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SUMMARY

A plate formulation for the inclusion of warping and transverse shear deformations is con-
sidered. From a complete thick and thin plate formulation, which was derived without ad hoc
assumptions from the three-dimensional equations of elasticity for isotropic materials, the bend-
ing solution, involving powers of the thickness coordinate z, is used for constructing a quadrila-
teral finite plate bending element. The constructed element trial functions, for the displacements
and stresses, satisfy a priori the 3-dimensional Navier-equations and equilibrium equations,
respectively. For the coupling of the elements, independently assumed functions on the boun-
dary are used. High accuracy for both displacements and stresses (including transverse shear

stresses) can be achieved with rather coarse meshes for thick and thin plates.

1. INTRODUCTION

Although the research on plate formulations and solutions has existed for more than 140 years,
a look at the recent literature shows that there are still possibilities for alternative formulations
and improving techniques [1-37]. The purpose of this paper is to give an additional point of

view on the solution of plate bending problems.

Plate theories are usually based on assumptions on stress, strain or displacement distributions
over the thickness of the plate [38-42]. However, these assumptions unfortunately lead to
inconsistencies in the plate theories. Assuming the displacement components u and v vary
linearly and the transverse displacement w is constant over the thickness of the plate, we can

not get a parabolic form for the shear stresses Ty,, 7, in the thickness direction. Therefore,

yz
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from the constitutive equations, we do not get transverse shear distributions which satisfy the

stress boundary conditions on the upper and lower plate faces.

The assumptions in the mentioned plate theories basically exclude the possibility of warping
and thickness changes. However, the transverse shear stresses come from the warping and
change of thickness terms, as it can be seen from the representations given in references [43,44]
or from the summary of the main results given below. So when we are looking for plate solu-
tions, which very accurately include transverse shear deformations and on the contrary neglect
the warping and change of thickness terms, which cause the transverse shears, we are left with a

basic contradiction.

Dealing with numerical approximations, one can ask whether it is possible to include the effects
of warping and thickness changes in plate formulations in a simple way. In reference [43], a
derivation of a thick and thin plate formulation without ad hoc assumptions was considered.

Membrane and bending solution parts for plates were analyzed separately.

For the analysis in this paper we want to consider only bending solution contributions. This
implies the assumption that the transverse loaded plate under consideration involves only minor
membrane solution terms. After a summary of different types of bending solutions, taken from
reference [43], a simplified plate theory for the inclusion of warping and transverse shear defor-
mations is given. Then the variational formulation and the discretization for a hybrid finite ele-
ment is discussed. From the literature on hybrid finite elements (see e.g. [7,45-48]) especially
the pioneering work of Pian [49-52] has to be emphasized. Since the trial functions for the con-
sidered hybrid plate element satisfy the governing differential equations, the concept used for
the proposed plate bending element can also be seen as Trefftz-method [53-67]. (Taking this
point of view one could classify for example the hybrid crack element of Tong/Pian/Lasry [68]
as a hybrid Trefftz-element.)

The numerical examples include the analysis of a 3-dimensional plate model for which the

exact solution is known. The exact 3-dimensional solution is used to study the accuracy of the

numerical results obtained with the proposed plate element.

2. THREE-DIMENSIONAL PLATE BENDING SOLUTION REPRESENTATIONS

The solution of the Navier-equations can be decomposed into a homogeneous solution and a
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nonhomogeneous solution, where the nonhomogeneous solution takes nonvanishing body forces
into account. The homogeneous bending solution, with powers of the thickness coordinate z,

can be written as [43]

=, 9g__1 e T D

2pu = —z axG 3=y [ b%Z — 2(2—v) 3 ] axAG,
=y 9 a__1 oL 19

2pv = —z ayG ) [ h%Z — 2(2—v) S ] Gy AG, (1)
_ 14

2uw = G + 2(1_V)ZZAG,

where G(x,y) has to satisfy AAG = 0 and 2u=E/(1+v). The displacement field (1) satisfies
both the three-dimensional homogeneous Navier-equations and the homogeneous stress boun-
dary conditions on the upper and lower faces of the plate (i.e. on z = *h/2). The second

homogeneous solution part can be written as [43]

2uu = & Sin w,Z
(] ay nZ,
0gn
2pv = — axn sin w,Z, 2)
2pw = 0,

where g,(x,y) has to satisfy Ag, — w2 g, = 0and w, = nwh (n=1,35,....).

The third homogeneous solution part is [43]
2pu = —G, [a2cosh gz + b Zsinh q2 + c cosh q2 + d sinh g2 ],

2pv = —Gy [ a2 cosh g2 + b Zsinh g2 + c cosh qZ + d sinh qZ ], 3)
| . ) ( ) )
2uw = G| at(3—4v) cosh g2 — g2 sinh qi} + b’l(3—4v) sinh g2 — qZ cosh qij

—cqsinhqz —dqcoshqz],

where G(x,y) has to satisfy AG + q?>G = 0 and 2=z+h/2. From the stress free boundary con-
ditions on the upper and lower plate faces, the characteristic equation gh —sinh gh = 0 is
derived and used to obtain an infinite series of complex eigenvalues. For every eigenvalue q,

one can compute the according eigenvector [a, b, c, d]'.

In addition to the solution parts satisfying homogeneous stress boundary conditions on the
upper and lower plate faces, we need a solution part for the nonhomogeneous stress boundary

conditions. These particular solutions for chosen load distributions can be constructed with the
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aid of a function g(x,y), which satisfies the higher order differential equation A"g = 0. The
value of n depends on the order of the load function. For the example of a constant normal
load on the upper face of the plate, the solution is obtained from a function g(x,y), which satis-

fies AAAg = 0, and is given in the next paragraph.

More details as well as the derivation of a nonhomogeneous solution of the Navier-equations
for plate bending (in the case of a constant body force acting in the thickness direction) are

given in reference [43].

The three-dimensional solution representations, briefly described above, can be used for numer-
ical approximations. In order to get a finite element algorithm for plate bending with warping,
the three-dimensional solution representations are reduced to a simplified plate theory, which is

discussed in the following paragraph.

3. A SIMPLIFIED PLATE THEORY FOR THE INCLUSION OF WARPING

The only assumption for this theory is that for a plate bending problem the major solution con-
tributions can be sufficiently approximated by the solution terms involving powers of the thick-

ness coordinate z. The homogeneous solution part of this type can be written as [43]

N P P IIRY e B
2uu = —z ——G W) [ b%Z — 2(2 v)3 1 aXAG,

_ 051 PR A B
2 = 256 - 5 [bz - 22-v)7-] 3720
2uw = G + 2(1"_v) 72 AG,

- 1 __1 2 o2 8
Ox = 752 [ Gn + ¥Oyy | = 75 [W2 — 2215 ] 754G,

1 1 2 . 92

oy = —752[ Gy + O] - ) [ b2 —2(2—v)?]'5“y-2—AG, 4)
oy =0,

_ 1 % spg o nEy B
Tay = <20y (=) [ bz —2(2 V)3 ] axayAG’

_ 1 h? . 3
= 21-v) [2 — 515746,

_ 1 .8
2T (1) [2 -7 1 ay 2O



where G(x,y) has to satisfy
AAG = 0. ()

If we neglect in the representation (4) all terms which involve h2, 22, z%, we get with
G(x,y)/(2pn) = w(x,y) the relations for the Kirchhoff-plate theory.

In order to make a comparison with the Reissner-Mindlin-type of displacement fields used for

finite elements, we write the displacement field of relationships (4) in the form

2—v d
= — + —A
2—y d
= — +zZ7 ——— —A 6
V= 2@+ P o CAWGY), ©)
=W + —2X—722A
w (x,y) 21— W(x,y),
where the substitutions
O(x,y) = =1 G(xy) + —— AG(xy) ] )
2p 4(1—v)
and
_ G(x,
Wey) = 230 ®)
have been used. Using Reissner-Mindlin displacement fields of the form u = -z O,(x,y),
v = -z @y(x,y) and w = W(x,y), we cannot obtain parabolic transverse shear distributions

in the thickness direction from the constitutive equations 0 = E e = ED u since u and v are
only linear in z. The formulation used in this paper includes higher order terms in z and pro-
vides, through the constitutive equations, parabolic transverse shear distributions over the thick-

ness.

Using the displacement representation of relationships (4), we include the effects of warping

and thickness changes. The evaluation of the transverse shear stresses from

Taz = 21(uy; + Wy)
®)

Tyz = 2p(Vy + Wy)

shows that the parabolic transverse shear distributions get their contributions from the warping
and change of thickness functions, whereas the Kirchhoff-type of displacement field
2pu = —zGy, 2pv = —2zGy, 2uw = G gives zero stresses Ty, and 7y, if computed from the

constitutive relationships (9).
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For the function G(x,y) in the solution representation (4), a set of linearly independent approx-
imation functions can be constructed and used for numerical computations. For a finite ele-

ment, the use of trial functions for G(x,y) will result in an element stiffness matrix.

In addition to the solution part (4) we need a particular homogeneous solution part for nonho-
mogeneous boundary conditions on the upper or lower plate face and/or a particular solution
for the inclusion of a body force. A particular homogeneous solution for a constant normal

load p on the upper plate face can be given as [43]:

2uu = fl-l’g [ 2=v)(42 — 3h2 Z) — 3(1—v)(x2 + y))z + i‘;hj 1,
2uv = 2L [ @v)(a2 - 307 2) —301-w)6 + ¥z + iihj 1,

2uw = —P— [ —8(1+v)z% + 24v(x® + Y922 + 12h% (1+v)22

16h3
+ 3(1-v)(x2 + ¥»)? — 6h? v(x% + y?) — ﬁi z],
O = ZE? [ 42+v)2 — (9+3v)x2 z — (3+9v)y? z — 3h%(2+v)z ], (10)
Oy = Z% [ 42+v)2 — B+W)x2z — (9+3v)y? z — 3022+v)z ],
Og= — —z-ﬁg (z + h)(2z — h)?,
Tay = 2h3 =B (1-v)xyz,

- 3P _
Tyz = e x(2z — h)(2z + h),
= 3B y(2z - h)(2z + h).
T = 2 ¥(2z = B)(2z + b)
For a constant body force T’z acting in the thickness direction, the following displacement field
has been derived [43]:

iz [ 42—v)Z — 3(1—v)(x? + y?)z — 2h%(1-v)z ]x,

2pu

2pv = -—f’— [ 42—)Z - 3(1—v)(x? + y)z — 2h%(1-v)z ]y, (11)

2pw = mih [ -8(1+v)z* + 24v(x? + y*)Z2 + 4h%(1+v)2?



— 203 (1+v)(x%2 + ¥?) + 3(1—v)(x2 + y?)?],

The particular solutions contain no free parameters and lead to an element load vector in a fin-
ite element algorithm. Other particular solutions can be derived. The construction of particular
solutions is discussed in detail in reference [43]. In this paper, the particular solution (10) is

used for illustrating the calculation of the element load vector.

4. VARIATIONAL FORMULATION

For the hybrid plate element considered in this paper, the following extended three-dimensional

displacement functional is used for an element i:

i = 1+ [TT (@ — u) dS' (12)
S,

where

o= [ [ L@T D" E (Du) - uF]dVi - [uT T s’ (13)

v 2 5

and

ul =[u,v,w]

i =[d,7w] (14)

TT = [Ty, Ty, T, |-

In this matrix notation, u is the displacement field for the volume V! of element i; D is a dif-
ferential operator matrix; E contains the elastic constants; F is a vector of given body forces; T
is the vector of prescribed tractions on the surface boundary portion Si; and i is a vector of
independently assumed boundary displacements, which are used for the coupling of elements
along the boundary portion Sf. and which are the same for two adjacent elements over their

common boundary.

In order to simplify the variational formulation, the displacement field u is decomposed into a

homogeneous solution part uy and a particular solution part u, according to
u=u, + u, (15)

For u, we will use functions constructed from the representation (4), whereas for u, (depending

on the loading) we can choose, for example, the functions given with relationships (10) or (11).
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The field uy, contains linear independent trial functions with free parameters, whereas there are

no free parameters in u,,.

The tractions T on the element boundary are related to the strains Du and the stresses o,

respectively, through the relationship
T = nEDu = no, (16)

where n is the matrix of unit normals on the boundary. From the decomposition of the dis-

placement field (15) follows the decomposition of the tractions, which can be written as
T="Ty+ Tp (17)

where T, = nEDuy and T, = nEDu,.

In order to get a simplified expression for the functional (12) we integrate I} by parts to

obtain:

M= — -;-u;,f [DTEDu,] dVi + [ %uE [nEDuy ] dS'
v §

- %u.’f [DTEDu, + F] dVi + fuy [nEDu, ] dS'
v! S!

1 i, ol -
- J g [DTEDug] dVi + { g [nEDu, ] dS (18)

— [uTF dVi - [ufT dS' - [uJT d§'
4 st 5

+ [TT (@ — u) dS.
S

The boundary of the three-dimensional plate element is the surface S. The surface S'is decom-
posed into two portions according to

S'= s+ st, (19)
where S} consists of the upper and lower faces of the plate where tractions T are prescribed,

and S consists of the lateral faces of the plate. Note that # is assumed on Sl. On those por-

tions of Si, which lie on parts of the boundary of the discretized structure, where displacements

u are prescribed, we will set @ = u.

The constructed displacement field u satisfies the Navier-equations



DTEDu = —F, (20)
and due to the decomposition of the displacements u into u, and u, we have the properties
DTEDy, = -0, (21)

—F. (22)

T
D"EDu,

The substitution of relationships (21) and (22) into (18) eliminates two volume integrals.
Further simplifications for the functional I1}; are possible since the satisfaction of the boundary

condition

T=T onSi (i.e.z= *hR) (23)
is also a priori ensured. Using the decomposition (17), our functions have the properties

T, =0 onSk (24)

T, =T on Sk (25)
Using the properties (21), (22), (24) and (25) the functional I} of relationship (18) can be

written as

D= — [2m,uf as ~ [1] u,a + [T7 6 aS + [T] ads (26)
s: S S S

+ terms without uy, Ty, and .

At this stage of the derivation, the terms in Hfil, which are relevant for the variation, are

reduced to area integrals over the lateral surfaces of the plate element.

Since the dependence of the fields uy,, Ty, up and Ty on the thickness coordinate z is known
from the representations (4), (10), (11) and the z-dependence of the coupling displacement
field can be chosen, the integration of the terms in (26) with respect to the thickness coordinate

can be done analytically. In order to carry out the integration in the thickness direction, (26) is

rewritten as
; 1 e ; e i
M= - [ [ Tyufazlari-f[ [ 18 u,dz]ar e
27 S o -he
w2 _ 2 :
+ [[ f T¥adz]dri+ [[ [ T ddz]dr
" -h2 r -hn2

+ terms without u,, T, and a,
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where I'! is the boundary of the midsurface of the plate element. The results for the integration

in thickness direction are given below (see paragraph 6). For the remaining integrals along the

boundary ', we can get exact results, if we use polynomials in x and y for u, and T,

5. THE VARIATIONAL FORMULATION IN DISCRETIZED FORM

Writing the discretized fields in the form

w] ruj u,
U, = [Vpl = lVIc, up = |Vvpi, (28)
Wh W Wp
E ] T, |
Xy [Tx Tx,
Tp= [Ty, | = Ty] ¢, Tp= |Ty |, (29)
.| |t T |
i=|vi=|Vig (30)
“ )
L
the functional (27) can be written as
H[ii= —%CTHC'F cfLgq —cTrp+ qTf'p+ terms without ¢ and q, (31)
where
m .
H = f f [TTU + T‘,'/rV + TJW ] dz dI*! (symmetric), (32)
T -h2
lvz .
L= [ [TTO + TV + TIW ] dz dI'}, (33)
I —hn2
wz 3
r,=f [ [Ty, + TSv, + Tw, ] dz dI, (34)
T -2
m - 3
J JOT T, dzdrt
r -h2
- m - .
rp=|[ JV'Ty dzdr|. (35)
I -h2 !
m - .
[ W', dzdr
I —h2
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¢ is the vector of free parameters, and q contains the nodal values of the element. From the

variation of (31) with respect to ¢! we obtain

~-He+Lq-r,=0, (36)
which gives us the relationship

c=H'Lq-H"r, (37)
The substitution of ¢ into (31) yields

m = _% TLTH'Lq-q"[L"H'r, -1, ] + terms without q (38)

so that the element stiffness matrix becomes
K=LTHL (39)
and the element load vector is

p=LTH r, -1, (40)

6. EXACT INTEGRATION IN THICKNESS DIRECTION

On the lateral surfaces of the plate the direction cosine n, vanishes so that the tractions reduce

to
Tx = oy + Teylly on Sl‘,
Ty = Tyhy + oy on S} (41)
Ty = Ty + Tylly on Sé

The homogeneous solution parts Ty , Ty , T, , and the particular parts Tx', Ty, Tz' can be sim-
plified accordingly. Using the representation (4), T, and w, are expressed with the aid of the
function G(x,y), which has to satisfy AAG = 0. As an example the case of uniform normal
loading on the upper face of the plate element is chosen for the illustration of the calculation of
an element load vector. For Ty, and u, the particular solution given with relationship (10) is
used. Since the functional behavior of Ty, up, Tp and u in thickness direction is now given,
we only need an expression for the coupling field i before we can integrate the terms in (27)
with respect to z. For the components of the vector i, the following short notation is used:
ii(z,8) = dy(s) z + Gx(s) 2 , ¥(z,8) = ¥1(s) z + Vo(s) 2, Ww(zs) = Wi(s) + Wy(s) 2. Full
expressions for the coefficient functions u;, u,, etc., can be taken from a discussion of the ele-

ment coupling given below (see paragraph 8).



-12 -

The integration in (27) with respect to the thickness coordinate z can now be carried out analyt-
ically and we obtain

h2 h2
J TTuydz= [ [Tg up+ Ty vy+ Ty Wy]dz= (42)
—h/2

[
= lvz{ 5h7 ( AGy AGy + AGy AGy, )

+ 168h° ( — Gy AGyx — Gy AGyy — AGy Gyy + AG, Gyy)

+ 6720h ( Gy Gyy — Gy Gyy )}

+v { 64h” ( AGy AGy; + AGy AGyy )
{
+ 168h° ( AG, G — AG; AG + 8AG, Gy, — 7AGy; Gy — TAGy Gyy — TAGyy Gy)
+ 6720h% ( — Gy Gy + Gyy Gy — 2Gy Gyy + AG; G )}

+ 27207 ( AG; AGy + AGy AGyy )
+ 1344h° ( AGy Gy + AGyg Gy + AGy Gyy + AGyy Gy)

+ 67200° ( Gy G + Gy Gy, — AG, G )] n,

(
+ {vzi 5h” (AGy AGyy + AGy AGyy )
+ 168h° ( — Gy AGyy — Gy AGyy — AG; Gyy + AG, Gy )

+ 6720h* ( Gy G4y — Gy G )}

+ v { 64h7 ( AGy AGyy + AGy AGyy )
+ 168h° ( AGy Gyy — AGy AG + 8AGy Gy — TAGyy Gy — TAGy Gyy — 7AGyy Gy )
]
+ 6720h% ( — Gy Gyy + Gyx Gy — 2G4 Gyy + AGyG)j

7
+ 27207 ( AGy AGyy + AGy AGyy)
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+ 1344h° ( AGy Gyy + AGyy Gy + AGy Gyy + AGyy Gy )

+ 6720h° ( Gy Gyy + Gy Gy — AGy G )] ny} / [80640(v—1)? 2]

and
h2 W2
J THadz= [ [Ty i+ Ty v+ T, w]dz (43)
-h2 -h2
where
wa [
[ T idz= l[zshS(v + 8)AGy, + 1120h%( Gy + vGy, )} n, (44)
—h/2

+ -28h5(v + 8)AGy,y, + 11200°(1 — v)Gy, ] n, ] iy (s)

|’ _
+ l h'(5v + 32)AGy + 168h°( G + vGyy )} ny

]
+ [ nise + 32)AG,, + 168h%(1 — v)Gyy } ny ] ii5(s) }/ [13440(v-1)],
)

{ :28h5(v + 8)AGyy + 11200%(1 — v) Gy ] iy (45)

+ | 2803 + 8)AG,, + 11200 Gy + v ) ] n, ] #1(s)

[ -
+ l B(5v + 32)AGy, + 168h5(1 — v) Gy ] n,

+ [ 675w + 32)AG,, + 16805 Gyy — vGyy ) ] n, ] #,(5) i / [13440(v—1)],
J

h22
{/2 T, W dz = {{20113 AGy ny + 2003 AGy n, ] W1(s) (46)

+ [h5 AGy n, + b5 AGy n, ] Wy(s) }/ [240(v—1)].
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The remaining terms in (27) contain the particular solution vectors up and Ty. The integration
with respect to z is explicitly carried out for the example of a constant normal load p on the
upper face of the plate element. Using the particular solution functions given with relationships
(10) and noting that Ty u, = Ty up + Ty v, + T, w, and Tpi=T, d+Ty V+T, W
we obtain

" (

{/2 Ty updz = p [[21h2(v2 + 7v — 8)AGy, + 840v(v — 1)Gyy + 840(v — 1)Gy ] n,

+ {2102 + Tv — 8)AGyy — 840(v — 1)*Gyy ] ny ] x (x2 + y?)

-+ { h(16v2 + 104v — 272)AGyy + 672h%v(v — 2)Gyy + 672h%(v — 2)Gy ] n,
L

+ 1 h*(16v% + 104y — 272)AGy,

1 )
. + 672h%v(—v? + 3v —2)Gyy ] ny | X l/ [2p13440(v—1)] (47)
I
P g |
J T, vpdz=p [[21112(1;2 + Tv — 8)AGyy — 840(v — 1)’Gyy ] n,
b2 ll_

+ -21h2(v2 + Tv — 8)AGyy + 840v(v — 1)Gx + 840(v—1)Gyy ] n, ] y (x2 + y?)

+ [ h4(16v2 + 104v — 272)AGyy + 672h%( —2 + 3v — 2)Gyy ] i,
+

h4(16v2 + 104v — 272)AGyy + 672h%v(v — 2)Gyy

1 )
. + 672h%(v — 2)Gy, } n, l y II/ [21n13440(v-1)] (48)
)

h22
_{/2 T, wpdz = —p [AG, ng + AGy n, } [70(v 1) + P + 1120%(x2 + ¥2)

— 13041 + v) } / [2p.4480(v—1)] (49)
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and

(
h2 _
[ T, dz = —p { () [ 112022 + v) + 140(3 + v)x? + 140(1 + 3v)y? ] n,
—h2 L

+ [ 280(1—v)xy } ny }

+ iy(s) [ -16h4(2 + v) + 21h%(3 + v)x2 + 21h%(1 + 3v)y? ] n,

+ [ 420201 —v)xy } n, ] i/ 2240 (50)
)
f VTy dz= —p i\"l(s) [ 280(1—v)xy ] ny
..h/z L
+ -112h2(2 + v) + 140(1 + 3v)x? + 14003 + v)y? ] ny ]
+ ¥y(s) { [ 42h2(1—v)xy ] - (51)
1]
+ [ 16h*2 + v) + 21h%(1 + 3v)x® + 21h%(3 + v)y? } n, J| I}/ 2240
)
h2

(
—{/2WTZ' dz = —piwl(s) [20(xnx+ yny) } + Wy(s) {hz(xnx+ yny ) ] }/40. (52)

7. SYSTEMATIC CONSTRUCTION OF LINEAR INDEPENDENT DISPLACEMENT AND
STRESS FUNCTIONS

In order to construct a set of linearly independent displacement and stress functions from the
homogeneous solution part (4), a complex representation of the real function G(x,y) is used.
The biharmonic function G(x,y) can be expressed with the aid of two complex functions ®({)

and x(!) in the form

G(x,y) = Re[ L @ + x ], (53)
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where { = x + iy . The partial derivatives of G(x,y) in the displacement and stress representa-

tion (4) can be written in terms of the complex functions in the following form:
Gy=Re[®+ (D +x ],

Gy=Im[®+ (D +x ],

y
Gy =Re[® + @ + (D +x ],

"

Gy=Re[® +® —{® —x],
Gy =Im[{®" + X ],
AG = 4 Re[ @' ], (54)

2 AG =4Re[D"],
0x

a mn
—AG = —4Im[® ],
ay

32 G
2 _AG=4Re[D],
P [ |

62 G ree
—AG = —4Re[D ],
P [@ ]
3>
AG= —4Im[ D ]
daxay

A simple choice for the complex functions is

N j

o) = Ty [%] (55)
=1

x(@) = gb- {Av, (56)
20 e

where [ =x+1iy, aj= a3, aj=a;+ B}, bj=1v;+ d; and c is a normalization factor
defined below (see equation (60)). The terms with the coefficients ay, by , by and By are
excluded from the series (55), (56), since they either do not contribute to the displacements

and stresses or they lead to rigid body terms.

The complex powers can be easily computed using polar coordinates r = Vx?+ y? and
0 = arctan(y/x); the resultant equation is expressed as follows:
Vi

[L]j = {-cl—;—]jcos jo +1i {-E-J sin j0. (57)

C
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The real and imaginary parts of (¢/c)l can be of course also written as polynomials in x and y,
giving the harmonic polynomials x/c, y/c, (x2—y2)/2, xy/c?, x(x2-3y?)/c, y(3x2—y?)/S3, etc.

The number of displacement function terms obtained from (55) and (56) is NFT=4N-3 . The
upper summation limit N in (55) and (56) is chosen such that NFT=NDF-3 , where (NDF-3)
is the number of degrees of freedom of the element minus the number of rigid body modes.

For the element considered in this paper NDF=24 , and N is chosen as N=6.

The real coefficients aj, Bj, vj, 8j can be arranged into one vector of free parameters ¢ in the
form cT = [ aT’ BT’ 'YT, ST ]'

For a quadrilateral element the origin of the local coordinate system is set at the center of the

element. The global coordinates (X, Yj) of the element center are
Xo = [ (X3 = X)XyY4 + (Xz — X9)X1 Y3 + (X1 — X3)XgY2 + (X4 — X)X3Y; 1,
(58)
Yo=[(Xz = X)Y3Ys + (X3 — XYYy + (X3 — X)Y,Y3 + (X4 — X3)Y1Y, Vd,
where
d= (X3 —X)(Ys — Yp) + (X4 — X)(Y; - Y3), (59)
and the X;, Y; (i=1,2,3,4) define the corner node points of the quadrilateral element in global

coordinates. For the calculations of the examples in this paper, the normalization factor ¢ was

chosen as

c= i—(rl + 1, + 13 + 1), (60)

where r; = V x? + yi2 (i=1,2,3,4). The local nodal coordinates x;, y; are measured from the

center of the element.

8. CONSTRUCTION OF THE BOUNDARY DISPLACEMENT FIELD a

With the choice of the independently assumed boundary displacement field @ = [ d, ¥, W i
we define the nodal values of the plate element. In order to get a coupling displacement field 1,
which is not too complicated, and to keep the number of unknown nodal values low, the fol-

lowing simplified boundary displacements are chosen:

2 L565) - gy (2 = 2005 160

a
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J 1
ay 4(1—v)

[ h%z - 2(2—v)§ 1 Gy(s),

W = W(s),

where s is a boundary coordinate on I'.

Wy
@ b Wy
w h;‘lx
Wx h qy
w.

y

hi .

h qy

Figure 1: Quadrilateral plate bending element

(61)

The quadrilateral plate bending element proposed in this paper has 24 degrees of freedom (Fig-

ure 1). At the corner nodes the unknowns are chosen to be w, wy, Wy, (hqu), (hzqy). The

values gy and qy characterize the magnitude of warping and are proportional to the shear forces

Q; and Qy. At each midside node the unknown is wy,.

The transverse displacement of the middle surface along the element boundary is chosen as

)
W(S) = NI(S) w; + N2(S) [—%:L] + N3(S) wy + N4(S) [aa_:’Jk ’

1

where
Ny(s) = 1 —3¢% + 283,
Ny(s) = 1[ £ — 262 + €],
Ny(s) = 382 - 283,

(62)

(63)
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Ny(s) = 1[ € - &1,
and

e D
£= 3. (64)

Note that 1 is the distance between node i and node k (Figure 1). In addition to (62), the nor-

mal derivative of the boundary deflection is chosen in the form

2L - Ny l—l + Ne(o) l—l 0 {a—W} : (65)
where

Ns(s) = 1 — 3¢ + 282,

Ne(s) = 4& — 4¢?, (66)

Nq(s) = 2¢% — &.

From (62) the derivative of W(s) with respect to s can be calculated as

s ™
B NiGs) wi + Ny(o) la_w |+ ME W+ MO 5 (67)

k

where
Nis) = T (-6t + 6 ),
Ny(s) = — 1 — 4¢ + 3¢,
(68)

Ny = 1 (6 - 62 ),

Ny(s) = 3¢% — 2¢.

The node values wg and w, can be substituted by the node values wy and wy using the relation

ship
[ow | [ow |
dn l_ [nx ﬂyHax l
I.al - l-ny nx] w (69)
Lo | Loy |
where
- Yk — Vi
. 1
Xy — Xj

(70)




i ) =

and

], m= \/(Xk - %)% + (yc — W> (71)

For the assumed boundary displacements @i and ¥ we need the partial derivatives Wy and Wy,
which can be obtained from the relationship

ow w

ax | _ [nx —hy an

w T ny nx] aw 72)

ay as
Using (65)-(72) we obtain

ow(s) _ ' ' w , (a 9
ax ——-Nlnywi+ [N5n3+ Nz ][T] 5—-N'2:|I’lx yl_:ll_Jl+N6nxla_Z-l
— N3 ny wp + lN7nx+N4n ] -ai] { 7—N4}nxny{%—y—]k, (73)
M_ N+ n. w: + N — N ] n [B_W + [N n2 + N HZ]{G_W] + Nt n I{_a_‘_w_]
ay 1 Mx WY l 2 yk x}i '_ 5ty 2 Yx l yJi 6 yk an
+ Ningw + | Ny N] {G—W] ¢ Nonzenon2 ][22 (74)
S S kS A S A 1 P

The boundary functions for gy(s) and Gy(s), which have the task of coupling the warping terms
along the element boundary and which are proportional to the shear forces Qy and Qy, are

assumed in the form

dx(s) = Ng(s) (qx)i + No(s) (qu)

(75)
gy(s) = Na(s) (qy)i + No(s) (qyx.
where
Ng(s) = 1 —§,
(76)
Ny(s) = &.

It is important to note that in the element stiffness matrix the diagonal terms associated to the
nodal values gy and q, become much smaller than the other diagonal terms when the plate
thickness becomes small in comparison to the other dimensions. In order to get good transverse
shear results for thick and thin plates, scaling of the element matrix has been used. Instead of
solving for gy and qy, the unknowns are chosen to be (h%q,) and (hzqy). This means that the

according rows and columns in the element stiffness matrix have to be divided by h? giving a
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diagonal term which is divided by h*. The associated values in the element load vector are also
divided by h2.

9. SOME REMARKS

The presented plate element can be considered as a 3-dimensional continuum element. Due to
the properties of the element trial functions, which a priori satisfy the equilibrium equations
and the stress boundary conditions on the upper and lower faces of the plate, the element stiff-
ness matrix and the element load vector can be obtained through the numerical evaluation of
line integrals along the boundary of the element midsurface. However, exact integration results
can be obtained by using Gauss-integration formulas, since the trial functions for G(x,y), which
are generated with the aid of the complex functions (55) and (56), are polynomials in x and y.
Formulas of different orders can be used for the matrices H, L and the vectors rp and fp, since
each of them contain polynomials of different orders. The symmetric matrix H requires the
highest order of Gauss-integration in order to get exact stiffness coefficients. A Gauss-

integration formula of the order n=7 was used for the examples.

An alternative to the use of Gauss-integration is to evaluate the boundary integrals analytically
once and for ever in terms of the nodal element coordinates. This can be done automatically
by using a symbolic manipulation program such as MACSYMA [69,70]. Using MACSYMA it
is possible to convert the obtained algebraic expressions directly into FORTRAN-statements so

that typing of the according FORTRAN-statements becomes unnecessary.

The stiffness matrix of the proposed 24 degree of freedom hybrid plate bending element has 3

eigenvalues equal to zero.
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10. NUMERICAL EXAMPLES
Simply supported plate

One quarter of a rectangular simply supported plate, with a constant normal load p=1 on the
upper plate face, was analyzed using the proposed 24-degree of freedom plate element. The
numerical results are compared with the exact 3-dimensional solution, which is taken from
reference [23]. The exact solution is given in form of an infinite series. The values for the exact
solution in the tables are computed for the upper summation limits m=21 and n=21. The
Stresses Oy, Oyy, and Ty, are taken at the upper face of the plate, whereas the shear stresses 74,
Ty, and the deflection w is calculated for the midsurface of the plate.

The boundary conditions for the 3-dimensional plate model are

wW=v=0gg=0onx=0andx=a (76)
and
w=u=gy,=0ony=0andy=b. 77

The boundary conditions for the finite element model are

=0 onx=0

€
[
g :
[
£
|

W=wy;,=¢g=0ony=0
(78)
0 onx = a2

k-
|
e
[

wy=qy =0 ony= b/2.
In Table I, the deflection at the center of the plate is given for different discretizations and

compared to the exact 3-dimensional solution. For every mesh, the numerical calculated value

for the energy is listed in Table I as well.

For a mesh with 64 elements, very good stress and displacement results have been obtained (see
Tables II, IIT). No percentage errors are given in the tables when the value for the exact stress is

ZEro.

Along the plate boundary y=0, the transverse shear 7y, has been calculated for z=0 at the ele-
ment corner nodes. For those boundary nodes, where two elements are coupled, two shear
values are given in Table III, and the error is calculated from the meanvalues of the shear

stresses of the adjacent elements. In Table IIT we see a good agreement of the transverse shear
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distribution in comparison with the exact 3-dimensional solution.

Table I: Deflection w at the center of a simply supported rectangular plate (a=6, b=4, h=0.2,

E=1, v=0.3, uniform load p=1) for different discretizations.

number of | energy w w error
elements (numerical) | exact [23] %
1 5994.1 2609.7 27214 | 4.1
4 7026.5 2750.4 2721.4 1.1

16 7051.2 2748.2 2721.4 | 0.98
64 6964.7 2730.03 2721.4 | 0.3

Table II: Results at the center of a simply supported rectangular plate (a=6, b=4, h=0.2,

E=1, v=0.3, uniform load p=1) for a discretization with 64 elements.

numerical exact (3-D) | error

64 elements [23] %
o | -120.3 -120.0 0.2
oy | -195.9 -195.1 0.4
Txy -0.0385 0.0
e -0.0556 0.0
Tyz 0.0496 0.0
w 2730.03 2721.4 0.3
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Table III: Transverse shear stress Ty, for a simply supported rectangular plate (a=6, b=4,
h=0.2, E=1, v=0.3, uniform load p=1, 64 elements) along the boundary y=0.

Tyz 00 y=0, z=0
X numerical exact error
[23] %

0.0 —0.0656 0.0
0.75 | 7.712 | 7.554 7.564 | 0.9
1.5 10.72 | 10.63 | 10.59 0.8
2.25 | 12.11 | 12.03 | 11.99 0.7
3.0 12.33 12.30 0.2

In the next test the influence of the thickness h on the accuracy of the results has been studied.
The results for a coarse mesh of 4x4 elements are listed in Tables IV and V. Good results are
obtained for both thick and thin plates.

Table IV: Deflection at the center of a simply supported rectangular plate (a=6, b=4, E=1,

v=0.3, uniform load p=1, 16 elements) for different thickness values h.

thickness numerical exact error
h solution solution [23] %
w 1 2.5381 * 10! | 2.6016 * 10' | 2.4
w| 0.8 47134 *10' | 47721 * 10! | 1.2
w| 06 1.0708 * 10> | 1.0738 * 10* | 0.3
w| 04 3.5000 * 10> | 3.4853 * 10> | 0.4
w | 02 2.7482 * 10> | 2.7214 * 10> | 0.98
w| 01 2.1910 * 10* | 2.1637 * 10* | 1.3
w | 0.01 2.1890 *107 | 2.1593 * 107 | 1.4
w | 0.001 2.1891 * 1010 | 2.1593 * 101° | 1.4
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Table V: Normal stresses at the center of a simply supported rectangular plate (a=6, b=4,

E=1, v=0.3, uniform load p=1, 16 elements) for different thickness values h.

thickness numerical exact error

h solution solution [23] %

oy | 1.0 -7.910 -8.076 2.1
oy | 0.8 ~1.234 * 10' | -1.246 * 10' | 0.9
oy | 0.6 —2.190 * 10! | —2.193 * 10! | 0.1
oy | 0.4 ~4.922* 10" | —4.898* 10" | 0.5
oy | 02 -1.973 * 10* | -1.951*10? | 1.2
oy | 0.1 —7.930 * 10 | -7.795 * 10> | 1.7
oy | 0.01 -7.971 * 10* | —=7.792* 10* | 2.3
oy | 0.001 —7.972 * 105 | —7.792 * 10% | 2.3
o | 1.0 —-4.761 —-5.153 7.6
o | 0.8 —7.499 —7.845 4.4
o | 0.6 -1.343 * 10' | -1.366 * 10! | 1.7
o | 0.4 —3.039 * 10! | —3.027 * 10! | 0.4
o | 0.2 ~1.215 * 102 | -1.200 * 10* | 1.2
o | 0.1 —4.821 * 10 | —4.790 * 10> | 0.7
o | 0.01 —4.775 * 10* | —4.786 * 10 | 0.2
oxx | 0.001 —4.774 * 105 | —4.786 * 105 | 0.3

It should be noted that the errors for the thick plate examples, with h=1 and h=0.8, are bigger
than for the other results in Table V, because for these cases the membrane stresses are already
recognizable. The normal stresses at the upper and lower faces of the plate have not the same
absolute value for these cases. From the exact solution representation [23] we get for the plate
with the thickness h=1.0 the following results: oy, = —8.076 for z= —h/2, oyy=7.958 for z=h/2,
and o5 =—5.153 for z= —h/2, 0,4, =4.878 for z=h/2. For the plate with the thickness h=0.8
the exact solutions are: oy,= —1.246 for z=-h/2, (yyy=1.234 for z=h/2,and o= —7.845 for
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z=—h/2, o4=7.57 for z=h/2. The stress results of the proposed element, which accounts only
for bending (so that the normal stresses at the upper and lower plate faces have the same abso-
lute value), appear to be closer to the exact 3-dimensional solution at the lower face of the

plate.
Clamped plate

For a clamped square plate, the convergence of the numerical solution has been studied. For
different discretizations, the energy and the maximum displacement have been calculated
(Table VI). The comparison values for w are calculated from an exact thin plate solution [71].
It should be noted that the element does not lock for a discretization with one element and only

one active degree of freedom (D.O.F.) left in the system.

Table VI: Deflecion w at the center of a clamped square plate (a=b=5, h=0.01,
E=10.92 * 10% v=0.3, uniform load p=1) for different discretizations.

number of | D.O.F. energy w w error
elements (active) (numerical) | exact [71] %
1 1 83.01 13.28 12.64 5.1
4 16 96.92 12.66 12.64 0.2

16 88 97.280 12.65 12.64 0.08

64 400 97.286 12.65 12.64 0.08

Mesh sensitivity test

In order to test the sentivity of the numerical results to the element shapes in the mesh, one
quarter of a clamped square plate has been analyzed with different mesh forms. For a coarse
mesh of 4 elements, the shape of the elements has been distorted with the aid of the parameter
A (Figure 2). No severe influence of the mesh distortion on the results can be observed from
Table VII. Even when two elements take almost the shape of a triangle (which means that the
discretized system practically looses degrees of freedom) the results for the chosen coarse

discretization remain acceptable.
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Table VII: Test on mesh sensitivity for a clamped square plate (a=b=10, h=0.01,
E=10.92 * 105, v=0.3, uniform load p=1, 4 elements) for different mesh distortion parameters
A (Figure 2).

A energy | center displacement | center displacement | error

w (numerical) w (exact [71]) %
-2.49 | 86.49 11.76 12.64 6.9
-2.0 90.86 12.09 12.64 4.4
-1.5 93.35 12.28 12.64 2.8
-1.0 95.08 12.43 12.64 1.7
0.5 96.31 12.56 12.64 0.6
0. 96.92 12.66 12.64 0.2
0.1 96.93 12.68 12.64 0.3
0.2 96.91 12.69 12.64 0.4
0.5 96.63 12.72 12.64 0.6
1.0 | 95.55 12.74 12.64 0.8
1.5 93.51 12.7 12.64 0.5
2.0 89.88 12.5 12.64 1.1
2.4 86.10 12.23 12.64 3.2
2.49 | 85.13 12.15 12.64 3.9

L
TN
¥2=35
> L

' ol
) L}

a/4 w4
Figure 2; Mesh distortion for clamped square plate (Due to symmetry with respect to x=a/2 and
y=a/2 only one quadrant is discretized).

oy
¥
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CONCLUSIONS

A simplified plate theory for the inclusion of warping and transverse shear deformations has
been discussed, and on its basis a 24-degree of freedom plate element has been derived. The
stress and displacement fields used for this element satisfy a priori the 3-dimensional Navier-
equations and equilibrium equations, respectively. High accuracy for both displacements and
stresses can be achieved using rather coarse meshes. Moreover, transverse shear stresses can be

calculated accurately for thick and thin plates.

For the discussed simplified plate theory, a complex function representation was used to obtain
compatible displacements and stresses so that the boundary element algorithm proposed in
references [72,73] is also applicable to the present plate formulation for the inclusion of warp-

ing.
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