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Abstract

Answering Queries Over Inconsistent Databases Using SAT Solvers

by

Akhil A. Dixit

An inconsistent database is a database that violates one or more integrity constraints,

such as key constraints and functional dependencies. Consistent Query Answering

(CQA) is a rigorous and principled approach to the semantics of queries posed against

inconsistent databases. The consistent answers to a query on an inconsistent database

are the intersection of the answers to the query on every repair, i.e., on every consistent

database that differs from the given inconsistent one in a minimal way. Computing

the consistent answers of a fixed conjunctive query on a given inconsistent database

can be a coNP-hard problem, even though every fixed conjunctive query is efficiently

computable on a given consistent database.

The notion of consistent answers is extended to the notion of range consistent

answers for queries with aggregation operators with or without the grouping constructs.

The range consistent answers to an aggregation query is the interval [glb, lub] of the

greatest lower bound and the least upper bound such that the answer to the query on

every repair falls within the range. Computing the range consistent answers to a fixed

aggregation query can be an NP-hard problem. In fact, we show that computing the

range consistent answers to an aggregation query can be NP-hard even if the consis-

tent answers to its underlying conjunctive query (i.e., the query without aggregation

viii



operators) are first-order rewritable, thus, computable in polynomial-time.

Despite several attempts towards building practical systems for consistent

query answering, no comprehensive and scalable system for consistent query answer-

ing exists at present; this state of affairs has impeded the broader adoption of the

framework of repairs and consistent answers as a principled alternative to data clean-

ing. We designed, implemented, and evaluated CAvSAT, the first SAT-based system

for consistent query answering. CAvSAT leverages a set of natural reductions from the

problem of computing the consistent answers to variants of the Boolean Satisfiability

problem. The system is capable of handling unions of conjunctive queries and arbitrary

denial constraints, which include functional dependencies as a special case. Moreover,

it is also the first system capable of computing the range consistent answers of general

aggregation queries with the COUNT(A), COUNT(∗), and SUM(A) operators, and

with or without grouping constructs. We report results from experiments evaluating

CAvSAT on both synthetic and real-world databases. We carry out an extensive set of

experiments on both synthetic and real-world databases that demonstrate the usefulness

and the scalability of CAvSAT.
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Chapter 1

Introduction

Managing inconsistencies in databases is old, but a recurring, problem. An

inconsistent database is a database that violates one or more integrity constraints, such

as key constraints or functional dependencies. In the real world, inconsistent databases

arise due to various reasons and in several different contexts, including data warehousing

and information integration, where dealing with inconsistency is regarded as a key

challenge [21]. For example, the gathering of data from heterogeneous sources where

the data sources obey their own integrity constraints can result in violations, causing

inconsistency at the time of data integration. This is not always preventable, because

the data sources may be completely independent, and unaware of each other’s integrity

constraints. The incapability of database engines to handle complex integrity constraints

may also be a reason behind real-world databases becoming inconsistent. Clearly, the

inconsistency in the data is unwanted and it cannot simply be ignored because it may

affect the quality of the answers to the queries posed against the databases. In the real
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world, inconsistent databases are more of a norm than an exception, and they play a

major role in a more general and broadly used term, poor quality data, which, according

to a report from IBM, cost $3.1 trillion to the US economy in 2016 alone [2].

A widely used engineering method to deal with inconsistent databases is called

Data Cleaning. The main idea of data cleaning is to perform simple database operations

such as tuple-deletions, tuple-insertions, and tuple-updates to resolve the violations of

the integrity constraints and come up with a single consistent version of the database,

and use that version against the queries. This is the most common approach adopted

by the industry today, with commercial data cleaning solutions like IBM Infosphere

Quality Stage and Microsoft SQL Server Data Quality Services (DQS) available in the

market. The problem with such an approach is that we often have to make arbitrary

choices about what data to keep and what to remove, while transforming the inconsistent

database into the consistent one [54]. For example, if a person has two social security

numbers in a database, there may not be any apriori reason to decide which one to keep

and which one to remove. Researchers have used heuristics, probabilistic inferences,

learning algorithms, data deduplication, and many other techniques [49, 51, 74, 78] to

make such choices seem less arbitrary, but inherently, data cleaning does not provide

a strong guarantee about what data will be kept or removed in the cleaning process.

The downside of this is that the same database cleaned up in different ways provides

different answers to the same query, and this is an undesirable scenario.

The framework of database repairs and consistent query answering, introduced

by Arenas, Bertossi, and Chomicki [15], is an alternative, principled, and more scientific
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approach to managing inconsistent databases. In this framework, inconsistencies are

handled at the query evaluation time by considering all possible repairs of the inconsis-

tent database, where a repair of an inconsistent database I w.r.t. a set Σ of integrity

constraints is a consistent database J that differs from I in a “minimal” way. The

notion of minimality can be interpreted in different ways, thus giving rise to various

types of repairs (see Section 2.1 and the monograph [22]). The consistent answers to a

query q on a given database I w.r.t. a set Σ of integrity constraints is the intersection

of the results of q applied on each repair of I. Thus, a consistent answer provides the

guarantee that it will be found no matter on what repair the query has been evaluated.

The main algorithmic problem in this framework is to compute the consistent answers

to a query q on a given database I (denoted by Cons(q, I,Σ)), that is, the tuples that

lie in the intersection of the results of q applied on each repair of I, i.e.,

Cons(q, I,Σ) =
⋂ {

q(J ) | J is a repair of I
}

.

Computing the consistent answers can be an intractable problem, because an

inconsistent database may have exponentially many repairs. In particular, computing

the consistent answers to a fixed conjunctive query can be a coNP-complete problem,

even though the query evaluation problem for a fixed conjunctive query is in P. By

now, there is an extensive body of work on the complexity of consistent answers for

conjunctive queries (see Section 2.2).

Although many practical queries can be expressed as conjunctive queries, the

most frequently asked queries on real-world databases often involve aggregation and

grouping; in SQL, these are the queries of the form

3



Q := SELECT Z, f(A) FROM T (U,Z,A) GROUP BY Z,

where f(A) is one the standard aggregation operators COUNT(A), COUNT(*), SUM(A),

AVG(A). MIN(A), MAX(A), and T (U,Z,A) is the relation returned by a non-aggregation

query q expressed in SQL. What is the semantics of an aggregation query over an incon-

sistent database? Since an aggregation query may return different answers on different

repairs of an inconsistent database, there is typically no consistent answer as per the

earlier definition of consistent answers. To obtain meaningful semantics to aggregation

queries, the notion of consistent answers has been extended to the notion of the range

consistent answers, first introduced by Arenas et al. [16] for aggregation queries with-

out grouping, and then extended by Fuxman et al. [40] for aggregation queries with

grouping. Here, we briefly describe the notion of range consistent answers; see Sections

2.1 and 2.2 for formal definitions. For an aggregation query Q without grouping, the

set of possible answers to Q on an inconsistent instance I w.r.t. a set Σ of integrity

constraints is the set of the answers to Q over all repairs of I w.r.t. Σ, i.e.,

Poss(Q, I,Σ) =
⋃{

Q(J ) | J is a repair of I w.r.t. Σ
}

.

By definition, the range consistent answers toQ on I is the interval [glb(Q, I), lub(Q, I)],

where the endpoints of this interval are, respectively, the greatest lower bound (glb) and

the least upper bound (lub) of the set Poss(Q, I,Σ) of possible answers to Q on I. If Q

is an aggregation query, Cons(Q, I,Σ) denotes the problem: given a database instance

I, compute the range consistent answers to Q on I.

Range consistent answers have become the standard semantics of aggregation

4



queries in the framework of database repairs (see [22, Section 5.6]). Furthermore, range

semantics have been adapted to give semantics to aggregation queries in several other

contexts, including data exchange [13] and ontologies [56]. Finally, range semantics have

been suggested as an alternative way to overcome some of the issues arising from SQL’s

handling of null values [48].

There have been multiple efforts to bridge the gap between theory and practice

by building systems to compute the consistent answers or the range consistent answers

to queries answering that leverage (some of) the known complexity results, but the

theoretical research has not yet penetrated the mainstream industry. Several academic

prototype systems for consistent query answering have been developed [17, 20, 26, 40,

41, 46, 55, 68, 71]. These systems use different approaches, including logic programming

[20, 46], compact representations of repairs [25], or reductions to solvers [68, 55], and

handle different classes of queries and integrity constraints. Among all these systems,

however, only the ConQuer system by Fuxman et al. [40, 41] is capable of handling

aggregation queries. Actually, ConQuer can only handle a restricted class of aggregation

query, namely, those aggregation queries w.r.t. key constraints for which the underlying

conjunctive query, i.e, the query without aggregation operators, belongs to the class

called Cforest. For such a query Q, the range consistent answers of Q are SQL-rewritable,

which means that there is a SQL query Q′ such that the range semantics answers

of Q on an instance I can be obtained by directly evaluating Q′ on I. This leaves

out, however, many aggregation queries, including all aggregation queries whose range

consistent answers are not SQL-rewritable or are NP-hard to compute. Up to now, no
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system supports such queries. Therefore it is fair to say, that no comprehensive and

scalable system for consistent query answering exists at present, and this state of affairs

has impeded the broader adoption of the framework of repairs and consistent answers

as a principled alternative to data cleaning. The main reason behind this appears to be

that the high computational complexity of Cons(q, I,Σ) even for restricted classes of

queries and integrity constraints makes it difficult to build a fast, comprehensive, and

scalable system capable of handling real-world databases.

In this thesis, we use SAT solving, for the first time, to build a system for con-

sistent query answering that can handle broad classes of practical queries and integrity

constraints. Boolean Satisfiability (SAT) is a prototypical NP-complete problem [52]

and there has been extensive amount of work on different aspects of satisfiability and

SAT solving (see Section 2.1.8 and the handbook [23]). Modern SAT solvers are capable

of solving quickly SAT-instances with millions of clauses and variables. Over the years,

SAT solvers have been widely used in both academia and industry as general-purpose

problem-solving tools. Indeed, many real-world problems from a variety of domains,

including scheduling, protocol design, software verification, and model checking, can

be naturally encoded as SAT instances, and solved quickly using solvers, such as Glu-

cose [19] and CaDiCaL [1]. Furthermore, SAT solvers have been used in solving open

problems in mathematics [50, 73]. In our work, we leverage the progress made by the

SAT solving community to build a fast, comprehensive, and scalable real-world system

for answering queries over inconsistent databases. In what follows, we summarize the

contributions of this thesis.
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Summary of Contributions

• On the foundational side, we develop several polynomial-time reductions from com-

puting the consistent answers to different classes of database queries, including ag-

gregation queries, to SAT and its optimization variants. The most basic reduction

is for the conjunctive queries over databases having primary key constraints and it

is heavily based on the reduction to Binary Integer Programming from the EQUIP

system [55]. For broader classes of queries and integrity constraints such as unions

of conjunctive queries with aggregation and grouping over databases with arbitrary

denial constraints, we develop much more sophisticated reductions.

• We give a new hardness result about computing the range consistent answers to an

aggregation query whose underlying conjunctive query has SQL-rewritable consis-

tent answers. Specifically, we show that, unlike the conjunctive queries in the class

Cforest, the SQL-rewritability of the consistent answers is not preserved after adding

an aggregation operator on top of an arbitrary self-join-free conjunctive query having

SQL-rewritable consistent answers.

• We present a comprehensive and scalable system, CAvSAT (Consistent Answers via

SAT Solving), for answering queries over inconsistent databases. The distinctive

feature of CAvSAT is that it uses several natural reductions from computing the

consistent answers of queries to SAT and its optimization variants, and then deploys

powerful SAT solvers. CAvSAT can handle a wide range of practical queries and in-

tegrity constraints, namely, unions of conjunctive queries with or without aggregation

7



and grouping, over database schemata with arbitrary denial constraints.

• We report an extensive experimental evaluation of CAvSAT. We carried out a suite

of experiments on both synthetically generated databases and real-world databases,

and for a variety of queries with and without aggregation and grouping. We also

demonstrate the features and usefulness of the system with a Graphical User Interface.

The rest of the thesis is organized as follows. In Chapter 2, we familiarize

the reader with the necessary background material and basic notions and give an ac-

count of the past research on consistent query answering. In Chapter 3, we present the

natural polynomial-time reductions from computing the consistent answers to queries

without aggregation to SAT and its optimization variants. We published this work as an

extended abstract in the Proceedings of the 2019 International Conference on Manage-

ment of Data (ACM SIGMOD 2019) [32] and as a conference paper in the Proceeding of

the International Conference on Theory and Applications of Satisfiability Testing (SAT

2019) [33, 34]. In Chapter 4, we present reductions from computing the range consistent

answers to aggregation queries to SAT and its variants; this work is currently under

peer review (see the arXiv version [36]). We then present the architecture and the im-

plementation details of the CAvSAT system in Chapter 5. We demonstrated CAvSAT

at the 2021 International Conference on Management of Data (ACM SIGMOD 2021)

[35]. In Chapter 6, we report the experimental analysis of CAvSAT, and we conclude

the thesis in Chapter 7 with a discussion on the open problems in consistent query

answering and the directions for future research.

8



Chapter 2

Preliminaries and Related Work

2.1 Background and Basic Notions

2.1.1 Relational Database Schemata and Database Instances

A relational database schema or, database schema R is a finite collection of

relation symbols, each with a fixed positive integer as its arity. The attributes of a

relation symbol are names for its columns; attributes can also be identified by their

positions, thus Attr(R) = {1, ..., n} denotes the set of attributes of R. An R-database

instance or, simply, an R-instance is a collection I of finite relations RI , one for each

relation symbol R in R. An expression of the form RI(a1, ..., an) is a fact of the instance

I if (a1, ..., an) ∈ RI . Every R-instance can be identified with the (finite) set of its facts.

When it is clear from the context, we often drop the superscript in RI and simply use

the symbol R to refer to the relation RI . The active domain of I is the set of all values

occurring in facts of I. For example, a university database schema in Example 2.1.1
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has six relation symbols, namely, Students, Courses, Enrollments, Faculty, Teaches, and

Departments with arities three, four, two, four, two, and three respectively. We will use

this database schema and its instance shown in Example 2.1.1 as a running example

throughout this section.

Example 2.1.1. A database schema R of university records and an R-instance I.

R = Students(SID, NAME, DEPT),Courses(CID, NAME, DEPT, CREDIT),

Enrollments(SID, CID),Faculty(FID, NAME, DEPT, RANK),

Teaches(FID, CID),Departments(DID, CHAIR, LOCATION).

An R-instance I :

Students

SID NAME DEPT

S1 Sai CSE

S2 John AMS

S3 Mary CSE

S4 Seb ECE

Courses

CID NAME DEPT CREDIT

C1 Algorithms CSE 5

C2 Topology AMS 2

C3 Databases CSE 2

C4 Mechatronics ECE 5

Enrollments

SID CID

S1 C1

S1 C3

S2 C2

S3 C4

Faculty

FID NAME DEPT RANK

F1 Ben CSE Professor

F2 Jen AMS Lecturer

F3 Mick ECE Professor

Teaches

FID CID

F1 C1

F1 C3

F2 C2

F3 C4

Departments

DID CHAIR LOCATION

CSE F1 Engineering 2

AMS F4 Baskin Engineering

ECE F3 Baskin Engineering
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2.1.2 Integrity Constraints

Relational database schemata are often accompanied by a set of integrity con-

straints that impose semantic restrictions on the allowable instances. We give definitions

and examples of some of the commonly used integrity constraints here, specifically, the

ones that are heavily used in the subsequent chapters.

Definition 2.1.1. Functional Dependency. A functional dependency (FD) ~x → ~y

on a relation symbol R is an integrity constraint asserting that if two facts agree on the

attributes in ~x, then they must also agree on the attributes in ~y.

For example, a constraint that one faculty member can serve as a chair of at

most one department can be expressed using functional dependency CHAIR→ DID on

the Departments relation. Another constraint that no course is taught by more than one

faculty can be written as a functional dependency CID → FID on the Teaches relation.

Definition 2.1.2. Primary Key. A primary key (or, simply, key) is a minimal subset

~x of Attr(R) such that the functional dependency ~x→ Attr(R) holds.

Thus, every key constraint is a functional dependency, but not vice versa. In

a key constraint ~x→ Attr(R), the attributes in ~x are called the key attributes of R and

they are denoted by underlining their corresponding positions. As shown in Example

2.1.1, Courses(CID, NAME, DEPT, CREDIT) denotes that the attribute CID is a key of

the Courses relation, while Enrollments and Teaches relations have no key constraints.

Every functional dependency is expressible in first-order logic. For example,

the functional dependency CHAIR→ DID in Departments(DID, CHAIR, LOCATION),
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is expressed by the first-order formula

∀x, x′, y, z, z′(Departments(x, y, z) ∧Departments(x′, y, z′)→ x = x′).

A more generalized class of dependencies is the equality generating dependen-

cies (EGDs), which are the first-order sentences of the form

∀x1, ..., xn(ϕ(x1, ..., xn)→ xi = xj),

where ϕ(x1, ..., xn) is a conjunction of atomic formulas. An equality generating depen-

dency enforces an equality between two attributes, if certain tuples appear together in

a database. For example, we may want to enforce a natural condition that a chair of a

department must be a faculty of the same department; this can be expressed using an

equality generating dependency

∀w, x, y, y′, z, u (Faculty(w, x, y, z) ∧Departments(y′, w, u)→ (y = y′)).

Even though the equality generating dependencies are greatly helpful in designing the

database schema with the desired constraints, there is still a big space of integrity

constraints that cannot be captured by EGDs. The primary keys, the FDs, and the

EGDs are important special cases of denial constraints (DCs), which are expressible by

first-order formulas of the form

∀x1, ..., xn¬(ϕ(x1, ..., xn) ∧ ψ(x1, ..., xn)),

or, equivalently,

∀x1, ..., xn(ϕ(x1, ..., xn)→ ¬ψ(x1, ..., xn)),
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where ϕ(x1, ..., xn) is a conjunction of atomic formulas and ψ(x1, ..., xn) is a conjunction

of expressions of the form (xi op xj) with each op a built-in predicate, such as =, 6=, <

,>,≤,≥. Since all variables in a denial constraint are universally quantified, we often

skip them when it is clear from the context, and simply write the constraint as

¬(ϕ(x1, ..., xn) ∧ ψ(x1, ..., xn)).

In words, a denial constraint prohibits a set of tuples that satisfy certain conditions

from appearing together in a database instance. For example, a restriction that a single

course cannot offer more than five credits can be expressed using a denial constraint

∀w, x, y, z ¬(Courses(w, x, y, z) ∧ (z > 5))

or, equivalently,

∀w, x, y, z (Courses(w, x, y, z)→ (z ≤ 5)),

or, simply,

¬(Courses(w, x, y, z) ∧ (z > 5)).

There are broader classes of integrity constraints, e.g., universal constraints (UCs), but

they are out of scope of this thesis. We have the following relationship between the

aforementioned classes of integrity constraints, in terms of their expressive power [22].

Keys ⊂ FDs ⊂ EGDs ⊂ DCs ⊂ UCs.
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2.1.3 Inconsistent Database Instances and Database Repairs

Definition 2.1.3. Inconsistent Database Instance. Let R be a database schema,

Σ a set of integrity constraints on R, and I an R-instance. The R-instance I is called

an inconsistent database instance if I violates Σ (denoted by I 6|= Σ).

For example, suppose we have a constraint that one faculty can teach at most

one course, i.e., a functional dependency FID → CID on the Teaches relation, then

the database instance I from Example 2.1.1 would be inconsistent because the facts

Teaches(F1, C1) and Teaches(F1, C3) form a violation, as they imply that the faculty

F1 teaches two courses, namely, C1 and C3.

Clearly, the inconsistency in database instances is unwanted. To restore con-

sistency in an inconsistent database instance, Arenas et al. [15] proposed a notion of

database repairs. Informally, the database repairs are the consistent instances that are

“close” to the original inconsistent database instance. It is quite natural to have the

condition that a database repair should be “close” or “minimally” different from the

original inconsistent database. To make this precise, Arenas et al. [15] proposed a partial

order to compare the database instances in terms of their distances to a given database

instance I. We first define this partial order and then the database repairs.

Definition 2.1.4. Partial Order of Database Instances. Let R be a database

schema and I be an R-instance. For two database instances J and J ′, we say that J

is at least as close to I as J ′ (denoted as J ≤I J ′) if and only if ∆(J , I) ⊆ ∆(J ′, I),

where ∆(J , I) is the symmetric difference between the instances J and I when they are
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viewed as the sets of facts, i.e., ∆(J , I) = (J \I) ∪ (I\J ). Naturally, J <I J ′ holds

if and only if J ≤I J ′, but not J ′ ≤I J .

Definition 2.1.5. Database Repairs. Let R be a database schema, Σ a set of

integrity constraints on R, and I an R-instance. A database instance J is a database

repair of I w.r.t. Σ if J satisfies Σ, i.e., J |= Σ, and J is ≤I-minimal in the R-

instances that satisfy Σ.

It is crucial to decide the types of database operations such as tuple-deletions,

tuple-insertions, and tuple-updates that are allowed to be performed on an inconsis-

tent database instance to obtain consistent database instances. Based on the allowable

database operations, several repair semantics such as tuple- and set-inclusion-based re-

pairs, tuple-deletion and set-inclusion-based repairs, tuple- and cardinality-based-repairs

have been investigated (see [22] for a comprehensive survey on different repair seman-

tics). Here, we focus on subset repairs, the most widely studied type of database repairs.

The subset repairs are the database repairs obtained by performing only tuple-deletions

on the inconsistent database instance. We formally define subset repairs next.

Definition 2.1.6. Subset Repairs. Let R be a database schema, Σ a set of integrity

constraints on R, and I an R-instance. A database instance J is a subset repair (or

simply, a repair) of I w.r.t. Σ if J ⊂ I, J satisfies Σ, i.e., J |= Σ, and there is no

other database instance J ′ such that J ⊂ J ′ ⊂ I and J ′ |= Σ.

In other words, subset repairs are the maximal consistent subsets of the original

inconsistent database instance. For example, consider again the database instance I
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in Example 2.1.1 and a functional dependency CID → FID on the Teaches relation.

Clearly, there are two possible ways to repair I, i.e., by deleting one of the two facts

Teaches(F1, C1) and Teaches(F1, C3). The consistent database instance obtained by

deleting both facts is not ≤I-minimal in all consistent subsets of I, hence we do not

obtain a subset repair. From now on, we refer to subset repairs as, simply, repairs.

It is easy to see that there are multiple ways to repair a single inconsistent

database instance, and it is important to realize that, in general, the number of repairs

can be exponential in the size of the original database even in case of just primary key

constraints. We illustrate this using Example 2.1.2.

Example 2.1.2. Consider a schema R = R(A,B) and a set Σ of integrity constraints

on R that contains just one key constraint A→ B on the relation R. Let an R-instance

I be a set of facts R(a1, b1), R(a1, b2), R(a2, b1), R(a2, b2), · · · , R(an, b1), R(an, b2).

Clearly, there are 2n facts in I, but the number of repairs of I w.r.t. Σ is 2n.

2.1.4 Database Queries: Conjunctive Queries

Let k be a positive integer. A k-ary query on a relational database schema R

is a function q that takes an R-instance I as argument and returns a k-relation q(I) on

the active domain of I as value. A boolean query on R is a function that takes an R-

instance I as argument and returns true or false as value. As is well known, first-order

logic has been successfully used as a query language. In fact, it forms the core of SQL,

the main commercial database query language.

A conjunctive query is a first-order formula built using relational symbols,
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conjunctions, and existential quantifiers. Thus, each conjunctive query is expressible by

a first-order formula of the form

q(~z) := ∃~w (R1( ~x1) ∧ ... ∧Rm( ~xm)),

where each ~xi is a tuple consisting of variables and constants, ~z and ~w are tuples of

variables, and the variables in ~x1, ..., ~xm appear in exactly one of ~z and ~w. The variables

in ~z are called the free variables while the ones in ~w are existentially quantified. The ex-

istentially quantified variables are sometimes omitted while writing a conjunctive query

because it is obvious that the variables that are not free are quantified existentially.

Clearly, a conjunctive query with k free variables in ~z is a k-ary query, while a con-

junctive query with no free variables (i.e., all variables are existentially quantified) is a

boolean query. A conjunctive query is self-join-free if no relation symbol appears more

than once in it. Conjunctive queries are also known as the select-project-join (SPJ)

queries and are among the most frequently asked queries in databases. For example,

a database query that returns the set of all pairs (x, y) of a student name x and a

faculty name y such that the student x is enrolled in a course taught by faculty y can

be expressed as a binary conjunctive query q(x, y) as follows.

q(x, y) := ∃s, t, u, v, w, z (Enrollments(u, z) ∧ Teaches(v, z)

∧ Faculty(v, y, s, t) ∧ Students(u, x, w))

Equivalently, this query can be written in SQL as follows.

SELECT STUDENTS.NAME, FACULTY.NAME

FROM ENROLLMENTS, TEACHES, FACULTY, STUDENTS
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WHERE ENROLLMENTS.CID = TEACHES.CID

AND TEACHES.FID = FACULTY.FID

AND ENROLLMENTS.SID = STUDENTS.SID.

Similarly, a query to check whether the CSE department offers a five-credit course can

be written as a boolean conjunctive query q′ as follows.

q′() := ∃x, y (Courses(x, y, ‘CSE’, 5))

In SQL, it can be written as

SELECT 1 FROM COURSES

WHERE COURSES.DEPT = ‘CSE’

AND COURSES.CREDITS = 5.

In the subsequent chapters, we will also be dealing with a class of queries, namely,

unions of conjunctive queries. A k-ary union q of n conjunctive queries is a disjunction

q(~z) := q1(~z1) ∪ q2(~z2) ∪ · · · ∪ qn( ~zn)

where each qi is a conjunctive query of arity k. Importantly, unions of conjunctive

queries are strictly more expressive than conjunctive queries.

2.1.5 Consistent Answers to Conjunctive Queries

Arenas, Bertossi, and Chomicki [15] used the notion of database repairs to give

rigorous semantics to query answering on inconsistent databases. They precisely defined

the consistent information in a database as the information that is invariant w.r.t. all
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possible repairs. In particular, when this characterization is applied to query answers,

we obtain what is known as consistent answers (or, certain answers) to the query on an

inconsistent database instance. The consistent answers offer a strong semantic guarantee

that no matter how is the inconsistent database instance repaired, the consistent answers

to the given query remain the same.

Definition 2.1.7. Consistent Answers. Assume that R is a database schema, Σ is

a set of integrity constraints on R, I is an R-instance, q is a query, and ~t is a tuple of

values. We say that ~t is a consistent answer to q on I w.r.t. Σ if ~t ∈ q(J ), for every

repair J of I. We write Cons(q, I,Σ) to denote the set of all consistent answers to q

on I w.r.t. Σ, i.e., Cons(q, I,Σ) =
⋂
{q(J ) : J is a repair of I w.r.t. Σ}.

Figure 2.1: Consistent answers Cons(q, I) and possible answers Poss(q, I)

If Σ is a fixed set of integrity constraints and q is a fixed query, then the

main computational problem associated with the consistent answers asks: given an

R-instance I, compute Cons(q, I,Σ). If q is a boolean query, then computing the

consistent answers becomes the decision problem Certainty(q,Σ): given anR-instance
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I, is q true on every repair J of I w.r.t. Σ? When the set Σ of integrity constraints is

understood from the context, we will write Cons(q, I) and Certainty(q), instead of

Cons(q, I,Σ) and Certainty(q,Σ). Computing the consistent answers to a query q on

a database instance I can be computationally harder than evaluating q on I, because

the instance I may have exponentially many repairs. In the subsequent chapters, we

also use the notions of potential answers and possible answers, that we introduce next.

Definition 2.1.8. Potential Answers. For a database schema R, an R-instance I,

and a query q, the potential answers to q on I is the set q(I), i.e., the set of answers

obtained by evaluating q on I.

Definition 2.1.9. Possible Answers. Assume that R is a database schema, Σ is a

set of integrity constraints on R, I is an R-instance, q is a query, and ~t is a tuple of

values. We say that ~t is a possible answer to q on I w.r.t. Σ if ~t ∈ q(J ), for some

repair J of I. We write Poss(q, I,Σ) to denote the set of all possible answers to q on

I w.r.t. Σ, i.e., Poss(q, I,Σ) =
⋃
{q(J ) : J is a repair of I w.r.t. Σ}.

See Figure 2.1 for a pictorial representation of the consistent answers and the

possible answers to a query. The unions of conjunctive queries are monotonous in nature,

i.e., for a union q of conjunctive queries over two database instances I and I ′, we have

that I ⊆ I ′ =⇒ q(I) ⊆ q(I ′). Therefore, as far as the subset repairs are considered,

we have the following relationship between the consistent answers, the possible answers,

and the potential answers to a union q of conjunctive queries over an R-instance I.

Cons(q, I) ⊆ Poss(q, I) ⊆ Pot(q, I).
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Example 2.1.3. Consider the database instance from Example 2.1.1 with a functional

dependency constraint FID → CID on the Teaches relation, and a query q that asks for

the name of the faculty who teaches the Algorithms course, i.e,

q(x) := Faculty(w, x, y, z) ∧ Teaches(w, v) ∧ Courses(v, ‘Algorithms’, t, u).

It is easy to see that ‘Ben’ is the only potential answer and the possible answer to q on I.

However, ‘Ben’ is not a consistent answer because the database instance leaves open the

possibility that Ben may be teaching a course on Databases and not Algorithms; thus,

we have that Cons(q, I) = ∅.

2.1.6 Database Queries: Aggregation Queries

In Section 2.1.4, we introduced unions of conjunctive queries. Although they

cover a broad class of practical queries, the most frequently asked database queries in

practice often involve standard aggregation operators COUNT(A), COUNT(*), SUM(A),

AVG(A), MIN(A), MAX(A), and, possibly, a GROUP BY clause for grouping of results.

In what follows, we will use the term aggregation queries to refer to queries with ag-

gregate operators and with or without a GROUP BY clause. Thus, in full generality, an

aggregation query can be expressed as

Q := SELECT Z, f(A) FROM T (U,Z,A) GROUP BY Z,

where f(A) is one the aforementioned aggregation operators and T (U,Z,A) is the re-

lation returned by a query q, which typically is a conjunctive query or a union of

conjunctive queries expressed in SQL. This query q is called the underlying query of Q,
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the attribute represented by the variable A is called the aggregation attribute, and the

attributes represented by Z are called the grouping attributes. An aggregation query is

called scalar if it does not contain the GROUP BY clause, i.e., an aggregation query of

the form Q := SELECT f(A) FROM T (U,A).

For example, the total number of students belonging to the CSE department

can be found by using a scalar aggregation query

SELECT COUNT(*) FROM Students

WHERE Students.DEPT = ‘CSE’,

while one can find the total number of credits taught by each faculty by evaluating a

non-scalar aggregation query

SELECT Teaches.FID, SUM(Courses.CREDIT)

FROM Courses, Teaches

WHERE Teaches.FID = Courses.FID

GROUP BY Teaches.FID.

2.1.7 Range Consistent Answers to Aggregation Queries

What is the semantics of an aggregation query over an inconsistent database?

It is often the case that an aggregation query returns different answers on different

repairs of an inconsistent database; thus, even for a scalar aggregation query, there

is typically no consistent answer as per Definition 2.1.7 of consistent answers given

earlier. In fact, to produce an empty set of consistent answers, it suffices to have just

two repairs on which a scalar aggregation query returns different answers. Aiming to
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obtain more meaningful answers to aggregation queries, Arenas et al. [16] proposed the

range consistent answers, as an alternative notion of consistent answers.

The notion of range consistent answers is based on the set of possible an-

swers to a query. For a scalar aggregation query Q, the set of possible answers to Q

on an inconsistent instance I consists of the answers to Q over all repairs of I, i.e.,

Poss(Q, I,Σ) =
⋃
{Q(J ) : J is a repair of I w.r.t. Σ}. With this, we now define the

range consistent answers.

Definition 2.1.10. Range Consistent Answers. (Scalar Aggregation Queries). As-

sume R is a database schema, Σ is a set of integrity constraints on R, I is an R-

instance, and Q is a scalar aggregation query. The range consistent answers to Q on I

is the interval [glb(Q, I), lub(Q, I)], where the endpoints of this interval are, respectively,

the greatest lower bound (glb) and the least upper bound (lub) of the set Poss(Q,Σ) of

possible answers to Q on I.

Arenas et al. [17] focused on scalar aggregation queries only. Fuxman, Fazli,

and Miller [40] extended the notion of range consistent answers to aggregation queries

with grouping, i.e., to aggregation queries of the form

Q := SELECT Z, f(A) FROM T (U,Z,A) GROUP BY Z.

Definition 2.1.11. Range Consistent Answers. (Non-Scalar Aggregation Queries).

Assume R is a database schema, Σ is a set of integrity constraints on R, I is an

R-instance, and Q is a non-scalar aggregation query. A tuple (T, [glb, lub]) is a range

consistent answer to Q on I if the following conditions hold.
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• For every repair J of I, there exists d s.t. (T, d) ∈ Q(J ) and glb ≤ d ≤ lub.

• For some repair J of I, we have that (T, glb) ∈ Q(J ).

• For some repair J of I, we have that (T, lub) ∈ Q(J ).

For a database schema R with a set Σ of integrity constraints, if Q is an ag-

gregation query on R, then Cons(Q, I,Σ) denotes the problem: given an R-instance I,

compute the range consistent answers to Q on I w.r.t. Σ. When the set Σ is understood

from the context, we write Cons(Q, I) instead of Cons(Q, I,Σ).

Example 2.1.4. Consider again the database instance I from Table 2.1.1 with key

constraints shown with the underlined attributes and one functional dependency FID →

CID on the Teaches relation. Let Q be the scalar aggregation query that finds the total

number of students belonging to the CSE department, i.e.,

SELECT COUNT(*) FROM Students

WHERE Students.DEPT = ‘CSE’.

Clearly, the Students relation does not violate any integrity constraint, and we have the

range consistent answers Cons(Q, I) = [2, 2], i.e., no matter how I is repaired, it is

guaranteed that there will be two students in the CSE department. Now, let Q′ be the

aggregation query to compute the total number of credits taught by each faculty:

SELECT Teaches.FID, SUM(Courses.CREDIT)

FROM Courses, Teaches

WHERE Teaches.FID = Courses.FID

GROUP BY Teaches.FID.
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There exists a repair in which Faculty F1 teaches a two-credit course, while there is

another repair in which they teach a five-credit course. In all repairs, the faculty F2

teaches a two-credit course and the faculty F3 teaches a five-credit course. As a result,

the range consistent answers Cons(Q′, I) are {(F1, [2, 5]), (F2, [2, 2]), (F3, [5, 5])}.

2.1.8 Boolean Satisfiability (SAT) and SAT Solvers

Boolean Satisfiability (SAT) is the prototypical and arguably the most widely

studied NP-complete problem. SAT is the following decision problem: given a boolean

formula ϕ, is ϕ satisfiable? There has been an extensive body of research on different

aspects of boolean satisfiability (see the handbook [23]). Significant progress has been

made on developing SAT-solvers, so much so that the advances in this area of research

are often referred to as the “SAT Revolution” [81]). Typically, a SAT-solver takes

a boolean formula ϕ in conjunctive normal form (CNF) as an input and outputs a

satisfying assignment for ϕ (if one exists) or tells that the formula ϕ is unsatisfiable.

Recall that a formula ϕ is in CNF if it is a conjunction of clauses, where each clause is a

disjunction of literals. For example, the formula (x1∨x2∨¬x3)∧ (¬x2∨x3)∧ (¬x1∨x4)

has a satisfying assignment {x1, x2, x3, x4} = {1, 0, 0, 1}.

Researchers have found several optimization variants of SAT to be useful in

encoding naturally many real-world problem instances. Some of the widely studied

optimization variants of SAT are also of interest to us and we list them here.

Weighted MaxSAT is the maximization variant of SAT in which each clause

is assigned a positive weight and the goal is to find an assignment that maximizes the
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sum of the weights of the satisfied clauses. We write (l1 ∨ · · · ∨ lk, w) to denote a clause

(l1 ∨ · · · ∨ lk) with weight w.

Partial MaxSAT is the maximization variant of SAT in which some clauses

of the formula are assigned an infinite weight (hard clauses), while each of the rest is

assigned weight one (soft clauses). The goal is to find an assignment that satisfies all

hard clauses and the maximum number of soft clauses. If the hard clauses of a Partial

MaxSAT instance are not simultaneously satisfiable, then we say that the instance is

unsatisfiable. For simplicity, a hard clause (l1 ∨ · · · ∨ lk,∞) is denoted as (l1 ∨ · · · ∨ lk).

Weighted Partial MaxSAT is the maximization variant of SAT where some of

the clauses of the formula are assigned an infinite weight (hard clauses), while each of the

rest is assigned a positive weight (soft clauses). The goal is to find an assignment that

satisfies all hard clauses and maximizes the sum of weights of the satisfied soft clauses.

Clearly, Weighted Partial MaxSAT is a generalization of both Weighted MaxSAT (no

hard clauses) and Partial MaxSAT (each soft clause has weight one).

Modern solvers, such as MaxHS [31], can efficiently solve large instances of

these maximization variants of SAT. Note that these maximization problems have dual

minimization problems, called Weighted MinSAT, Partial MinSAT, and Weighted Par-

tial MinSAT, respectively. For example, in Weighted Partial MinSAT, the goal is to

find an assignment that satisfies all hard clauses and minimizes the sum of weights

of the satisfied soft clauses. These minimization problems are of interest to us, be-

cause some of the computations of the range consistent answers have natural reduc-

tions to such minimization problems. At present, the only existing Weighted Partial
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MinSAT solver is MinSatz [67]. Since this solver has certain size limitations, we will

deploy Kügel’s technique [64] to first reduce Weighted Partial MinSAT to Weighted

Partial MaxSAT, and then use the Weighted Partial MaxSAT solvers. This technique

uses the concept of CNF-negation [64, 88] that we introduce next. By definition, if

C = (l1 ∨ · · · ∨ lk) is a clause, then the CNF-negation CNF(C) of C is the CNF-formula

¬l1 ∧ (l1 ∨ ¬l2) ∧ · · · ∧ (l1 ∨ l2 ∨ · · · ∨ lk−1 ∨ ¬lk). It is easy to verify that the following

properties hold: (i) if an assignment s does not satisfy C, then s satisfies every clause

of CNF(C); (ii) if an assignment s satisfies C, then s satisfies all but one of the clauses

of CNF(C), namely, the clause (¬l1∨· · ·∨¬lj−1∨ lj), where j is the smallest index such

that s(lj) = 1. It follows that C is satisfiable if and only if CNF(C) is unsatisfiable. For

a weighted clause C = (l1 ∨ · · · ∨ lk, w), the CNF-negation CNF(C) of C is the formula

(¬l1, w) ∧ (l1 ∨ ¬l2, w) ∧ · · · ∧ (l1 ∨ l2 ∨ · · · ∨ lk−1 ∨ ¬lk, w).

2.2 Related Work

Consistent Query Answering (CQA) was first introduced by Arenas et al. [15]

as a principled approach to deal with inconsistent databases. There has been extensive

amount of research on this topic over the years, and a comprehensive survey can be

found in a book by L. Bertossi [22]. In the quest of finding a way to deal with in-

consistent databases that gives a strong semantic guarantee, Arenas et al. defined the

notions of database repairs, consistent answers, and associated problems. The main

problem associated with consistent query answering, Cons(q, I) (or Certainty(q) for
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boolean queries), is the problem of computing the consistent answers to a query q on

an inconsistent database instance I. It is often studied from the perspectives of two

complexity measures, namely, data complexity, i.e., the complexity of the problem in the

size of the database instance I where the query q is fixed, and query complexity, i.e., the

database instance I is fixed but the complexity is studied as the function of the size of

the query q [80]. When both the database instance and the query are parts of the input,

the complexity is referred as the combined complexity. For the rest of this document,

whenever we talk about the complexity of Cons(q, I) or Certainty(q), we mean the

data complexity. In what follows, we summarize the complexity results associated with

consistent query answering.

2.2.1 The Complexity of Consistent Answers

If R is a database schema, Σ is a fixed finite set of denial constraints on R,

and q is a k-ary conjunctive query, where k ≥ 1, then the following problem is in coNP:

given an R-instance I and a tuple ~t, is ~t a certain answer to q on I w.r.t. Σ? This

is so because to check that ~t is not a certain answer to q on I w.r.t. Σ, we guess a

repair J of I and verify that ~t 6∈ q(J ). Note that J is a subset of I, evaluating a fixed

conjunctive query on a given database is a polynomial-time task, and testing if J is a

repair of I w.r.t. denial constraints (i.e., repair checking w.r.t. denial constraints) is a

polynomial-time task as well. Similarly, if q is a boolean conjunctive query, then the

decision problem Certainty(q,Σ) is in coNP.

Even for primary key constraints and boolean conjunctive queries, Certainty(q,Σ)
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exhibits a variety of behaviors within coNP. Indeed, consider the queries

1. Path() := ∃x, y, z R(x, y) ∧ S(y, z);

2. Cycle() := ∃x, y R(x, y) ∧ S(y, x);

3. Sink() := ∃x, y, z R(x, z) ∧ S(y, z).

Fuxman and Miller [42] showed that Certainty(Path) is first-order-rewritable

(or, FO-rewritable), i.e., there is a first-order definable boolean query q′ such that

Cons(Path, I) = q′(I). As a matter of fact, the query q′ is expressible by the first-

order sentence q′() := ∃x, y, z R(x, y) ∧ S(y, z) ∧ ∀y′(R(x, y′)→ ∃z′S(y′, z′)).

Wijsen [84], showed that Certainty(Cycle) is in P, but it is not FO-rewritable,

while Fuxman and Miller [42] showed that Certainty(Sink) is coNP-complete via a

reduction from the complement of Monotone 3-SAT.

The preceding state of affairs sparked a series of investigations aiming to ob-

tain classification results concerning the computational complexity of computing the

consistent answers (e.g., see [47, 54, 65, 82, 84]). Researchers initially looked at the

sub-classes of conjunctive queries for which computing consistent answers is a tractable

problem [42, 82, 83, 54]. Fuxman and Miller [42] identified a class of self-join-free con-

junctive queries under the set of integrity constraints restricted to primary keys, for

which the consistent answers to a query q on an inconsistent database instance I are

first-order rewritable (or, FO-rewritable), i.e., there exists a first-order query q′ such

that for every database instance I over the same schema as q, the consistent answers

to q on I are precisely the result of evaluating q′ on I, i.e., Cons(q, I) = q′(I). Such a

29



first-order query q′ is called a certain first-order rewriting of q. They called this class of

queries Ctree, and it is defined using a notion of a join graph of a query. In a join graph

of a self-join-free conjunctive query, each atom of the query is treated as a node in the

graph, and there is a directed edge from a node Ri to Rj (i 6= j) if a some non-key

variable in Ri appears in Rj , and there is a self-loop on Ri if some non-key variable in

Ri appears more than once in Ri. A self-join-free conjunctive query q belongs to Ctree

if its join graph is a forest (i.e. each connected component is a tree), and for every pair

Ri(~xi, ~yi) and Rj( ~xj , ~yj) of connected nodes in the join graph, all variables in ~xj appear

in ~yi. They also provided an efficient algorithm that, given a query q ∈ Ctree, returns

a first-order rewriting q′ of q. The idea behind this algorithm is to use recursion on

the tree structure of each of the components of the join graph of q. The results from

[42] have been extended to exclusion dependencies [47] and to the unions of conjunctive

queries [65]. The necessary and sufficient conditions for a query to have FO-rewritable

consistent answers were later given by Koutris and Wijsen [57].

It was a ten-year-old open problem, that for self-join-free conjunctive queries

under one key constraint per relation, is it the case that Certainty(q, I,Σ) is in either

P or coNP-complete. A special case of this problem was first shown to be true, where the

authors proved that for queries with exactly two atoms, such a dichotomy holds and it is

effective [54]. They showed that for relation symbols R1 and R2 appearing in the query

q, the decision problem Certainty(q) is in P if and only if keys(R1) ∪ keys(R2) ⊆ L,

where keys(Ri) is the set of variables corresponding to the primary key attributes of

Ri, and L is the set of variables shared between the atoms of R1 and R2.
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Later, this problem was settled with a trichotomy theorem, established by

Koutris and Wijsen [57, 58, 59], for self-join-free boolean conjunctive queries. This

trichotomy theorem asserts that if q is a self-join free boolean conjunctive query under

a fixed set of integrity constraints restricted to primary keys, then Certainty(q) is

FO-rewritable, or in P but not FO-rewritable, or coNP-complete. Moreover, there is

a quadratic algorithm to decide, given such a query, which of the three cases of the

trichotomy holds. This algorithm is based on the notion of attack graphs of queries,

first introduced by Wijsen [83] and then refined by Koutris and Wijsen [59]. The

cyclicity properties of the attack graph determine the complexity of its certain answer;

specifically, for a self-join-free boolean conjunctive query q, if the attack graph is acyclic,

then Certainty(q) is in FO, if the attack graph contains a cycle but not a strong cycle,

then Certainty(q) is in P but not in FO, otherwise, Certainty(q) is coNP-complete.

In 2019, Koutris and Wijsen further sharpened their trichotomy result by prov-

ing that for every self-join-free boolean conjunctive query q, the problem Certainty(q)

is either in FO, or it is L-complete, or it is coNP-complete [61]. This is the most definitive

classification result regarding the computational complexity of computing the consis-

tent answers to date. Such complexity results are important not only from a theoretical

standpoint but also from a practical perspective. They can be used in pre-processing

a query, before actually solving it for Certainty(q). For example, if Certainty(q)

for a query belongs to a lower complexity class, then there is no need to use heavy

machinery such as SAT or BIP solvers or linear programming to solve it, we could just

send the certain first-order rewriting to the SQL engine or to a Datalog engine, and it
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will compute consistent answers efficiently.

In the recent past, researchers have also investigated the complexity of con-

sistent answers w.r.t. broader classes of queries and integrity constraints [60, 62, 63].

For example, self-join-free conjunctive queries with negated atoms were studied in [60],

the first-order rewritability of consistent answers to self-join-free conjunctive queries on

database schemata having multiple key constraints was investigated in [62], while consis-

tent answers to path queries with self-joins, i.e., the queries of the form ∃x1, · · · , ∃xk+1

R1(x1, x2) ∧ R2(x2, x3) ∧ · · · ∧ Rk(xk, xk+1) were studied in [63]. It remains an open

problem whether or not a classification result such as the Koutris-Wijsen trichotomy

extends to arbitrary boolean conjunctive queries and to arbitrary functional dependen-

cies or denial constraints.

2.2.2 The Complexity of Range Consistent Answers

The complexity of the consistent answers has been extensively studied for self-

join-free conjunctive queries, but very little work has been done on aggregation queries

and range consistent answers. To obtain more meaningful information out of the answers

to scalar aggregation queries on inconsistent databases, the notion of range consistent

answers was first proposed as an alternative to consistent answers by Arenas et al. in

[17]. In the same paper, the authors studied the complexity of the range consistent

answers to the scalar aggregation queries of the form

SELECT f(A) FROM R(U,A),

where R is a relation symbol in the database schema under consideration. Their results
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can be summarized as follows.

• If the relation R(U,A) has at most one functional dependency and f(A) is one of

the aggregation operators MIN(A), MAX(A), SUM(A), COUNT(*), AVG(A), then the

range consistent answers to the query SELECT f(A) FROM R(U,A) are computable in

polynomial time in the size of the database instance.

• There exists a database schema R consisting of a relation symbol R having one

key dependency such that computing the range consistent answers of the query

SELECT COUNT(A) FROM R(U,A) on a given R-instance is an NP-complete problem.

• There exists a database schema R consisting of a relation symbol R with two func-

tional dependencies, such that computing the range consistent answers of the query

SELECT f(A) FROM R(U,A) on a given R-instance is a NP-complete problem, where

f(A) is one of the standard aggregation operators.

It remains an open problem to pinpoint the complexity of the range consistent

answers for richer aggregation queries of the form

Q := SELECT Z, f(A) FROM T (U,Z,A) GROUP BY Z,

where T (U,Z,A) is the relation returned by a conjunctive query q or by a union q :=

q1 ∪ · · · ∪ qk of conjunctive queries. It can be shown, however, that if computing the

consistent answers Cons(q) of the underlying query q is a hard problem, then computing

the range consistent answers Cons(Q) of the aggregation query Q is a hard problem as

well (see Section 4.1). This gives rise to the following question: how does the complexity

of the consistent answers of the underlying query q impact the complexity of the range
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consistent answers of the aggregation query Q?

Fuxman and Miller [42] identified a class, called Cforest, of self-join-free con-

junctive queries whose consistent answers are FO-rewritable. In his PhD thesis, Fuxman

[39] introduced the class Caggforest consisting of all aggregation queries such that the ag-

gregation operator is one of MIN(A), MAX(A), SUM(A), COUNT(*), the underlying query

q is a conjunctive query in Cforest, and there is one key constraint for each relation in

the underlying query q. Fuxman [39] showed that the range consistent answers of every

query in Caggforest are SQL-rewritable (earlier, similar results for a proper subclass of

Caggforest were obtained by Fuxman, Fazli, and Miller [40]).

It is known that there are self-join-free conjunctive queries outside the class

Cforest whose consistent answers are FO-rewritable. In fact, Koutris and Wijsen [59]

have characterized the self-join-free conjunctive queries whose consistent answers are

FO-rewritable. However, the SQL-rewritability of aggregation queries beyond those in

Caggforest has not been investigated (except our hardness result from Section 4.1).

2.2.3 Existing Systems for Consistent Query Answering

Several systems for consistent query answering have been proposed in the past

[17, 20, 26, 40, 41, 46, 55, 68, 71], but for multiple reasons, they mostly remained as

academic prototypes. In particular, the ConQuer (Consistent Querying) system [40, 41]

is tailored to queries in the class Cforest and the class Caggforest. Other systems use

logic programming [20, 46], compact representations of repairs [25], or reductions to

solvers. Specifically, the system in [68] uses reductions to answer set programming,
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while the EQUIP system [55] uses reductions to binary integer programming and the

subsequent deployment of CPLEX. The ConsEx (Consistency Extractor) system [70]

was built with an idea of disjunctive logic programming, that computes the consistent

answers to queries by evaluating logic programs with stable model semantics. Hippo [26]

is an early system that leverages a polynomial-time algorithm for computing consistent

answers on database schemata having denial constraints for a certain class of boolean

queries. Table 2.1 lists some of the consistent query answering systems built in the past

and outlines the supported classes of integrity constraints and queries and the methods

used to compute the consistent answers or the range consistent answers. In the end,

we also list for comparison CAvSAT, a SAT-based system for answering queries over

inconsistent databases, that we will present in Chapter 5 of this thesis.

Table 2.1: Summary of the systems built for Consistent Query Answering

System Constraints Queries Method

Hippo Universal constraints Projection-free queries
with ∪ and \

Direct algo-
rithm

ConQuer Primary key con-
straints

Subclass of conjunctive
queries with aggregation
and grouping

SQL-rewriting

ConsEx Universal constraints,
acyclic referential in-
tegrity constraints, and
not-null constraints

Datalog with ¬ Answer set pro-
gramming

EQUIP Primary key con-
straints

Arbitrary conjunctive
queries

Reductions to
Binary Integer
Programming

CAvSAT Arbitrary denial con-
straints

Arbitrary unions of con-
junctive queries with ag-
gregation and grouping

Reductions to
SAT and its
variants
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Chapter 3

Consistent Answers via SAT Solving

In this chapter, we give polynomial-time reductions from computing the con-

sistent answers to different classes of non-aggregation queries to variants of SAT. In

Section 3.1, we first give a reduction from computing the certain answer to a union of

boolean conjunctive queries to UnSAT where the database schema has one key con-

straint per relation; we then extend this reduction to support unions of non-boolean

conjunctive queries, and in Section 3.2, we show how it can be extended further to

handle schemata with arbitrary denial constraints. We use the inconsistent database

instance about flight information records shown in Table 3.1 as a running example

throughout this section. This database instance has three relations, namely, Airlines,

Tickets, and Flights, each with one key constraint (the key attributes are underlined

in Table 3.1). For convenience, we associate an attribute FactID to each relation to

uniquely refer to each fact of the database instance.
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Table 3.1: An inconsistent database instance of flight information records

Airlines

FactID AIRLINE COUNTRY

f1 Southwest United States

f2 Jazz Air Canada

f3 Southwest Canada

Tickets

FactID PNR CODE CLASS FARE

f4 MJ9C8R SWA 1568 Economy 430

f5 KLF88V MI 471 First 914

f6 NJ5RT3 SWA 1568 First 112

Flights

FactID CODE DATE AIRLINE FROM TO DEPARTURE ARRIVAL

f7 JZA 8329 01/29/19 Jazz Air GEG OAK 16:12 PST 18:00 PST

f8 SWA 1568 01/29/19 Silkair YYZ YAM 18:55 EST 18:44 EST

f9 SWA 1568 01/29/19 Southwest LAX OAK 16:18 PST 17:25 PST

3.1 Consistent Query Answering for Key Constraints

In this section, we assume that R is a database schema and Σ is a finite set

of primary key constraints on R, i.e., there is one key constraint per each relation of

R. We first consider unions of boolean conjunctive queries. For a fixed union q :=

q1∪ . . .∪ qk of boolean conjunctive queries q1, . . . , qk, we give a natural polynomial-time

reduction from Certainty(q) to UnSAT. We then extend this reduction to unions of

non-boolean conjunctive queries, so that for every fixed union q := q1 ∪ . . . ∪ qk of non-

boolean conjunctive queries q1, . . . , qk, the consistent answers to q can be computed by

iteratively solving Weighted MaxSAT instances. Note that for a union q := q1∪. . .∪qk of

conjunctive queries, Cons(q) is not, in general, equal to the Cons(q1)∪ . . .∪Cons(qk).

In what follows, we heavily use the notions of key-equal groups of facts and minimal

witnesses to a union of conjunctive queries, that we introduce next.
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Definition 3.1.1. Key-Equal Group. Let I be an R-instance. We say that two facts

of a relation R of I are key-equal if they agree on the key attributes of R. A set S of

facts of I is called a key-equal group of facts if every two facts in S are key-equal, and

no fact in S is key-equal to some fact in I\S.

For example, the key-equal groups of facts of the database instance from Table

3.1 are {f1, f3}, {f2}, {f4}, {f5}, {f6}, {f7}, and {f8, f9}.

Definition 3.1.2. Minimal Witness. Let I be an R-instance and let S be a sub-

instance of I. We say that S is a minimal witness to a union q of conjunctive queries

on I, if S |= q, and for every proper subset S ′ of S, we have that S ′ 6|= q.

3.1.1 Computing Key-Equal Groups and Minimal Witnesses

For the reduction from Certainty(q) to UnSAT to be a polynomial-time

reduction, it is crucial that we can compute the key-equal groups of facts of the incon-

sistent database instance and the minimal witnesses to the union of boolean conjunctive

queries in consideration in polynomial time in the size of the database instance. It is

easy to see that for each relation R of I, the key-equal groups of R can be computed

efficiently by first computing all distinct values of the key attributes of R and then find-

ing for each key-value all facts of R having that key value. The set of minimal witnesses

to a union q of boolean conjunctive queries on a database instance I can be computed

by simply evaluating q and I, and it is well-known that the query evaluation problem

for a fixed union of conjunctive queries is solvable in polynomial-time. If a boolean

conjunctive query in q contains a self-join, then the tuples in the query result q(I) may
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contain duplicate facts. In that case, the duplicates can be removed in linear time to

obtain the set of minimal witnesses. Now, we are ready to present Reduction 3.1.1, a

natural polynomial-time reduction from Certainty(q) to UnSAT.

Reduction 3.1.1. Let q be a fixed union of boolean conjunctive queries over R. Given

an R-instance I, we construct a CNF-formula φ as follows. For each fact fi of I,

introduce a boolean variable xi, 1 ≤ i ≤ n. Let G be the set of key-equal groups of facts

of I, and let W be the set of minimal witnesses to q on I.

• For each key-equal group Gj ∈ G, construct the clause αj = ∨
fi∈Gj

xi.

• For each minimal witness Wj ∈ W, construct the clause βj = ∨
fi∈Wj

¬xi.

• Construct the CNF-formula φ =
( |G|
∧
i=1

αi

)
∧
( |W|
∧
j=1

βj

)
.

Proposition 3.1.1. For a CNF-formula φ constructed using Reduction 3.1.1, the fol-

lowing two statements hold.

1. The size of φ is polynomial in the size of I.

2. The formula φ is satisfiable if and only if Certainty(q, Σ) is false on I.

Proof. Let n be the number of facts in I. There are exactly n boolean variables used in

φ. Clearly, |G| ≤ n, therefore the number of α-clauses is bounded above by n. Similarly,

for each Gj ∈ G, we have that |Gj | ≤ n. Hence, the length of each α-clause is also at

most n. If d is the number of atoms in q, then we have that |W| ≤ nd; moreover, for

every Wj ∈ W, we have that |Wj | ≤ d. Hence, the number of β-clauses in φ is at most

nd, and the length of each β-clause is bounded above by d. Since the union q of boolean

conjunctive queries is fixed, we have that d is a constant. Therefore, the first statement
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of Proposition 3.1.1 holds.

To prove the second part of Proposition 3.1.1, assume first that Certainty(q)

is false on I. Hence, there exists a repair J of I that falsifies q. Construct an assignment

s to the variables in φ by setting s(xi) = 1 if and only if fi ∈ J . Since exactly one fact

from each key-equal group of I is present in J , exactly one variable from each α-clause

is set to 1 in s. Also, since J 6|= q, no minimal witness to q is in J . Therefore, at least

one variable from each β-clause is set to 0 in s. Hence, s is a satisfying assignment to

φ. For the other direction, let s be a satisfying assignment to φ. Since no two α-clauses

share a variable, we can construct a set X of variables by arbitrarily choosing exactly

one xi from each α-clause, such that s(xi) = 1. Construct a set J of facts of I, such

that fi ∈ J if and only if xi ∈ X. It is easy to see that J contains exactly one fact from

each key-equal group of I, and no minimal witness to q on I is present in J . Hence, J

is a repair of I that falsifies q.

Example 3.1.1. Consider the database instance from Table 3.1 and a union q of boolean

conjunctive queries that ask whether at least one of Jazz Air and Southwest airlines

belongs to Canada, i.e., q() := q1∪ q2, where q1() := Airlines(‘Jazz Air’, ‘Canada’) and

q2() := Airlines(‘Southwest’, ‘Canada’).

We introduce variables x1, x2, and x3 corresponding to the facts f1, f2, and

f3 respectively. We do not need variables corresponding to the facts of the relations

whose symbols do not appear in the queries in consideration. We construct two α-

clauses (x1 ∨ x3) and (x2) since the facts f1 and f3 form a key-equal group of size
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two, and {f2} is a key-equal group of size one. The sets {f2} and {f3} are minimal

witnesses to q so we construct two β-clauses (¬x2) and (¬x3), resulting in a CNF-

formula φ = (x1 ∨ x3) ∧ (x2) ∧ (¬x2) ∧ (¬x3). Clearly, the formula φ is unsatisfiable

due to the presence of the clauses (x2) and (¬x2), implying that Certainty(q) is true

by Proposition 3.1.1. Observe that the two conflicting clauses (x2) and (¬x2) arise

because the fact Airlines(‘Jazz Air’, ‘Canada’) is present in every repair of the database

instance, which is precisely the reason why Certainty(q) is true.

Next, we show how Reduction 3.1.1 can be modified to support unions of non-

boolean conjunctive queries. Let q be a fixed union of non-boolean conjunctive queries

on R, i.e., q has one or more free variables. We extend Reduction 3.1.1 to Reduction

3.1.2, so that one can reason about the consistent answers to q on an R-instance I

using the satisfying assignments of the CNF-formula φ constructed via Reduction 3.1.2.

We use the term potential answers to refer to the answers to q on I. If ~al is such a

potential answer, we write q[~al] to denote the boolean conjunctive query obtained from

q by replacing the free variables in the body of q by corresponding constants from ~al. To

reason about the potential answers via the satisfying assignments of the CNF formula,

we associate each potential answer ~al with a boolean variable pl, and it is set to true in

only those assignments from which a repair J can be constructed such that ~al 6∈ q(J ).

Reduction 3.1.2. Given an R-instance I, we construct a CNF-formula φ as follows.

For each fact fi of I, introduce a boolean variable xi, 1 ≤ i ≤ n. Let G be the set of

key-equal groups of facts of I and let A be the set of potential answers to q on I. For
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each ~al ∈ A, let W l denote the set of minimal witnesses to the union q[~al] of boolean

conjunctive queries on I. For each ~al ∈ A, introduce a boolean variable pl, 1 ≤ l ≤ |A|.

• For each Gj ∈ G, construct the clause αj = ∨
fi∈Gj

xi.

• For each ~al ∈ A and for each W l
j ∈ W l, construct the clause

βlj =
(
∨

fi∈W l
j

¬xi
)
∨ ¬pl.

• Construct the boolean formula φ =
( |G|
∧
i=1

αi

)
∧
( |A|
∧
l=1

( |Wl|
∧
j=1

βlj

))
.

Proposition 3.1.2. For a CNF-formula φ constructed using Reduction 3.1.2, the fol-

lowing two statements hold.

1. The size of φ is polynomial in the size I.

2. There exists a satisfying assignment to φ in which a variable pl is set to true if

and only if ~al /∈ Cons(q, I).

Proof. Let n be the number of facts in I. Let m be the arity of the query q and let d

and the number of atoms of q. Since an answer to q is a set of at most m facts, we have

that |A| ≤ nm. For each l, the number of witnesses in W l is bounded by nd. Therefore,

there are at most nm+d β-clauses in φ, each of length at most d. Since the query q

is not part of the input to Cons(q), the quantities m and d are constants. It follows

directly from Proposition 3.1.1 that both the number of α-clauses and the length of

each α-clause in φ are bounded above by n.

To prove the second part of the proposition, assume first that ~al /∈ Cons(q).

Hence, there exists a repair J of I, such that no minimal witness to q[~al] is in J .

Construct an assignment s to the variables in φ as follows. Set s(xi) = 1 if and only
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if fi ∈ J . Set s(pl) = 1, and set s(pj) = 0 for all j 6= l. Since exactly one fact from

each key-equal group of I is in J , the assignment sets to 1 exactly one variable from

each α-clause. Since no minimal witness to q[~al] is in J , at least one variable from each

βl-clause is set to 0 in s, thus satisfying all βl-clauses, even when pl is set to 1. All other

β-clauses are satisfied trivially because of the assignment s(pj) = 0, for all j 6= l. In

the other direction, let s be the satisfying assignment to φ, such that s(pl) = 1. Since

no two α-clauses share a variable, we can construct a set X of variables by arbitrarily

choosing exactly one xi from each α-clause, such that s(xi) = 1. Construct a set J of

facts of I, such that fi ∈ J if and only if xi ∈ X. It is easy to see that exactly one fact

from each key-equal group of I is present in J . Since s(pl) = 1 and since all βl-clauses

are satisfied by s, at least one fact from each minimal witness to q[~al] is missing in J .

Hence, J must be a repair of I such that J 6|= q[~al].

Example 3.1.2. Suppose we want to find out the codes of the flights that belong to an

airline from Canada and fly to the airport OAK. This can be expressed by the unary

conjunctive query q(x) := Flights(x, y, z, p, ‘OAK’, q, r) ∧Airlines(z, ‘Canada’).

There are two potential answers to q, namely, ‘JZA 8329’ and ‘SWA 1568’, so

we introduce their corresponding variables p1 and p2. Since the facts f1 and f3 form a

key-equal group, we construct an α-clause (x1 ∨ x3). Similarly, since the set {f2, f7} of

facts is a minimal witness to q[‘JZA 8329’], we construct the β-clause (¬x2∨¬x7∨¬p1).

By continuing this way, we obtain the following CNF-formula φ:

(x1 ∨ x3) ∧ x2 ∧ x4 ∧ x5 ∧ x6 ∧ x7 ∧ (x8 ∨ x9) ∧ (¬x2 ∨ ¬x7 ∨ ¬p1) ∧ (¬x3 ∨ ¬x9 ∨ ¬p2).

43



The clauses (x2), (x7), and (¬x2 ∨¬x7 ∨¬p1) force p1 to take value 0 in each satisfying

assignment of φ, because the facts f2 and f7 appear in every repair of the database, thus

making ‘JZA 8329’ a consistent answer. In contrast, there is a satisfying assignment of

φ in which p2 is set to 1, implying that ‘SWA 1568’ is not a consistent answer.

3.2 Consistent Query Answering for Denial Constraints

Primary keys are an important but limited class of integrity constraints. In

what follows, we consider the broader class of denial constraints, which includes primary

keys and functional dependencies are special cases. We give a polynomial-time reduction

from Cons(q, I,Σ) to UnSAT, where Σ is a fixed finite set of arbitrary denial constraints

and q is a fixed union of non-boolean conjunctive queries. The potential answers to q are

treated in the same way as the potential answers to the conjunctive query q in Reduction

3.1.2; to this effect, we introduce a boolean variable for each potential answer. As a

result, it should not be difficult to imagine the union of boolean conjunctive queries

as a special case of this reduction. Reduction 3.1.2 relies on the notions of minimal

violations and near-violations to the set of denial constraints that we introduce next.

Definition 3.2.1. Minimal violation. Assume that Σ is a set of denial constraints,

I is an R-instance, and S is a sub-instance of I. We say that S is a minimal violation

to Σ, if S 6|= Σ and for every set S ′ ⊂ S, we have that S ′ |= Σ.

Definition 3.2.2. Near-violation. Assume that Σ is a set of denial constraints, I

is an R-instance, S is a sub-instance of I, and f is a fact of I. We say that S is a
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near-violation w.r.t. Σ and f , if S |= Σ and S ∪ {f} is a minimal violation to Σ. As a

special case, if {f} itself is a minimal violation to Σ, then we say that there is exactly

one near-violation w.r.t. f , and it is the singleton {ft}, where ft is an auxiliary fact.

3.2.1 Computing Minimal Violations and Near-Violations

For Reduction 3.2.1 to be a polynomial-time reduction, it is important that the

minimal violations and the near-violations are computed in the time that is polynomial

in the size of the database instance. Here, we show for a fixed finite set Σ of arbitrary

denial constraints on a database schema R, the minimal violations of an R-instance

I can be computed efficiently. The body of a denial constraint d ∈ Σ is treated as a

boolean conjunctive query qd, possibly containing atomic formulas from d that use built-

in predicates such as =, 6=, <, >, ≤, and ≥, in addition to the relation symbols. The set

of minimal witnesses to qd on I is computed as described in Section 3.1.1, which is also,

precisely, the set of minimal violations to d. The union of the sets of minimal violations

over all denial constraints in Σ gives us the set of minimal violations to Σ. For each fact

f ∈ I, the set of near-violations to Σ w.r.t. f can be obtained by removing f from every

minimal violation to Σ that contains f unless {f} itself is a minimal violation to Σ.

That special case can be handled separately. With this, we now give Reduction 3.2.1.

Let R be a database schema, Σ be a fixed finite set of arbitrary denial constraints on

R, and let q := q1 ∪ · · · ∪ qk be a union of non-boolean conjunctive queries q1, · · · , qk.

Reduction 3.2.1. Given an R-instance I, we construct a boolean formula φ′ as follows.

Compute the following sets:
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• V: the set of minimal violations to Σ on I.

• N i: the set of near-violations to Σ, on I, w.r.t. each fact fi ∈ I.

• A: the set of potential answers to q on I.

• W l: the set of all minimal witnesses to q[~al] on I, for each ~al ∈ A.

For each fact fi of I, introduce a boolean variable xi, 1 ≤ i ≤ n. For the auxiliary fact

ft, introduce a boolean constant xtrue = true. For each N i
j ∈ N i, introduce a boolean

variable yij, and for each ~al ∈ A, introduce a boolean variable pl.

1. For each Vj ∈ V, construct a clause αj = ∨
fi∈Vj
¬xi.

2. For each ~al ∈ A and for each W l
j ∈ W l, construct a clause βlj =

(
∨

fi∈W l
j

¬xi
)
∨ ¬pl.

3. For each fi ∈ I, construct a clause γi = xi ∨
(
∨

N i
j∈N i

yij

)
.

4. For each variable yij, construct an expression θij = yij ↔
(
∧

fd∈N i
j

xd

)
.

5. Construct the following boolean formula φ′:

φ′ =
( |V|
∧
i=1

αi

)
∧
( |A|
∧
l=1

( |Wl|
∧
j=1

βlj

))
∧
( |I|
∧
i=1

(( |N i|
∧
j=1

θij

)
∧ γi

))
Proposition 3.2.1. For a boolean formula φ′ constructed using Reduction 3.2.1, the

following two statements hold.

1. The formula φ′ can be transformed to an equivalent CNF-formula φ whose size is

polynomial in the size of I.

2. There exists a satisfying assignment to φ′ in which a variable pl is set to 1 if and

only if ~al 6∈ Cons(q, I,Σ).

Proof. Let n be the number of facts of I. Let d1 be the smallest number such that there

exists no denial constraint in Σ whose number of database atoms is bigger than d1. Also,
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let d2 be the smallest number such that there exists no conjunctive query in q whose

number of database atoms is bigger than d2. Since Σ and q are not part of the input

to Cons(q), the quantities d1 and d2 are fixed constants. We also have that |V| ≤ nd1 ,

|N i| ≤ nd1 for 1 ≤ i ≤ n, |A| ≤ nd2 , and |W l| ≤ nd2 for 1 ≤ l ≤ |A|. The number of x-,

y-, and p-variables in φ′ is therefore bounded by n, nd1+1, and nd2 , respectively. The

formula φ′ contains as many α-clauses as |V|, and none of the α-clause’s length exceeds

n. Similarly, there are at most nd2 β-clauses, and none of their lengths exceeds d2 + 1.

The number of γ-clauses is precisely n, and each γ-clause is at most nd1+1 + 1 literals

long. There are as many θ-expressions as there are y-variables. Every θ-expression is of

the form y ↔ (x1 ∧ ... ∧ xd), where d is a constant obtained from the number of facts

in the corresponding near-violation. Each θ-expression can be equivalently written in a

constant number of CNF-clauses as ((¬y ∨ x1) ∧ ... ∧ (¬y ∨ xd)) ∧ (¬x1 ∨ ... ∨ ¬xd ∨ y),

in which the length each clause is constant. This makes it possible to transform φ′ into

an equivalent CNF-formula φ, whose size is polynomial in the size of I.

To prove the second part of the proposition, assume first that s is a satisfying

assignment to the variables in φ′ such that s(pl) = 1. Construct a database instance J

such that fi ∈ J if and only if s(xi) = 1. The α-clauses make sure that no minimal

violation to Σ is present in J , meaning that J is a consistent subset of I. The γ-clauses

and the θ-expressions encode the condition that, for every fact f ∈ I, either f ∈ J or

at least one near-violation w.r.t. Σ and f is in J . This condition makes sure that J is

indeed a repair of I. Since s(pl) = 1, the βl-clauses ensure that at least one fact from

each minimal witness to q[~al] is missing from J , meaning that ~al 6∈ q(J ).
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In the other direction, given a repair J that falsifies q[~al], build an assignment

s as follows. Set s(xi) = 1 if and only if fi ∈ J . Set s(pl) = 1, and set s(pl′) = 0 for

all l′ 6= l. Since J |= Σ, no minimal violation to Σ is a subset of J , meaning that s

satisfies all α-clauses in φ′. Also, for every fact f ∈ I, it must be the case that either

f ∈ J or at least one near-violation w.r.t. Σ and f is in J (otherwise J would not

have been a repair of I). Therefore, all γ-clauses and θ-expressions are also satisfied by

the assignment s. Since J 6|= q[~al], at least one fact from each minimal witness to q[~al]

must be missing from J , meaning that there is at least one variable xi in each βl-clause

such that s(xi) = 0. Hence, all βl-clauses are satisfied by s, even when s(pl) = 1. All

other β-clauses are satisfied trivially, since s(pl′) = 0, for all l′ 6= l.

Example 3.2.1. Consider again the database instance from Table 3.1 but now with two

additional integrity constraints as follows:

(a) if a flight departs from YYZ, then its airline must be Jazz Air; and

(b) for Southwest airlines, if two tickets have the same code, then the ticket with an

economy class must have a lower fare than the one with the first class.

These can be expressed as the following denial constraints:

(a) ∀x, y, z, w, p, q ¬(Flights(x, y, z, ‘YYZ’, w, p, q) ∧ z 6= ‘Jazz Air’)

(b) ∀x, y, z, w, p, q ¬(Flights(x, y, ‘Southwest’, z, w, p, q) ∧ Tickets(r, x, ‘First’, t)

∧ Tickets(r′, x, ‘Economy’, t′) ∧ t ≤ t′)

Suppose we want to find the PNR numbers of the tickets booked with first-class, or

with Silkair airlines. This can be expressed as the union q(x) := q1 ∪ q2 of two unary
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conjunctive queries, where q1(x) := ∃y, z Tickets(x, y, ‘First’, z) and

q2(x) := ∃y, z, w, p, q, r, s, t Tickets(x, y, z, w) ∧ Flights(y, ‘Silkair’, p, q, r, s, t).

The minimal violations to Σ are {f1, f3}, {f8}, and {f4, f6, f9}, while the

minimal witnesses to q are {f5}, {f6}, and {f4, f8}. The near violations to Σ w.r.t. the

facts f1, . . . , f9 are {f3}, none, {f1}, {f6, f9}, none, {f4, f9}, none, {ft}, and {f4, f6},

respectively. If |N i
j | = 1, there is no need to introduce a variable yij, since it is going

to be equivalent to the x-variable corresponding to the only fact in N i
j . With this, we

construct the α-, β-, γ-clauses, and the θ-expressions of φ′ as follows:

α-clauses: (¬x1 ∨ ¬x3), (¬x8), (¬x4 ∨ ¬x6 ∨ ¬x9)

β-clauses: (¬x5 ∨ ¬p1), (¬x6 ∨ ¬p2), (¬x4 ∨ ¬x8 ∨ ¬p3)

γ-clauses: (x1∨x3), (x2), (x3∨x1), (x4∨y41), (x5), (x6∨y61), (x7), (x8∨xtrue), (x9∨y91)

θ-expressions: (y41 ↔ (x6 ∧ x9)), (y61 ↔ (x4 ∧ x9)), (y91 ↔ (x4 ∧ x6))

From this, the following CNF-formula φ is constructed.

φ = (¬x1 ∨ ¬x3) ∧ (¬x8) ∧ (¬x4 ∨ ¬x6 ∨ ¬x9) ∧ (¬x5 ∨ ¬p1) ∧ (¬x6 ∨ ¬p2)

∧ (¬x4 ∨ ¬x8 ∨ ¬p3) ∧ (x1 ∨ x3) ∧ (x2) ∧ (x4 ∨ y41) ∧ (x5) ∧ (x6 ∨ y61) ∧ (x7)

∧ (x9 ∨ y91) ∧ (¬y41 ∨ x6) ∧ (¬y41 ∨ x9) ∧ (y41 ∨ x6 ∨ x9) ∧ (¬y61 ∨ x4)

∧ (¬y61 ∨ x9) ∧ (y61 ∨ x4 ∨ x9) ∧ (¬y91 ∨ x4) ∧ (¬y91 ∨ x6) ∧ (y91 ∨ x4 ∨ x6)

Observe that, in each satisfying assignment to φ, the variable p1 must take the value 0

due to the unit clause (x5). In contrast, this is not the case for p2 and p3. By Proposition

3.2.1, ‘KLF88V’ is a consistent answer, but ‘MJ9C8R’ and ‘NJ5RT3’ are not.
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3.3 Computing Consistent Answers via Partial MaxSAT

By Proposition 3.1.1, the certain answer to a union of boolean conjunctive

queries over a schema R with primary key constraints can be computed by solving

the CNF-formula constructed in Reduction 3.1.1 using a SAT solver and checking for

its unsatisfiability. For non-boolean queries, however, in a CNF-formula φ constructed

using Reduction 3.1.2 or Reduction 3.2.1, one needs to identify each variable pl such

that there exists at least one satisfying assignment to φ in which pl gets set to 1. By

Proposition 3.2.1, the corresponding potential answers can then be discarded for being

inconsistent. One way to do this is as follows. Add a clause (p1 ∨ ... ∨ p|A|) to φ, and

solve φ using a SAT solver. For each pl that gets set to 1 in the solution of φ, remove

the literal pl from φ and then solve φ again. Repeat this process until φ is no longer

satisfiable. At the end of this iterative process, the potential answers corresponding

to the p-variables that still occur positively in φ are precisely the consistent answers.

This approach, however, requires many SAT instances to be solved when the number of

potential answers is large. In the worst case, it needs to solve as many SAT instances

as there are potential answers, which is polynomial in the size of the database instance.

For this reason, we developed Algorithm 1, a different method that relies on iteratively

solving Partial MaxSAT instances. Construction 3.3.1 describes the construction of the

initial Partial MaxSAT instance that Algorithm 1 uses in its first iteration. In every

iteration, Algorithm 1 computes an optimal solution to the Partial MaxSAT instance

using a state-of-the-art solver and then modifies the instance based on the solution. This
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iterative process computes the consistent answers to the union of conjunctive queries

in consideration by means of eliminating all inconsistent potential answers. In our

experiments, we found that Algorithm 1 takes less than four iterations to terminate

even on large databases with queries of high selectivity.

Construction 3.3.1. Let φ be the CNF-formula constructed using Reduction 3.1.2 or

Reduction 3.2.1. Construct a Partial MaxSAT instance ψ as follows.

1. For each ~al ∈ A, construct a unit clause εl = (pl).

2. Construct a CNF-formula ψ = φ ∧
( |A|
∧
l=1

εl

)
.

3. Treat all clauses in ψ that come from φ as hard and all εl-clauses as soft.
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Algorithm 1 Eliminating Inconsistent Potential Answers

1: procedure EliminateWithPMaxSAT(ψ,A)

2: let Ans = bool array[|A|]

3: for l = 1 to |A| do

4: Ans[l] ← true

5: let bool moreAnswers ← true

6: while moreAnswers do

7: moreAnswers ← false

8: let opt ← MaxSAT(ψ) . Use Partial MaxSAT solver

9: for l = 1 to |A| do

10: if opt [pl] = 1 then

11: moreAnswers ← true

12: Ans[l] ← false

13: Remove the unit clause (pl) from ψ

14: Remove all clauses containing the literal ¬pl from ψ

15: Add a new unit hard clause (¬pl) to ψ

16: return Ans

The idea of Algorithm 1 is to eliminate, in each iteration, as many inconsistent

answers from A as possible by solving ψ, and after each call to a solver, modifying ψ in

such a way that additional inconsistent answers, if any are still left, can be eliminated

in subsequent iterations. Proposition 4.3.3 proves the correctness of Algorithm 1, but

first, we state and prove Lemma 3.3.1, that reasons about the satisfying assignments to

the Partial MaxSAT instance ψ, constructed using Construction 3.3.1. This lemma is
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used in proving Proposition 4.3.3.

Lemma 3.3.1. Let φ′ be the CNF-formula constructed in Step 1 of Reduction 3.3.1,

and ψi be the Weighted MaxSAT instance at the beginning of ith iteration of Algorithm

1. For all i, every optimal solution of ψi satisfies all clauses in φ′.

Proof. We prove Lemma 3.3.1 by induction on i. The CNF-formula φ′ constructed in

Step 1 of Reduction 3.3.1 can always be satisfied by setting all x-variables to 1, and all

p-variables to 0. The clauses in φ being hard, ε being soft ensures that every optimal

solution of ψ0 satisfies all clauses in φ. Assume that for some i ≥ 0, every optimal

solution to ψi satisfies all clauses in φ. At the end of iteration i + 1, if moreAnswers

is true, the formula ψi+1 is constructed from ψi by adding to ψi the unit hard clauses

(¬pl). This forces every optimal solution of ψi+1 to satisfy all of these added clauses.

Since no pl variable occurs positively in φ, we have that, for all i, every optimal solution

to ψi+1 still satisfies φ.

Proposition 3.3.1. Algorithm 1 returns an array Ans such that ~al ∈ Cons(q, I,Σ) if

and only if the entry Ans[l] is true.

Proof. In one direction, for every l, if ~al ∈ Cons(q, I,Σ), then, by the second part of

Proposition 3.2.1, the variable pl takes value 0 in every assignment that satisfies φ. By

Lemma 3.3.1, for every i, the optimal solution of ψi also assigns value 0 to the variable

pl. As a result, Line 12 never gets executed, and the entry Ans[l] remains true.

For the other direction, we first prove that Algorithm 1 always terminates. At

the end of the ith iteration, for every l, a unit clause (pl) is present in ψi if and only
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if Ans[l] is true. Hence, at the end of ith iteration, if moreAnswers is true, then the

optimal solution to ψi must have assigned value 1 to at least one variable pl such that

Ans[l] was previously true. Therefore, at the end of ith iteration, at least i entries in

Ans are false. It follows that Algorithm 1 terminates after at most |A| iterations.

Now, since no clause in φ contains a positive literal pl, the addition of a unit

hard clause (¬pl) to ψi does not suppress any satisfying assignments to φ while finding

the optimal solution to ψi+1. Therefore, in every iteration, the optimal solution of ψ

guarantees to satisfy the maximum number of pl variables for which the unit clause

(pl) is still in ψ. As a result, Algorithm 1 does not terminate until it marks the entries

Ans[l] false, for all l, for which there exists a satisfying assignment to φ in which pl

gets assigned to 1. In other words, by the second part of Proposition 3.2.1, for every

inconsistent answer ~al, the entry Ans gets marked as false.
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Chapter 4

Range Consistent Answers via SAT

Solving

In this chapter, we give polynomial-time reductions from computing the range

consistent answers of aggregation queries to variants of SAT. The reductions Section 4.2

and Section 4.3 assume that the aggregation query does not have the grouping construct,

and the database schema has one key constraint per relation; in Section 4.4, we show

how these reductions can be extended to schemata with arbitrary denial constraints,

and in Section 4.5 we describe an iterative algorithm to obtain the range consistent

answers to aggregation queries with grouping. The range consistent answers to the

aggregation queries with SUM(A), COUNT(A), and COUNT(*) operators are obtained in

a similar fashion; Reduction 4.2.1 handles these operators. The reductions to handle

queries with MIN(A) and MAX(A) operators are different and we discuss them in Section

4.3. We do not yet have a natural reduction from the range consistent answers to
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queries with the aggregation operator AVG(A) to any variant of SAT, and the problem

is left open for future research (see Chapter 7 for more details). Before we provide the

reductions to compute the range consistent answers using SAT solvers, in Section 4.1,

we first corroborate the need for a system that goes well beyond ConQuer by showing

two hardness results about the range consistent answers. Specifically, in Theorem 4.1.1,

we prove that there exists an aggregation query Q involving SUM(A) such that the

consistent answers of the underlying conjunctive query q w.r.t. key constraints are FO-

rewritable, but the range consistent answers of Q are NP-hard.

4.1 The Complexity of Range Consistent Answers

Recall that Arenas et al. [16] investigated the computational complexity of

the range consistent answers for scalar aggregation queries of the form

SELECT f(A) FROM R(U,A) ,

where f(A) is one of the standard aggregation operators and R(U,A) is a relational

schema with functional dependency constraints. They proved a dichotomy in the com-

plexity of consistent answers to such queries, i.e., for queries without grouping and with

exactly one relation symbol, where the integrity constraints in consideration were func-

tional dependencies (see Section 2.2 for details). However, it remains an open problem

to pinpoint the complexity of the range consistent answers to a richer class of aggrega-

tion queries, namely, the queries of the form

Q := SELECT Z, f(A) FROM T (U,Z,A) GROUP BY Z,
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where T (U,Z,A) is the relation returned by a conjunctive query q or by a union

q := q1 ∪ · · · ∪ qk of conjunctive queries.

First, we show in Proposition 4.1.1 that if computing the consistent answers

Cons(q) of the underlying query q is a hard problem, then computing the range con-

sistent answers Cons(Q) of the aggregation query Q is a hard problem as well.

Proposition 4.1.1. Let Q := SELECT Z, f(A) FROM T (U,Z,A) GROUP BY Z be an

aggregation query where T (U,Z,A) is the relation returned by a self-join-free conjunctive

query q(U,Z,A) such that Cons(q) 6∈ P . Then, Cons(Q) 6∈ P .

Proof. We use the notion of attack graphs [57, 58, 59] for this proof. Let G be the

attack graph of the boolean self-join-free conjunctive query qb where qb is obtained from

q(U,Z,A) by replacing the variable corresponding to the aggregation attribute A and

the variables corresponding to the attributes in U and Z by some constants. Since

Cons(q) 6∈ P , we must have that Certainty(qb) 6∈ P and that G has a strong cycle

(because Certainty(qb) ∈ P would imply Cons(q) ∈ P ). Now, consider a query q′

such that the atoms in q′ are the same as that in q, but the variables corresponding

to the grouping attribute Z are the only free variables in q′. Hence, q′ can be written

as q′(Z) := ∃U∃A T (U,Z,A). Therefore, for every atom F ∈ q (or F ∈ q′), we have

that the set F+,q of variables, the transitive closure of the key variables of F w.r.t.

the dependencies arising from the key constraints on the relation symbols in q\F , is a

subset of F+,q′ . Hence, the graph G is a spanning subgraph of the attack graph of q′,

implying that the attack graph of q′ also contains a strong cycle and Cons(q′) 6∈ P .
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Now, it is easy to see that if Cons(Q) ∈ P , the attributes in Z can be projected out

from a materialized view of Cons(Q) to obtain Cons(q′) in polynomial time, leading

to a contradiction.

This gives rise to the following question: what can we say about the complexity

of the range consistent answers Cons(Q) if computing the consistent answers Cons(q)

of the underlying query is an easy problem?

Recall that Fuxman [39] introduced a class called Caggforest consisting of all ag-

gregation queries such that the aggregation operator is one of MIN(A), MAX(A), SUM(A),

COUNT(*), the underlying query q is a conjunctive query in Cforest, and there is one key

constraint for each relation in the underlying query q. Fuxman [39] showed that the

range consistent answers of every query in Caggforest are SQL-rewritable but the SQL-

rewritability of aggregation queries beyond those in Caggforest has not been investigated.

Here, we show that there exists a self-join-free conjunctive query whose consistent an-

swers are FO-rewritable, but the SQL-rewritability property does not hold when an

aggregation operator is added on top of it. Specifically, we reduce the Maximum Cut

problem to the problem of computing the range consistent answers to an aggregation

query without grouping that involves the SUM operator and whose underlying conjunc-

tive query has FO-rewritable consistent answers. We begin by recalling the definition

of the Maximum Cut, a fundamental NP-complete problem [52].

Definition 4.1.1. Maximum Cut. For an undirected graph G = (V,E), a cut of G is

a partition (S, S) of V , where S ⊆ V and S = V \S. The set of edges with one vertex
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in S and one vertex in S is denoted by E(S, S), and the the size of the cut (S, S) is

|E(S, S)|. The Maximum Cut problem asks: Given an undirected graph G and an

integer k, is there a cut of G that has size at least k?

Theorem 4.1.1. Let R be a schema with three relations R1(A1, B1), R2(A2, B2), and

R3(A1, B1, A2, B2, C). Let Q be the following aggregation query:

Q := SELECT SUM(A) FROM q(A),

where q(A) is the following self-join-free conjunctive query:

q(A) := ∃x∃y R1(x, ‘red’) ∧R2(y, ‘blue’) ∧R3(x, ‘red’, y, ‘blue’, A).

Then the following two statements hold.

1. Cons(q) is FO-rewritable.

2. Cons(Q) is NP-hard.

Proof. To show that Cons(q) is FO-rewritable, consider the first-order query q′:

q′(A) := ∃x∃y(R1(x, ‘red’) ∧R2(y, ‘blue’) ∧R3(x, ‘red’, y, ‘blue’, A)

∧ ∀z(R1(x, z)→ z = ‘red’) ∧ ∀w(R2(y, w)→ w = ‘blue’)).

We will show that for every instance I and every value a, we have that a ∈ q′(I) ⇔

a ∈ Cons(q, I). Since q′ filters out the tuples from R1 and R2 that participate in the

violations of the key constraints, we have that if a ∈ q′(I), then a ∈ q(J ), for every

repair J of I, which means that a ∈ Cons(q, I). In the other direction, we claim that

if a ∈ Cons(q, I), then a ∈ q′(I). Indeed, if a 6∈ q′(I), then for all x and y such that

R1(x, ‘red’)∧R2(y, ‘blue’)∧R3(x, ‘red’, y, ‘blue’, a), we would have that there is some z
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such that R1(x, z) and z 6= ‘red’ or there is some w such that R2(y, w) and w 6= ‘blue’.

Construct a repair J of I as follows. First, for every x, if ‘red’ is the only value z

such that R1(x, z) is a fact of I, then put R1(x, ‘red’) in J ; otherwise, pick an element

z∗ 6= ‘red’ such that R1(x, z
∗) is a fact of I and put R1(x, z

∗) in J . Second, for every

y, if ‘blue’ is the only value w such that R2(y, w) is a fact of I, then put R2(y, ‘blue’)

in J ; otherwise, pick an element w∗ 6= ‘blue’ such that R1(y, w
∗) is a fact of I and put

R2(x,w
∗) in J . Third, put every tuple of the relation R3 of I into J . Clearly, J is a

repair of I. Moreover, a 6∈ q(J ). Indeed, if a ∈ q(J ), then there are elements x and y

such that J |= R1(x, ‘red’) ∧R2(y, ‘blue’) ∧R3(x, ‘red’, y, ‘blue’, a). Since a 6∈ q′(I), we

have that there is some z′ such that R1(x, z
′) and z′ 6= ‘red’ or there is some w′ such

that R2(y, w
′) and w′ 6= ‘blue’. In the first case, the construction of J implies that

R1(x, ’red’) is not a fact of J , while in the second case, the construction of J implies

that R2(y, ‘blue’) is not a fact of J ; in either case, we have arrived at a contradiction.

In the other direction, if a ∈ Cons(q, I), there must exist x and y such that

the dependencies (R1(x, z) → z = ‘red’) and (R2(y, w) → w = ‘blue’) hold in I, since,

otherwise, we could construct a repair J of I such that for every x, y that satisfies

R1(x, ‘red’)∧R2(y, ‘blue’)∧R3(x, ‘red’, y, ‘blue’, u), we pick a z other than ‘red’ and put

R1(x, z) in J , and pick a w other than ‘blue’ and put R2(y, w) in J . This would imply

a 6∈ q(J ), which is a contradiction.

To show that Cons(Q) is NP-hard, consider the following reduction from

undirected graphs to R-instances, where R is the schema with relations R1(A1, B1),

R2(A2, B2), and R3(A1, B1, A2, B2, C).
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Reduction 4.1.1. Given an undirected graph G = (V,E), let m = −|E| − 1, and

construct an R-instance I as follows.

• For each v ∈ V , add tuples R1(v, ‘red’), R1(v, ‘blue’), R2(v, ‘red’), and

R2(v, ‘blue’) to I.

• For each v ∈ V , add a tuple R3(v, ‘red’, v, ‘blue’,m) to I.

• For each edge (u, v) ∈ E, add tuples R3(u, ‘red’, v, ‘blue’, 1) and

R3(v, ‘red’, u, ‘blue’, 1) to I.

We will show that Reduction 4.1.1 reduces Maximum Cut to computing the

range semantics of the aggregation query Q. Let G be an undirected graph and I be

the database instance constructed from G using Reduction 4.1.1. We say that a repair

J ′ of I produces a red-blue coloring of G if for every vertex v ∈ V , we have that the

tuples R1(v, ‘red’) and R2(v, ‘red’) are either both present in J ′ or both absent in J ′.

We now prove a useful lemma.

Lemma 4.1.1. For every repair J of I, there exists a repair J ′ of I (not necessarily

different from J ) such that J ′ produces a red-blue coloring of G and Q(J ′) ≥ Q(J ).

Proof. Let J be a repair of I. Construct an R-instance J ′ from J as follows. For every

vertex v ∈ V , if both tuples R1(v, x) and R2(v, x) are present in J for x ∈ {‘red’, ‘blue’},

then add them to J ′. Otherwise, add the tuples R1(v, ‘red’) and R2(v, ‘red’) to J ′.

Also, copy all tuples from relation R3 of J to relation R3 of J ′. Clearly, J ′ is a

repair of I and J ′ produces a red-blue coloring of G. Observe that Q(J ′) can be

different than Q(J ) only if there exists at least one vertex v ∈ V such that either
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R1(v, ‘red’), R2(v, ‘blue’) ∈ J or R1(v, ‘blue’), R2(v, ‘red’) ∈ J . We will show that

Q(J ′) ≥ Q(J ) holds in both cases.

Case 1: Let v be a node such that R1(v, ‘red’), R2(v, ‘blue’) ∈ J . In this case,

while populating the database instance J ′, vertex v changes its color in relation R2,

i.e., we have that R2(v, ‘red’) ∈ J ′ and R2(v, ‘blue’) 6∈ J ′. Therefore, the summands

arising from the tuples of the form R1(u, ‘red’), R2(v, ‘blue’), and R3(u, ‘red’, v, ‘blue’, 1)

of J (for some vertex u 6= v ∈ V ) do not appear in Q(J ′). Notice that each of these

summands contributes value 1 to Q(J ) and the number of these summands is at most

|E|. At the same time, the summand that contributes value m to Q(J ) arising from the

tuples R1(v, ‘red’), R2(v, ‘blue’), and R3(v, ‘red’, v, ‘blue’) of J also does not appear in

Q(J ′). Since m = −|E| − 1, it follows that Q(J ′) cannot be made smaller than Q(J )

on account of such a node v.

Case 2: Let v be a node such that R1(v, ‘blue’), R2(v, ‘red’) ∈ J . In this

case, while populating J ′, vertex v changes its color in relation R1, i.e., we have that

R1(v, ‘red’) ∈ J ′ and R1(v, ‘blue’) 6∈ J ′. Compared to Q(J ), this can only increase the

number of summands that contribute 1 to Q(J ′), by possibly having new summands

arising from the tuples of type R1(v, ‘red’), R2(w, ‘blue’), and R3(v, ‘red’, w, ‘blue’, 1)

of J ′ (for some vertex w 6= v ∈ V ). Moreover, for every vertex u ∈ V , it is true

that, if R1(u, ‘red’) ∈ J then R1(u, ‘red’) ∈ J ′; similarly, if R2(u, ‘blue’) ∈ J then

R2(u, ‘blue’) ∈ J ′. Therefore, every summand that contributes 1 to Q(J ) also con-

tributes 1 to Q(J ′). Hence, Q(J ′) cannot be made smaller than Q(J ) on account of

such a node v. The preceding analysis implies that Q(J ′) ≥ Q(J ).
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By Lemma 4.1.1, there exists a repair J of I such that J produces a red-

blue coloring of G and Q(J ) is the lub-answer in Cons(Q, I). We will show that, for

every non-negative integer k, there is a cut (S, S) of G such that |E(S, S)| ≥ k if and

only if there exists a repair J of I such that J produces a red-blue coloring of G and

Q(J ) ≥ k. This will be sufficient to prove the NP-hardness of Cons(Q, I) since it will

follow that it is NP-hard to even compute the lub-answer in Cons(Q, I).

Let (S, S) be a cut of G such that |E(S, S)| ≥ k. Construct an R-instance J

as follows. For each vertex v ∈ S, add tuples R1(v, ‘red’) and R2(v, ‘red’) to J . For

each vertex v ∈ S, add tuples R1(v, ‘blue’) and R2(v, ‘blue’) to J . Add all tuples from

relation R3 of I to J . Observe that J is a repair of I and that J produces a red-blue

coloring of G. Also, every edge (u, v) ∈ E such that u ∈ S and v ∈ S is part of a

witness to a summand that contributes 1 to Q(J ). Moreover, no summand in Q(J )

arises from a tuple of the form R3(v, ‘red’, v, ‘blue’,m) for some v ∈ V . Since we have

that |E(S, S)| ≥ k, it must be the case that Q(J ) ≥ k. In the other direction, let J be

a repair of I such that J produces a red-blue coloring of G and Q(J ) ≥ k. Construct

two sets S and S of vertices of G as follows. Let v ∈ S if R1(v, ‘red’) ∈ J , and let

v ∈ S if R1(v, ‘blue’) ∈ J . Clearly, (S, S) is a cut of G. Every edge (u, v) ∈ E such

that u ∈ S and v ∈ S is part of a witness to a summand that contributes 1 to Q(J )

since the tuples R1(u, ‘red’), R2(v, ‘blue’), and R3(u, ‘red’, v, ‘blue’, 1) of J satisfy the

underlying conjunctive query of Q. In fact, since J produces a red-blue coloring of G,

every summand that contributes to Q(J ) must arise from such tuples. Since Q(J ) ≥ k,

it must be the case that |E(S, S)| ≥ k.
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In Step 2 of Reduction 4.1.1, we add a tuple of relation R3 to I in which we

pass the value −|E|−1 for the aggregation attribute A because this value being strictly

smaller than −|E| is crucial for Lemma 4.1.1 to hold. As a consequence, Reduction

4.1.1 cannot be extended to show the NP-hardness of the COUNT(*) or the COUNT(A)

operator in a straightforward way as the value of a count can never be negative. We

note that the NP-hardness of the range consistent answers to an aggregation query

with the COUNT(A) operator where the underlying conjunctive query has FO-rewritable

consistent answers is already known [17], but such a result remains open for COUNT(*),

MIN(A), MAX(A), and AVG(A) operators.

4.2 Answering Queries with SUM/COUNT without Grouping

Let R be a database schema with one key constraint per relation, and Q be

the aggregation query

Q := SELECT f FROM T (U,A),

where f is one of the operators COUNT(*), COUNT(A), SUM(A), and T (U,A) is a relation

expressed as a union of conjunctive queries over R. We now give reductions from com-

puting the range consistent answers Cons(Q) on an R-instance I to Partial MaxSAT

and to Weighted Partial MaxSAT.

4.2.1 Reductions to Partial MaxSAT and Weighted Partial MaxSAT

Reduction 4.2.1. Let Q := SELECT f FROM T (U,A) be an aggregation query, where f

is one of the operators COUNT(*), COUNT(A), and SUM(A). Let I be an R-instance and
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G be the set of key-equal groups of facts of I. For each fact fi of I, introduce a boolean

variable xi. Let W be the set of minimal witnesses to the query q∗ on I, where

q∗ :=


∃U∃A T (U,A) if f is COUNT(*)

∃U T (U,A) if f is COUNT(A) or SUM(A).

Construct a Partial MaxSAT instance φ (if f is COUNT(*) or COUNT(A)) or a Weighted

Partial MaxSAT instance φ (if f is SUM(A)) as follows:

(1) For each Gj ∈ G,

• construct a hard clause αj = ∨
fi∈Gj

xi.

• for each pair (fm, fn) of facts in Gj such that m 6= n, construct a hard clause

αmnj = (¬xm ∨ ¬xn).

(2a) If f is COUNT(*) or COUNT(A), then for each Wj ∈ W, construct a soft clause βj

(i.e., a clause of weight 1), where

βj =
(
∨

fi∈Wj

¬xi, 1
)
.

Construct a Partial MaxSAT instance

φ =
( |G|
∧
j=1

αj

)
∧
( |G|
∧
j=1

( ∧
fm∈Gj
fn∈Gj

αmnj

))
∧
( |W|
∧
j=1

βj

)
.

(2b) If f is SUM(A), let WP and WN be the subsets of W such that for each Wj ∈ W,

we have Wj ∈ WP iff q∗(Wj) > 0, and Wj ∈ WN iff q∗(Wj) < 0. Let also wj =

||q∗(Wj)||, where ||q∗(Wj)|| is the absolute value of q∗(Wj). Construct a weighted

soft clause βj and a conjunction γj of hard clauses as follows. If Wj ∈ WN ,

65



introduce a new variable yj and let

βj = (yj , wj) and

γj =
((

∨
fi∈Wj

¬xi
)
∨ yj

)
∧
(
∧

fi∈Wj

(¬yj ∨ xi)
)

;

otherwise, let βj =
(
∨

fi∈Wj

¬xi, wj
)

and do not construct γj.

Construct a Weighted Partial MaxSAT instance

φ =
( |G|
∧
j=1

αj

)
∧
( |G|
∧
j=1

( ∧
fm∈Gj
fn∈Gj

αmnj

))
∧
( |W|
∧
j=1

βj

)
∧
(
∧

Wj∈WN
γj

)
.

Proposition 4.2.1. Let Q := SELECT f FROM T (U,A) be an aggregation query, where

f is one of the operators COUNT(*), COUNT(A), and SUM(A). In a maximum satisfying

assignment of the Partial MaxSAT instance or the Weighted Partial MaxSAT instance

φ constructed using Reduction 3.1.1, the sum of weights of the falsified clauses is the

glb-answer in the range consistent answers Cons(Q, I).

Proof. Let Q := SELECT COUNT(*) FROM T (U,A), and let s be an assignment of the

formula φ constructed using Reduction 3.1.1. Let g(φ, s) denote the sum of weights of

the soft clauses of φ satisfied by s. Construct a database sub-instance J from s such

that fi ∈ J if and only if s(xi) = 1. The hard clauses of φ constructed in Step (1) of

Reduction 3.1.1 encode the condition that exactly one fact from each key-equal group

of facts of I is in J , ensuring that J is a repair of I. Moreover, the soft clauses of

φ falsified by s have a one-to-one correspondence with the minimal witnesses to q∗ in

J . Therefore, we have that g(φ, s) = |W| − Q(J ). Since |W| does not depend on

J , the answer Q(J ) is minimized (i.e., Q(J ) is a glb-answer in Cons(Q) on I) when
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s is a maximum satisfying assignment. Essentially the same argument works for the

case where Q := SELECT COUNT(A) FROM T (U,A). A dual argument to this proves

that a repair of I constructed from a minimum satisfying assignment of φ realizes the

lub-answer in Cons(Q) on I.

Now, let Q := SELECT SUM(A) FROM T (U,A). Construct a repair J of I from

s by choosing fi ∈ J if and only if s(xi) = 1. Also, construct a database instance Ip

as follows. For every fact f ∈ I, let f ∈ Ip if and only if f ∈ Wj for some Wj ∈ Wp.

Thus, Q(Ip) is the sum of values of the aggregation attribute evaluated on the witnesses

in Wp. Observe that, for every Wj ∈ WP , the clause βj is falsified by s if and only if

Wj ∈ J . Similarly, for every Wj ∈ WN , the clause βj is satisfied by s if and only if

Wj ∈ J . Therefore, we have that,

Q(J ) = Q(Ip)− ΣWj∈WP∧s(βj)=1(wj)− ΣWj∈WN∧s(βj)=1(wj)

= Q(Ip)− g(φ, s)

Since Q(Ip) does not depend on J , the answer Q(J ) is minimized (i.e., Q(J ) is a

glb-answer in Cons(Q) on I) when s is a maximum satisfying assignment.

Corollary 4.2.1. Let Q := SELECT f FROM T (U,A) be an aggregation query, where f

is one of the operators COUNT(*), COUNT(A), and SUM(A). In a minimum satisfying

assignment of the Partial MinSAT instance or the Weighted Partial MinSAT instance

φ constructed using Reduction 3.1.1, the sum of weights of the falsified clauses is the

lub-answer in the range consistent answers Cons(Q, I).

Proof. A dual argument to that of Proposition 4.2.1 proves that a repair of I constructed
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from a minimum satisfying assignment to φ realizes the lub-answer in Cons(Q, I).

We will use the inconsistent database instance of bank account records shown

in Table 4.1 as a running example throughout this section. This database instance

has three relations, namely, Customer, Accounts, and CustAcc, with relations Customer

and Accounts having one key constraint each (the key attributes are underlined in Table

4.1). Similar to the database instance in Table 3.1, we associate the attribute Fact to

each relation for convenience to uniquely refer to each fact of the database instance.

Table 4.1: An inconsistent database instance of bank account records

Customer

Fact CID NAME CITY

f1 C1 John LA

f2 C2 Mary LA

f3 C2 Mary SF

f4 C3 Don SF

f5 C4 Jen LA

Accounts

Fact ACCID TYPE CITY BAL

f6 A1 Check. LA 900

f7 A2 Check. LA 1000

f8 A3 Saving SJ 1200

f9 A3 Saving SF -100

f10 A4 Saving SJ 300

CustAcc

Fact CID ACCID

f11 C1 A1

f12 C2 A2

f13 C2 A3

f14 C3 A4

Example 4.2.1. Let Q be the following aggregation query that counts the number of

customers having an account in their own city:

SELECT COUNT(*) FROM CUSTOMER, ACCOUNTS, CUSTACC

WHERE CUSTOMER.CID = CUSTACC.CID

AND ACCOUNTS.ACCID = CUSTACC.ACCID

AND CUSTOMER.CITY = ACCOUNTS.CITY

From Reduction 3.1.1, we construct the following clauses:
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α-clauses: x1, (x2 ∨ x3), x4, x5, x6, x7, (x8 ∨ x9), x10;

αmn-clauses: (¬x2 ∨ ¬x3), (¬x8 ∨ ¬x9);

β-clauses: (¬x1 ∨ ¬x6, 1), (¬x2 ∨ ¬x7, 1), (¬x3 ∨ ¬x9, 1).

Observe that it is okay to omit the variables corresponding to the facts in CUSTACC

since CUSTACC does not violate a key constraint. A maximum satisfying assignment

to the Partial MaxSAT instance φ constructed from above clauses is xi = 0 for i ∈

{2, 9}, and xi = 1 otherwise. It falsifies one clause, namely, (¬x1 ∨ ¬x6, 1). Similarly,

an assignment xi = 0 for i ∈ {2, 8}, and xi = 1 otherwise is a minimum satisfying

assignment to the Partial MinSAT instance φ, and it falsifies two clauses, namely,

(¬x1 ∨¬x6, 1) and (¬x3 ∨¬x9, 1). Thus, Cons(Q, I) w.r.t. range semantics is [1, 2] by

Proposition 3.1.1.

Example 4.2.2. Now, consider the following aggregation query Q:

SELECT SUM(ACCOUNTS.BAL) FROM CUSTOMER, ACCOUNTS, CUSTACC

WHERE CUSTOMER.CID = CUSTACC.CID

AND ACCOUNTS.ACCID = CUSTACC.ACCID

AND CUSTOMER.CNAME = ‘Mary’

The hard clauses constructed using Reduction 3.1.1 are same as the ones from Example

4.2.1. The rest of the clauses are as follows:

β-clauses: (¬x2 ∨ ¬x7, 1000), (¬x3 ∨ ¬x7, 1000), (¬x2 ∨ ¬x8, 1200), (¬x3 ∨ ¬x8, 1200),

(y1, 100), (y2, 100).

γ-clauses: (¬x2∨¬x9∨y1), (¬y1∨x2), (¬y1∨x9), (¬x3∨¬x9∨y2), (¬y2∨x3), (¬y2∨x9).
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The witnesses {f2, f9, f13} and {f3, f9, f13} belong to WN because the account balance is

-100 in both cases, so we introduce new variables y1 and y2 respectively, and construct

hard γ-clauses as described above. The β-clauses corresponding to these witnesses are

(y1, 100) and (y2, 100). We omit x13 in all of these clauses since CUSTACC does not

violate Σ. Note that Q(Ip) = 4400. An assignment in which x8 = 0 and x9 = 1 is

a maximum satisfying assignment to the Partial MaxSAT instance φ constructed. The

sum of satisfied soft clauses by this assignment is 3500 since it satisfies two clauses with

weights 1200 each, one with weight 1000 and one with weight 100. Thus, by Proposition

3.1.1, we have that Q(J ) = 4400−3500 = 900 where J is a repair corresponding to the

assignment in consideration. Similarly, setting x8 = 1 and x9 = 0 yields a minimum

satisfying assignment in which the sum of satisfied soft clauses is 2200 since it satisfies

one clause with weight 1200 and one with weight 1000. Thus, we have that the range

consistent answers Cons(Q, I) = [900, 2200].

4.2.2 Handling the DISTINCT Keyword

Let Q := SELECT f FROM T (U,A) be an aggregation query, where f is either

COUNT(DISTINCT A) or SUM(DISTINCT A). Solving a Partial MaxSAT or a Weighted

Partial MaxSAT instance constructed using Reduction 3.1.1 may yield incorrect glb and

lub answers to Q, if the database contains multiple witnesses with the same value for

attribute A. For example, consider a query

Q := SELECT COUNT(DISTINCT ACCOUNTS.TYPE) FROM ACCOUNTS.

The correct glb and lub-answers in Cons(Q, I) are both 2, but the solutions to the
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Partial MaxSAT and Partial MinSAT instances constructed using Reduction 3.1.1 yield

both answers as 4. The reason behind this is that the soft clauses ¬x6 and ¬x7 both

correspond to the account type Checking, and similarly ¬x8, ¬x9, and ¬x10 all corre-

spond to the account type Saving. The hard clauses in the formula ensure that x6, x7,

x10, and one of x8 and x9 are true, thus counting both Checking and Saving account

types exactly twice in every satisfying assignment to the formula. This can be handled

by modifying the β-clauses in Reduction 3.1.1 as follows.

Let A denote a set of distinct answers to the query q∗(A) := ∃U T (U,A). For

each answer b ∈ A, let Wb denote a subset of W such that for every minimal witness

W ∈ Wb, we have that q∗(W ) = b. The idea is to use auxiliary variables to construct

one soft clause for every distinct answer b ∈ A, such that it is true if and only if no

witness in Wb is present in a repair corresponding to the satisfying assignment. First,

for every witness W b
j ∈ Wb, we introduce an auxiliary variable zbj that is true if and

only if W b
j is not present in the repair. Then, we introduce an auxiliary variable vb

which is true if and only if all zb-variables are true. These constraints are encoded in

the set Hb returned by Algorithm 2, and are forced by making clauses in Hb hard. For

every answer b ∈ A, Algorithm 2 also returns one βb-clause, which serves the same

purpose as the β-clauses in Reduction 3.1.1. Now, a Partial MaxSAT or a Weighted

Partial MaxSAT instance can be constructed by taking in conjunction all α-clauses

from the key-equal groups, the hard γ-clauses if any, the hard clauses from all Hb-sets,

and all soft βb-clauses. With this, it is easy to see that a maximum (or minimum)

satisfying assignment to Partial MaxSAT or Weighted Partial MaxSAT instance give us
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the glb-answer (or lub-answer) in Cons(Q). This is illustrated in Example 4.2.3.

Algorithm 2 Handling DISTINCT

1: procedure handleDistinct(Wb)

2: let Hb = ∅ //Empty set of clauses

3: for W b
j ∈ Wb do

4: Hb = Hb
⋃{(

¬zbj ∨
( ∨
fi∈W b

j

¬xi
))}

5: for fi ∈W b
j do

6: Hb = Hb
⋃
{(zbj ∨ xi)}

7: Hb = Hb
⋃{(

¬vb ∨
( ∨
W b

j ∈Wb

¬zbj
))}

8: for W b
j ∈ Wb do

9: Hb = Hb
⋃
{(¬vb ∨ zbj)}

10: let βb = (vb, 1)

11: if (f is SUM(DISTINCT A)) then

12: βb = (vb, ||b||)

13: if b < 0 then βb = (¬vb, ||b||)

14: return Hb, βb

Example 4.2.3. Consider the following aggregation query Q that counts the number of

distinct account types present in the ACCOUNTS relation:

SELECT COUNT(DISTINCT ACCOUNTS.TYPE) FROM ACCOUNTS.

We have that A = {‘Checking’, ‘Saving’}. Let us denote these two answers by a1 and a2

respectively. Since every witness to the query consists of a single fact, every ya-variable

is equivalent to a single literal, for example, ya11 ↔ ¬x6 and ya12 ↔ ¬x7. As a result,
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it is unnecessary to introduce any ya-variables at all. Thus, we construct the following

clauses from Reduction 3.1.1 and Algorithm 2:

α-clauses: x6, x7, (x8 ∨ x9), x10; αmn-clauses: (¬x8 ∨ ¬x9);

Ha1 : (x6 ∨ x7 ∨ va1), (¬va1 ∨ ¬x6), (¬va1 ∨ ¬x7);

Ha2 : (x8 ∨ x9 ∨ x10 ∨ va2), (¬va2 ∨ ¬x8), (¬va2 ∨ ¬x9), (¬va2 ∨ ¬x10);

β-clauses: (va1 , 1), (va2 , 1)

The maximum and minimum satisfying assignments to the Partial MaxSAT and Partial

MinSAT instances constructed using these clauses falsify both β-clauses, since Cons(Q, I)

w.r.t. range semantics is [2, 2].

4.3 Answering Queries with MIN/MAX without Grouping

Let R be a database schema with one key constraint per relation, and let

Q := SELECT f FROM T (U,A),

where f is one of the operators MIN(A) and MAX(A), and T (U,A) is a relation expressed

as a union of conjunctive queries over R. The semantics of the range consistent answers

to aggregation queries with MIN and MAX operators are similar to aggregation queries

with SUM or COUNT operators, but here we need to address one additional special case.

We illustrate this special case using Example 4.3.1.

Example 4.3.1. Consider the database instance I from Table 4.1 and two aggregation

queries Q1 and Q2 as follows.

Q1 :=SELECT SUM(ACCOUNTS.BAL) FROM ACCOUNTS WHERE ACCOUNTS.CITY = ‘SF’
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Q2 :=SELECT MIN(ACCOUNTS.BAL) FROM ACCOUNTS WHERE ACCOUNTS.CITY = ‘SF’

It is clear that the range consistent answers to Cons(Q1, I) = [−100, 0]. The

lub-answer of 0 in Cons(Q1, I) comes from a repair on which there is no account in

the city of SF, and therefore the SUM function returns 0. For Q2, however, the range

consistent answers are unclear because the MIN function is not defined on an empty set.

In such scenarios, various different semantics can be considered. One natural

semantics is that if there exists a repair on which the underlying conjunctive query eval-

uates to an empty set, we could say that there is no consistent answer to the aggregation

query. Another one could be to return the interval [glb, lub] of values that come from

the repairs on which the underlying conjunctive query evaluates to a non-empty set of

answers, and additionally return the information about the existence of the repair on

which the underlying conjunctive query returns the empty set of answers. The reduc-

tions we give in this Section can be used regardless of which of the two above-mentioned

semantics is chosen.

In what follows, we first show that the glb-answer to an aggregation query

with the MIN(A) operator and the lub-answer to an aggregation query with the MAX(A)

operator can be computed in polynomial time in the size of the original inconsistent

database instance I (Proposition 4.3.1 and Corollary 4.3.1). Then, in Reduction 4.3.1,

we describe a Weighted MaxSAT-based approach to computing the lub-answer for the

scalar aggregation queries with the MIN(A) operator. We then point out a downside of

Reduction 4.3.1 and discuss an alternative method based on iterative SAT solving. We

do not explicitly give a reduction or discuss alternative approaches to obtain the glb-
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answer to scalar aggregation queries with the MAX(A) operator since it is straightforward

that the lub-answer for MIN(A) is a dual of the glb-answer for MAX(A) in the sense that

computing the lub-answer for the MIN(A) operator yields the same result as negating

all values of the aggregation attribute A in the database instance and then computing

the glb-answer for the MAX(A) operator.

Proposition 4.3.1. Let R be a database schema, I an R-instance, and Q the aggre-

gation query SELECT MIN(A) FROM T (U,A). Let q1 be the union q1(A) := ∃U T (U,A)

of conjunctive queries and Wglb be the witness to q1 on I such that no two facts in Wglb

are key-equal, and there is no W ′ such that q(W ′) < q(Wglb) and no two facts in W ′

are key-equal. Then, q1(Wglb) is the glb-answer in Cons(Q, I).

Proof. For every witness W ′ to q1 on I such that q1(W
′) < q1(Wglb), we have that no

repair of I contains W ′ because W ′ contains at least two key-equal facts. Moreover,

since no two facts in Wglb are key-equal, there exists a repair J of I such that Wglb ∈ J .

Therefore, q1(Wglb) must be the smallest possible answer to Q on I, i.e., the glb-answer

in Cons(Q, I). Since the number of witnesses to q1 is polynomial in the size of I, a

desired witness Wglb can be obtained efficiently from the result of evaluating q1 on I.

Corollary 4.3.1. Let R be a database schema, I an R-instance, and Q the aggregation

query SELECT MAX(A) FROM T (U,A). Let q1 be the union q1(A) := ∃U T (U,A) of

conjunctive queries and Wlub be the witness to q1 on I such that no two facts in Wlub

are key-equal, and there is no W ′ such that q(W ′) > q(Wlub) and no two facts in W ′

are key-equal. Then, q1(Wlub) is the lub-answer in Cons(Q, I).
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Proof. It follows from a dual argument to that of Proposition 4.3.1.

Now, we describe two SAT-based approaches to compute the least upper bound

in the range consistent answers to a scalar aggregation query with MIN(A) operator.

Reduction 4.3.1. Given an R-instance I, construct a Weighted Partial MaxSAT in-

stance φ as follows. For each fact fi of I, introduce a boolean variable xi. Let G be the

set of key-equal groups of facts of I, and W = {W1, · · · ,Wm} denote the set of minimal

witnesses to a conjunctive query q on I, where q(w) := ∃~u T (~u,w). Assume that the

set W is sorted in descending order of the answers, i.e., for 1 ≤ i < m, we have that

q(Wi) ≥ q(Wi+1).

• For each Gj ∈ G, construct a hard clause αj = ∨
fi∈Gj

xi.

• For each Gj ∈ G, for each pair (fm, fn) of facts such that fm ∈ Gj, fn ∈ Gj, and

m 6= n, construct a hard clause αmnj = ¬xm ∨ ¬xn.

• Let wc = 1, sum = 0. For j = 1 to m, do the following.

– Construct a clause βj = ∨
fi∈Wj

¬xi, and let its weight be wc.

– sum = sum+ wc.

– If (j > 1 and q(Wj) < q(Wj−1)) then wc = sum+ 1.

• Construct the Weighted Partial MaxSAT instance φ =

(
|G|
∧
j=1

αj

)
∧
(
|W|
∧
j=1

βj

)
.

Proposition 4.3.2. Let s be a maximum satisfying assignment to the Weighted Partial

MaxSAT instance φ constructed using Reduction 4.3.1. Let βj be a clause such that

s(βj) = false, and there is no j′ < j such that s(βj′) = false. Then, q(Wj) is the

lub-answer in Cons(Q, I).
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Proof. To see why Proposition 4.3.2 is true, we first make the following observation. If

l is the lub-answer in Cons(Q, I), then i) there exists a repair on which Q evaluates to

l, i.e., a repair that does not contain any witness W such that q(W ) < l holds, and ii)

there exists no repair on which Q evaluates to a value strictly greater than l.

Now, the weight distribution among the soft clauses of φ makes sure the follow-

ing condition holds for any two potential answers l1 and l2. If l1 < l2, then the sum of all

clauses corresponding to the witnesses to l2 and to all potential answers greater than l2

is smaller than the weight of each clause corresponding to a witness of l1. Hence, every

solution to φ will first try to satisfy the β-clauses corresponding to the witnesses to l1,

even if it is at an expense of falsifying all clauses corresponding to the witnesses to the

potential answers strictly greater than l1. Therefore, from the preceding observations, a

repair extracted (in a similar manner to that in Reduction 3.1.1) from a maximum sat-

isfying assignment to φ must contain a witness to the lub-answer in Cons(Q). Clearly,

this answer can be obtained from a falsified clause with the highest weight, which is

precisely what Proposition 4.3.3 states.

Note that Reduction 4.3.1 is a polynomial-size reduction because the number

of clauses in φ is bounded by |W|, the size of each clause is bounded by the number

of atoms in the query, and the numeric value wc of the weight of a clause can be

represented in log2(wc) bits. With this, it seems possible to use Weighted MaxSAT

solvers to compute the range consistent answers to aggregation queries with MIN(A)

and MAX(A) operators. However, Reduction 4.3.1 has one major downside and that is

77



the numeric values of the weights of the clauses, i.e, the values taken by the variable

wc, increase exponentially in the size of the database. For example, if the potential

answers from the witnesses to the conjunctive query q are spanned across a hundred

distinct values, then the largest weight that needs to be assigned to a clause in φ will

be O(2100), which is impractical from the perspective of the solvers because the solvers

need the weights to be entered in the decimal system in the DIMACS file format.

It is not hard to see that this exponential increase in the weights of the clauses

occurs because of expressing the problem at hand as a Weighted Partial MaxSAT in-

stance. Observe that in Reduction 4.3.1, the numeric values of the weights do not

matter, as long as a clause corresponding to the witness Wj is strictly harder than all

clauses corresponding to the witnesses on which the query q evaluates to an answer that

is strictly smaller than q(Wj). Therefore, instead of Weighted Partial MaxSAT, one can

view this problem as hierarchical Partial MaxSAT, where, instead of having just two

levels of hardness (hard and soft) like in Partial MaxSAT, one can imagine a hierarchy

of the levels of hardness of clauses. Here, the semantics is that each clause at the hard-

ness level i is weighted more than all clauses at the hardness levels less than i combined.

Thus, while representing the instance in a solver-readable file, one could simply write

a clause along with its hardness level. To our knowledge, there has not been any work

on solving hierarchical Partial MaxSAT instances, and via the range consistent answers

to aggregation queries, we provide an interesting application to a hierarchical Partial

MaxSAT solver if one is built in the future.

To compute the range consistent answers to aggregation queries with MIN(A)
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and MAX(A) operators with available solvers, we opt for an iterative SAT solving ap-

proach. The idea is similar to solving a hierarchical Partial MaxSAT instance described

earlier, but we solve for one hardness level at each iteration. In what follows, we for-

malize the construction of the SAT instance for the first iteration (Construction 4.3.1)

and give Algorithm 3 that computes the lub-answer in Cons(Q, I).

Construction 4.3.1. Given an R-instance I, construct a CNF formula φ as follows.

For each fact fi of I, introduce a boolean variable xi. Let G be the set of key-equal

groups of facts of I, and W = {W1, · · · ,Wm} denote the set of minimal witnesses to a

conjunctive query q on I, where q(w) := ∃~u T (~u,w). Assume that the set W is sorted

in descending order of the answers, i.e., for 1 ≤ i < m, we have that q(Wi) ≥ q(Wi+1).

• For each Gj ∈ G, construct a clause αj = ∨
fi∈Gj

xi.

• Construct a CNF formula φ =
|G|
∧
j=1

αj.

Proposition 4.3.3. Let Q := SELECT MIN(A) FROM T (U,A) be an aggregation query,

and I be a database instance. Algorithm 3 returns the lub-answer in Cons(Q, I).

Proof. The α-clauses of φ make sure that a repair J of I can be constructed from every

assignment s of φ that satisfies the α-clauses, by arbitrarily choosing exactly one fact fi

from each key-equal group of I such that s(xi) = 1. Let A = {A1, · · · , Alub, · · · , A|A|}

denote the set of distinct answers to a conjunctive query q(w) := ∃~u T (~u,w) on I, where

Alub is the lub-answer to Q on I. For a witness W to q, a clause ( ∨
fi∈W

¬xi) is satisfied

by an assignment s if and only if W is not present in any repair constructed from s.

At iteration j of the while-loop, if the formula φ is checked for satisfiability (line 8 of
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Algorithm 3 Computing the lub-answer in Cons(Q, I) for MIN via Iterative SAT

1: procedure LubAnswer-IterativeSAT(φ,W)

2: let v = q(W1), j = 1

3: while j ≤ |W| do

4: if v = q(Wj) then

5: let φ = φ ∧
(
∨

fi∈Wj

¬xi
)

6: let j = j + 1

7: else

8: if UNSAT(φ) then

9: return q(Wj−1)

10: else

11: let v = q(Wj)

12: return q(W|W|)

Algorithm 3), the formula contains the α-clauses corresponding to the key-equal groups

of I in conjunction to all clauses corresponding to the minimal witnesses to q on which

the q evaluates to an answer strictly smaller than q(Wj). At this point, if the formula φ

is satisfiable, then there exists a repair J of I such that q(Wj−1) /∈ q(J ), and also for

all potential answers Ai ≤ q(Wj−1), we have that Ai /∈ q(J ). On the other hand, if the

formula is unsatisfiable, then there exists no repair J of I such that q(Wj−1) /∈ q(J )

and Ai /∈ q(J ) for all Ai ≤ q(Wj−1). Since the clauses are added in the ascending order

of the answers, we have that φ satisfiable at iteration j if and only if q(Wj−1) < Alub.

Therefore, if φ becomes unsatisfiable for the first time at iteration j, it must be the the

case that q(Wj−1) is the lub-answer in Cons(Q, I).
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Why not a Binary Search?

In essence, Algorithm 3 works like a linear search on a sorted array. It may

sound appealing to perform the binary search instead of the linear search for obvious

reasons. Clearly, the SAT solver will only have to solve O(log2 |A|) instances of SAT

instead of O(|A|) instances of SAT. The problem with this approach is the following.

Observe that, on an average, half of the SAT instances that the solver needs to solve in

the binary search approach will be unsatisfiable. In the linear search approach, however,

all but the last instance given to the solver are satisfiable. Typically, the proofs of

unsatisfiability produced by the SAT solvers are significantly large compared to the

proofs of satisfiability as the unsatisfiability of an instance needs to be proven with a

refutation tree that can be exponential in size of the formula, while just one satisfying

assignment is enough to prove the satisfiability of an instance. As a result, SAT solvers

typically take considerably long amounts of time to solve unsatisfiable instances but

they are very quick on most real-world satisfiable instances. Therefore, at a practical

level, the linear search often works better than the binary search.

4.4 Range Consistent Answers Beyond Key Constraints

If Σ is a fixed finite set of denial constraints and Q is an aggregation query

without grouping, then the following problem is in coNP: given a database instance I

and a number t, is t the lub-answer (or the glb-answer) in Cons(Q, I) w.r.t. Σ? This is

so because to check that t is not the lub-answer (or the glb-answer), we guess a repairs J
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of I and verify that t > Q(J ) (or t > Q(J )). In all preceding reductions, the α-clauses

capture the inconsistency in the database arisen due to the key violations to enforce

every satisfying assignment to uniquely correspond to a repair of the initial inconsistent

database instance. Importantly, the α-clauses are independent of the input query. In

what follows, we provide a way to construct clauses to capture the inconsistency aris-

ing due to the violations of denial constraints. Thus, replacing the α-clauses in the

reductions from Sections 4.2 and 4.3 by the ones provided below allows us to compute

consistent answers over databases with a fixed finite set of arbitrary denial constraints.

The intuition behind Reduction 4.4.1 is similar to the one in Reduction 3.2.1, so recall

the notions of minimal violations and near-violations to the set of denial constraints

(Definitions 3.2.1 and 3.2.2). Let R be a database schema and Σ be a fixed finite set of

arbitrary denial constraints on R. Let Q be an aggregation query without grouping on

R and let I be an R-instance.

Reduction 4.4.1. Given an R-instance I, compute the sets:

1. V: the set of minimal violations to Σ on I.

2. N i: the set of near-violations to Σ, on I, w.r.t. each fact fi ∈ I.

For each fact fi of I, introduce a boolean variable xi, 1 ≤ i ≤ n. For the auxiliary

fact ftrue, introduce a constant xtrue = true, and for each N i
j ∈ N i, introduce a boolean

variable pij.

1. For each Vj ∈ V, construct a clause αj = ∨
fi∈Vj
¬xi.

2. For each fi ∈ I, construct a clause γi = xi ∨
(
∨

N i
j∈N i

pij

)
.
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3. For each variable pij, construct an expression θij = pij ↔
(
∧

fd∈N i
j

xd

)
.

4. Construct the following boolean formula φ:

φ =
( |V|
∧
i=1

αi

)
∧
( |I|
∧
i=1

(( |N i|
∧
j=1

θij

)
∧ γi

))
Proposition 4.4.1. The boolean formula φ constructed using Reduction 3.2.1 can be

transformed to an equivalent CNF-formula φ whose size is polynomial in the size of

I. The satisfying assignments to φ and the repairs of I w.r.t. Σ are in one-to-one

correspondence.

Proof. Let n be the number of facts of I. Let d1 be the smallest number such that there

exists no denial constraint in Σ whose number of database atoms is bigger than d1. Also,

let d2 be the smallest number such that there exists no conjunctive query in Q whose

number of database atoms is bigger than d2. Since Σ and Q are not part of the input

to Cons(Q), the quantities d1 and d2 are fixed constants. We also have that |V| ≤ nd1 ,

|N i| ≤ nd1 for 1 ≤ i ≤ n, |A| ≤ nd2 , and |W l| ≤ nd2 for 1 ≤ l ≤ |A|. The number of x-,

y-, and p-variables in φ′ is therefore bounded by n, nd1+1, and nd2 , respectively. The

formula φ′ contains as many α-clauses as |V|, and none of the α-clause’s length exceeds

n. Similarly, there are at most nd2 β-clauses, and none of their lengths exceeds d2 + 1.

The number of γ-clauses is precisely n, and each γ-clause is at most nd1+1 + 1 literals

long. There are as many θ-expressions as there are y-variables. Every θ-expression is of

the form y ↔ (x1 ∧ ... ∧ xd), where d is a constant obtained from the number of facts

in the corresponding near-violation. Each θ-expression can be equivalently written in a

constant number of CNF-clauses as ((¬y∨x1)∧ ...∧ (¬y∨xd))∧ (¬x1∨ ...∨¬xd∨ y), in
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which the length each clause is constant. Thus, one can transform φ′ into an equivalent

CNF-formula φ with size polynomial in the size of I.

For the second part of Proposition 4.4.1, consider a satisfying assignment s to

φ and construct a database instance J such that fi ∈ J if and only if s(xi) = 1. The

α-clauses assert that no minimal violation to Σ is present in J , i.e., J is a consistent

subset of I. The γ-clauses and the θ-expressions encode the condition that, for every

fact f ∈ I, either f ∈ J or at least one near-violation w.r.t. Σ and f is in J , making

sure that J is indeed a repair of I. In the other direction, one can construct a satisfying

assignment s to φ from a repair J of I by setting s(xi) = 1 if and only if fi ∈ J .

4.5 Answering Aggregation Queries with Grouping

Let Q be the aggregation query

Q := SELECT Z, f(A) FROM T (U,Z,A) GROUP BY Z,

where f(A) is one of COUNT(∗), COUNT(A), SUM(A), MIN(A), or MAX(A), and T (U,A) is a

relation expressed by a union of conjunctive queries on R. For aggregation queries with

grouping, it does not seem feasible to reduce Cons(Q, I) to a single Partial MaxSAT

or a Weighted Partial MaxSAT instance because for each group of consistent answers,

the glb-answer and the lub-answer may realize in different repairs of the inconsistent

database instance I. To illustrate this, consider the database from Table 4.1 and a query

Q := SELECT COUNT(*) FROM CUSTOMER GROUP BY CUSTOMER.CITY. Notice that, the

glb-answers (LA, 2) and (SF, 1) in Cons(Q, I) come from two different repairs of relation
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CUST, namely, {f1, f3, f4, f5} and {f1, f2, f4, f5} respectively. However, the reductions

from the preceding sections of this chapter can be used to compute the bounds to

each consistent group of answers independently. For a given aggregation query Q with

grouping, we first compute the consistent answers to the conjunctive query q(Z) :=

∃U,A T (U,Z,A). Then, for each answer b in Cons(q, I), we compute the glb-answer

and the lub-answer to the scalar query Q′ := SELECT f(A) FROM T (U,Z,A) ∧ (Z = b)

via Partial MaxSAT or Weighted Partial MaxSAT solving using the reductions from

earlier sections, as shown in Algorithm 4.

Algorithm 4 The Range Consistent Answers to Aggregation Queries With Grouping

Let I be an inconsistent database instance, and Q be an aggregation query of the form

Q := SELECT Z, f FROM T (U,Z,A) GROUP BY Z.

1: procedure ConsAggGrouping(Q)

2: let Ans = ∅

3: let q(Z) := ∃U,A T (U,Z,A)

4: let Ac = Cons(q, I)

5: for b ∈ Ac do

6: let Q′ := SELECT f(A) FROM T (U,Z,A) ∧ (Z = b)

7: let [glbA, lubA] = Cons(Q′, I)

8: Aans = Aans ∪ {(b, [glbA, lubA])}

9: return Aans
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Chapter 5

CAvSAT: A SAT-based System for

Consistent Query Answering

In this chapter, we present CAvSAT – “Consistent Answers via SAT Solving”,

a comprehensive and scalable SAT-based system capable of computing the consistent an-

swers or the range consistent answers to broad classes of practical queries over database

schemata that are inconsistent w.r.t. a set of arbitrary denial constraints. We demon-

strated CAvSAT at the 2021 International Conference on Management of Data (ACM

SIGMOD) [35]. In Section 5.1, we describe the modular architecture of the CAvSAT

system and the detailed working of each of the modules, while in Section 5.2 we give

the details of CAvSAT’s implementation including its graphical user interface.
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5.1 CAvSAT System Architecture

The architecture of CAvSAT shown in Figure 5.1 leverages the extensive re-

search that has been done on the complexity of computing the consistent answers to a

variety of classes of queries and integrity constraints. To the core of CAvSAT lie, the

two SAT-solving modules that implement the reductions we described in Chapter 3 and

Chapter 4. In what follows, we describe the working of each of the modules.

Figure 5.1: The modular architecture of CAvSAT

5.1.1 The Query Pre-processor Module

The Query Pre-processor module takes the query and the set of integrity con-

straints on the database schema as inputs and attempts to determine the complexity

of computing the consistent answers to the query. If the database schema has only

primary key constraints, then this module first checks whether the input query belongs

to the class Cforest or the class Caggforest [40]. If it does, the query is forwarded to the
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Query Re-writing module to derive the SQL query (i.e., the SQL-rewriting based on

the algorithms from ConQuer [40]) that will compute the consistent answers or the

range consistent answers to the original input query. If the input query is a conjunc-

tive query without self-joins over a database schema with only primary key constraints,

the Query Pre-processor module additionally constructs the attack graph [59] whose

cyclicity properties determine whether or not the consistent answers to the query are

SQL-rewritable. If the consistent answers are SQL-rewritable, the query is forwarded

to the Query Re-writing module for deriving the SQL query to compute its consistent

answers using the rewriting algorithms of Koutris and Wijsen [59]. If the consistent

answers are not SQL-rewritable or their complexity is not known in the pre-processing

stage due to the presence of self-joins, the presence of aggregation operators, or the

presence of integrity constraints on the schema that are beyond primary keys, we still

know that the consistent answers are in coNP, so the query is forwarded to one of the

SAT-solving modules depending on whether or not the query has aggregate operators.

5.1.2 The Query Re-writing Module

This module implements the query-rewriting algorithms in [40, 41, 59]. For

queries with SQL-rewritable consistent answers, this module produces the consistent

rewriting and evaluates it on the inconsistent database instance directly to obtain the

consistent answers to the original input query. The consistent rewritings based on the

algorithms from ConQuer are directly constructed in SQL, while the rewritings based

on the algorithms of Koutris and Wijsen are first constructed in tuple-relational calculus
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and then translated in SQL to evaluate within a standard database engine.

5.1.3 The SAT Solving Modules

These two modules reduce a given CQA instance to an instance of Boolean

satisfiability (SAT) or one of its variants via polynomial-time reductions described in

Chapter 3 and Chapter 4. The SAT instances are stored in the DIMACS file format,

which is one of the standard ways to represent CNF formulas. After constructing an

instance of SAT or one of its variants, these modules invoke a suitable state-of-the-art

SAT solver to compute an optimal solution. For example, for solving Boolean SAT

instances, the SAT-solving module invokes the Glucose solver [19] or the CaDiCaL

solver [1], while the MaxHS solver [31] is invoked if a Partial MaxSAT or a Weighted

Partial MaxSAT instance needs to be solved. The solver writes an optimal assignment (if

found) to a file that is read by CAvSAT to decode the information about the consistent

answers to the range consistent answers to the query. In the case of iterative SAT

approaches, CAvSAT reads a solution output by a solver, modifies the SAT instance

in the DIMACS file as needed (typically by appending new clauses or modifying the

weights of existing clauses), and calls the solver again for the next iteration. The SAT

solving modules and the SAT solvers are loosely coupled in the sense that CAvSAT

uses the solver as a black box. Since the DIMACS file format is readable by most of

the modern solvers, CAvSAT can easily accommodate a new more efficient solver if one

is developed in the future. Table 5.1 summarizes the different methods, algorithms,

and the variants of SAT used by the SAT solving modules of CAvSAT for a variety of
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classes of the input queries.

Table 5.1: SAT-variants and the solvers used by CAvSAT for different classes of queries

Query Type SAT-variant / Method Solvers

Unions of boolean conjunctive
queries

SAT Glucose [19],
CaDiCaL [1]

Unions of non-boolean conjunc-
tive queries

Iterative algorithm with Partial
MaxSAT

MaxHS [31]

Unions of conjunctive queries with
aggregation (SUM/COUNT)

Weighted Partial MaxSAT for glb,
Weighted Partial MinSAT along
with Kügel’s encoding for lub

MaxHS [31]

Unions of conjunctive queries with
aggregation (MIN/MAX)

Linear search with iterative SAT Glucose [19],
CaDiCaL [1]

Unions of conjunctive queries with
aggregation and grouping

Weighted Partial MaxSAT for glb,
Weighted Partial MinSAT along
with Kügel’s encoding for lub,
with iterative algorithm for groups

MaxHS [31]

5.2 CAvSAT System Implementation

Figure 5.2 depicts the implementation of CAvSAT at a high level. CAvSAT

uses a standard database management system such as the Microsoft SQL Server, MySQL,

or PostgreSQL to store the inconsistent database instance and the set of integrity con-

straints. Since we need the database server to store inconsistent data and handle in-

consistencies at query time, the integrity constraints are not applied on the database

instance within the server but are stored separately as a relation. The reductions from

computing the consistent answers or the range consistent answers to variants of SAT

are implemented in Java 8 and are hosted as a Java SpringBoot application on a web

server. This application also has access to running powerful SAT solvers listed in
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Table 5.1. The web-based graphical user interface of CAvSAT is implemented using

the ReactJS front-end development framework that connects to the CAvSAT back-end

via REST API calls. The CAvSAT source code is available at the GitHub repository

https://github.com/uccross/cavsat via a BSD-style open-source license.

Figure 5.2: Implementation overview of CAvSAT

5.2.1 Performance Optimizations

In this section, we describe several optimizations we implemented in CAvSAT

to speed up the computation of consistent answers and the range consistent answers

to the queries. These implementation-level optimizations primarily apply to the SAT

solving modules of CAvSAT and help either to speed up the construction of the SAT

instances or to reduce the sizes of the SAT instances to be solved.

Data Pre-Processing

Data Pre-processing is the first stage in the overall workflow of CAvSAT,

and it is performed offline because it is independent of the input query. In this stage,
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CAvSAT first adds an attribute named FactID to every relation in the original database

instance I, and numbers the tuples of each relation in the database to uniquely identify

them across all relations in I using their FactID. The FactID attributes are useful in

computing and dealing with the minimal witnesses to the input query more efficiently.

Pre-computing Clauses Corresponding to Violations of Constraints

In the reductions from computing the consistent answers or the range consis-

tent answers to variants of SAT, we construct clauses that encode the inconsistency

present in the database. Clearly, the inconsistency in the data is independent of the

query, so the clauses corresponding to it can be computed before the user inputs the

query. Specifically, CAvSAT computes the key-equal groups of facts in case of primary

key constraints and the minimal violations and the near-violations in case of broader

classes of integrity constraints prior to the user entering the input query. This way,

CAvSAT gets to pre-compute the α-clauses of Reduction 3.1.1, and the α-clauses, γ-

clauses, and the θ-expressions of Reduction 3.2.1. Of course, if new tuple additions,

tuple deletions, or any other modifications are performed on the database instance,

CAvSAT may have to adjust the values of the FactID attributes and re-compute the

clauses corresponding to the violations of the integrity constraints.

Computing Answers from the Consistent Part of the Database

For each relation in the original database instance, CAvSAT creates an auxil-

iary relation with the prefix CAvSAT Clean that stores only those tuples that do not
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participate in the inconsistency (i.e., consistent part of the data). In most real-world

databases, the percentage of inconsistency is low, typically less than 20%, and as a

result, many answers to the query lie completely within the consistent part of the data.

Clearly, these answers are consistent, because every fact of the consistent part of the

database must also be present in every possible repair of the database. It is helpful to

separately store the consistent part of the data because these answers can be computed

directly by evaluating the input query on the consistent part of the data and the clauses

corresponding to their minimal witnesses need not be encoded in the SAT instances.

This reduces the size of the SAT instances, improving the overall performance.

Identifying Database Facts Relevant to Query Answers

We described in the reductions from Chapter 3 and Chapter 4 that we need one

boolean variable for every fact of the inconsistent database instance, and we construct

clauses corresponding to all key-equal groups of facts or all minimal violations of the

integrity constraints on the database schema. In practice, this is often unnecessary

as we can easily identify which facts are relevant and which are irrelevant w.r.t. the

answers to the query and discard the irrelevant facts during the construction of the

SAT instances. A trivial example of the facts of a relation R being irrelevant w.r.t. the

answers to a query is when the relation symbol R does not appear in the input query.

More precisely, CAvSAT does the following to decide which facts are relevant. Initially,

all facts of the database instance I are marked irrelevant. If a fact f of I appears in at

least one minimal witness to a query, then CAvSAT marks the fact f as relevant. For

93



primary key constraints, CAvSAT marks every fact g of I as relevant if g is key-equal

to some other fact f that is already marked relevant. For broader classes of constraints,

this notion extends naturally in the sense that CAvSAT marks every fact g as relevant

if g appears in at least one minimal violation V to the integrity constraints on the

database schema such that there is another fact f that participates in V and that f is

already marked as relevant. With this, CAvSAT introduces variables corresponding to

only relevant facts and constructs clauses using them, which helps in reducing the sizes

of the SAT instances to be solved.

5.2.2 Workflow of CAvSAT

To better understand how are the aforementioned performance optimizations

are applied in practice, we go over the workflow of CAvSAT with an example, starting

from a user entering a query till CAvSAT computing its consistent answers. Recall

the database schema R consisting of three relation symbols Customer, Accounts, and

CustAcc, and the R-instance I as shown in Table 5.2. Let Σ be the set of integrity

constraints on R, consisting of two primary keys, namely, CID→ NAME, CITY on the

Customer relation, and ACCID → TYPE, CITY, BAL on the Accounts relation. The

key attributes of Customer and Accounts are underlined in Table 5.2.

We will consider the following union q of conjunctive queries that asks for the names of

the customers who belong to Los Angeles or have bank accounts in the same city that

they belong, i.e., q := q1 ∪ q2, where

q1 := SELECT CUSTOMER.CNAME FROM CUSTOMER
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Table 5.2: An inconsistent database instance of bank account records

Customer

Fact CID NAME CITY

f1 C1 John LA

f2 C2 Mary LA

f3 C2 Mary SF

f4 C3 Don SF

f5 C4 Jen LA

Accounts

Fact ACCID TYPE CITY BAL

f6 A1 Check. LA 900

f7 A2 Check. LA 1000

f8 A3 Saving SJ 1200

f9 A3 Saving SF -100

f10 A4 Saving SJ 300

CustAcc

Fact CID ACCID

f11 C1 A1

f12 C2 A2

f13 C2 A3

f14 C3 A4

WHERE CUSTOMER.CITY = ‘LA’,

q2 := SELECT CUSTOMER.CNAME FROM CUSTOMER, ACCOUNTS, CUSTACC

WHERE CUSTOMER.CID = CUSTACCT.CID

AND ACCOUNTS.ACCID = CUSTACCT.ACCID

AND CUSTOMER.CITY = ACCOUNTS.CITY.

We will now describe the workflow of CAvSAT as how it computes the consistent answers

to the query q on the database instance I from Table 5.2.

Prior to receiving the query q from the user, CAvSAT adds the attribute

FactID to each relation of I and assigns unique identifiers f1, · · · , f14 to the facts of I

as part of the Data Pre-processing stage (see Table 5.2). Moreover, CAvSAT creates

auxiliary relations to separately store the consistent part of the data (see Table 5.3) and

also computes the key-equal groups of facts of I. The key-equal groups of facts of I are

used to construct the α-clauses (x1), (x2 ∨ x3), (x4), (x5), (x6), (x7), (x8 ∨ x9), (x10),

(x11), (x12), (x13), and (x14).

Once the user inputs the query, the Query Pre-processor module attempts
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Table 5.3: Auxiliary tables constructed by CAvSAT during Data Pre-processing

Clean Customer

Fact CID NAME CITY

f1 C1 John LA

f4 C3 Don SF

f5 C4 Jen LA

Clean Accounts

Fact ACCID TYPE CITY BAL

f6 A1 Check. LA 900

f7 A2 Check. LA 1000

f10 A4 Saving SJ 300

Clean CustAcc

Fact CID ACCID

f11 C1 A1

f12 C2 A2

f13 C2 A3

f14 C3 A4

to determine the complexity of computing its consistent answers. Since there is no

known classification of the unions of conjunctive queries based on the complexity of their

consistent answers, we do not have a mechanism to determine the exact complexity of

Cons(q, I); we only know that it is in coNP. Therefore, the query q is forwarded to the

SAT solving module tailored for queries without aggregation operators.

The next stage of CAvSAT’s workflow is to compute the consistent answers

from the consistent part of the database. CAvSAT stores these answers in a temporary

relation named CAvSAT ans from cons. Thus, the answers ‘John’ and ‘Jen’ in the

table CAvSAT ans from cons, since they come from the minimal witnesses {f1} and

{f5} respectively, both of which are in the consistent part of the database. Notice that

the answer ‘John’ also comes from a witness {f1, f7, f11} since it satisfies the conjunctive

query q2, but {f1, f7, f11} is not a minimal witness to q since {f1} ⊂ {f1, f7, f11} and

{f1} satisfies q.

The next step in the workflow of CAvSAT is to look for additional consis-

tent answers in the inconsistent part of the database. For this, it first computes the

minimal witnesses to q on I and identifies the facts that are relevant to the consistent
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Table 5.4: Minimal witnesses to conjunctive queries q1 and q2 on I

CAvSAT minimal witnesses q1

CUSTOMER.FactID CUSTOMER.CNAME

f1 John ×
f2 Mary

f5 Jen ×

CAvSAT minimal witnesses q2

CUSTOMER.FactID ACCOUNTS.FactID CUSTACC.FactID CUSTOMER.CNAME

f1 f6 f11 John ×
f2 f7 f12 Mary ×
f3 f9 f13 Mary

answers to q. For computing the minimal witnesses to a union of conjunctive queries,

the FactID attribute of each relation is projected out in addition to the attributes

corresponding to the free variables (i.e., the attributes already present in the SELECT

clause) in each of the individual conjunctive queries participating in the union, they

are evaluated on I, and the results are stored in temporary relations with the prefix

CAvSAT minimal witnesses . Thus, CAvSAT computes the minimal witnesses to q1

and q2 as shown in Table 5.4. The minimal witnesses corresponding to the answers that

are already known to be consistent are discarded (shown with a symbol ‘×’ in Table

5.4). Also, the witness {f2, f7, f12} is discarded because even though it is a minimal

witness to the conjunctive query q2, it is not a minimal witness to the boolean union

q[‘Mary’] of conjunctive queries, as {f2} ⊂ {f2, f7, f12} and {f2} satisfies q[‘Mary’].

In the next step, CAvSAT identifies that f2, f3, f8, f9, and f13 are the only

relevant facts of I w.r.t. the answers to q. Since q is a non-boolean union of conjunctive
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queries, CAvSAT associates a p-variable p1 to the only potential answer ‘Mary’ that

is not already known to be consistent or inconsistent. Even though there are three

minimal witnesses with the answer ‘Mary’, CAvSAT associates only one variable for it

because for the unions of conjunctive queries, the current implementation of CAvSAT

follows the set semantics on the answers to the query. It is easy to see that introducing

a distinct p-variable for each occurrence of an answer will result in consistent answers

w.r.t. the bag semantics (see Section 4.2.2 for a discussion on handling the DISTINCT

keyword in aggregation queries for more details). Finally, a Partial MaxSAT instance

φ is constructed as follows:

φ = (x2 ∨ x3) ∧ (x8 ∨ x9) ∧ (x13) ∧ (¬x2 ∨ ¬p1) ∧ (¬x3 ∨ ¬x9 ∨ ¬x13 ∨ ¬p1)

Solving the instance φ using Algorithm 1 confirms that there exists a satisfying

assignment â to φ such that â(p1) = 1, and hence by Proposition 3.1.2, ‘Mary’ is not

a consistent answer to q. Finally, CAvSAT returns the only consistent answers ‘John’

and ‘Jen’ to the user.

5.2.3 Graphical User Interface

The CAvSAT system is implemented with both a command-line and a graph-

ical user interface. The command-line user interface is a basic and functional way to

interact with CAvSAT; we used it for running experiments discussed in Chapter 6. The

graphical user interface is more feature-rich. In this section, we focus on the graphical

user interface and describe its features and usefulness.

To start interacting with CAvSAT, the user connects to a remote database
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server via SQL server authentication, as shown in Figure 5.3. After a connection is

Figure 5.3: CAvSAT log-in screen to connect to a remote database instance

successfully established, the user is asked to choose the database instance on which

they intend to compute the consistent answers of the queries. The top right corner of

the user interface in Figure 5.4 shows that the user is connected to a Microsoft SQL

Server at localhost and selected the database instance named bank accounts.

At this point, if CAvSAT has not yet performed the data pre-processing on

the database instance selected by the user (this happens only when the user connects

to an instance for the first time), CAvSAT informs the user about it and starts the

data pre-processing in the background. By default, the Preview Schema and Raw Data

tab is displayed to the user where they can see a few sample rows from each relation

of the database instance. Clicking on the Constraints button in the top bar shows the

set of integrity constraints on the chosen schema (see Figure 5.5). In the main text box

titled Enter a Query, CAvSAT allows the user to specify the input query either using
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Figure 5.4: Preview of the data from the selected database instance

Figure 5.5: The set of integrity constraints on the selected database schema

SQL or with the first-order logic syntax. The user also has a choice between evaluation

strategies for computing consistent answers: the default is to use SAT solving, while

two SQL-rewriting algorithms from [40, 59] can be used for queries known to be having

SQL-rewritable consistent answers or range consistent answers.

Clicking the Execute button starts the computation of the consistent answers

or the range consistent answers to the query entered by the user. The answers are

displayed to the user along with the evaluation strategy that CAvSAT opted for. When
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multiple evaluation strategies are applicable, CAvSAT returns the answers to the user

with the fastest of the strategies. Figure 5.6 shows that CAvSAT returned with ‘John’

as the only consistent answer to the conjunctive query entered by the user and Figure 5.7

shows the range consistent answers to the aggregation query that asks for the number of

bank accounts grouped by city. In both cases, CAvSAT used Partial MaxSAT solving.

Figure 5.6: The consistent answers to a conjunctive query

Figure 5.7: The range consistent answers to an aggregation query with grouping

The graphical user interface has several other features, including the following.

The Potential Answers tab displays the answers to the input query evaluated directly
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Figure 5.8: The potential answers to an aggregation query with grouping

on the inconsistent database instance (see Figure 5.8). This not only helps users to

visualize the difference between potential and consistent answers but to also determine

the overhead of computing consistent answers compared to evaluating the input query

on the database directly. For example, the city ‘SF’ appears in the potential answers

(Figure 5.8) with one bank account, but it is not a consistent answer because there is a

repair with no bank accounts in ‘SF’ (Figure 5.7).

The Query Analysis tab shows the complexity of computing consistent answers

to the query if it is determined by the Query Pre-processor module. The attack graph

and the join graph of the input query are also visualized. As depicted in Figure 5.9,

computing the consistent answers to the conjunctive query that asks for the names

of customers having bank accounts in the same city as they belong is coNP-complete

because there is a strong cycle of length two in its attack graph.

For queries having SQL-rewritable consistent answers, the Data Complexity

pane of the Query Analysis tab lets the user view the rewriting computed using the
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Figure 5.9: Query Analysis: a visual explanation on why computing the consistent

answers to the input query is a coNP-complete task

Figure 5.10: ConQuer-based SQL-rewriting of the consistent answers

algorithms from [40, 59] (see Figure 5.10). Finally, the Running Time Analysis tab

shows the breakdown of the internal tasks performed by the SAT solving module of

CAvSAT while computing the consistent answers or the range consistent answers, along
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with the time taken to complete each of those tasks (Figure 5.11).

Figure 5.11: The breakdown of the internal tasks and the time taken to compute the

consistent answers using the SAT-solving module
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Chapter 6

Experimental Analysis

We carried out a suite of extensive experiments with CAvSAT and evaluated

its performance in several different scenarios. We divide our experiments in the following

two main parts. In the first part, we report on the results obtained using CAvSAT on

conjunctive queries and unions of conjunctive queries without aggregation and grouping

(Section 6.1). Naturally, the SAT solving module of CAvSAT used in these experiments

is based on the reductions from Chapter 4. In the second part, we give an account of

our experiments with aggregation queries (with and without grouping), where the SAT

solving module of CAvSAT uses the reductions from Chapter 4 (Section 6.2). In both

of these parts, we conducted experiments using both synthetically generated databases

and real-world databases, and with a variety of integrity constraints, such as primary

keys, functional dependencies, and denial constraints.
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6.1 Experiments on Queries Without Aggregation

6.1.1 Experimental Setup

The experiments on queries without aggregation were carried out on a ma-

chine running on Intel Core i7 2.7 GHz, 64 bit Ubuntu 16.04, with 8GB of RAM. We

used PostgreSQL as an underlying DBMS, and MaxHS v3.0 solver [31] for solving the

Weighted MaxSAT instances. Our system is implemented in Java 9.04. In the first

set of experiments, synthetically generated database instances with primary key con-

straints were used to evaluate a set of 21 conjunctive queries. On the queries that have

SQL-rewritable consistent answers, we compared the performance of CAvSAT and the

existing SQL-rewriting approaches from Koutris and Wijsen [59] and ConQuer [40]. In

the second set of experiments, we evaluated the performance of CAvSAT on a real-world

database with key constraints and one functional dependency constraint.

6.1.2 Synthetic Data Generation

For this set of experiments, the synthetic data were generated in two phases:

(a) generation of consistent data; (b) injection of inconsistency into consistent data. The

parameters used to generate the data were the number of tuples per relation (rSize),

degree of inconsistency (inDeg), i.e., the percentage of tuples participating in the vio-

lations of integrity constraints, and the size of each key-equal group (kSize).
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Generating consistent data

For this set of experiments, we used a database schema with seven relations

R1, · · · , R7, of arity two or three each. This schema has been used before to evaluate

EQUIP [55], a consistent query answering system based on Integer Linear Programming

solving. Each relation in the consistent database was generated with the same number of

tuples so that injecting inconsistency with specified kSize and inDeg will make the total

number of tuples in the relation equal to rSize. For each query used in the experiment,

the data was generated so the evaluation of the query on the consistent database results

in a relation that has the size 15% to 20% of rSize. The values of the third attribute

in all of the ternary relations were chosen from a uniform distribution in the range [1,

rSize/10]. This was done to simulate a reasonably large number of potential answers.

The remaining attributes take values from randomly generated strings of length 10.

Injecting inconsistency

In each relation, the inconsistency was injected by inserting new tuples to the

consistent data, that share the values of the key attributes with some already existing

tuples from the consistent data. We conducted experiments with varying values of

inDeg, ranging from 5% to 15%. The values of kSize were uniformly distributed between

two to five. The non-key attributes of the newly injected tuples were uniform random

alphanumeric strings of length 10.
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6.1.3 Conjunctive Queries on Synthetic Databases

For the set of experiments on the synthetically generated databases, we used

a set of 21 self-join-free conjunctive queries q1, · · · , q21, which was also used to evaluate

EQUIP [55] in the past. These queries have been carefully designed so that the first

seven queries q1, · · · , q7 have SQL-rewritable consistent answers, the next seven queries,

q8, · · · , q14, have consistent answers that are polynomial-time computable but not SQL-

rewritable, and the consistent answers to the last seven queries, q15, · · · , q21, are coNP-

complete. Here, we list down all conjunctive queries used in this set of experiments.

SQL-rewritable consistent answers

q1(z) := ∃x, y, v, w (R1(x, y, z) ∧R2(y, v, w))

q2(z, w) := ∃x, y, v (R1(x, y, z) ∧R2(y, v, w))

q3(z) := ∃x, y, v, u, d (R1(x, y, z) ∧R3(y, v) ∧R2(v, u, d))

q4(z, d) := ∃x, y, v, u (R1(x, y, z) ∧R3(y, v) ∧R2(v, u, d))

q5(z) := ∃x, y, v, w (R1(x, y, z) ∧R4(y, v, w))

q6(z) := ∃x, y, x′, w, d (R1(x, y, z) ∧R2(x
′, y, w) ∧R5(x, y, d))

q7(z) := ∃x, y, w, d (R1(x, y, z) ∧R2(y, x, w) ∧R5(x, y, d))

In P but not SQL-rewritable consistent answers

q8(z, w) := ∃x, y (R1(x, y, z) ∧R2(y, x, w))

q9(z) := ∃x, y, w, u, d (R1(x, y, z) ∧R2(y, x, w) ∧R4(y, u, d))

q10(z, w, d) := ∃x, y, u (R1(x, y, z) ∧R2(y, x, w) ∧R4(y, u, d))
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q11(z) := ∃x, y, w (R1(x, y, z) ∧R2(y, x, w))

q12(v, d) := ∃x, y, z, u (R3(x, y) ∧R6(y, z) ∧R1(z, x, d) ∧R4(x, u, v))

q13(v) := ∃x, y, z, u (R3(x, y) ∧R6(y, z) ∧R7(z, x) ∧R4(x, u, v))

q14(d) := ∃x, y, z, u (R3(x, y) ∧R6(y, z) ∧R1(z, x, d) ∧R7(x, u))

CoNP-complete consistent answers

q15(z) := ∃x, y, x′, w (R1(x, y, z) ∧R2(x
′, y, w))

q16(z, w) := ∃x, y, x′ (R1(x, y, z) ∧R2(x
′, y, w))

q17(z) := ∃x, y, x′, w, u, d (R1(x, y, z) ∧R2(x
′, y, w) ∧R4(y, u, d))

q18(z, w) := ∃x, y, x′, u, d (R1(x, y, z) ∧R2(x
′, y, w) ∧R4(y, u, d))

q19(z, w, d) := ∃x, y, x′, u (R1(x, y, z) ∧R2(x
′, y, w) ∧R4(y, u, d))

q20(z) := ∃x, y, x′, w, u, d, v (R1(x, y, z) ∧R2(x
′, y, w) ∧R4(y, u, d) ∧R3(u, v))

q21(z, w) := ∃x, y, x′, u, d, v (R1(x, y, z) ∧R2(x
′, y, w) ∧R4(y, u, d) ∧R3(u, v))

6.1.4 Experimental Results on Synthetic Databases

CAvSAT on SQL-rewritable Conjunctive Queries

In this set of experiments, we compare the performance of CAvSAT against

the SQL-rewritings of seven queries over the database with primary key constraints.

For queries q1, . . . , q7, we computed the SQL-rewritings using the algorithm of Koutris

and Wijsen in [59]. We refer to these SQL-rewritings as the KW-SQL-rewritings. Since

the queries q1, . . . , q4 happen to be in the class Cforest, we computed additional SQL-

rewritings for them using the algorithm from ConQuer [40]; we refer to these rewritings
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as the ConQuer-SQL-rewritings.

We first computed the consistent answers to these queries using the SAT solv-

ing module of CAvSAT on database instances of size one million tuples per relation

and with 10% inconsistency. Figure 6.1 shows computing the answers to the queries

from the consistent part of the database first significantly improves the performance

of CAvSAT. The letter ‘E’ indicates the time taken by the SAT solving module of

CAvSAT to encode the problem into a SAT instance, and the letter ‘S’ denotes the

time taken to solve the SAT instance. The legends ‘Opt’ and ‘Unopt’ denote whether

the performance optimization of computing the answers from the consistent part of the

data first was on or off. The gain in the performance is not surprising; since 90% of

the data were consistent, it is expected that most of the consistent answers lie in the

consistent part of the database. The SAT instances corresponding to the unoptimized

way of computing the answers had an average of over 2.5 million variables and clauses,

while the size was reduced to 45 thousand variables and 49 thousand clauses for the

optimized approach. For the rest of the experiments, we use the optimized approach,

i.e., we compute the answers to the queries from the consistent part of the data first.

Figure 6.2 shows that for the queries q1, . . . , q4 in the class Cforest, the perfor-

mance of CAvSAT is slightly worse, but comparable, to their ConQuer-SQL-rewritings.

For all seven queries q1, . . . , q7, however, CAvSAT significantly outperformed their KW-

SQL-rewritings, as PostgreSQL hit the two hours timeout while evaluating each KW-

SQL-rewriting. In fact, this timeout was hit by all seven queries even for databases of

size as small as 100K tuples per relation. For q1, . . . , q7, the average number of iterations
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taken by Algorithm 1 to eliminate all inconsistent potential answers was 2.85.

Figure 6.1: Performance of CAvSAT on conjunctive queries with SQL-rewritable con-

sistent answers (1M tuples/relation with 10% inconsistency).
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Figure 6.2: Performance of CAvSAT, ConQuer, and Koutris-Wijsen rewriting
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CAvSAT on Harder Queries

In this set of experiments, we considered fourteen additional non-boolean con-

junctive queries q8, · · · , q21 whose consistent answers are coNP-complete or in P but not
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SQL-rewritable. Figure 6.3 shows that the time required to encode the CQA instance

into a Partial MaxSAT instance dominates over the time taken by the SAT solver and

the Algorithm 1 to eliminate all inconsistent potential answers. The solver takes com-

paratively more time for the queries that have more free variables or more atoms. Table

6.1 shows the size of the Partial MaxSAT instances constructed by Reduction 3.1.2 in

this experiment. The average number of iterations taken by Algorithm 1 to eliminate

all inconsistent potential answers to a query was 3.2.

Figure 6.3: Performance of CAvSAT on conjunctive queries with consistent answers of

varying data complexity (1M tuples/relation, varying inconsistency).
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Table 6.1: The size of the CNF-formulas with optimization (1M tuples/relation)

Query Variables Clauses Query Variables Clauses Query Variables Clauses

q1 16.5K 20.9K q8 16.6K 16.8K q15 14.9K 15K

q2 68.6K 76.0K q9 58K 57.7K q16 58.8K 58.4K

q3 31.9K 36.8K q10 31.3K 36.6K q17 40.1K 41.4K

q4 117.2K 123.7K q11 105K 118.1K q18 107.5K 121.4K

q5 16.3K 20.6K q12 116.8K 123.4K q19 114.4K 120.7K

q6 32.8K 33.2K q13 63.2K 65.7K q20 53.4K 63.7K

q7 32.5K 33.8K q14 53.9K 59.2K q21 170K 199K
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6.1.5 Real-world Database and Queries

For the next set of experiments, we used real-world data having key constraints

on each relation, along with one functional dependency. The data are about inspections

of food establishments in Chicago and New York and are taken from [6, 7]. Parts

of this data have been previously used for evaluating data cleaning systems, such as

HoloClean [74]. Since the structure of the schema or the constraints on the database

were not specified by the source, we decomposed the data into four relations, and

assumed reasonable key constraints for all relations and also one additional functional

dependency, as shown in Table 6.2.

Table 6.2: The schema and the constraints of the real-world database

Relation # Tuples

NY Insp (LicenseNo, Risk, InspDate, InspType, Result) 229K

NY Rest (Name, LicenseNo, Cuisine, Address, Zip) 26.5K

CH Insp (LicenseNo, Risk, InspDate, InspType, Result) 167K

CH Rest (Name, LicenseNo, Facility, Address, Zip) 31.1K

Constraint Type Violations

NY Insp (LicenseNo, InspDate, InspType → Risk, Result) Key 25.6%

NY Rest (LicenseNo → Name, Cuisine, Address, Zip) Key 0%

CH Insp (LicenseNo, InspDate, InspType → Risk, Result) Key 0.07%

CH Rest (LicenseNo → Name, Cuisine, Address, Zip) Key 5.86%

CH Rest (Name → Zip) FD 9.73%

We evaluated the performance of CAvSAT on the six queries qr1, · · · , qr6, their

definitions are given next. For example, the query qr3 returns the names of the restau-

rants, such that their outlets are present in both New York and Chicago, and they were
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inspected on the same day.

qr1() := ∃x, y, z, w, v, y′, z′, w′, v′ (NY Rest(x, y, z, w, v) ∧ CH Rest(x, y′, z′, w′, v′)),

qr2(x) := ∃y, z, w, v, y′, z′, w′, v′ (NY Rest(x, y, z, w, v) ∧ CH Rest(x, y′, z′, w′, v′)),

qr3(x) := ∃y, z, w, v, y′, z′, w′, v′, q, r, s, t, q′, s′, t′ (NY Rest(x, y, z, w, v)

∧CH Rest(x, y′, z′, w′, v′) ∧NY Insp(y, q, r, s, t) ∧ CH Insp(y′, q′, r, s′, t′)),

qr4(x, y) := ∃z, w, v, q, r, s (CH Rest(x, y, z, w, v) ∧ CH Insp(y, q, r, s, ‘Pass’)),

qr5(x) := ∃y, z, w, v, q, r, s (CH Rest(x, y, z, w, v) ∧ CH Insp(y, q, r, s, ‘Fail’)) ∪

∃y, z, w, v, q, r, s (NY Rest(x, y, z, w, v) ∧NY Insp(y, q, r, s, ‘Fail’)),

qr6(x, v) := ∃y, z, w, y′, z′, w′, v′, q, r, s (CH Rest(x, y, z, w, v) ∧NY Rest(x, y′, z′, w′, v′)

∧NY Insp(y′, ‘Not Critical’, q, r, s)).

6.1.6 Experimental Results on the Real-world Database

Here, we observed that the encoding time for all six queries is pretty much

identical, but it is higher compared to the queries in the earlier set of experiments con-

sidering that the database instance used here is much smaller in size. The reason behind

this is that the functional dependency constraint on the schema shown in Figure 6.4

forces CAvSAT to opt for Reduction 3.2.1 since Reduction 3.1.2 is applicable only to

primary key constraints. The Partial MaxSAT instance generated from Reduction 3.2.1

are larger compared to the ones from Reduction 3.2.1 due to the way minimal violations

and the near-violations are encoded. As a result, the solver also takes a considerably

longer time to solve these instances compared to the queries on the synthetically gener-

ated database. Not surprisingly, the evaluation time increases as the number of atoms
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or the number of free variables in the query grow.

Figure 6.4: Performance of CAvSAT on the real-world food inspection database
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6.2 Experiments on Aggregation Queries

6.2.1 Experimental Setup

We evaluated the performance of CAvSAT over both synthetic and real-world

databases. The first set of experiments includes a comparison of CAvSAT with an exist-

ing SQL-rewriting-based CQA system, namely, ConQuer, over synthetically generated

TPC-H databases having one key constraint per relation. This set of experiments is

divided into two parts, based on the method used to generate the inconsistent database

instances. In the first part, we use the DBGen tool from TPC-H and artificially inject

inconsistencies in the generated data; in the second part, we employ the PDBench in-

consistent database generator from MayBMS [14] (see Section 6.2.2 for details). Next,

we assess the scalability of CAvSAT by varying the size of the database and the amount

of inconsistency present in it. Lastly, to evaluate the performance of the reductions
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from Section 4.4, we use a real-world Medigap [3] database that has three functional

dependencies and one denial constraint. All experiments were carried out on a machine

running on Intel Core i7 2.7 GHz, 64 bit Ubuntu 16.04, with 8GB of RAM. We used

Microsoft SQL Server 2017 as an underlying DBMS, and MaxHS v3.2 solver [31] for

solving the Weighted MaxSAT instances.

6.2.2 Experiments with TPC-H Data and Queries

TPC-H Data Generation

For the first part of the experiments, the data is generated using the DBGen

data generation tool from the TPC-H Consortium. The TPC-H schema comes with

exactly one key constraint per relation, which was ideal for comparing CAvSAT against

ConQuer [40, 42] (the only existing system for computing the range consistent answers

to aggregation queries) because ConQuer does not support more than one key con-

straint per relation or classes of integrity constraints broader than keys. The DBGen tool

generates consistent data, so we artificially injected inconsistency by updating the key

attributes of randomly selected tuples from the data with the values taken from exist-

ing tuples of the same relation. The sizes of the key-equal groups that violate the key

constraints were uniformly distributed between two and seven. The database instances

were generated in such a way that every repair had the specified size. We experimented

with varying degrees of inconsistency, ranging from 5% up to 35% of the tuples violating

a key constraint, and with a variety of repair sizes, starting from 500 MB (4.3 million

tuples) up to 5 GB (44 million tuples). For the second part, we employed the PDBench
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database generator from MayBMS [14] to generate four inconsistent database instances

with varying degrees of inconsistency (see Table 6.3). In all four instances, the data is

generated in such a way that every repair is of size 1 GB.

Table 6.3: Details of the TPC-H instances generated using PDBench

Percentage of Inconsistency

Relation Instance 1 Instance 2 Instance 3 Instance 4

CUSTOMER 4.42% 8.5% 16.14% 29.49%

LINEITEM 6.36% 12.09% 22.53% 39.82%

NATION 7.69% 0% 7.69% 7.69%

ORDERS 3.51% 6.77% 12.87% 23.9%

PART 4.93% 9.33% 17.66% 32.16%

PARTSUPP 1.53% 2.96% 5.77% 11.13%

REGION 0% 0% 0% 0%

SUPPLIER 3.69% 7.44% 14.11% 26.51%

Overall 5.36% 10.25% 19.29% 34.72%

Database size and Repair size (in GB)

1.04 & 1.00 1.07 & 1.01 1.14 & 1.02 1.3 & 1.02

Size of the Largest Key-equal Groups

8 tuples 16 tuples 16 tuples 32 tuples

TPC-H Queries

The standard TPC-H specification comes with 22 queries (constructed using

the QGen tool). Here, we focus on queries 1, 3, 4, 5, 6, 10, 12, 14, and 19; the other 13

queries have features such as nested subqueries, left outer joins, and negation that are

beyond the aggregation queries defined in Section 2.1. In Section 6.2.3, we describe our

results for queries without grouping. Since six out of the nine queries under consideration

contained the GROUP BY clause, we removed it and added appropriate conditions in
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the WHERE clause based on the original grouping attributes to obtain queries without

grouping. We refer to these queries as Q′1, Q
′
3, · · · , Q′19 and their definitions are given

in Table A.1 of the Appendix.

6.2.3 Experimental Results on Queries without Grouping

In the first set of experiments, we computed the range consistent answers

of the TPC-H-inspired aggregation queries without grouping via WPMaxSAT solving

over a database instance with 10% inconsistency and having repairs of size 1 GB (8

million tuples). Figure 6.5 shows that much of the evaluation time used by CAvSAT is

consumed in encoding the CQA instance into a WPMaxSAT instance, while the solver

comparatively takes less time to compute the optimal solution. Note that, Q′5 is not

in the class Caggforest, and thus ConQuer cannot compute its range consistent answers.

CAvSAT performs better than ConQuer on seven out of the remaining eight queries.
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Figure 6.5: CAvSAT vs. ConQuer on TPC-H data generated using the DBGen-based

tool (10% inconsistency, 1 GB repairs)

Next, we compared the performance of CAvSAT and ConQuer on database
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Figure 6.6: CAvSAT vs. ConQuer on PDBench instances

instances generated using PDBench. Figure 6.6 shows that CAvSAT performs better

than ConQuer on PDBench instances with low inconsistency. As the inconsistency
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increases, the Weighted Partial MaxSAT solver requires a considerably long time to

compute the optimal solutions (especially for Q′6, Q
′
12, and Q′14). One reason is that the

sizes of key-equal groups in PDBench instances with higher inconsistency percentages

are large, which translates into clauses of large sizes in the Weighted Partial MaxSAT

instances, hence the solver works hard to solve them. Also, Kügel’s reduction [64] from

Weighted Partial MinSAT to Weighted Partial MaxSAT significantly increases the size

of the CNF formula, resulting in higher time for the lub-answers to the queries.

Table 6.4: The average size of the CNF formulas for Q′1, Q
′
6, and Q′14

(a) # of variables (in thousands)

5% 15% 25% 35%

Q′1 10.2 34.3 60.6 95.3

Q′6 28.4 96.2 175.0 271.2

Q′14 6.4 21.1 40.6 62.3

(b) # of clauses (in thousands)

5% 15% 25% 35%

27.6 92.2 163.6 258.1

76.8 259.9 472.9 734.0

15.6 51.9 101.0 156.6

(c) # of variables (in thousands)

1 GB 3 GB 5 GB

Q′1 21.3 44.1 105.6

Q′6 60.9 127.13 304.4

Q′14 13.9 32.9 67.7

(d) # of clauses (in thousands)

1 GB 3 GB 5 GB

57.7 104.1 258.8

165.3 300.7 823.1

34.0 73.7 166.6

Next, we varied the inconsistency in the database instances created using the

DBGen-based data generator while keeping the size of the database repairs constant (1

GB). Figure 6.7 shows that the evaluation time of CAvSAT stays well under ten seconds

(except for Q′6), even if there is more inconsistency in the data. Tables 6.4a and 6.4b

show the average size of the CNF formulas for the top three queries that exhibited the
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Figure 6.7: CAvSAT on TPC-H data generated using the DBGen-based tool (varying

inconsistency, 1 GB repairs)
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Figure 6.8: CAvSAT on TPC-H data generated using the DBGen-based tool (varying

database sizes, 10% inconsistency)

largest CNF formulas. The size of the formulas grows nearly linearly as the inconsistency

present in the data grows. The CNF formulas for Q′6 are significantly larger than the

ones corresponding to the other queries since Q′6 has high selectivity and it is posed

against the single largest relation LINEITEM which has over 8.2 million tuples in an

instance with 35% inconsistency. This also explains why CAvSAT takes more time for

computing its range consistent answers (Figure 6.7). In database instances with low
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inconsistency, the consistent answers to the queries having low selectivity (e.g., Q′3, Q
′
10)

are sometimes contained in the consistent part of the data, and CAvSAT does not need

to construct a Weighted Partial MaxSAT instance at all.

We then evaluated CAvSAT’s scalability by increasing the sizes of the databases

while keeping the inconsistency to a constant 10%. Figure 6.8 shows that the evaluation

time of CAvSAT for queries Q′1, Q
′
6, and Q′12 increases faster than that for the other

queries. This is because the queries Q′1 and Q′6 are posed against LINEITEM while Q′12

involves a join between LINEITEM and ORDERS resulting in CAvSAT spending more time

on computing the minimal witnesses to these queries as the size of the database grows.

Table 6.4c and 6.4d show that the size of the CNF formulas grows almost linearly w.r.t.

the size of the database. The largest CNF formula consisted of over 304 thousand vari-

ables and 823 thousand clauses and was exhibited by Q′6 on a database of size 5 GB (47

million tuples). The low selectivity of queries Q′3, Q
′
10, and Q′19 resulted in very small

CNF formulas, even on large databases.

6.2.4 Experimental Results on Queries with Grouping

In this set of experiments, we focus on TPC-H queries 1, 3, 4, 5, 10, and 12

(see Table A.2 in the Appendix), as the queries 6, 14, and 19 did not contain grouping.

We evaluated the performance of CAvSAT and compared it to ConQuer on a database

with 10% inconsistency w.r.t. primary keys (Figure 6.9). The repairs are of size 1 GB.

CAvSAT computes the consistent answers to the underlying conjunctive query using the

reductions from [33] which are, precisely, the consistent groups in the range consistent
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answers to the aggregation query. For each of these groups, it computes the glb-answer

and the lub-answer using reductions to Weighted Partial MaxSAT.
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Figure 6.9: CAvSAT vs. ConQuer on TPC-H data generated using the DBGen-based

tool (10% inconsistency, 1 GB repairs)

The overhead of computing the range consistent answers to aggregation queries

with grouping is higher than that for the aggregation queries without grouping because

for an aggregation query with grouping, CAvSAT needs to construct and solve twice as

many Weighted Partial MaxSAT instances as there are consistent groups, i.e., one for

the lub-answer and one for the glb-answer per consistent group. For queries that involved

the SELECT TOP k construct of SQL, we chose top k consistent groups ordered by one

or more grouping attributes present in the ORDER BY clause of the query. CAvSAT

computes the range consistent answers to each query under ten seconds except for Q1.

It took under three seconds to compute the consistent groups of Q1, but took over forty

seconds to encode the range consistent answers of the groups and over fifteen minutes

to solve the corresponding Weighted Partial MaxSAT instances. This is because some

consistent groups have over 3 million tuples and so the Weighted Partial MaxSAT
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Figure 6.10: CAvSAT vs. ConQuer on PDBench instances
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instances have over 600 thousand variables and over 1.3 million clauses. ConQuer took

slightly over two minutes to compute the range consistent answers to Q1. We did not

include Q1 in experiments with larger databases and higher inconsistency.

Figure 6.10 shows the comparison of CAvSAT and ConQuer for aggregation

queries with grouping on PDBench instances. For the database instance with the lowest

amount of inconsistency, CAvSAT beats ConQuer on all queries, but as the inconsistency

grows, CAvSAT takes longer time to encode and solve for the consistent groups of the

queries Q3 and Q10. In Figure 6.11, we first plot the evaluation time of CAvSAT as the

percentage of inconsistency in the data grows from 5% to 35% in the instances generated

using the DBGen-based data generator. The size of the database repairs is kept constant

at 1 GB (8 million tuples).

Since CAvSAT constructs and solves many Weighted Partial MaxSAT in-

stances having varying sizes for an aggregation query involving grouping, we also plot

the overall number of SAT calls made by the solver in Figure 6.11. Note that the Y-axis

has logarithmic scaling in the second plot of Figure 6.11. There are ten consistent groups

in the answers to Q3, and just five and two consistent groups in the answers to Q5 and

Q12 respectively. In each consistent group, the aggregation operator is applied over a

much larger set of tuples in Q5 and Q12 than in Q3. As a result, the evaluation time

for Q3 is high but the number of SAT calls is comparatively less, while CAvSAT makes

more SAT calls for Q5 and Q12, even though their consistent answers are computed

much faster. The query Q10 requires a long time to construct and solve the Weighted

Partial MaxSAT instances for its consistent groups due to its high selectivity and the
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Figure 6.11: CAvSAT on TPC-H data generated using the DBGen-based tool (varying

inconsistency, 1 GB repairs)

presence of joins between four relations. The evaluation time of computing the range

consistent answers to aggregation queries with grouping increases almost linearly w.r.t.

the size of the database when the percentage of inconsistency is constant (Figure 6.12).

The second plot in Figure 6.12 depicts the number of SAT calls made by the solver as the

size of the database grows. Due to low selectivity, the answers to Q4 are encoded into

small CNF formulas even on databases with high inconsistency or large sizes, resulting

in fast evaluations.

The experiments show that CAvSAT performed well across a broad range of

queries and databases; it performed worse on queries with high selectivity because,
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Figure 6.12: CAvSAT on TPC-H data generated using the DBGen-based tool (varying

database sizes, 10% inconsistency)

in such cases, very large CNF formulas were generated. CAvSAT slowed down on

databases with high degree of inconsistency (> 30%) and with key-equal groups of large

sizes (> 15). These are rather corner cases that should not be encountered in real-world

databases.

6.2.5 Experiments with Real-world Data

Real-world Database and Queries

For this set experiments, we use the schema and the data from Medigap [3],

an openly available real-world database about Medicare supplement insurance in the
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Table 6.5: Details of the Medigap real-world database

(a) Medigap schema and the size of the instance

Relation Acronym # of attributes # of tuples

OrgsByState OBS 5 3872

PlansByState PBS 18 21002

PlansByZip PBZ 20 4748

PlanType PT 4 2434

Premiums PR 7 29148

SimplePlanType SPT 4 70

(b) Integrity constraints and inconsistency

Type Constraint Definition Inconsistency

FD OBS (orgID → orgName) 2.58%

FD PBS (addr, city, abbrev → zip) 1.5%

DC ∀ t ∈ PBS (t.webAddr 6= ‘’) 0.15%

United States. We combine the data from 2019 and 2020 to obtain a database with over

61K tuples (Table 6.5a). We evaluated the performance of Reduction 3.2.1, since we

consider two functional dependencies and one denial constraint on the Medigap schema,

as shown in Table 6.5b. The actual data was inconsistent so no additional inconsistency

was injected. We use twelve natural aggregation queries on the Medigap database that

involve the aggregation operators COUNT(*), COUNT(A), and SUM(A). We refer to these

as (Qm1 , · · · , Qm12). The first six queries contain no grouping, while the rest of them do.

The definitions of these queries are given in Table 6.6.
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Table 6.6: Aggregation Queries on Medigap database

# Query

Qm1 SELECT COUNT(*) FROM OBS WHERE OBS.Name = ‘Continental General Insurance Company’

Qm2 SELECT COUNT(*) FROM PBZ, SPT WHERE PBZ.Description = SPT.Simple plantype name AND

SPT.Contract year = 2020 AND SPT.Simple plantype = ‘B’

Qm3 SELECT SUM(PBZ.Over65) FROM PBZ WHERE PBZ.State name = ‘Wisconsin’ AND PBZ.County name =

‘GREEN LAKE’

Qm4 SELECT SUM(PBZ.Community) FROM PBZ WHERE PBZ.State name = ‘New York’

Qm5 SELECT COUNT(PR.Premium range) FROM PR

Qm6 SELECT COUNT(PR.Premium range) FROM PT, PR WHERE PT.State abbrev = PR.State abbrev AND

PT.Plan type = PR.Plan type AND PT.Contract year = PR.Contract year AND PT.Contract year

= 2020 AND PT.Simple plantype = ‘K’

Qm7 SELECT SPT.Contract year, COUNT(*) FROM SPT GROUP BY SPT.Contract year ORDER BY

SPT.Contract year DESC

Qm8 SELECT PBZ.State name, COUNT(*) FROM PBZ GROUP BY PBZ.State name

Qm9 SELECT PBZ.Zip, SUM(PBZ.Community) FROM PBZ WHERE PBZ.State name = ‘New York’ GROUP BY

PBZ.Zip

Qm10 SELECT TOP 10 PBS.State name, SPT.Contract year, SUM(PBS.Under65) FROM PBS, SPT

WHERE SPT.Simple plantype name = PBS.Description AND SPT.Simple plantype = ‘A’ AND

SPT.Language id = 1 GROUP BY PBS.State name, SPT.Contract year ORDER BY PBS.State name

Qm11 SELECT PR.Age category, COUNT(PR.Premium range) FROM PR GROUP BY PR.Age category ORDER

BY PR.Age category

Qm12 SELECT TOP 10 PT.Simple plantype, COUNT(PR.Premium range) FROM PT, PR WHERE

PT.State abbrev = PR.State abbrev AND PT.Plan type = PR.Plan type AND PT.Contract year

= PR.Contract year and PT.Contract year = 2020 GROUP BY PT.Simple plantype ORDER BY

PT.Simple plantype

6.2.6 Results on Real-world Database

In Figure 6.13, we plot the overall time taken by CAvSAT to compute the

range consistent answers to the twelve aggregation queries on the Medigap database.

Since the Medigap schema has functional dependencies and a denial constraint, the

encoding of CQA into Weighted Partial MaxSAT instances is based on Reduction 3.2.1.

Consequently, the size of the CNF formulas is much larger compared to that of the

ones produced by Reduction 3.1.1, resulting in longer encoding times. For all twelve
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queries, the encoding time is dominated by the time required to compute the near-

violations and hence the γ-clauses. This part of the encoding time is equal for all

queries, but the computation time for minimal witnesses depends on the query. The

solver takes comparatively minuscule amount of time to compute the consistent answers

to the underlying conjunctive query. For the queries Qm7 , · · · , Qm12, the glb-answer and

the lub-answer are encoded and then solved for for each consistent group, causing high

overhead. The longest evaluation time is taken by queries Qm10, Q
m
12, and Qm6 since they

consist of 10, 10, and 6 consistent groups, respectively.
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Figure 6.13: Performance of CAvSAT on computing the range consistent answers on a

real-world database

For these experiments, we did not compute the range consistent answers from

the consistent part of the data first. Thus, for all CNF formulas, the number of variables

is equal to the number of tuples in the data (about 61K). The number of clauses,

however, varies depending on the query, as shown in Figure 6.14. The query Qm5 has

the highest number of clauses since all tuples in the vwPremiums table are the minimal
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Figure 6.14: Number of clauses in a CNF formula capturing the consistent answers to

the underlying conjunctive query

witnesses to its underlying conjunctive query.

The clauses arising from the inconsistency in the data can be constructed

independently from the clauses arising from the witnesses to the queries. In the near

future, we plan to parallelize their computation to improve CAvSAT’s performance.
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Chapter 7

Discussion and Concluding Remarks

We designed and implemented CAvSAT, the first SAT-based system for con-

sistent query answering that leverages natural polynomial-time reductions from the

problem of computing consistent answers to SAT and its variants. We note that, on

non-aggregation queries with first-order rewritable consistent answers, CAvSAT had

comparable or even better performance to evaluating the first-order rewritings using

a database engine. This finding suggests a potential difference between theory and

practice since the study of the first-order rewritability of the consistent answers was

motivated from having an efficient evaluation of consistent answers using the database

engine alone. We acknowledge that the first-order rewritings used in our experiments

were fed directly to the database engine without any further optimizations. Moreover,

the recent result from Koutris and Wijsen [61] calls for further experiments that would

compare reduction-based approaches such as SAT solving with the theoretically more

efficient method of using a Datalog engine for self-join-free conjunctive queries that have
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Logspace-computable consistent answers.

We gave natural reductions from range consistent answers to range consistent

answers to aggregation queries involving COUNT(A), COUNT(*), SUM(A), MIN(A), and

MAX(A) operators to various optimization variants of SAT. We implemented the SAT

solving module in CAvSAT that is tailored for aggregation queries with or without

grouping and evaluated its performance using both synthetically generated databases

and real-world databases. With this, CAvSAT became the first system that can handle

arbitrary aggregation queries with or without grouping whose range consistent answers

are not SQL-rewritable. Our experimental evaluation showed that CAvSAT is not

only competitive with systems such as ConQuer but is also scalable. The experiments

with the Medigap database showed that CAvSAT is capable of computing the range

consistent answers to the queries over real-world databases having integrity constraints

beyond primary key constraints.

The modular architecture of CAvSAT leverages (some of) the theoretical re-

sults in consistent query answering and allows CAvSAT to easily incorporate new effi-

cient approaches for queries that have consistent answers in low complexity classes, e.g.,

new query-rewriting methods or special polynomial-time algorithms, if developed in the

future. Moreover, since CAvSAT uses the SAT solvers as black-boxes, they can be

easily replaced with newer more powerful ones in the future. If new Weighted Partial

MinSAT solvers are developed, CAvSAT would not have to reduce Weighted Partial

MinSAT to Weighted Partial MaxSAT using Kügel’s technique resulting in significant

improvements in the performance. Similarly, if hierarchical Partial MaxSAT solvers are
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built, the range consistent answers to aggregation queries with MIN(A) and MAX(A)

operators can be computed much faster.

In what follows, we discuss some of the directions for future research that arose

during our work on consistent query answering via SAT solving.

Incompatibility of the Reductions for Keys and Denial Constraints

In Chapters 3 and 4, we presented reductions from computing the consistent

answers or the range consistent answers of queries to several optimization variants of

SAT. We gave different reductions to handle different classes of integrity constraints.

Specifically, the reductions based on the key-equal groups of facts can handle only

primary keys, while the ones based on minimal violations and near-violations are more

general and they support arbitrary denial constraints. The general reductions are signifi-

cantly more complex and less efficient (as they produce bigger SAT instances) compared

to the ones tailored to only primary keys. Moreover, these reductions are not compatible

with each other in the following sense. If the set of integrity constraints on the database

schema has a mix of primary keys and denial constraints, CAvSAT is forced to use the

more general reduction for all constraints, i.e., CAvSAT cannot encode the inconsis-

tency arising due to the primary key violations based on the key-equal groups of facts

and use the more general encoding just for the denial constraints, because doing this

simply would not work. In other words, CAvSAT is forced to treat all primary keys like

denial constraints if there is even a single denial constraint (which is not a primary key

constraint) set on the schema. In fact, we do not have special reductions for handling
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functional dependencies or equality-generating dependencies. Therefore, the presence

of even a single functional dependency compels CAvSAT to use the general reduction

for all constraints, affecting the overall performance.

We call this the incompatibility of the reductions with each other and it comes

from the following fact. The primary keys are special compared to the rest of the

integrity constraints in the sense that all subset repairs w.r.t. a set of primary keys

have the same cardinality. This is not true even for functional dependencies, let alone

the denial constraints. This property naturally allows us to encode the inconsistency

w.r.t. the primary key violations based on the key-equal groups of facts (observe that

the size of each repair is, precisely, the total number of key-equal groups of facts). It is

an interesting project to work on more efficient reductions designed for specific classes

of integrity constraints and investigate their compatibility with each other.

Difficulties with MIN(A), MAX(A), and AVG(A)

On the foundational level, the next step in the investigation is to delineate the

complexity of the range consistent answers to the queries involving aggregation operators

such as MIN(A), MAX(A), and AVG(A). It was shown by Arenas et al. [17] in 2003 that

the range consistent answers to an aggregation query with the COUNT(A) operator can be

NP-hard even if the underlying conjunctive query has FO-rewritable consistent answers.

In this thesis, we proved a similar result for the SUM(A) operator, but we note that such

a result is still unknown for the other standard aggregation operators. Our reductions

for the MIN(A) and MAX(A) operators are fundamentally different from the ones for
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SUM(A), COUNT(A), and COUNT(*), and on the practical level they are relatively less

efficient due to an iterative approach. For MIN(A) and MAX(A), a more efficient natural

reduction to a SAT-variant would be worth investigating.

The AVG(A) aggregation operator is tough to handle due to its non-linear

behavior. The difficulty appears to be in picking a SAT-like NP-complete problem to

which one can naturally reduce the problem of computing the range consistent answers

to an aggregation query with the AVG(A) operator. Recall that, the AVG(A) operator

is left out in the ConQuer system too, as there is no known result about the SQL-

rewritability of the range consistent answers to aggregation queries involving AVG(A).

Consistent Query Answering Beyond Denial Constraints

We note that the SAT-based methods used here are applicable to broader

classes of SQL queries, such as queries with nested subqueries, as long as denial con-

straints are considered. If broader classes of constraints are taken into account, such as

universal constraints, then the consistent answers of even conjunctive queries become

Πp
2-hard to compute [18], hence SAT-based methods are not applicable. In that case,

Answer Set Programming solvers (for example, DLV [66] or Potassco [43]) have to be

used, instead of SAT solvers.

Difficulties in Comparing Consistent Query Answering with Data Cleaning

There is a large body of work on managing inconsistent databases via data

cleaning. There are fundamental differences between the framework of repairs and
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the consistent answers, and the framework of data cleaning (see [22, Section 6]). In

particular, the consistent answers provide the guarantee that each such answer will be

found no matter on which repair the query at hand is evaluated, while data cleaning

provides no similar guarantee. Data cleaning has the attraction that it produces a single

consistent instance but the process need not be deterministic and the instance produced

need not even be a repair (i.e., it need not be a maximally consistent instance). This

is due to the fact that data cleaning systems are not limited to tuple-deletions as the

single allowed database operation to clean the data but they often rely on modifying the

tuples or adding new tuples to the database during the cleaning process. Recent data

cleaning systems, such as HoloClean [74] and Daisy [45, 44], produce a probabilistic

database instance as the output (which again need not be a repair).

As a result, it is not clear how to compare query answers over the database

returned by a data cleaning system and the (range) consistent answers computed by a

consistent query answering system. In fact, no such comparison is given in the Holo-

Clean [74] and Daisy [45, 44] papers. Comparing the quality of the query answers on a

database cleaned using a data cleaning system to the consistent answers using measures

such as the F-score may not be fair, as it would require treating one of the two ap-

proaches as the gold standard and comparing the other one with it. A comparison based

on the evaluation time for answering queries is also not fair as the data cleaning systems

such as HoloClean rely on cleaning the data offline, i.e, completely independent of the

queries, and thus the time-consuming tasks are done prior to answering the queries, but

systems such as CAvSAT, however, need to do the majority of the work after receiving
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the input queries. The Daisy system does have an online component in its workflow as

the idea of Daisy is to clean only a part of the data that is relevant to the input query,

but again, the online work that a consistent query answering system is required to do

is typically much higher compared to what a data cleaning system such as Daisy needs

to do. Another challenge is that the data cleaning systems may use a variety of signals

to detect the errors in the data; for example, HoloClean uses external information such

as dictionaries and knowledge bases and quantitative statistics of the input database

such as co-occurrences of attribute values in addition to the set of integrity constraints.

Consistent Query Answering, however, is a framework designed specifically to deal with

only integrity constraint violations. One way to integrate additional signals into the

framework of consistent query answering could be to use the notions of preferred re-

pairs and preferred consistent answers, introduced in [77] and further discussed in [75].

One could let the signals such as external information and/or quantitative statistics

on the database dictate the preferences on the facts of the database and then consider

computing preferred consistent answers to the queries. However, for certain families of

preferred repairs, e.g., globally optimal preferred repairs, the problem of computing the

preferred consistent answers can be Πp
2-hard [75] and thus the SAT-based approaches

will not be applicable. As a result, it is an interesting project, however, left for future

research, to develop a methodology and carry out a fair comparison on a level playing

field between systems for data cleaning and systems for consistent query answering.
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Table A.1: TPC-H-inspired aggregation queries without grouping

# Query

Q′1 SELECT SUM(LINEITEM.L QUANTITY) FROM LINEITEM WHERE LINEITEM.L SHIPDATE <=

dateadd(dd, -90, cast(‘1998-12-01’ as datetime)) AND LINEITEM.L RETURNFLAG = ‘N’ AND

LINEITEM.L LINESTATUS = ‘F’

Q′3 SELECT SUM(LINEITEM.L EXTENDEDPRICE*(1-LINEITEM.L DISCOUNT)) FROM CUSTOMER,

ORDERS, LINEITEM WHERE CUSTOMER.C MKTSEGMENT = ’BUILDING’ AND CUSTOMER.C CUSTKEY =

ORDERS.O CUSTKEY AND LINEITEM.L ORDERKEY = ORDERS.O ORDERKEY AND ORDERS.O ORDERDATE <

‘1995-03-15’ AND LINEITEM.L SHIPDATE > ‘1995-03-15’ AND LINEITEM.L ORDERKEY = 988226 AND

ORDERS.O ORDERDATE = ‘1995-02-01’ AND ORDERS.O SHIPPRIORITY = 0

Q′4 SELECT COUNT(*) FROM ORDERS WHERE ORDERS.O ORDERDATE >= ‘1993-07-01’ AND

ORDERS.O ORDERDATE < dateadd(mm,3, cast(‘1993-07-01’ as datetime)) AND

ORDERS.O ORDERPRIORITY = ‘1-URGENT’

Q′5 SELECT SUM(LINEITEM.L EXTENDEDPRICE*(1-LINEITEM.L DISCOUNT)) FROM CUSTOMER, ORDERS,

LINEITEM, SUPPLIER, NATION, REGION WHERE CUSTOMER.C CUSTKEY = ORDERS.O CUSTKEY AND

LINEITEM.L ORDERKEY = ORDERS.O ORDERKEY AND LINEITEM.L SUPPKEY = SUPPLIER.S SUPPKEY

AND CUSTOMER.C NATIONKEY = SUPPLIER.S NATIONKEY AND SUPPLIER.S NATIONKEY =

NATION.N NATIONKEY AND NATION.N REGIONKEY = REGION.R REGIONKEY AND REGION.R NAME =

‘ASIA’ AND ORDERS.O ORDERDATE >= ‘1994-01-01’ AND ORDERS.O ORDERDATE < DATEADD(YY, 1,

cast(‘1994-01-01’ as datetime)) AND NATION.N NAME = ‘INDIA’

Q′6 SELECT SUM(LINEITEM.L EXTENDEDPRICE*LINEITEM.L DISCOUNT) FROM LINEITEM WHERE

LINEITEM.L SHIPDATE >= ‘1994-01-01’ AND LINEITEM.L SHIPDATE < dateadd(yy, 1,

cast(‘1994-01-01’ as datetime)) AND LINEITEM.L DISCOUNT BETWEEN .06 - 0.01 AND .06 +

0.01 AND LINEITEM.L QUANTITY < 24

Q′10 SELECT SUM(LINEITEM.L EXTENDEDPRICE*(1-LINEITEM.L DISCOUNT)) FROM CUSTOMER, ORDERS,

LINEITEM, NATION WHERE CUSTOMER.C CUSTKEY = ORDERS.O CUSTKEY AND LINEITEM.L ORDERKEY

= ORDERS.O ORDERKEY AND ORDERS.O ORDERDATE >= ‘1993-10-01’ AND ORDERS.O ORDERDATE

< dateadd(mm, 3, cast(‘1993-10-01’ as datetime)) AND LINEITEM.L RETURNFLAG =

‘R’ AND CUSTOMER.C NATIONKEY = NATION.N NATIONKEY AND CUSTOMER.C CUSTKEY = 77296

AND CUSTOMER.C NAME = ‘Customer#000077296’ AND CUSTOMER.C ACCTBAL = 1250.65 AND

CUSTOMER.C PHONE = ‘12-248-307-9719’ AND NATION.N NAME = ‘BRAZIL’

Q′12 SELECT COUNT(*) FROM ORDERS, LINEITEM WHERE ORDERS.O ORDERKEY = LINEITEM.L ORDERKEY

AND LINEITEM.L SHIPMODE = ‘MAIL’ AND (ORDERS.O ORDERPRIORITY = ‘1-URGENT’ OR

ORDERS.O ORDERPRIORITY = ‘2-HIGH’) AND LINEITEM.L COMMITDATE < LINEITEM.L RECEIPTDATE

AND LINEITEM.L SHIPDATE < LINEITEM.L COMMITDATE AND LINEITEM.L RECEIPTDATE >=

‘1994-01-01’ AND LINEITEM.L RECEIPTDATE < dateadd(mm, 1, cast(‘1995-09-01’ as datetime))

Continued on next page −→
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←− Continued from previous page

Q′14 SELECT SUM(LINEITEM.L EXTENDEDPRICE*(1-LINEITEM.L DISCOUNT)) FROM LINEITEM, PART

WHERE LINEITEM.L PARTKEY = PART.P PARTKEY AND LINEITEM.L SHIPDATE >= ‘1995-09-01’ AND

LINEITEM.L SHIPDATE < dateadd(mm, 1, ‘1995-09-01’) AND PART.P TYPE LIKE ‘PROMO%%’

Q′19 SELECT SUM(LINEITEM.L EXTENDEDPRICE*(1-LINEITEM.L DISCOUNT)) FROM LINEITEM, PART WHERE

(PART.P PARTKEY = LINEITEM.L PARTKEY AND PART.P BRAND = ‘Brand#12’ AND PART.P CONTAINER

IN (‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’) AND LINEITEM.L QUANTITY >= 1 AND

LINEITEM.L QUANTITY <= 1 + 10 AND PART.P SIZE BETWEEN 1 AND 5 AND LINEITEM.L SHIPMODE IN

(‘AIR’, ‘AIR REG’) AND LINEITEM.L SHIPINSTRUCT = ‘DELIVER IN PERSON’) OR (PART.P PARTKEY

= LINEITEM.L PARTKEY AND PART.P BRAND =‘Brand#23’ AND PART.P CONTAINER IN (‘MED BAG’,

‘MED BOX’, ‘MED PKG’, ‘MED PACK’) AND LINEITEM.L QUANTITY >= 10 AND LINEITEM.L QUANTITY

<= 10 + 10 AND PART.P SIZE BETWEEN 1 AND 10 AND LINEITEM.L SHIPMODE IN (‘AIR’,

‘AIR REG’) AND LINEITEM.L SHIPINSTRUCT = ‘DELIVER IN PERSON’) OR (PART.P PARTKEY =

LINEITEM.L PARTKEY AND PART.P BRAND = ‘Brand#34’ AND PART.P CONTAINER IN ( ‘LG CASE’,

‘LG BOX’, ‘LG PACK’, ‘LG PKG’) AND LINEITEM.L QUANTITY >= 20 AND LINEITEM.L QUANTITY <=

20 + 10 AND PART.P SIZE BETWEEN 1 AND 15 AND LINEITEM.L SHIPMODE IN (‘AIR’, ‘AIR REG’)

AND LINEITEM.L SHIPINSTRUCT = ‘DELIVER IN PERSON’)
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Table A.2: TPC-H-inspired aggregation queries with grouping

# Query

Q1 SELECT LINEITEM.L RETURNFLAG, LINEITEM.L LINESTATUS, SUM(LINEITEM.L QUANTITY) FROM

LINEITEM WHERE LINEITEM.L SHIPDATE <= dateadd(dd, -90, cast(‘1998-12-01’ as datetime))

GROUP BY LINEITEM.L RETURNFLAG, LINEITEM.L LINESTATUS

Q3 SELECT TOP 10 LINEITEM.L ORDERKEY, SUM(LINEITEM.L EXTENDEDPRICE), ORDERS.O ORDERDATE,

ORDERS.O SHIPPRIORITY FROM CUSTOMER, ORDERS, LINEITEM WHERE CUSTOMER.C MKTSEGMENT

= ‘BUILDING’ AND CUSTOMER.C CUSTKEY = ORDERS.O CUSTKEY AND LINEITEM.L ORDERKEY =

ORDERS.O ORDERKEY AND ORDERS.O ORDERDATE < ‘1995-03-15’ AND LINEITEM.L SHIPDATE >

‘1995-03-15’ GROUP BY LINEITEM.L ORDERKEY, ORDERS.O ORDERDATE, ORDERS.O SHIPPRIORITY

Q4 SELECT ORDERS.O ORDERPRIORITY, COUNT(*) AS O COUNT FROM ORDERS WHERE ORDERS.O ORDERDATE

>= ‘1993-07-01’ AND ORDERS.O ORDERDATE < dateadd(mm,3, cast(‘1993-07-01’ as datetime))

GROUP BY ORDERS.O ORDERPRIORITY

Q5 SELECT NATION.N NAME, SUM(LINEITEM.L EXTENDEDPRICE*(1-LINEITEM.L DISCOUNT))

AS REVENUE FROM CUSTOMER, ORDERS, LINEITEM, SUPPLIER, NATION, REGION WHERE

CUSTOMER.C CUSTKEY = ORDERS.O CUSTKEY AND LINEITEM.L ORDERKEY = ORDERS.O ORDERKEY AND

LINEITEM.L SUPPKEY = SUPPLIER.S SUPPKEY AND CUSTOMER.C NATIONKEY = SUPPLIER.S NATIONKEY

AND SUPPLIER.S NATIONKEY = NATION.N NATIONKEY AND NATION.N REGIONKEY = REGION.R REGIONKEY

AND REGION.R NAME = ‘ASIA’ AND ORDERS.O ORDERDATE >= ‘1994-01-01’ AND ORDERS.O ORDERDATE

< DATEADD(YY, 1, cast(‘1994-01-01’ as datetime)) GROUP BY NATION.N NAME

Q10 SELECT TOP 20 CUSTOMER.C CUSTKEY, CUSTOMER.C NAME, SUM(LINEITEM.L EXTENDEDPRICE * (1 -

LINEITEM.L DISCOUNT)) AS REVENUE, CUSTOMER.C ACCTBAL, NATION.N NAME, CUSTOMER.C ADDRESS,

CUSTOMER.C PHONE FROM CUSTOMER, ORDERS, LINEITEM, NATION WHERE CUSTOMER.C CUSTKEY =

ORDERS.O CUSTKEY AND LINEITEM.L ORDERKEY = ORDERS.O ORDERKEY AND ORDERS.O ORDERDATE>=

‘1993-10-01’ AND ORDERS.O ORDERDATE < dateadd(mm, 3, cast(‘1993-10-01’ as datetime))

AND LINEITEM.L RETURNFLAG = ‘R’ AND CUSTOMER.C NATIONKEY = NATION.N NATIONKEY GROUP BY

CUSTOMER.C CUSTKEY, CUSTOMER.C NAME, CUSTOMER.C ACCTBAL, CUSTOMER.C PHONE, NATION.N NAME,

CUSTOMER.C ADDRESS

Q12 SELECT LINEITEM.L SHIPMODE, COUNT(*) AS HIGH LINE COUNT FROM ORDERS, LINEITEM WHERE

ORDERS.O ORDERKEY = LINEITEM.L ORDERKEY AND LINEITEM.L SHIPMODE IN (‘MAIL’,‘SHIP’)

AND (ORDERS.O ORDERPRIORITY = ‘1-URGENT’ OR ORDERS.O ORDERPRIORITY = ‘2-HIGH’)

AND LINEITEM.L COMMITDATE < LINEITEM.L RECEIPTDATE AND LINEITEM.L SHIPDATE

< LINEITEM.L COMMITDATE AND LINEITEM.L RECEIPTDATE >= ‘1994-01-01’ AND

LINEITEM.L RECEIPTDATE < dateadd(mm, 1, cast(‘1995-09-01’ as datetime)) GROUP BY

LINEITEM.L SHIPMODE
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