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ABSTRACT OF THE THESIS 

 

Alignment Methods for Optical Maps 

 

by 

 

Jens-Christian Luebeck 

 

Master of Science in Computer Science 

 

University of California San Diego, 2019 

 

Professor Vineet Bafna, Chair 

 

 

 Optical mapping is a DNA physical mapping technique that can measure large-

scale structural variation in genomes and enables more accurate completion of genome 

assemblies. Particularly, we focus on the case where optical mapping is used to complete 

genome assembly on pre-identified segments such as may be found in a breakpoint 

graph. In this work we study methods for aligning optical map contigs with reference 

genome segments. This work introduces a novel method for optical map alignment that 

outperforms existing methods for aligning breakpoint graph reference segments to 

assembled optical map contigs. Also discussed are some additional modifications that can 

be made to the method.                                                                                                                                                             
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Introduction 

 The advent of DNA sequencing has enabled tremendous advances in the 

biological sciences over the past fifteen years and continues to do so today through 

innovations to sequencing technologies. New protocols for specialized DNA sequencing 

are being developed at a rapid pace. Additionally, new long-read sequencing techniques 

are emerging, enabling the interrogation of larger-scale genomic phenomena, such as 

complex structural variation. As next-generation sequencing (NGS) has been dominated 

by the short-read paradigm, it has left many interesting biological questions related to 

structural variation unanswered. Of paramount importance to understanding sequencing 

data is the production of high-quality alignments of sequencing reads with reference 

genomes.  

 This research deals with a technique orthogonal and complementary to DNA 

sequencing, called optical mapping. Optical mapping is a successor to older techniques 

of restriction enzyme mapping, which enabled the physical mapping of fragments of DNA, 

broken by restriction enzymes, using the fragment lengths. Instead, optical mapping uses 

a fluorescent labeling of restriction sites to keep large fragments of DNA intact. This 

enables the physical mapping of large fragments of DNA. The information provided by 

optical mapping does not contain base-level information like NGS, instead it provides a 

powerful orthogonal validation that can lend further support to structural variation 

suggested by NGS. 

 This thesis discusses the current technologies for optical mapping, primarily 

BioNano Genomics optical mapping, as well as current strategies for optical map 

alignment. A new algorithm for efficient alignment of optical maps given genomic reference 

segments is also developed. Our work will examine the performance of this method on 
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aligning amplified regions of tumor genomes to assembled contigs, specifically where a 

breakpoint graph of the tumor genome is known. 

 

1. BioNano Optical Mapping 

 BioNano Genomics optical maps are fluorescently labeled pieces of DNA, marked 

with sequence-specific enzymes (Hastie et al., 2013). The average fragment length varies 

based on sample preparation; however, for a typical mapping run, most maps are around 

200kb long. The BioNano protocol involves using at least 3 micrograms of input DNA 

(about 500,000 genome equivalents). Typically, cells are fixed onto an agarose plug. DNA 

is extracted, labeled and pushed through a nanofluidic channel, on which it is stretched 

out and imaged. The sample preparation process for a BioNano sample takes one to two 

weeks, however it is relatively inexpensive at around $700/sample. BioNano has two 

models of optical mapping machines currently available, Irys and Saphyr 

(www.bionanogenomics.com). The newer Saphyr instrument is capable of higher 

throughput at reduced cost. In the chemistry used by the Irys machine, DNA is labeled 

using a restriction enzyme nickase and repaired with a fluorescent nucleotide. The Saphyr 

chemistry relies on direct modification of nucleotides, and a fluorescent label is attached 

directly to the DNA, without cutting. This prevents the phenomenon known as fragile sites, 

where DNA may break if too many nicks appear in close proximity. The absence of fragile 

sites allows Saphyr molecules to be assembled into ultralong contigs, which can span 

chromosome arms. 

 The output of imaging the molecules with the BioNano analysis pipeline is a file 

containing the positions, in base pair units of imaged sites on the molecules. The 
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bioinformatic pipeline from BioNano performs image detection tasks related to sizing the 

molecules and identifying labelled positions. The detected optical maps can be  

assembled into a optical map contigs. Some properties of the BioNano molecules are 

listed in Table 1. While the Saphyr contigs tend to be much larger, there are still many  

small contigs produced, particularly in places where large repeated elements exist.  

 The measured molecules or assembled contigs can be represented as a sorted 

list of positive real numbers, indicating the relative position on the fragment of DNA where 

a fluorescent label was detected. Thus, in the context of this work we refer to optical maps 

not as images, but as the sorted list of positive real numbers, whose relative positions 

describe the presence of detected k-mer motifs from a reference genome. This 

representation of optical maps we also all to contain errors, such as the ones described in 

the next section. 

 

1.1. Optical Mapping Limitations 

 We now describe some of the current limitations in optical mapping, such as 

intrinsic error associated with the technology and the scale at which it is useful for 

detecting variation. As described in Table 1, the average label density of BioNano 

indicates that for Irys data, the spacing of labels is about one per 10kb. This means that 

structural changes inside that region are often impossible to detect, and furthermore, small 

structural changes encompassing one or two labels are also hard to detect due to 

measurement errors.   

 Enzymatic labeling of BioNano molecules and contigs is not 100% efficient. Some 

issues arise with false-positive and false-negative labeling of sites on individual molecules. 

For instance, in the Irys technology, on NA12878 BioNano data (Pendleton et al., 2015), 
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false positive label occurs with incidence 0.78 labels per 100Kb and false negative labels 

with an incidence ratio of 0.098. Fortunately, the incidence of false-positives is 

independent from across the genome, so when assembling molecules into contigs, the 

effective false-positive labeling rate on contigs is extremely low. For false-negative 

labeling, this is much more frequent and a systematic problem. False negatives can arise 

for two different reasons. The first being that the enzymatic labeling process may not be 

completely efficient and leave some sites unlabeled, in an independent fashion. For the 

same reasons as the independent false-positive labeling, this is not an issue on 

assembled contigs, where high coverage erases infrequent mislabeling. However, the 

other reason for false-negative labeling is due to limitations in imaging.  

 We briefly demonstrate why fluorescent labels within a certain distance are 

indistinguishable from each other given the current limitations of optics. Given that the 

wavelength of green light is about 540 nanometers, and a single of 10bp turn of a DNA 

double-helix is 34 angstroms, this implies 

 

There are approximately 1500bp of DNA contained in the wavelength of green light. When 

labels appear within this proximity, then they are nearly indistinguishable from one 

another, and thus are not detected. For this reason, false negative labels tend to cluster 

together tightly.  

 Our method leverages this property in scoring the alignments of optical maps to 

reference segments. In Figure 2, we can see that there is a sharp decline in label density 
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for NA12878 assembled contigs at around ~1500bp, while the Hg19 in silico digested 

reference genome indicates many restriction sites closer than that cutoff. 

 

2. Review of Current Methods for Optical Map Alignment 

 Among the earliest sequence alignment algorithms for optical mapping included 

-programming strategy for  

aligning pairs of distances between optical maps (Waterman, Smith, & Katcher, 1984).  It 

used a recurrence similar to classical Smith-Waterman alignment, however instead of 

aligning two strings, two ordered lists of numbers are aligned. They used a distance matrix 

to perform weighting of differences between aligned pairs of elements. 

 A separate strategy, produced by Thomas Anantharaman formulated a Bayesian 

maximum likelihood model for matching noisy mapping data, and coupled it with a 

dynamic-programming search method (Anantharaman, Mishra, & Schwartz, 1997). The 

method was designed primarily for smaller genomes. This method served as the 

underpinning for the BioNano Genomics RefAligner; a proprietary tool which performs 

alignment of BioNano Optical maps. RefAligner is very capable of aligning optical maps 

coming from larger genomes, though much of the work in the last 20 years has been done 

proprietarily. 

 Following the work by Anantharaman, a more recent updated algorithm from 

Valouev and Waterman in 2006 used the same dynamic-programming strategy as 

proposed in 1984, however with a more complex scoring function, which also maximizes 

the likelihood as a scoring function (Valouev et al., 2006). The process is simpler than that 

of Anantharaman, using a simple log-likelihood of two joint distributions, and scaled better 

for larger genomes. The maximum likelihood model suggested by Valouev et al. does not 
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take in to account any properties of the optical mapping technology itself and makes 

simplistic assumptions about the rates of false-positive and false-negative labels. 

 A tool very similar to  method was released by Mihai Pop and others 

called SOMA (Nagarajan, Read, & Pop, 2008). SOMA is lacking in sensitivity for many of 

the same reasons discussed previously (such as general assumptions about the input 

data), and has been outperformed by more recent methods. 

 A 2014 approach from Muggli et al., uses an FM-Index approach on the distances 

between pairs of labels in the maps to identify near-exact matches between reference and 

query (Muggli, Puglisi, & Boucher, 2014). This method has been published as tool called 

TWIN. This method, however, does not tolerate missing data and the errors typically found 

in optical mapping data. 

 Given the matching and optimal global search, the previously described methods 

do not perform well with combining fragmented local alignments, a major consideration 

when using this technology for detecting structural variation with optical maps.  

 A more recent method was released based on the BLAST methodology (Altschul, 

Gish, Miller, Myers, & Lipman, 1990) called OMBlast. The OMBlast method which seeks 

-and-

while seeding using k-mer matching, where a k-mer is a set of distances between pairs of 

points on a map (Leung et al., 2016). OMBlast shows high speed and ability to detect 

structural variants. Its performance on BioNano data is comparable to that of RefAligner 

in our findings, which we will discuss later on. OMBlast does have the potential to miss 

smaller local alignments, or error-containing alignments if a seed is not aligned. OMBlast 

also requires some user intervention in order to identify correct parameters when non-

standard alignment tasks are desired. 
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3. SegAligner 

 We introduce a novel method for aligning optical maps, SegAligner, which 

uses a dynamic programming strategy, with contig recruitment and E-value filtering to 

sensitively identify alignments of optical maps. We note that SegAligner tends to 

outperform existing methods, especially when the reference segments being aligned are 

smaller, have fewer labels, or have overlapping alignments with contigs. SegAligner 

leverages a number of properties of the BioNano data to improve estimates of the true 

number of labels expected at a given matching region. SegAligner is implemented in C++ 

and has multithreading support. It is publicly available on GitHub 

(https://github.com/jluebeck/AmpliconReconstructor). We discuss the various stages for 

this method next.  

 

3.1. SegAligner Algorithm 

 We utilize a dynamic programming (DP) strategy for aligning optical maps like 

Valouev, et al. and introduce a novel heuristic scoring function. Our scoring function 

accounts for the event that the labels predicted by multiple nearby in-silico reference 

appear as a single label on an optical map contig due to limitations of optics. That is, two 

labels on a BioNano molecule are measured as a single label given their proximity to each 

other. In order to determine the likelihood of observing any given local alignment by 

chance, SegAligner calculates an E-value in a similar fashion to BLAST (Karlin & Altschul, 

1990), extracting only significantly high-scoring alignments.  

 SegAligner takes as input the assembled optical map contigs and a set of in-silico 

reference genome maps. It outputs local alignments of the reference segments to the 

contigs. 
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 SegAligner creates an elementwise pairing of subsets of labels from a reference 

map and a query map. We define such an elementwise pairing of ordered subsets of labels 

to be an optical map alignment. To provide a score for an alignment, we first define a 

matching region. A matching region is defined as the region between two labels on a map. 

For example, j and i in Figure 3 constitute a matching region with size j - i and one 

unmatched label in-between. The alignment score for two matching regions depends on 

the size discrepancy of the matching regions and the number of unmatched labels in each 

matching region. SegAligner uses a dynamic programming strategy to identify alignments 

which maximize the sum of the alignment scores produced by the matching regions. Our 

optical map alignment tool implements the algorithm we designed shown in Figure 4. 

Algorithm 1 has complexity O(mn ), where  is the label lookback threshold (default 5). 

The lookback threshold causes the alignment to be performed like a banded alignment 

during the DP scoring matrix computation stage. 

 Let ] be the best score of aligning a subsequence of the first  labels on 

the contig with a subsequence of the first q labels on the segment. Where and  must 

be included in the subsequences. For a semi-global alignment, which is the standard case, 

the DP scoring matrix is initialized as 

 

The DP recurrence relationship for the alignment is given as: 

We describe the SegAligner method in the following high-level workflow: 
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SegAligner workflow: 

Inputs: Assembled optical map contigs, genomic reference segments. 

1) All-vs-all DP-scoring of reference segments and contigs. 

2) E-value calculation per segment to compute significant alignment score 

threshold, S* (described in section 4). 

3) Backtrack on contig-segment pairings having a best score above S*. 

4) Re-align segment with contig, barring previously used label pairings, while the 

max score is above S*, to extract multiple alignments (described in section 4.2) 

5) Contigs with significant alignments to reference segments undergo overlap 

alignment detection step (described in section 4.3) 

In tests on real datasets using breakpoint graphs identified for cancer cell lines 

using AmpliconArchitect (Deshpande et al., 2019), RefAligner and OMBlast can complete 

the alignment of breakpoint graph segments with contigs in approximately the same 

amount of time, but at reduced sensitivity than SegAligner, as shown in Figure 6B. 

SegAligner is much slower, however (Figure 6A). Given that a run of the BioNano 

instrument, including sample preparation, can take a long amount of time, we do not see 

this as problematic. As SegAligner does not use k-mer seeding like RefAligner and 

OMBlast, it guarantees deterministic and globally optimal output. 

 

3.2 Chained Alignment of Contigs with Connected Reference Segments 

If a breakpoint graph is provided as input to this alignment algorithm, and an 

alignment which must obey the breakpoint graph is desired, one can increase the 

complexity of the algorithm to output what we define as a chained alignment. A chained 
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alignment is here defined as an alignment of reference segments connected through a 

graph against an assembled optical map contig. We present an algorithm for this approach 

in Figure 5. 

In this form of the dynamic programming alignment, instead of a single reference 

segment, it iterates over multiple reference segments to create matching regions not just 

inside a single segment but also spanning multiple segments. This enables for the direct 

chaining of reference segments together, helping to solve the problem created by multiple 

un-linked local alignments. Such a task is useful for segments of the genome which have 

been chained together through a structure like a breakpoint graph. Breakpoint graphs 

encode a set of rearrangements which can transform one genome into another. In the 

case of cancer genome rearrangements, the breakpoint graph contains intervals of the 

genome, many of which have been amplified. A current problem in bioinformatics is the 

reconstruction of amplified regions of cancer genomes. We created a tool to identify 

putative rearrangements using NGS data, called AmpliconArchitect (Deshpande et al., 

2019). In order to validate or disambiguate suggested structures, we can use optical 

mapping.  

 

3.3 Computation of BioNano Label Collapse Probability 

We notice that labels less than 2000bp apart in the reference genome have a non-

zero probability of appearing as a single label on BioNano contig covering that region 

(Figure 1), which rises the closer they appear, due to limitations in optics. For a given 

matching region on the in-silico reference the expected number of unmatched labels in a 
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corresponding optical map contig is given by the sum of the probabilities that the 

unmatched labels have not collapsed in either direction.  

 

 

In the above equations,  refers to the probability that label  has 

merged with its right neighboring label. The equation above provides as sum of 

probabilities, which is an expected number of BioNano labels for a matching region in an 

in-silico digested genomic reference restriction map. 

 

3.4 SegAligner Scoring Function 

The scoring function used by SegAligner is based on heuristics and incorporates 

the BioNano label collapse probabilities we estimate above. The scoring function is 

 In this scoring function, matching regions start with a base score of 10000, then 

are penalized for the total number of unmatched labels in the matching regions, where the 

reference matching region unmatched label count has been reduced to the expected 

number of labels after label collapse ( . The score is also penalized by the 

absolute difference between the sizes of the matching regions, raised to the power of 1.2. 

We determined this value experimentally, using a variety of test values to identify a scaling 

factor that performed best on real test data, where the true alignments were known 
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beforehand. The choice to use 10000 as a base score was based on the approximate 

BspQI label density, so that the alignment score for true alignments and the total length of 

the alignment in base pairs would be approximately the same. 

4. Assessing statistically significant alignments

As the dynamic programming strategy for aligning optical maps produces a scoring 

matrix, it is necessary to create a statistical model to describe whether alignments found 

in the scoring matrix are significantly better scoring than random alignments. The E-value 

model for identifying high scoring alignments, developed by Altschul & Karlin, provides a 

powerful solution. We created an approximation method for the metric based on linear 

 

which we use to describe optical map alignments with scores above the 50th-percentile in 

a distribution of random best-scoring alignments. HSPs in this case are not necessarily 

statistically significant alignments. Then we derive a scoring threshold based on the E-

value model. 

 

4.1 Derivation of the P-value from E-value Model 

 Established by Altschul and Karlin, the E-value is defined as  

 

where E is the number of high- S (Karlin & Altschul, 

1990). K and  are constants specific to the segments being aligned, and m and n are the 

sizes of the assembled optical map and the reference segment, respectively. It follows 

that 
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This is a linear relationship, from which the values of  and  can be derived 

from the intercept and slope, respectively, of the linear regression. Similarly to 

BLAST(Altschul et al., 1990), the number of random high-scoring alignments, a, with 

S is given by a Poisson distribution. In this case, P(a) becomes 

 

This implies the probability, P, of finding at least one HSP for a given E is 

 

Therefore, the score cutoff corresponding to a given p-value, P, for an individual 

segment Si
* is  

 

 

4.2. Identifying Multiple Significant Alignments 

In the case that the DP scoring-matrix for a segment aligned with a contig contains 

an entry exceeding , SegAligner backtracks to form an alignment. The pairings of the 

labels in the alignment are marked as used. The segment and the contig are aligned again 

(a new scoring matrix is generated), however no previously used pairings can be re-used 

(the scoring matrix values for these pairings are set to an extreme negative value while 

the rest of the matrix is re-computed). SegAligner continues to re-align the segment with 

the contig until the best alignment score falls below the significance threshold.  
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4.3 Identifying Overlapping Alignments 

As high-scoring overlapping alignments will have lower total scores than high-

scoring global alignments, we developed a strategy to recover significant overlapping 

alignments between segments and contigs.  

After SegAligner first identifies high-scoring semi-global alignments with contigs, 

the same procedure is repeated for segment alignment and scoring, however the scoring 

matrix is initialized to only support overlapping alignments, and the scoring distribution is 

constructed again, for each segment against all contigs. SegAligner identifies all high-

scoring overlapping alignments whose alignment score exceeds the p-value threshold. 

In this case however, a small number of highest scoring alignments between 

relevant contigs (having alignments to one or more segments) are considered. If the 

overlapping alignment score scaled by the proportion of the segment aligned to the contig 

exceeds the significant alignment scoring threshold for a global alignment, the alignment 

 

 

5. Identification of Unaligned Contig Regions  

 In many cases, assembled optical map contigs may have high-scoring alignments 

with segments in the input set (e.g. breakpoint graph segment set), however, they may 

still contain some large (>40kb) unaligned regions along the assembled contig. We wish 

to detect the identity of such unaligned regions, as they may represent missing segments 

from the breakpoint graph contained on the amplicon or integration sites of the amplicon. 
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In order to detect the identity of the unaligned regions, we extract the unaligned 

regions of contigs having two or more high scoring alignments with graph segments and 

convert each extracted region to an individual BioNano consensus map (CMAP). 

SegAligner then aligns the unknown regions to the Hg19 in-silico digested reference 

genome, producing a scoring matrix for each of the unknown segments with each entry in 

the reference genome. By default, SegAligner extracts a total of 500 scores from the 

scoring matrices, the number of scores for each entry in the reference proportional to its 

length divided by the total length of the reference genome, multiplied by the number of 

scores desired to build a scoring distribution (N = 500). That is, the number of scores to 

extract for a given scoring matrix  is given by 

 

where  is the size of the current reference genome entry (in bp), and N is the 

total number of scores we wish to have in our distribution of scoring matrices. 

 

6. Parameterized Scoring Model 

We next propose a parametrized scoring function based on a maximum likelihood 

approach, which would serve as a substitute for our fixed scoring model. We have yet to 

resolve problems related to numerical underflow which arise when this solution is 

implemented, however, it is a theoretically more sensitive model than our current 

approach. We begin by defining some variables.  

-  be the k-th matching region on contig R. Its size is denoted .  
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-  is the k-the matching region on in-silico genomic segment Q. Its size is 

denoted .  

-  indicates the per-base rate of observed labels on the assembled contigs. 

-  indicates the per-base rate of observed labels in the reference genome. 

This quantity is determined empirically.  

 

 

- is the number of unaligned labels on  - ). 

- is the number of unaligned labels on  -negatives w.r.t ). 

-  is the per-base false-negative label rate on the assembled contig. 

-  is the per-base false-positive label rate on the assembled contig.  

-  is the standard deviation of the measurement error between labels on a 

matching region on an assembled contig and a matching region from the 

reference genome.  

 

 We can develop a likelihood ratio to describe the likelihoods that either a matching 

region constitutes a true alignment or is simple due to random chance. We define the true 

alignment hypothesis as  and the random alignment hypothesis as  For two matching 

regions,  the following variables govern the likelihood of each hypothesis; 

. The likelihood function is further conditioned upon . Thus, we 

have 

 

Thus the likelihood ratio is 
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We re-write the likelihood function  as a probability density function. Using the following 

derivation, we can show that for each hypothesis the likelihood ratio can be written as  

 

In an implementation of this method, the scoring function would become 

 

  Derivation of  

 Under the null-hypothesis, the matching regions , do not correspond 

genomically, which implies that their sizes are independent.  

 

Furthermore, all interior labels ( ) in the matching regions are assumed to be real 

under the null hypothesis. 

 We assume the distances between labels in both reference and assembled 

matching regions are exponentially distributed. The probability of observing a matching 

region of size  composed of the sum of  exponential random variables is given by 

a special case of the gamma distribution; the Erlang distribution. 

 

Similarly, for the probability of observing a matching region of size , composed of 

exponential random variables is given by 
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Thus 

 

 

 Derivation of  

 Under the alternative-hypothesis,  and  are no longer independent as they 

belong to corresponding genomic locations.  represent the false-negative & false-

positive labels observed on the contig matching region with respect to the reference. 

These quantities are still independent as they are created by independent processes. 

 

 

 

 

Thus 

 

 

 Calculation of terms in  

 Next we derive how to calculate each of the four probability terms in the likelihood 

ratio under each hypothesis.  

-  .  

The distribution of  given the label density in  follows an exponential 

distribution.  
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-  

We calculate  by assuming that the error model for a given  that 

has reference matching region of size  follows . This implies 

 

-  

This term is modeled as a Poisson process with shape parameter . 

Thus  

 

-  

This term is modeled as a Poisson process with shape parameter . 

Thus 
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Appendix 

Table 1. Properties of the BioNano technology for two comparable sequencing 
experiments. The columns indicate the property described for each instrument type and 
the sample name is listed next to the instrument type. Saphyr data tends to produce much 
larger contigs, spanning chromosome arms, though there are still many small contigs. 

 

 

  

Feature BioNano Irys (NA12878) BioNano Saphyr (HCC827) 

Molecule coverage 89x 142x 

Measured Label Density 10.1/100kb 17.3/100kb 

Reference Label Density 12.1/100kb 18.5/100kb 

Molecule N50 274.4 kb 263.9 kb 

Molecule Average Length 278.0 kb 257.3 kb 

Contig N50 4.2 Mb 46.6 Mb 

Contig Average Length 2.4 Mb 5.0 Mb 

Figure 1. Parametrizing the E-value model using linear regression. Random best-
scoring alignments for use in the model are included if they are above the 50th-
percentile of the distribution. An upper HSP cutoff is also set to remove potential true 
alignments from skewing the random model.  
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Figure 2. BspQI nickase labeling densities for measured data (NA12878) and reference 
in-silico data (Hg19).  

Figure 3. Representation of a partially aligned pair of optical maps. The matching region is 
indicated with dotted green. 
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Figure 4. Dynamic programming alignment of optical maps. b refers to the list of label 
positions on an assembled contig. P stores references for backtracking. U stores 
previously used pairings in prior alignments so that this method can be used to identify 
multiple different alignment. Lowercase delta refers to a lookback threshold, so that the 
alignment may be banded and sped up. S is the dynamic programming scoring matrix.  

Figure 5. Chained alignment for multiple reference segments in a dynamic programming 
strategy. Extending the same variables from Algorithm 1, X is a collection of reference 
segments, which are linked. 
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Figure 6. A. Runtimes for commonly used optical map alignment tools and 
SegAligner on AmpliconArchitect identified amplicons in four cell lines with 
cytogenetically validated amplicons. B. Percentage of contig aligned for assembled 
contigs in the cell lines from A. SegAligner finds generally more alignments for 
segments with contigs.   
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