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Age-dependent increases in hepatic expression of OX40L and the abundance of ILC3s direct 

effective immunity to hepatitis B virus  

Jillian Mary Jespersen 

Abstract 

 

 Hepatitis B virus (HBV) can cause either an acute infection with self-limiting disease or, 

instead, a persistent infection resulting in chronic, recurring disease. The major determinant of 

which disease outcome occurs is the age at which a person is infected with HBV. Greater than 95 

percent of adults exposed to HBV will mount an effective immune response resulting in viral 

clearance, while greater than 90 percent of infants under one year of age and 30-50 percent of 

young children aged one to five years-old will generate an ineffective immune response that is 

unable to control the infection. Current therapies targeted at patients living with chronic HBV 

(CHB) mostly rely on suppression of viral replication, which is ineffective in inducing viral 

clearance and antibody seroconversion needed to achieve a functional cure. Thus, it is of great 

interest to characterize and understand the immunological mechanisms that dictate age-

dependent disease outcomes of HBV in order to identify potential therapeutic pathways that can 

help shift the ineffective immune response in CHB patients to an effective response that results 

in viral control. Using a mouse model that mimics HBV infection in humans and the age-

dependent disease outcomes, we were able to identify critical regulators of age-dependent 

immunity in the liver. Specifically, we identified an essential role for OX40/OX40L interactions 

in supporting the generation of effective CD4+ T cell responses including the differentiation of 

Tfh cells and their production of IL-21, as well as the priming of a robust and diverse antigen-

specific IFNJ T cell response. We also found an age-dependent increase in the number of hepatic 
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ILC3s, which expressed MHC class II, CD69, and cytokines including GM-CSF, IL-22, and IL-

17a. A loss of ILC3s either in genetically deficient Rorc(Jt)-/- mice or in acutely depleted anti-

Thy1.2 antibody-treated mice resulted in significantly impaired HBV antigen clearance and 

seroconversion. We identified a role for these ILC3s in supporting long-lived CD4+ T cell 

responses, the appropriate distribution and organization of hepatic immune cell clusters 

important in immune priming and sustained lymphocyte activation, as well as the early 

recruitment and effector functions of hepatic CD8+ T cells. Targeting the expansion and 

functional activities of mature hepatic ILC3s, thus, may represent a previously unidentified 

pathway that could improve HBV immune outcomes. 
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Chapter 1. Age-dependent differences in hepatic immune populations correlate with 

effective HBV immunity 

 

Introduction 

 Hepatitis B virus (HBV) is a hepatotropic pathogen that targets and infects human 

hepatocytes, the main parenchymal cell of the liver. The virus is non-cytopathic; thus, the 

damage that occurs to the liver during the course of an infection is immune-mediated (1, 2). The 

immune response initiated against HBV dictates whether a person will develop a persistent 

infection or clear the virus (2). The age at which a person is initially exposed to HBV is the 

major determinant of disease outcome: greater than 95 percent of infected adults will clear the 

infection – often with minimal signs of disease – while approximately 90 percent of infants less 

than one year old and 30 to 50 percent of children aged one to five years old will develop a 

persistent infection associated with chronic recurring disease (3). This latter group is also at high 

risk of developing HBV-associated hepatocellular carcinoma, cirrhosis, and liver failure later in 

life. Worldwide, there are approximately 240 million people living with chronic hepatitis B 

(CHB) and approximately one million of those individuals die each year due to liver-related 

disease (4, 5). 

 Due to the profound influence of age on the disease outcomes of hepatitis B infection, it 

is of great interest to understand how age influences immunity in the liver. Our lab developed an 

mouse model of hepatitis B disease that mimics the age-dependent disease outcome of humans 

and allows us to dissect the differences in hepatic immune responses between young and adult 

animals. Since mice cannot be naturally infected by HBV, the basis of our model relies on two 

strains of HBV transgenic mice (referred to as HBVtg), originally created by Dr. Frank Chisari 
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and colleagues (6, 7). The first, HBV Envelope (HBVEnv) mice, express the entire HBV 

envelope-coding region under the control of the mouse albumin promoter, leading to expression 

of the HBV envelope polypeptide and the secretion of hepatitis B surface antigen (HBsAg) 

subviral particles from hepatocytes in the liver (6). The second strain, HBV Replication 

(HBVRpl) mice, express a terminally redundant, replication-competent HBV transgene (HBV 

1.3) that encodes the entire viral genome under the control of its own enhancers and promoters, 

which leads to high viral expression and secretion of viral particles primarily from hepatocytes 

(7). Secretion of viral particles and/or virus allows us to monitor HBV “infection” status 

serologically by measuring for the presence of important viral protein(s) (Hepatitis B Core 

Antigen, HBcAg; and Surface Antigen, HBsAg) and antibodies to these proteins (HBcAb and 

HBsAb for anti-Core and anti-Surface antibodies, respectively). Importantly, these are the same 

readouts that define viral clearance and persistence in human infection. In both mice and 

humans, chronic “infection” is defined as HBsAg+ HBsAb– HBcAb+, while a resolved infection 

is defined as HBsAg– HBsAb+ HBcAb+. 

 In order to study the immune response generated in the context of an HBV-naïve immune 

system, the HBV-tolerant immune system that develops in HBVtg mice is ablated by crossing 

these mice onto a Recombinase activating gene 1 (Rag1)-deficient background, which lack 

mature T and B lymphocytes due an inability to rearrange their antigen-specific receptors. The 

resulting HBVtgRag1-/- mice are then adoptively transferred with 108 HBV-naïve splenocytes 

from a wild-type (WT) mouse in order to reconstitute the recipient with immune cells that 

include T and B lymphocytes, and mimic primary HBV infection. After adoptive transfer, the 

immune response to HBV is initiated and primed within the liver in response to antigens that 

originate in the liver. In adult HBVtgRag1-/- mice (t 8 weeks), the immune response generated 
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results in peripheral viral antigen clearance and production of HBV-specific antibodies, defined 

as HBsAg– HBsAb+, while in young mice (≤ 3.5 weeks/at weaning), the immune response results 

in chronic “infection,” serologically defined as HBsAg+ HBsAb–. In concordance with 

observations in human infants and children, HBcAb can also be detected in young mice when 

studying the HBVRpl strain. This indicates that while HBV is detected and an immune response 

is generated, that response is futile and does not affect viral clearance. 

 Over the years it has become well accepted that T cells play a critical role in HBV 

clearance. Studies in humans have shown that higher frequencies of antigen-specific T cells are 

associated with HBsAg clearance. Animal models have shown that even in the context of an 

HBV-tolerant immune system, transfer of HBV-specific cytotoxic CD8+ T lymphocytes (CTLs) 

can result in viral antigen clearance and viral suppression and CD4+ T cells play a critical role in 

supporting these activities (2, 8). Further investigation of CD4+ T cells has revealed a critical 

role for CD4+ T follicular helper (Tfh) cells and their production of interleukin (IL)-21 in age-

dependent HBV clearance, both in humans and in animal models (9, 10). Work from our lab 

demonstrated that one of the major age-dependent differences detected in adult and young mice 

is the increased frequency of hepatic Tfh cells and IL-21 in adult mice (9). This work showed 

that adoptive transfer of Il21r-/- splenocytes into adult HBVtgRag1-/- mice completely impaired 

their ability to clear HBsAg and produce HBsAb. Furthermore, the strength and diversity of the 

HBV-specific IFNJ CD8+ T cell response was impaired in the mice that received Il21r-/- 

splenocytes. Reciprocally, increased IL21 expression is also associated with viral clearance in 

patients who experience acute HBV as compared to chronic hepatitis B patients (both during a 

hepatitic flare and in immune inactive “carriers”) and healthy controls. 
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Beyond the T cell compartment, there is a mounting body of evidence indicating that B 

cells are critical for maintaining viral suppression. Interestingly, it is now understood that viral 

clearance in the case of hepatitis B is in fact immune-induced latency. HBV can form a 

covalently closed circular (ccc)DNA structure out of its genome that does not integrate into host 

DNA but is highly stable and capable of reactivating viral infection (11). Several case studies 

have shown that under the right conditions of immunological stress, the virus can reactivate in 

previously “cleared/cured” patients and cause fulminant hepatitis. One such circumstance is in 

patients who develop B cell cancers requiring treatment with B cell-depleting antibodies, such as 

Rituximab (12, 13). A consequence of this treatment is the depletion of HBV-specific B cells, as 

well as a decrease in anti-HBs antibody titers overtime, although Rituximab does not directly 

target antibody-secreting plasma cells. Through unknown mechanisms, the depletion of these 

cells allows the virus to resurface. These instances provide strong evidence that B cell responses 

are crucial for maintaining immune-induced latency of HBV and have since influenced treatment 

practices in patients with a history of HBV infection. 

Beyond the adaptive immune compartment, there is also evidence that innate immune 

cells of the myeloid lineage play an important role in HBV immunity. A major benefit of 

studying an animal model of HBV is the insight we can gain into the hepatic immune response 

during the initial acute disease phase. It has been challenging to study this window in humans 

because it is neither practical nor ethical to collect tissue from young infants and children and 

because the acute phase of disease is often subclinical in adults, remaining undetected until well 

after the primary infection. Analysis of liver tissue isolated from adult and young mice during the 

peak of the acute disease phase (day 8 post-adoptive transfer) revealed that hepatic immune cell 

clusters form in adult mice, whereas cluster formation was dramatically reduced in the young 
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mice (14). Although these clusters are comprised of a variety of cell types including both 

lymphocytes and myeloid cells, they are primarily anchored by F4/80+ macrophages. Depletion 

of these macrophages in adult mice using clodronate liposomes results in both complete 

impairment in viral clearance and disruption of all cell clustering, including no macrophage-

independent clustering of lymphocytes. Clodronate-treated mice also have severely blunted 

HBV-specific T cell responses similar to those observed in young mice, indicating a critical role 

for macrophages in hepatic immune priming and viral clearance of HBV.  

 Additionally, work from our lab and others have shown an association between increased 

expression of various proteins within the hepatic myeloid compartment of adult mice and 

humans and viral clearance. These proteins include the C-X-C Motif Chemokine Ligand 13 

(CXCL13), the antigen presentation molecule major histocompatibility complex class II 

(MHCII), and the co-stimulatory molecules CD80 and CD86. Publicover, et al., showed that 

CXCL13 is expressed in an age-dependent manner in macrophages and that Cxcl13-/-

HBVtgRag1-/- mice have a phenotype similar to young mice in their inability to clear HBsAg or 

make HBsAb after adoptive transfer (14). The chemokine receptor for CXCL13 is CXCR5 and 

expressed highly on Tfh and B cells, suggesting that macrophage-derived CXCL13 may play an 

important role in recruiting these cells to the liver. However, although both CXCL13 and 

CXCR5 were shown to be critical for viral clearance, deficiency of either molecule did not 

prevent the formation of hepatic leukocyte clusters, suggesting a yet unappreciated mechanism 

orchestrating immune cell organization in the liver.  

The objective of the experiments described below were to further characterize the age-

dependent immunological differences within the liver during the peak phase of early HBV 

immunity. We investigated the number and phenotype of hepatic innate and adaptive immune 
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cells by age, as well as the expression of molecules involved in antigen presentation, lymphoid 

organization, and immune priming. We further investigated the role of OX40/OX40L 

interactions in contributing to successful HBV immunity by blocking OX40 signaling in adult 

animals using an antagonistic antibody or Ox40-/- splenocytes and by augmenting OX40 

signaling in young and “chronic” HBV mice with an agonistic antibody (15). 

 

Results 

1.1 OX40/OX40L directs HBV immunity 

 To elucidate what other effector molecules might be playing a crucial role in influencing 

age-dependent immunity, we isolated and compared antigen-presenting cells (APCs) from 

resting adult and young mice to reveal differences in expression of co-stimulatory molecules 

known to play a role in priming of CD4+ and CD8+ T cell responses. We identified age-

dependent differences in the expression of Tnfsf4 (tumor necrosis factor superfamily member 4; 

also known as Ox40l) mRNA and OX40L protein in hepatic macrophages, monocytes, and 

dendritic cells (Fig. 1.1 A-B, D). Additionally, we noted an increased frequency of OX40+ 

CD4+ T cells and OX40+ CXCR5+ICOS+CD4+ Tfh cells in adult mice compared to young 

mice indicating there was OX40L-dependent expansion of OX40+ T cells in an age-dependent 

manner (Fig. 1.1 E-G). 
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Figure 1.1. Age-dependent expression of OX40 ligand on hepatic APCs and age-dependent 
expression of OX40 on liver-derived CD4+ T cells during acute hepatitis. (A) Ox40l mRNA 
expression relative to Gapdh was determined by RT-PCR using mRNA derived from myeloid-enriched 
leukocyte preparations isolated from the liver of adult (8 to 11 weeks) and young (3 weeks) Rag1–/– mice 
(n = 10). (B and C) Percentages of OX40L+ (B) and percentages of all (C) resident macrophages [F4/80hi, 
CD11b+/intermediate(int), major histocompatibility complex (MHC) class II+/int, CD11c−, Ly6G−, Ly6C−, and 
NK1.1−], dendritic cells (DCs; CD11c+/hi, MHC class II+/hi, CD11b−, Ly6G−, Ly6C−, and NK1.1−), and 
monocytes/monocyte-derived macrophages (F4/80int, CD11b+/hi, MHC class II+/int, Ly6C+, Ly6G−, 
CD11c−, and NK1.1−) (n = 4). (D) Ox40l mRNA expression relative to Gapdh was determined by RT-
PCR using mRNA derived from flow-sorted pooled cell populations from adult and young livers (n = 6 
mice). ND, not detectable. (E to G) Lymphocytes were isolated from HBVEnvRag−/− mouse livers 8 days 
after adoptive transfer of splenocytes (n = 8). Flow cytometry was used to determine (E) percentages of 
CD4+ T cells [CD4+, T cell receptor b (TCRb)+, NK1.1−, CD8−, and CD19−] and T follicular helper (Tfh) 
cells (CD4+, TCRb+, CXCR5+, ICOS+, NK1.1−, CD8−, and CD19−), (F) percentages of OX40+ CD4+ T 
cells and OX40+ TFH cells, and (G) percentages of CD4+ T cells that are also OX40+ in the liver. Bars 
represent means ± SEM. Statistical significance was determined using the unpaired two-tailed t test. *P < 
0.05, **P < 0.01, and ***P < 0.001. 
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 In order to study the role that OX40/OX40L interactions have on HBV clearance, we 

adoptively transferred Tnfsfr4 (Ox40)-/- splenocytes into adult HBVtgRag1-/- mice and compared 

to mice adoptively transferred with WT Ox40+/+ splenocytes. To monitor liver inflammation, we 

collected longitudinal plasma samples from both mouse cohorts and measured changes in alanine 

aminotransferase (ALT), an enzyme released by necrotic hepatocytes. As HBV is a non-

cytopathic virus, increased ALT correlates well with the degree of immune activation in the 

liver. To assess the productivity of the response, we measured clearance of HBsAg and 

production of HBsAb.  Unlike the control group, mice that received Ox40-/- splenocytes had 

dramatically reduced liver inflammation (Fig. 1.2A-C), were unable to clear HBsAg (Fig. 1.2 

D), and failed to produce HBsAb (Fig. 1.2 E). Decreased IFNJ production by hepatic 

lymphocytes in response to HBV peptide stimulation in the presence of APCs, as well as a 

reduction in the number of HBV epitopes (MHCI- and MHCII-restricted) recognized by 

lymphocytes from mice that received Ox40-/- splenocytes suggested impaired HBV-specific T 

cell responses (Fig. 1.2 F-G). Mice that received Ox40-/- splenocytes also had a specific 

reduction of CD4+ T cells, particularly Tfh cells, and impaired secretion of the critical effector 

molecule IL-21 compared to mice that received WT splenocytes (Fig. 1.2 H-J).  
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Figure 1.2. Adoptive transfer of adult Ox40–/– splenocytes into adult HBVEnvRag1–/– mice alters 
hepatic inflammation, HBsAg clearance, HBsAb seroconversion, T cell responses, and cytokine 
production. (A) Plasma alanine aminotransferase (ALT) values, reflecting liver injury, were determined 
for HBVEnvRag1–/–  mice receiving wild-type (WT) (Ox40+/+) splenocytes (open squares, solid line) or 
Ox40–/– splenocytes (closed triangles, dotted line) at given time points after adoptive transfer (n ≥ 5). (B) 
Hematoxylin and eosin staining of liver sections from adult HBVEnvRag1–/– mice 8 days after adoptive 
transfer. Arrows indicate necrotic hepatocytes. Scale bar, 25 mm. (C) Composite score of hepatic 
necrosis, portal inflammation, and intraparenchymal inflammation in the liver sections determined by a 
pathologist blinded to sample identity. Statistical significance was determined using Mann-Whitney two-
tailed (***P = 0.0008; n = 8 mice). (D) Plasma HBsAg loss and (E) HBsAb titer in HBVEnvRag1–/– mice 
at given time points after adoptive transfer. Statistical significance was determined using the chi-square 
test (***P < 0.001; n ≥ 5 mice). (F and G) Presence of hepatitis B virus (HBV)–specific T cells was 
determined using IFNJ enzyme-linked immunospot (ELISpot) 8 days (F) and 84 days (G) after adoptive 
transfer (data pooled from n = 5 mice). Threshold defining a positive response is ≥2× the baseline (dashed 
line). (H and I) Percentages of total lymphocyte subpopulations were determined by flow cytometry in 
the liver 8 days after adoptive transfer: T cells are CD19– and TCRE+; CD4+ T cells are CD4+ CD8– 
TCRE+ and CD19–; Tfh cells are CD4+ CD8– TCRE+ CD19– CXCR5+, and ICOS+; CD8+ T cells are CD4– 
CD8+ TCRE+ and CD19–; B cells are TCRE– and CD19+; NK cells are TCRE– CD19– and NK1.1+. 
Statistical significance was determined using the unpaired two-tailed t test (**P < 0.01 and ***P < 0.001; 
n = 5 mice). Bars represent means ± SEM. (J) Expression of various cytokine mRNAs relative to Gapdh 
was detected by RT-PCR on mRNA from liver lymphocytes 8 days after adoptive transfer (n ≥ 5). Bars 
represent means ± SEM. Statistical significance was determined using the unpaired two-tailed t test (*P < 
0.05).  
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Because IFNJ is known to play a direct role in suppressing HBV expression and OX40 

contributes to the HBV-induced IFNJ response, we investigated whether the expression of viral 

RNA and proteins in the liver was influenced by transfer of Ox40-/- splenocytes. There was a 

general reduction in the large and middle/small surface antigen viral RNAs in both WT and in 

Ox40-/- splenocyte groups compared to the HBVtg mice that were not adoptively transferred (no 

anti-HBV immune response) (Fig. 1.3 B-C, E), indicating the immune response initiated by 

adoptive transfer does suppress viral replication intermediates. There was also evidence of a 

delay in early viral RNA suppression in mice that received Ox40-/- splenocytes compared to WT 

splenocytes (Fig. 1.3 B-C), suggesting that decreased Ox40-/- splenocytes are less effective at 

controlling early viral transcription. Expression of the full HBsAg protein was relatively high in 

the liver of mice at all time points and in all groups despite clearance of circulating antigen in the 

mice that received WT splenocytes, although there was a slight trend towards decreased antigen 

expression by this group relative to mice that received Ox40-/- or no splenocytes (Fig. 1.3 D). 
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Figure 1.3. Hepatic HBV envelope RNA and protein expression levels in HBVRplRag1–/– mice 7 
days (1 week) and 8 to 24 weeks after adoptive transfer with WT or Ox40–/– splenocytes show 
OX40-dependent suppression of viral replication intermediates. (A) Plasma ALT values, reflecting 
liver injury, were determined for HBVRplRag1–/– mice receiving WT splenocytes (open circles) or Ox40–

/– splenocytes (closed circles) at day 7 after adoptive transfer (n ≥ 9). Statistical significance was 
determined using the paired two-tailed t test (*P < 0.05). Liver pieces were removed 7 days (B-D), 8 
weeks, or 24 weeks (D and E) after adoptive transfer and either flash-frozen for RNA extraction or fixed 
in formalin for immunohistochemistry (IHC). (B-C and E) HBV envelope RNA was detected by 
Northern blot analysis using a DIG-labeled (−) strand HBV RNA probe. RNA transcript band intensities 
in WT or Ox40–/– transferred mice were compared to untransferred Rag1–/– negative controls or 
untransferred HBVRplRag1–/– positive controls and normalized to 18S RNA bands. Statistical 
significance was determined using the unpaired two-tailed t test (*P < 0.05; n ≥ 4 for all groups except 
Rag1–/– untransferred, where n = 2). Bars represent means ± SEM. (D) HBV envelope protein levels were 
measured by IHC staining of formalin-fixed liver tissue with an HBsAg-specific antibody and 
counterstained with hematoxylin. Stained sections were scored by a pathologist blinded to sample 
identities using the scoring system shown in (F); 0, no staining; 1, multifocal granular or diffuse staining 
in hepatocytes involving <25% of section; 2, granular or diffuse staining around centrilobular hepatocytes 
with no staining in portal regions; 3, diffuse positivity of hepatocytes restricted to centrilobular region; 
granular cytoplasmic positivity in remaining hepatocytes; and 4, diffuse positivity of hepatocytes 
restricted to centrilobular and mid zonal regions; granular cytoplasmic positivity in remaining 
hepatocytes. n ≥ 4 for all groups except Rag1–/– untransferred, where n = 2. Bars represent means ± SEM.  
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To further confirm the role of the receptor OX40 in regulation of HBV immunity, we 

used an OX40L-blocking antibody during the initial immune priming phase (days 0-6). These 

mice experienced blunted hepatitis (Fig. 1.4 A), a reduction in CD4+ T cell frequency with a 

trend towards decreased Tfh cells (Fig. 1.4 B), impaired HBV-specific IFNJ production (Fig. 1.4 

C), and dramatically reduced Il21 mRNA expression (Fig. 1.4 D) similar to the mice that 

received Ox40-/- splenocytes. However, this early blockade did not affect the long-term clearance 

of HBsAg or HBsAb, likely due to the short window of OX40L blockade efficacy. 

 

Figure 1.4. Adoptive transfer of adult WT splenocytes into HBVEnvRag1–/– adult mice treated with 
an OX40L blocking antibody abrogates biochemical hepatitis and HBV-specific T cell responses 
and cytokine expression. (A) Plasma ALT values were determined in HBVEnvRag1–/– adult mice 
receiving intraperitoneal injection of 100 Pg of OX40 ligand (OX40L) block (RM134L) (open circles, 
dotted line) or control IgG (purified rat IgG2b isotype control; closed triangles, solid line) on days 0, 2, 4, 
and 6 after adoptive transfer of WT splenocytes (n = 7). (B) Eight days after transfer, percentages of 
lymphocyte populations were determined by flow cytometric analysis of liver lymphocytes derived from 
HBVEnvRag1–/– mice treated with either control IgG (black bars) or OX40L block (white bars). Bars 
represent means ± SEM. Statistical significance was determined using the unpaired two-tailed t test (*P < 
0.05 and ***P < 0.001; n = 6). (C) HBV-specific T cell responses were measured using IFN-g ELISpot 
assay 8 days after adoptive transfer. Threshold defining a positive response is ≥2× the baseline (dashed 
line; n = pooled from four mice). (D) Relative Il21 expression compared to Gapdh was detected by RT-
PCR on mRNA from liver lymphocytes isolated 8 days after adoptive transfer. Bars represent means ± 
SEM. Statistical significance was determined using the unpaired two-tailed t test (**P < 0.01; n = 6).  
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To determine whether age-dependent anti-viral immunity is a product of the reduced 

expression of OX40L in young mice, we sought to bypass this deficiency by agonizing the 

receptor OX40 with the agonistic antibody OX86. Young mice treated with OX86 on days 0, 3, 

and 6 after adoptive transfer with WT splenocytes showed improved anti-HBV immunity 

compared to isotype-matched control Ig-treated mice (Fig. 1.5). These mice experienced mild 

hepatitis (Fig. 1.5 A), indicating that inflammation was occurring, compared to isotype-matched 

control Ig-treated mice which did not have measurable hepatitis. Fifty percent of OX86-treated 

young mice were able to clear HBsAg compared to zero percent in the control group (Fig. 1.5 

C). OX86 treatment drove increased expansion of CD4+ T cells, including Tfh cells (Fig. 1.5 B), 

and improved HBV-specific T cell responses as measured by IFNJ ELISpot assay with HBV-

peptide/APC stimulation of hepatic lymphocytes (Fig 1.5 C-E). To test whether OX86 treatment 

could be effective in a chronic disease setting, we adoptively transferred young HBVtgRag1-/- 

mice (three weeks old) and allowed them to age until 12 weeks old before confirming a 

serological profile of chronic HBV (HBsAg+ HBsAb–), after which we treated them with OX86. 

Although the OX86-treated mice did not clear HBsAg or produce HBsAb, these mice did 

generate detectable HBV-specific T cell responses while control mice did not (Fig. 1.5 F-H).  
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Figure 1.5. Treatment with an OX40 agonist antibody of 3-week-old HBVtgRag1–/– mice or mice 
with chronic HBV disease results in an altered immune response to HBV. (A) Plasma ALT values 
from young HBVEnvRag1–/– mice receiving intraperitoneal injection of 150 Pg of OX40 agonist antibody 
(OX86; open triangles, dashed line) or control IgG (purified rat IgG1 isotype control; closed squares, 
solid line) on days 0, 3, and 5 after adoptive transfer of WT splenocytes (n = 4). (B) Percentages of CD4+ 
T cells and TFH cells determined by flow cytometry in liver tissue 8 days after adoptive transfer into 3-
week-old HBVEnvRag1–/– (left panel) or HBVRplRag1–/– (right panel) treated with control IgG (black 
bars) or OX40 agonist (white bars). Bars represent means ± SEM. Statistical significance was determined 
using the unpaired two-tailed t test (*P < 0.05 and **P < 0.01; n ≥ 3). (C) Presence of HBsAg in the 
plasma of young HBVEnvRag1–/– mice treated with OX40 agonist (open triangles, dashed line) or control 
IgG (closed squares, solid line). Statistical significance was determined using the chi-square test (***P < 
0.001). Data were pooled from two experiments (n = 8 mice per group total). (D) Presence of HBV-
specific T cells was determined using IFN-g ELISpot 56 days after adoptive transfer of young 
HBVEnvRag1–/– mice injected with OX40 agonist (white bars) or control IgG (black bars). Data are 
representative of three individual experiments (n = pooled from four mice). (E) IFN-g ELISpot analysis 
of HBV-specific T cell responses on liver lymphocytes from mice treated with OX40 agonist that cleared 
HBsAg (striped bars) or treated with OX40 agonist and did not clear HBsAg (gray bars) (n = pooled from 
two mice). For (D) and (E), the threshold defining a positive response is ≥2× the baseline (dashed line). 
(F to H) HBVRplRag1–/– or HBVEnvRag1–/– mice confirmed to have the serological profile of chronic 
HBV disease were treated with OX40 agonist (open bars) or control antibody (closed bars) (F) for eight 
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treatments 3×/week or (G and H) at days 84, 87, 89 and 168, 171, 173, 175 after adoptive transfer. 
Presence of HBV-specific T cells was determined using IFN-g ELISpot on liver lymphocytes after 
stimulation with (F) individually defined dominant and subdominant peptide epitopes or (G and H) pools 
of HBV peptides spanning the entire protein (F) 14 days or (G and H) 122 days after first treatment with 
OX40 agonist or control IgG (38 days after second treatment and 206 days after adoptive transfer) in (G) 
HBVEnvRag1–/– mice and (H) HBVRplRag1–/– mice. Data are representative of two individual 
experiments (n = pooled from 2–4 mice). Threshold defining a positive response is ≥2× the baseline 
(dashed line).  

In order to evaluate the relevance of our findings in the mouse model, we turned to 

human patients for cells and tissue. We found that OX40L mRNA expression was increased in 

the livers of adults compared to infants six-twelve weeks old (Fig. 1.6 A). Furthermore, we also 

found that patients with acute HBV that go on to clear the infection have an increased frequency 

of circulating CD4+ T cells, of which, a greater percentage of those cells are OX40+ compared 

to patients with CHB or healthy controls (Fig. 1.6 B-C). These data demonstrate a crucial role 

for an OX40/OX40L interaction in supporting effective immunity and viral clearance in the 

context of HBV infection; moreover, they identify a targetable therapeutic avenue for the 

millions of people living with chronic HBV.  

  

Figure 1.6. Adult human liver shows greater OX40L expression than infant liver, and patients with 
acute hepatitis B who clear the virus have significantly increased percentages of PBMC-derived 
CD4+ T cells, a greater percentage of which express OX40. (A) Expression of OX40L relative to 
GAPDH was determined by RT-PCR performed on RNA extracted from paraffin-embedded liver biopsy 
samples from infants 6 to 12 weeks of age (black bar, n = 24) and adults (white bar, n = 9). Bars represent 
means ± SEM. Statistical significance was determined using the unpaired two-tailed t test (*P < 0.05). (B) 
Flow cytometry analysis comparing lymphocyte populations in PBMC obtained from eight patients with 
confirmed acute HBV infection during active hepatitis and with confirmed subsequent viral clearance and 
HBsAb seroconversion, and eight patients with confirmed chronic HBV infection exhibiting a flare of 
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disease. T cells are TCRE+ CD19– CD56–; CD4+ T cells are CD4+ CD8– TCRE+ CD19–; Tfh cells are 
CD4+ CD8– TCRE+ CD19– CXCR5+ ICOS+; CD8+ T cells are CD4– CD8+ TCRE+ CD19–; B cells are 
TCRE– CD19+; and NK cells are TCRE– CD19– CD56+ CD16+. Bars represent means ± SEM. Statistical 
significance was determined using the unpaired two-tailed t test (**P < 0.01). (C) Percentage of CD4+ 
OX40+ T cells present in PBMC obtained from eight patients with acute HBV, eight patients with chronic 
HBV exhibiting a hepatitic flare of disease, as well as six untreated patients with confirmed chronic HBV 
with inactive disease (normal ALT), and six healthy individuals. Bars represent means ± SEM. Statistical 
significance was determined using Tukey’s analysis of variance (ANOVA) multiple comparison test (*P 
< 0.05 and **P < 0.01).  

 

1.2 - Adaptive Immunity in HBV Infection 

In order to more fully characterize the immune landscape during the anti-HBV immune 

response and how it is influenced by age, I performed careful immune phenotyping of the 

adaptive immune compartment within the liver of adult and young HBVtgRag1-/- mice by flow 

cytometry at the peak of the acute HBV immune response, which occurs eight days post-

adoptive transfer. We focused on this phase of the response to understand the early events that 

lead to priming of the adaptive immune system and set the course of infection. A broad 

characterization revealed that adult mice have an increased number of total hepatic T cells, 

including increased numbers of CD8+ T cells, and NK1.1+ Natural Killer (NK)-like T cells (Fig. 

1.7 A). Despite the overall increased numbers of B, T, and NK-like T cells in adult mice, the 

relative frequencies of each of these populations were similar by age (Fig. 1.7 B).  
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Figure 1.7. Differences in hepatic lymphocyte populations by age during acute HBV immunity. 
Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 wks) and young (3 – 3.5 wks) 
animals eight days after adoptive transfer with HBV-naïve splenocytes. Total numbers (A) and percentage 
(B) of each lymphocytes population were measured, defined as follows: CD45+ (Live CD45+), T cells 
(Live TCRb+), CD4+ T cells (Live TCRb+ CD4+), CD8+ T cells (Live TCRb+ CD8+), B cells (CD19+ 
or B220+), 𝛾𝛅 T cells (Live TCRgd+ CD90+), NK-like T cells (Live TCRb+ NK1.1+). Data were 
analyzed using FlowJoTM Software; statistics determined by Tukey’s one-way ANOVA with GraphPad 
Prism Software; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001; n ≥ 3 for HBV+ groups, n=2 for 
HBV- groups. 

I examined the T cells within the HBV+ transgenic animals, as these are the antigen-

driven responses of interest. In these animals, the majority of hepatic T cells in both young and 

adult mice are CD8+; however, adult mice have a slightly decreased frequency of CD8+ T cells 
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relative to young mice and, conversely, an increased frequency of CD4+ T cells compared to 

young mice (Fig. 1.8 A).  

I then focused on functional subsets of CD4+ and CD8+ T lymphocytes, including Tnaive 

(CD62L+ CD44-), TCM (central memory; CD62L+ CD44+), TEff (effector/effector memory; 

CD62L- CD44+), Tfh (CD4+ CXCR5+ PD-1+), and CXCR5+ CD8+ T cells. Consistent with 

published literature (9), I observed that adult mice have increased hepatic Tfh cells both in 

number and in proportion of CD4+ T cells, while the frequencies of CXCR5+ CD8+ T cells was 

similar by age (Fig. 1.8 B). Adult mice also have an increased frequency of TEff in both CD4+ 

and CD8+ T cell compartments, with a reduced frequency of CD8+ TCM cells (Fig. 1.8 C and E).  

When evaluating CD4+ T cells using PSGL1 and Ly6c to identify memory precursor (PSGL1hi 

Ly6clo) versus more terminally differentiated effector (PSGL1hi Ly6chi) cells (16), there were no 

significant differences; but a similar trend towards more effector-like cells and fewer memory 

precursors in adults compared to young was observed, consistent with the TCM and TEff 

phenotypes determined using CD44 and CD62L (Fig. 1.8 D). Taken together, these data indicate 

adult animals have an early effector T cell program with expanded CD4+ T cell differentiation 

relative to the increased CD8+ T cell differentiation with a more memory-like phenotype in 

young mice. Importantly, we also saw an overall expansion of both hepatic CD4+ and CD8+ T 

cell numbers in adult animals relative to young animals, suggesting the most impactful 

observations likely include the decreased abundance of CD4+ T cells, especially of the TEff 

phenotype. 
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Figure 1.8. Hepatic CD4+ and CD8+ T cell functional subsets in adult and young mice during acute 
HBV immunity. CD4+ and CD8+ TCRb+ T cells were phenotypically characterized by flow cytometry 
from leukocyte-enriched liver cell suspensions eight days post-adoptive transfer in adult (>8 wks) and 
young (3 – 3.5 wks). A. CD4+ and CD8+ T cell subsets as a percentage of total TCRb+ cells in HBV+ 
animals (n=10). B. Total number and percentage of CXCR5+ PD-1+ CD4+ T follicular helper (Tfh) cells 
and percentage of CXCR5+ CD8+ T cells.  C. Number and percentage of CD44- CD62L+ Tnaive, 
CD44+ CD62L+ TCM (central memory) and CD44+ CD62L- TEff (effector) CD4+ T cells. D. Number 
and percentage of PSGL1 and Ly6c subsets in CD4+ T cells.  E. Number and percentage of CD44- 
CD62L+ Tnaive, CD44+ CD62L+ TCM and CD44+ CD62L- TEff CD8+ T cells. Data were analyzed 
using FlowJoTM Software; statistics determined by unpaired two-tailed t-test or Tukey’s one-way 
ANOVA for two groups or more than two groups, respectively, with GraphPad Prism Software; * p<0.05, 
** p<0.01, *** p<0.001, n=5 for HBV+ groups, n=2 for HBV- groups. 

When looking at other phenotypic markers I observed increased expression of CXCR3, a 

chemokine receptor important for liver-residency, on CD8+ T cells in adult mice compared to 

young mice, though the trend was reversed for CXCR3+ CD4+ T cells (Fig. 1.9 A). These data 

suggest that the CD8+ T cell population in adults is a more liver-restricted response, whereas the 

CD4+ T cell population in adults may be more likely to circulate between liver and secondary 
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spleen. Using Ki67 as a marker for proliferation, I observed greater than 90 percent of T cells are 

actively proliferating in both adult and young hepatic populations; however, this is further 

increased for CD4+ and CD8+ T cells in adults compared to young (Fig. 1.9 B). There were no 

differences in the overall frequencies of PD-1+ (Fig. 1.9 C) or Tbet+ (Fig. 1.9 D) T cells in 

either the CD4+ or CD8+ compartments, which are associated with strength of activation and 

effector phenotypes, respectively. 

 

Figure 1.9. Expression of functional markers within adult and young CD4+ and CD8+ T cells 
during acute HBV immunity. Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 
wks) and young (3 – 3.5 wks) animals eight days after adoptive transfer with HBV-naïve splenocytes. 
Percentage of CXCR3+ (A) PD-1+ (B), Ki67+ (C) and Tbet+ (D) CD4+ and CD8+ T cells. Data were 
analyzed using FlowJoTM Software; statistics determined by Tukey’s one-way ANOVA with GraphPad 
Prism Software; * p<0.05; n ≥ 3 for HBV+ groups, n=2 for HBV- groups. 

Another important correlate of effective HBV immunity is a robust IFNJ response by T 

lymphocytes. In order to evaluate differences in IFNJ on an individual cell basis, I performed ex 

vivo cytokine secretion staining of hepatic lymphocytes using an IFNJ cytokine capture assay, 

which captures and sequesters IFNJ as it is secreted by cells onto their cell surface for 
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surface and intracellular antibody staining to characterize the quantitative and phenotypic 

differences in adult and young IFNJ+ T lymphocytes. 

Within CD4+ T cells, there was an increased frequency of total IFNJ+ cells in adult mice 

(Fig. 1.10 A). This was mostly due to an increase in IFNJ+ cells within the TEff subset, though 

there was a similar trend towards increased IFNJ+ TCM as well (Fig. 1.10 B). There were no age-

dependent differences in the expression of Ki67, PD-1, or Tbet within IFNJ+ T cells, nor was 

there a difference in the proportion of IFNJ+ cells that had a Tfh phenotype (Fig. 1.10 C-F). 

 

Figure 1.10. Hepatic IFNJ CD4+ T cell responses during acute HBV immunity. Hepatic leukocyte 
fractions were enriched from HBVtgRag1-/- adult (>8 wks) and young (3 – 3.5 wks) animals eight days 
after adoptive transfer with HBV-naïve splenocytes and freshly stained with an IFNJ capture assay 
(Miltenyi) to detect secreted IFNJ, followed by antibody staining for additional surface and intracellular 
proteins. CD4+ T cell populations were enumerated and numbers and percentages of (A) total IFNJ+ (B) 
IFNJ+ Tnaive, TCM, and TEff, (C) PD-1+ IFNJ+, (D) Ki67+ IFNJ+,  (E) Tbet+ IFNJ+, and (F) CXCR5+ 
PD1+ IFNJ+ T follicular helper cells were calculated. Data were analyzed using FlowJoTM Software; 
statistics determined by unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, ** p<0.01; 
n=5 per group. 
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Within the CD8+ T cell compartment, I also detected an increased frequency of total 

IFNJ+ cells (Fig. 1.11 A). This increase was apparent in both CD8+ TEff and TCM (Fig. 1.11 B). 

Similar to IFNJ+ CD4+ T cells, IFNJ+ CD8+ T cells were not different in their expression of 

Ki67, PD-1, Tbet, or CXCR5 at this early time point (Fig. 1.11 C-F). 

 

Figure 1.11. Hepatic IFNJ CD8+ T cell responses during acute HBV immunity. Hepatic leukocyte 
fractions were enriched from HBVtgRag1-/- adult (>8 wks) and young (3 – 3.5 wks) animals eight days 
after adoptive transfer with HBV-naïve splenocytes and freshly stained with an IFNJ capture assay 
(Miltenyi) to detect secreted IFNJ, followed by antibody staining for additional surface and intracellular 
proteins. CD8+ T cell populations were enumerated and numbers and percentages of (A) total IFNJ+ (B) 
IFNJ+ Tnaive, TCM, and TEff, (C) PD-1+ IFNJ+, (D) Ki67+ IFNJ+,  (E) Tbet+ IFNJ+, and (F) CXCR5+ 
IFNJ+ CD8+ T cells were calculated. Data were analyzed using FlowJoTM Software; statistics determined 
by unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, ** p<0.01; n=5 per group. 

In addition to flow cytometry, I performed IFNJ ELISpot assays by co-culturing hepatic 

lymphocytes together with Rag1-/- splenocytes as a source of APCs and exogenous HBsAg 

peptides with known MHCI- and MHCII-restriction to get a sense of antigen-specific IFNJ T cell 

responses. These data show that during the peak phase of inflammation – day eight post-adoptive 

transfer – hepatic lymphocytes from adult mice had increased ex vivo baseline IFNJ production 
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indicated by an increased number of IFNJ spots in the absence of additional antigen (peptide “0”; 

Fig. 1.12). Whereas the young lymphocytes were unable to mount a significant IFNJ response to 

any of the four dominant HBsAg epitopes – defined as twice the baseline (peptide “0) IFNJ 

response – the adult T cells mounted a robust response to the most dominant early MHCII-

restricted CD4+ HBsAg epitope, peptide 321 (also referred to as peptide 81; Fig. 1.12). 

Previously published work from our group shows that further differences in the strength and 

diversity of T cell IFNJ responses can be measured when looking at pools of multiple HBsAg-

derived peptides that span the entire protein length (9). 

 

Figure 1.12. Hepatic HBV-specific IFNJ T cell responses during the early acute immune response. 
Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 wks) and young (3 – 3.5 wks) 
animals eight days after adoptive transfer with HBV-naïve splenocytes. 105 liver leukocytes were mixed 
in a 1:1 ratio with splenocytes from Rag1-/- mice as a source of APCs and stimulated overnight at 37°C 
together with individual peptides derived from the HBV envelope protein (HBsAg peptides) in ELISpot 
plates pre-coated with anti-IFNJ antibodies. “0” peptide denotes no peptide added. ELISpot plates were 
counted and analyzed with a CTL Immunospot plate reader and software. The threshold defining a 
positive response, marked with a *, is ≥2× the baseline (dashed line). 

0 126 321 190
(352)

207
(369)

0

500

1000

1500

2000

HBsAg Peptide Number

IF
N
g S

po
ts

/1
06  L

iv
er

 
Ly

m
ph

oc
yt

es

IFNg Production by Liver Lymphocytes 
(Day 8)

Adult HBV+
Young HBV+

*



 24 

 

Figure 1.13. HBV Envelope protein sequence and dominant epitopes for CD4+ and CD8+ antigen-
specific T cells. The full-length amino acid sequence of the large HBV envelope protein is shown. The 
start sites of the large, middle, and small HBV Envelope protein are highlighted in yellow and occur at 
amino acid position 1, 109, and 164, respectively. The sequence of each of the four most dominant 
epitopes found in our animal model are underlined and the first amino acid of each sequence is 
highlighted in green. The number in the subscript for each peptide name refers to the start and end amino 
acid positions relative to the large envelope sequence. For peptides that are also present in the large 
isoform, their alternative names are specified after the slash where the subscripted numbers represent the 
start and end positions relative to the small isoform. This is for consistency with previously identified 
peptides, referred to as Env190 and Env207 in publication, which correspond to peptides named above as 
S352-369/ S190-197 and S369-377/ S207-215, respectively (17). 

After identifying the most common epitopes that drive IFNJ T cell responses, we were 

able to begin testing these peptides in tetramer format to allow for the identification of individual 

antigen-specific T cells by flow cytometry. The first tetramer we received from the NIH tetramer 

core facility was an MHCII-restricted epitope that is presented to CD4+ T cells, sequence 

RGLYFPAGGSSSG, starting at amino acid 126 relative to the large isoform of the hepatitis B 

envelope/surface protein (Fig. 1.13). Using this tetramer, I was able to quantitate and 

characterize this antigen-specific population within the liver. Adult animals on average had 

approximately ten times more HBsAg126+ CD4+ T cells compared to young mice, although the 

HBsAg126+ cells represented a similar proportion of total CD4+ T cells, regardless of age (Fig. 

1.14 A-B). The difference in HBsAg126+ cell number could be almost entirely attributed to an 

MGQNLSTSNPLGFFPDHQLDPAFRANTANPDWDFNPNKDTWPDANKVGAGAFGLGFT
PPHGGLLGWSPQAQGILETLPANPPPASTNRQSGRQPTPLSPPLRNTHPQAMQWNST
TFHQTLQDPRVRGLYFPAGGSSSGTVNPVPTTVSPISSIFSRIGDPALNMENITSGF
LGPLLVLQAGFFLLTRILTIPQSLDSWWTSLNFLGGTTVCLGQNSQSPTSNHSPTSC
PPTCPGYRWMCLRRFIIFLFILLLCLIFLLVLLDYQGMLPVCPLIPGSSTTSTGPCR
TCTTPAQGTSMYPSCCCTKPSDGNCTCIPIPSSWAFGKFLWEWASARFSWLSLLVPF
VQWFVGLSPTVWLSVIWMMWYWGPSLYSILSPFLPLLPIFFCLWVYI

S126-138. RGLYFPAGGSSSG
S321-335/ S158-173 FGKFLWEWASARFSW
S352-369/ S190-197 VWLSVIWM
S379-387/ S207-215 SILSPFLPL
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expansion of HBsAg126+ TEff in adults, as there was a roughly equivalent amount of HBsAg126+ 

TCM in adult and young livers (Fig. 1.14 C-D). Consistent with this, 90 – 95 percent of 

HBsAg126+ T cells in adults were of the TEff phenotype, whereas only approximately 60 – 70 

percent of young HBsAg126+ T cells in young mice were TEff with an increased representation of 

HBsAg126+ TCM. 

 

Figure 1.14. Hepatic antigen-specific CD4+ T cell responses are enriched in adults. Hepatic 
leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 wks) and young (3 – 3.5 wks) animals 
eight days after adoptive transfer with HBV-naïve splenocytes and stained with I-A(b)-HBs126 
(RGLYFPAGGSSSG) tetramers, followed by antibody staining for additional surface proteins. (A) Total 
HBs126+ CD4+ T cells were measured and reported as numbers and percentage of total CD4+ T cells. (B) 
HBs126+ CD4+ T cells per million liver lymphocytes and the percentage relative to an irrelevant peptide 
(I-A(b)-human CLIP, PVSKMRMATPLLMQA) baseline frequency was determined. A true antigen-
specific population is defined as two-fold higher than baseline and is marked by a dotted line. Numbers 
per million hepatic lymphocytes and percentages above I-A(b)-hCLIP baseline of (C) CD44+ CD62L- 
TEff and (D) CD44+ CD62L+ TCM were measured. Data were analyzed using FlowJoTM Software; 
statistics determined by unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, ** p<0.01; 
n≥6 per group. 

 To better understand the phenotypic characteristics of HBsAg126+ cells I also evaluated 

the expression of additional markers of T cell function and identity. There were no differences in 

CD127 (IL-7RD) expression, which can identify long-lived memory cells; however, this marker 
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is most useful after the acute inflammation phase begins to contract and eight days post-transfer 

may be too soon to capture this population [Fig. 1.15A, (16)]. There were striking differences in 

the expression of PD-1 and Ki67, where approximately 65% of adult HBsAg126+ CD4+ T cells 

were PD-1+ compared to approximately 25% of HBsAg126+ CD4+ T cells in young mice and 

approximately 95% of HBsAg126+ adult T cells were Ki67+ compared to 40% in young mice 

(Fig. 1.15 B-C). Altogether, these data suggest that the antigen-specific CD4+ T cells in adults 

are more strongly activated, more proliferative, and more effector-like in their phenotype, 

indicating a robust anti-viral effector T cell response is initiated in the livers of adult animals that 

is significantly diminished in young animals.  

 

Figure 1.15. Hepatic antigen-specific CD4+ T cells express PD-1 and Ki67, but not CD127, in an 
age-dependent manner. Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 wks) 
and young (3 – 3.5 wks) animals eight days after adoptive transfer with HBV-naïve splenocytes and 
stained with I-A(b)-HBs126 (RGLYFPAGGSSSG) tetramers, followed by antibody staining for additional 
surface proteins. Frequencies of CD127+ (A), PD-1+ (B), and Ki67+ (C) HBs126+ CD4+ T cells were 
measured. Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-
test with GraphPad Prism Software; **** p<0.0001; n≥6 per group. 

 The studies outlined above help provide a view into the early phase of adaptive immune 

activation and the immune priming that will ultimately dictate the outcome of HBV “infection” 
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strong and resilient effective immune response with a particular focus on identifying antigen-

specific T cells and their phenotypic and functional profiles with our newly developed MHCI- 

and MHCII-restricted tetramers.  

1.3 - Innate Immunity in HBV Infection 

 Another goal of my thesis work has been to carefully characterize the myeloid 

populations in the liver that respond to HBV. This is of critical importance to understanding the 

age-dependent anti-HBV immune responses, as we know these populations are primarily tissue 

resident and serve as an important source of antigen presentation in the liver. First, I focused on 

the myeloid populations during “acute HBV immunity” eight days after adoptive transfer of 

splenocytes and quantitated the total number and cellular frequencies of major populations 

including granulocytes/neutrophils, monocytes, macrophages, and dendritic cells. Just like the 

lymphocytes described above, myeloid cells were isolated after perfusion of the liver such that 

the single cell suspensions collected do not contain blood-derived, circulating mononuclear cells. 

It is important to note that the single cell suspensions were applied to a lymphocyte-enriching 

Percoll® gradient in order to efficiently remove hepatic debris and non-immune liver cells. A 

limitation of this approach is a likely loss of large myeloid cells such as macrophages, including 

liver-resident Kupffer cells, because this lymphocyte-enriching gradient is most efficient at 

enriching the smaller, denser cells, including lymphocytes, monocytes, and smaller monocyte-

derived macrophages and dendritic cells. Nevertheless, we still observed some important age-

dependent trends that are likely to impact immune priming. 

 There were no differences in the total number or percentages of granulocytes (CD45+ 

Gr1+ CD11b+), Kupffer cells (CD45+ SSChi MHCIIlo CD11bint F4/80+ Ly6clo/-), monocyte-
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derived macrophages (CD45+ CD11bhi Ly6chi F4/80+), or dendritic cells (DCs; CD45+ CD11c+ 

MHCII+; Fig. 1.16 A-E). There was, however, a trend towards more DCs (CD45+ CD11c+ 

MHCIIhi), particularly of the CD11b+ type two classical dendritic cell subset (cDC2), in adult 

animals with no differences in the number of CD11b- cDC1 or in CD8D+ DCs (CD45+ CD11c+ 

MHCIIhi CD11b- CD8D+; Fig. 1.16 C). Furthermore, there was also evidence of a greater than 

two-fold increase in MHCII expression within cDC2, suggesting that this population may play an 

important role in antigen presentation within the livers of adult animals (Fig. 1.16 F). These data 

are consistent with the observation that young animals have increased expansion of CD8+ T 

cells, as cDC1 are the subset capable of cross-presenting to CD8+ T cells and favor activation of 

a typical anti-viral response. On the other hand, cDC2 have been shown to play crucial roles in 

inducing Tfh cell priming, which may explain the increased expansion of the CD4+ T cell 

compartment, particularly Tfh cells, in adults that is impaired in young animals. There is also 

age-dependent expression of MHCII on Kupffer cells, where young animals have increased 

MHCII compared to adults within this macrophage subset (Fig. 1.16 F). Depending on the 

context, Kupffer cells can play a more tolerogenic role in T cell priming through their production 

of IL-10 and prostaglandins (18, 19). Therefore, it is possible that increased antigen presentation 

by this subset in young mice may result in more moderate lymphocyte priming as compared to 

other APC subsets such as dendritic cells. 

 Although monocytes are often considered to be a relevant peripheral cell type, it’s well 

understood that during an ongoing immune response circulating monocytes are recruited into 

tissues where they can further differentiate into macrophages and dendritic cells to support 

immune priming. When looking at these infiltrating monocytes there are two major subsets, 

Ly6chi CD11c- inflammatory/classical monocytes (CD45+ MHCIIlo/- CD11b+ Ly6chi CD11c- 
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F4/80+/-) and Ly6clo/- CD11c+ resident or patrolling monocytes, the latter of which is known to 

be more regulatory in its function and plays an important role in resolution of inflammation and 

wound healing (20, 21). Adult animals have increased monocyte accumulation in the liver 

compared to young mice, of both the inflammatory and resident subsets (Fig. 1.16 D).  

 

Figure 1.16. Characterization of hepatic myeloid populations during acute HBV immunity. Hepatic 
leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 wks) and young (3 – 3.5 wks) animals 
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eight days after adoptive transfer with HBV-naïve splenocytes. Flow cytometry was used to identify and 
quantitate myeloid cell populations as follows (A) granulocytes (Live Gr1+ CD11b+), (B) Kupffer cells 
(Live F4/80+ CD11bint SSChi Ly6c-), (C) dendritic cells (DCs; Live CD11c+ MHCII+ ), further 
subdivided in to classical dendritic cell subsets 1 (cDC1; CD11b-) and 2 (cDC2; CD11b+), (D) 
monocytes (Live CD11b+ NK1.1- MHCIIlo/- SSClo), and (E) monocyte derived macrophages (MDMϕ; 
Live F4/80+ CD11bhi Ly6c+/hi MHCIIhi/+ or MHCII+/lo). (F) MHC class II (MHCII) expression level was 
determined using anti-I-A(b) antibody staining and reported as median fluorescence intensity of Kupffer 
cells, DCs, monocytes, and MHCIIhi/+ or MHCII+/lo MDMϕ. Data were analyzed using FlowJoTM 
Software; statistics determined by unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, ** 
p<0.01, *** p<0.001; n=5 for HBV+ groups and n=2 for HBV- groups. 

 In addition to the myeloid compartment, the liver is also home to many other innate 

immune cells, notably NK cells and the closely related innate lymphoid cells (ILC). ILC can be 

further broken up into three main subsets: ILC1, ILC2, and ILC3, which closely mimic their T 

cell counterparts, Th1, Th2, and Th17/22, respectively, in both their transcriptional and 

functional profiles. NK cells and ILC1 express the transcription factor T-bet (encoded by the 

gene Tbx21; T-box transcription factor 21), whereas NK cells additionally require eomesodermin 

(Eomes). Both NK cells and ILC1 are crucial for anti-viral and intracellular pathogen responses 

through their production of IFNJ and cytotoxic effector functions. Because of the similar 

phenotypic and functional profiles of ILC1 and NK cells, much of the early published literature 

regarding NK1.1+ TCR- cells does not distinguish between these cells. The difference between 

these populations can be traced back to their development, as NK cells differentiate from a 

dedicated NK cell precursor, while ILC1 are derived from a common ILC precursor (22). ILC2s 

are dependent on the transcription factor GATA-binding protein 3 (GATA3) and mainly produce 

IL-5 and IL-13 in response to IL-33 and IL-25 cytokine signals, which play critical roles in type-

two immunity in the context of allergy and helminth infection. Lastly, ILC3s are dependent on 

the transcription factor Retinoic acid-related orphan receptor gamma t (RORJt) and respond to 

IL-23 and IL-1E to produce IL-17a, IL-17f, IL-22, granulocyte-macrophage colony-stimulating 

factor (GM-CSF), and under certain circumstances IFNJ. ILC3s can be further subdivided into 
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two major subsets, natural cytotoxicity receptor (NCR)+ and NCR- ILC3s, which are 

differentiated by their expression of NKp46 in mice and NKp44 in humans. The NCR- ILC3 

subset can also be separated by CCR6 and/or CD4 expression to further identify the lymphoid 

tissue-inducer (LTi) and LTi-like subsets in the fetus and adult, respectively, which are positive 

for both CCR6 and CD4. The LTi subset was the first ILC type identified, as it plays a critical 

role in the development of lymphoid organs mainly through the expression of lymphotoxin, 

which interacts with stromal lymphoid organizer cells to generate and organize functional 

regions within lymphoid tissues (23, 24). LTi cells disappear soon after birth; however, adult 

bone marrow-derived LTi-like ILC3s exist and have been shown to regulate tertiary lymphoid 

structure formation in the context of infection and other immune insults (24, 25).  

 Our interest in ILCs was first piqued by the observation that a number of mRNA 

transcripts associated with genes and their products related to ILC3s were expressed at a higher 

level in hepatic innate immune cells from adult Rag1-/- animals compared to young animals at 

baseline, before adoptive transfer of wildtype splenocytes, as measured by microarray (Fig. 

1.17). More specifically, analysis of this data set revealed increased expression of Rorc (the gene 

that encodes RORJt), Il17a, Il17f, Il22, Colony-stimulating factor 2 (Csf2; the gene encoding 

GM-CSF), Lymphotoxin D (Lta) and E (Ltb), Ccr6, and tumor necrosis family member 11 

(Tnfsf11, also known as RANK ligand; RANKL) and 14 (Tnfsf14, also known as LIGHT). These 

data suggested that there may be an age-dependent increase in the number or functional capacity 

of hepatic ILC3.  
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Figure 1.17. Increased expression of ILC3-associated transcripts in adult hepatic innate immune 
populations. Hepatic myeloid fractions were enriched from Rag1-/- or HBVtgRag1-/- adult (8-10 wks) and 
young (3 wks) animals that were not adoptively transferred. RNA was isolated from frozen cell pellets 
and submitted to the UCSF Genomics Core for transcript analysis using the Agilent 4x44 Mouse GE 
platform with additional custom probes for HBV transcript recognition. The average log2 based intensity 
(aveA) of selected transcript probes across all arrays, a proxy for gene expression level, is reported in 
heatmap format. Individual animals are labeled on the x-axis while gene names of selected ILC3-related 
transcripts are on the y-axis. Color coding on the top bar represents the biological group as specified in 
the key while the expression level is depicted on a red/blue scale that corresponds to aveA levels. 
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experiments, we determined that the first reporter strain we were using, B6.129P2(Cg)-

Rorctm2Litt/J or RORc(Jt)-EGFP generated by Dr. Dan Littman (23), where heterozygous 

RORc(Jt)GFP/+ animals have GFP expression within RORJt-expressing cells including ILC3, 

were not sufficiently bright to identify the entire hepatic population of ILC3s. Many GFP+ cells 

were dim and close to background levels seen in RORc(Jt)GFP/GFP animals, which are RORJt-null 

and lack ILC3s along with other RORJt+ cell types including CD4+ T helper (Th)17, CD8+ T 

cytotoxic (Tc)17, and a large subset of JG T cells. For this reason, we relied on intranuclear 

staining of RORJt for the data presented below. It is important to mention, however, that we 

have obtained a new strain of RORJt-reporter mice, designated Tg(Rorc-EGFP)1Ebe or 

RORc(Jt)-BAC, generated in Dr. Gerard Eberl’s laboratory. This RORc(Jt)-BAC mouse has a 

much brighter and more robust GFP signal, even beyond the levels achieved with intracellular 

staining. This was accomplished through the use of a bacterial artificial chromosome (BAC) 

containing the Rorc gene with an EGFP construct knocked into the ATG start site of the Rorc(Jt) 

isoform of the gene locus, whereby an estimated 5-10 copies of the BAC transgene were 

integrated at an unknown site within the genome. The resulting mouse is a bright RORJt-EGFP 

reporter as both a heterozygote and homozygote (26). 

 When examining the number and frequency of each hepatic NK cell and ILC subset, I 

found each population had a different age-dependent profile. As mentioned above, the phenotype 

of NK cells and ILC1s are very similar and as a result there has been inconsistency in how each of 

these populations is defined. For the purposes of this study, we defined NK cells as NK1.1+ 

CD127- CD90+/- CD49b+/- and ILC1 as NK1.1+ CD127+ CD90+ RORJt- because NK cells do 

not rely on the expression of CD127 (IL-7RD) for their development, whereas ILC1s do. CD49b 
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(DX5) has also been used by some groups to distinguish between ILC1 and NK cells, however, in 

the liver we found that the majority of CD49b- NK1.1+ cells did not express CD127, inconsistent 

with other ILCs (27). Many, but not all, of these CD49b- NK1.1+ cells were also CD90+, another 

marker expressed by all ILC. Although CD90 expression is associated with ILCs, we also found 

many CD49b+ NK1.1+ cells that were CD90+, suggesting that CD90 expression alone was not 

sufficient to identify ILC1 nor separate CD49b+ versus CD49b- subsets. CD49b has been 

described to represent a marker of NK cell maturation; thus, we have evaluated CD49b+ and 

CD49b- NK cells separately as they are reported to be functionally distinct (28). 

Following this gating strategy, I observed an age-dependent increased abundance of mature 

NK cells (NK1.1+ CD49b+ CD90+/- CD127-) at each time point, day 0 (before adoptive transfer) 

and day 3 and day 8 post-transfer during the acute phase of the immune response, with a clear 

expansion of this population over time (Fig. 1.18). This increase in NK cells in adults was in 

contrast to the age-dependent decrease in the number and percentage of immature NK cells 

(NK1.1+ CD49b- CD90+/- CD127-) with age, such that young animals have a greater 

representation of CD49b- cells within the NK cell fraction compared to adults where CD49b+ cells 

dominate (Fig. 1.18). Unlike the NK cells, there was no evidence of a major expansion of this 

population during the anti-HBV response. Because the differences in CD49b+ and CD49b- NK 

cells were reciprocal, there were no differences in the total number of NK1.1+ TCRE- cells by age. 
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Figure 1.18. Hepatic NK cell dynamics in adult and young mice during early HBV immunity. 
Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 wks) and young (3 – 3.5 wks) 
animals eight days after adoptive transfer with HBV-naïve splenocytes. Cells were stained for surface and 
intracellular markers and data were collected on an LSRII flow cytometer. (A) The number and 
percentages of hepatic NK1.1+ CD127- relative to live cells were measured at day 0. NK cells at 
subsequent time points day 3 (B) and day 8 (C) were defined as TCRβ- TCR𝛾ẟ- NK1.1+ CD127-. Total 
numbers of (D) CD49b+ and (E)CD49b- NK cells and percentages of (F) CD49b- and (G) CD49b+ NK 
cells relative to live cells is graphed as a function of time; statistics are shown in panels A-C for these 
data. Data were analyzed using FlowJoTM Software; statistics determined by Tukey’s ANOVA with 
multiple comparisons using GraphPad Prism Software; * p<0.05, ** p<0.01, *** p<0.001, **** 
p<0.0001; n≥4 for HBV+ groups, n ≥2 for HBV- groups. 
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 I examined the number and frequency of CD127+ ILC1 during the early HBV immune 

response. There was a suggestion of a possible increase in ILC1 in adult HBV+ animals 

compared to HBV- adults and HBV+ young mice at day 0 and day 3, however this was not 

statistically significant (Fig. 1.19 A-B, D-E). By day 8 post-transfer, we could see an age-

dependent increase in the number of ILC1; however, the percentage of ILC1 relative to total cells 

or total ILCs (CD127+ CD90+) was not different by age (Fig. 1.19 C-F). Together, these data 

suggest that age is likely not a major regulator of ILC1 differentiation or expansion during an 

HBV immune reponse. 
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Figure 1.19. Hepatic ILC1 cell dynamics in adult and young mice during early HBV immunity. 
Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 wks) and young (3 – 3.5 wks) 
animals eight days after adoptive transfer with HBV-naïve splenocytes. Cells were stained for surface and 
intracellular markers and data were collected on an LSRII flow cytometer. The number and percentages 
of hepatic NK1.1+ CD49b- relative to live cells were measured at day 0 (A). ILC1at subsequent time 
points day 3 (B) and day 8 (C) were defined as TCRβ- TCR𝛾ẟ- CD90+ CD127+ NK1.1+. (D) Total 
numbers and (E) percentages relative to live cells is graphed as a function of time; statistics are shown in 
panels A-C for these data. (F) ILC1 as a percentage of total CD90+ CD127+ cells. Data were analyzed 
using FlowJoTM Software; statistics determined by Tukey’s ANOVA with multiple comparisons using 
GraphPad Prism Software; * p<0.05, ** p<0.01, *** p<0.001; n≥4 for HBV+ groups, n ≥2 for HBV- 
groups. 

 Early studies in our lab showed that NK1.1+ cells play a critical role in early liver 

inflammation; however, these effects were largely attributed to NKT cells rather than NK cells as 

transfer of NK1.1+ TCRE+ cells lead to hepatic inflammation whereas transfer of NK1.1+ 

TCRE- cells did not (29). Further investigation revealed that the presence of the HBV transgene 

led to increased expression of NKG2D on NK and NKT cells and a concurrent increase in 

NKG2D ligands, specifically retinoic acid inducible-1 (RAE-1), which together promoted NKT 

cell activation and the production of IFNJ and IL-4, both of which play an important role in viral 

control and immune priming of other lymphocytes (30). At the time of these studies, the 

potential role of NK1.1+ TCRE- NK cells in facilitating a productive immune priming 

environment or in the eventual clearance of viral antigens had not been investigated. 

Furthermore, the distinction between CD49b+ versus CD49b- NK1.1+ NK cells and their 

associated functional effects was not evaluated in the context of HBV immunity. Therefore, 

future studies are needed in order to determine whether the observed difference in the relative 

ratios of mature and immature NK cells in adult and young mice may contribute to their age-

dependent outcomes, with a focus on which effector molecules each subset expresses and 

whether these effectors can help to support antigen presentation and lymphocyte priming and 

differentiation necessary for effective HBV control. 
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At baseline, before adoptive transfer, there were a greater number and frequency of ILC2 

(CD90hi CD127+ IL-33R+ RORJt- NK1.1-) in young mice (Fig. 1.20 A). Interestingly, by day 8 

this age-dependence was reversed and ILC2s were more abundant in adults (Fig. 1.20 B-F). 

Some recent studies have begun to uncover a role for ILC2s in non-viral liver disease contexts, 

particularly in relation to fibrosis (31). However, while we cannot rule out a role for ILC2s in 

anti-HBV immunity, the lack of consistent age-dependent differences throughout this early 

immune response suggests that these cells are likely not involved in the impaired ability of 

young mice to clear hepatitis B viral antigens. 
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Figure 1.20. Hepatic ILC2 cell dynamics in adult and young mice during early HBV immunity. 
Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 wks) and young (3 – 3.5 wks) 
animals eight days after adoptive transfer with HBV-naïve splenocytes. Cells were stained for surface and 
intracellular markers and data were collected on an LSRII flow cytometer. The number and percentages 
of hepatic CD90+/hi CD127+ IL-33R+ relative to live cells were measured at day 0 (A). ILC2s at 
subsequent time points day 3 (B) and day 8 (C) were defined as TCRβ- TCR𝛾ẟ- CD90+/hi CD127+ IL-
33R+. (D) Total numbers and (E) percentages relative to live cells is graphed as a function of time; 
statistics are shown in panels A-C for these data. (F) ILC2 frequency shown as a percentage of total 
CD90+ CD127+ cells. Data were analyzed using FlowJoTM Software; statistics determined by Tukey’s 
ANOVA with multiple comparisons using GraphPad Prism Software; * p<0.05, ** p<0.01, *** p<0.001; 
n≥4 for HBV+ groups, n ≥2 for HBV- groups. 

 

I observed that adults had an increased number of ILC3s (TCR- CD90hi CD127+ IL-33R- 

RORJt+ NK1.1+/-) compared to young mice at baseline and at day 3 post-adoptive transfer (Fig. 

1.21 A-B, D-F). However, by day eight the numbers of ILC3s were roughly equivalent in adult 

and young animals (Fig. 1.21 C-F). At this later time point, we know there is a much greater 

infiltration of splenic donor cells, which do contain ILC3s, into the liver. Thus, it is possible that 

infiltrating splenic ILC3s contribute towards an equalization of numbers in young and adult mice 

by this time point.   



 40 

 

Figure 1.21. Hepatic ILC3 cell dynamics in adult and young mice during early HBV immunity. 
Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 wks) and young (3 – 3.5 wks) 
animals eight days after adoptive transfer with HBV-naïve splenocytes. Cells were stained for surface and 
intracellular markers and data were collected on an LSRII flow cytometer. The number and percentages 
of hepatic CD90+/hi CD127+ ROR𝛾t+ relative to live cells were measured at day 0 (A). ILC3s at 
subsequent time points day 3 (B) and day 8 (C) were defined as TCRβ- TCR𝛾ẟ- CD90+/hi CD127+ 
ROR𝛾t+. (D) Total numbers and (E) percentages relative to live cells is graphed as a function of time; 
statistics are shown in panels A-C for these data. (F) ILC3 frequency shown as a percentage of total 
CD90+ CD127+ cells. Data were analyzed using FlowJoTM Software; statistics determined by Tukey’s 
ANOVA with multiple comparisons using GraphPad Prism Software; * p<0.05, ** p<0.01, *** p<0.001, 
**** p<0.0001; n≥4 for HBV+ groups, n ≥2 for HBV- groups. 
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dependent roles in the liver. In fact, several groups have uncovered an age-dependent 

accumulation of ILC3s within the gut, particularly the small intestine, as well as a phenotypic 

switch that correlates with a parallel increase in the commensal microbial burden that occurs in 

early life (24, 32). These studies illustrate that ILC3s are particularly well suited to respond to 

environmental signals that have the potential to govern global shifts in the type and strength of a 

given immune response. 

 A more in-depth characterization of this immune population revealed that there are not 

only differences in the abundance of ILC3s, but also changes in their phenotypic profiles. The 

major ILC3 subsets in mice and humans include the NCR+ and NCR- subsets. In mice, NCR+ 

ILC3s are defined by the expression of NKp46 alone, while in humans NCR+ ILC3s are defined 

by the expression of NKp44. In our mouse experiments, the most obvious difference in ILC3s 

was the greater number and frequency of NKp46- ILC3s in adult liver (Fig. 1.22 A-B). Although 

the majority of ILC3s were of the NKp46- subset in both young and adult livers, there was a 

stronger skewing towards NKp46- within the adults. This subset is believed to be more plastic 

than the NKp46+ subset, having the potential to differentiate into NKp46+ ILC3s, ILC1-like, or 

ILC2-like cells (33). By day three I observed a shift towards an increased frequency in the 

NKp46+ subset, which, in young mice, led to more NKp46+ versus NKp46- ILC3s, indicating 

that the early immune environment in the liver supports expansion of this NKp46+ subset (Fig. 

1.22 B). By day eight we see a return to an increased percentage of NKp46- ILC3s compared to 

NKp46+ ILC3s with similar frequencies by age (Fig. 1.22 C).  



 42 

 

Figure 1.22. Dynamics of major ILC3 subsets in the liver during early HBV immunity in adult and 
young mice. Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 wks) and young (3 
– 3.5 wks) animals eight days after adoptive transfer with HBV-naïve splenocytes. Cells were stained for 
surface and intracellular markers and data were collected on an LSRII flow cytometer. The number and 
percentages of hepatic NKp46+ and NKp46- CD90+/hi CD127+ ROR𝛾t+ relative to total ILC3 were 
measured at day 0 (A). NKp46+ and NKp46- ILC3s at subsequent time points, day 3 (B) and day 8 (C) 
were defined as TCRβ- TCR𝛾ẟ- CD90+/hi CD127+ ROR𝛾t+. Data were analyzed using FlowJoTM 
Software; statistics determined by unpaired two-tailed t-test using GraphPad Prism Software; * p<0.05, 
*** p<0.001, **** p<0.0001; n≥4. 

 The markers CCR6 and CD4 have been shown to mark the LTi-like subset of ILC3s. We 

found that the commercially available CCR6 antibodies were positively staining hepatic 

leukocytes in Ccr6-/- mice suggesting there was non-specific staining, at least within liver tissue. 

For this reason, I focused on using CD4 to identify this LTi-like subset. The CD4+ subset was a 

small fraction of the initial hepatic ILC3 population and was mostly found only within NKp46- 
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ILC3s; however, there was a small but trustworthy subset of CD4+ NKp46+ ILC3 that was 

slightly increased at baseline in adults but was small and equivalent by age at day three and eight 

(Fig. 1.23). It is unclear whether this population retains any LTi-like properties. Within the 

NKp46- subset, there was an overall greater number of adult CD4+ LTi-like ILC3; however, the 

percentage of NKp46- ILC3s which have an LTi-like phenotype was increased within the young 

animals (Fig. 1.23 A-B). These observations are consistent with LTi cells playing a critical role 

in early development of primary and secondary lymphoid organs and may explain why a greater 

proportion of young ILC3s have this phenotype. At the same time, the increase of total CD4+ 

NKp46- ILCs, is consistent with age-dependent increases of total ILC3s across various tissues, 

with a shift away from a lymphoid-organizing phenotype and poised to differentiate into other 

ILC effector functions depending on changes in the microenvironment. 
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Figure 1.23. CD4 expression within hepatic NKp46+ and NKp46- ILC3 subsets during early HBV 
immunity in adult and young mice. Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult 
(>8 wks) and young (3 – 3.5 wks) animals eight days after adoptive transfer with HBV-naïve splenocytes. 
Cells were stained for surface and intracellular markers and data were collected on an LSRII flow 
cytometer. The number and percentages of hepatic CD4+ NKp46+/- CD90+/hi CD127+ ROR𝛾t+ relative 
to total ILC3 were measured at day 0 (A). CD4+ NKp46+ and NKp46- ILC3s at subsequent time points, 
day 3 (B) and day 8 (C) were defined as TCRβ- TCR𝛾ẟ- CD90+/hi CD127+ ROR𝛾t+-. Data were analyzed 
using FlowJoTM Software; statistics determined by unpaired two-tailed t-test using GraphPad Prism 
Software; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001; n≥4. 

 Recent work by several groups has nicely shown that ILC3s in the gut and spleen express 

MHCII and are capable of presenting antigen to CD4+ T cells (34-38). The tissue environment is 

critical in directing the role of this antigen presentation towards T cell activation or tolerance. In 

the spleen, ILC3s express high levels of MHCII and have a higher percentage of costimulatory 
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molecule expression, particularly OX40L, CD80, and CD86, making them efficient antigen 

presenting cells, in some respects performing nearly as well as bona fide antigen-presenting 

dendritic cells (37, 38). In the small intestine, however, ILC3s express MHCII at a lower level 

and have greatly reduced co-stimulatory molecule expression resulting in severely blunted T cell 

priming and prevention of commensal microbe-driven inflammation (35, 37). Similar to the gut, 

the liver is exposed to a large antigenic burden, as 70 percent of its blood supply comes via the 

portal vein, which transport blood directly from the small intestine. Because of this, one might 

expect that the phenotype of hepatic ILC3s (livILC3) might be more similar to the small intestine 

ILC3s (siILC3) compared to splenic ILC3s (spILC3) – particularly in the young animals as they 

are experiencing colonization by commensal microbiota. In fact, I did find that a minority of 

hepatic ILC3s were MHCII+, approximately 10-20 percent; interestingly, I detected both 

NKp46+ and NKp46- subsets expressing MHCII+ (Fig. 1.24). In both the spleen and gut MHCII 

expression is mostly, but not exclusively, limited to the NKp46- subset. There was an age-

dependent increase in the MHCII+ NKp46+ subset at all time points (Fig. 1.24 A-C). In the 

NKp46- subset, there was a trend towards young mice having a greater percentage of MHCII+ 

NKp46- ILC3s, consistent with a potential role for these cells in modulating T cell responses 

during this window of microbial colonization. At baseline, there was a greater total number of 

MHCII+ NKp46- ILC3s in adults despite the aforementioned trend, likely reflecting the total 

increased number of this subset in adults. These data suggest that hepatic ILC3s are more similar 

to the small intestine ILC3s with respect to MHCII expression, though they interestingly differ in 

having a more prominent MHCII+ NKp46+ subset. Future studies are required in order to assess 

the antigen presentation capacity of each MHCII+ subset. When examining expression of the co-

stimulatory molecule OX40L by flow cytometry, there were very few OX40L+ ILC3 by flow 



 46 

cytometry in the liver, suggesting that these cells are less likely to be efficient antigen presenting 

cells. However, it is important to note that TNF family members are subject to cleavage by 

metalloproteinases and others have reported challenges detecting OX40L after certain cell 

isolation protocols. For this reason, we plan to confirm OX40L expression patterns within 

hepatic ILCs by measuring Tnfsf4 (OX40L) mRNA transcript levels. 

 

Figure 1.24. MHC class II expression within hepatic NKp46+ and NKp46- ILC3 subsets during 
early HBV immunity in adult and young mice. Hepatic leukocyte fractions were enriched from 
HBVtgRag1-/- adult (>8 wks) and young (3 – 3.5 wks) animals eight days after adoptive transfer with 
HBV-naïve splenocytes. Cells were stained for surface and intracellular markers and data were collected 
on an LSRII flow cytometer. The number and percentages of hepatic MHCII+ NKp46+/- CD90+/hi 
CD127+ ROR𝛾t+ relative to total ILC3 were measured at day 0 (A). MHCII+ NKp46+ and NKp46- 
ILC3s at subsequent time points, day 3 (B) and day 8 (C) were defined as TCRβ- TCR𝛾ẟ- CD90+/hi 
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CD127+ ROR𝛾t+. Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-
tailed t-test using GraphPad Prism Software; * p<0.05, ** p<0.01; n≥4. 

 I also examined expression of CD69 on ILC3 subsets. CD69 plays an important role in 

tissue residency and can also be a marker of recently activated cells. At baseline, CD69 is 

probably most relevant as a marker of tissue retention. We observed that 75 percent of both adult 

and young NKp46+ ILC3s are CD69+, suggesting most of these cells lack the ability to exit the 

liver and circulate (Fig. 1.25 A). Within the NKp46- subset, which is believed to be more plastic 

in its differentiation status, I observed that the young mice had a 20-25 percent decrease in the 

percentage of CD69+ cells, suggesting that these cells were more capable of leaving the liver and 

potentially still functioning to seed other tissues with ILCs. By day three and eight I see noted 

that CD69 expression within the NKp46- subset increased in young animals while slightly 

decreasing in adults (Fig. 1.25 B-C). This may either reflect a more rapid expansion of adult 

ILC3s that have yet to upregulate CD69, or instead suggest that young ILC3s are more sensitive 

to activation. At day eight I observed that there was an overall decrease in the percentage of 

CD69+ ILC3s, perhaps reflecting an influx of splenic CD69- ILC3s from the adoptive transfer, 

particularly of the NKp46- subset, which is known to be more abundant in the spleen compared 

to NKp46+ ILC3 (Fig. 1.25 C). 
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Figure 1.25. CD69 expression within hepatic NKp46+ and NKp46- ILC3 subsets during early HBV 
immunity in adult and young mice. Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult 
(>8 wks) and young (3 – 3.5 wks) animals eight days after adoptive transfer with HBV-naïve splenocytes. 
Cells were stained for surface and intracellular markers and data were collected on an LSRII flow 
cytometer. The number and percentages of hepatic CD69+ NKp46+/- CD90+/hi CD127+ ROR𝛾t+ relative 
to total ILC3 were measured at day 0 (A). CD69+ NKp46+ and NKp46- ILC3s at subsequent time points, 
day 3 (B) and day 8 (C) were defined as TCRβ- TCR𝛾ẟ- CD90+/hi CD127+ ROR𝛾t+ NKp4. Data were 
analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test using GraphPad 
Prism Software; * p<0.05, ** p<0.01, *** p<0.001; n≥4. 

 To determine if cytokine production by ILC3s was different by age, I measured ex vivo 

cytokine production without additional stimulation in an effort to minimize cell manipulation. 

When examining IL-22, there was a larger percentage of IL-22+ ILC3s within the NKp46- subset 

compared to the NKp46+ subset (Fig. 1.26). This population was increased in adults at baseline 
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but was equivalent by age at the later time points, arguing against a major role for this cytokine 

in age-dependent ILC3 responses, perhaps suggesting a homeostatic role of ILC3s in the liver.  

 

Figure 1.26. IL-22 expression within hepatic NKp46+ and NKp46- ILC3 subsets during early HBV 
immunity in adult and young mice. Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult 
(>8 wks) and young (3 – 3.5 wks) animals eight days after adoptive transfer with HBV-naïve splenocytes. 
Cells were cultured ex vivo for 4 hrs in the presence of brefeldin A, without stimulation, and subsequently 
stained for surface and intracellular markers and data were collected on an LSRII flow cytometer. The 
number and percentages of hepatic IL-22+ NKp46+/- CD90+/hi CD127+ ROR𝛾t+ relative to total ILC3 
were measured at day 0 (A). IL-22+ NKp46+ and NKp46- ILC3s at subsequent time points, day 3 (B) and 
day 8 (C) were defined as TCRβ- TCR𝛾ẟ- CD90+/hi CD127+ ROR𝛾t+-. Data were analyzed using 
FlowJoTM Software; statistics determined by unpaired two-tailed t-test using GraphPad Prism Software; * 
p<0.05, ** p<0.01, *** p<0.001; n≥4. 
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When examining GM-CSF production within ILC3s, I found no major differences in the 

percentage of GM-CSF+ ILC3s. Only a small percentage of ILC3s expressed GM-CSF, which 

was lowest at day three (Fig. 1.27). While at baseline there was significant GM-CSF production 

by both NKp46+ and NKp46- ILC3 subsets, later on this became more associated with the 

NKp46+ subset. 

 

Figure 1.27. GM-CSF expression within hepatic NKp46+ and NKp46- ILC3 subsets during early 
HBV immunity in adult and young mice. Hepatic leukocyte fractions were enriched from HBVtgRag1-/- 
adult (>8 wks) and young (3 – 3.5 wks) animals eight days after adoptive transfer with HBV-naïve 
splenocytes. Cells were cultured ex vivo for 4 hrs in the presence of brefeldin A, without stimulation, and 
subsequently stained for surface and intracellular markers and data were collected on an LSRII flow 
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cytometer. The number and percentages of hepatic GM-CSF+ NKp46+/- CD90+/hi CD127+ ROR𝛾t+ 
relative to total ILC3 were measured at day 0 (A). GM-CSF+ NKp46+ and NKp46- ILC3s at subsequent 
time points, day 3 (B) and day 8 (C) were defined as TCRβ- TCR𝛾ẟ- CD90+/hi CD127+ ROR𝛾t+. Data 
were analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test using 
GraphPad Prism Software; * p<0.05, ** p<0.01, *** p<0.001; n≥4. 

 Finally, I measured IL-17a cytokine production using a cytokine secretion assay that 

allows for detection of actively secreted IL-17a by incubating the cells for a short period in the 

presence of an anti-IL-17a “capture” antibody that functions to tether the secreted cytokine to the 

cell surface for subsequent detection. I did not measure IL-17a secretion at baseline and had a 

limited sample size at day 3 preventing me from drawing any conclusions about age-dependent 

IL-17a production by hepatic ILC3s at these early time points (Fig. 1.28 A). Despite this, I 

observed that IL-17a is mostly produced by the NKp46- subset, consistent with ILC3s in other 

tissues; however, there was still some IL-17a production by NKp46+ ILC3. At day eight, I did 

not find any age-dependent differences but there was a trend towards increased numbers and 

percentages of IL-17a+ ILC3s in adult animals (Fig. 1.18 B). Future studies are required to more 

carefully assess this population. 
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Figure 1.28. IL-17a expression within hepatic NKp46+ and NKp46- ILC3 subsets during early HBV 
immunity in adult and young mice. Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult 
(>8 wks) and young (3 – 3.5 wks) animals eight days after adoptive transfer with HBV-naïve splenocytes. 
Cells were cultured ex vivo for 45 minutes with anti-IL-17a capture antibodies (Miltenyi IL-17a secretion 
assay), without stimulation, and subsequently stained for surface and intracellular markers and data were 
collected on an LSRII flow cytometer. The number and percentages of hepatic IL-22+ NKp46+/- CD90+/hi 
CD127+ ROR𝛾t+ relative to total ILC3 were measured at day 0 (A). IL-17a+ NKp46+ and NKp46- 
ILC3s at subsequent time points, day 3 (B) and day 8 (C) were defined as TCRβ- TCR𝛾ẟ- CD90+/hi 
CD127+ ROR𝛾t+. Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-
tailed t-test using GraphPad Prism Software; n=5 for all groups, except n=1 for day 3 young HBV+. 

 

Discussion 

 The age-dependent outcome of HBV infection has long been of interest in understanding 

what immunologic features lead to effective control of the infection. Despite the enormous 

global burden of HBV, the only therapies currently available for treating chronic HBV – 

nucleot(s)ide analogs that inhibit viral replication – do not lead to viral clearance. As a result, 

patients often take these anti-viral drugs indefinitely in order to minimize clinical and subclinical 

inflammation that contributes to the development of cirrhosis and hepatocellular carcinoma. 
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Thus, the identification of immune mechanisms that are deficient or impaired during the immune 

response of young individuals, who go on to develop a persistent infection and chronic disease, 

provides the opportunity for therapeutic intervention to reverse these effects.  

 The goal of my work discussed in this chapter was to further characterize these age-

dependent differences in an effort to uncover critical pathways that might be targetable and lead 

to improved immune outcomes. Indeed, the first part of this chapter describes a body of work 

that led to the identification of a critical OX40/OX40L interaction in supporting effective HBV 

immunity (15). A recent study highlighted the relevance of these findings in humans, showing 

that augmentation of OX40 signaling and blockade of PD-1 can lead to increased effector 

responses by antigen-specific cells, similar to our studies in mice (39).  

My characterization of T cell populations also revealed a general defect in the priming of 

CD4+ effector T cells in young mice, suggesting that other regulators of CD4+ T cell priming, 

including efficient MHCII antigen presentation by cDC2 and other cells such as ILC3s – 

discussed in more detail below – may represent additional targetable pathways to improve 

immune outcomes in young animals. One future goal inspired by this project is a careful 

evaluation of the immune priming capabilities of the various antigen-presenting cells present in 

the liver of adult and young animals. These experiments would most simply be carried out by in 

vitro culturing of flow cytometry-sorted hepatic APC populations with OT-I and OT-II T cells in 

the presence of OVA antigens followed by measuring T cell proliferation and production of 

effector cytokines. The increased expression of MHCII on cDC2 and monocyte-derived 

macrophages of adult animals suggests these cells may represent a potent source of antigen 

presentation compared to their young counterparts expressing low amounts of MHCII.  
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The difference in mature and immature hepatic NK cell populations by age was also 

notable and has been previously described to be a unique feature of this organ (27). Whether and 

how these cells support and interface with other innate and adaptive immune cells in particularly 

relevant due to their high frequency in the liver and reported contributions of these cells in HBV 

immunity. Finally, the observation of age-dependent differences in the number and phenotype of 

hepatic ILC3s, including their expression of antigen presenting molecules, is interesting and 

unique compared to other hepatic ILC populations. We know that age-dependent deficits in the 

hepatic innate immune environment of young mice are sufficient to result in impaired immunity, 

even with the transfer of adult splenocytes. These data strongly suggest that innate immune 

populations play a critical role in the early events that dictate immune outcomes to HBV. Thus, 

the identification of differences in a tissue-resident immune cell with previously described 

functions involved in age-dependent immunity in the gut seem highly relevant and worthy of 

further investigation. Studies directed at addressing the role of these cells are discussed in more 

detail in the subsequent chapters of this thesis. 
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Chapter 2. Age-dependent differences in hepatic lymphoid organization influence hepatitis 

B immunity 

 

Introduction 

 Recent studies over the past decade have revealed that in addition to secondary lymphoid 

organs, immune priming against hepatitis B viral antigens first occurs within the liver (14, 40). 

When visualizing the immune populations within the liver during early immunity, it is possible 

to observe various different immune cells clustering together around hepatic portal vasculature as 

well as within the liver parenchyma. Work from our laboratory in a mouse model of HBV 

infection has shown that hepatic macrophages reorganize within the tissue within the first few 

days during HBV immunity and anchor these leukocyte clusters, allowing for further immune 

cell recruitment (14). Disruption of the macrophage-based clusters with clodronate liposome 

treatment – known to target and kill phagocytic cells including Kupffer cells – completely 

ablates immune clustering in the liver, indicating that clustering of other cell types including T 

and B cells is dependent on macrophages. By day eight after adoptive transfer, these 

macrophage-based clusters were found to include a diversity of innate and adaptive immune cells 

including CD11c+ dendritic cells, CD4+ and CD8+ T cells, and B220+ B cells. 

 Interestingly, robust formation of these hepatic leukocyte clusters is age-dependent. Adult 

animals that go on to clear HBV antigens form numerous small- and moderately-sized immune 

aggregates with diverse cell composition within each cluster. In comparison, young animals that 

fail to control HBV form fewer hepatic immune clusters, and the clusters that do form are 

smaller and less diverse. These observations suggest that aggregation of immune cells may be an 

important step in facilitating the priming of an effective immune response, as priming is 
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impaired in animals that lack these clusters. In further support of this hypothesis, cluster 

disruption by clodronate liposome treatment resulted in blunted liver inflammation and impeded 

viral clearance, dramatically reducing antigen-specific IFNJ T cell responses and impairing Il21 

transcript expression – both of which have previously been shown to play a crucial role in viral 

control (9, 14).  

 Efforts to identify molecular regulators of cluster formation were initially focused on the 

chemokine CXCL13 and its receptor, CXCR5, which is present on both T follicular helper cells 

and B cells. Both the chemokine and the receptor were found to be expressed in an age-

dependent fashion; there was an increase in expression of both molecules within the hepatic 

immune populations of adult compared to young mice (14). Indeed, this study showed that 

CXCL13 and CXCR5 do play an essential role in viral clearance, as neither Cxcl13-/- nor Cxcr5-/- 

mice were capable of clearing viral antigens. Surprisingly, the number of macrophage clusters 

was not impaired in these knockout mice, suggesting that the role of CXCL13 and CXCR5 is 

downstream of cluster formation, likely with a specific role in Tfh and B cell responses. 

 These early experiments in our lab led us to wonder what other cells and molecules may 

be regulating cluster formation. In order to address this question, we first focused on developing 

a robust and high-throughput way to characterize the hepatic immune clusters. Efforts in our lab 

initially relied on fluorescent microscopy for the staining and visualization of the immune 

clusters. Unfortunately, several limitations of this approach including the high autofluorescence 

within the liver due to the metabolite-rich environment of this organ, together with tissue 

integrity and technical variations from experiment-to-experiment led us to reconsider the utility 

of this approach for large-scale projects. For these reasons, we turned to a chromogenic-based 

immunohistochemistry (IHC) approach in close collaboration with the UCSF Biotechnology and 
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Biomarker Tissue Core (BTBTC). The benefits of this approach include a lack of 

autofluorescence, because we are not detecting fluorescent probes, extremely stable tissue 

storage and integrity after formalin-fixation and paraffin embedding of liver tissue using an 

optimized collection approach (41), and the ability to use automated slide staining on the 

Ventana Discovery Ultra platform followed by automated whole-slide imaging using the Zeiss 

Axioscanner Z1.  

 

Results 

 Despite initial optimism about overcoming autofluorescence limitations of the liver, we 

experienced similar obstacles when first developing our IHC staining approach. Early rounds of 

tissue staining repeatedly showed that while sensitivity, specificity, and chromogen dye color 

profiles were robust in spleen and thymus, staining liver tissue presented unique challenges (Fig. 

2.1). Working closely with Jennifer Bolen of the BTBTC, overseen by Dr. Scott VandenBerg, 

we went through iterative rounds of tissue staining varying the times, temperatures, and reagents 

used for antigen retrieval, blocking, conditioning, and cell stripping between staining with each 

antibody. We found that the yellow dyes were most likely to cause blushing of the tissue, 

resulting in background staining and similar signal:noise complications caused by 

autofluorescence. We also found that some antibodies led to more problematic background 

blushing than others, highlighting the importance of testing multiple antibody-dye combinations 

with various staining conditions in order to identify the most robust protocol for each single, 

duplex, and triplex combination of markers of interest, especially within liver tissue. Ultimately, 

we were able to optimize protocols for three triplex stains, using hematoxylin counterstaining to 

identify individual cell nuclei. 



 58 

 
Figure 2.1. Liver tissue presents unique challenges when developing multiplexed chromogenic-
based immunohistochemistry staining protocols. (A-C) Liver, (D) thymus, and (E) spleen were 
isolated from mice and drop-fixed in formalin for 24 hours, followed by ethanol dehydration and 
embedding into paraffin wax blocks. Formalin-fixed paraffin-embedded (FFPE) tissue blocks were 
sectioned at 4 µm and stained with anti-RORJ (purple), anti-CD11b (teal), and anti-CD3 (yellow), under 
variable conditions using the Ventana Discovery Ultra platform. Stained sections were imaged at 20X 
resolution with the Zeiss Axioscanner Z1. Scale bars represent 50 µm. 
 

 As we were optimizing conditions for the triplex stains, we had early success with a 

duplex stain using anti-CD8D with a purple chromogenic dye and anti-CD4 with a yellow dye. 

While these markers are most useful in identifying T cells, it’s worth noting that other cell types 

including dendritic cells can also express lower levels of these surface proteins. Assessment of 

the scanned images from adult and young tissue sections stained with anti-CD4, anti-CD8D, and 

hematoxylin showed that there were distinct patterns of CD4+ and CD8+ cell localization. Adult 

animals had prominent periportal and parenchymal inflammation with clusters of CD4+ and 
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CD8+ cells mixed together (Fig. 2.2 A-B). Alternatively, young animals had some smaller cell 

clusters that were predominantly comprised of CD8+ cells. Based on flow cytometry at this same 

time point, we know that the vast majority of CD8+ cells in the liver are T cells; however, it is 

possible that some of these CD8+ cells include DCs. These clusters in young mice were most 

often associated with portal tracts with few parenchymal cell clusters present (Fig. 2.2 C-D). 

Young animals in general also had fewer CD4+ cells but had many individual single CD8+ cells 

spread throughout the liver parenchyma (Fig. 2.2 C-D). 

 
Figure 2.2. CD4 and CD8 staining patterns in adult and young liver during acute HBV immunity. 
Liver tissue was isolated from adult (A-B) and young (C-D) HBVtgRag1-/- mice eight days post-adoptive 
transfer and drop-fixed in formalin for 24 hours, followed by ethanol dehydration and embedding into 
paraffin wax blocks. FFPE tissue blocks were sectioned at 4 µm and stained with anti-CD4 (yellow), anti-
CD8 (purple) using the Ventana Discovery Ultra platform. Stained sections were imaged at 20X 
resolution with the Zeiss Axioscanner Z1. Scale bars for (A, C) represent 100 µm., scale bars for (B, D) 
represent 50 µm. Long arrows point to intraparenchymal clusters, short arrows point to periportal clusters. 

A. B.

C. D.
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 We added an additional marker, RORJ, for a triplex stain with CD4, CD8D, and RORJ, 

together with hematoxylin. The first two colors used, yellow and purple, are both very bright and 

have distinct color profiles, blending into a brick red color when there is overlap. The options for 

a third color at the time when we designed these staining panels were red and teal, a light blueish 

color. Because yellow and purple overlap to form a red color, we did not choose this option to 

simplify interpretation of the data. This left us with teal for the third dye. Unfortunately, this 

color is not bright enough for proteins expressed in low amounts in the liver. It does, however, 

work well on all markers tested in spleen and thymus, again highlighting unique challenges 

within the liver. Another limitation with teal is the similar color profile it shares with 

hematoxylin, which is a darker blue color. Although these two dye colors can be differentiated, 

we found it was best practice to use teal with membrane-restricted markers rather than nuclear-

localized markers that would spatially overlap with hematoxylin. Thus, for the RORJ, CD8D, 

CD4 triplex stain we opted to move RORJ to purple, which provides the brightest and strongest 

signal, CD8D to teal, as CD8D seemed to be the most highly expressed marker of the three and is 

very clearly membrane-localized, leaving CD4 on yellow, also with strong membrane 

localization. We initially sought to find a RORJt-specific antibody; however, all of the antibodies 

we tested detected both RORJ isoforms – RORJ itself and RORJt. While RORJt expression is 

restricted to the hematopoietic compartment, RORJ is expressed uniformly by hepatocytes, the 

main parenchymal cell of the liver. Fortunately for our purposes, this antibody has a much higher 

affinity for the RORJt isoform, which leads to brighter staining within hematopoietic cells 

relative to hepatocytes. Furthermore, nuclei of hepatocytes are much larger than lymphocyte and 

ILC nuclei, and as such are easy to differentiate accordingly. 
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 Once we had the RORJ, CD8D, CD4 triplex stain optimized on liver tissue sections, we 

stained a cohort of sections from adult and young HBVtgRag1-/- animals eight days post-

adoptive transfer during the peak acute immune response (Fig. 2.3). Our goal with this stain was 

to identify five major populations of immune cells: CD4+ T cells (CD4+ CD8D- RORJ-), CD8+ 

T cells (CD4- CD8D- RORJ-), T helper 17 cells (Th17; CD4+ CD8D- RORJ+), type 17 CD8+ T 

cells (Tc17; CD4- CD8D+ RORJ+), and ILC3 (CD4-/low CD8D- RORJ+) (Fig. 2.3 G-N). Due 

to limitations in the number of markers we can include in one stain, there are some noteworthy 

caveats to point out when identifying cell types by these parameters. As mentioned above, CD4 

and CD8D can be expressed on some innate immune populations, particularly some subsets of 

dendritic cells, so it is likely that a portion of the cells determined to be CD4+ T cells and CD8+ 

T cells are actually dendritic cells; however, we know by flow cytometric analysis that this is a 

very small portion of total CD4+ and CD8+ events and the vast majority are indeed TCRE+ T 

cells. Another important caveat is the use of CD4 to differentiate between Th17 and ILC3s. 

While all Th17 cells are CD4+, the LTi-like subset of ILC3s also expresses CD4+. We know 

from earlier flow cytometry experiments that CD4 is expressed by a minority of total ILC3 and 

that most CD4+ RORJ+ cells are TCRE+ Th17 cells. For this reason, we decided to classify 

CD4+ RORJ+ cells as Th17 in instances where CD4 staining is definitive; however, in instances 

where CD4 staining is exceptionally dim or not clearly encompassing the circumference of the 

identified RORJ+ cell we defaulted to classifying these cells as ILC3s. Interestingly, most of the 

ILC3s we found were associated with immune cell clusters and often positioned near portal 

tracts; however, isolated ILC3s within the liver parenchyma could be identified, particularly in 

young mice (Fig. 2.3 F). There were numerous examples of RORJ+ ILC3s directly contacting 
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CD8+ cells, raising the possibility that ILC3s may exert a direct effect on CD8+ cell activities 

(Fig. 2.3 K-M). 

 
Figure 2.3. RORJ, CD4, and CD8 staining patterns in adult and young liver during acute HBV 
immunity. Liver tissue was isolated from adult (A-C) and young (D-F) HBVtgRag1-/- mice eight days 
post-adoptive transfer and drop-fixed in formalin for 24 hours, followed by ethanol dehydration and 
embedding into paraffin wax blocks. FFPE tissue blocks were sectioned at 4 µm and stained with anti-
RORJ (purple), anti-CD8 (teal), and anti-CD4 (yellow) using the Ventana Discovery Ultra platform. 
Stained sections were imaged at 20X resolution with the Zeiss Axioscanner Z1. (G-H) Arrows point to 
CD4+ RORJ+ Th17, (I-J) CD8+ RORJ+ Tc17 and (K-N) RORJ+ CD4- CD8- ILC3. Scale bars represent 
100 µm for (A-B, D-E), 50 µm for (C, F), and 25 µm for (G-N). 
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We had previously relied on a pathologist blinded to sample identity to review tissue 

staining images and to count and score various parameters by eye. However, there are limitations 

to this approach; the major factor being sample size and the ability to now review whole slide 

scanned images that cover several millimeters of tissue area as opposed to five to ten 10X or 20X 

view frames from traditional wide-field microscopes. Thus, in order to expand our bandwidth to 

accommodate these >100x larger data sets, I partnered with Austin Edwards, a bioinformatics 

programmer in UCSF’s Biological Imaging Development Center (BIDC). Through this 

collaboration we aimed to measure both quantitative and qualitative parameters from our stained 

tissue sections using automated machine learning. In short, this analysis pipeline using Ilastik 

software [interactive machine learning for (bio)image analysis; (42)] involves first segmenting 

the image into two main object groups: cells and stroma, using nuclear hematoxylin staining to 

identify individual cells, followed by classification of the individual cell objects based on the 

staining patterns with the antibodies and chromogenic dyes (Fig. 2.4 A-B). Beyond these basic 

steps we have added additional filters that allow us to identify vasculature structures and immune 

cell clusters, with adjustable parameters that allow us to fine-tune the analysis as appropriate 

based on the samples and specific stains used (Fig. 2.4 C).  
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Figure 2.4. Immunohistochemistry image analysis workflow. Images files are converted from the 
native czi format into TIFF and ultimately HDF5 for compatibility with ilastik software. Images were first 
segmented to identify and separate cellular nuclei, defined by the presence of hematoxylin staining, from 
the stromal regions of the tissue which allows individual cells to be separated into single “objects.” 
Objects were then classified into one of several groups: CD4+, CD8+, RORJ+ ILC3, RORJ+ CD4+ 
Th17, RORJ+ CD8+ Tc17, RORJ+ Hepatocytes, or “other” based on the staining with the four dyes 
present: purple (RORJ+), teal (CD8+), yellow (CD4+), and hematoxylin. (A) Original images prior to 
processing are transformed into (B) prediction files with segmented and classified cellular objects based 
on staining patterns in (A) such that each colored object represents a different cells class: CD4+ T cells 
(orange), CD8+ T cells (pink), ILC3 (yellow), Th17 (teal) green (Tc17), white (“other” non-hepatocytes), 
and purple (hepatocytes). (C) A clustering filter is applied to the left image by setting parameters such 
that a minimum number of 5 cells must be less than or equal to a maximum pixel distance between each 
cell; groups of cells that meet both criteria are grouped together and identified as “clusters” (right). Colors 
in the right panel are arbitrary and are shown to illustrate the number and variety of cluster sizes and 
distribution. 
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 After developing this analysis pipeline, we analyzed a small preliminary dataset to 

identify age-dependent patterns of CD4+ and CD8D+ T cell localization relative to ILC3s. From 

this analysis we were able to reveal an increased proportion of CD4+ T cells relative to CD8+ T 

cells in adult liver sections compared to young mice (Fig. 2.5 A). We also detected a small but 

significant increase in the percentage of identified cells that were participating in an immune 

cluster, defined as five or more cells in close proximity, such that approximately 40% of 

identified cells (which includes any cell that was CD4+, CD8D+ and/or RORJ+) were cluster-

associated in adults compared to only 25 percent of identified cells being cluster-associated in 

young animals (Fig. 2.5 B). Despite the difference in the frequency of cells that are cluster 

associated, I did not find a significant difference in the number of cells that were found in each 

identified cluster, with adult clusters averaging 12.45 r 0.598 SEM cells per cluster, while 

clusters in young mice averaged 11.24 r 0.862 SEM cells per cluster (Fig. 2.5 C). Notably, there 

were 16 clusters that had greater than 50 cells per cluster in adults compared to only one cluster 

in young mice with greater than 50 cells per cluster. These data suggest that the clusters that do 

form in young mice are similar in size to the clusters that form in adults, but that adult mice 

appear to have an increased capacity to form very large T cell clusters. We further optimized the 

prediction algorithm and are currently running a larger dataset through this same pipeline to 

validate these initial findings.  
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Figure 2.5. Preliminary analysis of RORJ/CD8/CD4 triplex staining via ilastik pipeline in adult and 
young livers during acute HBV immunity. Liver tissue from three adults and two young mice were 
sectioned and stained with anti- RORJ, CD8, and CD4 and scanned 20X resolution images were analyzed 
using our customized ilastik analysis pipeline to segment and classify individual cells. (A) Total numbers 
of CD4+ and CD8+ T cells were counted within every cluster identified within adult and young livers. 
The number of CD4+ cells was divided by the number of CD8+ cells within every cluster such that each 
dot represents the ratio of CD4+:CD8+ cells within a specific cluster. (B) The percentage of objects 
classified as CD4+, CD8+, or RORJ+ that are within a cluster is shown as a percentage of the total 
number objects classified as CD4+, CD8+ or RORJ+. (C) The number of CD4+, CD8+, or RORJ+ 
objects found in each cluster such that each dot represents an individual cluster. Data were analyzed using 
FlowJoTM Software; statistics determined by unpaired two-tailed t-test using GraphPad Prism Software; 
n=3 adults, n=2 young. 
 

 We also measured the ratio of CD4+ to CD8+ T cells in clusters in which one or more 

ILC3s were present in the cluster (ILC3+) compared to clusters without ILC3s (ILC3-) in both 

young and adult animals. Adults had a greater frequency of CD4+ T cells in both ILC3+ and 

ILC3– clusters relative to young mice (Fig. 2.6 A). There was no difference between the relative 

frequencies of CD4+ and CD8+ T cells within adults, nor within young mice suggesting that 

ILC3 presence in a cluster does not affect the accumulation of CD4+ versus CD8+ cells within 

that cluster. There was a trend towards a greater number of clusters that contained one or more 

ILC3s in adults compared to young mice; however, greater numbers of mice in each group are 
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needed to validate this observation (Fig. 2.6 B). We did find that ILC3+ clusters in adults had a 

higher number of total CD4+ and CD8+ cells compared to ILC3– clusters as well as both ILC3+ 

and ILC3– clusters in young mice (Fig. 2.6 C). These data suggest that in adults, ILC3 may 

facilitate clustering of more cells, or alternatively, that ILC3s are recruited to larger – and likely 

more inflammatory – clusters rather than small, more contained clusters. Because these cells are 

present in the tissue before T cells, it is reasonable to hypothesize that ILC3s may associate with 

the macrophages we know to anchor these clusters as early as, or earlier than, the T cells. 

 

Figure 2.6. Preliminary analysis of ILC3-associated clusters from RORJ/CD8/CD4 triplex stained 
liver tissue via the ilastik pipeline by age during acute HBV immunity. Liver tissue from three adults 
and two young mice were sectioned and stained with anti- RORJ, CD8, and CD4 and scanned 20X 
resolution images were analyzed using our customized ilastik analysis pipeline to segment and classify 
individual cells. (A) Total numbers of CD4+ and CD8+ T cells were counted within every cluster 
identified within adult and young livers. The number of CD4+ cells was divided by the number of CD8+ 
cells within every cluster such that each dot represents the ratio of CD4+:CD8+ cells within a specific 
cluster that contains one or more RORJ+ ILC3 (ILC3+) versus clusters with no ILC3s (ILC3-). (B) The 
number of clusters that are associated with ≥1 ILC3. (C) The number of CD4+, CD8+, or RORJ+ objects 
found in each cluster such that each dot represents an individual ILC3+ or ILC3- cluster. Data were 
analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test using GraphPad 
Prism Software; n=3 adults, n=2 young. 
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In addition to evaluating T cell and ILC3 localization, we also have great interest in better 

understanding the tissue distribution of macrophage and other myeloid populations relative to 

immune clusters and other immune cell populations. We first attempted to use F4/80, a marker of 

macrophages, including Kupffer cells, which is mostly macrophage-specific, although can be 

expressed by a subset of monocytes and dendritic cells. Although we have been able to observe 

reproducible and clear tissue staining with this marker by fluorescent imaging, we were unable to 

find an F4/80 antibody with specific staining that was compatible with the Ventana automated 

slide staining system. As a result, we opted for a different myeloid marker, CD11b (integrin 

alpha M, encoded by Itgam). CD11b is much less specific to macrophages; however, all 

macrophages are CD11b+, though to varying levels. In addition, CD11b also marks other 

myeloid cells including monocytes, granulocytes, and subsets of dendritic cells (cDC2) as well 

as mature NK cells and some activated T cells. Although this marker is less specific, it is useful 

in identifying the base of the immune cell clusters that form, and is especially informative due to 

the high abundance of CD11b+ cells in the liver, particularly Kupffer cell macrophages, that 

allow us to broadly observe the immune landscape during HBV immunity. Due to its high 

prevalence and variable expression across different cell types, we did find CD11b to be one of 

the more challenging markers to optimize within liver. This antibody, when paired with a yellow 

dye, led to high background blushing of the tissue, which both obscured teal staining patterns of 

other markers by shifting the teal color profile, as well as masked specific but dim signals from 

CD11blow cells. Moving forward, we learned that CD11b was best paired with teal or purple 

dyes. We worked up two triplex stains that include CD11b: (1) RORJ, CD11b, and CD3 and (2) 

CD45R (B220), CD11b, and CD3. The first stain allows us to identify CD11b+ myeloid and NK 

cell populations, CD3+ T cells (including both DE T cells and JG T cells), CD3+ RORJ+ T cells, 



 69 

and RORJ+ CD3- ILC3 (Fig. 2.7). Compared to the RORJ, CD8, CD4 triplex stain, the RORJ, 

CD11b, CD3 stain enables complete discernibility between RORJ+ CD3+ T cells and RORJ+ 

CD3- ILC3s and eliminated the ambiguity of CD4+ RORJ+ cells with the possible Th17 versus 

ILC3 identity. A limitation of this stain, however, is the inability to differentiate between Th17, 

Tc17, and RORJ+ JG T cells, as all three of these populations will appear CD3+ RORJ+. 

Because of limitations of CD11b on yellow, this stain was best optimized with RORJt on purple, 

CD11b on teal, and CD3 on yellow. Although CD3 staining in spleen and thymus was crisp (Fig. 

2.1 D-E), we found the membrane staining pattern of CD3 in the liver was very dependent on 

cell conditioning and striping conditions and even when fully optimized was often much more 

“fuzzy” and less discrete compared to spleen and thymus and compared to CD4 and especially 

CD8 in the liver. Nevertheless, we were able to identify striking differences between adult and 

young liver sections, particularly related to the CD11b staining. In adult liver we noted that there 

was a reorganization of CD11bdim cells, which are likely sinusoidal Kupffer cells, and other 

CD11bbright cells into distinct clusters that associate with CD3+ and RORJ+ cells, with visible 

“spindle”-like CD11b+ processes reaching out into the parenchyma (Fig. 2.7 A-C). Young 

animals had fewer clusters present and tended to be either CD3-dominant or CD11b-dominant, 

with less co-clustering of both cell types (Fig. 2.7 D-F). We also observed a number of RORJ+ 

CD3- ILC3s, marked by arrows, which were often associated with immune cell clusters around 

portal tracts and were found in direct contact with both CD11b+ and CD3+ cells. 
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Figure 2.7. RORJ, CD11b, and CD3 staining patterns in adult and young liver during acute HBV 
immunity. Liver tissue was isolated from adult (A-C) and young (D-F) HBVtgRag1-/- mice eight days 
post-adoptive transfer and drop-fixed in formalin for 24 hours, followed by ethanol dehydration and 
embedding into paraffin wax blocks. FFPE tissue blocks were sectioned at 4 µm and stained with anti-
RORJ (purple), anti-CD11b (teal), and anti-CD3 (yellow) using the Ventana Discovery Ultra platform. 
Stained sections were imaged at 20X resolution with the Zeiss Axioscanner Z1. Arrows point to RORJ+ 
CD3- ILC3. Scale bars represent 100 µm for (A-B, D-E) and 50 µm for (C, F). 
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The second CD11b stain, CD45R (B220), CD11b, and CD3 allows us to discriminate 

between B cells (B220+), myeloid and NK cell populations (CD11b+), and T cells (CD3+, 

includes DE T cells and JG T cells; Fig. 2.8). Once again, an important caveat is that while B220 

is mostly found on B cells, it can also be upregulated on other immune populations, including 

some myeloid cells, NK cells, and T cells. Differences in the morphology and staining intensity 

patterns between B cells and myeloid cells can lend increased confidence to B cell identification, 

as B cells are rounder and brighter for B220 compared to other myeloid populations. For this 

stain we opted for similar conditions to the other CD11b and CD3 stain due to the limitations 

discusses above for these antibodies, leaving CD11b on teal, CD3 on yellow, and swapping out 

RORJ on purple for B220. In adult animals, we found most of the B220+ cells to be localized 

within immune cell clusters, both periportal and parenchymal types (Fig. 2.8 A-C). On the other 

hand, while there were abundant B220+ cells present in the young livers, most of these cells 

were isolated or in contact with only one or two other cells and usually not present in the few 

clusters present in these animals (Fig. 2.8 D-E). These data suggest that B cells in adult animals 

are either supported by the immune cluster environment, or instead help contribute to the 

priming and activation of other T cells present in the clusters. Thus, the absence of B cell-cluster 

association in young mice may contribute to their impaired ability to prime T cells and produce 

high affinity and class-switched B cells necessary for HBV control.   
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Figure 2.8. B220, CD11b, and CD3 staining patterns in adult and young liver during acute HBV 
immunity. Liver tissue was isolated from adult (A-C) and young (D-F) HBVtgRag1-/- mice eight days 
post-adoptive transfer and drop-fixed in formalin for 24 hours, followed by ethanol dehydration and 
embedding into paraffin wax blocks. FFPE tissue blocks were sectioned at 4 µm and stained with anti-
CD45R/B220 (purple), anti-CD11b (teal), and anti-CD3 (yellow) using the Ventana Discovery Ultra 
platform. Stained sections were imaged at 20X resolution with the Zeiss Axioscanner Z1. Arrows point to 
B220+ B cells. Scale bars represent 100 µm for (A-B, D-E) and 50 µm for (C, F). 
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We have completed staining and imaging of liver sections from several groups of adult 

and young HBV transgenic animals at day eight post-adoptive transfer with all three of these 

fully optimized and automated triplex stains and are currently working on analyzing these 

datasets with the same pipeline developed for the RORJt, CD8, CD4 stain. Despite the data 

analysis being computationally intensive, it is possible to upload image files into the ilastik 

program and run the algorithm with little to no oversight. Thus, after a time and effort-intensive 

process that took over three years to develop, we have now created a high-throughput system to 

stain, image, and analyze large datasets in order to generate highly powered and meaningful data 

that will contribute to understanding immune cell biology within the liver. The stains we 

developed with the BTBTC are available for other researchers to use, and while strategically 

optimized for liver, also work equally well or better in three other tissues we tested, spleen, 

thymus, and lymph nodes. We have also developed a parallel human panel with anti-RORJt, -

CD3, and -CD68 to enable the visualization of ILC3s, T cells, and myeloid cells within human 

liver specimens. 

 

Discussion 

Recent advances in microscopy and computational technologies have greatly increased the 

amount of information that can be obtained from staining and imaging of tissue sections. 

Limitations in the numbers of markers used in tissue staining can restrict the ability to clearly 

identify specific cell populations with the same confidence level one would achieve with flow 

cytometry or mass cytometry; however, the ability to directly evaluate immune cell organization 

in situ can provide a wealth of information that is lost once that tissue is turned into a single-cell 

suspension. Our goals in developing these stains were to create a robust platform to evaluate the 
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dynamics of immune cell reorganization during an anti-viral immune response. While approaches 

such as live imaging with multi-photon microscopy can enable visualization of motile cells over a 

one- or two-day window, this approach is limited in the number of individual animals that can be 

observed. On the other hand, the platform we have now developed with our collaborators in the 

BTBTC and BIDC allows us to generate and evaluate large datasets to understand how hepatic 

immune cell organization is affected by experimental intervention at a population-level, rather than 

within a single individual. 

The datasets we have already collected contain tens of thousands of data points for each 

tissue section collected. When multiplied by the number of individual animals for which we have 

stained, we have millions, if not billions, of data points that will enable us to draw conclusions that 

are much more representative of the true biology compared to earlier approaches that rely on 

selecting small regions of tissue. Thus far, we have already uncovered exciting observations that 

show differences between CD4+ and CD8+ T cell localization within the liver of adult and young 

animals. These data support early observations by flow cytometry, but also allow for deeper 

insights we would never have understood by using flow cytometry alone. Specifically, we can see 

that the increase in CD4+ T cells in adult livers is not just a global increase, but that these cells are 

associating with aggregates of other immune cells in adults. In the young mice, the reduced number 

of hepatic CD4+ T cells is most notably lacking from the few clusters that do form. These data 

highlight an inability of young mice to recruit CD4+ helper T cell support to the limited number 

of CD8+ T cell clusters that do form, and identify a potential mechanism that could explain why 

the abundance of CD8+ T cells in young mice is not sufficient to effect viral antigen clearance. 

The focus of our ongoing imaging-related efforts is to complete the computational analysis 

of already stained liver sections using the customized analysis pipeline we have developed with 
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Austin Edwards within Ilastik machine learning. We are specifically interested in quantitating the 

numbers and types of immune cells that are cluster-associated or not, the size of clusters, whether 

and how close immune clusters are to portal tracts and vascular regions of the liver, as well as the 

diversity and composition of immune clusters that are or are not associated with individual immune 

cells including ILC3s and B cells. We aim to identify characteristics of immune clusters and 

immune cell distribution that are present in adult animals that clear HBV antigens, but are 

diminished or absent in young animals that are unable to control HBV “infection” in order to 

identify mechanisms of immunity that could potentially be boosted in young animals to support 

an immunological switch towards effective anti-HBV immunity. In the future, once we have 

identified specific features of immune organization that we hypothesize to contribute to effective 

immune priming, we will test these hypotheses with additional imaging techniques such as targeted 

confocal microscopy and live imaging to understand how individual cell-to-cell interactions 

support the population level dynamics observed in large tissue sections. 
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Chapter 3. RORc(Jt)-deficient mice have impaired anti-HBV immunity 

Introduction 

Mouse models to study ILC3s 

 After identifying age-dependent differences between hepatic ILC3 populations in adult 

and young mice, we hypothesized that these cells may play an important role in facilitating 

effective HBV immunity. Therefore, we decided to study animals deficient in the transcription 

factor required for their development and differentiation, RORJt, to monitor the effect of ILC3-

deficiency on HBV immune outcome. In 2004, Gérard Eberl et al., of Dr. Dan Littman’s 

laboratory generated a RORJt reporter and knock-out mouse by inserting the EGFP coding 

sequence within the first exon of the Rorc(Jt) isoform locus (exon 1Jt), which is nested within 

the Rorc(J) locus (23). Insertion of the EGFP coding sequence disrupts the coding sequence of 

Rorc(Jt) but does not affect Rorc(J), which is widely expressed in many adult tissues including 

liver, lung, muscle, heart, and brain and has a separate ATG start site upstream of exon 1Jt. The 

resulting Rorc(Jt)+/GFP heterozygous mouse is a reporter of RORJt-expressing cells, whereas the 

Rorc(Jt)GFP/GFP homozygous mice are complete RORJt knock-outs, resulting in deficiency of 

RORJt-dependent cells. Initial characterization of these mice revealed that in fetal mice, EGFP 

expression was restricted to LTi cells that were CD127 (IL-7RD)+, and mostly CD4+, which 

were not present in the thymus. By adulthood, GFP expression was observed within CD4+ CD8+ 

double-positive thymocytes and was weakly present in single-positive thymocytes, which was 

attributed to the long half-life of EGFP (>24 h), rather than active RORJt expression at the single 

positive stage as no Rorc(Jt) mRNA was detected in these cells. Consistent with previous 
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reports, RORJt-deficient thymocytes had reduced survival in culture and Rorc(Jt)GFP/GFP mice 

had 30-50% fewer double-positive thymocytes compared to wild-type mice, showing an 

important role for RORJt in thymocyte survival at this stage. In an earlier report by the same 

group, researchers described a similar phenotype in the thymus of Rorc(J)-/- mice and further 

showed that beyond the double-positive stage, there is also a dramatic reduction in the total 

number of single-positive T cells within the thymus, likely as a result of the survival defects 

during the double-positive stage (43).  

The role of fetal LTi cells in lymphoid organization 

The most striking phenotype of these mice, however, is the complete lack of peripheral 

lymph nodes and Peyer’s patches, which are organized lymphoid follicles within the mucosa and 

submucosa of the small intestine that play an essential role in regulating gut immunity and 

homeostasis (23). The absence of these lymphoid tissues highlights the essential role that fetal 

LTi cells play in lymphoid organization and ontogeny. Notably, splenic architecture and 

cellularity is maintained in Rorc(J)- and Rorc(Jt)-deficient animals, illustrating a lack of LTi-

dependency in this organ. Further experimentation showed that LTi cell expression of LTD1E2 is 

critical for induction of adhesion molecules VCAM-1 and ICAM-1 by mesenchymal cells in the 

lymph node and Peyer’s patch anlagen, designated stromal “organizer” cells (23). The 

requirement of LTi expression of lymphotoxins could be bypassed by treating mice with an 

agonistic antibody against the LTD1E2 receptor, LTER, which led to the direct upregulation of 

VCAM-1 and ICAM-1 expression. These adhesion molecules play a critical role in organizing 

the architecture of the lymphoid tissues. The authors also showed that CXCL13 was required for 

early LTi recruitment to all lymph nodes and Peyer’s patch anlagen except for mesenteric and 
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cervical lymph nodes, which had normal numbers of LTi cells in CXCL13-deficient mice. 

Furthermore, they also identified IL-7 to be critical for early LTi cell recruitment to lymphoid 

tissues as blockade of the IL-7RD (CD127) with an antagonistic antibody at embryonic day 12 

(E12) and E15 led to a decreased or complete loss of LTi cell clusters at lymph node and Peyer’s 

patch anlagen. The blockade of IL-7RD at only E15, however, had no impact on LTi 

accumulation at these sites, demonstrating the role of IL-7 in very early LTi recruitment, which 

later becomes dispensable. The authors concluded that while IL-7 and CXCL13 both play some 

role in fetal LTi cell recruitment, there are additional factors that contribute to this process. At 

the time when these papers were published, the field of ILC biology was still in its infancy and it 

was not yet appreciated that LTi cells represented only a subset of ILC3s and that these cells 

have many functions later in life beyond their early requirement for lymph node development.  

Adult LTi-like cells retain lymphoid organizing capabilities 

 While these studies outlined a clear role for LTi cells during fetal lymphoid 

organogenesis, it remained unclear what role these cells played in adulthood. Researchers 

hypothesized that since these cells remain in secondary lymphoid organs in adults, perhaps they 

continue to play a role maintaining lymph node organization important for efficient immune 

priming during infection. Elke Scandella et al., showed that after experimental lymphocytic 

choriomeningitis virus (LCMV) infection, splenic architecture was disrupted. Specifically, the 

network of gp38+ fibroblastic reticular cells (FRC) was dramatically reduced and marginal 

zones, T cell zones, and B cell zones were completely disrupted, coinciding with the peak 

activation of CD8+ cytotoxic lymphocytes (CTL) (25). Overtime, gp38+ cells that play an 

essential role in T cell zone architecture were repopulated and splenic cellular organization was 
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recovered by day 25 post-infection. During this recovery period, mice displayed an impaired 

ability to mount an immune response after immunization with recombinant glycoprotein from 

vesicular stomatitis virus (VSV-G). Animals immunized at day eight post-LCMV infection failed 

to produce antibodies against VSV-G and animals immunized at day 16 post-infection produced 

greatly reduced antibody titers, illustrating the essential role that lymphoid organization plays in 

immune priming. The authors found that the number of LTi cells increased within these tissues, 

reaching peak accumulation by day eight to twelve post-infection. They generated bone marrow 

chimeras with Rorc(J)-/- bone marrow transferred into irradiated wild-type recipients and 

observed that splenic architecture recovery was delayed – though not fully blocked – suggesting 

RORJ+ cells contribute to the reorganization of lymphoid tissue after virus-mediated disruption. 

Indeed, when they adoptively transferred enriched LTi cell preparations into the chimeras, they 

observed restoration of the gp38+ FRC network at day 16, similar to that seen in WT animals, 

showing the potential of these cells to support cellular reorganization. These experiments showed 

for the first time that LTi-like cells in adult lymphoid organs retained some of their lymphoid-

organizing capabilities. 

 Another study published two months later went on to show a bona fide role of adult LTi-

like cells in the development of cryptopatches (CP) into mature isolated lymphoid follicles (ILF) 

(24). Unlike Peyer’s patches, the formation and maturation of ILF occurs after birth and is 

dependent on microbial colonization of the gut. These structures consist primarily of clusters of 

B cells, stromal cells, and dendritic cells and play a critical role in the production of mucosal IgA 

antibodies. This study showed that CD3- CD11c- Gr1- B220- CD19- IgA- lineage (Lin)- 

RORJt+ LTi-like cells isolated from two-month-old mice were capable of inducing ILF 

formation in Rorc(Jt)-/- adult recipient mice. They went on to show that this was dependent on 
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the signaling downstream of LTER, similar to the dependency of fetal lymphoid organogenesis 

on LTER signaling. They characterized the differences between embryonic LTi cells and adult 

LTi-like cells and found that the adult cells expressed less LTD compared to fetal LTi cells, but 

similar levels of LTE and increased expression of RANKL (encoded by Tnfsf11) and LIGHT 

(encoded by Tnfsf14), the latter of which is also an LTER ligand. The authors concluded that 

adult LTi-like cells maintain ligand expression that allows them to interact with stromal 

“organizer” cells and facilitate immune cell organization beyond the window of embryonic 

development and into adulthood. 

 In addition to expression of lymphotoxins, researchers recognized early on that like 

RORJt+ Th17 cells, RORJt+ LTi-like cells were capable of producing IL-17, as well as IL-22 

(44). Studies have shown a role for IL-17 production in supporting the formation of inducible 

bronchus-associated lymphoid tissue (iBALT), consistent with an effector function of promoting 

lymphoid organization. In this study, however, it was CD4+ T cell-derived IL-17 production 

rather than ILC3-derived IL-17 production that was essential (45). To my knowledge, no other 

studies have shown a direct role for ILC3-derived IL-17 exclusively playing an essential role in 

lymphoid structure formation. Given the role that IL-17 plays in lymphotoxin-independent 

induction of chemokines – including CXCL13 and CCL19, which attract CXCR5+ and CCR7+ 

lymphocytes, respectively – and a role for IL-17 in the formation of germinal centers, it is likely 

that IL-17 production by LTi-like cells can synergistically contribute to lymphoid structure 

organization (45, 46).  
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Functional effects of ILC3-derived cytokines beyond lymphoid organization 

Beyond lymphoid organization, IL-23-driven IL-17A and IL-17F production by ILC3s in 

the oral mucosa was demonstrated to play an essential role in control of mucosal Candida 

albicans infection (47). In addition, IL-17F, and to a lesser degree IL-17A, were also shown to 

be critical in a model of experimental Citrobacter rodentium infection; mice that were deficient 

in either or both cytokines had increased bacterial burden and increased intestinal inflammation 

(48). In this study, T cells seemed to be the major source of IL-17A while an unidentified 

population, likely ILC3s, was the primary IL-17F source. The authors showed both IL-17A and 

IL-17F played important roles in the production of E-defensin anti-microbial peptides in 

response to C. rodentium infection and hypothesized that a decreased abundance of these 

molecules in the absence of IL-17 contributes to the observed phenotypes. These studies 

expanded the understanding of ILC3 effector functions beyond lymphoid organization. 

 ILC3s have also been shown to secrete GM-CSF, which has varying roles depending on 

the context. One group showed that GM-CSF production by ILC3s was required for efficient 

induction of oral tolerance against commensal microbes (49). In this study, microbes drove IL-

1E production by macrophages, which in turn stimulated NKp46- ILC3s, and to a lesser degree 

NKp46+ ILC3s, to produce GM-CSF that ultimately supported Treg differentiation. In Csf2-/- 

mice, which lack expression of the gene encoding GM-CSF, Treg numbers were greatly reduced 

in the gut, leading to loss of oral tolerance to dietary antigens and dysbiosis of the gut immune 

environment, which the authors hypothesized was a result of decreased retinoic acid and IL-10 

production by macrophages and DCs. In a separate study, ILC3-derived GM-CSF was described 

as having a pro-inflammatory role, which functioned by promoting recruitment of inflammatory 
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Ly6c+ monocytes in a model of anti-CD40-induced innate colitis (50). In this study, GM-CSF 

was important for induction of CCL2, and to a lesser degree CCL19, resulting in trafficking of 

CCR2+ and CCR7+ cells, as well as movement of ILC3s out of cryptopatches, prior to the 

formation of immune clusters elsewhere in the tissue, indicating that GM-CSF from ILC3s may 

be another mechanism by which ILC3s can regulate lymphoid organization.  

Discovery of NCR+ ILC3 and clarification of their ontogeny 

 The shift in focus away from canonical LTi-associated functions of ILC3s was further 

expanded when researchers discovered a population of NK-like cells that were also RORJt+. 

Further investigation showed that these cells were NKp46+ in mice and NKp44+ in humans. The 

literature from this period can be confusing, as there was no consensus on the origin of these 

cells or nomenclature. As a result, disparate groups of researchers began referring to these cells 

by different names, including NKR-LTi, NKR+ RORJt+ ILC, NCR-22, NK22, and ILC22 – as 

people also discovered these cells to be a major source of IL-22.  

Two publications helped to clarify that RORJt+ ILCs are in fact distinct from NK cells. 

First, an earlier study from Dr. Gérard Eberl in 2004 used RORJt fate-mapping to track which 

cells RORJt-expressing precursors are capable of differentiating into. They carried out these 

studies by crossing Rorc(Jt)-CreTG mice that express Cre recombinase under the control of the 

Rorc(Jt) locus via a bacterial artificial chromosome transgene, to R26R mice that express GFP 

under the control of the Rosa26 locus (which is constitutively expressed) only after Cre-mediated 

recombination and excision of a LoxP-flanked STOP cassette that prevents translation of GFP 

before its removal (51). In these mice, once RORJt has been expressed at any point GFP 
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expression is induced and maintained due to the constitutive nature of Rosa26 expression. Thus, 

any cell that is GFP- has never previously expressed RORJt because it was unable to remove the 

STOP cassette and permit GFP expression due to a lack of Cre expression. The data presented in 

this study showed that splenic NK cells, identified as CD3- DX5(CD49b)+ and/or NK1.1+, had 

no GFP expression, indicating that NK cells are not dependent on the transcription factor RORJt. 

Therefore, the authors concluded that NK cells do not develop from a RORJt+ progenitor or 

precursor population.  

The second study to clarify the origin of ILC3s asked the converse question: whether the 

NK-like NKp46+ RORJt+ ILC3s differentiate from the NK cell lineage, or instead from the 

LTi/LTi-like RORJt+ lineage. In these experiments the authors sorted 2 x 104 NK cells (NKp46+ 

RORJt-), LTi-like cells (NKp46- RORJt+), or NKp46+ RORJt+ from small intestine, large 

intestine, and spleen of Rorc(Jt)GFP/+ mice and transferred them into recipient Rag2-/-Il2rg-/- mice, 

which lack all mature T cells and ILC populations (52). Twenty-eight days after adoptive 

transfer, the authors found that only the LTi-like and NKp46+ RORJt+ cells, and not the NK 

cells, gave rise to a population of NKp46+ RORJt+ cells. Interestingly, many of the RORJt 

GFP+ cells from the LTi-like and NKp46+ RORJt+ subsets lost their GFP expression by day 28, 

suggesting the possibility of additional plasticity in these cells beyond NKp46 expression. These 

results were replicated in vitro, again showing an inability of NK cells to differentiate into a 

RORJt+ population. Taken together, these two studies show that multiple ILC3 subsets come 

from a common RORJt-dependent precursor that is separate from NK cells, and that NK cells do 

not differentiate from a RORJt+ precursor. 
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Functional roles and plasticity of NCR+ and NCR- ILC3 

 The latter group went on to characterize this NKp46+ subset of ILC3s (now called NCR+ 

ILC3) using a similar fate mapping approach as Eberl and Littman, except with EYFP instead of 

EGFP, termed RORJtfm (52). They, and others, showed that in addition to being a major source 

of IL-22 production, mouse and human NCR+ ILC3 can progressively lose RORJt expression 

while upregulating T-bet and switching towards an IFNJ-producing ILC1-like phenotype (52, 

53). This population was later termed “ex-ILC3” due to their former expression of RORJt. 

Subsequent studies were completed to clarify that in addition to ex-ILC3s, there are bona fide 

ILC1 that are RORJtfm– and develop from a common ILC precursor in the bone marrow 

identified as Lin- (CD3- CD5- CD19- B220- Gr1- NK1.1- TER-119-) Id2+ IL-7RD+ CD25- 

D4E7+ (termed CHILP – common progenitor to all helper-like ILC) (22). Furthermore, this 

CHILP does not give rise to Eomes+ NK cells, further illustrating the distinction between NK 

cells and not only ILC3s but also ILC1s and ILC2s (22).  

 After clarifying the origin and identity of these NK-like IL-22+ ILC3, several 

independent groups went on to show critical functional roles for IL-22-producing NKp46+ and 

NKp46- ILC3s in regulating tissue homeostasis and disease, most prominently within the 

intestine. In the context of C. rodentium infection in mice, IL-23 expression is highly induced 

resulting in expression of IL-22 from both NKp46+ and NKp46- ILC3 subsets. While IL-6 was 

required for the induction of IL-17A by ILC3, a loss of IL-6 did not affect IL-22 production but a 

loss of IL-23 completely abrogated the early induction of IL-22 by ILC3 (54). In the absence of 

IL-23, IL-22, or ILC3s, animals succumb to the infection more rapidly and with greatly 

increased intestinal pathology, highlighting a protective role of IL-22 (54-56).  
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Although it was first reported that the important subset of IL-22-producing ILC3s was 

NKp46+, careful follow-up studies revealed that although NKp46+ ILC3 do produce significant 

amounts of IL-22, that subset was dispensable for protection from C. rodentium infection, 

whereas the CD4+ NKp46- ILC3 subset was required for bacterial control (55, 56).  

Activated dendritic cells are an important source of IL-23 and contribute to the ability of 

IL-23R+ ILC3s to induce IL-22 secretion. IL-22R expression is restricted to non-hematopoietic 

cells and is mostly found on epithelial and other stromal cells, including hepatocytes within the 

liver. Signaling via IL-22R can trigger secretion of antimicrobial peptides including regenerating 

islet-derived III (REGIII)E and REGIIIJ and E-defensins, which can both directly kill bacteria as 

well as modulate microbial colonization of tissues (54, 57, 58). IL-22 can also induce expression 

of enzymes important for fucosylation. This process plays an important role in shaping 

commensal microbial communities and can protect against pathogenic infection by Salmonella 

typhimurium (59). IL-22R signaling via STAT3 also induces epithelial cell proliferation and 

upregulation of gene pathways associated with wound healing and tissue repair (60, 61). On the 

other hand, IL-22 can also act as a pro-inflammatory mediator, stimulating expression of 

chemokines including CXCL10 and CCL20 and promoting recruitment of CXCR3+ and CCR6+ 

cells, particularly with a helper 17-like phenotype (62-64).  

ILC3s are important antigen-presenting cells 

 A more recent body of work by several groups has focused on understanding the role 

MHC class II (MHCII) expression on a subset of ILC3s. Matthew Hepworth et al., first showed 

in 2013 that ILC3s regulate adaptive immunity not through their expression of cytokines, but 

instead through their expression of MHCII and direct modulation of CD4+ T cell responses (35). 
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The authors first observed that Rorc(Jt)GFP/GFP knock-out mice have increased frequencies of 

circulating CD44+ CD62Llow CD4+ effector T cells and increased Ki67+ CD4+ T cells; these 

mice also exhibited splenomegaly and elevated levels of commensal bacteria-specific IgG 

compared to control mice, indicative of increased basal inflammation in the absence of RORJt. 

Oral administration of broad-spectrum antibiotics reversed this phenotype, providing a link 

between microbial dysbiosis and immune dysregulation. The authors observed high levels of 

MHCII expression within small intestine ILC3s that was greatest in NKp46- T-bet- ILC3s but 

could also be observed in a small subset of NKp46- T-bet+ and NKp46+ T-bet+ ILC3s. The 

authors tested the ability of MHCII+ ILC3s from the small intestine to prime OT-II CD4+ T 

cells, which have a TCR specific for OVA peptide, and found that unlike dendritic cells, ILC3s 

lacked expression of CD40, CD80, and CD86 costimulatory molecules and were unable to 

induce T cell proliferation, as marked by CFSE dilution. They went on to generate mice with 

MHCII deleted within ILC3s by crossing H2-Ab1fl mice with RorcCre mice. Because RORJt 

expression is limited to ILCs and T cells – and T cells do not express MHCII – this deletion only 

functionally affects ILC3s. In these MHC'ILC3 mice, deletion of MHCII from ILC3s alone was 

sufficient to recapitulate the CD4+ T cell dysregulation phenotype of Rorc(Jt)GFP/GFP mice. 

Furthermore, they again showed that this immune dysregulation in MHC'ILC3 mice could be 

ameliorated by oral antibiotic administration.  

While the above study highlighted a role for ILC3s in promoting T cell tolerance to 

microbial antigens, additional studies revealed a role for MHCII+ ILC3s in productive antigen 

presentation and immune priming. Nicole von Burg et al., generated a similar mouse model with 

MHCII deleted in RORJt-expressing cells that they term I-ab'ILC3 (38). Interestingly, the authors 

reported that these mice did not show signs of spontaneous inflammation or CD4+ T cell 
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expansion as was described in the Hepworth et al. report. These observations highlight the role 

that commensal microbiota play in this process, as it is now well accepted that animals housed in 

different facilities can have dramatically different commensal microbial communities that affect 

immunity during both homeostasis and disease (34, 38). Nevertheless, the authors went on to 

show that I-ab'ILC3 mice had an impaired ability to produce OVA-specific IgG1, IgG2a, IgG2b, 

and IgG3 antibodies after immunization, similar to the impairment seen in complete RORJt-/- 

mice. They also found a reduced number of proliferating CD4+ OT-II cells in these immunized 

I-ab'ILC3 mice. They confirmed that splenic ILC3s could efficiently uptake antigen, albeit with 

reduced kinetics compared to bone marrow-derived macrophages. They also identified IL-1E as 

an important positive regulator of the expression of MHCII; co-stimulatory molecules CD80, 

CD86, and CD40; and the activation marker CD69 on ILC3s. IL-1E treatment also increased the 

functional ability of ILC3s to activate antigen-specific OT-II CD4+ T cells in culture measured 

by CFSE dilution.  

Although these two studies showed conflicting results, there are two important 

considerations that may explain these findings. First, as previously mentioned, these studies were 

carried out in different facilities and as a result, the microbial communities that colonized the 

animals in each facility were likely very different and might have contributed to the presence of 

basal inflammation in the Hepworth model that was absent in the von Burg study. Secondly, 

Hepworth et al., mainly studied the role of intestinal ILC3s in their ability to prime T cells, 

whereas von Burg et al., studied splenic ILC3s. A major distinction between these two 

populations was the difference in expression of co-stimulatory molecules on splenic ILC3s that 

was not present on intestinal ILC3s. It is important, however, to note that expression of co-

stimulatory molecules was also very low at baseline in splenic ILC3s and these were only 
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induced in the presence of IL-1E. This suggests that while tissue-specific differences in ILC3s 

likely contribute to their functional profiles, the presence of IL-1E can have profound effects on 

the activity of ILC3s. Furthermore, local differences in IL-1E irrespective of tissue origin may 

contribute to these functional differences.  

Early reports highlighted a role for co-stimulation by splenic ILC3s independent of 

MHCII-antigen presentation such that OX40L+ ILC3s were able to increase survival of already 

primed or activated OX40+ CD4+ Th2 cells, and could be seen in close contact with these cells 

in vivo (36). Together these experiments highlight the importance of co-stimulatory molecule 

expression on ILC3s in directly and indirectly supporting effector CD4+ T cell and T-dependent 

B cell responses.  

Another recent study nicely showed that abundant IL-23 in the small intestine leads to 

decreased MHCII expression on NKp46- ILC3, while IFNJ – which is more abundant in the 

spleen relative to the gut – increases MHCII on NKp46- ILC3, in part through the regulated 

expression of CIITA, a major transcriptional regulator of MHCII (37). Perhaps most 

interestingly, the authors showed that small intestine ILC3s (siILC3) adoptively transferred into 

mice and recovered from the spleen acquire a splenic ILC3 (spILC3) phenotype, and vice versa, 

illustrating the plasticity of these populations and the ability to adjust to their microenvironment. 

They also noticed that there was no tissue-specific bias imprinted upon the NKp46- ILC3s such 

that siILC3 and spILC3 did not preferentially home to their origin tissue. Consistent with the 

earlier reports, the enriched MHCII-positivity within the spleen and parallel increase in co-

stimulatory molecule expression enabled these cells to prime T cells much more efficiently than 

their siILC3 counterparts. 
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Plasticity of ILC3s; a spectrum of phenotypes and functions 

 As reviewed above, there is now a significant body of literature supporting the notion that 

ILC3s are a highly plastic population capable of differentiating and de-differentiating into 

different subsets. On one end of the spectrum are the CD4+ CCR6+ LTi-like ILC3s that express 

lymphotoxins and can produce IL-17 and IL-22 (44). On the other end of the spectrum are the 

NKp46+ ILC3s which express T-bet and mainly produce IL-22 and IFNJ (52, 53). This subset is 

further able to completely lose RORJt expression in the presence of IL-12, acquiring an “ex-

ILC3”, ILC1-like phenotype. In the middle of the spectrum lies the NKp46- ILC3s that lack 

CCR6 and CD4 expression. These cells have the potential to upregulate NKp46 in the presence 

of IL-1E and IL-23, or instead can acquire CCR6 expression and an LTi-like identity (53, 65-67). 

This NKp46- subset, in addition to serving as a more immature subset capable of differentiating 

towards LTi-like or NKp46+ subsets, is a potent producer of IL-17, IL-22, and GM-CSF 

cytokines upon stimulation (49, 65, 68). A portion of these NKp46- ILC3 also express MHCII 

and can act as antigen-presenting cells, leading either to immune priming or immune tolerance 

depending on context (35, 38, 69). The extreme variability of ILC3s is likely in part because they 

are well-suited to respond to environmental signals through their expression of IL-23R, whose 

ligand, IL-23, is highly inducible by microbial stimuli; their ability to respond to retinoic acid 

produced in the gut; and their dependency on aryl hydrocarbon receptor (Ahr), a transcription 

factor that senses soluble aromatic hydrocarbons produced by commensal microbes (70-72). 

ILC3 are primarily tissue-resident 

 Although ILC3s can be found within circulation, it is well accepted that ILCs are 

primarily tissue-resident. The most compelling support for this comes from a study that used 
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parabiosis experiments to show that greater than 95 percent of lineage- (CD3ε, CD5, CD8α, 

CD19, TCRγδ, TCRβ and FcεR1) ILC1 (RORJt- Eomes- NK1.1+), ILC2 (RORJt- GATA3+), 

ILC3 (RORJt+ CD4-), and LTi cells (RORJt+ CD4+) were host-derived rather than of donor 

origin after 30 days, and up to 130 days, of shared circulation between congenically marked 

CD45.1 and CD45.2 animals when looking in the small intestine lamina propria, salivary gland, 

lung, and liver (73). In humans, a population of lineage- (CD3- CD4- CD5- TCRDE TCRJG 

CD14- CD19-) CD7+ CD56- CD127+ cells were found in circulation that lacked expression of 

transcription factors associated with specific ILC lineages. These cells were mostly CD117 

(cKit)+ and when cultured ex vivo within a stromal cell-based culture system displayed unipotent 

and multipotent features, leading the authors to conclude this population acts as a circulating 

committed ILC precursor capable of differentiating into each of the ILC subsets and potentially 

re-seeding tissues (74). 

Modification of our HBV transgenic mouse model to study effects of ILC3-deficiency on 

HBV immunity 

 As mentioned in earlier chapters, our laboratory became interested in ILC3s when we 

discovered an age-dependent transcriptional immune signature, later confirmed by flow 

cytometry, indicating that ILC3s were more enriched within the liver of adults compared to 

young mice. This observation together with the known roles of ILC3s in regulating immune cell 

organization, recruitment, and priming, led us to hypothesize that the age-dependent 

accumulation of these cells may contribute to age-dependent outcomes in HBV. At the time 

when we first started our studies in early 2015, the most accessible mouse model available was 

the previously described Rorc(Jt)GFP/GFP reporter/knockout mouse generated in Dr. Dan 
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Littman’s laboratory (23). Dr. Richard Locksley kindly provided these Rorc(Jt)GFP/GFP mice to us 

to cross onto our HBVtgRag1-/- mouse model background generating HBVtgRag1-/-

Rorc(Jt)GFP/GFP mice or HBVtgRag1-/-Rorc(Jt)GFP/+ reporter mice. Despite some limitations of 

these mice described above, this model provided a reliable way to completely ablate ILC3s in 

HBVtgRag1-/- recipient mice, enabling us to ask the critical question: can mice that lack ILC3s 

mount an effective anti-HBV immune response? 

 

Results 

 In order to test the hypothesis that the age-dependent increase in ILC3s contributes 

towards effective immunity against HBV in adult animals, we adoptively transferred 108 HBV-

naïve WT splenocytes into HBVtgRag1-/- and HBVtgRag1-/-Rorc(Jt)GFP/GFP mice, hereafter 

referred to ILC3-sufficient and ILC3-deficient mice, respectively, and monitored disease 

outcome. Importantly, since recipient animals are on a Rag1-/- background, RORJt-deficiency 

does not impact the T cell compartment, which is reconstituted from a RORJt-replete donor 

animal allowing for normal differentiation of Th17 and RORJt+ JG T cells. I observed striking 

differences in immune outcomes of ILC3-sufficient and ILC3-deficient animals. ILC3-deficient 

animals displayed increased early liver inflammation, as measured by alanine aminotransferase 

(ALT) rise, compared to ILC3-sufficient animals, with peak differences occurring around day 

seven post-adoptive transfer (Fig. 3.1 A). This increased inflammation could also be observed 

histologically, with dramatically increased portal inflammation in ILC3-deficient animals (Fig. 

3.1 B). Despite increased inflammation, 75 percent of ILC3-deficient animals were unable to 

clear HBsAg or make anti-HBs antibodies, indicating these animals are severely impaired in 
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their ability to control HBV (Fig. 3.1 C-D). Of the animals screened for anti-HBs antibodies, 

only two ILC3-deficient mice produced a response, with very low antibody titers (Fig. 3.1 E). 

 

Figure 3.1. HBV immunity is strongly impaired in ILC3-deficient Rorc(Jt)GFP/GFPHBVtgRag1-/- mice. 
Adult (>8wks) HBVtgRag1-/- (ILC3-sufficient) or Rorc(Jt)GFP/GFPHBVtgRag1-/- (ILC3-deficient) animals 
were adoptively transferred with HBV-naïve splenocytes. (A) Liver disease was monitored by plasma 
alanine aminotransferase (ALT). (B) Hematoxylin and Eosin (H&E) staining of representative FFPE liver 
tissue sections from ILC3-sufficient (left) and ILC3-deficient (right). Scale bar represent 150 Pm; arrows 
point to clusters of immune cells in the liver parenchyma and next to portal tracts. (C) Clearance of 
circulating HBsAg and (D) production of anti-HBs antibodies were monitored over time by qualitative 
and quantitative ELISAs, respectively. (E) Quantitative antibody titers are shown at day 84 post-adoptive 
transfer for animals that produced a positive anti-HBs result. Data were analyzed using FlowJoTM 
Software; statistics determined by a log-rank (Mantel-Cox) Chi square survival test or unpaired two-tailed 
t-test with GraphPad Prism Software; * p<0.05, *** p<0.001, n≥21 per group for ALT and HBsAg 
clearance data, pooled from five independent experiments; n≥6 per group for anti-HBs antibody data 
pooled from two independent experiments. 

 I performed a series of experiments to pinpoint the underlying differences within the 

hepatic immune compartment that might explain the impaired HBV clearance in ILC3-deficient 

animals. I examined immunity at day 8 post-transfer during the early window of immune 

priming, as well as later at day 29 to determine the effect of ILC3-deficiency on sustained 

ILC3-
sufficient

ILC3-
deficient

0

1000

2000

3000

H
B

sA
b 

Ti
te

r 
(M

IU
/m

L)

anti-HBs Antibody Titer

0 5 10 15 20 40 60 80 100
0

200

400

600

Days Post Adoptive Transfer

A
LT

 (U
/L

)

*

Liver Inflammation

0 20 40 60 80 100
0

50

100

Days Post Adoptive Transfer

P
er

ce
nt

 H
B

sA
g+

ILC3-sufficient
ILC3-deficient

**** p<0.0001

HBsAg Clearace

0 20 40 60 80 100
0

50

100

Days Post Adoptive Transfer

P
er

ce
nt

 H
B

sA
b+

ILC3-sufficient
ILC3-deficient

* p=0.016

anti-HBs Antibody Production

0 20 40 60 80 100
0

50

100

Days Post Adoptive Transfer

P
er

ce
nt

 H
B

sA
b+

ILC3-sufficient
ILC3-deficient

* p=0.016

anti-HBs Antibody ProductionA. B.

C. D. E.



 93 

immune responses. When grossly examining the composition of the hepatic immune 

compartment I observed similar numbers of total CD45+ hepatic immune cells in ILC3-deficient 

animals on day 8 and on day 29 (Fig. 3.2 A). T cells comprised approximately half of the hepatic 

immune cells both time points and I noted that ILC3-deficient mice had a small reduction in the 

frequency of TCRE+ T cells at both time points (Fig. 3.2 B). I observed that NK cells made up 

about 20 percent of the hepatic immune cells in ILC3-sufficient mice and that ILC3 deficiency 

reduced the frequency of NK cells slightly at day 8 and dramatically at day 29 to 4-fold less than 

control mice (Fig. 3.2 C). These data suggest that ILC3s play a critical role in supporting NK 

cell responses throughout the course of disease and highlight a potential defect that may 

contribute to the impaired HBV immunity of these animals. I also observed a reduction of 

NK1.1+ T cells in ILC3-deficient mice at the later time point only; though, this population was 

reduced over time and only made up a small fraction of total hepatic lymphocytes (Fig. 3.2 F). 

The reduction in frequency of T cells, NK cells, and NK1.1+ T cells was partially offset by an 

increase in the percentage of B cells in ILC3-deficient mice at day 8, but by day 29 the frequency 

of B cells was equivalent between groups (Fig. 3.2 D). Although there were similar numbers of 

Gr-1hi granulocytes, mostly neutrophils, at day 8, that number greatly expanded by day 29 and I 

observed a 5-fold increase in the percentage of granulocytes in ILC3-deficient mice (Fig. 3.2 E). 

Taken together, these data suggest that the loss of ILC3s results in impaired T cell and NK cell 

responses shown to be critical in control of HBV infection and instead favors an inflammatory 

and neutrophil-rich response, most often associated with bacterial infections, wound healing, and 

tissue remodeling. 
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Figure 3.2. Hepatic immune cell composition changes over time and is disrupted in ILC3-deficient 
mice. Hepatic leukocyte fractions were enriched from adult (>8 wks) HBVtgRag1-/- (ILC3-sufficient) and 
Rorc(Jt)GFP/GFPHBVtgRag1-/- (ILC3-deficient) animals 8 days and 29 days after adoptive transfer with 
HBV-naïve splenocytes. Total numbers of CD45+ lymphocytes (A) were measured on day 8 and 29 and 
the percentages of the follow populations relative to CD45+ or Live cells were measured and defined as 
follows: (B) T cells (CD45+ TCRE+ CD90+), (C) NK cells (CD45+ TCRE- CD90- NK1.1+), (D) B cells 
(CD45+ TCRE- B220+), (E) granulocytes (CD45+ Gr1hi), and (F) NK-like T cells (CD45+ TCRE+ 
CD90+ NK1.1+). Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-
tailed t-test with GraphPad Prism Software; * p<0.05, *** p<0.001, **** p<0.0001; n≥4 per group. 

 I examined the composition of DE T cells to determine if there were any differences 

within T cell populations previously identified to play a role in productive HBV immune 

responses. I discovered a striking phenotype of dramatically increased numbers of CD4+ T cells 

relative to CD8+ T cells in ILC3-deficient mice. In adult ILC3-sufficient mice that mount an 

effective immune response, I found that a majority of their hepatic T cells were CD8+ (~70-80 

percent) while a minority were CD4+ (~20-25 percent) (Fig. 1.8 and Fig. 3.3 A-B). In the ILC3-
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deficient mice, however, I observed that this CD4/CD8 T cell skewing was completely reversed 

at day eight, with CD4+ T cells now comprising 75 percent of the hepatic DE T cell compartment 

and CD8+ T cells only making up 20 percent of total T cells (Fig. 3.3 A). By day 29 I still 

observed T cell skewing towards CD4+ T cells compared to ILC3-sufficient animals; however, 

the effect was not as dramatic as day 8 and instead I observed that DE T cells were roughly 

equally split between CD4+ and CD8+ T cell subsets in ILC3-deficient mice (Fig. 3.3 B). 

Interestingly, the number of CD8+ T cells in the liver of ILC3-deficient mice at day 29 had 

caught up to that of control mice, such that the increase of CD4+ T cells in the absence of ILC3s 

was the sole driver of the skewing towards CD4+ T cells compared to ILC3-sufficient mice. I 

had previously identified a small, but significant, defect in the ability of young mice to mount an 

effective CD4+ T effector response compared to adults. Although these ILC3-deficient mice had 

abundant CD4+ T cells, they were still unable to clear HBV. This strongly suggests that the 

quality of the CD4+ T cell response in ILC3 mice was impaired, and further, that the loss of 

CD8+ T cells may also have limited the ability of these mice to effectively clear HBsAg. 

I addressed whether the CD4+ T cell skewing was liver specific, or instead reflected a 

systemic shift in T cell responses. I measured the number of CD4+ and CD8+ T cells in the liver, 

spleen, and circulating peripheral blood mononuclear cells (PBMCs) to address this question. 

Similar to the liver, I observed an expansion of CD4+ T cells in the spleen, as well as in 

circulating PBMCs (Fig. 3.3 E-F). However, unlike the liver, I detected no restriction on CD8+ 

T cell accumulation in the spleen in the absence of ILC3s, as there were a similar number of 

CD8+ T cells regardless of ILC3 deficiency (Fig. 3.3 E). In circulation, I measured an increase 

in CD8+ T cells similar to that seen for CD4+ T cells (Fig. 3.3 F). Taken together these data 

suggest that ILC3s may normally play a role in restricting CD4+ T cell expansion, particularly in 
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the context of an adoptive transfer model whereby transferred T cells are recognizing new HBV 

antigens, as well as potentially new commensal antigens not present in the donor’s microbial 

communities. Furthermore, the loss of ILC3s in recipient animals seems to restrict the early 

ability of CD8+ T cells to accumulate within the liver, despite an abundance of these cells in 

circulation and secondary lymphoid organs. This observation suggests that ILC3-deficiency 

results in either a defect in the local priming or differentiation of CD8+ T cells within the liver, 

and/or that there is an impaired ability to recruit or maintain CD8+ T cells within the tissue 

during early immune priming, which can eventually be overcome with time. 

 

Figure 3.3. ILC3 deficiency causes global CD4+ T cell expansion and restricts hepatic CD8+ T cell 
accumulation. Hepatic leukocyte fractions were enriched from adult (>8 wks) HBVtgRag1-/- (ILC3-
sufficient) and Rorc(Jt)GFP/GFPHBVtgRag1-/- (ILC3-deficient) animals 8 days and 29 days after adoptive 
transfer with HBV-naïve splenocytes. Percentage of CD4+ T cells (CD45+ TCRE+ CD90+ CD4+) and 
CD8 T cells (CD45+ TCRE+ CD90+ CD8+) of total TCRE+ cells on day 8 (A) and day 29 (B) post-
adoptive transfer. (C) Number of CD4+ and CD8+ T cells on day 29 post-transfer. (D-F) Numbers of 
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CD4+ and CD8+ TCRE+ T cells from liver (D), spleen (E), and peripheral blood mononuclear cells 
(PBMC) (F) were quantified as absolute numbers within the given tissue, or as a frequency per 106 
PBMC. Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test 
with GraphPad Prism Software; * p<0.05, *** p<0.001, **** p<0.0001; n≥4 per group. 

 We confirmed the CD4+ T cell skewing of ILC3-deficient animals through tissue staining 

with anti-CD8D and anti-CD4, as described in Chapter 2, on both day 8 and day 29 post-splenic 

reconstitution. During early inflammation, adult ILC3-sufficient animals had numerous 

periportal and parenchymal T cell clusters, with similar representations of CD4+ and CD8+ T 

cells within the clusters, along with many individual CD8+ and some CD4+ T cells distributed 

throughout the parenchyma (Fig. 3.4 A-C). Consistent with the H&E staining results and the 

flow cytometry data, we could very clearly observe much greater periportal inflammation in 

ILC3-deficient mice on day 8, with large T cell clusters encompassing many of the portal tracts 

within the liver (Fig. 3.4 D-F). These clusters tended to either have similar proportions of CD4+ 

and CD8+ T cells or were heavily dominated by CD4+ T cells, particularly the intra-

parenchymal clusters, with very few CD8+ T cell-dominant clusters. We also observed a much 

greater number of individual CD4+ T cells distributed throughout the parenchyma compared to 

ILC3-sufficient mice. Notably, the total number of CD45+ cells and T cells recovered from both 

ILC3-sufficient and ILC3-deficient mice as determined by flow cytometry was not different, 

suggesting that there was a profound difference in the distribution of these cells (Fig. 3.2 A-B, 

Fig. 3.3 D). These data strongly implicate a role for ILC3s in regulating T cell distribution and 

localization throughout the tissue.  



 98 

 

Figure 3.4. CD4 and CD8 staining patterns in ILC3-suffcient and ILC3-deficient liver during acute 
HBV immunity. Liver tissue was isolated from HBVtgRag1-/- ILC3-sufficient (A-C) and 
Rorc(Jt)GFP/GFPHBVtgRag1-/- ILC3-deficient (D-F) mice eight days post-adoptive transfer and drop-fixed 
in formalin for 24 hours, followed by ethanol dehydration and embedding into paraffin wax blocks. FFPE 
tissue blocks were sectioned at 4 µm and stained with anti-CD4 (yellow), anti-CD8a (purple) using the 
Ventana Discovery Ultra platform. Stained sections were imaged at 20X resolution with the Zeiss 
Axioscanner Z1. Scale bars for (A-B, D-E) represent 100 µm, scale bars for (C, F) represent 50 µm. 
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 By day 29 post-transfer, we observed that the majority of the inflammation present on 

day 8 had resolved in the ILC3-sufficient mice, with few T cell clusters remaining that were 

mostly intra-parenchymal or loosely associated with portal tracts (Fig. 3.5 A-C). This 

observation is consistent with the loss of circulating HBsAg in all of these ILC3-sufficient mice 

by this time point. The few remaining immune cell aggregates observed likely serve as a hub for 

continued activation of antigen-specific T cells needed to maintain prolonged clearance of 

HBsAg in the context of a transgenic HBV model. The ILC3-deficient mice, which had all failed 

to clear HBsAg by day 29, however, did not resolve the high levels of hepatic inflammation and 

immune cell infiltration observed on day 8. In the absence of ILC3s, there was a substantial 

amount of inflammation still present in the liver at this later time point, with numerous periportal 

and parenchymal T cell clusters, some of which were extremely large and encompassed the 

entire area around a given portal tract (Fig. 3.5 D-F). ILC3-deficient mice also still had an 

increased representation of CD4+ T cells relative to ILC3-sufficient animals; however, we 

observed that unlike day 8, there were many fewer CD4+ only, or CD4+ T cell-dominant, 

clusters and a greater influx of CD8+ T cells was observed, consistent with the flow cytometry 

data (Fig. 3.3 C). These data suggest that the persistent inflammation present in ILC3-deficient 

mice may result from an inability of these mice to clear viral antigens, which can continue to 

stimulate an inflammatory response. This observation is reminiscent of ectopic lymphoid 

structures that can be found in patients with chronic viral infection, which, similar to aggregates 

found in ILC3-deficient mice, do not to lead to effective immune priming and viral clearance. 

Thus, it is important to better understand how the immune aggregates that form in ILC3-

sufficient mice and lead to productive immunity differ from both the aggregates found in ILC3-

deficient mice and those found in patients with CHB, which lead to unproductive inflammation. 
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As discussed in Chapter 2, we will use Ilastik software and machine learning, to complete this 

analysis in a quantitative and qualitative manner to characterize these differences.  
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Figure 3.5. CD4 and CD8 staining patterns in ILC3-suffcient and ILC3-deficient liver during 
sustained HBV immunity. Liver tissue was isolated from HBVtgRag1-/- ILC3-sufficient (A-C) and 
Rorc(Jt)GFP/GFPHBVtgRag1-/- ILC3-deficient (D-F) mice 29 days post-adoptive transfer and drop-fixed in 
formalin for 24 hours, followed by ethanol dehydration and embedding into paraffin wax blocks. FFPE 
tissue blocks were sectioned at 4 µm and stained with anti-CD4 (yellow), anti-CD8a (purple) using the 
Ventana Discovery Ultra platform. Stained sections were imaged at 20X resolution with the Zeiss 
Axioscanner Z1. Scale bars for (A-B, D-E) represent 100 µm, scale bars for (C, F) represent 50 µm. 

 After identifying substantial differences in CD4+ and CD8+ T cell composition of the 

liver, I measured the frequencies of naïve, central memory, and effector/effector memory subsets 

of T cells to understand how ILC3 loss might affect T cell differentiation, as I previously 

identified a defect in CD4+ TEff cells in young mice at day 8 that also fail to control HBV. When 

first focusing on CD4+ T cells, I observed that the increased number of these cells in ILC3-

deficient mice occurred almost entirely within the CD44+ CD62L- TEff/TEM subset as there were 

no differences in the number of TCM or TNaive CD4+ cells in ILC3-deficient mice at day 8 (Fig. 

3.6 A). By day 29, when the T cells have had more time to establish their phenotypes after the 

initial period of acute inflammation subsided, I noted that there was a reduction in the frequency 

of CD4+ T cells with a central memory phenotype, again with an abundance of TEff cells (Fig. 

3.6 B). I also examined expression of PD-1 and found that there was no difference in the 

frequency of PD-1+ cells at day 8 but there was a decreased percentage of PD-1+ CD4+ T cells 

at day 29, with an overall decrease in the percentage of PD-1+ cells in both groups relative to 

day 8 (Fig 3.6 C). Although PD-1 is often regarded for its role in T cell exhaustion in settings of 

chronic disease, it is also a well-known activation marker whose expression is increased in 

response to TCR stimulation and T cell activation. One potential explanation for the decrease in 

PD-1 expression in CD4+ T cells in ILC3-deficient mice that do not clear HBV antigens may be 

that the dramatic CD4+ T cell expansion we observe is partially a result of bystander activation 

rather than an antigen-driven response and thus, less PD-1 is upregulated in this pool of non-

TCR stimulated CD4+ T cells. The best way to address this question is to identify the frequency 
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of antigen-specific T cells in each animal with MHCII tetramers. We are currently in the process 

of generating these tetramers with the NIH Tetramer Core Facility and plan to evaluate this both 

at day 8, and especially at a later time point such as day 29. In the absence of tetramers, I 

attempted to assess the functional role of these cells by measuring IFNJ and IL-17A cytokine 

production by CD4+ T cells. Thus far, I have only examined an early time point. I observed an 

increased number of IFNJ+ and IL-17A+ CD4+ T cells in ILC3-deficient mice, without a 

difference in the frequency of either population, indicating the increase in these populations is 

reflective of the increase in total CD4+ T cells, rather than a skewed differentiation towards the 

production of one or the other cytokines (Fig. 3.6 D-G). Interestingly, I observed that there was 

much more expression of PD-1 on ILC3-sufficient IFNJ+ CD4+ T cells compared to IFNJ+ 

CD4+ T cells from ILC3-deficient mice, although the opposite was true for IL-17A+ CD4+ T 

cells (Fig. 3.6 H). Again, if we consider PD-1 as a marker reflective of recent antigen experience 

and TCR engagement, this may suggest that a large portion of the IFNJ-producing CD4+ T cells 

in ILC3-deficient mice might be HBV non-specific bystander cells, while the opposite may be 

true for the IL-17A+ subset. This also makes some sense in the context of microbially driven 

expression of IL-23 and its support of RORJ+ and IL-17A+ cell differentiation. Thus, if there 

were microbial dysbiosis due to ILC3 loss in these mice, it is possible that IL-23 may be locally 

increased near portal tracts where an influx of intestinal blood flow – carrying microbes and/or 

microbial products – could lead to increased IL-23 secretion by DCs and other myeloid cells that 

promote Th17 skewing of antigen-specific cells. Careful experiments with a panel of HBV-

specific tetramers will be necessary to clarify these hypotheses and determine whether there is a 

decrease in HBV-specific IFNJ+ cells and/or an increase of HBV-specific IL-17A+ cells, which 

are likely to be less effective at controlling viral pathogens than their IFNJ+ Th1 counterparts. 
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Figure 3.6. ILC3 deficiency impairs CD4+ central memory T cell responses and favors effector 
differentiation. Hepatic leukocyte fractions were enriched from adult (>8 wks) HBVtgRag1-/- (ILC3-
sufficient) and Rorc(Jt)GFP/GFPHBVtgRag1-/- (ILC3-deficient) animals 8 days and 29 days after adoptive 
transfer with HBV-naïve splenocytes. The number (A) and percentage (B) of CD44- CD62L+ Tnaive, 
CD44+ CD62L+ TCM (central memory) and CD44+ CD62L- TEff/TEM (effector/effector memory) CD4+ T 
cells on day 8 (left) and day 29 (right). (C) Percentage of PD-1+ CD4+ T cells. The number (D, F) and 
percentage (E, G) of IFNJ+ (D-E) and IL-17A+ (F-G) CD4+ T cells. (H) Percentage of PD-1+ IFNJ+ 
and PD-1+ IL-17A+ CD4+ T cells. Data were analyzed using FlowJoTM Software; statistics determined 
by unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, ** p<0.01, *** p<0.001, **** 
p<0.0001; n≥4 per group (A-C) n=6 per group (D-H). 
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 When examining CD8+ T cells, I observed that at the early time point the major loss of 

CD8+ T cells in ILC3-deficient mice is due to a reduction of CD44+ CD62L- TEff subset (Fig 3.7 

A). Because of the loss of TEff, there is a relative increase in the frequencies of TCM and TNaive 

CD8+ cells relative to total CD8+ T cells. At day 29, however, I observed that similar to the 

CD4+ T cells, there was a marked reduction in the frequency as well as the number of central 

memory CD8+ T cells, suggesting an inability to sustain TCM more globally (Fig. 3.7 B). Unlike 

the CD4+ T cells, I noted that at the early time point there was an increased percentage of PD-1+ 

CD8+ T cells (Fig. 3.7 C). Similar to the CD4+ T cells, it’s possible that this could represent an 

increased frequency of recently TCR-activated CD8+ T cells. Alternatively, a recent study in a 

model of acute LCMV infection showed that CD8+ effector T cells rapidly upregulate PD-1 on 

their surface and that it plays a functional inhibitory role within these cells at an early time point, 

such that blockade of PD-L1 (one of the ligands of PD-1) results in increased granzyme B 

production, enhanced viral clearance, and increased generation of memory-like T cells, which 

was only apparent after day 14 post-infection (75). This study suggests that the increased 

expression of PD-1 on CD8+ T cells in the liver of ILC3-deficient mice may similarly play a 

functional role in suppressing cytotoxic activities and memory cell formation of CD8+ T cells, 

and perhaps contribute to the impaired clearance of HBV viral antigens in our model. When 

measuring cytokine production within CD8+ T cells during early immunity, I observed a 

decreased number of IFNJ+ and IL-17A+ CD8+ T cells in the ILC3-deficient mice; however, the 

percentage of IFNJ+ and IL-17A cells was not changed (Fig 3.7 D-G). Like CD4+ T cells, these 

findings again indicate there is not an early defect in cytokine production, and differences in total 

numbers of cytokine-producing cells reflects a defect in total CD8+ T cell accumulation. Similar 

to total CD8+ T cells, I also noted that IFNJ-producing CD8+ T cells in ILC3-deficient mice 
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have more PD-1 expression, though there were no differences in the percentage of PD-1+ IL-

17A-producing CD8+ T cells. Finally, I also assessed the expression of CXCR3 on CD8+ T 

cells, as this chemokine receptor has been shown to play a critical role in both homing and 

retention of tissue resident memory T cells, as well as in the activation of Th1 and CTL 

responses (76). Indeed, I observed that ILC3-deficiency led to a reduced frequency of CXCR3+ 

CD8+ T cells, suggesting that trafficking of these T cells may be impaired in the absence of 

ILC3s, and may partially explain their reduced numbers in the liver at this time despite abundant 

circulating CD8+ T cells (Fig. 3.7 I). 
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Figure 3.7. ILC3 deficiency impairs early CD8+ effector T cell and late central memory responses. 
Hepatic leukocyte fractions were enriched from adult (>8 wks) HBVtgRag1-/- (ILC3-sufficient) and 
Rorc(Jt)GFP/GFPHBVtgRag1-/- (ILC3-deficient) animals 8 days and 29 days after adoptive transfer with 
HBV-naïve splenocytes. The number (A) and percentage (B) of CD44- CD62L+ Tnaive, CD44+ CD62L+ 
TCM (central memory) and CD44+ CD62L- TEff/TEM (effector/effector memory) CD8+ T cells on day 8 
(left) and day 29 (right). (C) Percentage of PD-1+ CD8+ T cells. The number (D, F) and percentage (E, 
G) of IFNJ+ (D-E) and IL-17A+ (F-G) CD8+ T cells. (H) Percentage of PD-1+ IFNJ+ and PD-1+ IL-
17A+ CD8+ T cells. (I) Percentage of CXCR3+ CD8+ T cells on day 8 (left) and day 29 (right). Data 
were analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test with 
GraphPad Prism Software; * p<0.05, ** p<0.001, *** p<0.001, **** p<0.0001; n≥4 per group (A-C), 
n=6 per group (D-H) n≥3 per group (I). 
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 Although I have not yet had the opportunity to assess the prevalence of antigen-specific T 

cells in ILC3-deficient animals, as we have only very recently identified the dominant HBV 

epitopes and their MHC-restriction required to create MHC class I (MHCI) and MHCII 

tetramers, I have been able to use IFNJ ELISpot assays to gain some insights into antigen-

specific responses. Over time, as we have learned more about the individual peptides, and now 

specific epitopes within those peptides, we have refined the assay to focus on the most common 

epitopes that drive antigen-specific IFNJ production. In short, the assay is performed by 

culturing hepatic lymphocytes together with an equivalent number of splenocytes from a Rag1-/- 

animal that does not express the HBV transgene, as a source of antigen presenting cells (APCs), 

in the presence of peptides derived from the HBV envelope protein (surface antigen) overnight 

followed by detection of secreted IFNJ. Importantly, because lymphocytes are taken directly 

from the liver where HBV antigen is abundant, particularly at early time points, it is possible that 

IFNJ spots detected in the “0” peptide wells, which are not stimulated with HBV peptides, may 

still represent recently activated cells that are HBV-specific. Another consideration when 

interpreting results from the assay is that I have not separated T cells from other IFNJ-producing 

cells, so while peptide-boosted responses do represent antigen-specific responses, “baseline” 

IFNJ production may also include innate sources of the cytokine that are not antigen-specific. 

Nonetheless, for the purposes of these assays I have defined a positive antigen-specific response 

as a response with ≥2-fold baseline IFNJ. Data from these experiments were mixed, suggesting 

complex regulation of IFNJ, likely within multiple cellular compartments. At day eight, during 

peak inflammation and at a time when the antigenic burden is high, I observed that ILC3-

deficient mice had an increased baseline IFNJ response, approximately 2-4-fold higher than that 

of ILC3-sufficient mice. As a result, ILC3-deficient mice had a greater number of IFNJ spots 
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compared to ILC3-sufficient mice in nearly every peptide assessed; however, these responses 

only crossed the 2-fold threshold of a positive response for peptides 811 and 92, which 

correspond to the HBs321-335 and HBs207-215 peptides described in Chapter 1, the former being 

MHCII-restricted and the latter a previously published MHCI-restricted epitope (17) (Fig. 3.8 

A). Notably, the CD4+ T cell IFNJ response to peptide 81 was greatly diminished in ILC3-

deficient mice compared to ILC3-sufficient mice, while the CD8+ T cell response to 92 was 

proportionally equivalent to baseline (256% ILC3-deficient vs. 264% ILC3-sufficient). These 

data suggest that while there were more IFNJ+ CD4+ T cells detected by flow cytometry (Fig 

3.7 B), there were not more IFNJ+ cells responding to MHCII-restricted epitopes, indicating a 

portion of the IFNJ+ CD4+ T cells detected by flow cytometry are likely HBV non-specific. 

These two peptides, 81 and 92, are by far the most common responses we detect in our model, 

with 81 (FGKFLWEWASARFSW) often appearing earlier and stronger than 92 (VWLSVIWM), 

while 92 persists longer and usually elicits its strongest responses at later time points. Peptide 82 

is partially overlapping with 81 and Jean Publicover in our laboratory has since shown that the 

shared sequence between both peptides contains a portion of the dominant epitope that is 

completely contained within peptide 81 and explains why 81 is a stronger CD4+ T cell activator 

than 82. ILC3-sufficient animals also showed a positive response for peptide 32, which contains 

the MHCII-restricted epitope referred to as HBs126 and described in Chapter 1. ILC3-sufficient 

mice also had a response to peptide 47, which we have occasionally seen come up as the source 

 
1 Peptides were originally numbered when 15-mers with 11 amino acid overlapping sequences were created 
spanning the entire HBV envelope coding sequence such that peptide 1 began at the N-terminus and 95 ended at the 
C-terminus. 
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of a sub-dominant epitope during earlier responses (<30 days); however, we do not know the 

MHC restriction or specific sequence of the epitope.  

 Two weeks later on day 22, we observed that ILC3-deficient mice still had an elevated 

basal IFNJ response without stimulation, which may reflect a continued response to HBV 

antigens in vivo (Fig. 3.8 B). However, by this time we noted that ILC3-deficient mice begin to 

have stronger responses to more peptides, including 72 and 190. Peptide 190 is very similar to 

peptide 88 and represents the fourth dominant epitope that we often find strong IFNJ responses 

against in our model; it was previously published to be a MHCI-restricted epitope (SILSPFLPL) 

(17). We have limited evidence that peptide 72 IFNJ responses are likely due to CD4+ T cells 

and thus presumably a MHCII-restricted epitope, but it does not appear as often as some of the 

other responses and we have not validated this. Notably, the strength of the CD4+ T cell MHCII-

restricted peptide 81 response is still greatly diminished at this day 22 time point.  

 One week later, by day 29, we observed that the baseline IFNJ response that was elevated 

initially in ILC3-deficient mice was reduced (Fig. 3.8 C). In this experiment we found ILC3-

deficient mice mounted a robust HBV antigen-specific response to multiple MHCII- and MHCI-

restricted epitopes. Consistent with earlier time points, however, we observed that ILC3-deficient 

mice still have a blunted response to three of the four dominant peptides, 32, 81, and 92. Finally, 

five months out, we noted that both groups mounted proportionally similar IFNJ responses with 

peptide 92 being the only antigen-driven IFNJ response observed in both groups (Fig. 3.8 D). 
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Figure 3.8. ILC3-deficient mice have blunted early antigen-specific IFNJ T cell responses and a 
sustained impaired CD4+ T cell response to the dominant MHCII-restricted epitope. Hepatic 
leukocyte fractions were enriched from adult (>8 wks) HBVtgRag1-/- (ILC3-sufficient) and 
Rorc(Jt)GFP/GFPHBVtgRag1-/- (ILC3-deficient) animals (A) eight days, (B) 22 days, (C) 29 days, and (D) 
156 days after adoptive transfer with HBV-naïve splenocytes. 105 liver leukocytes were mixed in a 1:1 
ratio with splenocytes from Rag1-/- mice as a source of APCs and stimulated overnight at 37°C together 
with individual peptides derived from the HBV envelope protein (HBsAg peptides) in ELISpot plates pre-
coated with anti-IFNJ antibodies. “0” peptide denotes no peptide added. ELISpot plates were counted and 
analyzed with a CTL Immunospot plate reader and software. The threshold defining a positive response, 
marked with a *, is ≥2× the baseline (dashed line). N=pooled from ≥4 mice per group.  

 Taken together, the IFNJ ELISpot data suggest that IFNJ-producing hepatic immune cells 

from ILC3-deficient mice may be overall more sensitized to produce IFNJ, but with a diminished 

contribution from antigen-specific cells, particularly CD4+ T cells illustrated by the blunted 32 

and 81 peptide responses. As time progressed the amount of basal IFNJ produced by ex vivo 

hepatic lymphocytes decreased and a more robust antigen-specific T cell response was observed. 

Interestingly, at each time point there was a notable decrease in peptide 81 responses both in 

total number and as a percentage of baseline indicating a significant defect in priming or survival 
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of this dominant HBV antigen-restricted CD4+ T cell subset. This highlights a major defect in 

ILC3-deficient mice that may contribute to the inability of these mice to clear HBV antigens. 

 We know that Tfh cells and their production of IL-21 are essential for effective immunity 

against HBV, so I examined whether Tfh differentiation was defective in ILC3-deficient animals 

to help explain their impaired antigen clearance. To my surprise, I initially found that not only 

were there a greater number of CXCR5+ PD1+ ICOS+ CD4+ Tfh in ILC3-deficient mice at day 

8 during early immunity, but a similar percentage of CD4+ T cells had a Tfh phenotype (Fig. 3.9 

A-B). Additionally, I also detected significantly higher expression of Il21 mRNA transcripts in 

RNA isolated from hepatic lymphocytes (Fig. 3.9 C). Together these data showed that ILC3-

deficient animals had enhanced, rather than impaired, early Tfh responses. However, this 

response was not durable. When I examined a later time point, one month out, I observed that 

there was a marked reduction in the frequency of CD4+ Tfh cells in ILC3-deficient mice (Fig. 

3.9 D-E). ILC3-sufficient mice showed a distinct expansion of their hepatic Tfh population by 

both total number and percentage of total CD4+ T cells between day 8 and day 29; however, this 

expansion did not occur in ILC3-deficient animals (Fig. 3.9 D-E). These data fit with the earlier 

assessment of CD4+ T cells, such that there seems to be an early robust response of CD4+ T 

cells, which is likely in part HBV non-specific, followed by a reduction in overall inflammation 

that gives way to a CD4+ T cell compartment that is lacking in its ability to respond to selected 

HBV antigens and maintain memory populations. Thus, I hypothesize that the earlier burst of 

hepatic Tfh cells in ILC3-deficient mice is possibly directed towards non-HBV antigens, while 

the HBV-specific Tfh response that normally develops over time in the presence of ILC3s does 

not occur when these cells are lost, ultimately resulting in impaired Tfh differentiation, which we 

know to be an essential population in hepatitis B viral control. 
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Figure 3.9. ILC3-deficient mice have robust early hepatic Tfh response with an impaired ability to 
sustain the response. Hepatic leukocyte fractions were enriched from adult (>8 wks) HBVtgRag1-/- 
(ILC3-sufficient) and Rorc(Jt)GFP/GFPHBVtgRag1-/- (ILC3-deficient) animals 8 days and 29 days after 
adoptive transfer with HBV-naïve splenocytes. Total numbers (A, D) and percentage (B, E) of CD4+ T 
follicular helper cells (CD45+ TCRE+ CD4+ CXCR5+ PD-1+) on day 8 (A-B) and day 29 (D-E). (C) 
Fold-change expression of Il21 mRNA transcripts relative to Gapdh in RNA isolated from hepatic 
leukocyte-enriched cell preparations on day 8. Data were analyzed using FlowJoTM Software; statistics 
determined by unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, n≥5 per group. 

 Considering ILC3-deficient animals were impaired in their ability to produce anti-HBs 

antibodies (Fig 3.1 D-E), I wondered whether there might be a general impairment in their B cell 

responses to HBV. Despite seeing increases in percentages of B cells at an early time point (Fig 

3.2 D), we know that this response often takes several weeks to develop. For these experiments I 

chose to evaluate B cell responses at day 22 rather than day 8. Similar to day eight, I detected an 

increase in the total number and percentage of B cells in ILC3-deficient mice at day 22 (Fig 3.10 

A-B). I went on to characterize the expression of IgM and several IgG isotypes to determine if 

class-switching was impaired, as our group previously demonstrated class-switching correlated 

with Tfh cell responses and HBV clearance (9). I noted that while there was an increase in the 
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number of non-class-switched IgM+ CD44hi B cells, there were also increases in the IgG1+ and 

IgG3+ B cells with a similar trend towards increased IgG2b+ B cells, suggesting that class-

switching in general was not impaired by ILC3-deficiency (Fig 3.10 C).  In the B cell fraction of 

these ILC3-deficient mice, there was a trend towards more IgM and less IgG subtypes, 

supporting the idea that there is enhanced expansion of less functionally mature B cells in these 

mice compared to controls. An important caveat of this staining experiment is that I did not 

determine the antigen-specificity of these B cells, and thus it remains possible that class-

switching of HBV-specific B cells could be limited. Indeed, it wasn’t until day 29 that I detected 

defects in Tfh cell accumulation and thus, it is reasonable to predict that a delayed defect in B 

cell activity may also coincide with a loss of Tfh cells. A colleague in the lab is currently 

working on developing an assay to detect antigen-specific B cells by flow cytometry and 

ELISpot according to recently published protocols and we hope to use these methods to assess 

the frequency of HBV-specific B cells (77, 78). These data will help us better understand 

whether the B cell immunoglobulin class switching that occurs in ILC3-deficient mice is 

occurring within HBV-specific B cells. We know from anti-HBs antibody titer ELISAs that 

ILC3-deficient mice are impaired in production of total anti-HBs antibodies, and so it will be 

important to understand whether the defect in antibody is a result of fewer antigen-specific B 

cells, their ability to class-switch, or their ability to functionally secrete antibody.  

We also performed immunohistochemistry tissue staining with anti-B220, -CD3, and -

CD11b antibodies to visualize the distribution of B cells within the liver relative to T cells and 

myeloid cells. In ILC3-sufficient mice, we detected B cells dispersed throughout the tissue and 

often associating with small clusters of other CD3+ and CD11b+ immune cells (Fig. 3.10 D-E). 

In the ILC3-deficient mice, however, we observed distinct and well-organized clusters of B cells, 
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both alone and with other CD11b+ cells and CD3+ T cells (Fig. 3.10 F-G). These clusters were 

often associated with portal tracts, rather than distributed throughout the parenchyma, and were 

reminiscent of organized tertiary lymphoid structures. We will use the Ilastik imaging pipeline 

discussed earlier to more specifically characterize these differences. The absence of these B cell 

structures in ILC3-sufficient mice that are capable of anti-HBs seroconversion, suggests that 

these structures are not required for effective HBV immunity and may be counterproductive. 

Furthermore, the presence of increased B cells and IgG+ cells in the ILC3-deficient animals may 

indicate that the B cell structures that do form do not represent an HBV-specific response, as we 

cannot detect anti-HBs antibodies in mice that form the B cell aggregates.  
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Figure 3.10. ILC3-deficient mice have robust early hepatic B cell responses with evidence of 
organized lymphoid structures. Hepatic leukocyte fractions were enriched from HBVtgRag1-/- adult (>8 
wks) HBVtgRag1-/- (ILC3-sufficient) and Rorc(Jt)GFP/GFPHBVtgRag1-/- (ILC3-deficient) animals 22 days 
after adoptive transfer with HBV-naïve splenocytes. Total numbers (A) and percentage (B) of B cells 
(CD45+ TCRE- CD11c- Gr1-+ B220+). (C) Total numbers of IgM+ and IgG1+, IgG2b+, and IgG3+ 
class-switched B cells of unidentified antigen-specificity. ILC3-sufficient (D-E) and ILC3-deficient (F-
G) 4 Pm FFPE liver sections were stained with anti-CD45R (B220; purple), anti-CD3e (teal), and anti-
CD11b (yellow). Black arrows point to individual or small clusters of B220+ cells; red arrows point to 
large B cell clusters. Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-
tailed t-test with GraphPad Prism Software; * p<0.05, n=8 per group. 
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 After noticing a profound amount of inflammation within the ILC3-deficient mice that 

are unable to clear HBV antigens, I suspected that a portion of the inflammation we observed 

might be due to HBV non-specific responses. I became aware of a handful of studies that 

suggested other groups have observed some similar phenotypes within Rorc(Jt)-/- and Rorc(Jt)-/-

Rag-/- mice, which manifested as splenomegaly, increased CD4+ T cell frequency, and disrupted 

gut microbial communities leading to increased colitis susceptibility and pathology (35, 69, 79). 

We also know that changes within the innate immune compartment are sufficient to drive an 

effective or ineffective response, as the age of the recipient hepatic immune environment in 

HBVtgRag1-/- mice dictates disease outcome, regardless of the age of the donor adaptive 

immune cells. Thus, in addition to the possibility of indirect effects due to changes in the 

microbiota of ILC3-deficient mice, we also wondered whether the loss of ILC3s may directly 

impair the maturation of innate lymphocytes and myeloid cells that play a critical role in priming 

the adaptive immune response. 

 In order to identify changes in the innate immune compartment within ILC3-deficient 

mice, I performed flow cytometry and qPCR to assess myeloid populations and their expression 

of relevant genes at baseline (day “0”) in Rorc(Jt)GFP/GFPRag1-/- and Rag1-/- mice in the absence 

of the HBV transgene and without adoptive transfer of WT splenocytes. I observed a total 

increase in the number of hepatic CD45+ immune cells in ILC3-deficient mice (Fig. 3.11 A). 

This increase was due to an increase in most myeloid lineage cells without an increase in NK 

cells (Fig. 3.11 B-H). When looking proportionally at the differences in the percentage of each 

population relative to the total pool of CD45+ cells in the liver, there was a decrease in both 

mature CD11b+ and immature CD11b- NK cells (Fig. 3.11 B) and an increase in dendritic cells 

(Fig 3.11 D), monocytes (Fig. 3.11 G-H), and monocyte-derived macrophages (Fig. 3.11 E). 



 117 

These data indicate that there is a substantial expansion of myeloid populations in the liver in the 

absence of ILC3s, with a notable lack of NK cell expansion and/or recruitment to the liver.  

 

Figure 3.11. ILC3-deficieny causes changes in hepatic innate immune populations at baseline prior 
to adoptive transfer. Hepatic leukocyte fractions were enriched from adult (>8 wks) HBVtgRag1-/- 
(ILC3-sufficient) and Rorc(Jt)GFP/GFPHBVtgRag1-/- (ILC3-deficient) animals eight days after adoptive 
transfer with HBV-naïve splenocytes. Flow cytometry was used to identify and quantitate numbers and 
percentages of myeloid cell populations as follows: (A) CD45+ (Live CD45+), (B) NK cells (Live 
CD45+ NK1.1+ CD11b+/-), (C) granulocytes (Live Gr1+ CD11b+), dendritic cells (DCs; Live CD11c+ 
MHCII+ ), further subdivided in to classical dendritic cell subsets 1 (cDC1; CD11b-) and 2 (cDC2; 
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CD11b+), (D) monocytes (Live CD11b+ NK1.1- MHCIIlo/- SSClo), and (E) monocyte derived 
macrophages (MDMϕ; Live F4/80+ CD11bhi Ly6c+/hi MHCIIhi/+ or MHCII+/lo). (F) Kupffer cells (Live 
F4/80+ CD11bint SSChi Ly6c-), (G) inflammatory monocytes (Live CD11bhi Ly6chi CD11c- NK1.1- 
MHCIIlo/- SSClo), (H) resident monocytes (Live CD45+ CD11b+ Ly6clo/– CD11c+ NK1.1- MHCIIlo/- 
SSClo). Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test 
with GraphPad Prism Software; * p<0.05, ** p<0.01, *** p<0.001; n=4 per group. 

 Using qPCR and flow cytometry of hepatic leukocyte-enriched cell preparations, I 

assessed the expression of molecules we previously identified to play a role in effective anti-

HBV immunity and those with known roles in supporting priming of adaptive immune cells. I 

did not observe any changes in the expression level of Cxcl13, a chemokine that is critical for 

recruitment of CXCR5+ Tfh and B cells, which we have shown to have increased levels in adult 

animals that control HBV relative to young animals, and for which we have some evidence of 

regulation by commensal gut microbes (Fig 3.12 A; (14) and unpublished). We did observe 

markedly increased expression of Ox40l, which, as described in Chapter 1, also plays an 

essential role in the activation of CD4+ T cells, including Tfh, and in control of viral antigens 

[Fig. 3.12 A; (15)]. I did not detect any differences in MHCII (I-Ak/b) or the co-stimulatory 

molecule Cd86 by mRNA transcript levels (Fig. 3.12 A). However, when analyzed by flow 

cytometry, I did observe an increase in the median fluorescence intensity (MFI) of MHCII on 

total MHCII+ myeloid cells, as well as specifically on dendritic cells, and to a lesser degree on 

Kupffer cells, with a trend towards decreased MHCII expression on monocyte-derived 

macrophages (Fig. 3.12 B). These data suggest that MHCII expression is partially regulated post-

transcriptionally in this context. Consistent with the qPCR data, I also observed an increased 

total number of OX40L+ innate immune cells; however, there was no increase in the MFI of 

OX40L on any antigen-presenting myeloid cells, indicating increased accumulation of OX40L+ 

cells without an increase in the expression level of OX40L within individual cells (Fig. 3.12 C). 
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Figure 3.12. ILC3-deficieny causes increased expression of antigen presentation and co-stimulatory 
molecules. Hepatic leukocyte fractions were enriched from adult (>8 wks) Rag1-/- (ILC3-sufficient HBV-
) and Rorc(Jt)GFP/GFPRag1-/- (ILC3-deficient HBV-) animals without the HBV transgene, at baseline (no B, 
T, or NK T cells present). (A) Fold-change expression of Cxcl13, Tnfsf4 (Ox40l), I-Ak/b (MHCII), and 
Cd86 relative to Gapdh was measured in RNA extracted from hepatic leukocyte-enriched cell 
preparations. (B) MHCII protein expression level was measured by flow cytometry and reported as 
median fluorescence intensity on total MHCII+ cells (Live CD45+ MHCII+), dendritic cells (Live 
CD11c+ MHCII+ and CD11b- cDC1 or CD11b+ cDC2), Kupffer cells (Live F4/80+ CD11bint SSChi 
Ly6c-), and monocyte-derived macrophages (MDMϕ; Live F4/80+ CD11bhi Ly6c+/hi MHCIIhi/+ or 
MHCII+/lo). (C) The number and percentage of OX40L+ innate immune cells was measured along with 
the MFI of OX40L on dendritic cells, Kupffer cells, and MDMϕ. Data were analyzed using FlowJoTM 
Software; statistics determined by unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, ** 
p<0.01, *** p<0.001; n=7 per group. 
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Taken together, there was an increased number and relative frequency of phagocytic and 

antigen-presenting cells, as well as an increase in the expression of antigen presentation and co-

stimulatory molecules, suggesting that there may be underlying innate immune stimulation in 

ILC3-deficient mice. Thus, it is possible that these changes could increase the priming potential 

and inflammatory milieu within the liver such that the hepatic environment of ILC3-deficient 

mice favors rapid immune cell activation upon adoptive transfer of splenocytes into HBV 

transgenic animals, regardless of the ability of ILC3-deficient mice to sustain that response in a 

way that directs successful HBV immunity. 

In light of the observation of increased OX40L expression at baseline in ILC3-deficient 

mice, we wondered whether an OX40L/OX40 interaction was contributing to the robust 

expansion of CD4+ T cells in ILC3-deficient mice, and also wondered what portion of this 

CD4+ T cell skewing might be due to non-HBV antigens. In order to address this question we 

performed an adoptive transfer experiment comparing early immune responses in the following 

four groups of mice: (i) HBVtgRag1-/- mice transferred with WT splenocytes [ILC3-sufficient 

HBV+ (WT)], (ii) Rorc(Jt)GFP/GFPHBVtgRag1-/- mice transferred with WT splenocytes [ILC3-

deficient HBV+ (WT)], (iii) Rorc(Jt)GFP/GFPHBVtgRag1-/- mice transferred with Ox40-/- 

splenocytes [ILC3-deficient HBV+ (OX40-/-)], and (iv) Rorc(Jt)GFP/GFPRag1-/- mice without the 

HBV transgene, transferred with WT splenocytes [ILC3-deficient HBV- (WT)]. I assessed the 

frequency of major hepatic and splenic immune populations eight days after adoptive transfer of 

each group and compared the results of each group to the ILC3-deficient HBV+ (WT) mice to 

determine the role of OX40 and the HBV transgene in the phenotype of ILC3-deficient mice. In 

this experiment, I observed no differences in the total number of CD45+ cells in either the spleen 

or liver of any group; however, there was a trend towards fewer cells in the HBV- group in the 
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liver only (Fig. 3.13 A). I detected no significant differences in the total number of T cells, but 

there was a reduction in the percentage of T cells in the liver of ILC3-deficient mice compared to 

ILC3-sufficient mice that was not affected by the loss of OX40 or absence of the HBV 

transgene, indicating the total reduction of T cells in ILC3-deficient mice is OX40-independent 

and HBV-independent (Fig. 3.13 B-C). When examining hepatic B cell populations I observed 

that ILC3-deficiency led to increased accumulation of CD19+ B cells that was HBV-dependent 

in the liver, but not in the spleen, as ILC3-deficient HBV– mice had a reduced number of B cells 

relative to ILC3-deficient HBV+ mice in the liver but not in the spleen (Fig 3.13 D-E). 
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Figure 3.13. ILC3-deficieny leads to OX40-independent and HBV-independent reduction in hepatic 
T cell accumulation and HBV-dependent B cell expansion in the liver. Hepatic leukocyte fractions 
were enriched from adult (>8 wks) HBVtgRag1-/- mice transferred with WT splenocytes [ILC3-sufficient 
HBV+ (WT)], Rorc(Jt)GFP/GFPHBVtgRag1-/- mice transferred with WT splenocytes [ILC3-deficient HBV+ 
(WT)], Rorc(Jt)GFP/GFPHBVtgRag1-/- mice transferred with Ox40-/- splenocytes [ILC3-deficient HBV+ 
(OX40-/-)], and Rorc(Jt)GFP/GFPRag1-/- mice without the HBV transgene transferred with WT splenocytes 
[ILC3-deficient HBV- (WT)] on day eight post-adoptive transfer with HBV-naïve WT splenocytes. (A) 
The number of hepatic (top) and splenic (bottom) CD45+ cells was measured by flow cytometry, as well 
as the number and percentage of hepatic (top) and splenic (bottom) (B-C) T cells (CD45+ TCRE+) and 
(D-E) B cells (CD45+ CD19+ and/or B220+). Data were analyzed using FlowJoTM Software; statistics 
determined by ANOVA with Dunnett’s multiple comparison test comparing each group to ILC3-deficient 
HBV+ (WT) control group (green) with GraphPad Prism Software; * p<0.05, ** p<0.01, *** p<0.001, 
**** p<0.0001; n≥4 per group. 
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As expected, ILC3-deficiency led to increased accumulation of CD4+ T cells with a 

reduction in the number and percentage of CD8+ T cells relative to ILC3-sufficient mice in both 

the liver and spleen (Fig. 3.14 A-D). Interestingly, I noted that either the transfer of Ox40-/- 

splenocytes or the absence of the HBV transgene was able to reverse the increase in the number 

of CD4+ T cells in ILC3-deficient mice compared to ILC3-sufficient mice (Fig. 3.14 A). In the 

spleen, there was also an increase in the number of CD4+ T cells in ILC3-deficient mice with a 

trend towards a reduction of CD4+ T cells when the ILC3-deficient mice received Ox40-/- 

splenocytes, though the absence of the HBV transgene did not affect the number of CD4+ T cells 

in the spleen (Fig. 3.14 C). I observed a similar but reciprocal pattern for CD8+ T cells, such that 

ILC3 deficiency normally reduces CD8+ T cell numbers in the liver after adoptive transfer with 

WT splenocytes, but with the transfer of Ox40-/- splenocytes, the number of CD8+ T cells 

increased back to similar levels seen in ILC3-sufficient mice (Fig. 3.14 A, C). With regard to the 

percentages of CD4+ versus CD8+ T cells, it was clear that the accumulation of CD4+ T cells 

that occurs in ILC3-deficient mice in both the liver and the spleen was dependent on an 

OX40/OX40L interaction (Fig. 3.14 B, D). Although I determined that the presence of the HBV 

transgene may be important in the magnitude of total T cell accumulation in the liver, the 

skewing towards CD4+ T cells in ILC3-deficient mice occurred independently of the presence or 

absence of the HBV transgene, supporting the notion that there was a degree of CD4+ T cell 

expansion that occurs that is HBV non-specific. Together these data indicate that total CD4+ T 

cell accumulation in the liver is OX40-dependent and HBV-dependent, but that skewing towards 

a greater percentage of CD4+ T cells over CD8+ T cells still occurs in the absence of HBV. 

Therefore, we conclude that ILC3s in the liver function in part to restrict OX40L expression by 

myeloid cells, and in turn, limit CD4+ T cell expansion as a whole, specifically to non-HBV 
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antigens. However, based on the decreased number of CD4+ T cells in the liver of HBV– ILC3-

deficient mice relative to HBV+ mice, HBV drives additional CD4+ T cell accumulation in the 

liver even in the absence of ILC3s. My ELISpot data and day 29 experiments, however, suggest 

that the HBV-driven CD4+ T cells in these animals are still impaired in their ability to generate 

productive and sustained IFNJ and Tfh cell responses. 

 

Figure 3.14. ILC3-deficieny leads to OX40-dependent and HBV-independent skewing of T cells 
towards CD4+ instead of CD8+ T cells in the liver and spleen. Hepatic leukocyte fractions were 
enriched from adult (>8 wks) HBVtgRag1-/- mice transferred with WT splenocytes [ILC3-sufficient 
HBV+ (WT)], Rorc(Jt)GFP/GFPHBVtgRag1-/- mice transferred with WT splenocytes [ILC3-deficient HBV+ 
(WT)], Rorc(Jt)GFP/GFPHBVtgRag1-/- mice transferred with Ox40-/- splenocytes [ILC3-deficient HBV+ 
(OX40-/-)], and Rorc(Jt)GFP/GFPRag1-/- mice without the HBV transgene transferred with WT splenocytes 
[ILC3-deficient HBV- (WT)] on day eight post-adoptive transfer with HBV-naïve WT splenocytes. (A, 
C) The number and (B, D) percentage of hepatic (A-B) and splenic (C-D) CD4+ and CD8+ CD45+ 
TCRE+ T cells was measured by flow cytometry. Data were analyzed using FlowJoTM Software; statistics 
determined by ANOVA with Dunnett’s multiple comparison test comparing each group to ILC3-deficient 
HBV+ (WT) control group (green) with GraphPad Prism Software; * p<0.05, ** p<0.01, *** p<0.001, 
**** p<0.0001; n≥4 per group. 
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 We performed tissue staining and imaging with anti-CD8D and anti-CD4 to visualize the 

impact that Ox40-/- donor splenocytes or the absence of the HBV transgene had on differences in 

CD4+ and CD8+ T cell localization in ILC3-deficient mice during this early immune period. We 

noted that similar to the ILC3-deficient mice that received WT splenocytes (Fig. 3.4 D-F), ILC3-

deficient mice that received Ox40-/- splenocytes also had profound periportal inflammation; 

however, there was a much greater representation of CD8+ T cells compared to CD4+ T cells in 

these animals, both within immune cell clusters, as well as distributed throughout the liver 

parenchyma (Fig. 3.15 A-B). These data highlight a role for OX40/OX40L in supporting CD4+ 

T cell accumulation in the liver, but clearly show that this interaction in not critical for the 

formation of periportal immune cell clusters in ILC3-deficient mice. In the absence of the HBV 

transgene, we saw that ILC3-deficient Rag1-/- mice that received adoptive transfer of WT 

splenocytes still generate a surprising amount of periportal, and to a lesser degree, intra-

parenchymal, inflammation and immune cluster formation, albeit less dramatic than seen in 

ILC3-deficient HBV+ animals (Fig. 3.15 C-D). Similar to the HBV+ ILC3-deficient mice, we 

still observed a skewing towards greater CD4+ T cell accumulation in the HBV– ILC3-deficient 

mice than what we detected for ILC3-sufficient (Fig. 3.4 A-C) or ILC3-deficient mice that 

received Ox40-/- splenocytes (Fig. 3.15 A-B). These data indicate that the absence of ILC3s 

drives hepatic immune cell clustering – that is mostly restricted to periportal tissue regions – 

after adoptive transfer, independently of an OX40/OX40L interaction and independently of HBV 

antigen expression in the liver. These data suggest that the loss of ILC3s alone is sufficient to 

trigger T cell aggregation in the liver; however, the mechanisms that drive this lymphocyte 

clustering are still unclear. We will continue to characterize these differences quantitatively 

using our Ilastik analysis pipeline. 
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Figure 3.15. Hepatic CD4+ and CD8+ cellular organization in ILC3-deficient mice is partially 
OX40- and HBV-dependent. Liver tissue was isolated from Rorc(Jt)GFP/GFPHBVtgRag1-/- ILC3-deficient 
mice that received Ox40-/- splenocytes and (A-B) Rorc(Jt)GFP/GFPRag1-/- ILC3-deficient mice that do not 
express the HBV transgene (C-D) eight days post-adoptive transfer and drop-fixed in formalin for 24 
hours, followed by ethanol dehydration and embedding into paraffin wax blocks. FFPE tissue blocks were 
sectioned at 4 µm and stained with anti-CD4 (yellow), anti-CD8a (purple) using the Ventana Discovery 
Ultra platform. Stained sections were imaged at 20X resolution with the Zeiss Axioscanner Z1. Scale bars 
for (A, C) represent 100 µm, scale bars for (B, D) represent 50 µm. 

 The data from these day “0” and Ox40-/- donor transfer experiments suggest that ILC3-

deficiency leads to increased basal accumulation of myeloid antigen-presenting cells ready to 

prime and activate adaptive immune cells, in particular CD4+ T cells, in an OX40-dependent 

manner. The early expansion and accumulation of CD4+ T cells occurs independent of HBV 

antigens and suggests additional sources of T cell priming, potentially via bystander activation of 

A. B.

C. D.



 127 

previous antigen-experienced cells (80), or potentially against new microbial antigens not present 

– or previously anatomically contained – in the wild-type donor mice. Indeed, it has been 

reported that anti-Thy1 antibody-mediated depletion of ILCs can lead to a loss of containment of 

bacteria within the gut, and the presence of bacteria and bacterial products can be detected in the 

liver as a result (81). If this were also occurring in our ILC3-deficient recipient mice, these 

bacteria and their products could provide a source of antigen for CD4+ T cell activation against 

non-HBV antigens in our model. This may especially be the case if there were opportunistic 

microbes capable of colonizing ILC3-deficient mice due to a loss of gut immune regulation that 

would not be present in wild-type mice, from which the donor splenocytes are sourced and thus, 

did not become tolerized against. 

 We attempted to address the issue of disrupted microbial colonization by treating ILC3-

deficient and ILC3-sufficient HBV+ and HBV- animals with broad spectrum oral antibiotics in 

the drinking water from gestation through adulthood and monitoring their hepatic inflammation 

and immune cell localization. I hypothesized that if I could minimize the reported dysbiosis of 

RORJt-deficient mice that led to CD4+ T cell accumulation through oral antibiotic treatment, as 

others showed reversed this phenotype, then I might be able to limit one variable that may 

confound our understanding of the mechanisms of impaired HBV immunity in these ILC3-

deficient mice (35). I was surprised to find that ILC3-deficient mice continued to have evidence 

of increased hepatic inflammation, even after weeks of antibiotic administration. ILC3-deficient 

mice had an increase in the total number of CD45+ immune cells in the liver on day eight post-

adoptive transfer, including increases in T cells, B cells, and myeloid cells (Fig. 3.16 A). I also 

found that CD4+ skewing was not affected by antibiotic treatment, as ILC3-deficient mice had a 

similar increase in CD4+ T cells as was seen in untreated ILC3-deficient mice; however, there 
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was not a significant block in CD8+ T cell accumulation as was normally seen in the absence of 

ILC3s (Fig. 3.16 B and Fig. 3.3). There were also similar changes in the innate immune 

compartment including a decrease in CD11b+ NK cells and an increase in DCs and 

inflammatory monocytes, along with an increase in MHCII expression on some myeloid cell 

populations, as was seen in ILC3-deficient mice that did not receive antibiotics (Fig 3.16 C-G).  



 129 

 

Figure 3.16. Antibiotic treatment of ILC3-deficient mice does not mitigate hepatic immune cell 
inflammation caused by ILC3-deficiency. Hepatic leukocyte fractions were enriched from adult (>8 
wks) HBVtgRag1-/- mice (ILC3-sufficient) or Rorc(Jt)GFP/GFPHBVtgRag1-/-  (ILC3-deficient) mice that 
were treated with antibiotics in their drinking water [vancomycin (1 g/L), ampicillin (0.5 g/L), neomycin 
sulfate (1 g/L), and metronidazole (0.5 g/L)] starting during gestation, on day eight post-adoptive transfer 
with HBV-naïve WT splenocytes. (A) The number of hepatic CD45+ cells was measured by flow 
cytometry, as well as the number and percentage of (B) CD4+ and CD8+ T cells (CD45+ TCRE+ CD4+/- 
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CD8+/-) and (C) NK cells (CD45+ TCRE- NK1.1+), (D) dendritic cells (CD45+ TCRE+ CD19- CD11c+ 
MHCII+), and monocytes (CD45+ TCRE- CD19- CD11b+ NK1.1-). Expression of MHCII was measured 
as median fluorescence intensity on Kupffer cells (CD45+ TCRE- CD19- F4/80+ CD11b+ Ly6c- SSChi), 
Data were analyzed using FlowJoTM Software; statistics determined by unpaired t-test with GraphPad 
Prism Software; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001; n≥4 per group. 

 When looking histologically at tissue from antibiotic-treated ILC3-sufficient and ILC3-

deficient animals, we also saw that antibiotic administration did not ameliorate the profound 

portal inflammation observed in ILC3-deficient animals. In fact, we could see evidence of portal 

inflammation in both ILC3-sufficient and ILC3-deficient Rag1-/- animals that lack the HBV 

transgene at day 0, without adoptive transfer, though this inflammation was also greatly 

enhanced in the ILC3-deficient animals (Fig. 3.17 A-B). This differs from what we observed in 

HBV– Rag1-/- animals eight days after adoptive transfer, which have very minimal inflammation 

(data not shown). This suggests that antibiotic treatment itself has led to an increased amount of 

basal inflammation in both ILC3-sufficient and likely, ILC3-deficient animals. By day 8, we 

observed that the ILC3-sufficient mice that received antibiotics look similar to non-antibiotic-

treated mice, with evidence of modest periportal and intraparenchymal inflammation (Fig. 3.16 

C). The ILC3-deficient mice that grew up on antibiotic water showed the characteristic dramatic 

periportal inflammation that is observed in animals without antibiotic treatment. These data 

suggest that the inflammation that occurs in the absence of ILC3s may not be solely driven by 

microbiota influences. An important caveat to this interpretation, however, is that I did not assess 

the microbial burden of these animals – although I have collected the tissue to do so and will 

follow up on these data to determine how antibiotic treatment may have broadly affected the 

microbial communities. Indeed, the inflammation present in the ILC3-sufficient Rag1-/- mice 

suggest that perhaps there may be a source of innate immune stimulation present, possibly from 

an altered, rather than depleted, gut microbial community. Researchers have shown that while 

antibiotic treatment does initially deplete a large portion of gut bacteria, overtime the community 
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is repopulated with a shifted composition and that long-term treatment can affect gut barrier 

integrity (82). Thus, understanding the complex interaction between ILC3s, gut microbiota, and 

the effects that antibiotic treatment has on both requires a deeper investigation of the 

composition of microbial communities and gut health, beyond the scope of this current project. 

 

Figure 3.17. Antibiotic treatment of ILC3-sufficient and ILC3-deficient mice alters basal 
inflammation but does not affect inflammation post immune reconstitution. Liver tissue was isolated 
from antibiotic-treated Rag1-/- ILC3-sufficient (A) or  Rorc(Jt)GFP/GFPRag1-/- ILC3-deficient mice (B) at 
baseline (no adoptive transfer) or from adoptively transferred HBVtgRag1-/- ILC3-sufficient (C) or 
Rorc(Jt)GFP/GFPHBVtgRag1-/- (D) mice eight days post transfer and drop-fixed in formalin for 24 hours, 
followed by ethanol dehydration and embedding into paraffin wax blocks. FFPE tissue blocks were 
sectioned at 4 µm and stained with hematoxylin (purple/blue) and eosin (pink) using the Ventana 
Discovery Ultra platform. Stained sections were imaged at 20X resolution with the Zeiss Axioscanner Z1. 
Scale bars represent 100 µm. 

 

A. B.

C. D.
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Discussion 

 We uncovered a major role for ILC3s in supporting productive HBV immunity, as the 

loss of RORJt+ ILC3 led to impaired HBsAg clearance and seroconversion. Despite a severely 

impaired anti-HBV immune response, we found that ILC3-deficient mice were not impaired in 

their ability to drive total immune cell recruitment and inflammation within the liver; however, 

the immune populations that were recruited in the absence of ILC3s were drastically different 

compared to ILC3-sufficient mice. The loss of ILC3s led to increased portal inflammation and 

the formation of large immune cell aggregates, particularly around portal tracts within the liver. 

These clusters varied both in their immune cell composition, as well as their spatial and 

organizational aspects, which we are currently in the process of quantitatively assessing through 

the use of our Ilastik imaging analysis pipeline. We further identified a profound skewing of the 

T cell compartment towards CD4+ T lymphocytes in the absence of ILC3s, compared to the 

normally dominant CD8+ T cell accumulation found in mice that do have ILC3s. Although there 

were many CD4+ T cells present, these cells were unable to support productive anti-HBV 

immunity. Despite robust early differentiation and production of cytokines by CD4+ T cells in 

ILC3-deficient mice, evaluation of these cells at later time points revealed this was not a durable 

response. In particular, ILC3-deficient mice had a reduced frequency of Tfh cells one month 

after the immune response was initiated. Numerous studies have identified Tfh cells as a critical 

population for effective HBV immunity, and thus, it is likely that a defect in this subset, both in 

quantity as well as positional localization, may contribute to the inability of ILC3-deficient mice 

to control HBV. Furthermore, there was a notable defect in the magnitude of the IFNJ response 

to the most dominant MHCII-restricted epitope by CD4+ T cells in ILC3-deficient mice. 

Additionally, there was a reduced frequency of total CD44+ CD62L+ central memory CD4+ T 
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cells in the absence of ILC3s. Taken together, these data suggest that ILC3s play an important 

role in supporting the sustained response of HBV-specific CD4+ T cells.  

 We did not reveal any obvious differences within antigen-presenting cells at early time 

points that might explain defects in initial priming of CD4+ T cells. We did, however, notice 

substantial differences in the localization of T cells within the liver. Thus, it is possible that the 

positional location of T cells relative to antigen-presenting cells, potentially including ILC3s 

themselves, and the cytokine milieu within that microenvironment, may contribute to sustaining 

a productive immune response, which becomes disrupted when ILC3s are lost. 

 Now that we have one HBV tetramer in the lab (MHCII-HBs126), and another three in 

production at the NIH tetramer core facility, we plan to follow up on the hypotheses raised 

throughout this chapter by measuring the frequency and function of HBV-specific T cells. 

Specifically, we will determine whether ILC3-deficient mice have a decreased number of 

antigen-specific CD4+ T cells, as was suggested by ELISpot data. We will also assess the 

antigen specificity of Tfh cells at early and late time points to understand whether the initial burst 

of Tfh, and accompanied B cell responses, are HBV-specific. We will measure antigen-specific 

CD8+ T cell responses as well, to determine whether the reduction in total hepatic CD8+ T cells 

also includes a reduced frequency of HBV-specific cells. Finally, we will measure cytokine 

production, particularly IFNJ, to determine if there are any functional defects in either CD4+ or 

CD8+ antigen-specific T cells in addition to possible quantitative differences. 

 Another important focus of our future experiments will include sorting and reconstituting 

ILC3s before adoptive transfer, to clarify the effects of ILC3s on HBV immunity that may be 

developmentally related compared to more direct effects. We have worked on developing the 
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best approach to these “rescue” experiments in recent years; however, we ran into several 

technical obstacles that we have just recently been able to overcome. The largest setback on 

these experiments was the dim nature of the Rorc(Jt)GFP/+ reporter mouse strain we had been 

using to identify and sort ILC3s, which was not sufficiently bright for this purpose. Now that we 

have acquired a new strain of RORJt-GFP reporter mice that have 5-10 copies of RORJt-GFP 

compared to the single copy in the original mouse strain, RORJt+ ILC3s are substantially easier 

to identify by fluorescence. This improvement now allows us to avoid staining the cells for other 

immune markers and minimizes their manipulation, both of which we previously found to 

negatively impact their survival post-sorting. With these improvements in mind, we plan to sort 

both hepatic and splenic ILC3s, the latter of which are more abundant and easier to obtain, and 

add them back to both ILC3-deficient mice, and young mice that we know to have fewer ILC3s 

relative to adult mice. The completion of these experiments will solidify our earlier findings and 

determine whether targeting of ILC3s in young mice represents a potential therapeutic avenue 

that could lead to improved HBV immune outcomes. 
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Chapter 4. Acute depletion of ILC3s alters hepatic immunity and delays HBV antigen 

clearance 

Introduction 

 To validate our data identifying a role for ILC3s in generating a defective HBV immune 

response, we explored alternative models of ILC3 loss in a system that did not develop in the 

absence of ILC3s, which may have led to other disruptions in immunity outside of the liver 

environment. Because ILC3s share many of their lineage-defining markers with other T cell and 

ILC subsets, it is challenging to specifically deplete ILC3s without disrupting these other 

populations. One of the most common methods for studying ILC3 loss has been the use of anti-

Thy1 (also known as anti-CD90) depleting antibodies within a Rag-/- host, which lack Thy1+ T 

cells. Although highly effective at depleting ILC3s, this treatment also depletes ILC1 and ILC2, 

as well as Thy1+ NK cells. Thus, interpreting data from these experiments must be done 

cautiously. In our case, we aimed to compare the results from Rorc(Jt)GFP/GFP mice with anti-

Thy1 ILC-depleted mice to identify similarities between both models that would allow us to 

identify effects due to the specific loss of ILC3.  

Results 

 For this model of acute ILC3 depletion, we followed one of two treatment regimens. For 

the first group, we administered 200 Pg anti-Thy1.2 antibody to each adult (> 6 weeks) mouse 

every three days starting four days before adoptive transfer with Thy1.1+ donor splenocytes and 

continuing until day five post-transfer; mice were sacrificed on day eight. By using Thy1.1+ 

donor splenocytes we are able to continue to deplete Thy1.2+ recipient ILCs throughout the 
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duration of the experiment without depleting the donor T cells. For the second group, we 

administered the same dose of anti-Thy1.2 antibody every three days, starting when the mice 

were three weeks old (day -21), and continuing until day 21 post-adoptive transfer; mice were 

sacrificed on day 22. The first treatment schedule and experimental design was to address the 

question of how immediate ILC3-depletion affects early immune priming events during HBV 

immunity. The second set of experiments was designed to determine whether acute ILC3 

depletion affected the lasting immune response initiated in the absence of ILCs. We also chose to 

start anti-Thy1.2 depletion for the second group earlier, at the time of weaning, to understand 

how ILC3 depletion during the most significant window of microbial colonization and 

maturation of the immune priming environment within the liver, might also influence HBV 

immune outcomes. It is important to remember that while the day 8 experiments focus solely on 

the effects of immediate ILC loss, phenotypes observed in the day 22 experiments could be due 

to direct loss of ILCs, as well as indirect effects due to either altered microbial colonization or 

changes in hepatic APCs due to a loss of signals from ILC3s in the liver. 

 I first evaluated the effect of acute ILC3 loss on the serological profile of treated and 

control animals. Similar to Rorc(Jt)-/- mice, acute ILC depletion led to increased inflammation in 

the majority of the treated animals at both day 7 and day 14 post-transfer, although these 

differences did not reach significance (Fig. 4.1 A). Notably, I observed delayed antigen 

clearance in anti-Thy1.2-treated animals relative to controls (Fig. 4.1 B). These data are similar 

to those observed in Rorc(Jt)-/- mice and strongly suggest a role for ILC3s in restricting early 

hepatic inflammation and supporting HBV antigen clearance. 
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Figure 4.1. Anti-Thy1.2-mediated ILC depletion results in delayed HBV antigen clearance. Adult 
(>6wks) HBVtgRag1-/- animals were treated with anti-Thy1.2 depleting antibodies (DThy1.2) every three 
days starting at 3 wks of age (day -21) or at day -4, and adoptively transferred with HBV-naïve Thy1.1 
splenocytes on day 0. (A) Liver disease was monitored by plasma alanine aminotransferase (ALT). (B) 
Clearance of circulating HBsAg was monitored over time by qualitative ELISA. Statistics determined by 
a log-rank (Mantel-Cox) Chi square survival test or unpaired two-tailed t-test with GraphPad Prism 
Software; ** p<0.01, n≥9 per group, pooled from three independent experiments. 

 I examined the hepatic immune cell composition of anti-Thy1.2-treated and control mice 

by flow cytometry, initially focusing on T and B cells. There were no differences in the number 

of total hepatic CD45+ immune cells or the percentages of T cells and B cells at the early day 8 

time point (Fig. 4.2 A-C top). This differs from the Rorc(Jt)-/- mice that showed similar numbers 

of CD45+ T cells at day 8 but had a greater percentage of B cells and reduced percentage of T 

cells. However, by day 22 I observed that there was an increased number of total CD45+ cells, 

although the percentages of T and B cells remained constant (Fig. 4.2 A-C bottom). This was 

similar to Rorc(Jt)-/- mice that also had increased numbers of CD45+ cells in the liver at day 29. 

Liver Inflammation (ALT Rise)

Days Post Adoptive Transfer

A
LT

 (U
/L

)

0 10 20 30 40
0

200

400

600

αThy1.2
IgG2b

Liver Inflammation (ALT Rise)

Days Post Adoptive Transfer

A
LT

 (U
/L

)

0 10 20 30 40
0

200

400

600

αThy1.2
IgG2b

0 10 20 30 40
0

25

50

75

100

Days Post Adoptive Transfer

%
 H

B
sA

g+

HBsAg Clearance

**

A. B.



 138 

 

Figure 4.2. Anti-Thy1.2-mediated ILC depletion leads to increased hepatic immune cell infiltration. 
Adult (>6wks) HBVtgRag1-/- animals were treated with anti-Thy1.2 depleting antibodies (DThy1.2) or 
IgG2b control antibody every three days starting at 3 wks of age (day -21) and continuing until sacrifice 
(day 22 group) or were treated every three days starting at day -4 and continuing until sacrifice (day 8 
group) with adoptive transfer of HBV naïve Thy1.1 splenocytes on day 0. Flow cytometry was performed 
and the number of  (A) CD45+ immune cells and percentages of (B) T cells (CD45+ TCRE+ NK1.1- 
CD19-) and (C)  B cells (CD45+ TCRE- CD19+) were measured on day 8 (top) and day 22 (bottom) 
post-transfer. Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed 
t-test with GraphPad Prism Software; * p<0.05, n=5 per group. 

 I did not find a difference in CD4+ or CD8+ T cell skewing during early inflammation; 

however, there was a significant reduction in the percentage of CD44+ CD62L+ central memory 

CD4+ T cells in Thy1.2-depleted mice (Fig. 4.3 A, C). There was also an increased number of 

central memory CD8+ T cells in these animals, though the percentage of naïve versus central 

memory versus effector CD8+ cells was not different (Fig. 4.3 E). Interestingly, by day 22, I 

noted a much greater number of CD4+ T cells in ILC-depleted animals, while the total number 

of CD8+ T cells remained the same (Fig. 4.3 B). The increase in CD4+ T cells was mostly due to 

a large increase in the number of effector CD4+ T cells with a small increase in the number of 

CD4+ TCM cells; however, the fraction of TCM of total CD4+ T cells was decreased in ILC-
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depleted animals (Fig. 4.3 D). These data are consistent with the increase observed in CD4+ TEff 

cells seen in Rorc(Jt)-/- mice at day 8 and day 29, as well as the defect in CD4+ TCM cells that 

was observed at a later time point. Together, these data suggest that a loss of ILC3s results in 

impaired durability of memory CD4+ T cell responses relative to the total CD4+ T cell response. 

There were no differences in the number of total CD8+ T cells nor in their differentiation into 

central memory versus effector cells in anti-Thy1.2-treated and control mice (Fig. 4.3 F). 

 

Figure 4.3. Anti-Thy1.2-mediated ILC depletion leads to increased CD4+ T cell accumulation in the 
liver. Adult (>6wks) HBVtgRag1-/- animals were treated with anti-Thy1.2 depleting antibodies (DThy1.2) 
or IgG2b isotype-matched control antibody every three days starting at 3 wks of age (day -21) and 
continuing until sacrifice (day 22 group) or were treated every three days starting at day -4 and continuing 
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until sacrifice (day 8 group) with adoptive transfer of HBV naïve Thy1.1 splenocytes on day 0. Flow 
cytometry was performed and the number (left) and percentages (right) of CD4+ T cells (CD45+ TCRE+ 
NK1.1- CD19- CD4+ CD8-) and CD8+ T cells (CD45+ TCRE+ NK1.1- CD19- CD4- CD8+) were 
measured on day 8 (A) and day 22 (B). The number and percentage of CD44- CD62L+ Tnaive, CD44+ 
CD62L+ TCM, and CD44+ CD62L- TEff CD4+ T cells was determined on day 8 (C) and day 22 (D). The 
number and percentage of CD44- CD62L+ Tnaive, CD44+ CD62L+ TCM, and CD44+ CD62L- TEff CD8+ T 
cells was determined on day 8 (E) and day 22 (F). Data were analyzed using FlowJoTM Software; 
statistics were determined by the unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, n=5 
per group. 

 We performed chromogen-based IHC staining of liver tissue from control and Thy1.2-

depleted animals with anti-RORJ (purple), anti-CD8D (teal), and anti-CD4 (yellow) to visualize 

the distribution of CD4+ and CD8+ T cells relative to ILC3s. We first looked at the early day 8 

time point. Control animal liver sections looked as expected, with many small- and medium-

sized T cell clusters spread throughout the liver parenchyma and associated with portal tracts 

(Fig. 4.4 A-C). Interestingly, despite seeing no differences in the numbers or percentages of T 

cells in anti-Thy1.2-treated mice at this time point by flow cytometry, we did detect marked 

differences in the distribution of these cells compared to control mice (Fig. 4.4 D-F). Notably, 

there were large portal tract-associated immune infiltrates that were highly reminiscent of the 

portal-associated inflammation seen in Rorc(Jt)-/- mice (Fig. 4.4 D-F and Fig. 3.4-3.5). These 

differences will be further quantitated using ilastik imaging analysis. These data strongly 

implicate ILC3s in regulating immune cell localization within the liver such that when the cells 

are absent the majority of inflammation is restricted to periportal and vascular areas of the liver 

and the cellularity and size of portal-associated immune clusters is much greater. Importantly, 

the animals in this group were not affected by potential indirect effects of microbial colonization, 

as ILCs were depleted only four days before adoptive transfer, when these animals were fully 

matured and beyond the window of commensal colonization immediately following weaning. 
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Figure 4.4. Anti-Thy1.2-mediated ILC depletion leads to enhanced portal tract-associated 
inflammation during acute HBV immunity. Liver tissue was isolated from adult IgG2b isotype-
matched control (A-C) or anti-Thy1.2 (D-F) antibody treated HBVtgRag1-/- mice 8 days post- adoptive 
transfer with Thy1.1 HBV-naïve splenocytes and drop-fixed in formalin for 24 hours, followed by ethanol 
dehydration and embedding into paraffin wax blocks. FFPE tissue blocks were sectioned at 4 µm and 
stained with anti-RORJ (purple), anti-CD8 (teal), and anti-CD4 (yellow) using the Ventana Discovery 
Ultra platform. Stained sections were imaged at 20X resolution with the Zeiss Axioscanner Z1. Scale bars 
represent 100 µm for (A-B, D-E), and 50 µm for (C, F). 
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 A couple of weeks later, we could still see similar patterns of disrupted immune cell 

localization in the absence of ILCs. We observed isotype-matched control Ig-treated animals had 

mostly resolved their hepatic inflammation by day 22, with few immune cell clusters left that 

were mostly portal-associated and predominantly comprised of CD11b+ cells rather than the T 

cell-rich clusters seen at day 8 (Fig. 4.5 A-C). The anti-Thy1.2 ILC-depleted mice on the other 

hand, had a significant number of large immune cell clusters, including many more T cells 

compared to the control animals (Fig. 4.5 D-F). These clusters were again mostly associated 

with portal tracts; however, intraparenchymal clusters could also be found. Of note, ILC3s could 

be seen associated with the immune cell clusters in both the isotype-matched control Ig- and 

anti-Thy1.2-treated groups, but there seemed to be many more ILC3s, as well as RORJ+ CD4+ 

Th17 and RORJ+ Tc17, in the anti-Thy1.2-depleted groups (Fig 4.5 C, F). Data discussed in 

more detail below show that the hepatic ILC3s detected on day 22 are mostly donor derived 

(Thy1.1+). We also noticed that although ILC3s were often found to be cluster-associated at day 

8 as well, we could observe many clusters that did not have a visible ILC3 present. However, by 

day 22, nearly every cluster in both the control and anti-Thy1.2-treated mice had one or more 

ILC3(s) present in the cluster, and these ILC3s were often in direct contact with CD4+ T cells 

and perhaps even more so, CD8+ T cells. While these data are currently being analyzed in a 

quantitative manner with the approach outlined in Chapter 2, it is an exciting observation that 

suggests ILC3s may be associated with the sustained maintenance or longevity of hepatic 

immune cell clusters. This also warrants revisiting tissue staining of later time points in adult and 

young animals to determine whether there might be a possible defect in ILC3 cluster association 

in young animals. 
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Figure 4.5. Anti-Thy1.2-mediated ILC depletion leads to enhanced portal tract-associated 
inflammation during sustained HBV immunity. Liver tissue was isolated from adult IgG2b isotype-
matched control (A-C) or anti-Thy1.2 (D-F) antibody treated HBVtgRag1-/- mice 22 days post- adoptive 
transfer with Thy1.1 HBV-naïve splenocytes and drop-fixed in formalin for 24 hours, followed by ethanol 
dehydration and embedding into paraffin wax blocks. FFPE tissue blocks were sectioned at 4 µm and 
stained with anti-RORJ (purple), anti-CD8 (teal), and anti-CD4 (yellow) using the Ventana Discovery 
Ultra platform. Stained sections were imaged at 20X resolution with the Zeiss Axioscanner Z1. Scale bars 
represent 100 µm for (A-B, D-E), and 50 µm for (C, F). 

A.

B.

C.

D.

E.

F.
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 I assessed the production of the crucial cytokine IFNJ by T and NK cell populations in 

the Thy1.2-depleted mice. I found an overall increase in the number of IFNJ+ cells at both day 8 

and day 22 after ILC-depletion (Fig 4.6 A-B). This increase in IFNJ+ cells was mostly due to an 

increased number of T cells at both time points, but there was also an increased number of IFNJ+ 

NK1.1+ T cells (Fig. 4.6 C-D). On the other hand, there was a decreased number of IFNJ+ NK 

cells at day eight in anti-Thy1.2-treated mice, which is likely explained in part by Thy1.2-

mediated depletion of a subset of Thy1.2+ NK cells (Fig. 4.6 C-D). 
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Figure 4.6. Anti-Thy1.2-mediated ILC depletion leads to increased IFNJ production by T cells and 
NK-like T cells. Adult (>6wks) HBVtgRag1-/- animals were treated with anti-Thy1.2 depleting antibodies 
(DThy1.2) or IgG2b isotype-matched control antibody every three days starting at 3 wks of age (day -21) 
and continuing until sacrifice (day 22 group) or were treated every three days starting at day -4 and 
continuing until sacrifice (day 8 group) with adoptive transfer of HBV naïve WT splenocytes on day 0. 
Flow cytometry was performed and the number and percentage of CD45+ IFNJ+ cells was determined on 
day 8 (A, C) and day 22 (B, D) post-adoptive transfer. (B-C) The number and percentage of IFNJ+ T 
cells (CD45+ TCRE+ NK1.1-), NK cells (CD45+ TCRE- NK1.1+), and NK-like T cells (CD45+ TCRE+ 
NK1.1+) was determined. Data were analyzed using FlowJoTM Software; statistics determined by 
unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, ** p<0.01, *** p<0.001, **** 
p<0.0001; n=5 per group. 

 When specifically evaluating the CD4+ T cells I observed that there was an increased 

number of IFNJ+ CD4+ T cells at both day 8 and day 22 in Thy1.2-depleted animals (Fig. 4.7 A, 

D). This increased number was accompanied by an increased percentage of IFNJ+ CD4+ T cells 

relative to total CD4+ T cells at day 8 in anti-Thy1.2-treated mice; however, by day 22 a similar 

percentage of CD4+ T cells were making IFNJ (Fig. 4.7 A, D). I also measured a similar 

increase in the number of IFNJ+ CD4+ T cells at day 8 in Rorc(Jt)-/- mice (Fig. 3.6 D), though 

the percentage of IFNJ+ cells were similar at this time point. These data suggest that ILC3 do 

indeed play a role in suppressing the accumulation of total IFNJ-producing CD4+ T cells in the 

liver, particularly during early inflammation. I also noted that IFNJ production was increased 

within both TCM and TEff at day 8 of anti-Thy1.2-treated mice, while only an increase in IFNJ+ 

TEff was observed at day 22 (Fig. 4.7 C, F). Similar to Rorc(Jt)-/- mice, we observed that PD-1 

expression on IFNJ+ CD4+ T cells was high at day 8, but similar between treatment groups, and 

came down substantially by day 22, with a trend towards decreased PD-1+ IFNJ+ CD4+ T cells 

in anti-Thy1.2-treated animals, as was seen in total CD4+ T cells of Rorc(Jt)-/- mice (Fig. 3.6 C 

and Fig. 4.7 B, E).  
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Figure 4.7. Anti-Thy1.2-mediated ILC depletion leads to increased IFNJ production by CD4+ T 
cells. Adult (>6wks) HBVtgRag1-/- animals were treated with anti-Thy1.2-depleting antibodies (DThy1.2) 
or IgG2b isotype-matched control antibody every three days starting at 3 wks of age (day -21) and 
continuing until sacrifice (day 22 group) or were treated every three days starting at day -4 and continuing 
until sacrifice (day 8 group) with adoptive transfer of HBV naïve WT splenocytes on day 0. Flow 
cytometry was performed and the number and percentage of CD45+ TCRE+ CD4+ IFNJ+ cells was 
determined on day 8 (A) and day 22 (D) post-adoptive transfer. The number of PD-1+ IFNJ+ CD4+ T 
cells as a percentage of total IFNJ+ CD4+ cells was determined on day 8 (B) and day 22 (E). The number 
and percentage of CD44+ CD62L+ central memory (TCM) and CD44+ CD62L- effector/effector memory 
(TEff) subsets of IFNJ+ CD4+ T cells was determined on day 8 (C) and day 22 (F). Data were analyzed 
using FlowJoTM Software; statistics determined by unpaired two-tailed t-test with GraphPad Prism 
Software; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001; n=5 per group. 
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 There were no major differences in IFNJ+ CD8+ T cells, although there was a trend 

towards increased numbers and percentages at both day 8 and day 22 in ILC-depleted animals 

(Fig. 4.8 A, D). PD-1 expression on IFNJ+ CD8+ T cells was also similar between treatment 

groups at both time points (Fig. 4.8 B, E). There was an increased frequency of IFNJ+ TCM and 

TEff at day 8 in anti-Thy1.2-treated mice; however, there were not any significant differences by 

day 22, though a trend towards increased IFNJ+ CD8+ TEff cells was noted (Fig. 4.8 C, F). 

These data were somewhat different from what we observed in the Rorc(Jt)-/- mice, which 

showed a decreased number of IFNJ+ CD8+ T cells. These data suggest that the inconsistencies 

between the two models of ILC3-depletion could be accounted for by indirect effects of ILC3 

loss from birth in the knock-out mice. Alternatively, the depletion of ILC1, ILC2, and some NK 

cells in the anti-Thy1.2 depletion experiments may permit IFNJ production by CD8+ T cells that 

would otherwise be diminished in the absence of ILC3s alone. As we are ultimately interested in 

understanding how ILC3 loss relates to young mice that have reduced ILC3 numbers and altered 

functional profiles, we plan to use tetramer staining in young and adult mice compared to the 

ILC3-deficient mice to help clarify these observations and identify the most important critical 

differences that are relevant to age-dependent HBV immunity. 
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Figure 4.8. Anti-Thy1.2-mediated ILC depletion does not affect IFNJ production by CD8+ T cells. 
Adult (>6wks) HBVtgRag1-/- animals were treated with anti-Thy1.2 depleting antibodies (DThy1.2) or 
IgG2b isotype-matched control antibody every three days starting at 3 wks of age (day -21) and 
continuing until sacrifice (day 22 group) or were treated every three days starting at day -4 and continuing 
until sacrifice (day 8 group) with adoptive transfer of HBV naïve WT splenocytes on day 0. Flow 
cytometry was performed and the number and percentage of CD45+ TCRE+ CD8+ IFNJ+ cells was 
determined on day 8 (A) and day 22 (D) post-adoptive transfer. The number of PD-1+ IFNJ+ CD8+ T 
cells as a percentage of total IFNJ+ CD8+ cells was determined on day 8 (B) and day 22 (E). The number 
and percentage of CD44+ CD62L+ central memory (TCM) and CD44+ CD62L- effector/effector memory 
(TEff) subsets of IFNJ+ CD8+ T cells was determined on day 8 (C) and day 22 (F). Data were analyzed 
using FlowJoTM Software; statistics determined by unpaired two-tailed t-test with GraphPad Prism 
Software; * p<0.05, ** p<0.01; n=5 per group. 

0

2×105

4×105

6×105

# 
IF

N
g+

 C
D

8+
 T

 c
el

ls

# IFNγ+ CD8+ T cells
(day 8)

p=0.0502

0

10

20

30

40

%
 o

f C
D

8+
 T

 c
el

ls

% IFNg+ CD8+ T cells
(day 8)

p=0.0596

0

5

10

15

20
% PD-1+ IFNg+ CD8+ 

T cells (day 8)

%
 o

f I
FN

g+
 C

D
8+

 T
 c

el
ls

TCM TEff

0

2×104

4×104

1×105

2×105

3×105

4×105

5×105
# IFNg+ CD8+ T cells

(day 8)

IgG2b
α-Thy1.2

**

TCM TEff

0

10

20

30

40
% IFNg+ CD8+ T cells

(day 8)

%
 o

f C
D

8+
 T

 c
el

l s
ub

se
t

IgG2b
α-Thy1.2*

*

0.0

5.0×104

1.0×105

1.5×105

2.0×105

# 
IF

N
g+

 C
D

8+
 T

 c
el

ls

# IFNγ+ CD8+ T cells
(day 22)

0

2

4

6

8

%
 o

f C
D

8+
 T

 c
el

ls

% IFNg+ CD8+ T cells
(day 22)

0

20

40

60
% PD-1+ IFNg+ CD8+ 

T cells (day 22)

%
 o

f I
FN

g+
 C

D
8+

 T
 c

el
ls

TCM TEff

0

2×103

4×103

1×105

2×105
# IFNg+ CD8+ T cells

(day 22)

IgG2b
α-Thy1.2

TCM TEff

0

2

4

6

8
% IFNg+ CD8+ T cells

(day 22)

%
 o

f C
D

8+
 T

 c
el

l s
ub

se
t

IgG2b
α-Thy1.2

IgG2b
α-Thy1.2

A. B.

C.

D. E.

F.



 149 

 I used IFNJ ELISpot assays to further assess the magnitude and specificity of the hepatic 

IFNJ response in control and anti-Thy1.2-treated animals. Similar to Rorc(Jt)-/- mice, I 

determined that anti-Thy1.2 depleted animals also had a much higher baseline IFNJ response on 

day 8 and day 22 (Fig. 4.9 A, C). This increase in the baseline IFNJ response can either indicate 

increased HBV non-specific IFNJ production, or alternatively could represent IFNJ production 

by cells recently activated in vivo that are unable to be further stimulated to produce excess IFNJ. 

When examining the IFNJ response to individual HBV-derived peptides, I observed that control 

animals mounted an antigen-specific response to three of the four dominant epitopes (contained 

within peptides, 32, 81, 190/88, and 92) at day 8 and all four dominant epitopes at day 22 (Fig. 

4.9 B, D). Conversely, cells from ILC-depleted animals showed robust IFNJ production in 

general but, relative to their high baseline, HBV-specific peptides did not induce a response of at 

least two-fold above baseline for any HBV peptide on day 8 (Fig. 4.9 B). By day 22 I detected a 

response to peptide 81 (MHCII-restricted) by cells from ILC-depleted animals, though the 

magnitude relative to baseline was reduced compared to control mice (Fig. 4.9 D). Interestingly, 

in Rorc(Jt)-/- mice the early antigen-specific response was similarly blunted relative to baseline, 

but there seemed to be a specific defect in peptide 81 responses that could not be overcome with 

time, while MHCI-restricted epitopes within peptide 92 and 190/88 induced a measurable IFNJ 

response. It’s possible that the repopulation of depleted ILC populations from donor splenocytes 

(discussed below in more detail) may contribute to the differences observed at later time points; 

however, it would be informative to assess antigen-specific responses at a later time point when 

baseline IFNJ is likely to have further decreased. In addition, tetramer data paired with IFNJ 

staining will be most informative and will be completed upon receipt of the newly designed 

tetramers for peptides 32, 81, 190/88, and 92 discussed in Chapter 1 and 3. Taken together, 
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however, these data suggest that there is a defect in antigen-specific T cell responses in the 

absence of ILC3s. 

 

Figure 4.9. Anti-Thy1.2-mediated ILC depletion leads to increased baseline IFNJ production with 
blunted antigen-specific IFNJ T cell responses. Hepatic leukocyte fractions were enriched adult 
(>6wks) HBVtgRag1-/- animals were treated with anti-Thy1.2-depleting antibodies (DThy1.2) or IgG2b 
isotype-matched control antibody every three days starting at 3 wks of age (day -21) and continuing until 
sacrifice (day 22 group, C-D) or were treated every three days starting at day -4 and continuing until 
sacrifice (day 8, A-B) with adoptive transfer of HBV naïve WT splenocytes on day 0. 105 liver leukocytes 
were mixed in a 1:1 ratio with splenocytes from Rag1-/- mice as a source of APCs and stimulated 
overnight at 37°C together with individual peptides derived from the HBV envelope protein (HBsAg 
peptides) in ELISpot plates pre-coated with anti-IFNJ antibodies. “0” peptide denotes no peptide added. 
Antigen-specific IFNJ production was measured and displayed as both the total number of IFNJ spots (A, 
C) and as a percentage of baseline (no peptide) IFNJ production (B, D).  ELISpot plates were counted and 
analyzed with a CTL Immunospot plate reader and software. The threshold defining a positive response, 
marked with a *, is ≥2× the baseline (dashed line). N=pooled from ≥3 mice per group.  
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 I did not find any major differences in the hepatic myeloid populations of anti-Thy1.2-

depleted animals relative to control mice at day 8 and, thus, it is possible that at least some of the 

differences observed in Rorc(Jt)-/- mice may have been from indirect effects of ILC3 loss.  

I carefully assessed the ILC and NK cell populations in control and ILC-depleted mice to 

understand how anti-Thy1.2 depletion affects ILC numbers and the dynamics of ILC 

repopulation. First, when evaluating the NK cells, I observed a sustained loss of both mature 

(CD49b+ or CD11b+) and immature (CD49b- or CD11b-) NK cells in anti-Thy1.2-depleted 

mice (Fig. 4.10 A-D). I was also able to assess the numbers and relative frequency of Thy1.1+ 

donor NK cells versus Thy1.2+ recipient NK cells versus Thy1- NK cells, the latter of which 

could be from either donor or recipient origin. As expected, on day 8 we detected the population 

of Thy1.2+ recipient NK cells were nearly completely depleted in the anti-Thy1.2-treated 

animals (Fig. 4.10 E). There was an accompanied increase in the number of Thy1.1+ donor 

splenocyte-derived NK cells in the treated mice at the same time, possibly as a result of filling 

the NK cell niche in the liver, which is normally an abundant cell type in this tissue. The number 

of Thy1- NK cells was not changed by anti-Thy1.2 treatment; however, due to the loss of 

Thy1.2+ NK cells we observed the percentage of the hepatic NK cell compartment that is 

comprised of Thy1- NK cells increased from approximately 45 percent in control mice to 75 

percent in anti-Thy1.2-treated mice. At day 22, we observed that the Thy1- subset of NK cells 

dominated the liver, and that there were no longer any differences in the number of Thy1.2+ NK 

cells, suggesting this population was either semi-resistant to sustained depletion, or instead 

readily repopulates (Fig. 4.10 F). These data indicate that Thy1.2 depletion does deplete some 

NK cells, particularly ones with an immature phenotype, and that adoptive transfer of Thy1.1+ 

cells cannot completely rescue this loss; however, the presence of a large Thy1- population of 
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NK cells makes these cells more resilient to Thy1.2 depletion compared to other ILCs. We also 

know from experiments in the Rorc(Jt)-/- mice that NK cell numbers were decreased in the 

absence of RORJt+ cells alone, suggesting that in addition to direct loss of Thy1.2+ NK cells, it 

is also possible that the loss of ILC3s, and perhaps ILC1 or ILC2, may contribute to an 

environment that is less supportive of NK cell accumulation in the liver to the levels that occurs 

when all other ILC populations are present. 
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Figure 4.10. Anti-Thy1.2-mediated ILC depletion targets a portion of mature and immature NK 
cells. Adult (>6wks) HBVtgRag1-/- animals were treated with anti-Thy1.2-depleting antibodies (DThy1.2) 
or IgG2b isotype-matched control antibody every three days starting at 3 wks of age (day -21) and 
continuing until sacrifice (day 22 group) or were treated every three days starting at day -4 and continuing 
until sacrifice (day 8 group) with adoptive transfer of HBV naïve WT splenocytes on day 0. Flow 
cytometry was performed and the number and percentage of (A, C) CD49b+ and CD49b- and (B, D) 
CD11b+ and CD11b- CD45+ TCRE- NK1.1+ cells was determined on day 8 (A-B) and day 22 (C-D) 
post-adoptive transfer. The number and percentage of Thy1.1+ donor, Thy1.2+ recipient, and Thy1- NK 
cells was determined on day 8 (E) and day 22 (F) post-adoptive transfer. Data were analyzed using 
FlowJoTM Software; statistics determined by unpaired two-tailed t-test with GraphPad Prism Software; * 
p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001; n=5 per group. 
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 I also assessed the numbers and frequencies of hepatic ILC1, ILC2, and ILC3. As 

expected, there was a decrease in the numbers and percentages of ILC2 and ILC3 at day 8 in 

anti-Thy1.2-treated mice compared to isotype-matched control Ig-treated mice, with a similar 

trend towards decreased ILC1 as well, although not significant (Fig. 4.11 A). I also saw a similar 

sustained reduction of ILC1 and ILC2 at day 22 post-adoptive transfer (Fig. 4.11 B). 

Interestingly, however, ILC3 numbers had fully rebounded by day 22 in anti-Thy1.2-treated 

mice relative to control animals (Fig 4.11 B). These data suggested that either the Thy1.2 

treatment was losing efficacy against ILC3 over time, or instead that donor Thy1.1+ cells may be 

compensating for the loss of host Thy1.2+ ILC3.  
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Figure 4.11. Anti-Thy1.2-mediated ILC depletion efficiently reduces but does not eliminate ILCs in 
the liver after adoptive transfer of Thy1.1 splenocytes. Adult (>6wks) HBVtgRag1-/- animals were 
treated with anti-Thy1.2-depleting antibodies (DThy1.2) or IgG2b isotype matched control antibody every 
three days starting at 3 wks of age (day -21) and continuing until sacrifice (day 22 group) or were treated 
every three days starting at day -4 and continuing until sacrifice (day 8 group) with adoptive transfer of 
HBV naïve WT splenocytes on day 0. Flow cytometry was performed and the number and percentage of  
ILC1 (CD45+ TCRE- Thy1+ CD127+ IL-33R- RORJt- NK1.1+), ILC2 (CD45+ TCRE- Thy1+ CD127+ 
IL-33R+ RORJt-), and ILC3 (CD45+ TCRE- Thy1+ CD127+ IL-33R- RORJt+), was determined on day 
8 (A) and day 22 (B) post-adoptive transfer. Data were analyzed using FlowJoTM Software; statistics 
determined by unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, ** p<0.01; n=5 per 
group. 
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 Upon evaluating Thy1.1 and Thy1.2 expression within ILC subsets I was able to better 

understand the origin of ILC1, ILC2, and ILC3 after adoptive transfer in the control and Thy1.2-

depleted mice. In control mice I observed that at the early time point, roughly one third of each 

ILC subset was donor-derived (Thy1.1+) while roughly two thirds were host-derived (Thy1.2+) 

(Fig. 4.12 A). This has important implications for interpreting imaging data that visualizes 

hepatic ILC3 localization, as one of every three ILC3s we find in our stained tissue sections may 

be from donor adult splenocytes rather than the from the host. I could see; however, that the anti-

Thy1.2 depletion of ILCs is highly effective initially, particularly for ILC1 and ILC3, while there 

seems to be a small but present population of Thy1.2+ recipient ILC2 (Fig. 4.12 A). We can 

conclude from this data that Thy1.2-mediated depletion of ILC does not immediately result in a 

compensatory increase in the number Thy1.1+ ILCs for any subset, suggesting that there is not 

an early drive to fill this empty niche beyond what normally occurs after adoptive transfer. By 

day 22, I noted that the number of Thy1.2+ ILC1 and ILC2 starts to rebound significantly, 

similar to Thy1.2+ NK cells, while Thy1.2+ ILC3 remain depleted (Fig. 4.12 B). ILC3 are the 

highest expressing Thy1+ cell in the liver and, thus, may contribute to their increased 

susceptibility to anti-Thy1.2 treatment compared to the other subsets. Interestingly, although the 

absence of Thy1.2+ ILC1 and ILC2 still did not drive a compensatory influx of donor Thy1.1+ 

ILC, the opposite was true for ILC3. Indeed, the anti-Thy1.2-treated animals had an increased 

number of Thy1.1+ ILC3 such that the total number of Thy1.1+ and Thy1.2+ ILC3 was 

equivalent, if not possibly increased, compared to IgG2b control-treated animals. These data 

suggest that an absence of ILC3s in the liver results in active recruitment of ILC3s back into this 

tissue and implies that ILC3 may play an important role in liver biology and homeostasis. It 

remains to be seen whether this repopulation represent in situ expansion of a “founder” 
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population of ILC3s early or immediately after adoptive transfer, or instead if there is a continual 

re-seeding of this population from either ILC precursors or now circulating mature splenic ILC3. 
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Figure 4.12. Anti-Thy1.2-mediated ILC depletion drives repopulation of donor-derived ILC3s in 
the liver. Adult (>6wks) HBVtgRag1-/- animals were treated with anti-Thy1.2-depleting antibodies 
(DThy1.2) or IgG2b control antibody every three days starting at 3 wks of age (day -21) and continuing 
until sacrifice (day 22 group) or were treated every three days starting at day -4 and continuing until 
sacrifice (day 8 group) with adoptive transfer of HBV naïve WT splenocytes on day 0. Flow cytometry 
was performed and the number and percentage of Thy1.1+ donor and Thy1.2 recipient  ILC1 (CD45+ 
TCRE- Thy1+ CD127+ IL-33R- RORJt- NK1.1+), ILC2 (CD45+ TCRE- Thy1+ CD127+ IL-33R+ 
RORJt-), and ILC3 (CD45+ TCRE- Thy1+ CD127+ IL-33R- RORJt+), was determined on day 8 (A) and 
day 22 (B) post-adoptive transfer. Data were analyzed using FlowJoTM Software; statistics determined by 
unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, ** p<0.01, *** p<0.001, **** 
p<0.0001; n=5 per group. 

 I took a closer look at phenotypic markers of ILC3s to better understand differences 

between splenic- and hepatic-derived ILC3s. I observed that both Thy1.1+ donor and Thy1.2+ 

recipient ILC3s were dominated by NKp46- ILC3s, but that anti-Thy1.2-depleted mice had a 

slight increase in the percentage of Thy1.1+ NKp46+ ILC3s, suggesting that this population was 

either more enriched in donor spleens compared to liver, or instead that it had a greater capacity 

to home to the liver relative to the Thy1.1+ NKp46- ILC3s (Fig. 4.13 A, C). When examining 

MHCII expression on ILC3s I noted that although few Thy1.2+ ILC3s could be found in the 

liver of anti-Thy1.2-treated mice, the ones that were present expressed much higher levels of 

MHCII compared to control Ig-treated Thy1.2+ ILC3s, as well as Thy1.1+ ILC3s in anti-Thy1.2-

treated and control mice, particularly at day 22 (Fig. 4.13 B, D). This suggests that the hepatic 

environment in which tissue-resident ILC3s – or possibly, circulating but host-derived ILC3s – 

repopulate favors an MHCII+ ILC3 phenotype. This did not appear to be the case for the 

Thy1.2+ ILC3s in control mice, which indicates that something about the loss of ILC3s within 

the liver facilitates this differentiation program, possibly related to the cytokine milieu, or instead 

a feature of all newly differentiated ILC3s in the liver that is normally masked by a population of 

fully mature hepatic ILC3 in the control mice that have since down regulated MHCII. Donor 

Thy1.1+ ILC3s from the spleen tended to have more MHCII expression compared to Thy1.2+ 
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ILC3s. These data are consistent with the observation that splenic ILC3s can express high levels 

of MHCII (37, 38).  
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Figure 4.13. Anti-Thy1.2-mediated ILC depletion alters the phenotype of repopulated ILC3 in the 
liver. Adult (>6wks) HBVtgRag1-/- animals were treated with anti-Thy1.2-depleting antibodies (DThy1.2) 
or IgG2b control antibody every three days starting at 3 wks of age (day -21) and continuing until 
sacrifice (day 22 group) or were treated every three days starting at day -4 and continuing until sacrifice 
(day 8 group) with adoptive transfer of HBV naïve WT splenocytes on day 0. Flow cytometry was 
performed and the number and percentage of (A, C) NKp46+ and NKp46- and (B, D) MHCII+ Thy1.1+ 
donor and Thy1.2+ recipient ILC3 (CD45+ TCRE- Thy1+ CD127+ IL-33R- RORJt+), was determined on 
day 8 (A-B) and day 22 (C-D) post-adoptive transfer. Data were analyzed using FlowJoTM Software; 
statistics determined by unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05, ** p<0.01, 
*** p<0.001; n=5 per group. 

 We performed additional tissue staining with anti-RORJ (purple), anti-CD11b (teal), and 

anti-CD3e (yellow), first looking at tissue from animals on day eight post-splenic reconstitution. 

As expected, the control adult livers showed patterns of small- and medium-sized clusters spread 

throughout the liver parenchyma and around portal tracts (Fig. 4.14 A-C). The CD11b+ cells that 

can been seen lining the liver sinusoids, almost certainly liver resident Kupffer cells, form 

networks of clusters that reach out into the tissue, sometimes forming bridges between other 

clusters anchored by CD11b+ cells. Within these clusters, purple RORJ+ ILC3 and RORJ+ 

CD3+ T cells can be seen with other CD3+ T cells. The anti-Thy1.2-depleted mice had distinct 

periportal inflammation with very large clusters of CD11b+ cells mixed with together with 

CD3+ and RORJ+ cells, similar to clustering observed in Rorc(Jt)-/- mice (Fig 4.14 D-F). 

Although CD11b+ cells can still be seen lining the sinusoids, the cluster-associated CD11b+ 

cells form tighter packed clusters with edges that define more distinct cluster borders relative to 

control mice. These data clearly show a role for ILC3-mediated immune cell localization in the 

liver, as both genetic depletion, as well as acute antibody-mediated depletion, led to profound 

reorganization of immune cells, particularly the CD11b+ cells that form the basis of the immune 

cell clusters. We are excited to characterize these differences in a quantitative way with the 

Ilastik imaging analysis approach we have developed. 
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Figure 4.14. Anti-Thy1.2-mediated ILC depletion alters myeloid cell clustering around portal tracts 
and throughout the liver parenchyma during acute HBV immunity. Liver tissue was isolated from 
adult IgG2b isotype-matched control (A-C) or anti-Thy1.2 (D-F) antibody-treated HBVtgRag1-/- mice 8 
days post- adoptive transfer with Thy1.1 HBV-naïve splenocytes and drop-fixed in formalin for 24 hours, 
followed by ethanol dehydration and embedding into paraffin wax blocks. FFPE tissue blocks were 
sectioned at 4 µm and stained with anti-RORJ (purple), anti-CD11b (teal), and anti-CD3e (yellow) using 
the Ventana Discovery Ultra platform. Stained sections were imaged at 20X resolution with the Zeiss 
Axioscanner Z1. Scale bars represent 100 µm for (A-B, D-E), and 50 µm for (C, F). 

A.

B.

C.

D.

E.

F.
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 On day 22 post-transfer we noted some evidence of residual inflammation in control 

mice, particularly around portal tract areas, though some small parenchymal clusters were also 

present (Fig 4.15 A-C). Anti-Thy1.2-treated mice again showed enhanced periportal 

inflammation with more defined cluster edges, similar to the day 8 animals (Fig. 4.15 D-F). 

Consistent with the flow cytometry data that suggested there may be more RORJt+ ILC3 in anti-

Thy1.2-treated mice (Fig 4.11 B), we saw a high number of RORJ+ ILC3 and RORJ+ CD3+ T 

cells associated with a majority of the large periportal clusters. These data indicate that despite 

repopulation of the liver with splenic ILC3s by this time point, the initial loss of hepatic ILC3s 

by Thy1.2 depletion is sufficient to induce lasting changes in hepatic immune cell organization. 
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Figure 4.15. Anti-Thy1.2-mediated ILC depletion alters sustained myeloid cell clustering around 
portal tracts during HBV immunity. Liver tissue was isolated from adult IgG2b isotype-matched 
control (A-C) or anti-Thy1.2 (D-F) antibody-treated HBVtgRag1-/- mice 22 days post- adoptive transfer 
with Thy1.1 HBV-naïve splenocytes and drop-fixed in formalin for 24 hours, followed by ethanol 
dehydration and embedding into paraffin wax blocks. FFPE tissue blocks were sectioned at 4 µm and 
stained with anti-RORJ (purple), anti-CD11b (teal), and anti-CD3e (yellow) using the Ventana Discovery 
Ultra platform. Stained sections were imaged at 20X resolution with the Zeiss Axioscanner Z1. Scale bars 
represent 100 µm for (A-B, D-E), and 50 µm for (C, F). 
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 Finally, we also looked at staining of anti-RORJ (purple), anti-CD45R/B220, and anti-

CD3 on day 22 post-adoptive transfer, to assess the influx of B cells into the liver (Fig. 4.16). 

The control Ig-treated mouse livers showed a number of B220+ cells within the tissue that could 

mostly be found associated with immune cell clusters including T cells, ILC3s, and a number of 

unidentified cells that presumably are partially made up of CD11b+ cells (Fig. 4.16 A-B). The 

anti-Thy1.2-depleted mice also had a number of B cells associated with immune cell clusters; 

however, there were notably several instances of large B cell-rich clusters that formed, highly 

reminiscent of that seen in Rorc(Jt)-/- animals at this same time point (Fig. 4.16 C-D and Fig. 

3.10 G-H). These data suggest that loss of ILC3s does lead to a large influx of B cells; however, 

the functional role of these B cells, particularly related to HBV immunity, remains unclear. 
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Figure 4.16. Anti-Thy1.2-mediated ILC depletion causes B cell cluster during HBV immunity. Liver 
tissue was isolated from adult IgG2b isotype-matched control (A-B) or anti-Thy1.2 (C-D) antibody-
treated HBVtgRag1-/- mice 8 days post- adoptive transfer with Thy1.1 HBV-naïve splenocytes and drop-
fixed in formalin for 24 hours, followed by ethanol dehydration and embedding into paraffin wax blocks. 
FFPE tissue blocks were sectioned at 4 µm and stained with anti-RORJ (purple), anti-B220 (teal), and 
anti-CD3e (yellow) using the Ventana Discovery Ultra platform. Stained sections were imaged at 20X 
resolution with the Zeiss Axioscanner Z1. Arrows point to B220+ B cells alone or in clusters with other B 
cells Scale bars represent 50 µm. 
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Discussion 

 The experiments and data presented in this chapter helped us to identify important 

similarities between genetically deficient Rorc(Jt)-/- mice and acutely ILC3-deficient mice to 

better understand how the loss of ILC3s contributes to impaired HBV immunity. Although these 

two models are not without caveats, the concordance between datasets solidifies the observations 

and conclusions gained from each model separately.  

Specifically, we have uncovered a role for ILC3s in affecting the hepatic localization and 

organization of CD11b+, CD4+, CD8+, and B220+ immune cells. We observed that the loss of 

ILC3s resulted in extreme periportal inflammation and the generation of large immune clusters 

with defined edges, which isolate these clusters from the rest of the liver parenchyma. This was 

in contrast to animals that are sufficient for ILC3s, which demonstrated more moderate immune  

cell clustering that was both periportal and intraparenchymal. Furthermore, the structures present 

in ILC3-sufficient mice did not have defined borders, and instead had CD11b+ cells that 

stretched throughout the parenchyma, in some instances forming loose connections between 

multiple immune cell clusters. The effects of this immune cell reorganization in the absence of 

ILC3s is unclear; however, we do know that animals that exhibit these patterns either fail to clear 

antigens or have delayed antigen clearance, suggesting that they are not efficient sites of HBV-

specific immune priming. 

We also uncovered a deficit in antigen-specific T cell responses in the absence of ILC3s. 

Genetically deficient Rorc(Jt)-/- mice have a clear and sustained defect in response to the most 

dominant CD4+ HBV epitope identified in this system, peptide 81. Although the magnitude of 

the response to this peptide was reduced in the acutely depleted anti-Thy1.2-treated mice, we 
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also observed a decreased response to other HBV dominant epitopes, including MHCI- and 

MHCII-restricted epitopes. Again, these data highlight that ILC3s play a supportive role in the 

generation and sustained activities of HBV-specific T cells, with a particular defect in CD4+ T 

cell responses. 

Another consistent difference present in both models was the increased infiltration of 

total CD4+ T cells with an effector-like phenotype. This influx was particularly dramatic during 

early time points in the Rorc(Jt)-/- mice and partially subsided by one-month post-transfer. Anti-

Thy1.2-depleted mice, on the other hand, did not have a major CD4+ T cell influx present until 

later time points, which occurred only in the animals that received a longer Thy1.2-depletion 

regimen starting at the time of weaning. These data suggest that additional indirect mechanisms 

of ILC3 loss may contribute to this CD4+ T cell influx, particularly changes in gut microbial 

communities and/or effects of ILC3 loss on other hepatic innate immune cells capable of 

activating and recruiting CD4+ T cells.  

Despite this CD4+ T cell influx, and substantial IFNJ production by this subset, we know 

that these cells are less effective at targeting HBV antigens, as demonstrated in the ELISpot 

assays described above. Furthermore, we also found a defect in support of central memory CD4+ 

T cells, suggesting that an inability to maintain a population of memory CD4+ T cells may 

contribute to their inability to control HBV. In order to address this question directly, we will use 

HBV-specific MHCII tetramers to identify antigen-specific T cells and evaluate markers of T 

cell memory and function, particularly the expression of the long-lived memory marker CD127 

and production of IFNJ by cytokine capture assays. 
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Another interesting phenotype we would like to follow up on, is the observation of 

decreased Tfh in Rorc(Jt)-/- mice that only appeared at later time points. As highlighted 

throughout this thesis, Tfh play an essential role in HBV immunity, and thus, it is reasonable to 

predict that a defect in a sustained Tfh response would contribute to impaired HBV immunity in 

these mice. Unfortunately, I was not able to assess Tfh cells in the anti-Thy1.2 depletion 

experiments discussed in this chapter. Therefore, this is also an area we plan to revisit to 

determine if acute ILC3 depletion, even with the infiltration of splenic ILC3s, may also lead to 

impaired Tfh responses. However, we do know that although antigen clearance was delayed in 

anti-Thy1.2-depleted mice, it was not blocked as was the case of Rorc(Jt)-/- mice. Thus, it is 

possible that Tfh cell responses may not be as impaired in anti-Thy1.2-depleted animals because 

the influx of splenic ILC3s may help support a delayed, but sufficient, Tfh response that can 

contribute to HBsAg clearance in these animals at a later time. 

Finally, we also plan to further investigate the ability of transferred ILC3s to support 

improved HBV immunity in the context of ILC3-deficient hosts. We hope to distinguish between 

the role of adoptively transferred ILC3s in supporting delayed but apparent HBsAg clearance in 

anti-Thy1.2-depleted mice versus the transfer of splenocytes which lack ILC3s (from donor 

Rorc(Jt)-/- mice), which we would hypothesize may prevent the eventual antigen clearance that 

happened in anti-Thy1.2-depleted mice due to an inability to repopulate hepatic ILC3s.  
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Chapter 5: Identifying critical functional activities of ILC3s during anti-HBV immunity 

Introduction 

 After identifying a role for ILC3s in supporting HBV-specific T cell responses, immune 

cell distribution within the liver, and HBV antigen clearance we investigated the functional 

mediators of ILC3s with a logical experimental approach to identify how ILC3s function to 

regulate HBV immunity in the liver. As reviewed in earlier chapters, ILC3s have multifaceted 

roles in regulating immunity that can be generally categorized into three primary effector 

functions: (1) regulating lymphoid organization, (2) production of cytokines that regulate 

inflammation and immune priming, and (3) antigen presentation.  

The first role of ILC3s in regulating lymphoid organization is most well attributed to a 

fetal subset of ILC3s, LTi cells, which are critical for lymphoid organogenesis of peripheral 

lymph nodes and Peyer’s patches, but not the spleen. A similar population of cells persists into 

adulthood, known as LTi-like cells, and has also been shown to be essential for the development 

of cryptopatches and maturation of isolated lymphoid follicles in the gut, which have features 

similar to other lymphoid tissues (24). These cells can also mediate lymphoid organization 

within tertiary lymphoid structures, as well as facilitate the recovery of splenic architecture after 

viral infection and disruption of splenic T and B cell zones (25). LTi and LTi-like cells represent 

a subset of NKp46- ILC3s and are defined in mice by their expression of CD4 and CCR6, the 

latter of which has been shown to play a role in LTi-like cell recruitment and trafficking in 

response to the CCR6 ligand, CCL20. LTi and LTi-like cells also express lymphotoxin D (LTD) 

and LTE, which together form the trimer LTD1E2, along with LIGHT, a closely related TNF 

family member that, like lymphotoxin, also binds and stimulates LTER on hematopoietic cells 
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and on non-hematopoietic stromal lymphoid “organizer” cells. LTi and LTi-like cells express 

other TNF family members including RANKL (TNFSF11), which has also been shown to 

contribute to lymphoid organization. Several studies have pointed to a role for IL-17, which is a 

major cytokine produced by LTi and LTi-like cells and NKp46- ILC3, in mediating and 

supporting lymphoid organization, such as in the case of bronchus-associated lymphoid tissue 

(44-46). Although IL-17 specifically from LTi and LTi-like or NKp46- ILC3s does not appear to 

be the essential source required for lymphoid organization, it is likely that IL-17 secretion by 

LTi-like cells together with expression of other molecules discussed above contributes in part to 

lymphoid organization.  

The second major functional role of ILC3s is mediated through their secretion of 

cytokines, in particular IL-17, IL-22, and GM-CSF. IL-17 secretion is known to drive tissue 

inflammation, including the recruitment of neutrophils, as well as to promote activation of 

antigen-presenting cells to facilitate immune priming. One study illustrated a role for IL-17F 

secretion from ILC3s in the recruitment and activation of hepatic CD8+ CTLs, including their 

production of IFNJ and expression of CD107, a marker of degranulation (83). Other effects of 

IL-17 include controlling fungal and bacterial infections (47, 48). IL-17 and IL-22 are both 

known to regulate secretion of anti-microbial peptides that help regulate microbial colonization 

(54, 55, 58). IL-22 further supports barrier integrity and wound healing through direct actions on 

epithelial and stromal cells (57, 60, 61). IL-22 production by ILC3s plays a critical role in 

regulating immunity to various bacterial pathogens (56, 62). GM-CSF production by ILC3s also 

contributes to the recruitment and activation of myeloid cells and the priming and maintenance 

of T cells (49, 50). 
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Finally, ILC3s have also recently been identified as an important antigen-presenting cell 

that, depending on context, can either promote CD4+ T cell priming and activation, or 

alternatively, result in cell death. The ability of ILC3s to present antigen is dependent on their 

expression of MHCII along with associated co-stimulatory molecules. The population of ILC3s 

that reside in the spleen have been described as having efficient priming capacity, similar to that 

of DCs under certain in vitro conditions, due in part to their high level of MHCII expression and 

co-expression of CD74, CD86, and OX40L (37, 38). In the small intestine, however, a lower 

level of MHCII expression on ILC3s and a reduced frequency of co-stimulatory molecules 

results in a diminished capacity to prime CD4+ T cells and, in fact, seems to play a critical role 

in triggering cell death of commensal microbe-specific T cells to prevent inappropriate gut 

inflammation (35, 37, 69). 

We investigated the contributions of ILC3-derived cytokines and their expression of 

molecules known to regulate lymphoid organization by specifically blocking a number of the 

molecules, or their receptors, described above. After observing that there was a greatly enriched 

mRNA transcript signal of CCR6 in adult mice that control HBV compared to young mice that 

develop “chronic infection” (Fig. 1.17), we crossed Ccr6-/- mice with our HBVtgRag1-/- mice to 

investigate whether CCR6 is required for effective HBV control. We investigated the role of 

lymphotoxins and LIGHT in HBV immune outcomes and in the organization of immune cells 

within liver tissue by performing a series of experiments using Tnfsf14-/- (LIGHT-/-) mice, as well 

as a blockade of lymphotoxins with a LTER-Ig fusion protein, the receptor for LIGHT and 

LTD1E2 (84). We chose not to study lymphotoxin-deficient mice, as they have profound 

immunological defects due to the essential role of this molecule in the formation of all lymphoid 

tissues. Finally, we performed antibody-mediated cytokine blockade experiments using the 
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antagonistic antibodies against IL-17RA (the receptor for IL-17A and IL-17F), IL-17F, IL-22, 

and GM-CSF to address the role of each cytokine in HBV immunity.  

Results 

5.1 – The role of CCR6 in HBV immunity 

I assessed anti-HBV immunity in ILC3-sufficient HBVtgRag1-/-Ccr6-/- compared to 

HBVtgRag1-/- and ILC3-deficient HBVtgRag1-/-Rorc(Jt)GFP/GFP mice. These Ccr6-/- mice lack 

expression of CCR6 on resident innate immune cells but were reconstituted with wild-type 

CCR6-replete splenocytes after adoptive transfer. Compared to HBVtgRag1-/- mice, Ccr6-/- mice 

had similar levels of plasma ALT, which were both reduced relative to ILC3-deficient mice (Fig. 

5.1 A). I also found no difference in the clearance of HBsAg by Ccr6-/- mice as compared to 

HBVtgRag1-/- controls, though as previously seen, ILC3-deficient animals failed to clear HBsAg 

(Fig. 5.1 B). When I measured HBV antigen-specific IFNJ production by Ccr6-/- mice at a late 

time point, I found these mice were able to mount a response to three different pools of HBsAg 

peptides: pool 4, 6, and 7, which contain peptides 48, 82, and 88/190 and 92/207, respectively 

(Fig. 5.1 C). Control animals also responded to three peptide pools: pool 3, 6, and 7. Peptide 

pool 3 contains peptide 32, another sub-dominant epitope described in more detail in Chapter 1 

(also referred to as HBs126). These data suggested that CCR6 deficiency does not impair IFNJ 

responses or HBsAg clearance and indicated that CCR6 was likely not a major contributor to the 

phenotype observed in ILC3-deficient animals. Importantly, although CCR6 expression is found 

within LTi/LTi-like cells, the lack of CCR6 dependency does not rule out a potential role for this 

subset of ILC3s independent of CCR6-mediated trafficking, as the loss of CCR6 does not affect 

the number of these ILC3s.  
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Figure 5.1. CCR6 deficiency does not impair HBV immunity. Adult (>8 wks) HBVtgRag1-/- animals 
(ILC3-sufficient), HBVtgRag1-/-Ccr6-/- (ILC3-sufficient CCR6-/-), and Rorc(Jt)GFP/GFPHBVtgRag1-/- 
(ILC3-deficient) animals were adoptively transferred with HBV-naïve WT splenocytes. (A) Liver disease 
was monitored by plasma alanine aminotransferase (ALT). (B) Clearance of circulating HBsAg was 
monitored over time by qualitative ELISA. (C) Hepatic leukocyte-enriched cell preparations were 
isolated from animals on day 97 post adoptive transfer. 105 liver leukocytes were mixed in a 1:1 ratio with 
splenocytes from Rag1-/- mice as a source of APCs and stimulated overnight at 37°C together with pools 
of 12-14 fifteen-mer peptides spanning the entire length of the HBV envelope protein in ELISpot plates 
pre-coated with anti-IFNJ antibodies. “0” peptide pool denotes no peptide added. Antigen-specific IFNJ 
production was measured and displayed as the total number of IFNJ spots per 106 cells. ELISpot plates 
were counted and analyzed with a CTL Immunospot plate reader and software. The threshold defining a 
positive response, marked with a *, is ≥2× the baseline (dashed line). Statistics for (B) determined by a 
log-rank (Mantel-Cox) Chi square survival test with GraphPad Prism Software; *** p<0.001, n≥7 per 
group for (A-B), n=pooled from 7 mice per group for (C). 

 

5.2 – The role of LIGHT in HBV immunity 

I investigated the effect of LIGHT-deficiency [Tnfsf14-/- (85)] on HBV disease outcome 

when absent on the recipient innate immune compartment in HBVtgRag1-/-Tnfsf14-/- mice. I 
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observed a marked increase in early inflammation and hepatitis, as measured by plasma ALT, in 

LIGHT-deficient animals relative to controls (Fig. 5.2 A). The absence of LIGHT on recipient 

immune cells did not impair HBV antigen clearance compared to controls, as 6 out of 7 animals 

in the Tnfsf14-/- group had cleared antigen by day 14, with the same number of mice clearing 

HBsAg in the control group by day 21 (Fig. 5.2 B). I found evidence of enhanced HBV 

immunity in LIGHT-deficient mice, as 5 of 7 animals had made detectable anti-HBs antibodies 

by day 36 post-transfer, compared to only 1 control animal (Fig. 5.2 C). In our system, we 

usually begin to detect anti-HBs antibodies as early as one-month post-transfer, but it can often 

take up to two or three months for the majority of the animals to generate a detectable response. 

The early antibody response in LIGHT-deficient animals highlights a potential role for this 

molecule on innate immune cells in suppressing B cell secretion of antibodies. I found additional 

evidence suggesting LIGHT on innate immune cells normally restricts effective HBV immunity, 

as LIGHT-deficient animals had a highly robust IFNJ response to HBV peptide stimulation, 

beyond what was seen in control mice (Fig. 5.2 D). Taken together these experiments indicate 

that LIGHT expression within an innate immune population present in Rag1-/- recipient mice can 

restrict both T and B cell responses towards HBV antigens. Although LIGHT does interact with 

the lymphotoxin receptor, LTER, it has another receptor – HVEM (herpesvirus entry 

mediator/TNFSF14R) – which is known to exert negative regulatory effects on lymphocytes in 

certain contexts (86-88). Thus, further dissection of this system is required to understand how 

LIGHT mediates its anti-HBV immune suppressive effects and which receptor(s) contribute to 

these effects. 
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Figure 5.2. LIGHT deficiency in host animals leads to enhanced HBV immunity. Adult (>8 wks) 
HBVtgRag1-/- and HBVtgRag1-/-Tnfsf14-/- (LIGHT-/-) mice were adoptively transferred with HBV-naïve 
WT splenocytes. (A) Liver disease was monitored by plasma alanine aminotransferase (ALT). (B) 
Clearance of circulating HBsAg and (C) production of anti-HBs antibodies were monitored over time by 
qualitative and quantitative ELISAs, respectively. (D) Hepatic leukocyte-enriched cell preparations were 
isolated from animals on day 97 post adoptive transfer. 105 liver leukocytes were mixed in a 1:1 ratio with 
splenocytes from Rag1-/- mice as a source of APCs and stimulated overnight at 37°C together with 
individual peptides spanning the entire length of the HBV envelope protein in ELISpot plates pre-coated 
with anti-IFNJ antibodies. “0” peptide pool denotes no peptide added. Antigen-specific IFNJ production 
was measured and displayed as the total number of IFNJ spots per 106 cells. ELISpot plates were counted 
and analyzed with a CTL Immunospot plate reader and software. The threshold defining a positive 
response, marked with a *, is ≥2× the baseline (dashed line). Statistics for determined by a unpaired two-
tailed t-ted or log-rank (Mantel-Cox) Chi square survival test with GraphPad Prism Software; * p<0.05, 
** p<0.01, n≥7 per group for (A-B), n=pooled from 7 mice per group for (C). 
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5.3 – The role of LTER in HBV immunity and lymphoid organization 

 We took another approach to explore the possible effects of lymphotoxins, LIGHT, and 

the receptor LTER on HBV-mediated immunity by treating adult HBVtgRag1-/- mice with a 

LTER-Ig fusion protein (hereafter referred to as LTER-Fc) that binds and sequesters LTER 

ligands – LTD1E2 and LIGHT – such that it prevents their signaling through endogenous LTER 

and HVEM receptors (89). We initiated a collaboration with Dr. Carl Ware to receive and test 

this reagent in our model. We were particularly interested in using this reagent to determine 

whether blockade of this pathway might have effects on lymphoid organization. In contrast to 

Tnfsf14-/- mice, animals treated with LTER-Fc had greatly diminished hepatitis as measured by 

plasma ALT (Fig. 5.3 A). There was some evidence of delayed HBsAg clearance in LTER-Fc-

treated animals as only 2 of 7 mice had cleared antigen by day 14 compared to 6 of 7 control 

mice; however, these groups were not statistically different (Fig. 5.3 B). We have yet to follow 

these mice for longer-term experiments, since it is known that mice eventually develop 

antibodies against the fusion protein, which contains the mouse LTER fused to a human IgG1 Fc; 

even so, it will be interesting to understand if this early blockade may have lasting effects on 

antigen clearance.  

Despite seeing evidence of reduced hepatitis in LTER-Fc-treated mice, there was 

evidence of increased portal-associated inflammation in these same mice (Fig. 5.4 C-E). It is 

worth noting, however, that this response was only seen in some of the LTER-Fc-treated mice, 

particularly the ones that did have a substantial ALT rise. However, when comparing two mice 

that had identical ALT rises, we observed that the LTER-Fc-treated mouse had more dramatic 

portal inflammation compared to the control mouse, particularly with an influx of CD4+ T cells 
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(Fig. 5.4 C-D). It will be important to also look at tissue staining patterns of CD11b+ myeloid 

cells – crucial participants in the formation hepatic immune clusters that– to determine whether 

LTER-Fc blocking treatments also influence the distribution and organization of these cells. 

I assessed HBV-specific immunity in these animals by performing an IFNJ ELISpot 

assay and found that, similar to ILC3-deficient animals, there was increased baseline IFNJ 

production in LTER-Fc-treated mice with a restricted HBV-specific response (Fig. 5.3 F). 

Distinct from the ILC3-deficient mice, LTER-Fc-treated animals were able to mount a robust 

response to peptide 81, suggesting that the consistently impaired response to peptide 81 in ILC3-

deficient mice is likely a result of LTER-independent mechanisms.  

Finally, I assessed the abundance of CD4+ and CD8+ T cells in the livers of treated and 

control mice by flow cytometry. There was a trend towards a greater number of total T cells, 

caused mainly by a statistically significant increase in the number of hepatic CD4+ T cells, in the 

LTER-Fc-treated mice (Fig. 5.4 G). This translated into an increased percentage of CD4+ T cells 

in LTER-Fc-treated mice relative to control mice, although CD8+ T cells were still the dominant 

type of T cell recovered at this time point, which is different than what we observed in ILC3-

deficient mice that are dominated by CD4+ T cells at day 8 (Fig. 5.4 H).  
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Figure 5.3. LTER blockade alters HBV immunity and immune cell distribution in the liver. Adult 
(>8 wks) HBVtgRag1-/- mice were treated with anti-LTER- adoptively transferred with HBV-naïve WT 
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splenocytes. (A) Liver disease was monitored by plasma alanine aminotransferase (ALT). (B) Clearance 
of circulating HBsAg was monitored over time by qualitative ELISAs. (C) Control and (D) LTbR-Fc-
treated liver sections from day 8 post-transfer were stained with anti-CD8 (purple) and anti-CD4 (yellow) 
using the Ventana Discovery Ultra platform. Stained sections were imaged at 20X resolution with the 
Zeiss Axioscanner Z1. (E) The mean diameter of portal associated inflammation was quantitated by a 
pathologist blinded to sample identity. (F) Hepatic leukocyte-enriched cell preparations were isolated 
from animals on day 8 post adoptive transfer. 105 liver leukocytes were mixed in a 1:1 ratio with 
splenocytes from Rag1-/- mice as a source of APCs and stimulated overnight at 37°C together with 
individual peptides from the HBV envelope protein in ELISpot plates pre-coated with anti-IFNJ 
antibodies. “0” peptide pool denotes no peptide added. Antigen-specific IFNJ production was measured 
and displayed as the total number of IFNJ spots per 106 cells. ELISpot plates were counted and analyzed 
with a CTL Immunospot plate reader and software. The threshold defining a positive response, marked 
with a *, is ≥2× the baseline (dashed line). Flow cytometry was performed and the number (G) and 
percentage (H) of CD4+ T cells (CD45+ TCRE+ NK1.1- CD4+ CD8-) and CD8+ T cells was (CD45+ 
TCRE+ NK1.1- CD4- CD8+) were determined. Statistics for determined by an unpaired two-tailed t-ted 
or log-rank (Mantel-Cox) Chi square survival test with GraphPad Prism Software; * p<0.05, n≥7 per 
group for (A-E, G-F), n=pooled from 7 mice per group for (F). 

 When taken together, these data suggest that a portion of the phenotype observed in 

ILC3-deficient mice may be due to a loss of lymphotoxin and/or LIGHT signaling, particularly 

related to immune cell distribution within the liver, and possibly a small contribution towards 

CD4+ T cell skewing. It remains to be seen whether LTER-Fc treatment has a major effect on 

HBsAg clearance or HBs antibody seroconversion. The lack of hepatocyte necrosis and ALT 

release despite evidence of increased portal inflammation is intriguing; it is possible that these 

cells are less inflammatory in their production of cytokines and granules that have the potential 

to kill “infected” hepatocytes. Furthermore, the distinct difference in the antigen-specific 

response to peptide 81 suggests that there may be an antigen presentation defect in ILC3-

deficient mice that is not recapitulated by LTER-Fc treatment. It will be of great interest to 

further interrogate these antigen-specific T cell responses both at later time points and with the 

use of tetramers, to better understand the phenotype of these cells. 
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5.4 – The role of IL-17 in HBV immunity 

 I investigated the role of IL-17 by treating mice with antibodies targeting IL17RA – the 

receptor for both IL-17A and IL-17F – and IL-17F provided by a collaborator, Dr. Stephen 

Nishimura. At the time of these experiments I did not determine the effect of IL-17A-specfic 

blockade; however, I inferred that differences between IL-17R-blocked and IL-17F-blocked 

animals were likely due to IL-17A-mediated effects. When evaluating early liver inflammation 

measured by plasma ALT, I did not find any effect of IL-17 blockade compared to control 

animals (Fig. 5.4). 

 

Figure 5.4. IL-17 blockade does not affect early liver inflammation during HBV immunity. Adult 
(>8 wks) HBVtgRag1-/- animals were treated with anti-IL-17R blocking (dashed purple line), anti-IL-17F 
blocking (red dotted line), or IgG1 control (solid black line) antibodies every two days starting at day -1, 
and adoptively transferred with HBV-naïve WT splenocytes on day 0. Liver disease was monitored by 
plasma alanine aminotransferase (ALT). Statistics determined by one-way ANOVA with Dunnett’s 
multiple comparison test with GraphPad Prism Software; n=5 per group. 

 I performed flow cytometry to assess immune cell infiltration of the liver and found a 

trend towards reduced total CD45+ lymphocytes (p=0.11) and T cells (p=0.22) in anti-IL-17F-

treated animals, though this was not statistically different (Fig. 5.5 A-B). The anti-IL-17RA-

treated mice were identical to control animals, suggesting that if the trend towards decreased T 
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cells were true in anti-IL-17F-treated mice, that IL-17A may have opposing roles. I did not 

observe any differences in CD4+ versus CD8+ T cell accumulation in the liver by either 

treatment (Fig. 5.5 C). 

 

Figure 5.5. IL-17 blockade does not affect T cell accumulation in the liver during HBV immunity. 
Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-IL-17R (purple), anti-IL-17F (red), or IgG1 
control (black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve 
WT splenocytes on day 0. Leukocyte-enriched cell preparations were isolated on day 8 post-transfer and 
flow cytometry was performed to measure the number of (A) total CD45+ cells and the number and 
percentage of  (B) total T cells (CD45+ TCRE+ NK1.1-) and (C) CD4+ T cells (CD45+ TCRE+ NK1.1- 
CD4+ CD8-) and CD8+ T cells (CD45+ TCRE+ NK1.1- CD4- CD8+). Data were analyzed using 
FlowJoTM Software; statistics determined by unpaired two-tailed t-test with GraphPad Prism Software; 
n=5 per group. 

 When taking a closer look at CD4+ T cell differentiation I detected no differences in the 

number or percentage of naïve, central memory, or effector/effector memory cells as defined by 

CD44 and CD62L expression (Fig. 5.6 A). There was a trend towards a reduction in the number 

of CD44+ CD62L- CD8+ TEff cells after anti-IL-17F treatment (p=0.054), which was not present 
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in anti-IL-17RA-treated mice (Fig. 5.6 B). I found no differences in the number or percentages 

of CXCR5+ PD-1+ T follicular helper cells after IL-17 blockade at this early time point (Fig. 5.6 

C-D). It remains to be seen whether IL-17 blockade may contribute any of the longer-term 

effects we saw as a result of ILC3 depletion.  

 

Figure 5.6. IL-17 blockade does not affect T cell differentiation in the liver during HBV immunity. 
Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-IL-17R (purple), anti-IL-17F (red), or IgG1 
control (black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve 
WT splenocytes on day 0. Leukocyte-enriched cell preparations were isolated on day 8 post-transfer and 
flow cytometry was performed to measure the number of CD44- CD62L Tnaive, CD44+ CD62L+ TCM, and 
CD44+ CD62L- TEff/TEM (A) CD4+ T cells and (B) CD8+ T cells, as well as the number (C) and 
percentage (D) of CXCR5+ PD-1+ CD4+ T follicular helper (Tfh) cells relative to total CD4+ T cells. 
Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test with 
GraphPad Prism Software; n=5 per group. 

Finally, I assessed antigen-specific IFNJ T cell responses by ELISpot assay. In this 
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antigen-specific response to any of the individual peptides (Fig 5.7). Relative to the controls, 

anti-IL-17RA-treated mice had the lowest baseline IFNJ response followed by anti-IL-17F 

treatment. Blockade of IL-17RA clearly did not impair HBV-specific IFNJ production, as these 

animals had a clear response to five peptides including each of the four major dominant epitopes 

(32, 81, 88, and 92). Mice treated with anti-IL-17F showed detectable antigen-specific IFNJ 

production in response to peptide 81, with a near response to peptide 92. These data suggest that 

IL-17A and IL-17F likely do not contribute a great deal to the generation of antigen-specific T 

cell responses. An important caveat to these experiments, however, is the fact that antibody-

mediated blockade may only partially block IL-17 signaling when compared to studies that use 

genetically deficient IL-17 or IL-17R mice. Indeed, I found no differences in the expression of a 

number of genes shown to be regulated downstream of IL-17R signaling including GM-CSF 

(Csf2) lipocalin 2 (Lcn2), C/EBPd (Cebpd), and INB-] (Nfkbiz) (90) in anti-IL-17F- and anti-IL-

17RA-treated animals, suggesting that a more robust system may be required to efficiently block 

IL-17 signaling in the liver. 
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Figure 5.7. IL-17F blockade supports early antigen-specific IFNJ responses during HBV immunity. 
Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-IL-17R (purple), anti-IL-17F (red), or IgG1 
control (black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve 
WT splenocytes on day 0. Hepatic leukocyte-enriched cell preparations were isolated from animals on 
day 8 post adoptive transfer. 105 liver leukocytes were mixed in a 1:1 ratio with splenocytes from Rag1-/- 
mice as a source of APCs and stimulated overnight at 37°C together with individual peptides derived 
from the HBV envelope protein (HBsAg peptides) in ELISpot plates pre-coated with anti-IFNJ 
antibodies. “0” peptide denotes no peptide added. Antigen-specific IFNJ production was measured and 
displayed as the total number of IFNJ spots per 106 cells. ELISpot plates were counted and analyzed with 
a CTL Immunospot plate reader and software. The threshold defining a positive response, marked with a 
*, is ≥2× the baseline (dashed line). N=pooled from =5 mice per group.  

 

5.5 – The role of IL-22 in HBV immunity 

 We also investigated the role of another major ILC3-derived cytokine, IL-22. I first 

approached this question by using antibody-mediated blockade of IL-22; however, due to cost 

and efficacy of this approach we have also acquired so-called “Catch-22” mice from Dr. Richard 

Locksley’s laboratory, which have tdTomato knocked in to the endogenous Il22 locus such that 

heterozygotes are IL-22 reporter mice and homozygotes are IL-22 knockouts (91). My initial 

0 7 14 22 32 38 43 48 72 81 88 92
0

500

1000

1500

2000

2500

HBsAg Peptide Number

IF
N
g S

po
ts

/1
06  c

el
ls

IFNg Production by Liver Lymphocytes 
(Day 8)

IgG1
anti-IL-17RA
anti-IL-17F

*

*

* *

*

*



 185 

experiments with anti-IL-22 blockade showed no effects on early hepatitis (Fig. 5.8). This 

cytokine has previously been shown to play a role in liver inflammation, both pro- and anti-

inflammatory depending on the context, and so I am interested to understand whether this 

observation may be due to partial IL-22 blockade or, alternatively, whether the window in which 

I tested was too early to identify these effects, both of which will be easiest to evaluate in the 

Catch22 knock-out mice (61, 63). 

 

Figure 5.8. IL-22 blockade does not affect early liver inflammation during HBV immunity. Adult 
(>8 wks) HBVtgRag1-/- animals were treated with anti-IL-22 blocking (pink dashed line) or IgG2a control 
antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve WT splenocytes 
on day 0. Liver disease was monitored by plasma alanine aminotransferase (ALT). Statistics determined 
by one-way ANOVA with Dunnett’s multiple comparison test with GraphPad Prism Software; n=7 per 
group. 

 I assessed the accumulation of total immune cells, T cells, and B cells in the livers of 

anti-IL-22 and control IgG2a-treated mice by flow cytometry. I found no differences in the 

number of CD45+ cells in the liver, nor in the number or relative percentage of T cells and B 

cells after IL-22 blockade compared to controls (Fig. 5.9). 
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Figure 5.9. IL-22 blockade does not affect T or B cell accumulation in the liver during early HBV 
immunity. Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-IL-22 (pink) or IgG2a control 
(black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve WT 
splenocytes on day 0. Leukocyte-enriched cell preparations were isolated on day 8 post-transfer and flow 
cytometry was performed to measure the number of (A) total CD45+ cells and the number and percentage 
of (B) T cells (CD45+ TCRE+ NK1.1-) and (C)  B cells (CD45+ TCRE- NK1.1- CD19+). Data were 
analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test with GraphPad 
Prism Software; n=7 per group. 

 When looking at the composition of TCRE+ cells, I found no differences in the number 

or relative percentages of CD4+ and CD8+ T cells in anti-IL-22-treated mice (Fig. 5.10 A). 

Furthermore, the differentiation of central memory and effector/effector memory cells within the 

population of CD4+ and CD8+ T cells was also unchanged by IL-22 blockade, with control and 

blocked mice demonstrating a strong skewing towards TEff cells, as typically seen in the liver of 

adult mice (Fig. 5.10 B-C). 
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Figure 5.10. IL-22 blockade does not affect T cell differentiation in the liver during early HBV 
immunity. Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-IL-22 (pink) or IgG2a control 
(black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve WT 
splenocytes on day 0. Leukocyte-enriched cell preparations were isolated on day 8 post-transfer and flow 
cytometry was performed to measure the number and percentage of  (A) CD4+ and CD8+ T cells and 
CD44- CD62L Tnaive, CD44+ CD62L+ TCM, and CD44+ CD62L- TEff/TEM  CD4+ (B) and CD8+ (C) T 
cells. Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test 
with GraphPad Prism Software; n=7 per group. 

 I also assessed the effect of IL-22 blockade on the differentiation of Tfh cells, CXCR5+ 

CD8+ T cells, RORJt+ Th17 and Tc17, as well as the expression of PD-1 and OX40 on both 

CD4+ and CD8+ T cells and found no differences in any of these populations as a result of anti-

IL-22 treatment compared to controls (Fig. 5.11). There was a small but insignificant trend 
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towards an increase in the number and percentage of Tfh cells in IL-22-blocked mice that 

warrants follow up in IL-22 knockout mice, as this was also a feature observed in ILC3-deficient 

mice at this early time point (Fig. 5.11 A).  

 

Figure 5.11. IL-22 blockade does not affect Tfh cell accumulation or surface marker expression of 
CD4+ and CD8+ T cells in the liver during early HBV immunity. Adult (>8 wks) HBVtgRag1-/- 
animals were treated with anti-IL-22 (pink) or IgG2a control (black) antibodies every two days starting at 
day -1, and adoptively transferred with HBV-naïve WT splenocytes on day 0. Leukocyte-enriched cell 
preparations were isolated on day 8 post-transfer and flow cytometry was performed to measure the 
number and percentage of (A) CXCR5+ PD-1+ CD4+ Tfh, the percentage of (B) PD-1+, (C) OX40+, and 
(D) RORJ+ CD4+ T cells, as well as the number and percentage of (E) CXCR5+ CD8+ T cells, and the 
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percentage of (F) PD-1+, (G) OX40+, and (H) RORJ+ CD8+ T cells. Data were analyzed using 
FlowJoTM Software; statistics determined by unpaired two-tailed t-test with GraphPad Prism Software; 
n=7 per group. 

 When examining the effect of IL-22 on various IFNJ producing populations I also found 

no differences between anti-IL-22-treated mice and controls. IL-22 blockade did not increase or 

decrease the number of IFNJ+ CD4+ or CD8+ T cells, nor did it affect the expression of PD-1 or 

OX40 on IFNJ+ T cells or the percentages of IFNJ+ Tfh and CXCR5+ T cells (Fig. 5.12). 
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Figure 5.12. IL-22 blockade does not affect IFNJ production by T cells in the liver during early 
HBV immunity. Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-IL-22 (pink) or IgG2a 
control (black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve 
WT splenocytes on day 0. Leukocyte-enriched cell preparations were isolated on day 8 post-transfer and 
flow cytometry was performed to measure the number and percentage of (A) total IFNJ+ NK cells 
(CD45+ TCRE- NK1.1+) and T cells (CD45+ TCRE+ NK1.1-), as well as the percentage of (B) IFNJ+ 
CD4+ and CD8 + T cells, (C) IFNJ+ CD44+ CD62L+ TCM and IFNJ+ CD44+ CD62L- TEff CD4+ and 
CD8+ T cells, (D) CXCR5+ PD-1+ IFNJ+ CD4+ T cells, (E) PD-1+ IFNJ+ CD4+ T cells, (F) OX40+ 
IFNJ+ CD4+ T cells, (G) CXCR5+ IFNJ+ CD8+ T cells, (H) PD-1+ IFNJ+ CD8+ T cells, and (I) 
OX40+ IFNJ+ CD8+ T cells. Data were analyzed using FlowJoTM Software; statistics determined by 
unpaired two-tailed t-test with GraphPad Prism Software; n=7 per group. 

 I measured antigen-specific T cell responses by IFNJ ELISpot assay and found that IL-

22-blocked mice had no defect in early HBV-specific T cell priming. Mice that received anti-IL-

22 treatment responded to each of the four dominant epitopes, including a response to peptide 

32, which was not seen in control animals (Fig. 5.13). Notably, I also detected an increased 

magnitude of the response to peptide 81 in these animals, inconsistent with the phenotype of 

ILC3-deficient mice. I did not find substantial differences in the baseline IFNJ response between 

treatment groups, which is consistent with the flow cytometry data that did not find an overall 

difference in the number of IFNJ+ cells in the liver at this early time point in treated mice 

compared to control mice. It remains to be seen whether these early responses are sufficiently 

durable to result in antigen clearance and antibody production in the absence of IL-22 signaling, 

which we will address in the Catch22 knockout mice. 
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Figure 5.13. IL-22 blockade supports enhanced early antigen-specific IFNJ responses during HBV 
immunity. Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-IL-22 (pink) or IgG2a control 
(black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve WT 
splenocytes on day 0. Hepatic leukocyte-enriched cell preparations were isolated from animals on day 8 
post adoptive transfer. 105 liver leukocytes were mixed in a 1:1 ratio with splenocytes from Rag1-/- mice 
as a source of APCs and stimulated overnight at 37°C together with individual peptides derived from the 
HBV envelope protein (HBsAg peptides) in ELISpot plates pre-coated with anti-IFNJ antibodies. “0” 
peptide denotes no peptide added. Antigen-specific IFNJ production was measured and displayed as the 
total number of IFNJ spots per 106 cells. ELISpot plates were counted and analyzed with a CTL 
Immunospot plate reader and software. The threshold defining a positive response, marked with a *, is 
≥2× the baseline (dashed line). N=pooled from =5 mice per group.  

 I also measured the number and frequency of the major hepatic myeloid populations in 

control and anti-IL-22-treated mice. I found no differences in the abundance of Kupffer cells, 

monocyte-derived macrophages, granulocytes, dendritic cells, or inflammatory or resident 

monocytes (Fig. 5.14 A-E). Furthermore, I also found no difference in the expression of MHCII 

or the costimulatory molecule OX40L on these myeloid populations (Fig. 5.14 F-G). These data 

suggest that IL-22 does not play a major role in regulating myeloid populations at this time point.  
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Figure 5.14. IL-22 blockade does not affect myeloid populations the liver during early HBV 
immunity. Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-IL-22 (pink) or IgG2a control 
(black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve WT 
splenocytes on day 0. Leukocyte-enriched cell preparations were isolated on day 8 post-transfer and flow 
cytometry was performed to measure the percentage of (A) Kupffer cells (CD45+ F4/80+ CD11bint SSChi 
Ly6c-), (B) monocyte-derived macrophages (MDMϕ; CD45+ F4/80+ CD11bhi Ly6c+), (C) granulocytes 
(CD45+ Gr1hi CD11bhi), (D) dendritic cells (DCs; Live CD11c+ MHCII+), further subdivided into 
classical dendritic cell subsets 1 (cDC1; CD11b-) and 2 (cDC2; CD11b+), and (E) monocytes subdivided 
into inflammatory monocytes (CD45+ CD11bhi Ly6chi CD11c- NK1.1- MHCIIlo/- SSClo) and resident 
monocytes (CD45+ CD11b+ Ly6clo/– CD11c+ NK1.1- MHCIIlo/- SSClo). (F) The median fluorescence 
intensity of MHCII on Kupffer cells, MDMϕ, DCs, and monocytes. (G) The percentage of OX40L+ 
Kupffer cells, MDMϕ, DCs, and monocytes relative to the total number of each myeloid cell subset. Data 
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were analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test with 
GraphPad Prism Software; n=7 per group. 

 Finally, I determined if IL-22 blockade had any effect on the composition of ILC and NK 

cell populations in the liver. Similar to the other results, I found no differences in the number or 

percentages of NK cells, ILC1, ILC2, or ILC3 (Fig. 5.15 A-E). I also found no change in the 

percentage of ILC3s that were NKp46+, CD4+, MHCII+, or Ki67+ on day 8 (Fig. 5.15 F-I). 
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Figure 5.15. IL-22 blockade does not affect NK cell or ILC populations in the liver during early 
HBV immunity. Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-IL-22 (pink) or IgG2a 
control (black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve 
WT splenocytes on day 0. Leukocyte-enriched cell preparations were isolated on day 8 post-transfer and 
flow cytometry was performed to measure the number and percentage of (A) CD49b+ mature and 
CD49b- immature NK cells (CD45+ TCRE- NK1.1+), (B) CD11b+ mature and CD11b- immature NK 
cells (CD45+ TCRE- NK1.1+), (C) ILC1 (CD45+ TCRE- CD90+ CD127+ NK1.1+ RORJt-), (D) ILC2 
(CD45+ TCRE- CD90+ CD127+ RORJt- IL-33R+), and (E) ILC3 (CD45+ TCRE- CD90+ CD127+ 
RORJt+ IL-33R-). The percentage of (F) NKp46+ and NKp46-ILC3, (G) CD4+ ILC3, (H) MHCII+ 
ILC3, and (I) Ki67+ ILC3 were also measured. Data were analyzed using FlowJoTM Software; statistics 
determined by unpaired two-tailed t-test with GraphPad Prism Software; n=7 per group. 

 When taken together, blockade of IL-22 signaling had minimal effects on hepatic 

immunity at this early time point, eight days post-adoptive transfer. Much of the reported 

literature that describes a role for ILC3s in regulating immunity to microbes points towards IL-

22 as a major mediator of this process. Thus, we are still very interested to understand whether 

complete ablation of IL-22 secretion and signaling by genetic depletion of the Il22 locus has any 

effects on HBV immunity that may have been muted by incomplete blockade via antibody 

treatment. Furthermore, we know that expression of the IL-22 receptor is restricted to non-

hematopoietic cells, and thus, any effects of IL-22 blockade on immune cells are due to indirect 

mechanisms, and perhaps may be temporally delayed relative to a cytokine that can directly act 

on hematopoietic cells, warranting investigation of hepatic immunity at later time points. 

 

5.6 – The role of GM-CSF in HBV immunity  

 The last functional mediator of ILC3s that I investigated was GM-CSF. I treated adult 

HBVtgRag1-/- mice with anti-GM-CSF-blocking antibodies every other day starting one day 

before adoptive transfer. Animals were sacrificed on day eight post-transfer and the numbers and 

phenotypes of lymphocytes and myeloid cells were assessed. I measured hepatic inflammation at 
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day five and seven post-transfer and found no major differences in hepatitis, though there was a 

trend towards lower ALT values in anti-GM-CSF-treated animals (Fig. 5.16). 

 

Figure 5.16. GM-CSF blockade may reduce early liver inflammation during HBV immunity. Adult 
(>8 wks) HBVtgRag1-/- animals were treated with anti-GM-CSF-blocking (blue dashed line) or IgG2a 
control antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve WT 
splenocytes on day 0. Liver disease was monitored by plasma alanine aminotransferase (ALT). Statistics 
determined by one-way ANOVA with Dunnett’s multiple comparison test with GraphPad Prism 
Software; n=7 per group. 

 We measured the number of total CD45+ immune cells, T cells, JG T cells and B cells in 

the liver at day eight. Again, there were no significant differences between treated and control 

animals, although there was a trend towards a decreased frequency of hepatic T cells in anti-GM-

CSF-treated mice (Fig. 5.17). 
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Figure 5.17. GM-CSF blockade does not dramatically affect T or B cell accumulation in the liver 
during early HBV immunity. Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-GM-CSF 
(blue) or IgG2a control (black) antibodies every two days starting at day -1, and adoptively transferred 
with HBV-naïve WT splenocytes on day 0. Leukocyte-enriched cell preparations were isolated on day 8 
post-transfer and flow cytometry was performed to measure the number of (A) total CD45+ cells and the 
number and percentage of (B) T cells (CD45+ TCRE+ NK1.1-), (C) JG T cells (CD45+ TCRE- TCRJG+ 
CD90+) and (D) B cells (CD45+ TCRE- NK1.1- CD19+). Data were analyzed using FlowJoTM Software; 
statistics determined by unpaired two-tailed t-test with GraphPad Prism Software; n=7 per group. 

 Within the T cell compartment, I found equivalent numbers of CD4+ T cells between 

GM-CSF-blocked and control animals that comprised 25-30 percent of total T cells (Fig. 5.18 

A). There was a trend towards a reduced number and frequency of CD8+ T cells, but this did not 

reach significance. Hepatic central memory and effector T cell differentiation of CD4+ T cells 

was not affected by GM-CSF blockade (Fig. 5.18 B). There was, however, a lower percentage of 

CD8+ TEff cells with an increase in the percentage of naïve CD8+ T cells in anti-GM-CSF-

treated animals (Fig. 5.18 C). 
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Figure 5.18. GM-CSF blockade CD8+ TEff cell accumulation in the liver during early HBV 
immunity. Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-GM-CSF (blue) or IgG2a 
control (black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve 
WT splenocytes on day 0. Leukocyte-enriched cell preparations were isolated on day 8 post-transfer and 
flow cytometry was performed to measure the number and percentage of  (A) CD4+ and CD8+ T cells 
and CD44- CD62L Tnaive, CD44+ CD62L+ TCM, and CD44+ CD62L- TEff/TEM  CD4+ (B) and CD8+ (C) 
T cells. Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test 
with GraphPad Prism Software; n=7 per group. 

 GM-CSF blockade had no effect on the differentiation of Tfh cells or the percentage of 

PD-1+ and OX40+ CD4+ T cells (Fig. 5.19 A-C). There was a trend towards a decreased 

frequency of CD4+ RORJt+ Th17 cells and a statistically significant decrease in CD8+ RORJt+ 

Tc17 cells in anti-GM-CSF-treated mice, suggesting that GM-CSF normally supports the 
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differentiation of RORJt+ cells (Fig 5.19 D, H). There was no difference in the percentage of 

CXCR5+ CD8+ T cells, or in the small population of OX40+ CD8+ T cells as a result of anti-

GM-CSF treatment (Fig 5.19 E, G). GM-CSF blockade caused an increased frequency of total 

PD-1+ CD8+ T cells (Fig. 5.19 F). Together these data implicate GM-CSF in supporting CD8+ 

T cell responses and RORJt+ differentiation of T cells during early HBV immunity. 
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Figure 5.19. GM-CSF blockade does not affect Tfh cell accumulation, but does impair 
differentiation of RORJ+ CD4+ and CD8+ T cells in the liver during early HBV immunity. Adult 
(>8 wks) HBVtgRag1-/- animals were treated with anti-GM-CSF (blue) or IgG2a control (black) 
antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve WT splenocytes 
on day 0. Leukocyte-enriched cell preparations were isolated on day 8 post-transfer and flow cytometry 
was performed to measure the number and percentage of (A) CXCR5+ PD-1+ CD4+ Tfh, the percentage 
of (B) PD-1+, (C) OX40+, and (D) RORJ+ CD4+ T cells, as well as the number and percentage of (E) 
CXCR5+ CD8+ T cells, and the percentage of (F) PD-1+, (G) OX40+, and (H) RORJ+ CD8+ T cells. 
Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-tailed t-test with 
GraphPad Prism Software; n=7 per group. 

 Some of the most notable effects of anti-GM-CSF blockade could be seen within IFNJ-

producing cells. Blockade of GM-CSF led to decreased production of IFNJ from T cell sources 

with an increase in the relative contribution of IFNJ-producing NK cells (Fig. 5.20 A). There 

were no differences in the number of CD4+ IFNJ+ T cells nor in the frequencies of IFNJ+ CD4+ 

central memory or effector T cells (Fig. 5.20 B-C). Anti-GM-CSF treatment did lead to a greater 

percentage of IFNJ-producing Tfh relative to other IFNJ+ CD4+ T cells, as well as a substantial 

increase in the percentage of OX40+ IFNJ+ CD4+ T cells, with no differences in PD-1 

expression on IFNJ+ CD4+ T cells (Fig. 5.20 D-F). These data suggest that GM-CSF normally 

plays a role in suppressing IFNJ production by Tfh cells and limits OX40 expression within 

IFNJ+ CD4+ T cells, which could be a result of decreased OX40/OX40L interactions during 

immune priming in the presence of GM-CSF. GM-CSF blockade also led to a significant 

reduction in the number of IFNJ-producing CD8+ T cells, which was mostly due to a loss of 

IFNJ+ TEff cells (Fig. 5.20 G-H). Anti-GM-CSF-treated mice had increased expression of PD-1 

in IFNJ+ CD8+ T cells relative to control animals, which may contribute to the decreased 

amount of IFNJ+ CD8+ T cells, as PD-1 is known to restrict effector CD8+ T cells even during 

acute phase immune responses (Fig. 5.20 K). 



 200 

 

Figure 5.20. GM-CSF blockade impairs IFNJ production by CD8+ T cells in the liver during early 
HBV immunity. Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-GM-CSF (blue) or IgG2a 
control (black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve 
WT splenocytes on day 0. Leukocyte-enriched cell preparations were isolated on day 8 post-transfer and 
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flow cytometry was performed to measure the number and percentage of (A) total IFNJ+ NK cells 
(CD45+ TCRE- NK1.1+) and T cells (CD45+ TCRE+ NK1.1-), (B) IFNJ+ CD4+ T cells, (C) IFNJ+ 
CD44+ CD62L+ TCM and IFNJ+ CD44+ CD62L- TEff CD4+ T cells, as well as the percentage of (D) 
CXCR5+ PD-1+ Tfh, (E) PD-1+, and (F) OX40+ cells as a percentage of total IFNJ+ CD4+ T cells. (G) 
IFNJ+ CD4+ T cells, (H) IFNJ+ CD44+ CD62L+ TCM and IFNJ+ CD44+ CD62L- TEff CD4+ T cells, as 
well as the percentage of (I) CXCR5+, (J) PD-1+, and (K) OX40+ IFNJ+ cells as a percentage of total 
IFNJ+ CD4+ T cells. Data were analyzed using FlowJoTM Software; statistics determined by unpaired 
two-tailed t-test with GraphPad Prism Software; n=7 per group. 
 

 I evaluated antigen-specific CD4+ T cell responses to the MHCII-restricted HBV surface 

antigen-derived epitope, HBs126, using tetramer staining. There was a trend towards an increased 

number of total HBs126+ CD4+ T cells as well as HBs126+ CD4+ effector T cells in GM-CSF-

blocked mice, but those differences were not present in HBs126+ central memory cells (Fig. 5.21 

A-D). Consistent with these data, there was a decreased percentage of CD127+ HBs126+ cells, 

which is a marker of long-lived cells, in anti-GM-CSF-treated animals compared to controls 

(Fig. 5.21 E). Furthermore, HBs126+ CD4+ T cells in GM-CSF-blocked mice had an increased 

expression of PD-1 and Ki67 (Fig. 5.21 F-G). Collectively, these data suggest that GM-CSF 

plays a role in promoting differentiation of long-lived antigen-specific cells and that in the 

absence of GM-CSF antigen-specific CD4+ T cells exhibit a phenotype associated with highly 

activated effector cells with increased proliferative capacity. 
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Figure 5.21. GM-CSF blockade may lead to increased HBs126 antigen-specific T cells with an altered 
phenotype in the liver during early HBV immunity. Adult (>8 wks) HBVtgRag1-/- animals were 
treated with anti-GM-CSF (blue) or IgG2a control (black) antibodies every two days starting at day -1, 
and adoptively transferred with HBV-naïve WT splenocytes on day 0. Hepatic leukocyte fractions were 
enriched from animals eight days after adoptive transfer and stained with I-A(b)-HBs126 
(RGLYFPAGGSSSG) tetramer, followed by antibody staining for additional surface proteins. (A) Total 
HBs126+ CD4+ T cells were measured and reported as numbers and percentage of total CD4+ T cells. (B) 
HBs126+ CD4+ T cells per million liver lymphocytes and the percentage relative to an irrelevant peptide 
(I-A(b)-human CLIP, PVSKMRMATPLLMQA) baseline frequency was determined. A true antigen-
specific population is defined as two-fold higher than baseline and is marked by a dotted line. Numbers 
per million hepatic lymphocytes and percentages above I-A(b)-hCLIP baseline of (C) CD44+ CD62L- 
TEff and (D) CD44+ CD62L+ TCM were measured. Frequencies of CD127+ (D), PD-1+ (E), and Ki67+ 
(F) HBs126+ CD4+ T cells were measured. Data were analyzed using FlowJoTM Software; statistics 
determined by unpaired two-tailed t-test with GraphPad Prism Software; * p<0.05; n=7 per group.  
 

 When looking at multiple HBV antigens by IFNJ ELISpot assay I observed that both 

control and anti-GM-CSF-treated animals mount a robust response to each of the four dominant 

HBV epitopes (Fig. 5.22). Thus, although GM-CSF blockade seemed to affect total IFNJ 

production by CD8+ T cells and led to an increased frequency of one antigen-specific CD4+ T 
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cell population, the absence of GM-CSF did not impair the ability of hepatic T cells to mount a 

diverse antigen-specific anti-HBV immune response. These data suggest that GM-CSF normally 

plays a role in supporting CD8+ T cells and their production of IFNJ and perhaps also 

contributes towards establishing long-lived antigen-specific CD4+ T cells, although the early T 

cell response was quite strong even in the absence of GM-CSF. It will be of particular interest to 

understand whether the phenotypic differences observed within antigen-specific CD4+ T cells 

and IFNJ+ CD8+ T cells have any lasting effects on the long-term response to HBV, including 

HBsAg clearance and HBs antibody seroconversion, in experiments now underway. 

 

Figure 5.22. GM-CSF blockade does not affect total early antigen-specific IFNJ responses during 
HBV immunity. Adult (>8 wks) HBVtgRag1-/- animals were treated with anti-GM-CSF (blue) or IgG2a 
control (black) antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve 
WT splenocytes on day 0. Hepatic leukocyte-enriched cell preparations were isolated from animals on 
day 8 post adoptive transfer. 105 liver leukocytes were mixed in a 1:1 ratio with splenocytes from Rag1-/- 
mice as a source of APCs and stimulated overnight at 37°C together with individual peptides derived 
from the HBV envelope protein (HBsAg peptides) in ELISpot plates pre-coated with anti-IFNJ 
antibodies. “0” peptide denotes no peptide added. Antigen-specific IFNJ production was measured and 
displayed as the total number of IFNJ spots per 106 cells. ELISpot plates were counted and analyzed with 
a CTL Immunospot plate reader and software. The threshold defining a positive response, marked with a 
*, is ≥2× the baseline (dashed line); n=5 mice per group.  
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monocytes, but there was an increase in the percentage of monocyte-derived macrophages and a 

trend towards increased cDC2 in anti-GM-CSF-treated mice suggesting GM-CSF production 

normally restricts the expansion of these two populations (Fig. 5.23 A-E). I also observed 

increased expression of MHCII on Kupffer cells and monocyte-derived macrophages in GM-

CSF-treated mice, with no differences in MHCII expression on DCs or monocytes (Fig. 5.23 F). 

Anti-GM-CSF treatment led to increased OX40L expression on a number of myeloid cells, 

including monocyte-derived macrophages, cDC2, and inflammatory monocytes (Fig. 5.23 G). 

These data support the observation of increased OX40+ IFNJ+ T cells that have the ability to 

interact with and become stimulated by OX40L+ APCs. 
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Figure 5.23. GM-CSF blockade leads to increased monocyte-derived macrophages and increased 
MHCII and OX40L on select myeloid populations in the liver during early HBV immunity. Adult 
(>8 wks) HBVtgRag1-/- animals were treated with anti-GM-CSF (blue) or IgG2a control (black) 
antibodies every two days starting at day -1, and adoptively transferred with HBV-naïve WT splenocytes 
on day 0. Leukocyte-enriched cell preparations were isolated on day 8 post-transfer and flow cytometry 
was performed to measure the percentage of (A) Kupffer cells (CD45+ F4/80+ CD11bint side-scatter 
(SSC)hi Ly6c-), (B) monocyte-derived macrophages (MDMϕ; CD45+ F4/80+ CD11bhi Ly6c+), (C) 
granulocytes (CD45+ Gr1hi CD11bhi), (D) dendritic cells (DCs; Live CD11c+ MHCII+), further 
subdivided into classical dendritic cell subsets 1 (cDC1; CD11b-) and 2 (cDC2; CD11b+), and (E) 
monocytes subdivided into inflammatory monocytes (CD45+ CD11bhi Ly6chi CD11c- NK1.1- MHCIIlo/- 
SSClo) and resident monocytes (CD45+ CD11b+ Ly6clo/– CD11c+ NK1.1- MHCIIlo/- SSClo). (F) The 
median fluorescence intensity of MHCII on Kupffer cells, MDMϕ, DCs, and monocytes. (G) The 
percentage of OX40L+ Kupffer cells, MDMϕ, DCs, and monocytes relative to the total number of each 
myeloid cell subset. Data were analyzed using FlowJoTM Software; statistics determined by unpaired two-
tailed t-test with GraphPad Prism Software; n=7 per group. 
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 Lastly, I assessed the effect of GM-CSF blockade on the hepatic NK cell and ILC 

compartment. Mice that received anti-GM-CSF antibody treatment exhibited a decrease in the 

abundance of hepatic immature NK cells, as marked by a lack of CD49b or CD11b expression 

(Fig. 5.24 A-B). Blockade of GM-CSF, however, had no effect on the number or percentage of 

hepatic ILC1, ILC2, or ILC3 (Fig. 5.24 C-E). There were also no differences in the frequency of 

NKp46+ versus NKp46- ILC3, nor in the percentage of CD4+, MHCII+, or Ki67+ ILC3s (Fig. 

5.24 F-H). These data suggest that GM-CSF acts down stream of most ILC subsets and does not 

positively or negatively regulate expansion of these cells in the liver.  
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Figure 5.24. GM-CSF blockade impairs accumulation of immature NK cells, but not other ILC 
populations in the liver during early HBV immunity. Adult (>8 wks) HBVtgRag1-/- animals were 
treated with anti-GM-CSF (blue) or IgG2a control (black) antibodies every two days starting at day -1, 
and adoptively transferred with HBV-naïve WT splenocytes on day 0. Leukocyte-enriched cell 
preparations were isolated on day 8 post-transfer and flow cytometry was performed to measure the 
number and percentage of (A) CD49b+ mature and CD49b- immature NK cells (CD45+ TCRE- NK1.1+), 
(B) CD11b+ mature and CD11b- immature NK cells (CD45+ TCRE- NK1.1+), (C) ILC1 (CD45+ TCRE- 
CD90+ CD127+ NK1.1+ RORJt-), (D) ILC2 (CD45+ TCRE- CD90+ CD127+ RORJt- IL-33R+), and (E) 
ILC3 (CD45+ TCRE- CD90+ CD127+ RORJt+ IL-33R-). The percentage of (F) NKp46+ and NKp46- 
ILC3, (G) CD4+ ILC3, (H) MHCII+ ILC3, and (I) Ki67+ ILC3 were also measured. Data were analyzed 
using FlowJoTM Software; statistics determined by unpaired two-tailed t-test with GraphPad Prism 
Software; n=7 per group. 
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Discussion 

 The experiments discussed in this chapter began to elucidate the mechanisms of ILC3 

functions that, when disrupted, contribute to an impaired HBV immune response. We learned 

from Ccr6-/-HBVtgRag1-/- mice that the loss of CCR6 expression did not impair HBV immunity. 

Animals that lacked CCR6 within the recipient innate immune environment were able to 

efficiently clear HBsAg and mount robust HBV-specific IFNJ T cell responses. Although CCR6 

expression is restricted to LTi and LTi-like ILC3s, it remains to be determined whether this 

population of ILC3s may still contribute to effective HBV immunity in a manner that is not 

dependent on the actions of CCR6 signaling as Ccr6-/- mice do not lack LTi and LTi-like cells, 

but rather lack the expression of this chemokine receptor within these cells. 

 We found that the deletion of LIGHT from innate immune cells in recipient HBVtg mice 

led to improved HBV immune outcomes. Tnfsf14-/- mice experienced an early increase in hepatic 

inflammation followed by rapid clearance of HBsAg and anti-HBs seroconversion compared to 

LIGHT-sufficient control animals. Furthermore, the T cell response that was primed in the 

absence of LIGHT was robust and diverse. These data indicate that the loss of LIGHT expression 

by ILC3s when these cells are depleted either in Rorc(Jt)-/- mice or by anti-Thy1.2 antibody 

depletion, is not a driver of the ineffective immune response generated in the absence of ILC3s. 

The finding that LIGHT deficiency leads to improved HBV immunity, however, highlights an 

important pathway that regulates effective HBV immune responses and underscores the need to 

better understand which of the LIGHT receptors may be mediating its suppressive functions. 

 We further tested the role of the LIGHT/lymphotoxin pathway by targeting the 

commonly shared receptor of these ligands – LTER. We used a LTER-Fc fusion protein that 

binds and sequesters both LIGHT and LT, such that the ligands cannot bind endogenous LTER 
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present on a variety of immune cells. These experiments showed that blockade of LTER 

signaling led to decreased hepatitis and a possible delay in HBsAg clearance. Disruption of this 

signaling pathway resulted in altered immune cell localization in the liver, such that there was 

increased periportal inflammation reminiscent of our observations in ILC3-deficient mice. 

Furthermore, there was a slight, but significant, skewing towards increased CD4+ T cells after 

LTER blockade, also in line with increased CD4+ T cell accumulation in ILC3-deficient mice. 

Finally, we observed an increased basal IFNJ response with an impaired HBV-specific T cell 

response, although notably these mice were not impaired in their response to the MHCII-

restricted epitope within peptide 81 that is impaired in ILC3-deficient mice. These data support 

the hypothesis that diminished LTER signaling in ILC3-deficient mice may contribute to 

impaired HBV-specific T cell responses, accumulation of CD4+ T cells, disrupted immune cell 

organization within the liver, and possibly, impaired HBsAg clearance. LTER signaling is likely 

not essential, however, for the early HBV-specific immune response to peptide 81. Future 

experiments in these LTER-Fc treated animals will focus on determining whether or not HBsAg 

clearance is truly impaired, and additionally whether there is a defect in anti-HBs 

seroconversion. Furthermore, we would also like to evaluate the number and function of HBV-

specific T cells using tetramer staining, with a particular focus on identifying phenotypes of 

antigen-specific T cells at later time points, where the defect is most prominent in ILC3-deficient 

mice. Considering the large body of evidence showing a role for LTER signaling in regulating 

lymphoid organization, we are most interested in characterizing the quantitative and qualitative 

differences in hepatic immune cell distribution in control versus LTER-Fc treated mice through 

the Ilastik analysis pipeline discussed in Chapter 2. 
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 We used cytokine blocking experiments to determine if the most common ILC3-derived 

cytokines might play a role in HBV immunity. Our initial experiments, focused on blockade of 

IL-17, showed that the loss of IL-17RA or IL-17F signaling did not cause any obvious defects in 

HBV disease or immune responses at an early, day 8, time point. There was some suggestion that 

IL-17F blockade may have had different effects on immunity as compared to a blockade of IL-

17RA, the latter of which prevents IL-17A- and IL-17F-mediated signaling. This observation is 

consistent with other published reports in the liver that showed while IL-17F played an important 

role in recruitment and activation of CD8+ CTLs in a model of viral infection, IL-17A did not – 

it antagonized the effects of IL-17F (83). This study made use of genetically deficient IL-17F 

and IL-17A mice instead of antibody blockade. Thus, it is possible that our antibody-based 

approach was not sufficient to completely block the effects of IL-17 signaling and therefore 

future studies are needed before ruling out a role for either IL-17A or IL-17F in mediating the 

protective effects of ILC3s during HBV immunity. Furthermore, some studies have shown 

partially redundant roles between IL-17 and other ILC3-derived cytokines including IL-22 and 

GM-CSF; thus, combinatorial treatments that block two or three of these cytokines at the same 

time may reveal additional unappreciated phenotypes that more closely mimic ILC3 depletion. 

 We examined the effects of IL-22 blockade on HBV immunity and, similar to IL-17, 

found no major defects in the early immune response. Reports in the literature point towards IL-

22 in mediating the resolution of inflammation and hepatitis, and as a result we were surprised to 

find no differences in hepatitis in anti-IL-22-treated animals. One possible explanation for this 

finding is that IL-22 may play a more important role during the resolution of the HBV immune 

response. Alternatively, like the IL-17 antibody blockade, it is possible that the antibody 

treatment against IL-22 did not completely block IL-22 signaling. For these reasons, we have 
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already begun to cross IL-22-deficient “Catch22” mice to our HBVtg mice in order to study the 

long-term effects of IL-22 loss on HBV immune responses. We are particularly interested in 

understanding the role that IL-22 plays in supporting disease resolution, HBsAg clearance, and 

anti-HBs seroconversion. 

 Finally, we used antibody-mediated blockade of GM-CSF to determine if this ILC3-

derived cytokine may also contribute towards an effective HBV immune response. The results 

from these experiments suggested that GM-CSF is most important in supporting CD8+ T cell 

responses. Mice that received anti-GM-CSF treatments tended to have fewer CD8+ effector T 

cells, including a reduced number of IFNJ+ CD8+ T cells and more PD-1 expression on these 

cells. Thus, the loss of GM-CSF production by ILC3s in ILC3-deficient mice, may contribute to 

the impaired CD8+ T cell responses we observed in these mice. Similar to the ILC3-deficient 

mice, we also found that GM-CSF blockade led to increased OX40L expression within myeloid 

cells and a concomitant increase in the expansion of OX40+ IFNJ+ T cells. These data suggest 

that in addition to a possible increase in OX40L driven by a disruption in microbial communities 

of ILC3-deficient mice, that a reduction of GM-CSF in those animals may also have facilitated 

increased OX40L expression and expansion of OX40+ T cells. Finally, although we did find a 

robust early HBV-specific IFNJ response by ELISpot assay, and an equivalent, if not enhanced, 

HBs126+ CD4+ T cell response determined by tetramer staining, a decreased expression of 

CD127 within the antigen-specific CD4+ T cells suggested that there may be an impairment in 

the generation of long-lived memory cells. Thus, our future experiments using anti-GM-CSF 

blockade will focus on characterizing HBV-specific T cells at late time points, as well as 

monitoring HBsAg clearance and anti-HBs seroconversion to determine if a loss of GM-CSF 

also impairs a durable antigen-specific response, similar to that seen in ILC3-deficient mice. 
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Chapter 6: Working Model 

 

The data discussed in this thesis have provided further insights into age-dependent 

mechanisms of HBV immunity, including revealing a role for hepatic ILC3s in shaping an 

effective HBV immune response. As mice age from pre-weaning to early adulthood (8-12 

weeks-old), the population of ILC3s increases in the liver, similar to these cells in other tissues – 

most notably the small and large intestine. This time period coincides with a period of substantial 

gut microbial colonization by commensal organisms. Signals from these microbiota have been 

shown to contribute to the age-dependent increase of intestinal ILC3s. We hypothesize that this 

same mechanism also contributes to the increase of hepatic ILC3s because most of the blood in 

the liver comes through the portal vein, which flows directly from the small intestine and 

provides a rich source of antigens and pathogen-associated molecular patterns (PAMPs). 

Experiments comparing the number and phenotype of ILC3s within the livers of young and adult 

gnotobiotic mice to those of conventional specific pathogen-free (SPF) mice will validate this 

hypothesis. Nevertheless, due to this high influx of foreign-derived substrates, the immune 

system within the liver must carefully balance tolerogenic immune responses necessary to 

prevent pathogenic inflammation – especially during the early microbial colonization period – 

with the need to protect the liver from hepatotropic pathogens such as HBV. In early life, these 

hepatic immune responses are more tolerogenic; while, later in life, the liver acquires the ability 

to mount a protective immune response. 

We have begun to identify the molecular and cellular mechanisms that underpin this 

transition. Early studies in our laboratory identified myeloid cell maturation, including increased 

expression of antigen presentation and co-stimulatory molecules on these cells, as a critical part 
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of this process. We went on to show that increased expression of OX40L by various hepatic 

antigen presenting cells (APCs), as well as a population of CD11b- CD11c- NK1.1- cells in 

Rag1-/- mice we now presume to include ILC3s, is another critical step in this process (15). 

Increased OX40L in adult animals supports enhanced differentiation of Tfh cells and increased 

production of IL-21 by these cells. Blockade of the OX40/OX40L interaction in adult mice led to 

impaired HBV antigen clearance and seroconversion, similar to the phenotype of young mice. 

We further characterized a defect in CD4+ T cell responses in young mice that revealed 

impaired early T effector and Tfh cell differentiation along with impaired generation of antigen-

specific cells. These T cell defects developed in young mice despite the fact that the T cells 

themselves originated from an adult animal, highlighting the importance of the immune priming 

environment in dictating immunity. 

In adult animals, the response to HBV antigens results in the aggregation of innate and 

adaptive immune cells within the liver into distinct clusters of cells, which are localized both 

around periportal regions and throughout the liver parenchyma. HBV-specific T cells are first 

detected in the liver – as early as three days post “infection” – and only later, 12 days post-

“infection,” can these HBV-specific T cells be found within the hepatic draining lymph nodes 

and the spleen (14). These data suggest that the initial immune response to HBV is primed in the 

liver, not the secondary lymphoid tissues, highlighting the potential role for these clusters in 

serving as a site of coordinated immune priming. These clusters largely resolve as HBV antigens 

are cleared from circulation in adult mice, with the exception of few remaining aggregates, 

which likely serve as a hub for continued activation of long-lived HBV-specific T and B cells 

that are required to maintain suppression of viral gene expression and detectable secretion of 
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HBsAg subviral particles. Young mice are impaired in their ability to form these hepatic immune 

cell aggregates and in their priming of T and B cell responses.  

We found that ILC3s associate with these immune cell clusters in both adult and young 

mice, particularly at later time points, suggesting these cells may support the formation and/or 

maintenance of these structures. We also found that the organization of immune cell distribution 

was dramatically disrupted in the absence of ILC3s. Clustering was not prevented when ILC3s 

were lost, but rather the clusters that did form were more associated with periportal regions of 

tissue and formed more isolated structures as compared to the clusters that formed in the 

presence of ILC3s. Evidence from studies in ILC3-deficient mice that did not express the HBV 

transgene showed that a large portion of the periportal inflammation that occurs in these mice 

was not dependent on HBV antigens. Thus, this inflammation was likely in part directed at 

microbial-derived substrates, which may have caused additional bystander activation of non-

HBV-specific T cells, particularly CD4+ T cells that were found in great abundance in ILC3-

deficient mice. ILC3s are important sources of both lymphotoxins and the related protein, 

LIGHT, which signal through the receptor LTER and have known roles in coordinating the 

organization of lymphoid structures. We found that a blockade of LTER signaling in adult mice 

partially recapitulated the phenotype of ILC3 loss, particularly the disruption of immune cell 

organization and enhanced periportal inflammation. Thus, we hypothesize that the expression of 

LTD/E and/or LIGHT on hepatic ILC3s contributes to their ability to regulate immune 

organization and effective immune priming.  

 Despite the influx of many CD4+ helper T cells, a loss of ILC3s led to impaired antigen-

specific CD4+ T cell responses, especially against the most dominant MHCII-restricted HBsAg 

epitope, indicating that the quality of the CD4+ T cell response was impaired in the absence of 
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ILC3s. We also found evidence of decreased memory CD4+ T cell populations at later time 

points in ILC3-deficient mice, suggesting the long-term survival of antigen-specific cells is 

impaired when ILC3s are lost. Given the known role of MHCII+ ILC3s in supporting CD4+ T 

cell priming and continued activation beyond the priming window, we hypothesize that impaired 

antigen presentation by ILC3s either when they are lost, or due to altered expression of MHCII 

and co-stimulatory molecules including OX40L and CD30L in young mice – both which have 

been reported by many groups to increase with age on ILC3s – contributes to impaired HBV-

specific CD4+ T cell responses. We can validate these hypotheses by testing the ability of 

hepatic ILC3s from adult versus young mice to effectively prime and/or promote the survival of 

antigen-specific T cells by sorting and ex vivo culturing of ILC3s and tetramer positive CD4+ T 

cells in the presence of their cognate antigen. Targeted blockade of OX40L and/or CD30L in 

these assays will pinpoint the role of each or both of these molecules in the abilities of adult and 

young hepatic ILC3s to support CD4+ T cell responses. 

Furthermore, we also found that ILC3 deficiency resulted in a delayed, but significant, 

defect in the Tfh cell response that correlated with an inability of mice to seroconvert and 

produce anti-HBs antibodies. Altogether, these immune defects contributed to the impaired 

ability of ILC3-deficient mice to clear circulating HBsAg. Therefore, hepatic ILC3s play a 

critical role in supporting the priming, and perhaps even more so, the sustained activation of a 

pool of effective HBV-specific CD4+ T cells. 

 In addition, ILC3-deficient mice were impaired in their ability to generate a sufficient 

CD8+ T cell response, with a dramatic decrease in the number of total hepatic CD8+ T cells. 

This decrease in CD8+ T cells was not just in numbers, but also in the functional capacity of 

these cells to produce IFNJ. CD8+ CTLs are known to play an absolutely essential role in the 
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control of HBV, and thus a reduction in IFNJ-producing CD8+ T cells during early HBV 

immunity of ILC3-deficient mice likely contributes to their impaired ability to clear HBV 

antigens. We also identified increased expression of PD-1 on the IFNJ+ CD8+ T cells present in 

ILC3-deficient mice, indicating these cells may be functionally impaired, as has been reported in 

studies of acute LCMV infection (75). We found decreased expression of CXCR3 in hepatic 

CD8+ T cells of ILC3-deficient mice, suggesting that chemokine-mediated recruitment and/or 

retention of CD8+ T cells in the liver may contribute to the defect in this population. 

 ILC3s are known to secrete GM-CSF and the actions of this cytokine have important 

effects on other immune cells. We found that blockade of GM-CSF with antibody treatments led 

to decreased accumulation of hepatic CD8+ T cells, decreased IFNJ production by these cells, 

and increased surface expression of PD-1. Thus, we hypothesize that the decrease in GM-CSF in 

the absence of ILC3s may in part explain impaired CD8+ effector T cell responses. Furthermore, 

we also found evidence of decreased CD127 expression on antigen-specific CD4+ T cells, 

suggesting a potential impairment in the generation of long-lived memory cells in the absence of 

GM-CSF. Thus, we also hypothesize that GM-CSF from ILC3s may contribute to supporting 

memory T cell generation, which will be further validated by evaluating the pool of antigen-

specific memory T cells at a later time point. A longer-term GM-CSF blocking experiment will 

also reveal whether GM-CSF secretion plays an essential role in supporting an effective immune 

response that leads to HBsAg clearance and seroconversion.  

 In sum, we propose a model by which a decrease in the number of ILC3s in young mice 

that express antigen presentation molecules including MHCII and OX40L results in impaired 

priming and differentiation of long-lived HBV-specific CD4+ T cells, including Tfh cells. 

Furthermore, the decreased abundance of LTD/E- and/or LIGHT-expressing ILC3s in young 
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mice causes impaired immune cell organization resulting in fewer intraparenchymal clusters with 

decreased cellular diversity. In addition, a defect in early GM-CSF secretion by ILC3s in young 

mice may contribute to impaired effector CD8+ T cell responses and reduced IFNJ production. 

Together, these defects result in impaired HBV antigen clearance and seroconversion in young 

mice that may be overcome in adult mice in part through a more abundant and functionally 

mature population of hepatic ILC3s. 
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Chapter 7 – Materials and Methods 

 
Mice and experimental system  

All mice were bred and housed in specific pathogen–free housing under an IRB approved 

protocol (IACUC AN170936) and in accordance with the guidelines of the Laboratory Animal 

Resource Center of the University of California, San Francisco. WT C57BL/6 mice were 

purchased from Jackson Laboratory and subsequently bred at UCSF. HBVEnvRag1-/- and 

HBVRplRag1-/- mice were previously described (29). Briefly, HBVEnvRag1-/- mice were 

generated using HBV-Env+ mice [lineage 107-5D; gift from F. Chisari, Scripps Research 

Institute (6)] backcrossed to Rag1-/- C57BL/6 mice for 15 generations. HBVEnvRag1-/- mice 

contain the entire envelope (subtype ayw) protein-coding region under the constitutive 

transcriptional control of the mouse albumin promoter. HBVRplRag1-/- mice were generated 

using HBV replication mice [lineage 1.3.46; gift from F. Chisari (1)] crossed to Rag1-/- C57BL/6 

mice for 15 generations. HBVRplRag1-/- mice contain a terminally redundant HBV DNA 

construct and produce infectious virus in their hepatocytes and in the proximal convoluted 

tubules of their kidneys. Young (3 to 3.5 weeks old, before weaning) or adult (>8 weeks old) 

HBVtgRag1-/- mice were given 0.8-1.0 108 syngeneic splenocytes pooled from adult (>8 weeks 

old) WT or mutant mouse strains in 0.5 ml of phosphate-buffered saline via tail vein injection. 

Mice were followed for plasma ALT using an ALT-L3K kit (Sekisui Diagnostics) on a Cobas 

Mira Plus analyzer (Roche Diagnostics). Rorc(Jt)GFP/GFP knockout and Rorc(Jt)GFP/+ reporter 

mice (B6.129P2(Cg)-Rorctm2Litt/J; JAX stock #007572) were obtained from Jackson Laboratories 

(23). Ox40-/- mice were generated at UCSF (92), but provided to us by M. Croft (La Jolla 

Institute for Allergy and Immunology).  Ccr6-/- mice (B6.129P2-ccr6tm1Dgen/J) were a gift from S. 

Nishimura, UCSF, which were originally obtained from Jackson Laboratory (JAX stock 
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#005793). LIGHT-/- (Tnfsf14-/-) mice were generated by the UC San Diego Health Sciences 

transgenic mouse core facility and provided as a gift by M. Kronenberg (La Jolla Institute for 

Allergy and Immunology) (93). 

 

HBV protein assays 

Plasma was collected and assayed for the presence of HBsAg by using the ETI-MAK-2 

Plus ELISA kit (DiaSorin). HBsAg results are reported as positive or negative, determined by 

parameters programmed by DiaSorin in an ELx800 plate reader (BioTek). Total HBsAb was 

quantified by using the ETI-AB-AUK PLUS ELISA kit and ABAU standard set (DiaSorin). 

Plasma from transferred HBVRplRag1-/- mice was assayed for the presence of total HBcAb 

using the ETI-AB-COREK PLUS ELISA kit (DiaSorin).  

 

Cell preparations 

Hepatic leukocytes were isolated from the liver after perfusion and digestion. Mice were 

perfused via the inferior vena cava for 6 minutes using 30 mL of digestion media [HBSS with 

collagenase type IV (92.53 units/mL; Worthington Biochemical Corporation), and DNase I (0.02 

mg/ml; Roche Diagnostics)] per mouse. Livers were chopped and further digested with liberase 

and DNase I (Roche Diagnostics) [1 Wünsch Units (WU) and 0.8 mg, respectively, in 10 ml of 

HBSS] for 30 min at 37°C in an orbital shaker. Livers were forced through a 70-mm filter, and 

debris was removed by centrifugation (30g for 3 min). Supernatants were collected and 

centrifuged for 10 min at 650g. Cells were resuspended in RPMI 1640 with 5% FBS and were 

underlayed with a 40%:60% Percoll® gradient (GE Healthcare). Leukocytes were isolated from 

the Percoll® interface and washed with RPMI 1640 containing 5% FBS or flow cytometry 



 220 

staining buffer (PBS with 0.5% BSA and 2 mM EDTA). Total live cells isolated from each 

sample were counted on a Luna-FLTM dual fluorescence cell counter (Logos Biosystems) using 

acridine orange/propidium iodide (Logos Biosystems) according to manufacturer instructions. 

 

Antibodies and Flow Cytometry 

Hepatic leukocytes were prepared as above. Cells were stained according to standard 

protocols in staining buffer (PBS with 0.5% BSA and 2 mM EDTA) with combinations of anti-

mouse antibodies listed below.  

Mouse specific antibodies purchased from BD BiosciencesTM included: CD11b-

PerCP/Cyanine(Cy)5.5 (clone M1/70); CD19-APC/Cy7 (clone 1D3); CD4-APC/Cy7 (clone 

GK1.5); CD8-Pacific Blue (clone 53-6.7), -Pacific Orange (clone 5H10); CD43-Alexa Fluor 

(AF)700 (clone S7); CD86-PE (clone GL1); CXCR5/CD185-biotin (clone 2G8) followed by 

streptavidin-FITC, streptavidin-QDot605, or streptavidin-APC detection; Fas/CD95-PE/Cy7 

(clone Jo2); IgG2b (clone R12-3); IgG3 (clone R40-82); Ly6c-AF700 (clone AL-21); Ly6g-

PerCP/Cy5.5 (clone 1A8); TCRE-Pacific Blue (H57-597).  

Mouse-specific antibodies purchased from InvitrogenTM (formerly eBioscienceTM) 

included: CD11c-APC (clone N418); CD19-AF700 (clone ebio1D3); CD4-FITC (GK1.5); 

CD44-eFluor450 (clone IM7); F4/80-PE/Cy7 (clone BM8); ICOS-PE (clone 7E.17G9) MHCII 

(I-A/I-E)-eFluor450 (clone M5/114.15.2); NK1.1-PE/Cy7 (clone PK136); OX40-APC (clone 

OX86); OX40L-PE (clone RM134L); RORJt-PE (clone B2D), -APC (clone B2D); TCRJG-

PE/Cy7 (clone GL3).  

Mouse-specific antibodies purchased from BioLegend® included: B220/CD45R-Brilliant 

Violet (BV)650 (clone RA3-6B2), -BV711 (clone RA3-6B2), -APC/Cy7 (clone RA3-6B2); 
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CD11c-APC (N418); CD117/cKit-BV605 (clone 2B8); CD127/IL-7RD-PE/Cy7 (clone A7R34), 

-BV421 (clone A7R34), -APC (clone A7R34); CD138-PerCP/Cy5.5 (clone 281-2); CD19-PE 

(clone 6D5), -PerCP/Cy5.5 (clone ID3), -BV570 (clone 6D5); CD3-PE-Cy7 (clone 17A2); CD4-

BV605 (clone RM4-5), -BV650 (clone RM4-5), -AF700 (clone RM4-5); CD44-APC/Fire 750 

(clone IM7); CD45-PerCP/Cy5.5 (clone 30-F11), -AF700 (clone 30-F11), -APC/Fire 750 (clone 

30-F11); CD49b-PE (clone DX5), -PE/Cy7 (clone DX5), -APC/Cy7 (clone DX5); CD62L-

PE/Cy7 (clone MEL-14), -BV605 (clone MEL-14); CD69-PE (clone H1.2F3), -PE/Cy7 (clone 

H1.2F3); CD8-BV570 (clone 53-6.7); CD80-PE (clone 16-10A1); CD90.1/Thy1.1-BV605 (clone 

OX-7), -AF700 (clone OX-7); CD90.2/Thy1.2-BV570 (clone 30/H12), -BV605 (clone 30/H12); 

CXCR3/CD183-FITC (clone CXCR3-173); CXCR4/CD184-BV605 (clone L276F12); 

CXCR5/CD185-BV605 (clone L138D7); F4/80-PE/Cy7 (clone BM8); GL7-FITC (clone GL7); 

GM-CSF-PE (clone MP1-2259); Gr1-BV650 (clone RB6-8C5), -APC/Cy7 (clone RB6-8C5); 

IgD-APC (clone 11-26c.2a); IgM-PE/Cy7 (clone RMM-1); IL-22-PE (clone Poly5164); Ki67-

BV421 (clone 16A8); KLRG1-PE (clone 2F1/KLRG1); MHCII (I-A/I-E)-BV711 (clone 

M5/114.15.2); NK1.1-FITC (clone PK136), -PerCP/Cy5.5 (clone PK136), -BV510 (clone 

PK136), -BV605 (clone PK136), -BV650 (clone PK136), APC/Fire 750 (clone PK136); NKp46-

PerCP/Cy5.5 (clone 29A1.4); PD-1/CD279-FITC (clone 29F.1A12), -BV711 (clone 29F.1A12); 

Tbet-PE (clone 4B10);  TCRE-PerCP/Cy5.5 (clone H57-597), -BV421 (clone H57-597), -BV650 

(clone H57-597), -BV711 (clone H57-597), -APC/Fire 750 (clone H57-597).  

The mouse specific anti-IL-33R/ST2-biotin (clone DJ8) antibody was purchased from 

MD Bioscienes and secondary detection of the biotinylated antibody was performed with 

streptavidin-FITC or streptavidin-APC. The mouse specific anti-IgG1-FITC antibody (clone 

SB77e) was purchased from SouthernBiotech. 
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In most experiments, before surface antibody staining, cells were stained with Zombie 

Aqua or NIR Fixable Viability Dye Kits for live cell discrimination (BioLegend®). In all 

experiments, Fc receptors were blocked with anti-mouse CD16/CD32 antibodies from BD 

BiosciencesTM before surface and intracellular staining.  

Cytokine secretion assays were used according to instruction to detect mouse-specific 

IFNJ and IL-17a (Miltenyi Biotech). Briefly, 106 cells were incubated with a “catch” antibody 

that attached to the cell surface for 5 minutes at 4qC. Next cells are incubated in RPMI 1640 

media with 1% mouse serum for 45 minutes at 37qC with gentle shaking (125 rpm) to allow for 

secretion of the cytokine and sequestration at the cell surface by the “catch” antibody. 

Afterwards, cells are processed and stained for any additional cell surface antibodies along with 

a mouse-specific IFNJ or IL-17a secondary detection antibody, which is either directly 

conjugated to PE or APC, or conjugated to biotin (for IL-17a) and followed by a streptavidin-PE-

based detection step.  

Intracellular antibody staining for cytokines IL-22 and GM-CSF was performed by 

resuspending 106 cells in RPMI with 10% FBS in the presence of 1 Pg/mL Brefeldin A and 

incubated for 4 hours at 37qC and 5% CO2. After staining cells with surface antibodies, cells 

were fixed and permeabilized using the eBioscienceTM FoxP3/Transcription Factor Staining 

Buffer set according to manufacturer instructions. Cells were stained with intracellular anti-GM-

CSF or anti-IL-22 along with anti-RORJt overnight in permeabilization buffer. Cells were 

washed twice the following morning with permeabilization/wash buffer and finally washed and 

resuspended in staining buffer (PBS with 0.5% BSA and 2 mM EDTA) before running on the 

flow cytometer. Cells that were stained for intracellular/nuclear Tbet or RORJt without cytokines 
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were treated the same as described above with the exception of the 4-hour incubation with 

Brefeldin A.  

Following staining and washing back into staining buffer, cells were analyzed using an 

LSR II flow cytometer (BD Biosciences) or sorted on an Aria III (BD Biosciences) with 

FACSDivaTM software (BD Biosciences). Data were analyzed using FlowJo® Software 

(TreeStar). Absolute numbers of cells were calculated using by comparing the number of live 

cells determined immediately after cell isolation, and prior to cell staining, using Luna FL cell 

counter-based cell counts to the number of live, single cell events, as determined by standard 

forward scatter (FSC)-height (H) by FSC-area (A) single cell discrimination and negative 

staining with Zombie Fixable Viability dye kits (BioLegend®). The ratio of total live cells from 

Luna counts to the number of live single cell events was then multiplied by the number of events 

for each individual cell population identified. Percentages of each cell population are reported as 

a percentage of the population described on the y-axis of each graph, usually total live cells, 

CD45+ cells, or in some cases T cells or other specified sub-populations. 

 

Enzyme-Linked ImmunoSpot (ELISpot) 

IFNJ ELISpot assays (BD Biosciences) were performed on unstimulated liver leukocytes. 

Liver cells were prepared as described above. Equivalent numbers of hepatic leukocytes and 

splenocytes from Rag1-/- mice, as a source of optimal antigen presentation, were plated in 

ELISpot membrane plates pre-coated with immobilized anti-mouse IFNJ capture antibodies. 

Cells were incubated overnight at 37qC at 5% CO2 in the presence of HBV-derived peptides. 

Peptide pool ELISpot assays were performed using fifteen-mer peptides that were generated 

across the whole envelope protein with 11 overlapping amino acids between peptides (Sigma-
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Aldrich); 12 to 14 sequential peptides were combined in seven pools. Subsequent assays were 

performed with individual peptides identified to represent the dominant and subdominant 

epitopes and varying in length from 8-15 amino acids. Cells were incubated with peptides at a 

final concentration of 5 mg/ml for each peptide in RPMI 1640 media with 10% FBS. ELISpot 

assays were performed and developed following the manufacturer’s instructions (BD 

Biosciences). Developed and dried plates were analyzed and individual IFNJ spots counted using 

an ImmunoSpot® plate reader and software (Cellular Technology Limited). 

 

OX40L blocking antibody and OX40 agonist  

For specified experiments, HBVEnvRag1-/- adult mice received intraperitoneal (i.p.) 

injection of 100 Pg of OX40L blocking antibody (RM134L, BioXCell) or control 

immunoglobulin G (IgG) (purified rat IgG2b isotype control, UCSF Monoclonal Antibody Core 

Facility) on days 0, 2, 4, and 6 after adoptive transfer of adult WT splenocytes. Similarly, 3-

week-old HBVEnvRag1-/- mice received i.p. injection of 150 Pg of OX40 agonist antibody 

(OX86, BioXCell) or with control IgG (purified rat IgG1 isotype control, UCSF Monoclonal 

Antibody Core Facility) on days 0, 3, and 5 after adoptive transfer of adult WT splenocytes. For 

experiments treating mice confirmed to have the serological profile of CHB (adoptively 

transferred at 3 weeks of age; no early ALT rise, HBsAg+, and HBsAb− and allowed to rest for 

3 months), mice received an intraperitoneal injection of 150 Pg of OX40 agonist antibody or 

with control IgG either on days 84, 87, 89 and 168, 171, 173, 175 after adoptive transfer of adult 

WT splenocytes or three times per week for eight treatments starting on day ≥84 after adoptive 

transfer of adult WT splenocytes.  
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Anti-Thy1.2-mediated ILC depletion 

 For experiments using anti-Thy1.2-mediated depletion of ILCs and some NK cells, one 

of two treatment regimens were followed. For day 8 experiments, mice received 200 Pg of anti-

Thy1.2 blocking antibody (30H12, BioXCell) or isotype control rat IgG2b antibody (LTF-2, 

BioXCell) via i.p. injection. Animals were treated every 3 days starting 4 days before adoptive 

transfer and continuing through day 5 post-adoptive transfer. For day 22 experiments, mice 

received the same quantity of anti-Thy1.2 or control antibodies via i.p. injection. Animals were 

treated every 3 days starting at 3-weeks old, 21 days before adoptive transfer, and continuing 

through day 21 post-adoptive transfer, such that animals were adoptively transferred at 6 weeks 

of age and sacrificed at 9 weeks of age. 

 

Blockade of LTER signaling 

 For experiments blocking signaling via LTER signaling, a murine LTER-human 

immunoglobulin Fc receptor fusion protein (LTER-Fc) was used, provided by Dr. Carl Ware 

[Sanford Burnham Prebys Medical Discovery Institute, (89)]. This LTER-Fc protein with mouse 

specificity functions by binding to lymphotoxin D/E and LIGHT and preventing their binding 

and signaling to endogenous LTER. Mice were treated with 100 Pg of LTER-Fc (mLTER:huFc-

IgG1) or human IgG1 isotype control antibodies (BE0297, BioXCell) via i.p. injection. Mice 

were treated every three days beginning four days before adoptive transfer and continuing 

through either day 5, for experiments ended at day 8, or through day 11, for experiments ended at 

day 14.  
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Anti-IL-17RA/-IL-17F cytokine blockade 

 For experiments blocking IL-17 signaling, animals were treated with IL-17 blocking 

antibodies gifted by S. Nishimura. Mice were treated with 500 Pg of anti-IL-17RA (M751, 

Amgen), anti-IL-17F (M850VL, Amgen), or mouse IgG1 isotype control antibodies (MOPC-21, 

BioXCell) via i.p. injection. Mice were treated every two days starting one day before adoptive 

transfer and continuing through day 7 post-transfer. Animals were sacrificed 8 days post-

adoptive transfer. 

 

Anti-IL-22 cytokine blockade 

 For experiments targeting IL-22 signaling, animals were treated with 150 Pg of either 

anti-IL-22 blocking antibodies (IL22JOP, eBioscience/Invitrogen) or rat IgG2a isotype control 

antibodies (2A3, BioXCell) via i.p. injection. Mice were treated every two days starting one day 

before adoptive transfer and continuing through day 5 post-transfer. Animals were sacrificed 8 

days post-adoptive transfer. 

 

Anti-GM-CSF cytokine blockade 

For experiments targeting GM-CSF signaling, animals were treated with 300 Pg of either 

anti-GM-CSF blocking antibodies (MP1-22E9, BioXCell) or rat IgG2a isotype control 

antibodies (2A3, BioXCell) via i.p. injection. Mice were treated every two days starting one day 

before adoptive transfer and continuing through day 5 post-transfer. Animals were sacrificed 8 

days post-adoptive transfer. 
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Antibiotic administration 

 Broad spectrum antibiotics were dissolved in the drinking water of HBVtgRag1-/- or 

HBVtgRag1-/-Rorc(Jt)GFP/GFP mice starting during gestation and through adulthood and the 

completion of the specified experiments. Specifically, Vancomycin (1 g/L), Ampicillin (0.5 g/L), 

Neomycin Sulfate (1 g/L), and Metronidazole (0.5 g/L) antibiotics were used to target most 

Gram-positive, Gram-negative, and anaerobic species. Antibiotic drinking water was changed 

three times per week. Animal weight was monitored to ensure sufficient hydration. 

 

Liver hematoxylin and eosin histology  

For OX40/OX40L related experiments, liver tissue was fixed in 4% paraformaldehyde 

(PFA) or 10% formalin and embedded in paraffin blocks. Five-micrometer slices were cut. PFA- 

and formalin-fixed tissues were stained with hematoxylin and eosin (H&E) according to standard 

protocols by the Gladstone Histology and Light Microscopy Core and scored by a pathologist 

who was blinded to sample identity.  

For subsequent experiments, liver tissue was fixed in 10% formalin for 2 hours at 4qC 

followed by 22 hours at room temperature (2 + 22 method). Samples washed three times for 5 

minutes at room temperature in PBS to remove the fixative, followed by dehydration in a graded 

ethanol series from 30 percent to 50 percent to 70 percent ethanol, for one hour at each step at 

room temperature. Samples were stored in 70 percent ethanol at room temperature for up to two 

weeks before embedding in paraffin blocks at the UCSF Biorepository and Tissue Biomarker 

Technology Core (BTBTC). Two or three 4 Pm serial sections per sample were cut and stained 

with H&E according to standard protocols by the BTBTC. Images were scanned using an 
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automated Zeiss Axioscanner Z1 whole-slide scanning system at 20X resolution. Where 

specified, images were scored by a pathologist who was blinded to sample identity. 

 

HBsAg protein detection and scoring by immunohistochemistry 

Liver tissue was collected 1, 8, or 24 weeks after adoptive transfer of HBVRplRag1-/- 

mice with either WT or Ox40-/- splenocytes and fixed in 10% formalin for 24 hours. Fixed liver 

tissue was subsequently processed and embedded in paraffin following standard protocols. 

Paraffin blocks were sectioned at 5 mm, and immunohistochemistry for HBV surface antigen 

was performed on these formalin-fixed paraffin-embedded (FFPE) tissues. Briefly, molecular 

localization studies were conducted using a Ventana Discovery XT autostainer (Ventana Medical 

Systems, Roche Group). FFPE tissues were sectioned at 5 mm, barcoded, and then placed in the 

autostainer for paraffin extraction and rehydration. A rabbit polyclonal antibody (Bio-Rad) was 

found to be specific for HBV surface antigen and was used at a final con- centration of 1.3 

mg/ml. Antigen retrieval (CC1 mild; Ventana Medical Systems), primary antibody dilution, 

incubation temperature and duration, detection technique, and 3,3′-diaminobenzidine (DAB) 

chromogen (ChromoMap DAB Kit, Ventana Medical Systems) were optimized on sections of 

HBV-infected positive control liver (Newcomer Supply) and included evaluation of isotype-

matched irrelevant antibody controls, as well as known negative liver tissue. Slides were 

counterstained (hematoxylin, Ventana Medical Systems) and cover-slipped (Micromount, Leica 

Biosystems). HBsAg expression was scored qualitatively by an unbiased pathologist using the 

following criteria: 0, no staining; 1, multifocal granular or diffuse staining in hepatocytes 

involving <25% of section; 2, granular or diffuse staining around centrilobular hepatocytes with 

no staining in portal regions; 3, diffuse positivity of hepatocytes restricted to the centrilobular 
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region; granular cytoplasmic positivity in the remaining hepatocytes; 4, diffuse positivity of 

hepatocytes restricted to the centrilobular and mid zonal regions; granular cytoplasmic positivity 

in the remaining hepatocytes; and 5, diffuse positivity of all hepatocytes.  

 

Chromogenic immunohistochemistry (IHC) tissue staining and imaging 

 Samples were fixed and embedded in paraffin blocks according to the 2 + 22 method 

described above. Paraffin block embedding, tissue sectioning, staining, and imaging was 

completed at the UCSF BTBTC with guidance and scientific input from Jillian Jespersen and Dr. 

Jody Baron. Two to three 4 Pm serial sections were cut and mounted on the same slide for each 

sample. Tissue sections were stained according to optimized protocols developed in 

collaboration between Jillian Jespersen and Jennifer Bolen; which were programmed into the 

automated slide staining Ventana Discovery Ultra platform. The following antibodies were used: 

rabbit anti-mouse/human CD3 (SP7, Abcam), rabbit anti-mouse CD4 (EPR19514, Abcam), rat 

anti-mouse CD8D (4SM15, eBioscience/Invitrogen), rabbit anti-mouse CD11b (Rb Poly, Novus 

Biosciences), rat anti-mouse/human CD45R/B220 (RA3-6B2, eBioscience/Invitrogen), and 

rabbit anti-mouse RORJ (EPR20006, Abcam). These antibodies were combined into the 

following duplex and triplex stains: (i) CD8D-purple, CD4-yellow, protocol #2154; (ii) RORJ-

purple, CD8D-teal, CD4-yellow, protocol #3908, (iii) RORJ-purple, CD11b-teal, CD3-yellow, 

protocol #3911; (iv) RORJ-purple, CD45R/B220-teal, CD3-yellow, protocol #3904, (v) 

CD45R/B220-purple, CD11b-teal, CD3-yellow, protocol #3902. Sections were dried and 

coverslipped followed by imaging at 20X resolution on the Zeiss Axioscanner Z1. Native, 

uncompressed CZI imaging files were used as a starting point for subsequent image analysis. 
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Ilastik imaging analysis 

 Image analysis was completed in collaboration between Jillian Jespersen and Austin 

Edwards, a bioinformatician in the UCSF Biological Imaging Development Center (BIDC). CZI 

images were converting to the Big Tiff file format using Zen software (Zeiss), and then to HDF5 

format using the Ilastik plug-in for FIJI (94-96).  

 We trained two Random Forest classifiers in the 1.3.3 version of Ilastik (97). The training 

set was 58 2000x2000-pixel images taken across 4 tissue samples from the RORJ/CD8D/CD4 

triplex stain. One classifier is a binary classifier used to predict nuclei pixels and stroma pixels in 

an RGB image. The nuclei pixels were segmented into objects using hysteresis thresholding 

(Gaussian smoothing σ = 1.0, core threshold = 0.55, final threshold = 0.65). The second classifier 

was trained to classify these objects into one of 6 cell types: CD4, CD8, Th17, ILC3, Tc17 and 

other. The output of this classifier provided the predicted label and the coordinates of the center 

of these objects. 

Austin built a GUI to take these coordinates and labels as input, visualize and filter them 

based on user-provided parameters. The GUI also allows users to create custom ROIs on the raw 

image to filter out tissue and staining artefacts. Using the GUI, Austin filtered the output of each 

sample prediction to include only immune cells (i.e. removed “other”-type cells) and remove 

tissue artefacts. 

We used the scikit-learn (98) Python implementation of Density-Based Spatial Clustering 

of Applications with Noise (DBSCAN) (99) to cluster the filtered immune cell objects. All 

parameters used were default, except for the eps parameter, which is “the maximum distance 

between two samples for one to be considered as in the neighborhood of the other,” which we 

specified as 100 pixels. 
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Vessel segmentation is done by training a third classifier in Ilastik to predict lumen, 

blood and stroma pixels. Lumen and blood pixels are grouped together to create a new vessel 

class. We then use these vessel objects to calculate distance metrics between immune cell 

clusters and the vessels. 

 

RNA extraction and quantitative real-time PCR  

RNA isolated from hepatic leukocyte-enriched cell preparations was prepared using a 

RNeasy micro kit (Qiagen) with vortex and QIAshredder (Qiagen) disruption. RNA isolated 

from liver tissue was prepared using a RNeasy mini kit (Qiagen) using bead beat lysing (MP 

Biomedicals) and QIAshredder (Qiagen) disruption. cDNA was generated on 0.25 to 1.00 Pg of 

RNA using an iScript cDNA synthesis kit (Bio-Rad). Real-time PCR was performed on 2.5 Pl of 

cDNA product using iTaq Universal SYBR Green Supermix with ROX (Bio-Rad) and the 

following mouse gene primers: Gapdh, 5′-GGAGCGAGACCCCACTAACA-3′ (forward) and 

5′-ACATACTCAGCACCGGCCTC-3′ (reverse); Il21, 5′-TCATCATTGACCTCGTGGCCC-3′ 

(forward) and 5′-ATCGTACTTCTCCACTTGCAATCC-3′ (reverse); and Ox40l, 5′-

TCTGTGCTTCATCTATGTCTGC-3′ (forward) and 5′-CATCCTCACATCTGGTAACTGC-3′ 

(reverse). Real-time PCR was performed on the 7300 Real-Time PCR System (Applied 

Biosystems) for OX40/OX40L experiments. For subsequent experiments, qPCR was performed 

on the Quant Studio 6 PCR System (Applied Biosystems). Data is presented as log2 fold change 

(2-'Ct) expression relative to Gapdh or log2 fold change expression relative to Gapdh normalized 

to a control group (2-''Ct), as specified. 

 

 



 232 

Patient samples and OX40L RNA expression  

Twenty-four infants (6 to 12 weeks of age) were liver-biopsied to rule out biliary atresia 

at the UCSF Medical Center. Six of these patients were found to have biliary atresia, 6 had 

neonatal non-viral hepatitis, 10 were found to have a nonspecific liver disease diagnosis, 

including cholestasis and ductopenia, and 2 had an unknown diagnosis. Nine adult liver samples 

were obtained from donor livers before transplantation. RNA from FFPE tissue was extracted 

using the RNeasy FFPE kit (Qiagen) following the manufacturer’s instructions. Isolated RNA 

(150 ng) was reverse-transcribed using the QuantiFast Probe assay (Qiagen) and amplified using 

specific probes and primers to human GAPDH and OX40L or using by the prime PCR probe 

assay (Bio-Rad) for CD14, CD68, and GAPDH.  

PBMC were obtained from eight patients with confirmed AHB infection at the time of 

active hepatitis and confirmed subsequent viral clearance and HBsAb seroconversion, eight 

patients with con- firmed CHB infection exhibiting a flare of disease (ALT rise), as well as six 

patients with confirmed CHB with inactive disease (normal ALT), and six healthy individuals. 

Cells were stained according to standard protocols with combinations of the following antihuman 

antibodies: TCRDE-PE-Cy7 (BioLegend; clone, IP26), CD4-BV785 (BioLegend; clone, OKT4), 

OX40-PE [BioLegend; clone, Ber-ACT35 (ACT35)], ICOS–PerCP–eFluor 710 (eBioscience; 

clone, ISA-3), CXCR5-APCs (BD Biosciences; clone, RF8B2), CD8-BV570 (BioLegend; clone, 

RPA-T8), CD56-BV605 (BioLegend; clone, HCD56), CD16-AF700 (BioLegend; clone, 3G8), 

and CD19-BV650 (BioLegend; clone, HIB19).  

Acutely infected HBV patients had confirmed elevated viral loads (6.3 × 106 ± 5.1 × 106 

IU/ml), elevated ALT (146 to 2996 U/liter), HBsAg+ and IgM core antibody–positive, and a 

clinical history of exposure. CHB patients exhibiting a flare in disease had confirmed elevated 
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viral loads (1.4 × 107 ± 5.1 × 106 IU/ml), elevated ALT (133 to 1307 U/liter), HBsAg+, and 

known history of chronic infection. Chronic inactive HBV patients not on antiviral therapy had 

confirmed low ALT (16 to 32 U/liter) and confirmed viral loads (2453 ± 1262 IU/ml). 

Uninfected controls had confirmed low ALT (16 to 32 U/liter) and were HBsAg−.  

 

Gene expression by microarray 

 RNA was isolated using QIAGEN RNeasy micro kits, as described above, and 1 Pg of 

RNA was submitted to the UCSF Functional Genomics core for microarray analysis. Total RNA 

quality was assessed using a Pico Chip on an Agilent 2100 Bioanalyzer (Agilent Technologies, 

Palo Alto, CA). RNA was amplified and labeled with Cy3-CTP using the Agilent low RNA input 

fluorescent linear amplification kits following the manufacturers protocol (Agilent). Labeled 

cRNA was assessed using the Nandrop ND-100 (Nanodrop Technologies, Inc., Wilmington DE), 

and equal amounts of Cy3 labeled target were hybridized to Agilent whole mouse genome 4x44K 

Ink-jet arrays (Agilent). Hybridizations were performed for 14 hrs, according to the manufacturers 

protocol (Agilent). Arrays were scanned using the Agilent microarray scanner (Agilent) and raw 

signal intensities were extracted with Feature Extraction v10.1 software. 

This dataset was normalized using the quantile normalization method that is proposed by 

Bolstad et al. (100). No background subtraction was performed, and the median feature pixel 

intensity was used as the raw signal before normalization.  

A one-way ANOVA linear model was fit to the comparison to estimate the mean M values 

and calculated moderated t-statistic, B statistic, false discovery rate and p-value for each gene for 

the comparison of interest. Adjusted p-values were produced by the method proposed by Holm 
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(101). All procedures were carried out using functions in the R package limma in Bioconductor 

(102, 103). 

The heat map presented was generated by Andrew Schroeder, using the aveA values, which 

represent the average log2 based intensity of the same probe across all arrays – a proxy for gene 

expression level – on selected genes relevant to ILC3 and/or HBV biology. 

 

HBV transcript measurement by Northern blot  

RNA was extracted from flash-frozen liver pieces collected 1, 8, or 24 weeks after 

adoptive transfer of HBVRplRag1-/- recipient mice with either WT or Ox40-/- splenocytes using a 

modified TRIzol extraction (38). Briefly, 1 ml of TRIzol (Life Technologies) was added to 25 

mg of tissue and homogenized at 6000 rpm for 30 s using the MagNA Lyser instrument (Roche). 

RNA was extracted into the aqueous phase with the addition of 0.2 ml of chloroform (Sigma-

Aldrich) and precipitated in 0.5 ml of isopropanol (Sigma-Aldrich). The pellet was washed with 

1 ml of 75% ethanol and resuspended in RNase-free water. Ten-microliter RNA samples were 

separated by denaturizing 1.2% agarose gel electrophoresis with reagents from the NorthernMax 

Kit (ThermoFisher) and transferred to a Nytron membrane using the TurboBlotter apparatus 

(Sigma-Aldrich). A DIG-labeled (−) strand HBV RNA probe was transcribed from Sca I–

linearized pGEM3Z- HBV plasmid with the DIG Northern Starter Kit (Sigma-Aldrich) 

according to the manufacturer’s instructions. Hybridization at 68°C, washes, and detection with 

CDP-Star were carried out according to the DIG Wash and Block buffer set instructions (Sigma-

Aldrich), and images were acquired with the Azure c300 system (Azure Biosystems). HBV 

envelope transcript abundance was quantitated using FIJI (94-96) software analysis of HBV 
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envelope large (2.4 kb) and middle/small (2.1 kb) RNA transcript band intensities detected on 

the Northern blots and normalized to detected 18S RNA band intensities for each sample.  

 

Statistical analysis  

Statistics were performed using Prism (Graph Pad Software). Statistical significance was 

determined by two-tailed unpaired Student’s t test (when two groups were compared), two-tailed 

paired Student’s t test (for longitudinal analyses of the same mice), one-way ANOVA with 

Dunnett’s correction for multiple comparisons to a control group (when one parameter was 

compared between more than two groups and a defined control group), or one-way ANOVA 

with Tukey’s multiple-comparison test (when one parameter was compared for more than two 

biological groups, and all groups were compared to each other), or two-way ANOVA with 

Dunnett’s correction for multiple comparisons to a control group (when multiple parameters 

were compared between more than two groups and a defined control group), or two-way 

ANOVA with Tukey’s multiple-comparison test (when one parameter was compared for more 

than two biological groups, and all groups were compared to each other). For significance of 

HBsAg clearance, in which one of two possible outcomes was compared (clearance=1 versus no 

clearance=0), log-rank (Mantel-Cox) Chi-square test was used. For ordinal or ranked data 

(histology scores), the Mann-Whitney rank sum test was used. In all figures with multiple n, data 

are presented as means ± SEM. P < 0.05 was considered significant.  
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