes a novel alkoxy 

group migration related to the Baeyer-Villiger reaction (second step); while the ∆G‡ of 41.4 

kcal/mol is somewhat lower than the rearrangement in Scheme 2.2b, it was also considered an 

unlikely alternative. The inconclusiveness of these preliminary computational results was the 

impetus for carrying out ab initio nanoreactor simulations, which ultimately resulted in significant 

changes to our hypotheses. 
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Scheme 2.2. Initial mechanistic proposals for oxidation of levulinate anion (LA–) to form 3-APA 

followed by transformation to 3-HPPA. a. Baeyer-Villiger oxidation of LA– under basic 

conditions to give 3-APA via hydroperoxy adduct HP-LA. b. Cyclo-rearrangement pathway 

from 3-APA to 3-HPPA. c. Elimination-addition pathway from 3-APA to 3-HPPA. d. Alkoxy 

migration pathway from 3-APA to 3-HPPA. (∆G, ∆G‡) values are in kcal/mol and calculated 

with ωB97X-V/def2-TZVPD/SWIG-PCM level of theory, electronic energies given in the 

Supporting Information Figures 2.2-2.11. *The TS optimization in the first step of c failed to 

converge. 

 

Nanoreactor simulations involving 3-APA as an intermediate  

 

A total of 60 nanoreactor simulations were initially carried out, and reactions were observed over 

270 ps of cumulative simulation time. The setup of a typical simulation is described in the 

Methods section. The simulated molecules were chosen to mirror the reaction conditions, 
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assuming that 3-APA was an intermediate in the production of 3-HPPA: 1 deprotonated 3-APA, 

3 HO–, 3 HO2
–, 12 H2O, and 7 K+ (or Na+ in some runs). Among the reaction pathways observed 

in the nanoreactor, two involved SN2 substitution of acetate by HO– and HO2
– to form 3-HPA– 

and 3-HPPA–, respectively, with comparable activation free energies (Scheme 2.3) that were 

lower than in the mechanistic proposals of Scheme 2.2. Figure 2.1 is a 3-D rendering of one such 

substitution observed in the nanoreactor. However, among the other reaction pathways that the 

nanoreactor found, hydroperoxolysis of 3-APA via 1 led to 3-HPA with a much lower barrier 

than either substitution reaction. A hydrolysis reaction was also found via 6, leading to 3-HPA 

with higher activation free energy than hydroperoxolysis, but still lower than alkyl substitution. 

These results cast doubt on the feasibility of 3-APA as an intermediate in the LA → 3-HPPA 

reaction. 

 

In an attempt to corroborate this theoretical insight, we conducted follow-up experiments where 

3-APA was subjected to the original reaction conditions that convert LA to 3-HPPA.93,94 Multiple 

trials were conducted with variations of reagent addition. The only product observed was 3-HPA, 

as determined by 1H and 13C NMR spectroscopy. These experiments supported the nanoreactor 

prediction that 3-APA reacts with hydroperoxide or hydroxide to form 3-HPA, and not 3-HPPA.  

3-APA could therefore be ruled out as an intermediate. 
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Scheme 2.3. Reaction pathways found in the nanoreactor starting from the putative 3-APA 

intermediate, described in clockwise order as: nucleophilic substitution to form 3-HPPA–, 

hydroperoxolysis via 1 to form 3-HPA–, nucleophilic substitution to form 3-HPA–, and hydrolysis 

via 6 to form 3-HPA–. (∆G, ∆G‡) values are in kcal/mol and calculated with ωB97X-V/def2-

TZVPD/SWIG-PCM level of theory, and electronic energies given in the Supporting Information 

Figure 4,12-16. Note path from 3-APA to 1 is the same as Scheme 2.2b, step 1. 

 

Figure 2.1. 3-D rendering of a trajectory frame of the nanoreactor simulations, showing the 

nucleophilic attack of HO2
– (highlighted green) on 3-APA (highlighted blue). Other species present 

are water molecules, K+, and HO–. C, gray; O, red; H, white; K, gold.  
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Nanoreactor predictions involving acrylate as an intermediate  

 

We thus initiated a search for alternative pathways to produce 3-HPPA that did not involve 3-

APA. Nanoreactor simulations starting directly from LA predicted a high-energy C3–C4 

fragmentation of LA that resulted in acetaldehyde and acrylate. Also frequently observed was the 

nucleophilic addition of HO2
– at C4 to form HP-LA, consistent with Scheme 2.2a. Although the 

elimination-addition hypothesis tested in Scheme 2.2c was problematic, these new results 

suggested an alternative path from HP-LA to acrylate. Acrylate easily admits conjugate addition 

of HO– or HO2
– at C3 to give 3-HPA and 3-HPPA, respectively (Scheme 2.2c and Supporting 

Information Figure 2.24-2.25). These latter steps are overall exothermic, and HO2
– addition is 

preferred energetically to HO– addition at C4. Further experimental studies also confirmed that 3-

HPPA is the major product when acrylate is subjected to LA reaction conditions (Supporting 

Information Experimental Methods).  

  

Although experiments now pointed to acrylate as a plausible intermediate, the modeled activation 

barriers based on proposed mechanisms in Scheme 2.4 were too high. An exhaustive search was 

carried out by calculating the minimum energy paths of O–O and C–C cleavage starting from 

various protonation states of HP-LA (Supporting Information Figure 2.26-2.30). The lowest 

activation free energies found are shown in Scheme 2.4, but both are in excess of 50 kcal/mol and 

deemed prohibitive. Following this setback, we expanded the search to open-shell models. 

Theoretical and experimental studies involving a radical pathway are described in the next section. 
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Scheme 2.4. Possible reaction pathways to acrylate starting from 4-hydroperoxy-levulinate adduct 

HP-LA in different protonation states. (∆G, ∆G‡) values are in kcal/mol and calculated with 

ωB97X-V/def2-TZVPD/SWIG-PCM level of theory, and electronic energies given in the 

Supporting Information Figure 17-18. 

A role for radicals  

 

Studies involving the role of radicals in the decomposition of H2O2 in alkaline solution date back 

several decades. A number of mechanisms have been advanced, and various experimental 

conditions have been shown to influence reaction rates, such as the presence of metal catalysts, 

temperature, or surface modification of the reaction vessel.95–98 One proposed mechanism for the 

reaction 2 H2O2 ® 2 H2O + O2 contains a rate-determining step where hydroperoxyl radical (HO2
●) 

and hydroxyl radical (HO●) intermediates are formed,96 with an optimal rate at pH 12 regardless 

of the presence or absence of metals.96,97 A separate study of H2O2 decomposition on an iron oxide 

surface invokes the following equilibrium: HO2
● ⇆ O2

–● + H+,98,99 which favors O2
–● at high pH 

(pKa of HO2
● = 4.8).98,99 Aqueous solutions of KOH and H2O2 have been shown experimentally to 

generate O2
–● in situ,100 providing further indication that radicals may play a part in the observed 

reactivity. Given the literature precedent, we investigated whether radicals were involved in the 

O–O plus C3–C4 fragmentation pathway predicted by the nanoreactor. 
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As a first step, the reaction was tested for the presence of radicals. The following aqueous solutions 

were analyzed using X-band EPR spectroscopy with 0.2 mW of microwave power and a 

modulation amplitude of 1.0 G: (1) H2O2, (2) H2O2 + LA, (3) KOH + LA, (4) H2O2 + KOH, and 

(5) H2O2 + KOH + LA (Supporting Information Experimental Methods). The first three solutions 

were found to be EPR silent, as expected. The EPR spectra measured for (4) and (5) were 

consistent with the presence of O2
–● (Supporting Figure 2.1), with axial EPR signals and g values 

matching reported values of O2
–●.101 We observed a small shift in the gII value between the EPR 

spectra of the control (4) and reaction mixture (5), but could not assign this minor shift to the 

presence of any additional species in (5). We thus concluded that O2
–● was a likely participant in 

the reaction pathway.  

  

Our computational study of radical pathways started by reoptimizing the fragmentation in Scheme 

2.4 using an unrestricted wavefunction, leading to significantly altered chemistry (Scheme 2.5 

upper pathway). O–O cleavage proceeded via homolysis, leading to HO● and a radical dianion that 

undergoes homolytic C–C cleavage to yield 3-propanoate radical anion and acetate. If O2
–● is 

present, radical coupling could generate 3-HPPA. While this bond dissociation has a significantly 

lower ∆G‡ (32.7 kcal/mol) compared to those in Scheme 2.4, it has the undesirable feature where 

HO● is generated while O2
–● is consumed. EPR experiments did not show evidence for HO●, and 

since it is known to react rapidly and indiscriminately with organic species, its generation could 

preclude the selective formation of the 3-HPPA product.  



 
 

27 

 

Scheme 2.5. Radical pathways from HP-LA to form 3-HPPA. Upper left: Reaction initiated by 

homolytic cleavage of O–O bond in HP-LA. Lower left: HO2
– anion is added serving as a hydrogen 

atom donor. (∆G, ∆G‡) values are in kcal/mol and calculated with ωB97X-V/def2-TZVPD/SWIG-

PCM level of theory, and electronic energies given in the Supporting Information Figure 2.19-

2.23. The pathway in purple was computed using the B3LYP functional as an approximate lower 

bound on the barrier height. †Computed using CDFT-CI single point calculations at the minimum 

energy crossing point.  

  

A mechanism therefore had to be formulated where the involvement of discrete HO● was excluded. 

HO2
– was added to the calculation, which can donate a hydrogen atom in a concerted fashion with 

O–O homolysis to yield water and O2
–● (Scheme 2.5 lower pathway). Although this reaction still 

involves the generation of two radical species, it was considered that the relative thermodynamic 

stability of O2
–● and its increased O–O bond order relative to HO2

– could reduce the reaction energy 

and activation barrier. This reaction was unusual in that we could not find an optimized TS at our 

chosen level of theory (ωB97X-V/def2-TZVPD), because the ground state along the reaction path 

includes a discontinuous crossing from a closed-shell potential surface to a broken-symmetry 
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diradical surface. We thus optimized the minimum energy crossing point of the closed-shell and 

diradical states, and used constrained DFT-configuration interaction (CDFT-CI)102–105 calculations 

to estimate the barrier taking multireference character into account. The CDFT-CI ground state at 

the crossing point geometry is a nearly equal mixture of the closed shell and broken-symmetry 

states.   

  

Because it was not possible to optimize the TS in CDFT-CI, the CDFT-CI single-point energy 

difference of 29.1 kcal/mol between the crossing point and ground state was taken as an upper 

bound to the activation energy. To provide a lower bound, we looked for a TS at the B3LYP-

D3(BJ)/def2-TZVPD level of theory. Unlike the case with ωB97X-V, the B3LYP-D3 ground 

electronic state smoothly progresses from closed-shell to broken-symmetry character, allowing for 

the TS to be optimized (purple path in Scheme 2.5). Given the tendency for global hybrid 

functionals such as B3LYP to systematically underestimate barrier heights,106 we take the 

computed activation energy of 21.4 kcal/mol as a lower bound, allowing us to estimate the TS 

energy as being within the 21.4–29.1 kcal/mol range, i.e. within the reach of the reaction 

conditions. Scheme 2.5 (lower pathway) thus provides a complete reaction path from LA to 3-

HPPA where radical intermediates play a key role, as one equivalent of O2
–● radical is produced 

and consumed. We also note that O2
–● is produced independently of LA under the reaction 

conditions, which could increase the rate of the radical recombination of O2
–● and 10 to form 3-

HPPA2-.  

  

We tested the generality of this reaction, termed peroxide-induced radical ketone cleavage (PIRC), 

with similar substrates under the same reaction conditions (Scheme 2.6 and Supporting 
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Information Experimental Methods). 5-oxohexanoic acid, a homolog of LA, reacted to give 4-

hydroperoxybutanoic acid, consistent with PIRC. Methyl ethyl ketone and methyl isopropyl ketone 

produced hydroperoxides from cleavage to more stable radical intermediates (ethyl and isopropyl, 

respectively). These results suggest that PIRC may be applied generally to the production of alkyl 

hydroperoxides from ketones.  

  

Finally, since it is known that transition metal catalysts can significantly enhance rates in peroxide-

based oxidations, we repeated the LA reaction in the presence of iron(III) acetate (Supporting 

Information Experimental Methods). The process immediately evolved gas more vigorously than 

in the absence of catalyst. The reaction rate was greater and the yield of 3-HPPA remained high, 

with trace succinic acid by-product and no 3-HPA. Likewise, cyclohexanone in the presence of 

iron(III) cleaved to 6-hydroperoxybutanoic acid (Scheme 2.6). An interesting aspect of PIRC is 

the reversal of selectivity compared to the analogous Baeyer-Villiger oxidation. Selectively was 

reversed in LA and butanal (Scheme 2.6), which gives the C–C cleavage product, compared to the 

Baeyer-Villiger H-migration to give the corresponding acid. The role of oxygen-centered radicals 

in iron-catalyzed reactions involving peroxide has been reviewed,107–109 and this catalytic 

mechanism is a promising avenue for further experimental and theoretical study. 
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Scheme 2.6. Oxidation of other ketones with basic hydrogen peroxide. Reagents and conditions, 

a. 30% H2O2, NaOH, 0 °C to rt, 6 h ; b. 30% H2O2, NaOH, FeCl3, 0 °C to rt, 1 h. 

 

Conclusion 

  

The peroxide-induced radical ketone cleavage (PIRC) mechanism that is presented at the 

conclusion of this study is a result of the active development of insights using a synergistic 

combination of theory, dynamic simulation, synthetic organic chemistry, and EPR spectroscopy. 

The ab initio nanoreactor simulations played a central role in this work by suggesting new 

mechanistic hypotheses that directed the course of the scientific inquiry. This study is an example 

of the increasing integration of theory and experiment in chemistry research, standing in contrast 

to the more classic paradigm in which theory follows experiment by providing data to support 

experimentally derived mechanistic hypotheses.  
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The development of new synthetic methods for the conversion of biobased feedstocks into 

commercially useful chemicals can thus be supported by using computational methods to discover 

new modes of reactivity. In this work, we have described a method by which ketones, among the 

most common of functional motifs in organic chemistry, can be oxidatively cleaved to carboxylic 

acids and alkyl hydroperoxides, the latter being useful oxidants for a variety of applications.110–112 

As noted, the selectivity of this reaction is reversed compared to Baeyer-Villiger oxidation, since 

the direction of bond cleavage is determined by radical stability rather than migratory aptitude. We 

also highlighted the usefulness of ab initio nanoreactor simulations to predict reaction 

mechanisms, both in terms of excluding nonproductive lines of inquiry and providing insights that, 

in our case, ultimately led to a reasonable mechanistic hypothesis for a previously undescribed 

reaction. We are optimistic that this account of theoretical and experimental synergy will 

encourage innovative applications of the nanoreactor to the further discovery of new chemistries. 

 

Computational Methods 

  

The computational studies are divided into two categories: nanoreactor simulations and reaction 

path refinement. The nanoreactor is a specialized ab initio molecular dynamics (AIMD) 

environment for discovering mechanistic hypotheses, whereas reaction path refinement refers to 

calculations that start from a given mechanistic hypothesis and aim to find the minimum energy 

path and estimate its thermodynamic and kinetic properties (i.e. reaction energy and activation 

barriers). Selected nanoreactor outputs and manually generated mechanistic guesses were inputs 

for in-depth reaction path refinement. 
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Nanoreactor simulations were carried out using the B3LYP density functional approximation with 

a DFT-D3 dispersion correction, 3-21G Gaussian basis set, and SWIG-PCM polarizable 

continuum model of the aqueous reaction medium (ε=78.4), denoted as B3LYP-D3/3-21G/PCM. 

Simulations utilized the TeraChem quantum chemistry software31–34 and were run on servers with 

an Intel Xeon CPU / Nvidia GPU (either E5-2630 v3 CPU / GTX 980 Ti GPU or E5-2637 v4 CPU 

/ GTX 1080 Ti GPU). The number of atoms in a typical nanoreactor system is on the order of 50-

200, including reactants, solvent, and ions.  Due to the high cost of AIMD, these simulations are 

limited to a few tens of picoseconds, and special simulation conditions are needed to broadly 

explore system reactivity within this short time frame.  

  

Initial coordinates were generated by randomly placing reactants into a sphere using Packmol 

software.30 Atomic coordinates were energy-minimized prior to starting the nanoreactor. 

Simulations used a time step of 0.5–1.0 fs with a Langevin thermostat set to 1000–3000 K, and a 

friction coefficient of 3.3–6.7 ps–1. The increased simulation temperature provides sufficient 

kinetic energy to rapidly dissociate intermolecular interactions without spontaneously breaking 

covalent bonds on its own. The reaction events are induced by a time-dependent restraint potential 

in equation (1), where m is the atomic mass, R1 and R2 are radius parameters, and k1 and k2 are 

force constants. The potential  

                         (1) 

V r ,t( )=m2 k t( )ρ t( )2 ; ρ =
r −R t( ) if r >R t( )
       0       otherwise

⎧
⎨
⎪

⎩⎪

k t( ) ,R t( )= k1 ,R1 if  t mod t1 +t2( ) < t1

k2 ,R2              otherwise          

⎧
⎨
⎪

⎩⎪
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oscillates in a square wave pattern with high and low periods t1 and t2, where molecules are free to 

move in a sphere with radius R1 and R2, respectively. When the radius decreases from R1 to R2, 

atoms beyond R1 are accelerated inward, with the mass-dependent force ensuring near-uniform 

acceleration of atoms within a molecule. Reaction events occur following high velocity collisions 

of reactants (see Supporting Information Computational Methods for detailed parameter choice 

rationale and Table 1 for parameter selection).   

  

Each reaction event, consisting of a subset of atom indices and trajectory frames, was automatically 

identified and extracted from the nanoreactor simulation for reaction path refinement to find the 

minimum energy path. Individual calculations include nudged elastic band (NEB),113,114 growing 

string (GS),42,43 and freezing string (FS)41 for reaction path optimization; TS optimization; 

vibrational analysis to confirm the TS structure has only one imaginary vibrational mode; and 

intrinsic reaction coordinate (IRC) calculations115 to confirm that following the imaginary mode 

"downhill" from the TS structure leads to the expected reactant and product.  

  

Refinement calculations were carried out using the ωB97X-V density functional approximation,116 

def2-TZVPD Gaussian basis set,117 and SWIG-PCM implicit solvent model118 with the dielectric 

constant set for water (ε=78.4), denoted as ωB97X-V/def2-TZVPD/PCM, as implemented in the 

Q-Chem 5.0 quantum chemistry package.119 Comprehensive benchmark studies showed that the 

ωB97X-V/def2-QZVP level of theory gives mean absolute errors of 2.6 and 1.9 kcal/mol for 

reaction energies and barrier heights, respectively, relative to gold standard calculations.106 Basis 

set incompleteness effects are assumed to be minor as studies of conformational relative energies 

show that the def2-TZVPD vs def2-QZVP basis sets agree to within 0.2 kcal/mol.120,121 Therefore, 
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the estimated range of error in computed energetics in this study is ±2-3 kcal/mol. A development 

version of the geomeTRIC optimization software122 was used to perform NEB calculations and 

optimizations of minimum energy crossing points between singlet and diradical electronic states,123 

which were calculated using a two-stage procedure in Q-Chem: constrained DFT102,103 was used to 

generate the initial guess, followed by full orbital relaxation using the orbital tracking / maximum 

overlap method124 during the self-consistent field (SCF) iterations. Free energies were estimated 

using the harmonic approximation based on results of vibrational analysis. 
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Chapter 3: O-Acetyl migration within the sialic acid side chain: a mechanistic study by the 

ab initio nanoreactor  

 

The work in this chapter is based on “O-Acetyl migration within the sialic acid side chain: a 

mechanistic study by the ab initio nanoreactor” with Yang Ji, Wanqing Li, Ajit Varki, Xi Chen, 

and Lee-Ping Wang, submitted to Biochemistry. 
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Abstract 

 

Many disease-causing viruses target sialic acids on the surface of host cells. Some viruses bind 

preferentially to sialic acids with O-acetyl modification at the hydroxyl group of C7, C8, or C9 on 

the glycerol-like side chain. Binding studies of proteins to sialosides containing O-acetylated sialic 

acids are crucial in understanding the related diseases, but experimentally difficult due to the 

lability of the ester group. We recently showed that O-acetyl migration among hydroxyl groups of 

C7, C8, and C9 in sialic acids occurs in all directions in a pH-dependent manner. In the current 

study, we elucidate a full mechanistic pathway for the migration of O-acetyl between C7, C8, and 

C9. We used the ab initio nanoreactor to explore potential reaction pathways, as well as density 

functional theory, pKa calculations, and umbrella sampling to investigate elementary steps of 

interest. We found that when a base is present, migration is easy in any direction and involves 

three key steps: deprotonation of the hydroxyl group, cyclization between the two carbons, and the 

migration of the O-acetyl group. This dynamic equilibrium may play a defensive role against 

pathogens that evolve to gain entry to the cell by binding selectively to one acetylation state. 

 

Background 

 

The sialic acid family includes more than 50 forms that are derived from the 9-carbon backbone 

monosaccharides neuraminic acid and 2-keto-3-deoxy-nononic acid (Kdn). Among these forms, 

N-acetylneuraminic acid (Neu5Ac) is most common.68 Many disease-causing viruses target sialic 

acids (Sias) with specific O-acetyl (OAc) modifications. In one example, betacoronavirus OC43 

and HKUI are known to bind to 9-O-acetylated Sias,57,58 the most common Sia O-acetyl 
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modification found in nature. In our recent article, we noted the preferential binding of SARS-

CoV-2 S protein to an immobilized acetyl group at the C9-OH by using an N-acetyl group analog 

Neu5Ac9NAc which is resistant to migration over its O-acetyl counterpart Neu5,9Ac2.125  More 

recently, multivalent 9-O-acetylated-sialic acid glycoclusters were reported as potent inhibitors for 

SARS-CoV-2 infection.126 While it is important to understand the mechanisms of OAc-Sia binding 

that cause the diseases, many are unknown due to experimental difficulties from O-acetyl ester 

instability. O-Acetylated Sias are sensitive to pH, temperature, and esterases.1,2,69 Additionally, the 

O-acetyl group is prone to spontaneously migrate across the exocyclic glycerol-like Sia side-chain. 

This makes it very difficult to study 

glycan-protein binding using microarrays, 

as the expected O-acetyl group on the 

glycan may be cleaved or have migrated. 

In our recent study, we showed a pH-

dependent Sia O-acetyl migration in all 

directions among the C9, C8, and C7 

positions, to form Neu5,9Ac2, Neu5,8Ac2, 

and Neu5,7Ac2, respectively (Fig. 3.1) .1  

 

In this study, we probe the molecular details of this migration using density functional theory 

(DFT). There are many ways to computationally investigate mechanisms that involve finding 

critical points on the molecular potential energy surface, namely energy-minimized reactant, 

product, and intuitively-driven intermediate structures, and the transition states connecting them 

via minimum energy pathways. While intuition-guided approaches to optimize transition states 

Figure 3.1. O-acetyl migration is reversible 
between Neu5,9Ac2, Neu5,8Ac2, and Neu5,7Ac2. 
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may connect the target reactant/product combination, success is highly dependent on user input 

and intuition. To overcome this, several approaches have been developed for automated reaction 

discovery.16–25 Some methods include the use of semiempirical or fully ab initio molecular 

dynamics (MD) simulations, which can predict mechanisms independent of pre-existing 

information about the reaction or heuristic reactivity rules.29 The nanoreactor is an ab initio 

molecular dynamics (AIMD)-based method specialized to induce a large number of reactions in a 

small amount of simulation time by increasing reactivity through elevated temperature and 

spherically symmetric compressions that oscillate in time.17,19,127 The nanoreactor trajectories 

contain many reaction events that are automatically refined to individual mechanistic steps, where 

a single transition state connects each reactant/product structure pair. 

 

We used the nanoreactor to generate mechanistic guesses, followed by a combination of automated 

and manual energy refinement to obtain minimum energy paths of O-acetyl group migration.17,19 

We then tested the feasibility of our proposed mechanism under experimental conditions by 

computing pKa values of ionizable groups on the Sia glycerol chain, and free energy profiles of 

key bond dissociation steps using umbrella sampling simulations. We propose that an initial 

deprotonation step enables the O-acetyl group to form a cyclic intermediate, followed by migration 

with low activation barriers between the C9-, C8-, and C7-hydroxyl groups of Neu5Ac.  

 

Methods 

 

The nanoreactor is a specially modified AIMD simulation with the primary goal of inducing 

reaction events on a short simulation time scale, achieved by means of a time-oscillating boundary 
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potential that generates high-energy molecular collisions. The initial conditions consisted of one 

Sia molecule (either Neu5,7Ac2 or Neu5,9Ac2) surrounded by twelve water molecules randomly 

placed within a 5.8 Å and 5.4 Å sphere, respectively, using Packmol software,30 followed by energy 

minimization. The level of theory for the nanoreactor simulations was B3LYP with a DFT-D3 

dispersion correction, 3-21G Gaussian basis set, and SWIG-PCM polarizable continuum model of 

the aqueous reaction medium (ε=78.4), denoted as B3LYP-D3/3-21G/PCM. Simulations utilized 

the TeraChem quantum chemistry software31–37 and were run on servers with an Intel Xeon CPU / 

Nvidia GPU (either E5-2630 v3 CPU / GTX 980 Ti GPU or E5-2637 v4 CPU / GTX 1080 Ti 

GPU). The computational cost of AIMD simulations is high, which limited the simulations to a 

few tens of picoseconds, despite our use of the relatively inexpensive 3-21G basis set.  

 

Reaction events are induced by a time-dependent restraint potential in equation (1), where m is the 

atomic mass, R1 and R2 are radius parameters, and k1 and k2 are force constants. The restraint is a 

flat-bottomed harmonic potential with time-dependent parameters:  

             (1) 

where the values of the radius R and spring constant k oscillate in a square wave pattern, and are 

equal to (R1, k1) for period t1 and (R2, k2) for period t2. Generally, R1 > R2 and during the period t1 

the molecules are free to move within a spherical volume of radius R1 with no restraint force. When 

the radius decreases from R1 to R2, atoms beyond R2 are accelerated inward, with the mass-

V r ,t( )=m2 k t( )ρ t( )2 ; ρ =
r −R t( ) if r >R t( )
       0       otherwise

⎧
⎨
⎪

⎩⎪

k t( ) ,R t( )= k1 ,R1 if  t mod t1 +t2( ) < t1

k2 ,R2              otherwise          

⎧
⎨
⎪

⎩⎪
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dependent force ensuring near-uniform acceleration of atoms within a molecule. Reaction events 

are initiated from high velocity collisions of reactants, which generally occur within the smaller 

spherical volume of radius R2. 

 

Simulations used a time step of 0.5 fs with a Langevin thermostat set to 1000 – 2000 K, and a 

friction coefficient of 3.3 ps-1. Other simulation parameters were varied as we searched for the 

optimal combinations that yielded chemically reasonable reactivity within 2 ps of simulation time. 

At 2000 K, decarboxylation was observed to occur spontaneously, whereas temperatures between 

1000–1500 K were optimal for relevant reaction exploration. The initial boundary radius (R1) and 

second boundary radius (R2) were chosen to be ~1.5–2× and ~0.8× that of the smallest initial radius 

used in Packmol. Reactivity can be further tuned by adjustment of the R2 parameter, where smaller 

values of R2 result in higher-energy collisions and greater frequency of generated reactivity, 

although the reaction pathways found in this way tended to have higher activation energies after 

refinement. For example, some of our simulations used a combination of the following parameters: 

T = 1500 K, R1 = 12.0 Å, k1 = 1.0 kcal mol-1 Å-2 amu-1, t1 = 1000 fs, R2 = 4.4 Å, k2 = 0.5 kcal mol-1 

Å-2 amu-1, and t2 = 500 fs. 

 

The reaction events observed in the nanoreactor trajectory underwent an energy refinement 

procedure to produce optimized transition states and corresponding reactant/product structures. 

The refinement calculations used the ωB97X-D3/TZVP/PCM level of theory,38–40 which is more 

accurate (and more costly) compared to what was used for the nanoreactor simulations. Initial 

transition state guesses were optimized using the nudged elastic band (NEB) method44,45 

implemented in a development version of the geomeTRIC optimization software46 that calls the 
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TeraChem software47,48 for energy and gradient evaluations. The transition state optimizations 

were performed in Q-Chem.49 A frequency calculation was used to confirm the presence of a single 

imaginary mode in the optimized transition state, and an intrinsic reaction coordinate (IRC) 

calculation was then performed to connect the optimized transition state with reactant to product 

structures. 

 

Torsional energy profiles were computed for a few minor intermediate steps, for the purpose of 

matching each geometric endpoint between elementary steps. More specifically, for a few glycerol 

rotation steps that were unable to optimize to single transition states, torsional energy profiles were 

computed by scanning relevant dihedrals by ~3° per step using a development version of the 

geomeTRIC optimization software46 at the ωB97X-D3/TZVP level of theory. This was done to 

maintain maximal consistency between each intermediate within the reaction pathway. 

 

The pKa values for two conformers of each glycerol ionizable group on Neu5,9Ac2, Neu5,8Ac2 or 

Neu5,7Ac2, resulting in twelve acid/conjugate base pairs, were computed according to the 

following equation.128,129 

 

pKa = !!"
#.%&%	()

 = 
!"!"#$%&% 	*		!""'()

#.%&%	()
  (2) 

 

Eleven acid/conjugate base pairs were used to compute pKa values for Neu5Ac, starting from the 

above structures and replacing the acetyl group with hydroxyl. In the pKa calculations, the Sia 

ionizable group was modeled by adding seven explicit water molecules, which forms a cubic 

hydrogen bonded configuration together with the ionizable group. In the conjugate base structure, 
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three water molecules are positioned in a H-bond donor orientation, whereas for the acid, one of 

the H-bonding protons on water was rotated away, thereby maintaining a consistent number of H-

bonds and maximal geometric consistency per acid/conjugate base pair.128 The resulting structure 

was optimized at the ωB97X-D3/TZVP/PCM level of theory. Frequency analyses for vibrational 

contributions to free energies were calculated at the same level of theory at 300 K, while electronic 

energy of the optimized structure was calculated using the larger def2-TZVP-f basis set. In our 

pKa calculations, we used the free energy value of 11.803 eV130 for a proton at pH = 0. Figures 

3.2a and 3.2b show the optimized acid and conjugate base structures, and Figure 3.2c is an overlay 

of the water molecule structures to show the similarity in the H-bonding patterns. 

 

   
 

Figure 3.2. Diagram of Neu5,9Ac2 surrounded by a water box of seven waters. Water-box 

surrounding the ionizable C7-OH of Neu5,9Ac2, maintaining three H-bonds, in the acid (a) and 

the conjugate base (b) forms. (c) Illustration describing the proton bond rotations to maintain 

consistent H-bonding between the acid (red) and the conjugate base (blue) forms, highlighted in 

green arrows. Coloring key: H: white; C: gray; O: red; N: blue. 

 

Acid (Neu5,9Ac2) Conj. Base
H2O box rotation for 
Acid/Conj. Base pair

a) b) c)
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Free energy profiles for cyclized bond-dissociation steps were computed from umbrella sampling 

simulations and using the plumed131 plugin in Terachem at B3LYP/6-31G*/PCM level of theory 

with a harmonic spring constant of 0.50 hartree/bohr2, and Langevin thermostat set to 298.15 K. 

Eight explicit water molecules were placed around the oxide and near the dissociating bond to 

improve the description of solvation. Simulations of 5 ps in length were run with bond distances 

set from 2.60 bohr to 4.50 bohr (1.38 Å – 2.38 Å) in increments of 0.10 bohr (0.05 Å), where larger 

distances resulted in unrealistic multi-bond cleavage within the Sia. Simulations within these 

distances were excluded when unusual reactivity and multi-bond cleavage occurred over the 

desired bond dissociation. Free energy profiles were generated from the last 4 ps of simulation 

data, using the Grossfield implementation of WHAM, version 2.0.10,132 with 17-20 windows 

(depending on relevant simulations), from 2.6025 bohr to 4.5975 bohr at 298.15 K, and with Monte 

Carlo bootstrap error analysis with 2000 iterations.132,133 

 

Results and Discussion 

 

We initially looked for the migration from Neu5,9Ac2 to Neu5,7Ac2 through an intramolecular 

cyclization step, but found this to be energetically prohibitive with barriers of ~50 kcal/mol (Fig. 

S3.1). Following this, we carried out nanoreactor simulations to explore O-acetyl reactivity using 

Neu5,9Ac2 and Neu5,7Ac2 as key reactants, and observed many proton transfer events between 

water and the glycerol hydroxyl groups (C7-OH, C8-OH, or C9-OH), de-O-acetylation, and HO- 

addition to the O-acetyl group. After energy refinement, we found that most reactions that started 

from deprotonated species had low free energy barriers of less than 15 kcal/mol, (Fig. S3.2). This 

is consistent with experimentally observed trends of increasing O-acetyl migration with higher 
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pH.134 Based on this reactivity, we explored O-acetyl migration steps involving deprotonation by 

HO-.  

 

Our calculations indicate the migration of the acetyl group on Neu5,9Ac2, Neu5,8Ac2 or 

Neu5,7Ac2 likely proceeds via a mechanism involving deprotonation, cyclization, followed by ring 

opening, subsequently resulting in migration (Fig. 3.3). When base is present, deprotonation of a 

glycerol hydroxyl group is facile, with reaction barriers under 5 kcal/mol. This is hypothesized to 

be the first step in the acetyl migration pathway (Fig. 3.4a,b,c). After deprotonation of Neu5,9Ac2 

C7OH (1), the resultant oxide (2) is a nucleophile that attacks the carbonyl carbon of the acetyl 

group and forms a cyclic intermediate with the carbonyl carbon adopting a tetrahedral geometry 

(3, 7, 11) (Fig. 3.4d,e,f). This cyclic intermediate then ring-opens to result in an oxide at the 

previously O-acetyl-substituted carbon and the migrated acetyl group. Within this process, the 

oxygen atoms directly bonded to C7, C8 and C9 remain in place, and only the C(=O)CH3 atoms 

migrate. Re-protonation by water results in Neu5,9Ac2, Neu5,8Ac2 or Neu5,7Ac2 (1, 9, 5). Further 

migrations repeat the previous steps of deprotonation, cyclization, migration, and re-protonation. 

In addition to these chemical steps, some conformational differences were observed within an 

intermediate (e.g. the product structure of 1 à 2 and the reactant structure of 2 à 3) which required 

further calculations to determine the free energy barrier of the conformational changes. Figure 3.2 

indicates a single highest barrier for a given step (deprotonation, cyclization, or migration) in the 

direction of Neu5,9Ac2 to Neu5,7Ac2 to Neu5,8Ac2 (see Fig. S3.3 for full pathway), including any 

conformational changes. For example, in order to cyclize 2 to 3, three rotations of glycerol O-H 

groups and C-C torsions are required to prepare the acetyl group for nucleophilic attack. Our 
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calculations require the presence of a HO– anion, consistent with experiments that O-acetyl 

migration has a tendency to occur at higher pH values. 
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Figure 3.3. Mechanism of base-catalyzed O-acetyl migration between Neu5,9Ac2, Neu5,8Ac2, and 

Neu5,7Ac2. Relative free energies calculated at ωB97X-D3/TZVP level of theory as described in 

the Computational Details. 
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Figure 3.4. Reaction and activation free energies for base-catalyzed O-acetyl migration of 

Neu5,9Ac2, Neu5,8Ac2 and Neu5,7Ac2. Small numbers in bold font indicate structures depicted in 

Figure 3.3. (a) through (c) show deprotonation of C(7/8)-OH of Neu5,9Ac2, C(9/7)-OH of 

Neu5,8Ac2 and C(8/9)-OH of Neu5,7Ac2 respectively, with free energies relative to the sialic acid 

and HO-. (d) through (f) show cyclization and ring-opening reactions for O-acetyl migration in C9-

C7, C7-C8 and C8-C9 respectively, with free energies relative to the cyclic intermediate. Light 

blue lines (e.g., 2 ßà 2') indicate the free energies of conformational changes between the 

endpoints of the deprotonation and cyclization steps (for example, deprotonation of 1 results in 2', 

followed by conformational changes to 2, then cyclization to 3). *Energy barriers of conformational 

change steps were estimated by electronic energies from torsion scans (Fig. S3.4). Free energies 

are calculated at ωB97X-D3/TZVP level of theory as described in the Computational Details; 

negative activation free energies are an artifact of the quasi-harmonic approximation. 

 

While the base-catalyzed migration between Neu5,9Ac2 and Neu5,7Ac2 via the 6-membered cyclic 

intermediate (3) has the lowest free energy barriers (< 9 kcal/mol for each step), the transition state 

energies for the migrations between Neu5,9Ac2 and Neu5,8Ac2, or Neu5,7Ac2 and Neu5,8Ac2, are 
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also low (< 15 kcal/mol). The largest barriers in the migration route from Neu5,9Ac2 to Neu5,7Ac2 

to Neu5,8Ac2 route is 12.7 kcal/mol for glycerol rotations of 10 (or, 10' after deprotonation of 9, 

to 10) to geometrically pre-organize for the cyclization step in the O-acetyl migration from C8-

OH to C9-OH (11). The reverse direction maximum barrier is 14.2 kcal/mol, for the 8 to 7 glycerol 

rotations needed for the cyclization step to migrate the O-acetyl from C8-OH to C7-OH. Excepting 

these two glycerol rotation barriers, the maximum barrier in this migration cycle is ~11 kcal/mol 

in either direction. Additionally, relative free energy differences of Neu5,8Ac2 (+0.7 kcal/mol vs. 

Neu5,9Ac2) and Neu5,7Ac2 (-0.6 kcal/mol vs. Neu5,9Ac2), calculated for structures 1, 5, and 9, 

are small and within the margin of error of our calculations. While Neu5,7Ac2 is slightly lower in 

free energy than Neu5,9Ac2, this may in part be due to the formation of an intramolecular H-bond 

between the amide proton of the N-acetyl on C5 with the carbonyl of O-acetyl on C7, with a 

distance of 2.0 Å. For the other Sias, the N-acetyl proton is closest to C7-OH with a distance of 

~2.5 Å. Because the barriers are low in each step of the base-catalyzed migration, and the stabilities 

of Neu5,9Ac2, Neu5,8Ac2 and Neu5,7Ac2 are similar, we think the acetyl group can migrate readily 

between positions (C7/8/9) at an increased pH.  

 

This migration competes with de-O-acetylation, which is exergonic by –20.5 kcal/mol with a 

highest point on the reaction pathway ~18 kcal/mol higher than the starting state. Given that the 

free energy barriers of O-acetyl migration in either direction from Neu5,9Ac2 are < 12 kcal/mol, 

the de-O-acetylation pathway therefore has a higher barrier, indicating that O-acetyl migration is 

kinetically more favorable. Thus, the de-O-acetylated Neu5Ac is the thermodynamic product, 

while the O-acetylated isomers are kinetic products. 
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In the cyclization and ring-opening calculations, we did not use explicit solvent, which is needed 

to describe hydrogen bonding with solvent molecules. Given the mechanism's dependence on 

initial deprotonation, and that these initial deprotonation steps have low barriers, we calculated 

pKa values in the presence of explicit water to determine which hydroxyl may be deprotonated 

first. This could suggest a potential migration direction between Neu5,9Ac2, Neu5,8Ac2 and 

Neu5,7Ac2 (see Methods for details). By taking the average of each ionizable group across the 

respective two Sias (ex. C9-OH results averaged from Neu5,8Ac2 and Neu5,7Ac2), the pKa values 

of C9-OH and C7-OH are more similar at 13.8 and 14.1, compared to the slightly higher pKa of 

C8-OH at 15.4 (Fig. 3.5). We performed additional pKa calculations on the unmodified Neu5Ac 

for reference and found that the pKa of C7-OH to be 13.6, lower than the pKas for C8-OH and 

C9-OH at 15.5 and 15.1, respectively. From our calculations on Sias C9/8/7-OH, as distance from 

the O-acetyl group increased, pKa values tend to decrease by about 1. Even so, given the small 

differences between the pKa values, this study further suggests that deprotonation of any hydroxyl 

group is comparatively easy between the Neu5,9Ac2, Neu5,8Ac2 and Neu5,7Ac2, and that all 

deprotonated forms are likely present in an equilibrium mixture. 

  

 

Figure 3.5. Computed pKa values are highlighted in blue next to each ionizable group of 

Neu5,9Ac2, Neu5,8Ac2, Neu5,7Ac2, and Neu5Ac; values accurate within a 0.9 standard deviation, 

the largest standard deviation for the listed values. pKa values were calculated with ωB97X-
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D3/def2-TZVP-f level of theory for single point energy contributions and ωB97X-D3/TZVP for 

vibrational contributions to free energies, as described in the Computational Details. 

 

The conformational flexibility of the ring and glycerol chain across Sias was evident in our 

calculations of energy minima and transition states. To improve the sampling of particular reaction 

steps, we carried out umbrella sampling along the C-O distance coordinate for the cyclization and 

de-O-acetylation steps. Umbrella sampling may give a clearer picture of which ring is easier to 

break, and to which direction the O-acetyl group is more likely to migrate. Figure 3.6 shows the 

free energy of ring-opening from 11 to 12 in the O-acetyl migration from C8-OH to C9-OH, which 

involves a free energy barrier of < 1.0 kcal/mol, and a window overlap figure from our simulations. 

The figure indicates sufficient thermodynamic overlap between each window where the cyclized 

bond distance increases until the ring breaks, ensuring that the resultant free energy results are 

reliable. Each of the other ring-breaking steps has similar results, with free energy barriers of < 

1.0 kcal/mol and similar window overlaps (Fig. 3.5 and Fig. S3.5). Umbrella sampling results with 

explicit water yielded lower activation free energies compared to those obtained from vibrational 

analysis without explicit water. This further supports the low-barriered, facile O-acetyl migration 

between the hydroxyl groups at C7, C8, and C9 of Sia. 
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Figure 3.6. Example umbrella sampling of the cyclization/O-acetyl migration step between 

C9/C8-hydroxyl groups. (a) Overlap of windows sampling over bond length. (b) Free energy (red 

dashed line) of ring-break for O-acetyl migration from C8-OH to C9-OH with estimated error 

shaded in orange. Umbrella sampling carried out at B3LYP/6-31G* level of theory as described 

in the Computational Details. See Fig. S3.5 for all six steps. 

 

To compare with experiment, we calculated free energies from population ratios in our previous 

paper1. From the average population ratios (between SM1 and SM2) that reached an equilibrium 

at pH 8.0 and 37 °C, the free energies of Neu5,7Ac2 and Neu5,8Ac2 with respect to Neu5,9Ac2 

were +2.06 and +1.25 kcal/mol. Our values from a single structure of Neu5,7Ac2 and Neu5,8Ac2 

(Fig. 3.3) were -0.6 and +0.7 kcal/mol, with respect to Neu5,9Ac2. The free energies for Neu5,8Ac2 
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match within the margin of error, but the computed value for Neu5,7Ac2 was slightly lower than 

expected. Our computational results are not precise enough to reproduce the experimentally 

measured population ratios of isomers; this could partly be due to the approximate level of theory 

used, and/or our use of the quasi-harmonic approximation to evaluate these free energy differences. 

While it may be possible to obtain more accurate free energy estimations using more advanced 

sampling methods,135–137 it does not affect our main conclusion regarding the proposed migration 

mechanism, in which migration in any direction is facile provided that base is present. 

 

Conclusion 

 

Our calculations indicate that when a base is present, O-acetyl migration occurs readily among the 

hydroxyl groups at C9, C7, and C8 of the Sia via deprotonation, migration, and cyclization steps. 

This conclusion is based on computed pKa values, umbrella sampling, and DFT calculations on 

the migration steps and the competing de-O-acetylation reaction. When explicit water molecules 

were included in the calculations, their presence affected relative energies of intermediates but did 

not change the main conclusion that base-catalyzed acetyl migration is facile. O-Acetyl migration 

may allow host cells to evade viral binding. In our recent article, we noted the preferential binding 

of SARS-CoV-2 S protein to immobilized acetyl group at the C9-OH by using an N-acetyl group 

analog Neu5Ac9NAc which is resistant to migration over its O-acetyl counterpart Neu5,9Ac2.125 

Further work is necessary to probe the role of O-acetyl migration in viral recognition and 

pathogenesis. 
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Chapter 4: SARS-CoV-2 and MERS-CoV spike protein binding studies support stable 

mimic of bound 9-O-acetylated sialic acids 

 

The work in this chapter is based on “SARS-CoV-2 and MERS-CoV spike protein binding 

studies support stable mimic of bound 9-O-acetylated sialic acids” with Ajit Varki, Xi Chen, and 

Lee-Ping Wang, submitted to Nature Communications. 
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Abstract 

 

Many disease-causing viruses target sialic acids (Sias), a class of nine-carbon sugars known to 

coat the surface of many cells including those in the lungs. Human beta coronaviradae, known for 

causing respiratory tract diseases, often bind Sias, some preferentially bind to those with 9-O-Ac-

modification. Currently, co-binding of SARS-CoV-2, a beta coronavirus responsible for the 

COVID-19 pandemic, to human Sias has been reported and its preference towards α2-3-linked 

Neu5Ac shown. Nevertheless, O-acetylated Sias-protein binding studies are difficult, due to the 

ester lability. We studied the binding free energy differences between Neu5,9Ac2α2-3GalβpNP 

and its more stable 9-NAc mimics binding to SARS-CoV-2 spike protein using molecular 

dynamics and alchemical free energy simulations. We identified multiple Sias-binding pockets, 

including two novel sites, with similar binding affinities to those of MERS-CoV, a known co-

binder of sialic acid. In our binding poses, 9-NAc and 9-OAc Sias bind similarly, suggesting an 

experimentally reasonable mimic to probe viral mechanisms.  

 

Introduction 

 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the beta coronavirus responsible 

for the COVID-19 pandemic, is structurally highly similar to SARS-CoV-1 (73% sequence 

identity between spike proteins), yet is remarkably more infective.58 Both SARS-CoV-1 and 

SARS-CoV-2 share the same primary human cellular receptor angiotensin-converting enzyme-2 

(ACE-2), but this commonality in binding cannot explain the difference in infectivity. One possible 

mechanism for how SARS-CoV-2 achieves its high infectivity is by binding to sialic acids (Sias), 
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which coat many cell surfaces, especially in the lungs, and are targeted by many disease-causing 

viruses. Sias are part of a large family of over 50 derivatives of the 9-carbon sugar neuraminic 

acid, where N-acetylneuraminic acid (Neu5Ac) is most common.68 Beta coronavirus Middle East 

respiratory syndrome coronavirus (MERS-CoV) is known to co-bind to Neu5Ac in addition to its 

DPP4 primary receptor in a two-step binding mechanism, and depletion of Neu5Ac was found to 

inhibit MERS-CoV entry into human airway cells.79 Additionally, MERS-CoV binds preferentially 

to α2-3-linked Sias over α2-6-linked ones.79 In another example, beta coronavirus OC43 and 

HKUI are known to bind to 9-O-acetylated (9-OAc) Sias,57,58 where O-acetylation is one of the 

most common Sia modifications found in nature.  

 

While SARS-CoV-1 is not known for its binding to Sias, recent studies have shown Sia binding 

by the SARS-CoV-2 spike (S) protein, and suggest that sialylated glycans can facilitate viral 

entry.138,139 In a lateral flow test, SARS-Cov-2 S protein bound to both Neu5Ac and α2-3/α2-6-

linked Sias, where each Sia is each attached to gold nanoparticles (auNP).140 While stronger 

binding under experimental conditions was observed with Neu5Ac-auNP over α2-3/α2-6-linked 

Sias-auNPs, the paper did not preclude involvement of α2-3/α2-6-linked Sias in SARS-CoV-2 S 

protein binding.140 Binding studies using sialylated glycans indicate low affinities to the SARS-

CoV-2 S protein (~ -10 kcal/mol)125 and specifically along the ACE-2 receptor binding domain 

(RBD), with monosialylated ganglioside glycan affinities of 100-200 μM and multisialylated 

glycan affinities approaching 900 μM, using catch-and-release ESI-MS (CaR-ESI-MS) (~ -20 

kcal/mol).138 A few potential sialic acid-binding domains have been proposed additional to the 

ACE-2 RBD, especially along the flat region of the SARS-CoV-2 S protein N-terminal domain 

(NTD), but specific sites have not been confirmed experimentally.141–148 The S protein is made up 
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of two subunits, S1 for cell recognition, containing both NTD and ACE-2 RBD , and S2, 

responsible for viral cell membrane fusion.149 Given the density of sialic acids along cell surfaces, 

and role of S1 in cell recognition, Sias could increase viral binding affinity by acting as an 

intermediate target or co-binder. We attempt to provide a quick overview of current work on Sias-

SARS-CoV-2 S protein binding, where a more thorough study may be found in the recent review 

by Sun.150  

 

Experimental studies that test S protein binding to Neu5Ac and O-acetylated Sias using glycan 

microarrays are informative towards understanding the disease and preferential binding.125 Even 

so, experimental testing is difficult with O-acetylated Sias due to the instability of the ester with 

respect to migration and cleavage, which depends on pH, temperature, and presence of 

esterases.1,2,69 N-Acetylated (NAc) Sias have been proposed to be a stable synthetic mimic, as they 

are chemically and structurally similar, as seen in experimental and computational NMR studies2. 

Determining the similarity in spike protein binding of 9-NAc to 9-OAc Sias would be valuable for 

when performing binding array studies, and understanding the binding sites of sialic acids to 

SARS-CoV-2 spike protein is important when considering potential druggable sites.  

 

To this end, we computed the binding free energies of modified Neu5Ac monomers and 

oligosaccharides to SARS-CoV-2 S protein using molecular dynamics (MD) simulations (Fig. 

4.1). Our simulations revealed new possible Sia binding sites ranging along the S1 unit, along the 

NTD and RBD, with some approaching the S2 domain. Each binding site contains a salt bridge 

connecting a conserved arginine residue to the carboxylate group of Sia, a known motif in Sia-

lectin binding;151 while the binding to individual sites is predicted to be weak (~ -15 kcal/mol), 
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multiple binding to cell surface Sias could strengthen binding overall.58,152 In addition, we 

calculated relative binding free energies of ligands that differ in the chemical modification at C9 

(9-OH, 9-OAc, and 9-NAc), showing that the synthetic 9-NAc are excellent structural mimic of 

their naturally occurring 9-OAc counterparts. These insights into Sia-S protein binding could lead 

to the design of therapeutics that inhibit the binding of S protein to Sias on the cell surface, thereby 

limiting SARS-CoV-2 transmission. 

 

 

Figure 4.1: Structure of N-Acetylneuraminic acid (Neu5Ac), the simulated ligand in this study. 

Three substitutions at R1 were simulated corresponding to the unsubstituted Sia and its 9-OAc and 

9-NAc forms. Two substitutions at R2 were simulated, corresponding to the Sia monomer or an 

α2-3-sialoside containing the terminal 2 sugars of the GM3 ganglioside, commonly found on cell 

membranes, followed by pNP, a molecule used in quantifying Sias binding and cleavage in 

sialidase microarray studies. 
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Figure 4.2: Initial binding pose of Neu5Ac in SARS-CoV-2 spike protein (a) used as a starting 

point for MD simulations, based on cryo-EM structure of MERS-CoV spike protein with Neu5Ac 

bound (b). (c) The initial pose was modeled based on structural overlay of pink SARS-CoV-2 S 

(PDB ID: 6VSB) with blue MERS-CoV S in complex with Neu5Ac (PDB ID: 6Q04), using 

MultiSeq153 an extension of the Multiple Alignment tool available in VMD.154  

 

Results and Discussion 

 

Method Validation with Sias-MERS-CoV S binding 

 

Modern free energy simulation methods are estimated to be accurate to within 1-2 kcal/mol for 

well-behaved82 protein/ligand systems, but this system presents additional challenges due to the 

exceptional flexibility of both the SARS-CoV-2 S protein and the ligands, the latter of which we 

have studied computationally69 and using NMR.2 Based on a recent SAMPL6 challenge that 

evaluates binding free energy prediction methods,91 we used two methods in this study – an 

inexpensive implicit solvent approach known as molecular mechanics Poison-Boltzmann surface 

area (MM-PBSA)155 to estimate absolute binding free energies, and a more rigorous approach 

based on alchemical intermediates known as SIRE-OpenMM molecular dynamics (SOMD)84,85 to 

compute relative binding free energies of ligands that differ only in the chemical modification at 

the Sia C9.  

 

Given the exploratory nature of Sias-SARS-CoV-2 S binding, we first validated our methods with 

Sias bound to the RBD in MERS-CoV S, known to preferentially bind to Neu5Ac-containing Sias 
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over Neu5,9Ac2- and Neu5Ac9NAc-containing Sias. Both MM-PBSA binding energy and SOMD 

alchemical free energy differences show that Neu5Ac binds stronger than either modified variant, 

consistent with experimental findings (Fig. 4.3). In the case of SOMD, Neu5Ac binds stronger 

than Neu5Ac9NAc and Neu5,9Ac2 by 2.7-3.0 kcal/mol. Both Neu5Ac9NAc and Neu5,9Ac2 bind 

very similarly, with a nominal difference of 0.2 kcal/mol, within the margin of error. While the 

magnitudes of the binding free energy differences are larger in the MM-PBSA results, they follow 

the same trend as our SOMD results, where Neu5Ac binds stronger than Neu5Ac9NAc and 

Neu5,9Ac2 (by 8-10 kcal/mol), with the modified Sias binding very similarly. Given the shallow 

nature of the binding pocket, we did not perform binding free energy simulations with the larger 

sialosides, as the modified Neu5Ac test case is sufficient for validating our methods. As expected 

from shallow binding and experimental reports for weak binding affinity156, MM-PBSA binding 

energy results indicated overall weak binding (-20 kcal/mol for Neu5Ac). Based on energy 

decomposition analysis, one of the key residues contributing to this difference in binding is 

ARG307, which binds stronger to Neu5Ac (Fig. 4.3).  

 

 

Figure 4.3: A: SOMD and MM-PBSA binding free energy differences for Neu5Ac, Neu5Ac9NAc 

and Neu5,9Ac2 bound in MERS-CoV S protein. Neu5Ac binds stronger than either modified 

ARG307
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HIS91
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variants, where the Neu5Ac9NAc and Neu5,9Ac2 result in nominal binding energy differences. B: 

Binding poses of Neu5Ac, Neu5Ac9NAc and Neu5,9Ac2 in MERS-CoV S protein. Key 

contributing residues, based on energy decomposition analysis, are annotated with top contributor 

bolded. See Fig. S4.1 for energy decomposition results.  

 

Given that the MERS-CoV simulation predictions largely aligned with the experiment, we 

proceeded toward computational discovery of Sia binding sites in SARS-CoV 2 and estimation of 

binding free energies using the same computational approach. 

 

Discovery and analysis of Sias-SARS-CoV-2 S binding 

 

We performed MD simulations of Neu5Ac, Neu5,9Ac2 and Neu5Ac9NAc bound in SARS-CoV-

2 S protein, starting with a docked pose based on the Neu5Ac-MERS-CoV S complex (see 

Methods for details). After initially setting up docked ligands in the crystal structure of SARS-

CoV-2 S protein from cryo-EM (PDB ID: 6VSB), we found a large RMSD in protein structure, 

indicating a conformational change of the S protein. During the final equilibration phase with no 

restraints, each Sia (Neu5Ac, Neu5,9Ac2 and Neu5Ac9NAc) along the NTD of SARS-CoV-2 S 

protein became unbound (Fig. 4.2). Interestingly, Neu5,9Ac2 and Neu5Ac9NAc were observed to 

return to the original RBD before unbinding again. All 3 Sias subsequently sampled temporary 

binding events to many regions of the S protein. From the simulation trajectories, we initially 

selected six poses for further investigation, four of which are in Figure 4.2.  
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All of the proposed sites from MD involve arginine forming a salt bridge with the Sia’s 

carboxylate, a known motif in Sia-lectin binding.151 In other Sias-S protein observations without 

an interacting arginine, the Sias quickly dissociated quickly. While we observed many other 

binding sites in the MD simulations, such as along the flat top of the NTD within the S1 domain 

(quick dissociation observed), along the S2 domain and between the S1 and S2 domains (deeper 

within the S protein trimer), we only considered regions with longer association times and that 

may be accessible by Sias. 

 

Including the initial pose based on MERS-CoV, we chose 4 binding poses to investigate in closer 

detail (Fig. 4.4). Here, we describe how each pose was found. Structures of Neu5Ac, Neu5,9Ac2, 

Neu5Ac9NAc were docked into the initial binding pocket along the NTD front (initial pose based 

on MERS-CoV) (Fig. 4.4A). Given the shallow pocket, each sialic acid unbound and sampled 

different regions along the S protein. Neu5Ac and Neu5,9Ac2 sampled the region behind this initial 

pose (Fig. 4.4B). This pose is close to pose A, potentially allowing for more accessible Sias-

binding domains along the S protein NTD. Neu5Ac9NAc sampled a deeper binding pose between 

chains A (NTD) and C (ACE-2 RBD) in the initial simulations (Fig. 4.4C). In initial MD 

simulations, Neu5Ac sampled the region between the ACE-2 RBD and S2 domain, and between 

chains A and B (Fig. 4.4D). This region is accessible for gangliosides to attach to the spike protein 

and direct or inhibit the down to up state of the ACE-2 RBD. Indeed, a previous study indicated 

that residues along this region may function as a binding pose for glycosaminoglycans including 

heparan sulfate,157–159 highlighting the importance of this region in cellular recognition. Both of 

these deeper binding domains (Fig. 4.4C, 4.4D) overlap with key regions in stabilizing the S 

protein and affecting its ability to transition the 3 ACE-2 RBD between “down” and “up” states.160 
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Sias binding in these regions may shift the S protein flexibility and ability to transition between 

states, altering ACE-2 binding. Notably, and to the best of our knowledge, these two Sia-binding 

poses (Fig. 4.4C, 4.4D) have not been previously proposed for Sia binding. One possible 

explanation is that a number of simulations have been performed using a single NTD or subunit 

rather than the full S protein trimer, which is needed to describe Sias binding between multiple 

trimer units (such as between chains A & B in pose D).   
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Figure 4.4: Sias binding poses with the SARS-CoV-2 S protein and SOMD binding free energy 

differences. Upper panel: A) binding pose based on MERS-CoV, Neu5,9Ac2 highlighted; B and 

C) binding poses based on initial MD with Neu5Ac and Neu5Ac9NAc highlighted; and D) binding 

based on initial MD with Neu5Ac9NAc, Neu5Ac9NAc highlighted. Nearby protein residues are 

annotated, with top contributor bolded, based on MM-PBSA energy decomposition analysis. 

*Residues conserved across omicron (PDB ID: 7TB4), kappa (PDB ID: 7VXB), delta (PDB ID: 

7W92), gamma (PDB ID: 7M8K), original (PDB ID: 6VSB) variants of SARS-CoV-2. Lower 

panel: SOMD binding free energy differences for Sias bound in SARS-CoV-2 S protein. Results 

for transformations between Neu5Ac, Neu5,9Ac2, and Neu5Ac9NAc shown for all poses (A-D). 

Results for transformations between Neu5Acα2-3GalβpNP, Neu5,9Ac2α2-3GalβpNP, and 

Neu5Ac9NAcα2-3GalβpNP sialosides shown for poses C and D. Error bars are plotted from 

standard error of means across 4 simulations, when available. Pose D results in stronger binding 

to Neu5Acα2-3GalβpNP, Neu5,9Ac2α2-3GalβpNP, and Neu5Ac9NAcα2-3GalβpNP over 

Neu5Ac, Neu5,9Ac2, and Neu5Ac9NAc. See Fig. S4.2 for MM-PBSA energies and energy 

decomposition results. 
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In all initial MD simulations using the cryo-EM structure, Sias-unbinding events occurred rapidly, 

given the high flexibility of the SARS-CoV-2 S protein and the resolution of the cryo-EM 

structure. This flexibility was indicated by relatively fast increase in RMSD at the start of 

simulations that used the cryo-EM structure. As such, we ran simulations with the SARS-CoV-2 

S protein in water to equilibrate the S protein, ideally to a more stable form. We extracted several 

SARS-CoV-2 S protein structures from the equilibrated trajectories to use for docking of the 

described 4 poses for production runs, with results in Figure 4.4.   

 

Figure 4.4 show that in each binding pose, Neu5,9Ac2 and Neu5Ac9NAc bind very similarly, with 

differences and errors much less than 1 kcal/mol. Each pose contains a conserved arginine motif, 

which are conserved across most SARS-CoV-2 variants (omicron (7TB4), kappa (7VXB), delta 

(7W92), gamma (7M8K), original (6VSB)). Binding residues conserved across these variants are 

annotated in Figure 4.4. Neu5Ac binds weaker than either modified Sia in pose A, with slightly 

weaker binding to LEU244, but each Sia binding strongest to ARG246. In pose B, ARG246 is 

again the tightest binding residue to the Sias, and Neu5Ac binds more strongly than either 

Neu5,9Ac2 or Neu5Ac9NAc, likely due to its size fitting better in the shallow pocket. In pose C, 

ARG983 was the tightest binding residue, and ARG355 and ARG466 in pose D. Neu5Ac binds 

slightly stronger than either modified variant, especially to these key arginine residues. Due to 

their size, Neu5Acα2-3GalβpNP, Neu5,9Ac2α2-3GalβpNP, and Neu5Ac9NAcα2-3GalβpNP in 

pose C were slightly displaced from the deep ARG983, resulting in the top binding residue as 

LYS529. While both Neu5,9Ac2 and Neu5Ac9NAc bound weaker than the Neu5Ac, these 

differences were not large (~1 kcal/mol). In binding pose D, while the Neu5Acα2-3GalβpNP binds 

stronger than Neu5,9Ac2α2-3GalβpNP, the standard error of means is relatively large. Larger error 
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bars calculated for binding poses C and D are due to the range of flexibility observed in the S 

protein, Sias, and the position and orientation of Sia in the binding pocket.  

 

Based on MM-PBSA binding free energies, Sia binding in each pose of the SARS-CoV-2 S protein 

is weak (<25 kcal/mol), but is consistent with experimental results,125 and is comparable to that of 

Sia-MERS-CoV spike protein binding (see Fig. S4.1 and S4.2 for MM-PBSA energies and 

decomposition analysis). Of all the binding poses, binding pose D resulted in tighter binding of 

α2-3-linked Sias over their monomer counterparts in its initial equilibrated pose used in SOMD. 

This highlights the importance of pose D in tighter SARS-CoV-2 S protein co-binding to cell-

surface Sias, influencing cellular recognition and ACE-2 binding. 

 

A number of other possible binding sites were observed in the MD simulations, but we did not 

investigate them further due to the very short dwell times in the trajectories. Weak binding was 

also observed with ARG158 and ARG237 along the NTD, but the binding pocket was shallow and 

dissociation quickly occurred during the equilibration of the Sias-S protein complex. Binding was 

also observed to ARG328 along the outside of the S below the ACE-2 RBD, but further simulations 

also showed the site as shallow and a weak binder. 

 

Conclusion 

 

We have identified multiple weak sialic acid binding sites on the SARS-CoV-2 S protein, with two 

novel Sia-binding poses. Each novel pose, between the NTD and ACE-2 RBD (chains A and C) 

and between the ACE-2 RBD and S2 domain (chains A and B), is accessible to gangliosides for S 
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attachment, and overlaps with regions known in stabilizing the S protein. The binding in each pose 

is predicted to be weak, in overall agreement with glycan microarray experiments.125,138 We 

validated our methods using MERS-CoV-S, confirming the experimental result that Neu5Ac binds 

stronger than that with either 9-OAc or 9-NAc modification, and binding energies comparable to 

Sias-SARS-CoV-2 S protein binding. Each Sias-binding pose in SARS-CoV-2 S protein contains 

an arginine residue that is conserved across SARS-CoV-2 variants. The multiple Sia-binding sites 

on SARS-CoV-2 S protein may lead to increased binding affinity to multiple Sias collocated on 

the cell surface, and the existence of multiple binding sites to the S protein may be validated 

experimentally. Neu5Ac in SARS-CoV-2 binding sites tend to have stronger binding than their 9-

OAc or 9-NAc modifications, but the differences are within the expected margin of error. Binding 

free energies support 9-NAc Sias as close structural and chemical mimics of 9-OAc Sias in SARS-

CoV-2 and MERS-CoV S proteins, given the small energy differences (all <1 kcal/mol with 

SOMD). This supports 9-NAc Sias as an experimentally stable mimic of 9-OAc counterparts to 

probe Sias-viral binding. Future experimental studies can validate our differential binding free 

energy results and understanding the binding of modified Sias can further elucidate the role of Sias 

in cellular recognition and the high transmissibility of SARS-CoV-2.  

 

Methods 

 

Choice of protein structures, sialic acids, and binding poses 

 

The initial protein-ligand complex for molecular dynamics simulations was chosen based on 

available structures from the protein data bank, ideally a protein with a sialic acid bound in a 
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known receptor site. At the initiation of this project, there were no SARS-CoV-2 spike proteins 

bound to sialic acids or suspected sialic acid binding. As such, we searched for other human beta 

coronavirus spike protein structures available on the protein data bank with a bound sialic acid. 

While the cryo-EM SARS-CoV-2 spike protein (PDB ID: 6VSB)161 has a 73% sequence identity 

with SARS-CoV,58 there is no known sialic acid binding or bound complex with SARS-CoV. 

MERS-CoV spike protein (PDB ID: 6Q04)79 has a 35% identity with SARS-CoV-2 spike protein, 

and does have an available structure with a bound sialic acid (Neu5Ac).  

 

To generate an initial sialic acid binding pose with the SARS-CoV-2 spike protein, we performed 

sequence alignment with both spike proteins (6VSB and 6Q04) using MultiSeq,153 an extension of 

the Multiple Alignment tool available in VMD,154 a freely available structural graphics program 

for visualization and analysis. From the aligned structures and conserved binding residues, notably 

arginine, we placed the sialic acid from MERS-CoV spike protein directly into the overlayed 

SARS-CoV-2 spike protein N-terminal domain as our initial ligand-protein complex, each without 

sialylation of the spike proteins (Fig. 4.2). 

 

For additional ligand-protein complexes in both spike proteins, we docked Sias (Fig. 4.1) into 

binding pockets using OEDocking.162–165 Given other beta coronavirus virus (OC43 and HKUI)57,58 

preference to Neu5,9Ac2 over Neu5Ac, and that N-acetylated sialic acids have shown to be 

chemically and structurally reasonable mimics to O-acetylated counterparts, we docked Neu5Ac, 

Neu5,9Ac2, and Neu5Ac9NAc into each spike protein. Given that MERS-CoV spike protein 

preferentially binds to α2,3 over α2,6-linked sialic acids, we docked α2,3-linked sialic acids 

(Neu5Acα2-3GalβpNP, Neu5,9Ac2α2-3GalβpNP, and Neu5Ac9NAcα2-3GalβpNP) into deeper 
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binding pockets of SARS-CoV-2 spike protein, where these new poses were observed from 

molecular dynamics simulations where a free sialic acid would associate to various residues along 

the spike trimer.  

 

Molecular dynamics simulations and MM-PBSA setup and procedure 

 

Molecular dynamics simulations were performed using AMBER18 software suite, using tleap for 

setup and pmemd.cuda for dynamics on NVIDIA GTX 980 Ti or 1080 Ti hardware.166–170 We used 

the ff14SB and GAFF protein force fields, GLYCAM06 carbohydrate forcefield, TIP3P water 

model. Protein or protein-ligand complexes were solved in a truncated octahedron box with 12.0 

Å distance, resulting in around 120,000 water molecules, and Na+ ions were added for a net neutral 

charge. Simulations were run with periodic boundary conditions, a 2.0 fs time step and Langevin 

thermostat set to 298.15 K and a collision frequency of 5.0 ps-1. The particle mesh Ewald method 

was used to treat long-range electrostatics with a real-space cutoff of 9.0 Å and the SHAKE 

algorithm to constrain all bonds involving hydrogen. 1000 minimization steps were performed 

with restraints on complex heavy atoms with a restraint weight of 10 kcal mol-1 Å-2, followed by 

an additional 500 steps with no constraints to minimize the entire system. We subsequently heated 

our system linearly from 0.1 K to 298.15 K at constant pressure molecular dynamics, using a 

Berendsen barostat set to 1.0 atm, and a compressibility of 44.6 x 10-6 bar-1, NMR restraints on the 

protein complex heavy atoms with a restraint weight of 10 kcal mol-1 Å-2, and a timescale of 500 

ps. Subsequent equilibration was performed at constant pressure over 5 steps, each at 100 ns. 

Restraint on protein-ligand complex heavy atoms decreased in order of 10.0, 1.0, 0.1, 0.01 and 0 

kcal mol-1 Å-2. Production simulations were performed with the NVT ensemble. 
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Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach to binding 

energies was also computed from the initial molecular dynamics simulations and the equilibration 

runs for the alchemical free energy simulations.171–173 Key interacting protein residues are identified 

by energy decomposition analysis (EDA). MM-PBSA can give comparative estimates on absolute 

binding free energies using an end-state free-energy approach, where the binding free energy is 

the difference between the sum of ligand-protein complex binding and its solvation, and the sum 

of the solvation energies of the free ligand and protein (Fig. S4.3). Implicit solvation in the 

thermodynamic cycle calculations reduces computational time compared to the explicit water 

molecules used for solvation in the above alchemical free energy approach. Difference in binding 

free energies were computed from binding free energies. Calculations were performed using 

MMPBSA.py155 AMBER software, from molecular dynamics simulation trajectories. Trajectories 

(in triplicate) were sampled over 300 ns, depending on retention of Sias in the binding pocket. This 

was deemed sufficient time for relative binding free energies, as our total simulation lengths 

sampled in our MM-PBSA calculations are greater than the 1-10 ns range tested as sufficient in a 

paper studying MM-PBSA protein-ligand binding free energy convergences from crystal 

structures.171 The importance of the initial structure is especially important in our case, given the 

flexibility of glycans and the SARS-CoV-2 S protein. When performing initial docking and 

simulations of Sias directly into the Cryo-EM SARS-CoV-2 S protein structure, Sias would 

quickly unbind. We then equilibrated the S protein, took select structures from the MD, and 

minimized each as receptor structures to dock Sias and run MD. This resulted in longer simulation 

lengths prior to Sias unbinding. Given the ligand and protein flexibilities, triplicate simulations 

were run to increase total simulation time while maintaining the binding pose.  
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Alchemical free energy simulations setup and procedure 

 

Alchemical free energy simulations were setup in a similar fashion, but employed the automated 

Sire FESetup174 tool to prepare systems for alchemical free energy simulations using free and open 

source Sire and OpenMM (SOMD).85,175 To prepare the system, we specified sets of ligands with 

docked poses to respective receptors, specific ligand GLYCAM parameters and forcefield 

parameters described above. Different from the above procedure, we used a rectangular box with 

a 12.0 Å distance, performed minimization over 300 steps, heated the system from 5.0 K to 298.15 

K, and ran equilibration simulations decreasing constraints in order of 8.0, 6.0, 4.0, 2.0, and 0 kcal 

mol-1 Å-2, where the first equilibration ran for 100 ps (and subsequent simulations ran for 100 ns, 

as in the above case). We again used FESetup to generate the alchemical free energy simulations 

perturbation input describing the transformation occurring (such as Neu5Ac to Neu5,9Ac2), 

dummy atoms to transform into additional atoms required in the transformation, and the respective 

simulation parameters for each atom pair or transforming pair between ligands. Soft-core 

potentials were used to describe electrostatic and van der Waals interactions according to the 

following equations:90 

rLJ=(2σijλ+rij
2)1/2 

rCoul=(λ+rij
2)1/2 

 

Alchemical free energy simulations were performed to compute the difference in binding free 

energies of multiple sialic acids to spike protein receptors using the SOMD method.85,175 Ligands 

were transformed (ex: Neu5,9Ac2 to Neu5Ac9NAc) over a number of artificial intermediate states 
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(windows) created to connect the thermodynamic ensembles of the two physical states of interest 

(Fig. 4.5). We chose 13-21 linearly-spaced λ windows, depending on the transformation, based on 

a paper using SOMD and other alchemical free energy methods in an assessment of binding 

affinities,92 and following the scheme outlined in the SI of Loeffler et al.90 In general, the first 

replicate for each transformation was ran with 13 windows, and the duplicate with 21 for greater 

certainty. Discretion must be used when choosing the λ value, as a value too small can result 

insufficient thermodynamic overlap between simulations, whereas a value too large results in 

excessive simulation time. In my simulation cases, increasing λ to 21 did not immediately result 

in improved simulation results. Rather, a lower λ with multiple replicates would likely yield a more 

rigorous relative binding free energy value with an error estimate, and allow for discarding of 

simulation data without drastically reducing sampling size. However, multiple replicate alchemical 

simulations is indeed quite expensive and potentially time-prohibitive. 

 

Additional to varying the λ value in simulations, the duration of simulations at each λ step must 

be chosen. Each simulation was minimized over 1000 steps prior to 5 ns production run in the NPT 

ensemble, where free energies were computed from the last 4 ns, based on alchemical free energy 

simulation best practices.89,92 Quality of simulations did not necessarily improve with increased 

simulation time at each step. This is likely due to the flexibility of our Sia ligands and S proteins. 

Instead, confidence improved with additional replicates rather than doubling individual simulation 

times. Additionally, but not required, each transformation was computed in the reverse direction, 

and duplicate simulations were performed. For example, Neu5,9Ac2 was transformed to 

Neu5Ac9NAc by slowly turning off the interactions of Neu5,9Ac2 and slowly turning them on for 

Neu5Ac9NAc, over a set of discrete steps, as described the SI of Loeffler et al.90  
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We used analyse_freenrg to calculate free energy differences at 298 K using multistate Bennett 

acceptance ratio (MBAR) and thermodynamic integration (TI) as a reference estimate.86–88 The 

relative free energy of binding was then computed as the free energy difference of the alchemical 

transformation of the ligand bound to the protein and the ligand in solution, i.e. water.  

 

Reliability of results was determined based on similarity between MBAR and TI, and from overlap 

matrices, where the first off-diagonal element is at least 0.03,89 but ideally close to 0.10 to ensure 

enough thermodynamic overlap between simulation windows. To determine the reliability of 

alchemical free energy simulation results, we compared values from MBAR and TI, as well as 

analyzing overlap matrices (Fig. S4.4). Some test cases of longer simulations were ran, but the 

thermodynamic overlap did not significantly improve compared to more windows. The high 

degree of flexibility known for the SARS-CoV-2 spike protein may contribute to this observation. 

Thus, we increased the number of windows when necessary, and duplicate simulations were run 

for higher certainty and increased sampling. Solvated ligand simulations each took about 45 min, 

and the solvated ligand-protein complex calculations took about 1 day each, running on NVIDIA 

GTX 980 Ti or 1080 Ti hardware. 
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Figure 4.5: Visual representation of ΔΔGbinding of Neu5Ac9NAc versus Neu5,9Ac2 as the 

difference of two alchemical transformations in explicit solvent (boxed). The upper box is the 

transformation from Neu5,9Ac2 to Neu5Ac9NAc bound in the protein and solvated in explicit 

water. The lower box is the transformation in explicit water. Additional atoms required in 

transformations are represented by “dummy atoms” that slowly turn on over the simulation steps. 

 

Trajectory analyses were carried out using the cpptraj176 simulation analysis package and free 

energy differences plots generated with matplotlib plotting software package in python. Molecular 

structures were visualized with VMD154. 

 

Structures used in molecular dynamics simulations: 6VSB; 6Q04, each without sialylation 
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Sialic acid parametrization procedure 

 

In order to carry out simulations of diverse Sia modifications, we used a computational protocol 

developed in our group to generate molecular dynamics simulation parameters for modified 

carbohydrate residues that have excellent compatibility with the widely used GLYCAM06 force 

field model;2 this was originally developed for the N-Ac Sias. 

 

We parametrized our ligands to match GLYCAM format, following GLYCAM protocol and 

Neu5,9Ac2 and Neu5Ac9NAc results from our previous publication.69,177  The MD simulations 

with sialosides used a combination of the GLYCAM06 force field for the monosaccharide building 

blocks and GAFF178  for the para-nitrophenol (pNP) aglycon, with customized parameters to 

describe the pNP in a consistent manner. The procedure for deriving the new simulation parameters 

was designed to be maximally consistent with the original GLYCAM procedure.  

 

A set of atomic partial charges was derived for pNP. The procedure involves averaging over an 

ensemble of structures, sampled using a MD simulation of GalβpNP in TIP3P water. The system 

was equilibrated for 1 ns at 298.15 K, 1.0 atm (NPT), followed by a 100 ns production run at 

298.15 K (NVT). One hundred structures of GalβpNP were saved at 2 ns intervals. Each of these 

structures was energy-minimized at the HF/6-31G∗ level of theory with all exocyclic dihedral 

angles constrained to their MD- sampled values.  

 

For each the 100 constrained energy-minimized structures, electrostatic potential (ESP) 

calculations were computed on a rectilinear grid of points using the Gaussian16 software179 using 



 
 

76 

the Pop = chelpg option in the route file. This ESP data was used in a single-stage restrained ESP 

fitting (RESP) calculation with a restraint weight of 0.01 applied to all atoms using the resp 

program from AmberTools and with charges on the OMe group fixed to the original GLYCAM 

values. An arithmetic average over the 100 sets of fitted charges yielded the final set of charges in 

the model.  

 

The GLYCAM and GAFF force fields lacked torsional parameters to describe the torsional energy 

profiles about the pNP functional group and Gal–pNP linkage; these parameters were derived by 

fitting to reproduce torsional profiles from DFT. In order to generate data for fitting the torsional 

profiles, constrained optimized geometries were obtained at the HF/6- 31G∗ level of theory with 

the selected torsional degree of freedom constrained to values on a 30-degree grid. We used the 

TeraChem quantum chemistry software for the energy minimizations and the torsiondrive software 

to scan over the dihedral angles recursively.31,32,46,47,180 The optimized geometries were used for 

single-point energies and atomistic forces calculated at the ωB97X-D3/6–31++G(2d,2p) level of 

theory.181 We chose a different DFT functional from what was used in the original GLYCAM 

procedure because dispersion-corrected DFT functionals have become the standard for accurate 

conformational energy calculations over the past decade.38,179,181,182 We also do not expect 

differences in the torsional parameterization procedure to cause incompatibilities with the rest of 

the GLYCAM force field, because the effect of parameter optimization on the potential energy 

surface is localized to the glycerol chain. The parameters were optimized by fitting to the quantum 

chemical energies using the ForceBalance optimization software.180,183 Bond stretching and angle 

bending parameters for the Gal–pNP linkage were copied from analogous parameters available in 

GLYCAM06. 
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Chapter 5: Summary and Future Work 
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In this dissertation, I have applied the ab initio nanoreactor method to solve mechanistic mysteries 

in green and biological chemistry (Chapters 2 and 3). In one case, the nanoreactor guided the 

mechanistic search and inspired elementary radical steps, and through a synergistic effort between 

theory and experiment, solved the mechanism to form 3-HPPA from LA, and unlocked a new class 

of reactions. Future work to support this mechanism could involve EPR experiments of trapped 

radicals on labelled starting materials, with results invaluable to tuning this reaction to alternative 

products and milder conditions. In another application, I used the nanoreactor to study the lability 

of the O-acetyl modification of Sias at the hydroxyl group of C7, C8, or C9 on the glycerol-like 

side chain, lending insights into the defensive role of Sias against pathogens that evolve to gain 

entry to the cell by binding selectively to one acetylation state. Further work is necessary to probe 

the role of O-acetyl migration in viral recognition and pathogenesis. Given the above precedence 

where this nanoreactor method has aided in mechanistic searches, next steps could include using 

the nanoreactor with larger starting materials and probing reactions involving two relatively large 

species. Given the high energy nature of the nanoreactor and its automated nature, it could be used 

to predict reaction mechanisms and rates in combustion chemistry. Additional applications would 

elucidate the nanoreactor’s scope and parameter sensitivity to specific chemistries. 

 

In Chapter 4, I used simulations to probe the binding of Sia to MERS-CoV S and SARS-CoV-2 S 

proteins and determined that N-acetyl and O-acetyl Sias interchangeable, suggesting an 

experimentally reasonable mimic to probe viral mechanisms. Future work needs to be done to 

probe modified Sias-protein binding in other Sia-binding proteins and validate differential binding 

trends between Sias. Additionally, repeating similar simulations in other viral systems may suggest 

trends of top-interacting protein residues to Sias additional to arginine. Finally, future steps could 
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involve ligand-protein binding simulations, where the protein is sialylated, which may affect Sia 

affinity, and the use of Sias with alternative linkages, variable sialoside length, and modifications 

at other locations (such as C4, C7, C8 of Neu5Ac).  
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Appendix 1 for Application of the ab Initio Nanoreactor to the Development of a New 

Peroxide-Driven Ketone Oxidation Reaction 

 

Details of the EPR experiments 

 

Samples were prepared at the reaction concentrations with 30% aq. H2O2 and 5.2 M aq. KOH 

and were rapidly freeze-quenched at multiple time points in the course of the reactions. X-band 

(9.37 GHz) CW EPR spectra were recorded at 90 K with 0.2 mW of microwave power and a 

modulation amplitude of 1.0 G on a Bruker EleXsys E500 spectrometer equipped with a 

superhigh Q resonator (ER4122SHQE). Simulations of the EPR spectra were performed using 

the EasySpin 5.2.23 toolbox within the Matlab 2018b software suite (The Mathworks Inc., 

Natick, MA). 

Measurements were taken after 30 min at 90 K with 0.2 mW of microwave power and a 

modulation amplitude of 1.0 G. Both reactions give rise to an axial EPR signal with g values 

matching the reported values of O2
–● (Supporting Figure 2.1).     While the gII value varies 

slightly in the presence of LA, the chemical interpretation of this variation remains unclear. 
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Supporting Figure 2.1. X-band EPR spectra of LA experiment and control reactions. 

 

Computational Methods 

 

Nanoreactor Settings 

 

There are multiple variables that are used in these nanoreactor simulations to induce reactivity, 

and careful choices must be made to produce relevant reactions. We varied simulation parameters 

and determined the optimal combinations that yielded chemically reasonable reactivity within 2 

ps of simulation time for each of our mechanistic studies. Firstly, there is a dependence on where 

molecules are placed, and how many molecules are chosen. To avoid excess user input time in 

reactant placement, molecules are randomly placed within a sphere. Still, users need to decide how 

large the initial sphere should be. In our experience, the smaller the sphere for the number of 

reactants, the quicker reactions are observed in simulations. Given the approach of random reactant 

placement into the nanoreactor sphere, multiple sets of starting conditions, and evolution of 
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molecular coordinates in simulation time, molecular collisions occur across a wide set of 

conditions (distance between molecules, velocities, molecular orientations, etc). This may reduce 

the setup effort required in other reactive simulations that collide two or more reacting molecules, 

while achieving a range of observe reactions.  

 

In addition to the importance of reactant placement into the nanoreactor sphere, the number of 

molecules matters. While simulation size is limited due to the expensive nature of AIMD, such 

that a full explicit solvent shell within the nanoreactor is impossible with current hardware and 

methods, sufficient solvent must be present to describe solvent-solute interactions, such as proton 

transfers in aqueous medium. If only one key reactant is used at the center of the sphere, then bi-

molecular reactions between replicates of the key reactant are inherently impossible. Special 

consideration must also be made when considering how many of other reagents, such as base, are 

used. If using around three co-reactants, perhaps this is sufficient to interact with the key reactant 

without significantly increasing simulation time. Ultimately, there is a balance of the number of 

reactants and solvents used and the simulation time. For example, using fewer solvent molecules 

may speed up simulations, resulting in the ability to run multiple additional trajectories, thereby 

increasing potential reaction observations.  

 

A key nanoreactor variable is the choice of simulation temperature (T), which effectively 

determines how much energy the reactants have. Sufficient temperature is needed to quickly 

dissociate intermolecular interactions, but not so much as to break C-C bonds by temperature 

alone. Simulating at room temperature is drastically too cold to observe any reactions in a month 

of simulation time. For exploring organic reactivity, simulations often used a time step of 0.5 fs 
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with a Langevin thermostat set to 1000 – 2000 K, and a friction coefficient of 3.3 ps-1. While choice 

of thermostat, time-step and friction coefficients may influence reactivity efficiency, it is unlikely 

to change the outcomes as much as temperature choice, based on our experience. In some cases, 

at 2000 K, decarboxylation was observed to occur spontaneously, and at 3000 K, organic 

molecules completely exploded! 

 

The second set of key nanoreactor parameter choices are the boundary radii for the two time 

periods. In the first time period, the initial boundary radius (R1) must be large enough to allow for 

molecules to spread out. If this radius is too large, then the boundary molecules are accelerated 

inward with massive speeds, due to the additional potential applied to molecules in the second 

time period. This results in explosive reactions! Modifying R1 was more relevant than significantly 

decreasing the force constant used to accelerate molecules inward. I found initial boundary radius 

(R1) and second boundary radius (R2) were best chosen to be ~1.5–2× and ~0.8× that of the smallest 

initial radius used in Packmol. Reactivity can be further tuned by adjustment of the R2 parameter, 

where smaller values of R2 result in higher-energy collisions and greater frequency of generated 

reactivity, although the reaction pathways found in this way tended to have higher activation 

energies after refinement. If R2 is too small, then all the reactants are crammed into a small space 

and essentially pulse and fragment. If R2 is too large, then reactants are not accelerated inward with 

enough force to induce reactivity. Mass-weighted force constants k1 and k2 can also be tuned, in a 

similar fashion as described in the radii boundary conditions. 

 

Finally, another nanoreactor parameter to tune is the time conditions – the duration for the first 

period of the nanoreactor where the molecules spread out, and the duration of the second and 
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highly reactive period. While reactions may occur during the first time period, I generally found it 

better for molecules to diffuse in the first period, then collide and react in the second period. The 

more cycles of this diffuse and react period, the more reaction events observed. So, I optimized 

the time periods to be 1000 fs and 500 fs for t1 and t2 to induce the most reactivity in the shortest 

time. As an example, some of our simulations used a combination of the following parameters: T 

= 1500 K, R1 = 12.0 Å, k1 = 1.0 kcal mol-1 Å-2 amu-1, t1 = 1000 fs, R2 = 4.4 Å, k2 = 0.5 kcal mol-1 Å-

2 amu-1, and t2 = 500 fs. 

 

Additional to nanoreactor boundary condition choices, other factors influence the speed of 

calculations. The computational cost of ab initio molecular dynamics (AIMD) simulations is high, 

which limits simulations to a few tens of picoseconds for ~100 atoms when using a relatively 

inexpensive 3-21G basis set. Often, the level of theory for the nanoreactor simulations was B3LYP 

with a DFT-D3 dispersion correction, 3-21G Gaussian basis set, and SWIG-PCM polarizable 

continuum model of the aqueous reaction medium (ε=78.4), denoted as B3LYP-D3/3-21G/PCM. 

We considered B3LYP may outperform Hartree Fock (HF) for similar simulation times. The 

implicit solvent was used in our simulations to relatively stabilize our charged intermediate 

species, compared to gas-phase calculations, while still generating relevant reaction pathway 

information, and without significantly increasing computational time, which would be the case in 

adding additional explicit water molecules. Simulations utilized the TeraChem quantum chemistry 

software31–37 and were run on servers with an Intel Xeon CPU / Nvidia GPU (either E5-2630 v3 

CPU / GTX 980 Ti GPU or E5-2637 v4 CPU / GTX 1080 Ti GPU). Use of TeraChem allowed 

these simulations to run on GPU’s, which increases simulation calculation speeds in time 

compared to CPU’s.  
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Simulation parameters were varied as we searched for the optimal combinations that yielded 

chemically reasonable reactivity. The initial boundary radius (R1) and second boundary radius 

(R2) were chosen to be ~2x and ~0.7x that of the smallest initial radius used in Packmol. The 

temperature limits ranged from 1000 K to 3000 K. At the lower end of the temperature range no 

reactions were observed, whereas formation of H2 and CH4 from organic reactants was seen at 

the highest temperatures. Temperatures between 1500-2000 K tended to result in the generation 

of potentially relevant reaction pathways. Reactivity can be further tuned by adjustment of the R2 

parameter, in that smaller values of R2 result in higher-energy collisions and greater frequency of 

generated reactivity, although the reaction pathways found in this way tended to have higher 

activation energies after refinement. 

 

Sample  

Conditio

n 

T (K) 
∆t 

(fs) 
ɣ (ps-1) 

R1 

(Å) 

k1  

(kcal/mol/Å

2) 

R2 

(Å) 

k2  

(kcal/mol/Å

2) 

t1:t2 (steps) 
mH 

(amu) 

1 1500 0.5 6.7 10.0 1.0 4.0 0.03 1:9999 2.0 

2 1500 0.5 6.7 8.0 1.0 4.0 0.01 2000:1000 2.0 

3 2500 0.5 6.7 8.0 1.0 4.0 0.50 3000:1000 2.0 

4 2500 1.0 6.7 8.0 1.0 4.0 0.50 1500:500 2.0 

5 3000 0.5 6.7 8.0 1.0 4.0 0.50 3000:1000 1.0 

6 1000 1.0 1.0 10.0 1.0 0.1 0.01 1:9999 2.0 
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Supporting Table 2.1. Sample simulation conditions for the ab initio nanoreactor.  

∆t = time step, ɣ = friction coefficient, mH = hydrogen atomic mass. Sphere radii R1, R2, force 

constants k1, k2 and time intervals t1, t2 are described in the main text. 

 

3-D Renderings of Structures in Manuscript Reaction Schemes: 
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Supporting Figure 2.2: Details of reaction pathway LA– à HP-LA shown in Scheme 2.2a 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 0.2, ∆G‡ = 1.2 

Final 

 

∆E = -10.8, ∆G = -7.0 

O

O

O

O
O

HO O

O

O
HO
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Supporting Figure 2.3: Details of reaction pathway HP-LA à 3-APA– shown in Scheme 2.2a 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

  

 

  

O

O
O

O
HO O

OO

O
+ HO

Name 3D Structure 
∆E, ∆G 

(kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 37.0, ∆G‡ = 

33.5 

Final 

 

∆E = -51.4, ∆G = 

-55.8 
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Supporting Figure 2.4: Details of reaction pathway 3-APA– à 1 shown in Scheme 2.2b, 2d and 3 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

 

 

  

O

O

O

O

O O

O

O

O
OH

HO2

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 3.5, ∆G‡ = 6.0 

Final 

 

∆E = -3.6, ∆G = +0.8 
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Supporting Figure 2.5: Details of reaction pathway 1 à 2 shown in Scheme 2.2b 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 3.2, ∆G‡ = 1.5 

Final 

 

∆E = 2.9, ∆G = 2.9 

O O

O

HO

O
O

O O

O

O

O
OH
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Supporting Figure 2.6: Details of reaction pathway 2 à 3 shown in Scheme 2.2b 

Mechanism: 

 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4)  

Closed / Open shell: Closed 

 

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 59.1, ∆G‡ = 57.5 

Final 

 

∆E = -3.8, ∆G = -4.5 

O O

O

HO

O
O

O
O

O

HO

O
O
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Supporting Figure 2.7: Details of reaction pathway 3 à 3-HPPA2– shown in Scheme 2.2b 

Mechanism: 

  

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4)  

Closed / Open shell: Closed 

 

 

  

- AcOH
O

O O

O

O
O

O

HO

O
O

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 7.1, ∆G‡ = 5.1 

Final 

 

∆E = -2.1, ∆G = -7.7 
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Supporting Figure 2.8: Details of reaction pathway 3-APA– à 4 shown in Scheme 2.2c 

Mechanism: 

 

Method / Basis / Solvent: B3LYP / 6-31G* / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed 

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 6.8 

 

  

Final 

 

∆E = -33.1 

 

At wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4): 

∆E = -15.0, ∆G = -20.1 

O

O

O

O

O

O
HO

- H2O, AcO

H

H



 
 

110 

Supporting Figure 2.9: Details of reaction pathway 4 à 5 shown in Scheme 2.2c 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4)  

Closed / Open shell: Closed shell 

 

 

  

O

O
HO2

O

O

HOO

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 15.4, ∆G‡ = 17.6 

Final 

 

∆E = 7.5, ∆G = 10.9 



 
 

111 

Supporting Figure 2.10: Details of reaction pathway 5 à 3-HPPA– shown in Scheme 2.2c 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 1.3, ∆G‡ = 0.1 

Final 

 

∆E = -16.0, ∆G = -15.7 

O

O

HOO

- HO

HO
O O

O
H

OH
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Supporting Figure 2.11: Details of reaction pathway 1 à 3 shown in Scheme 2.2d 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed 

 

 

O O

OO

O

OH
O

HO O
O O

O

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 45.5, ∆G‡ = 41.4 

Final 

 

∆E = -0.1, ∆G = -0.8 
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Supporting Figure 2.12: Details of reaction pathway 3-APA– à 3-HPPA– shown in Scheme 2.3 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

 

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 24.8, ∆G‡ = 25.8 

Final 

 

∆E = -22.9, ∆G = -23.3 

 

O
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O

O
OH

O

O
HOO O

O
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Supporting Figure 2.13: Details of reaction pathway 3-APA– à 3-HPA– shown in Scheme 2.3 

Mechanism: 

  

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell  

 

  

O O

OO

H
O

O

O

HO

O

O

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 25.5, ∆G‡ = 25.6 

Final 

 

∆E = -29.5, ∆G = -30.1 
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Supporting Figure 2.14: Details of reaction pathway 1 à 3-HPA– shown in Scheme 2.3 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM(ε=78.4) 

Closed / Open shell: Closed shell 

 

 

O O

OO

O O

O

HO

O
H - AcOO

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 8.0, ∆G‡ = 6.4 

Final 

 

∆E = -11.0, ∆G = -14.0 
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Supporting Figure 2.15: Details of reaction pathway 3-APA– à 6 shown in Scheme 2.3 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

 

 

 

O O

OO

H
O

O O

OOH

O

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 7.4, ∆G‡ = 10.5 

Final 

 

∆E = –3.4, ∆G = 1.9 
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Supporting Figure 2.16: Details of reaction pathway 6 à 3-HPA– shown in Scheme 2.3 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

 

* Note: The final structure at the endpoint of the IRC calculation had a higher-energy 

protonation state, which we assumed would undergo PT with a negligible barrier. Therefore, 

final ∆E and ∆G values are calculated using the same product structure as Supporting 

Information Fig. 13. 

O O

OOH

O

O

O

O

OH

O

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 11.8, ∆G‡ = 9.6 

Final 

 

∆E = -22.4, ∆G = -26.7 
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Supporting Figure 2.17: Details of reaction pathway HP-LA à 7 shown in Scheme 2.4 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

 

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 55.1, ∆G‡ = 51.0 

Final 

 

∆E = -71.2, ∆G = -80.9 

O

O

O

O

H

OH
O

O + OH

O

– HO
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Supporting Figure 2.18: Details of reaction pathway HP-LA’ à 7 shown in Scheme 2.4 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

 

  

O

O

O

HO

H
O

– H2O O

O + O

O

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 62.0, ∆G‡ = 57.2 

Final 

 

∆E = -74.5, ∆G = -84.7 
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Supporting Figure 2.19: Details of reaction pathway HP-LA à 9 shown in Scheme 2.5 

Mechanism: 

  

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Open shell TS & intermediates, Closed shell products 

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 36.9, ∆G‡ = 32.7 

Final 

 

∆E = 32.6, ∆G = 28.2 

 

O
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O OH
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O

HO
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Supporting Figure 2.20: Details of reaction pathway HP-LA à 9 shown in Scheme 2.5 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Open shell 

 

† Computed using CDFT-CI single point calculations at the minimum energy crossing point.  

  

O

O

O OH

O

O HO

- H2O

OO

O

O

O

O

Name 3D Structure ∆E, ∆G (kcal/mol) 
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Supporting Figure 2.21: Details of reaction pathway 9 à 10 shown in Scheme 2.5 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Open shell 
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Supporting Figure 2.22: Details of reaction pathway HP-LA à 10 shown in Scheme 2.5, 

calculated using B3LYP 

Mechanism: 

 

Method / Basis / Solvent: B3LYP-D3(BJ) / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Open shell 
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Supporting Figure 2.23: Details of reaction pathway 10 à 3-HPPA2– shown in Scheme 2.5 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Open shell 
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3-D Renderings of Structures Related to Manuscript Reaction Search 

Supporting Figure 2.24: Details of HO- addition to 7 to form 3-HPA–, step 1/2 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

Name 3D Structure ∆E, ∆G (kcal/mol) 

Initial 

 

0.0 

TS 

 

Ea = 18.5, ∆G‡ = 21.6 

Final 

 

∆E = 11.7, ∆G = 16.4 
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Supporting Figure 2.25: Details of HO- addition to 7 to form 3-HPA–, step 2/2 

Mechanism: 

 

 Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell  

Name 3D Structure ∆E, ∆G (kcal/mol) 
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0.0 
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Ea = 0.8, ∆G‡ = 0.9 

Final 

 

∆E = -18.0, ∆G = -17.7 
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Supporting Figure 2.26: Elimination to Acrylate via 5-membered-ring TS with 2 K+ and 6 H2O  

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / TZVP / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 
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Supporting Figure 2.27: Proton Transfer Between Oxo- and Peroxo- Groups of HP-LA 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

Name 3D Structure ∆E (kcal/mol) 
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Final 

 

∆E = -0.3 
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Supporting Figure 2.28: Proton Transfer from C2H to 4-Peroxo to Form “Enolate” Intermediate 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 

 

Name 3D Structure ∆E (kcal/mol) 
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Final 
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Supporting Figure 2.29: Proton Transfer from C2H to 4-Oxo to Form “Enolate” Intermediate 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 
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Supporting Figure 2.30: Dissociation of “Enolate” Intermediate to Acrylate 

Mechanism: 

 

Method / Basis / Solvent: wB97X-V / def2-TZVPD / SWIG-PCM (ε=78.4) 

Closed / Open shell: Closed shell 
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Appendix 2 for O-Acetyl migration within the sialic acid side chain: a mechanistic study by 

the ab initio nanoreactor  

 

 

 

 

Figure S3.1. Reaction free energy and barrier for Neu5,9Ac2 O-acetyl migration cyclization step 

to 6-membered intermediate in C9-C7 acetyl migration, without an initial deprotonation step. 

Free energies calculated at ωB97X-D3/TZVP/PCM level of theory. 
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Figure S3.2. Nanoreactor reaction free energies and activation barriers for the de-O-acetylation 

and deprotonation of the C8-hydroxyl group in Neu5,9Ac2. (a) Hydrolysis of Neu5,9Ac2 to form 

Neu5Ac in the absence of an initial deprotonation step, as an initial de-O-acetylation step prior to 

acetylation at C7 or C8 positions. (b) Deprotonation of Neu5,9Ac2 at C8-OH by HO–, (c) 

Concerted protonation of C8-O– by H2O and OH– addition to the ester carbonyl, (d) De-O-

acetylation of Neu5,9Ac2-intermediate to form Neu5Ac, Free energies calculated at ωB97X-

D3/TZVP level of theory as described in the Methods section. 
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Figure S3.3. Full pathway of reaction and activation free energies for base-catalyzed O-acetyl 

migration of Neu5,9Ac2, Neu5,8Ac2 and Neu5,7Ac2 (green). Energies were estimated for a few 

glycerol rotation steps where transition states could not be found (orange) using electronic 

energies of torsion scans (Fig. S4). Free energies are calculated at ωB97X-D3/TZVP level of 

theory as described in the Computational Details. 
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Figure S3.4. Torsional electronic energy profile of glycerol rotations between 8 and 9 in the O-

acetyl migration from C7-OH to C8-OH. Energies in kcal/mol. This involved glycerol dihedral 

rotation about C8-C9, C8-OH proton rotation, O-acetyl dihedral rotation, followed by a final 

glycerol rotation about C7-C8. This approximates the barrier in this conformational change, as a 

single TS between each step with connecting endpoints was not found (the O-acetyl rotation was 

the most difficult). The maximum individual barriers in the forward and reverse directions are 

11.9 kcal/mol and 14.2 kcal/mol. Torsion scans were carried out at ωB97X-D3/TZVP level of 

theory as described in the Computational Details. 

 
Reaction Coordinate

E 
(k

ca
l/m

ol
)

Glycerol Rotation Energy Profile

8

8’

Rotation 
about C8-C9

C9-OH rotation

OAc
dihedral rotation

Rotation 
about C7-C8



 
 

136 

Figure S3.5. Umbrella sampling of each cyclization/O-acetyl migration step between Neu5,9Ac2, 

Neu5,8Ac2 and Neu5,7Ac2. Overlap of windows sampling over bond length is plotted above free 

energy profiles in red-dashed lines with estimated error bars shaded in orange, where each 

barrier is < 1 kcal/mol. Umbrella sampling was carried out at B3LYP/6-31G* level of theory as 

described in the Computational Details. 
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Appendix 3 for SARS-CoV-2 and MERS-CoV spike protein binding studies support stable 

mimic of bound 9-O-acetylated sialic acids 

 

Figure S4.1: MM-PBSA energies and decomposition analysis for Neu5,9Ac2, Neu5Ac9NAc and 

Neu5Ac in MERS-CoV S protein, with the top 3 binding residues are highlighted.  
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Figure S4.2: MM-PBSA energies and decomposition analysis for Neu5,9Ac2, Neu5Ac9NAc, 

Neu5Ac, Neu5,9Ac2α2-3GalβpNP, Neu5Ac9NAcα2-3GalβpNP and Neu5Acα2-3GalβpNP in 

all binding poses (A-D) of SARS-CoV-2 S protein, when available, with the top 3 binding 

residues are highlighted. Two binding energies are written, one averaged across MD simulations, 

and the second binding energy from the last equilibration step in the SOMD complex setup is for 

reference, where the ligands are close to docked locations. The exception is pose B with weak 

binding and only MM-PBSA energy reported for the SOMD equilibration step. Error bars are 

plotted from standard error of means. 
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Figure S4.3: Thermodynamic cycle to estimate binding free energies using MM-PBSA, with 

Neu5,9Ac2 in protein receptor as example. 
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Figure S4.4: Representative binding free energy difference of Neu5Ac — Neu5,9Ac2 in the 

SARS-CoV-2 S protein, where the transformation is listed as final – initial Sia. Left side plots 

display the MBAR and TI energies versus λ. Right side plots display the lower triangles for 

simulation overlap matrices, where the first off-diagonal quantifies the overlap of one simulation 

window with the next. Upper plots show analysis for the alchemical transformation of 

Neu5,9Ac2 to Neu5Ac when bound to the protein and in explicit solvent, and lower plots show 

results for this transformation in explicit solvent. The binding free energy difference of the 

Neu5,9Ac2 to Neu5Ac is taken as the difference in energies of the transformations in the bound 

and solvated systems. Multiple replicates are shown, when available. Plots excluded from 

analysis when MBAR and TI differ significantly, or in cases where the ligand unbinds during the 

simulations. 
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