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Estimation of Radio Refractivity From Radar Clutter
Using Bayesian Monte Carlo Analysis

Caglar Yardim, Student Member, IEEE, Peter Gerstoft, and William S. Hodgkiss, Member, IEEE

Abstract—This paper describes a Markov chain Monte Carlo
(MCMC) sampling approach for the estimation of not only the
radio refractivity profiles from radar clutter but also the uncertain-
ties in these estimates. This is done by treating the refractivity from
clutter (RFC) problem in a Bayesian framework. It uses unbiased
MCMC sampling techniques, such as Metropolis and Gibbs sam-
pling algorithms, to gather more accurate information about the
uncertainties. Application of these sampling techniques using an
electromagnetic split-step fast Fourier transform parabolic equa-
tion propagation model within a Bayesian inversion framework
can provide accurate posterior probability distributions of the es-
timated refractivity parameters. Then these distributions can be
used to estimate the uncertainties in the parameters of interest.
Two different MCMC samplers (Metropolis and Gibbs) are ana-
lyzed and the results compared not only with the exhaustive search
results but also with the genetic algorithm results and helicopter re-
fractivity profile measurements. Although it is slower than global
optimizers, the probability densities obtained by this method are
closer to the true distributions.

Index Terms—Atmospheric ducts, genetic algorithms, Markov
chain Monte Carlo (MCMC) techniques, radar clutter, refractivity
estimation.

I. INTRODUCTION

AN accurate knowledge of radio refractivity is essential in
many radar and propagation applications. Especially at

low altitudes, radio refractivity can vary considerably with both
height and range, heavily affecting the propagation characteris-
tics. One important example is the formation of an electromag-
netic duct. A signal sent from a surface or low altitude source,
such as a ship or low-flying object, can be totally trapped inside
the duct. This will result in multiple reflections from the surface
and they will appear as clutter rings in the radar plan position
indicator (PPI) screen (Fig. 1). In such cases, a standard atmo-
spheric assumption with a slope of modified refractivity of 0.118
M-units/m may not give reliable predictions for a radar system
operating in such an environment.

Ducting is a phenomenon that is encountered mostly in
sea-borne applications due to the abrupt changes in the ver-
tical temperature and humidity profiles just above large water
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Fig. 1. Clutter map from Space Range Radar (SPANDAR) at Wallops Island,
VA.

Fig. 2. Trilinear M-profile and its corresponding coverage diagram.

masses, which may result in an sharp decrease in the modified
refractivity (M-profile) with increasing altitude. This will,
in turn, cause the electromagnetic signal to bend downward,
effectively trapping the signal within the duct. It is frequently
encountered in many regions of the world such as the Persian
Gulf, the Mediterranean, and California. In many cases, a
simple trilinear M-profile is used to describe this variation. The
coverage diagram of a trapped signal in such an environment is
given in Fig. 2.

The first attempt in estimating the M-profile from radar clutter
returns using a maximum likelihood (ML) approach was made
in [1] and was followed by similar studies, which used either a
marching-algorithm approach [2] or the global-parametrization
approach [3], [4]. The latter is adopted in this paper. The main
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Fig. 3. The four-parameter trilinear M-profile model used in this work.

purpose of these studies is to estimate the M-profile using only
the radar clutter return, which can readily be obtained during
the normal radar operation, without requiring any additional
measurements or hardware. A near-real-time estimation can be
achievedwithasufficientlyfastoptimizer.Moreover,information
obtained from other sources can be easily incorporated into
the Bayesian formulation, e.g., the statistics of M-profiles in
the region, meteorological model simulation results, helicopter,
radiosonde, or some other ship-launched in situ instrument
measurements.

To address the uncertainties in the M-profile parameter esti-
mates, determination of the basic quantities such as the mean,
variance, and marginal posterior probability distribution of each
estimated parameter is necessary. They can be computed by
taking multidimensional integrals of the posterior probability
density (PPD), which can be accomplished by a Markov chain
Monte Carlo (MCMC) sampling method within a Bayesian in-
version structure. MCMC is selected because it provides unbi-
ased sampling of the PPD, unlike global optimizers such as the
genetic algorithm, which usually oversample the peaks of the
PPD and introduce a bias [5].

Bayesian inversion is a likelihood-based technique which,
when combined with a powerful sampling algorithm such as
MCMC, can be an effective tool in the estimation of uncertainty
in nonlinear inversion problems such as the electromagnetic re-
fractivity from clutter (RFC) inversion. An alternative approach,
which does not make use of likelihood, is given in [6]. The like-
lihood formulations are based on those used in [7]. The MCMC
sampler employs a split-step fast Fourier transform (FFT) para-
bolic equation code as its forward propagation model.

II. THEORY

The M-profile is assumed range-independent, and a simple
trilinear profile is used to model the vertical M-profile (Fig. 3).
An M-profile with parameters is represented by the vector

, with the element being the value of the th parameter.
Each of these environmental parameters is then treated as an
unknown random variable. Therefore, an -dimensional joint
posterior PPD can be defined using all of the parameters. All of

TABLE I
NOTATION

the desired quantities such as the means, variances, and marginal
posterior distributions can be found using the PPD. A summary
of the notation used is given in Table I.

The -parameter refractivity model is given to a forward
model, an electromagnetic split-step FFT parabolic equation,
along with the other necessary input parameters such as fre-
quency, transmitter height, beamwidth, and antenna beam
pattern [8], [9]. The forward model propagates the field in a
medium characterized by and outputs the radar clutter .
This is then compared with the measured clutter data , and an
error function is derived for the likelihood function. In
previous global-parametrization approaches, this error function
was used by a global optimization algorithm such as the genetic
algorithm (GA), which would minimize and reach the
ML solution. Instead of GA, a likelihood function based on

can be used in a Metropolis or Gibbs sampler. This
makes it possible to get not only the ML solution but also better
estimates for the uncertainties in terms of variances, marginal
and multidimensional PPDs.

A. Bayesian Inversion

RFC can be solved using a Bayesian framework, where the
unknown environmental parameters are taken as random vari-
ables with corresponding one-dimensional (1-D) probability
density functions (pdfs) and an -dimensional joint pdf. This
probability function can be defined as the probability of the
model vector given the experimental data vector ,
and it is called the posterior pdf (PPD). with the highest
probability is referred to as the maximum a posteriori (MAP)
solution. For complex probabilities, global optimizers such as
the genetic algorithm or simulated annealing can be used to
find the MAP solution. An alternative to this is minimizing the
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mean square error between clutter data and the reconstructed
clutter . It is referred to as the Bayesian minimum mean
square error estimator and can easily be shown to be equal to
the vector mean of [10]. Both estimates are calculated
in this paper. Due to the fact that a noninformative prior is used,
MAP and ML solutions are the same and will be referred to
simply as ML from now on. The posterior means, variances,
and marginal probability distributions then can be found by
taking - or ( 1)-dimensional integrals of this PPD

(1)

(2)

(3)

Posterior density of any specific environmental parameter such
as the M-deficit or the duct height can be obtained by marginal-
izing the -dimensional PPD as given in (3). Joint probability
distributions can be obtained using similar integrations. For fur-
ther details about Bayesian inverse theory, see [10] and [11].

The posterior probability can be found using Bayes’ formula

(4)

with

(5)

The likelihood function will be defined in the next sec-
tion. The prior represents the a priori knowledge about
the environmental parameters before the experiment. There-
fore, it is independent of the experimental results and, hence, .
The evidence appears in the denominator of the Bayes’ formula
as . It is the normalizing factor for and is indepen-
dent of the parameter vector . A noninformative or flat prior
assumption will reduce (4) to

(6)

B. Likelihood Function

Assuming a zero-mean Gaussian-distributed error, the likeli-
hood function can be written as

(7)

where is the data covariance matrix, is the transpose,
and is the number of range bins used (length of the data
vector ). Further simplification can be achieved by assuming
that the errors are spatially uncorrelated with identical distri-
bution for each data point forming the vector . For this case,

, where is the variance and the identity matrix.
Defining an error function by

(8)

the likelihood function can be written as

(9)

Therefore, recalling (6), the posterior probability density can be
expressed as

(10)

The calculation of probabilities of all possible combinations
along a predetermined grid is known as the exhaustive search
and practically can be used for up to four to five parameters,
depending on the forward modeling CPU speed. However, as

increases further, it becomes impractical. Therefore, there is
a need for an effective technique that can more efficiently esti-
mate not only the posterior probability distribution but also the
multidimensional integrals given in (1)–(3).

C. Markov Chain Monte Carlo Sampling

MCMC algorithms are mathematically proven to sample the
-dimensional state space in such a way that the PPD obtained

using these samples will asymptotically be convergent to the
true probability distribution. There are various implementations
of MCMC such as the famous Metropolis–Hastings (or simpli-
fied Metropolis version) algorithm, which was first introduced
in [12], and Gibbs sampling, which was made popular among
the image processing community by [13]. They are extensively
used in many other fields such as geophysics [11] and ocean
acoustics [5], [14], [15].

To have asymptotic convergence in the PPD, a Markov chain
sampler must satisfy the detailed balance [16]. Markov chains
with this property are also called reversible Markov chains, and
it guarantees the chain to have a stationary distribution. MCMC
samplers satisfy this detailed balance. Moreover, we can set
up the MCMC such that the desired distribution (PPD) is the
stationary distribution. Hence, the sample distribution will
converge to the PPD as more and more samples are collected.
Global optimizers do not satisfy detailed balance, and they
usually oversample the high probability regions since they
are designed as point estimators, trying to get to the optimal
solution point fast, not to wander around the state space to
sample the distribution. On the contrary, an unbiased sampler
following MCMC rules will spend just enough time on lower
probability regions and the histogram formed from the samples
will converge to the true distribution.

Metropolis and Gibbs samplers are selected as the
MCMC algorithms to be used here. The working prin-
ciple for both methods is similar. Assume the th sample
is . In the -dimensional parameter
space, new MCMC samples are obtained by drawing from
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successive 1-D densities. Selection of the next MCMC
sample starts with fixing all
coordinates except the first one. Then the intermediate point

is selected by drawing a random value from
a one-dimensional distribution around . The new point

is then used as the starting point to update
the second parameter by drawing a value for . The next
sample is formed when all the parameters are updated
once successively. The difference between the two methods lies
in the selection of the 1-D distributions.

1) Metropolis Algorithm: In the more general
Metropolis–Hastings algorithm, the 1-D distribution can be
any distribution. However, in the simplified version, called the
Metropolis algorithm, the 1-D distribution has to be symmetric.
The most common ones used in practice are the uniform and
Gaussian distributions (a variance of 0.2 search interval is
used) centered around the . Likelihood is assumed to be
zero outside the search interval. After each 1-D movement, the
Metropolis algorithm acceptance/rejection criterion is applied.
The criterion to update the th parameter can be given as

Accept if
Reject else

(11)

The probability for any model vector can be calcu-
lated using (10).

2) Gibbs Algorithm: For Gibbs sampling, the 1-D distri-
bution is not any random distribution but the conditional pdf
at that point itself with all other parameters fixed. Therefore,
the th parameter is drawn from the conditional pdf

. For example, the
first intermediate point is selected by drawing
from the conditional 1-D pdf obtained by fixing all except

.
There are two possible advantages in this method. First of all,

this method is especially powerful in applications, where 1-D
conditional pdfs are known. Secondly, since the samples are se-
lected from the conditional pdfs instead of some random distri-
bution, Metropolis–Hastings acceptance/rejection criterion will
always accept any selected point. Unfortunately, these pdfs are
not known here and are found using exhaustive search, which
makes this method less attractive in RFC applications. For fur-
ther details, see [17] and [18].

Once the algorithm converges (see Section III-C), we will
have a set of samples that will be
used to form the PPD and any other desired quantity as ex-
plained in the next section.

D. Monte Carlo Integration

Monte Carlo integration method can be used to evaluate
(1)–(3). Notice that all of those equations are of the form

(12)

Fig. 4. Full implementation of the MCMC algorithm: (a) burn-in and initial
sampling phases in the original parameter space and (b) two parallel-running
samplers operating on the new parameter landscape after coordinate rotation.

where is a random variable with a pdf of and is
some function of . Monte Carlo integration [16] states that if
a large enough set of random values are drawn from its own
pdf, , the integral can be estimated as

(13)

One of the biggest advantages of using an MCMC sampler
comes from the ease at which the MCMC and the MC inte-
gration can be combined. Remembering that MCMC actually
samples the -dimensional posterior distribution , it
will be clear that once MCMC converges, the set of MCMC
samples can be directly used to calculate these multidimen-
sional integrals.

III. IMPLEMENTATION

The most attractive property of the MCMC algorithm is that
the result is guaranteed to converge to the true distribution
when a large enough set of samples is collected. However, clas-
sical Metropolis/Gibbs sampling can be slow computationally,
and some modifications are needed to make it faster without
affecting the end results. There are two main drawbacks of
MCMCs that decrease their speed, and they are discussed in
the following two sections.

A. Burn-In Phase

The first drawback is related to the distance between the
starting point and the high probability regions. Without any
prior information, the algorithm would start from a random

, which may be far from the high probability regions. This
is a concern since, unlike a global optimizer, it may take a
considerable number of iterations for the MCMC to reach the
high probability regions. Hence, it must be correctly guided or
initialized before the sampling is started. The classical MCMC
can be modified to include an initialization phase, which is
commonly referred as the “burn-in” phase [Fig. 4(a)]. In most
cases, the burn-in section itself is actually a global optimizer. A
GA or a fast cooling simulated annealing (SA) algorithm can
be good candidates. Both were used here and gave good results.
If a fast cooling SA is to be used, the temperature should be
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lowered until it reaches so that the Boltzmann distribu-
tion used for SA actually becomes the likelihood function itself
at that temperature [16]

(14)

B. Initial Sampling and Coordinate Rotation

The second drawback is based on the effects of interparameter
correlation. Recalling that there is freedom of movement only
in the directions parallel to parameter axes, it is hard to sample
highly correlated PPDs [Fig. 4(a)]. With only vertical and hor-
izontal movements allowed, it will take many samples to move
from one end to the other of the slanted high probability areas,
whereas it can be done with a much smaller number of samples
in an uncorrelated case.

The remedy lies in a rotation of coordinate in the -dimen-
sional parameter space [19]. Instead of applying Metropolis
sampling in the correlated parameter space, a new set of
uncorrelated parameters are defined by applying an orthog-
onal coordinate transformation that diagonalizes the model
covariance matrix . The rotation matrix is found by
eigenvalue-eigenvector decomposition of

(15)

where is a diagonal matrix containing the eigenvalues of the
covariance matrix, is the orthonormal rotation matrix, whose
columns contain the eigenvectors of , and is the rotated
model vector. The model covariance matrix is found using sam-
ples drawn from the PPD after the burn-in phase. Only a small
number of MCMC samples (about 1000) are enough to find C
due to its fast converging nature [5], [14]. This is referred to as
the initial sampling phase. After this phase, the parameter space
is rotated before the final sampling phase starts.

C. Final Sampling Phase and Convergence

The final sampling phase simply is composed of two inde-
pendent, parallel-running Metropolis (or Gibbs) samplers in the
rotated space, sampling the same PPD [Fig. 4(b)]. The algorithm
uses a convergence criterion based on the Kolmogorov–Smirnov
(K–S) statistic function of the marginal posterior distributions
[20]. s are calculated using (3) as each new sample is
drawn. A pair of , one from each sampler, is calculated
for each parameter . Then the K–S statistic is calculated for
each parameter as

(16)

where and represent the cumulative mar-
ginal distribution functions for the two parallel-running sam-
plers. The simulation is assumed to have converged when the
largest term is less than ( is used here). After
the convergence criterion is met, these two independent sets are
combined to form a final set twice as large so that the difference

between the true distribution and the estimated one is expected
to be even less.

To use the likelihood (9), the error variance must be esti-
mated. In this paper, an estimate for is calculated using an ML
approach. To find the ML estimate of the variance,
is solved and evaluated at the ML model estimate . This re-
sults in

(17)

itself is estimated using a global optimizer, usually the value
obtained at the end of the burn-in phase.

Equation (17) assumes the measurements at different ranges
are uncorrelated, which may not be the case. Gerstoft and Meck-
lenbräuker [7] suggested replacing with , number of ef-
fectively uncorrelated data points. More detailed discussion can
be found in [14] and [15].

Received clutter power can be calculated as given in [3], in
terms of the one-way loss term in decibels as

(18)

where is a constant that includes wavelength, radar cross-sec-
tion (RCS), transmitter power, antenna gain, etc. If these values
are known, they can be included into the equation. However,
one or more may be unavailable such as the mean RCS or trans-
mitter specifications. An alternative, which is used here, is dis-
carding these constant terms, which is done by subtracting both
the mean of the replica clutter from itself and the mean
of the measured clutter from itself before inserting them into
the likelihood function.

D. Postprocessing

After the MCMC sampler converges with a set of refractivity
parameters , a postprocessing section
is needed to convert the uncertainty in the M-profile into other
parameters of interest that could be used by the radar operator,
such as the propagation factor and the one-way propagation loss.

Assume an end-user parameter , which can be expressed
as a function of model parameters . The posterior
probability distribution of PPD can be simply calculated by
drawing a large amount of samples of from its own PPD and
calculating for each one. Then this set of can be used
to obtain the or perform any other uncertainty analysis
of using (1)–(3) and MC integration.

Since the usage of an MCMC sampler guarantees that
is a large enough set drawn from its

own PPD, this set can readily be used to obtain the statistics of
.

IV. EXAMPLES

This section is composed of both synthetic and experimental
examples. Four different algorithms, two of which are MCMC,
are first tested using synthetic data generated by the terrain par-
abolic equation program (TPEM) [8]. Then the data gathered
during the Wallops’98 Space Range Radar (SPANDAR) mea-
surement are analyzed using the Metropolis sampler and GA.
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TABLE II
SYNTHETIC DATA CASE: GA ESTIMATES AND METROPOLIS ALGORITHM RESULTS

Fig. 5. Initial sampling phase—convergence of the model covariance matrix
in terms of percent error.C later will be used for coordinate rotation.

A. Algorithm Validation

To validate the MCMC algorithms, a comparison with the true
distribution is necessary. The true distribution can be obtained
by using exhaustive search; however, it is extremely inefficient
and demands a large number of forward model runs. Even if
only 25 discrete possible values are assumed for each of the
four parameters used for the model in Fig. 2, the state space
consists of (390 k) possible states. A simple
range-independent trilinear model with only four parameters is
used since an exhaustive search would need around 10 000-k
forward model runs for five parameters. The number of forward
model runs needed for MCMC is proportional to the dimension
size, so as dimension size increases, it requires much fewer sam-
ples than the exhaustive search. The selected parameters are the
slope and height of the base layer ( and ) and the slope
and thickness of the inversion layer ( and ), as shown in
Fig. 3. Their test case values and the search bounds are given in
Table II. A standard atmosphere with a vertical refractivity gra-
dient (top layer slope) of 0.118 M-units/m is assumed above the
inversion layer. Parameters are selected in terms of the heights
and slopes instead of the classical heights and widths (such as
the frequently used inversion thickness and M-deficit) due to
their relatively smaller interparameter correlation.

The synthetic data are generated by TPEM at a frequency of
2.84 GHz, antenna 3-dB beamwidth of 0.4 , source height of
30.78 m, and radar clutter standard deviation of 10 dB, a typical
value reported also in [21]. Inversion is done using four different
methods for a range of 10–60 km.

Fig. 6. Final sampling phase: Kolmogorov–Smirnov statistic D for each
parameter. Used for the convergence of the posterior probability density.

The convergence characteristics of both MCMC algorithms
are similar. The results of the initial sampling phase are given in
Fig. 5 in terms of a convergence plot for the model covariance
matrix . The percent error is calculated as the average abso-
lute percent change in all matrix entries of as the matrix is
recalculated while new samples are taken. The matrix converges
quickly and for this case, only 250 samples were sufficient to
have a good estimate of .

After the rotation matrix is obtained, two independent
Metropolis/Gibbs algorithms run during the final sampling
phase until the convergence criterion given in Section III-C
are met (Fig. 6). Dosso [5] reported convergence in 7 10
(700 k) forward models with a Gibbs sampler and around 100 k
with a fast Gibbs sampler (FGS). Similarly, Battle et al. [15]
reported convergence in 63-k models using a less strict conver-
gence criterion, again with an FGS. Due to the modifications
in the Metropolis/Gibbs algorithms used here, they also can
be classified as “fast” samplers. Therefore, a typical value of
100-k models is in agreement with the previous applications of
MCMC algorithms. During the simulations, values as low as
20-k models and higher than 150-k models were encountered.

The marginal distributions of the four parameters are given
Fig. 7. Except for exhaustive search, the results for all others
are calculated using the MC integration. The exhaustive search
result [Fig. 7(a)] is obtained with 25 discrete values per param-
eter and 390-k samples, whereas both Metropolis [Fig. 7(b)] and
Gibbs [Fig. 7(c)] samplers use approximately 70-k samples and
the genetic algorithm [Fig. 7(d)] uses less than 10-k samples.
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Fig. 7. Marginal posterior probability distributions for the synthetic test case.
Vertical lines show the true values of the parameters. (a) Exhaustive search, (b)
Metropolis algorithm, (c) Gibbs algorithm, and (d) genetic algorithm.

The results of the Metropolis algorithm and GA are also sum-
marized in Table II. The MATLAB GA toolbox [22] is used for
GA results. It uses three isolated populations of size 40 each
with a migration rate of 0.025 per ten generations, a mutation
rate of 0.10 and a crossover fraction of 0.8.

All four algorithms have almost identical ML estimates for
the parameters. However, it should be noted that MCMC sam-
plers converged after collecting nearly seven times more sam-
ples than GA. On the other hand, the distributions obtained from
the MCMC samplers are closer to the true distributions given by
exhaustive search.

Marginal and two-dimensional (2-D) posterior distributions
obtained by the Metropolis sampler are given in Fig. 8. The di-
agonal pdfs are the 1-D marginal pdfs and the off-diagonal plots
are the 2-D marginal pdfs, where the 50, 75, and 95% highest
posterior density (HPD) regions are plotted, with the ML so-
lution points (white crosses). In Bayesian statistics, credibility
intervals and HPD regions are used to analyze the posterior dis-
tributions. They are very similar to the confidence interval and
their definitions can be found in [23].

B. Wallops Island Experiment

The Metropolis sampler is used to analyze the data collected
from the Wallops Island 1998 experiment conducted by the
Naval Surface Warfare Center, Dahlgren Division (Fig. 9). The
radar clutter data gathered by SPANDAR are inverted using the
Metropolis algorithm and the results compared with helicopter
measurements. Data used in the inversion were taken during
a surface-based ducting event on April 2, 1998 [24], [3], at a
frequency of 2.84 GHz, power of 91.4 dBm, 3 dB beamwidth
of 0.4 , antenna gain of 52.8 dB, 30.78 m above the mean sea
level (MSL), VV polarization, and 600 m range bins. Only data
between 10–60 km are used in the inversion. The results are
summarized in Table III.

Fig. 8. Both 1-D marginal (diagonal) and 2-D marginal (upper diagonal) PPDs
for the synthetic test case obtained by the Metropolis algorithm. Vertical lines
(in 1-D plots) and crosses (in 2-D plots) show the true values of the parameters.

Fig. 9. Wallops ’98 Experiment: SPANDAR radar and the helicopter
measurements (37.83 N, 75.48 W)

The same four-parameter model used in the synthetic
test case is selected. The marginal distributions obtained by
Metropolis and GA in Fig. 10 use 80- and 10-k samples, re-
spectively. Fig. 11 shows the 1-D and 2-D marginal PPD plots
obtained by the Metropolis algorithm.

The helicopter measurements at different ranges can be seen
in Fig. 12(a). Profiles measured at 10, 20, 30, 40, and 50 km
are all plotted in Fig. 12(b) together with HPD regions obtained
from the postprocessing of the 80-k Metropolis samples. These
HPD regions show the regions where the values of the trilinear
M-profile at various altitudes are expected to be. Therefore, it
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TABLE III
WALLOPS ISLAND EXPERIMENT (CLUTTER MAP 17): GA ESTIMATES AND METROPOLIS ALGORITHM RESULTS

Fig. 10. Marginal posterior probability distributions obtained using
SPANDAR data. (a) Metropolis algorithm and (b) genetic algorithm. Vertical
lines show the estimated optimum values of the parameters.

Fig. 11. Both 1-D marginal (diagonal) and 2-D marginal (upper diagonal)
PPDs obtained from the SPANDAR data obtained by the Metropolis algorithm.
Vertical lines (in 1-D plots) and crosses (in 2-D plots) show the optimum values
of the parameters.

roughly can be compared to the mean of the helicopter M-pro-
files measured at different ranges. This mean helicopter pro-
file is plotted together with the ML solution obtained from the
Metropolis sampler in Fig. 12(c).

The improvement obtained by the inversion is analyzed in
Fig. 13. The coverage diagrams (dB) in Fig. 13(a)–(c) are ob-
tained using a standard atmospheric assumption, helicopter re-
fractivity profile measurements, and the Metropolis inversion
results. Fig. 13(d)–(e) are difference plots and are calculated by
subtracting the dB coverage diagrams obtained by two different

Fig. 12. M-profiles 0–60 km: (a) helicopter measurements at different ranges,
(b) helicopter profiles (dashed) at 10, 20, 30, 40, 50 km together with 50% and
75% HPD regions for the range independent model, and (c) range-independent
maximum likelihood solution (dashed line) and mean of the profiles measured
at different ranges (solid line).

methods. Fig. 13(d) is the difference between the standard at-
mosphere and the helicopter results, whereas Fig. 13(e) is the
difference between the Metropolis inversion and the helicopter
results. The improvement inside the duct ( m) easily can
be noticed. However, the results outside the duct are not as good.
This is an expected result since the inversion is done using the
radar measured sea surface reflected clutter caused by the elec-
tromagnetic duct. No signal outside the duct is used and hence
the inversion algorithm has poor accuracy outside the duct.

In Fig. 14, the clutter power versus range plots are given.
The relative clutter return measured by SPANDAR is plotted
together with the clutter found using the Metropolis ML esti-
mate and the clutter obtained using the range-varying heli-
copter profile. Surface layer evaporation ducting was appended
to the bottom of the helicopter refractivity profiles, with the
evaporation duct heights being less than 5 m. Then, this profile
[Fig. 12(a)] is simulated using the parabolic equation model to
estimate the helicopter clutter. Misfits can be explained by the
range independent assumption of the simple trilinear M-profile,
which cannot exactly duplicate the real radar clutter. Details of
errors associated with the range independent assumption can be
found in [25].

The PPD of the environmental parameters can be used to
get PPDs of parameters of interest. This easily can be done by
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Fig. 13. Coverage diagrams (dB). One-way propagation loss for (a) standard
atmosphere (0.118 M-units/m), (b) helicopter-measured refractivity profile, and
(c) Metropolis inversion result. The difference (dB) between (d) helicopter and
standard atmosphere results and (e) helicopter and Metropolis inversion results.

Fig. 14. Clutter power versus range plots. Clutter measured by SPANDAR
(solid), the predicted clutter obtained using the Metropolis ML solution m̂
(dashed), and the predicted clutter obtained using the helicopter-measured
refractivity profile (dotted).

postprocessing the 80-k Metropolis samples of the refractivity
model parameters. Posterior densities for propagation factor (F)
at a range of 60 km with height values above MSL of 28 and 180
m are given in Fig. 15(a) and (b), respectively. These two height
values specifically are selected to compare the quality of esti-
mates inside and outside of the duct. As expected, F in case (a),
which is inside the duct, has a much smaller variance, whereas
the uncertainty in case (b) is much larger.

Finally, Fig. 15(c) shows the effects of uncertainty in the
environmental parameters on establishing a successful com-
munication link. Assume that the transmitter–receiver pair
requires a propagation loss less than 135 dB to attain the
necessary signal-to-noise ratio to operate in this environment.
The diagram shows the probability of establishing a successful

Fig. 15. PPD for propagation factor F at range 60 km with altitudes of (a)
28 m and (b) 180 m above MSL. (c) PPD of the coverage area for the given
communication link.

link in an environment known to an accuracy of as a
coverage area HPD plot. The results are given as 70, 80, and
90% HPD regions. As expected, the link can be maintained
over an extended range inside the duct.

V. CONCLUSION

A method for estimation of the radio refractivity from radar
clutter using Markov chain Monte Carlo samplers with a like-
lihood-based Bayesian inversion formulation has been intro-
duced. This approach enables us to obtain full -dimensional
posterior probability distributions for the unknown parameters
as well as the maximum likelihood solution itself.

Comparisons with exhaustive search and genetic algorithm
results show that MCMC samplers require more samples than a
classical global optimizer but are better in estimating probability
distributions. The need for a relatively large number of forward
model runs limits its usage as a near-real-time M-profile esti-
mator. However, it can be used together with a fast global opti-
mizer, which will do the near-real-time inversion. The MCMC
sampler will then provide the credibility intervals and the un-
certainties, which may not be needed frequently.

One immediate benefit of the method is the ability to assess
the quality of the inversion and obtain highest posterior density
plots for other parameters that could be of interest to an end-
user, such as the one-way propagation loss, propagation factor
for different heights and ranges, or variability in the coverage
diagrams. They easily can be obtained by postprocessing the
Metropolis samples of the refractivity parameters.
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