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Optimal Dynamic Load-Altering Attacks Against Power Systems

Vaibhav Katewa and Fabio Pasqualetti

Abstract— In this paper we study dynamical load-altering at-
tacks in power networks, where an attacker aims to destabilize
the network by modifying a portion of the loads present in it,
and provide a provable method to design such attacks. From
a practical standpoint, dynamic load-altering attacks are easily
implemented by tampering with demand response and demand
side management services, and can greatly compromise the ef-
ficiency and reliability of the grid. From a technical standpoint,
dynamic load-altering attacks act as sparse perturbations to the
network matrices that alter key dynamical properties, thus con-
stituting a form of distributed or sparse controller for network
systems. We cast the problem of designing minimally-invasive
destabilizing load-altering attacks as a sparse stability radius
optimization problem, and present a numerical algorithm to
efficiently compute optimal destabilizing load-altering attacks.
This analysis provides a vulnerability map that identifies secure
and vulnerable loads in the power network. We illustrate our
results using the IEEE-39 bus system.

I. INTRODUCTION

Security concerns arise in all sectors of power systems,
from generation to distribution, control, and consumption
[1]–[3]. In the consumption sector, demand response and
demand side services, which are used by utilities to control
flexible loads in response to changes in grid conditions [4],
[5], can be the target of inexpensive, yet impactful, load-
altering attacks [6]. In this paper, we address the outstanding
question of characterizing and computing minimally-invasive
destabilizing load-altering attacks, which allow the operator
to identify the most vulnerable loads in the grid and, ulti-
mately, design preventive actions against these attacks.

From a system-theoretic perspective, dynamic load-
altering attacks can be modeled as perturbations to a subset
of parameters of the power system. The attacker’s objective
is to design such minimal perturbations to induce dynamic
instabilities. Then, the problem of understanding optimal
destabilizing load-altering attacks is effectively one of sparse
stability radius [7], which, in a linear setting, asks for the
smallest perturbation of the system matrix that satisfies a de-
sired sparsity pattern and renders the system unstable. In this
paper we extend the sparse stability radius results of [7] to
account for the singular dynamics arising in power systems,
and validate their utility using the IEEE-39 bus system.

Related work. The literature on cyber-physical attacks is
particularly rich of theoretical studies and practical cases [1],
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[8]. The case of (single-point) dynamic load-altering attacks
against power systems was first presented in [6], which
discusses the implementation details and the destabilizing
impact of this type of attacks. Subsequent works have
analyzed the ability to detect such attacks [9], as well as
the design of optimal attack inputs [10]–[13] and defense
mechanisms [14]–[16], among others. This paper comple-
ments this line of work by providing the theoretical and
algorithmic basis to design minimally-invasive, multi-point,
dynamic load-altering attacks, which destabilize the grid by
minimally modifying only a predefined subset of loads.

The literature on the stability radius of linear systems is
also relevant to this paper. The notion of 2-norm stability
radius was introduced formally in [17], [18]. Various bounds
and characterizations of unstructured, complex, and real sta-
bility radius were given in [17], [19]. Characterizations and
algorithms for the complex stability radius were presented in
[20]–[24]. The real stability radius problem is considerably
more difficult than its complex counterpart [17]. Several
bounds for the unstructured case are presented in [25], [26],
and a complete algebraic characterization of the structured
case is contained in [27].

Differently from the above works, we focus here on the
Frobenius-norm stability radius problem, which has received
substantially less attention. Notable exceptions are [7], [28],
which study explicitly the Frobenius-norm sparse stability
radius. In this paper, we build on the approach developed in
[7], and extend the framework to include the case of singular
linear dynamics, as they naturally arise in the study of multi-
point dynamic load altering attacks against power systems.

Contribution. The main contribution of this paper is
twofold. First, we formulate the problem of computing
minimally-invasive (as measured by the Frobenius norm),
multi-point, destabilizing dynamic load-altering attacks as a
sparse stability radius problem. Then, following the approach
in [7], we derive a theoretical and computational framework
to compute the sparse stability radius of singular linear sys-
tems, as they naturally arise in the study of power systems.
Second, we demonstrate our results numerically on a model
of the IEEE 39-bus power network, and we show how our
analysis allows the operator to identify the loads that are
most vulnerable to load-altering attacks, and to quantify the
effects of minimally-invasive attacks on different buses.

Mathematical notation. We use diag(A,B,C) to denote
a block diagonal matrix with A,B and C as the diago-
nal blocks. We let ◦ denote the Hadamard (element-wise)
product, vec(·) the vectorization operator, and ‖·‖F the
Frobenius norm. λ(A,B) denotes a generalized eigenvalue
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of the pair (A,B). The spectral abscissa of (A,B) is defined
as α(A,B) = max{real{λ(A,B) : λ(A,B) is finite}}.

II. PROBLEM SETUP

A. Power System Model
We consider a power transmission network consisting of

ng > 0 generator buses, nl > 0 load buses, and transmission
lines connecting these buses. Let nb = ng + nl denote
the total number of buses. Without loss on generality, we
assume that G , {1, 2, · · · , ng} are generator buses and
L , {ng+1, · · · , nb} are load buses. We make the following
assumptions about the power network:

Assumption 1: The transmission lines are lossless and
reactive power in the buses and transmission lines is absent.
Further, no loads are connected to the generator buses. �

Let θi and ωi denote the voltage phase angle deviation
and the frequency deviation at bus i. Further, let Mi > 0
and Dg

i > 0 denote the moment of inertia and the damping
coefficient of generator i, respectively. The generator dynam-
ics is modeled by the following linear swing equation [29]:

Miω̇i = Pmi −D
g
i ωi − P

g
i , i ∈ G (1)

where Pmi and P gi are the mechanical power input and
the power injection of the generator at bus i, respectively.
We assume that Pmi is controlled using a combination of a
turbine-governor controller and a load-frequency controller.
We model the two controllers together as a proportional-
integral (PI) controller [30]:

Pmi = −(Kp
i ωi +Ki

i

∫ t

0

ωi dt) = −(Kp
i ωi +Ki

iθi), (2)

where Kp
i > 0 and Ki

i > 0 are the proportional and integral
controller gains, respectively.

The linear power flow equations of the power network are:

P gi =

n∑
i=1

Lij(θi − θj), with i ∈ G,

−P li =

n∑
i=1

Lij(θi − θj), with i ∈ L,
(3)

where P li is the power consumption of the load at bus i, and
Lij ≥ 0 is the admittance of the transmission line between
buses i and j, with Lij = Lji. Note that Lij = 0 if there is
no line between buses i and j.

We consider two types of loads connected to load bus i
[31]. The first type is a frequency-sensitive load (ex. motor)
that changes with the bus frequency and is modeled by
Dl
iωi, with Dl

i > 0. The second type of load is frequency-
insensitive (ex. heating and lighting) and controllable, which
can be adapted freely in response to the network conditions.
This is denoted by P lci . Thus, we have:

P li = P lci +Dl
iωi, with i ∈ L. (4)

Combining equations (1)-(4) yields a dynamic model for the
whole power system:[

I 0
0 M̄

] [
θ̇
ω̇

]
=

[
0 I
L̄ D̄

] [
θ
ω

]
+

[
0
Ī1

]
P lc, (5)

M̄ = diag(−M, 0), L̄ = −L+ diag(Ki, 0),

D̄ = diag(Dg +Kp, Dl), Ī1 =

[
0
I

]
,

and M,Ki,Kp, Dg are diagonal matrices containing
{Mi,K

i
i ,K

p
i , D

g
i } for i ∈ G, respectively. Further Dl

and P lc are a diagonal matrix and a vector, respectively,
containing {Dl

i} and {P lci } for i ∈ L. θ and ω are vectors
containing {θi} and {ωi} for all the buses. Finally, L = [Lij ]
is the network Laplacian matrix with Lii = −

∑nb

k=1,k 6=i Lik.
Modeling the power system dynamics as a singular linear
system via linearization around the operating point is stan-
dard in literature [6], [12], [16].

B. Threat Model

We assume that an attacker is capable of changing the
controllable loads P lc connected to the load buses and it has
access to the frequency measurements ωi of the generator and
load buses. The attacker uses these frequency measurements
to vary the loads appropriately to make the power system
dynamics unstable. We consider that the attacker uses the
following proportional feedback law1:

P lci =

nb∑
j=1

Ka
i,jωj , with i ∈ L, (6)

where Ka
i,j is the proportional gain (in Joules) corresponding

to the attack on ith load based using the frequency of jth

bus. Note that, if ωj is not used (or not available) for
the attack on the ith load, then Ka

i,j = 0. We define a
binary structure matrix S ∈ {0, 1}nl×nb that specifies which
frequency measurement is available for performing an attack:

Ka
i,j =

{
0 if Si,j = 0,

∈ R if Si,j = 1.
(7)

The matrix S defines all possible structures for the measure-
ment availability and load attacks. For instance, if the ith row
of S is zero, then there is no attack on the ith load. Further, if
the ith column is zero, then the ith frequency measurement is
not available to the attacker. Typically, S would be a sparse
matrix if there are only a few attack locations. Further, we
can vary S to analyze the effect of attacks on different loca-
tions (see Section IV) The collective load control equations
(6) and sparsity constraints (7), respectively, yield:

P lc = Kaω = Ka
[
0 I

] [δ
ω

]
, (8)

Sc ◦Ka = 0, (9)

where Ka = [Ka
ij ], and Sc denotes the complement of S.

1The attacker can use other complex laws as well. However, for simplicity,
we focus on the proportional law in the paper.



The power system dynamics (5) with the dynamic load-
altering attacks (8) reads as

[
I 0
0 M̄

]
︸ ︷︷ ︸

E

[
θ̇
ω̇

]
=

[0 I
L̄ D̄

]
︸ ︷︷ ︸

A

+

[
0
Ī1

]
︸︷︷︸
B

Ka︸︷︷︸
∆

[
0 I

]︸ ︷︷ ︸
C

[θω
]

︸︷︷︸
x

, Eẋ = (A+B∆C)x. (10)

For convenience, we use the notations (E,A,B,C,∆)
henceforth, and let A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n.
Since E is singular, 10 represents a singular linear system.
The load-altering attacks perturb the dynamics matrix of
the power system from A to A(∆) , A + B∆C, and the
perturbation ∆ satisfies the sparsity constraints Sc ◦∆ = 0
(c.f. (9)). The dynamical system (10) is stable if and only if
the finite2 generalized eigenvalues of (A(∆), E) lie strictly in
the left-half complex plane. Therefore, the attacker’s goal is
to destabilize the power system by moving these generalized
eigenvalue(s) to the right-half complex plane.

Remark 1: (Uncontrollable and Secure Loads) It might
be possible that a portion of the loads at the load buses
are uncontrollable or secure and cannot be changed by
the attacker. We ignore such loads since they appear as
additional additive terms in (10), and do not play a role
in the destabilization of the network. Thus, P lc in (5) are
treated as load alterations by the attacker. �

III. OPTIMAL LOAD-ALTERING ATTACKS

The attacker’s goal is to find a perturbation ∆ such
that the system (10) becomes unstable. Besides this, it
also desires that such destabilization occurs by altering a
minimum amount of load 3. From (8), we observe that
‖P lc‖ ≤ ‖∆‖‖ω‖. Intuitively, the attacked loads is small if
‖∆‖ is small. Thus, the objective of the attacker is to find a
minimum-norm ∆ that destabilizes (10). This is also known
as the stability radius problem in literature [7]. We use the
Frobenius norm (instead of 2-norm, for instance) since it
captures the element-wise perturbation of ∆ (each element
corresponds to a attack on a particular bus using a particular
measurement) and also leads to a tractable analysis. We make
the following assumptions:

Assumption 2: The system (A,E) is stable, that is,
α(A,E) < 0, where α(·) denotes the spectral abscissa. �

Assumption 3: The matrix pencil A− λE is regular. �
Assumptions 2 and 3 are typically satisfied by the power

system (10). Since the generalized eigenvalues of (A(∆), E)
are continuous with respect to ∆, the minimum-norm ∆
that destabilizes the system (10) corresponds to the condi-
tion α(A(∆), E) = 0. This condition implies that: (i) at-
least one generalized eigenvalue lies on the imaginary axis
of the complex plane, and (ii) the remaining generalized
eigenvalues lie strictly inside the left-half complex plane. We

2Since E is singular, (A(∆), E) has generalized eigenvalue(s) at infinity.
3Other objectives could be to destabilize the system by (i) attacking

the minimum number of loads, or, (ii) attacking least costly loads, where
each load cost captures the difficulty of attacking the load. We defer such
formulations for future research.

reformulate the first condition as A(∆)x = jβEx, where
jβ, with β ∈ R, is a generalized eigenvalue and x is the
corresponding generalized eigenvector.4 We assume that the
generalized eigenvalue corresponding to the minimum-norm
solution is imaginary. The case when such eigenvalue is real
can be handled analogously. We ignore the second condition
since it is automatically satisfied by the minimum-norm
solution due to Assumption 2 and the continuity property of
the generalized eigenvalues. Based on the above discussion,
we formulate the following attack optimization problem:

∆∗ = arg min
∆, x, β

1

2
‖∆‖2F (11)

s.t. (A+B∆C)x = jβEx, (11a)
Sc ◦∆ = 0, (11b)

where (11b) follows from (9). Since the constraint (11a) is
not convex, the optimization problem (11) is also not convex
and can have multiple local minima. At a local minimum, the
condition α(A(∆), E) = 0 may be violated since there may
be some generalized eigenvalues of (A(∆), E) in the right-
half complex plane. Irrespective of whether α(A(∆), E) = 0
holds or not, a local minimum always provides an upper
bound to ‖∆∗‖F . Further, it may be possible that the con-
straints (11a)-(11b) are not feasible. In such cases, the system
cannot be destabilized by load-altering attacks. Finally, let
∆∗1 and ∆∗2 correspond to the solutions of (11) for sparsity
patterns S1 and S2, respectively. If S2 is a subset of S1 in
the sense that S2 ◦ S1 = S2, then ‖∆∗1‖F ≤ ‖∆∗2‖F .

Next, we develop a gradient based algorithm to obtain
local solutions of (11). We proceed in the following steps:

Step 1: To avoid computations in the complex domain, we
convert the constraint (11a) into the following real constraint:

(A+B∆C)X = βEXĪ, (12)

where X =
[
Re(x) Im(x)

]
and Ī ,

[
0 1
−1 0

]
.

Step 2: We use the Sylvester equation based parametrization
(see [32]) to reformulate (12) as:

AX − βEXĪ = −BG, (13a)
G = ∆CX. (13b)

Step 3: We handle the sparsity constraints (11b) by using
the penalty based optimization approach [33]. We relax the
optimization problem by dropping the sparsity constraints
and modifying the cost function in (11) to include a penalty
when these sparsity constraints are violated. The penalty
is imposed by weighing individual entries of ∆ using a
weighing matrix W given by

Wij =

{
1, if Sij = 1,

w� 1, if Sij = 0.

Using W , the penalized cost becomes JW = 1
2 ‖W ◦∆‖2F .

4With a slight abuse of notation, we use x to denote both the state of
(10) and a generalized eigenvector of (A(∆), E).



Based on the above steps, we reformulate (11) as:

min
G, β

JW =
1

2
‖W ◦∆‖2F (14)

s.t. (13a), and (13b) hold.

Next, we show that (14) is an unconstrained optimization
problem in (G, β). Since (i) A−λE is assumed to be regular
(c.f. Assumption 3), (ii) βĪ − λI is always regular, and
(iii) the spectrum of (A,E) and (βĪ, I) are disjoint (c.f.
Assumption 2), the Sylvester equation (13a) has a unique
solution X for any (G, β) [34]. Further, for any (G, β), (13b)
has a solution if CX has rank two. We make the following
assumption which holds generically for almost all (G, β):

Assumption 4: CX has full column rank, where X is the
unique solution of (13a). �

For a given (G, β) and under Assumption 4, we can solve
(13b) to obtain ∆, which, in general, may not be unique.
Since we aim to minimize 1

2 ‖W ◦∆‖2F , we choose ∆ as the
solution of the following quadratic optimization problem:

min
∆

JW =
1

2
‖W ◦∆‖2F (15)

s.t. (13b) holds.

Since Wij > 0, the optimization problem (15) is strictly
convex (under Assumption 4) and its unique global minimum
is obtained by solving the following Lagrange conditions:

W ◦W ◦∆ + Φ(CX)T = 0, (16a)
∆CX = G, (16b)

where the matrix Φ is the Lagrange multiplier of (15).
To summarize, using the Sylvester equation based

parametrization, we can freely vary (G, β) (under Assump-
tion 4) and compute the corresponding unique X using (13a)
and the unique ∆ using (16a)-(16b). This renders (14) as an
unconstrained optimization problem is variables (G, β).

Next, we compute the analytical expressions for the gra-
dient and Hessian of the cost in (14), which will be used
to solve numerically the optimization problem. Let g ,
vec(G), xv = vec(X), φ = vec(Φ), δ = vec(∆), and let the
free variables of (14) be denoted by z̄ , [gT, β]T. Further,
let e = [0, · · · , 0, 1]T ∈ R2m+1 and W̄ = diag(vec(W◦W )).

Theorem 3.1: (Gradient and Hessian) Define the follow-
ing Kronecker products:

B̃ = I2 ⊗B, Ĩ = Ī ⊗ E, Ã(β) = I2 ⊗A+ βĨ,

∆̃ = I2 ⊗ (∆C), X̃ = (CX)T ⊗ Im, X̄ =

[
W̄ X̃T

X̃ 0

]
,

and F =

[
(C ⊗ Φ)Tn,2

∆̃

]
.

Let U =
[
U1 U2

]
and V be the unique solutions of

UX̄ =
[
Imp 0

]
, and Ã(β)V =

[
B̃ Ĩxv

]
,

and let Ū1 and Ū2 be such that vec(Ū1) = UT
1 W̄ δ and

vec(Ū2) = UT
2 W̄ δ. Define Y =

[
0 0
I2m 0

]
+FV , Z = (UY )T,

Algorithm 1: Damped Newton descent for (14)
Input: E,A,B,C,W, g0, β0.
Output: Local minimum (∆, X, ω) of (14).

Initialize: z̄0 =
[
g0, β0

]T
, (xv0, δ0)← See line 3-4

repeat
1 β ← Update step size (see below);
2 z̄ ← z̄− βd, where (H +K)d = ZW̄δ ;

3 xv ← Vectorization of solution of (13a) ;
4 δ ← Vectorization of solution of (16a)-(16b) ;

until convergence;
return (∆, X, ω)

and

M =V T
[
(ŪT

2 ⊗ CT)Tm,p T2,n(CTŪT
1 ⊗ I2)Tm,2

]
X̄−1Y

− V TĨTÃ(β)−TFTUTW̄ δeT.

Then, the gradient and Hessian of JW in (14) satisfy

dJW
dz̄

= ZW̄ δ, and (17)

d2JW
d2z̄

, H = ZW̄ZT+M+MT. (18)
Proof: See the proof of Lemma 4.1 in [7].

Based on the above result, in Algorithm 1 we present a
damped Newton descent method to compute local solutions
of the optimization problem (14). Step 2 of Algorithm 1
represents the damped Newton descent step. In this step,
the Hessian H is required to be positive-definite. To satisfy
this property, we add the term K = εI −M −MT to the
Hessian, with 0 < ε� 1 [33]. Further, the step size β can be
updated using backtracking line search or Armijo’s rule [33].
If Assumption 4 is not satisfied in any iteration of Algorithm
1 (i.e., CX does not have full column rank), then we slightly
modify (g, β) randomly to ensure that it is satisfied, and
continue the iterations. Finally, we run Algorithm 1 multiple
times with different random initial conditions in order to
capture the global minimum of (14). However, notice that
finding the global minimum is not guaranteed.

IV. SIMULATION RESULTS

We study load-altering attacks on the IEEE 39-bus New
England benchmark system shown in Fig. 1. This network
consists of 10 generators and 29 load buses. The generator
inertia data (Hi) is taken from Table 5, Column 2, in [35],
and we use Mi = 2Hi

120π to compute the moments of inertia.
The transmission line reactance data is taken from Table
7, Column 4, in [36]. Since the lines are assumed to be
lossless, we compute the admittance as Lij = 1

Xij
, where

Xij is the reactance of the line between buses i and j.
We choose the generator damping coefficients as Dg

1 = 3,
Dg

2 = · · · = Dg
10 = 0.15, the proportional gains as

Kp
1 = 100,Kp

2 = Kp
3 = 45,Kp

4 = 10,Kp
5 = Kp

10 =
50,Kp

6 = Kp
9 = 40,Kp

7 = 30,Kp
8 = 20, the integral gains

as Ki
1 = · · · = Ki

10 = 60 and the load coefficients as
Dl

1 = · · · = Dl
10 = 0.1. For all simulations, the weight



G1

G6

G7G4G5G3G2

G10 G8

G9

Fig. 1. The IEEE 39-bus power network with 10 generators and 29
loads. G1 − G10 denote the generator numbers. (Image courtesy of
https://icseg.iti.illinois.edu/ieee-39-bus-system)

for constructing the matrix W is w = 104, and the stopping
criteria of Algorithm 1 is ‖dJWdz̄ ‖F = ‖ZW̄δ‖F < 10−5.

Single-point attacks: We consider attacks on a single
load based on the frequency measurements from generators
{1, 2, 3}. We compute the optimal attacks for all loads by
solving the optimization problem (14) individually for each
load by choosing appropriate weighing matrix W . Fig. 2
shows the 10 lowest (in terms of Frobenius norm) optimal
solutions among the ones corresponding to the 29 loads. Intu-
itively, these loads are the most vulnerable towards a single-
point attack since they represent the lowest load-change
required to make the power system unstable.5 This analysis
allows us to find a vulnerability map of the whole system.

Next, we show the time response of the power system as
the attacker increases the compromised load. We consider
an attack on load 11 based on the measurement from gen-
erator 1. The optimal attack value is ∆∗1,1 = −153.55, and
the remaining entries of ∆ are constrained to be zero. Fig. 3
shows the frequencies of generators 1 and 2 for three values
of ∆1,1 = {−152,∆∗1,1,−154.5}. The spectral abscissa for
these cases are α(A(∆), E) = {−0.18, 0, 0.11}, respec-
tively. As the system moves from the stable to the unstable
domain, the frequencies in the system become unbounded,
confirming that our solution is indeed the minimum-norm
destabilizing attack for the considered scenario.

Multi-point attacks: We now consider the case when the
attacker is capable of compromising the loads {11, 12, 13}
simultaneously. We assume that measurements from only one
generator are available, and compute the optimal attacks for
all the generators. The results are shown in Fig. 4. We notice
that the measurements from generator 8 are most effective

5Note that this ranking of the nodes according to their vulnerability may
change if the measurements are obtained from a different set of generators.

Fig. 2. The minimum load-change ‖∆∗‖F required for instability
corresponding to the 10 most vulnerable loads. A lower value of ‖∆∗‖F
indicates more vulnerability.

(a) ∆1,1 = −152

(b) ∆1,1 = −153.55

(c) ∆1,1 = −154.5

Fig. 3. Impulse response of the power system for three different values of
∆1,1. The plots contain the frequencies of generators 1 (blue) and 2 (red).

for the multi-point attack, since it corresponds to the lowest
load-change required for instability. The analysis can also
be used for multi-attack case that use measurements from
multiple generator/load buses. We omit an illustration of such
case due to space limitations.

Finally, we focus on the case when measurements from
generator 8 are used in the multi-point attack. In this case,
Algorithm 1 obtains the global solution (∆∗1,8,∆

∗
2,8,∆

∗
3,8) =

(−23.75,−62.34,−39.04). Fig. 5 shows an iteration of
Algorithm 1: as the iterations progress, the cost decreases
monotonically until the minimum is achieved.

V. CONCLUSION

We derive a theoretical and computational framework
to characterize and design minimally-invasive, multi-point,
dynamic load-altering attacks against power systems. Our



Fig. 4. The minimum load-change ‖∆∗‖F required for instability
corresponding to attacks on loads {11, 12, 13} and measurements from one
generator. A lower value of ‖∆∗‖F indicates more vulnerability.

2 4 6 8 10 12 14 16 18 20 22
2

4

6

8

10

12

14

Fig. 5. The cost JW as the iterations of Algorithm 1 progress. The
algorithm converges in 22 iterations.

results allow the operator to identify the most vulnerable
loads in the network, and to ultimately design targeted
protection mechanisms. From a technical perspective, this
paper extends the results in [7] to quantify the real, sparse
stability radius of singular linear systems, which arise in the
study of power and other mass distribution systems. Future
work includes using this analysis for developing a threat
mitigation strategy.
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