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Abstract

Purpose—Chemotherapy resistance remains a major challenge in the treatment of ovarian 

cancer. We hypothesize that germline polymorphisms might be associated with clinical outcome.

Experimental Design—We analyzed ~2.8 million genotyped and imputed SNPs from the 

iCOGS experiment for progression-free survival (PFS) and overall survival (OS) in 2,901 

European epithelial ovarian cancer (EOC) patients who underwent firstline treatment of 

cytoreductive surgery and chemotherapy regardless of regimen, and in a subset of 1,098 patients 

treated with ≥4 cycles of paclitaxel and carboplatin at standard doses. We evaluated the top SNPs 

in 4,434 EOC patients including patients from The Cancer Genome Atlas. Additionally we 

conducted pathway analysis of all intragenic SNPs and tested their association with PFS and OS 

using gene set enrichment analysis.

Results—Five SNPs were significantly associated (p≤1.0×10−5) with poorer outcomes in at least 

one of the four analyses, three of which, rs4910232 (11p15.3), rs2549714 (16q23) and rs6674079 

(1q22) were located in long non-coding RNAs (lncRNAs) RP11-179A10.1, RP11-314O13.1 and 

RP11-284F21.8 respectively (p≤7.1×10−6). ENCODE ChIP-seq data at 1q22 for normal ovary 

shows evidence of histone modification around RP11-284F21.8, and rs6674079 is perfectly 

correlated with another SNP within the super-enhancer MEF2D, expression levels of which were 

reportedly associated with prognosis in another solid tumor. YAP1- and WWTR1 (TAZ)-

stimulated gene expression, and HDL-mediated lipid transport pathways were associated with PFS 

and OS, respectively, in the cohort who had standard chemotherapy (pGSEA≤6×10−3).

Conclusion—We have identified SNPs in three lncRNAs that might be important targets for 

novel EOC therapies.
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Introduction

Approximately 238,000 women are diagnosed with ovarian cancer each year. It is the 

leading cause of death from gynecological cancers and globally approximately 152,000 

women will die annually from the disease (1). Over the past three decades, significant 

advances have been made in chemotherapy for epithelial ovarian cancer (EOC), and the 

combination of cytoreductive surgery followed by the doublet of a taxane (paclitaxel 135 – 

175 mg/m2) and platinum (carboplatin AUC > 5) repeated every three weeks has been the 

most common regimen for primary treatment of this disease, with initial tumor response 

rates ranging from 70-80% (2, 3). Although survival rates have improved in the past decade, 

resistance to chemotherapy remains a major challenge, and the majority of patients with 

advanced disease succumb to the disease despite initial response to first line treatment (4). 

The identification of genes relevant to response to chemotherapy and survival of ovarian 

cancer may contribute to a better understanding of prognosis, and potentially guide the 

selection of treatment options to help circumvent this obstacle.

It is well recognized that genetic variation can have a direct effect on inter-individual 

variation in drug responses, although patient response to medication is dependent on 

multiple factors ranging from patient age, disease type, organ functions, concomitant therapy 

and drug interactions (5). Comparisons of intra-patient and inter-patient variability in both 

population-based and twin studies have demonstrated that the smallest differences in drug 

metabolism and their effects are between monozygotic twins, which is consistent with the 

hypothesis that genetics may play a significant role in drug responses (6, 7). While many 

cancer treatments have been successful in shrinking or eradicating tumor cells, studies of 

genetic factors related to drug responses are particularly challenging because tumor cell and 

the non-cancerous host tissue from which they arise share the same genetic background, and 

failure of treatment may be due to the presence of de novo or acquired somatic alterations in 

tumors rather than germline variation (8).

To date several candidate gene studies have explored germline polymorphisms for an 

association with response to chemotherapy for ovarian cancer (9). Some obvious candidates 

are genes that encode drug-metabolizing enzymes and drug transporters that can influence 

toxicity or treatment response. The most clinically relevant drug metabolising enzymes are 

member of the cytochrome P450 (CYP) superfamily, of which CYP1, CYP2, and CYP3 

contribute to the metabolism of more than 90% of clinically used drugs. There is 

considerable evidence that polymorphisms in the CYP genes have a significant impact on 

drug disposition and response, and >60% of Food and Drug Administration (FDA)-approved 

drug labels regarding genomic biomarkers pertain to polymorphisms in the CYP enzymes 

(10). Similarly the ABCB1 gene, the most extensively studied ATP-binding cassette (ABC) 

transporter involved in transport of a wide range of anti-cancer drugs including paclitaxel 

(11), was previously shown to be associated with response to first-line paclitaxel-based 

chemotherapy regimens for ovarian cancer (12, 13). A systematic review of the most 

commonly evaluated genes in gynecologic cancers, including ABCB1, showed inconsistent 

findings across studies (14). Other studies including a comprehensive study of ABCB1 SNPs 

putatively associated with progression-free survival (PFS) undertaken by the Ovarian Cancer 

Association Consortium (OCAC) did not replicate the association with PFS, although the 
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possibility of subtle effects from one SNP on overall survival (OS) could not be discounted 

(13). Recently several ABCA transporters were explored in expression studies using cell-

based models and shown to be associated with outcome in serous EOC patients (15), 

although this finding would need to be replicated in a larger independent study.

However, inter-individual variation in response to chemotherapy and post-treatment 

outcomes cannot be fully explained by genetic variations in the genes encoding drug 

metabolizing enzymes, transporters, or drug targets. Recent studies by the OCAC and the 

Australian Ovarian Cancer Study (AOCS) found that EOC patients carrying BRCA1 or 

BRCA2 germline mutations had better response to treatment and better short-term survival 

(5 years) than non-carriers (16, 17). This survival advantage is supported by in vitro studies 

of BRCA1/2 mutated ovarian cancer cell lines that were shown to be more sensitive to 

platinum-based chemotherapy (18, 19). Genome-wide approaches that integrate SNP 

genotypes, drug-induced cytotoxicity in cell lines and gene expression data have been 

proposed as models for identifying predictors of treatment outcome (20), although their 

utility when applied to patient data proved inconclusive (21).

While in vitro studies have suggested functional relevance for genes and associated SNPs, 

the clinical utility of these findings remains in question mainly due to inconsistent results 

from under-powered and heterogeneous patient studies. In this report we present the findings 

from a comprehensive large-scale analysis of ~2.8 million genotyped and imputed SNPs 

from the Collaborative Oncological Gene-environment Study (COGS) project in relation to 

progression-free and overall survival as surrogate markers of response to chemotherapy in 

~3,000 EOC patients with detailed first-line chemotherapy and follow-up data from the 

OCAC. In a secondary analysis, we also evaluated the association between OS and ~2.8 

million SNPs in ~11,000 EOC patients irrespective of treatment regimen.

Materials and methods

Study Populations

The main analysis was restricted to invasive EOC patients with detailed chemotherapy and 

clinical follow-up for disease progression and survival following first-line treatment from 

thirteen OCAC studies in the initial phase, with an additional four OCAC studies and 

patients from The Cancer Genome Atlas (TCGA) included in the validation phase 

(Supplementary Tables 1). Patients were included if they received a minimum of 

cytoreductive surgery as part of primary treatment, and were of European ancestry, 

determined using the program LAMP (22) to assign intercontinental ancestry based upon a 

set of unlinked markers also used to perform principal component (PC) analysis within each 

major population subgroup (23). A total of 2,901 patients were eligible for the main 

analysis, a subset of whom (n=1,098) were treated with ≥4 cycles of standard doses of 

paclitaxel and carboplatin intravenously (IV) at 3-weekly intervals. Clinical definitions and 

criteria for progression across studies have been previously described (13). Data from TCGA 

(http://cancergenome.nih.gov/) was downloaded through the TCGA data portal and assessed 

for ancestral outliers to determine those of European descent. A secondary analysis of OS in 

~11,000 European EOC patients was also done using patients from 30 OCAC studies 
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(Supplementary Table 2). All studies received approval from their respective human research 

ethics committees, and all OCAC participants provided written informed consent.

Genotyping and imputation

The Collaborative Oncological Gene-environment Study (COGS) and two ovarian cancer 

GWAS have been described in detail elsewhere (24). Briefly, 211,155 SNPs were genotyped 

in germline DNA from cases and controls from 43 studies participating in OCAC using a 

custom Illumina Infinium iSelect array (iCOGS) designed to evaluate genetic variants for 

association with risk of breast, ovarian and prostate cancers. In addition, two new ovarian 

cancer GWAS were included which used Illumina 2.5M and Illumina OmniExpress arrays. 

Genotypes were imputed to the European subset of the phased chromosomes from the 1000 

Genome project (version 3). Approximately 8 million SNPs with a minor allele frequency 

(MAF) of at least 0.02 and an imputation r2>0.3 were available for analysis, ~2.8 million of 

which were well imputed (imputation r2 ≥0.9) and were retained in survival analyses. DNA 

extraction, iPLEX genotyping methods and quality assurance for additional samples 

genotyped for the validation analysis have also been previously described (25).

Statistical Analysis

The main analyses were the association between ~2.8 million SNPs and progression-free 

survival (PFS) and overall survival (OS). Analyses of PFS and OS were conducted 

separately for all patients known to have had a minimum of cytoreductive surgery for first-

line treatment regardless of chemotherapy, hereafter referred to as the ‘all chemo’ analysis, 

and in a subset of patients known to have received standard of care first-line treatment of 

cytoreductive surgery and ≥4 cycles of paclitaxel and carboplatin IV at 3-weekly intervals, 

hereafter referred to as the ‘standard chemo’ subgroup (Supplementary Table 1). The 

majority of patients in the ‘standard chemo’ cohort were known to have had paclitaxel at 175 

or 135 mg/m2 and carboplatin AUC 5 or 6; for the remainder, standard dose was assumed 

based on treatment schedules. PFS was defined as the interval between the date of 

histological diagnosis and the first confirmed sign of disease progression or death, as 

previously described (13); OS was the interval between the date of histological diagnosis 

and death from any cause. Patients who had an interval of >12 months between the date of 

histological diagnosis and DNA collection were excluded from the analysis to avoid survival 

bias. A secondary analysis was OS in the largest available dataset of European invasive EOC 

patients regardless of treatment (n=11,311), hereafter referred to ‘all OCAC’.

For the main analysis of PFS and OS in ‘all chemo’ and ‘standard chemo’, we obtained the 

per-allele hazard ratio [log(HR)] and standard error for each SNP using Cox regression 

models including study, the first two PCs, residual disease (nil vs. any), tumor stage (FIGO 

stages I-IV), histology (5 subtypes), tumor grade (low vs. high), and age at diagnosis (OS 

analysis only) as covariates. To avoid inflation for rare SNPs, the likelihood ratio test was 

used to estimate the standard error for iCOGS SNPs and meta-analyzed with samples 

included in the US GWAS and U19 studies based on expected imputation accuracy for 

imputed SNPs. For secondary analysis of OS in the ‘all OCAC’ dataset, Cox regression 

models included study, age, and the first two PCs and histology as covariates. For the US 

GWAS and U19 studies, the principal components were estimated separately and the top two 
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and top principal components used respectively. All tests for association were two-tailed and 

performed using in-house software programmed in C++ and STATA SE v. 11 (Stata Corp., 

USA). Manhattan and QQ plots were generated using the R project for Statistical 

Computing version 3.0.1 (http://www.r-project.org/), and meta-analysis was done using the 

program Metal (26), and between-study heterogeneity was assessed using the likelihood 

ratio test to compare regression models with and without a genotype-by-study interaction 

term.

SNP selection for validation

Preliminary analyses suggested that dosage scores from imputed SNPs with imputation r2 

<0.9 were not representative of actual genotypes in this sample (Supplementary Methods & 

Supplementary Table 3). We therefore selected SNPs with imputation r2 ≥0.9 and adjusted 

p≤1.0×10−5 in at least one of the four main analyses (PFS and OS in ‘all chemo’ and 

‘standard chemo’) for genotype validation. SNPs were binned into LD blocks defined by 

pairwise correlation (r2) > 0.8. We used Sequenom Assay Designer 4.0 to design two 

multiplexes in order to capture at least one SNP representing each block, although some 

blocks contained SNPs for which an iPLEX assay could not be designed (n=10). All patients 

for whom we had DNA, clinical follow-up and chemotherapy data were genotyped. We then 

meta-analyzed estimates from the genotyped samples with non-overlapping iCOGS samples 

and TCGA data to obtain effect estimates from the largest possible dataset. SNPs that were 

significant at p≤1.0×10−5 in at least one outcome in the final analysis were queried for 

association with expression of protein-coding genes within 1Mb of the lead SNP using 

GEO, EGA and TCGA expression array data analyzed in KM-plotter (27).

Pathway analysis

All intragenic SNPs of the ~8 million (MAF ≥ 0.02 and imputation r2>0.3) with p-values for 

association with PFS and OS in the ‘standard chemo’ cohort were mapped to 25,004 genes 

annotated with hg19 start and end positions. The boundaries of each gene were extended by 

50 kb on both sides for SNP-to-gene mapping to include cis-regulatory variation. A total of 

23,490 genes were captured by at least one SNP. The negative logarithm (base 10) of the p-

value of the most significant SNP in each gene, adjusted for the number of SNPs in the gene 

(±50 kb) by a modification of the Sidak correction (28, 29) was used to rank genes based on 

their association with PFS and OS (‘standard chemo’). A total of 837 known biological 

pathways (containing between 15 to 500 genes each) from the Kyoto Encyclopedia of Genes 

and Genomes (KEGG), BioCarta, and Reactome, three standard expert-curated pathway 

repositories, were accessed via the Molecular Signatures Database (version 4.0; http://

www.broadinstitute.org/gsea/msigdb). The pathways were tested for their association with 

PFS and OS using gene set enrichment analysis (GSEA) run to 1,000 permutations (30). 

Specifically, we applied the “preranked” GSEA algorithm with default settings and the 

original GSEA implementation of correction for testing multiple pathways using false 

discovery (FDR) and familywise error rates (FWER). The genes in each pathway driving the 

GSEA signal (core genes) were defined as described previously (30).
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Results

SNP associations

An overview of the analytic approaches in this study is provided in Supplementary Figure 1. 

There were 158 and 236 SNPs in analysis of OS in ‘all chemo’ and ‘standard chemo’ 

respectively, and 107 and 252 SNPs in analysis of PFS in ‘all chemo’ and ‘standard chemo’ 

that were above the minimal p-value threshold for suggestive significance (p=1.0×10−5) but 

none reached the nominal level of genome-wide significance (p= 5×10−8; Figure 1). QQ 

plots and estimates of inflation of the test statistic (λ) revealed some inflation (λ ≤1.15; 

Supp. Figure 2) which could not be accounted for by SNPs with low MAF (<0.1). 

Manhattan and QQ plots for the ‘all OCAC’ OS analysis showed similar effects 

(Supplementary Figure 3). We selected 130 iCOGS SNPs with imputation r2 ≥0.9 and 

adjusted p≤1.0×10−5 in at least one of the four analyses (Supplementary Table 4), and 

genotyped 48 SNPs at 22 loci in all patients with chemotherapy and outcome data. To obtain 

effect estimates from the largest possible sample for PFS and OS in ‘all chemo’ and 

‘standard chemo’ for these 48 SNPs, we meta-analyzed estimates from iPLEX genotyped 

samples (n=3,303), iCOGS imputed data on non-overlapping samples (n=821), and TCGA 

data (n=310; Supplementary Table 5).

Estimates for the most promising SNPs from meta-analysis (p≤1.0×10−5 in at least one of 

the four analyses) are summarized in Table 1. The strongest association was for rs4910232 

at 11p15.3 and PFS in the ‘all chemo’ analysis (HR=1.17, 95% CI 1.10-1.24; p=4.7×10−7). 

The Kaplan Meier (KM) plot of genotyped samples for rs4910232 showed a significant 

trend in worse PFS associated with each additional minor allele (Figure 2A) and there was 

no evidence of between-study heterogeneity (p= 0.7, Figure 2B). This SNP lies within the 

long non-coding RNA (lncRNA) RP11-179A10.1. Two other SNPs, rs2549714 at 16q23 and 

rs6674079 at 1q22 were associated with worse OS in ‘standard chemo’ (p=5.0×10−6) and 

‘all chemo’ analyses (p=7.1×10−6) respectively, and are also located in lncRNAs (Table 1). 

We further explored SNPs within a 1Mb region of rs6674079 at the 1q22 locus using 

ENCODE ChiP-Seq data and found that rs6674079 is perfectly correlated with rs11264489 

which lies within the super-enhancer MEF2D. Histone modification tracks from ENCODE 

for normal ovarian cancer cell lines suggest a strong regulatory potential for this SNP 

(Figure 3). The KM plot for rs6674079 clearly showed a significant per-allele trend in worse 

OS (Figure 4A) and study-specific estimates and heterogeneity tests showed no evidence of 

between-study heterogeneity (p=0.4, Figure 4B). Forest plots for other significant SNPs 

(rs7950311, rs2549714 and rs3795247) showed an overall trend in worse survival 

probabilities per minor allele (Supplementary Figure 4A-C) and there was no evidence of 

between-study heterogeneity for any of these SNPs (p≥0.14).

We further queried protein-coding genes within a 1Mb region of each of these lead SNPs at 

1q22, 11p15.4, 11p15.3, 16q23 and 19p12 (Table 1) using KM-plotter to identify gene 

expressions that might be associated with PFS and OS using all available data (1,170 and 

1,435 patients respectively), and in a subset of cases restricted to optimally debulked serous 

cases treated with Taxol and platin chemotherapy (330 and 387 patients respectively). Of a 

total of 55 expression probes for 174 genes queried across the five loci, significant 
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associations that met our Bonferroni-corrected significance threshold of p≤2.3×10−4 were 

observed for 11 probes in at least one analysis (Supplementary Table 6). The strongest 

association with outcome was observed for PFS and high (defined as above the median) 

expression of SLC25A44 (probe 32091_at) in the unrestricted dataset of 1,170 ovarian 

cancer patients (HR=1.56, 95% CI 1.33-1.82, log-rank p=1.9×10−8; Supplementary Figure 

5A). This association was upheld, although more weakly, in the subset restricted to 

optimally debulked serous cases treated with Taxol and platin chemotherapy (n=330, 

HR=1.66, 95% CI 1.24-2.23, log-rank p-value=6.8×10−4). High expression of SEMA4A 
(probe 219259_at) was significantly associated with better PFS in the unrestricted dataset 

(HR 0.71, 95% CI 0.61 - 0.82, log-rank p=4.2×10−6; Supplementary Figure 5B) and 

marginally with OS (unrestricted dataset log-rank p=3.3×10−4 and restricted dataset log-rank 

p=5.7×10−4). Significantly better PFS was also observed for high expression of SH2D2A 
(probe 207351_s_at) in the unrestricted datasets (HR=0.67, 95% CI 0.57 - 0.77, log-rank 

p=8.4×10−8; Supplementary Figure 5C) with a marginal association for OS in the 

unrestricted dataset (log-rank p=8.7×10−4).

We also evaluated associations between OS and SNPs in the larger ‘all OCAC’ dataset with 

minimal adjustment. A total of 70 SNPs with imputation r2 ≥0.9 at 4 loci achieved a 

p≤1.0×10−5 (Supplementary Table 7). The top SNP was rs2013459 (HR=1.14, 95% CI 

1.08-1.20, p= 9.7×10−7 at PARK2 located at 6q26. Significant SNPs were also identified at 

FAR1 (11p15), ANKLE1, BABAM1 and ABHD8 (all at 19p13) and SYNE2 (6q25).

Pathway Analysis

We also explored the polygenic signal in our data using pathway-based analysis. This 

enrichment analysis of genome-wide single-variant summary statistics from the ‘standard 

chemo’ subgroup in the context of known biological pathways suggested heterogeneity in 

the pathways that may be associated with PFS and OS. Eight of the 837 pathways tested 

were associated with PFS in the ‘standard chemo’ dataset at nominal significance 

(pGSEA<0.05 and FWERGSEA<1), with the “YAP1- and WWTR1 (TAZ)- stimulated gene 

expression” pathway from the Reactome pathway database emerging as the most significant 

(pGSEA=1×10−3, FDRGSEA=0.868, FWERGSEA=0.575, Table 2). Nine of the 837 pathways 

were associated with OS in the ‘standard chemo’ data set at the same threshold for nominal 

significance and the Reactome pathway “HDL-mediated lipid transport” was the top 

pathway (pGSEA=6×10−3, FDRGSEA=0.303, FWERGSEA=0.268, Table 2). Interestingly, the 

other nominally significant pathways suggested possible involvement of cell cycle genes in 

determining PFS and of xenobiotic and insulin metabolism genes in determining OS in the 

‘standard chemo’ cohort (Table 2).

Discussion

We have evaluated ~2.8 million SNPs across the genome for an association with outcome 

following first-line chemotherapy in a large cohort of EOC patients and identified SNPs at 

five loci with p-values that ranged from 1.05×10−5 to 4.7×10−7. Three SNPs, rs6674079, 

rs4910232 and rs2549714, were located in long non-coding RNAs (lncRNA) 

RP11-284F21.8, RP11-179A10.1 and RP11-314O13.1 respectively (Table 1). LncRNAs are 
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RNA transcripts that have been implicated in a wide range of regulatory functions including 

epigenetic control and regulation of chromatin structure at the cellular level to tumor 

suppressors and regulators of angiogenesis and metastasis (31). It has been shown that 

alterations in the function of some lncRNAs, particularly those involved in transcriptional 

regulation, can play a critical role in cancer progression and exert its effect on genes located 

on other chromosomes. A well characterized example of this is the lncRNA HOTAIR which 

has been linked to invasiveness and poor prognosis of breast cancer (32). HOTAIR is 

expressed from the HOXC gene cluster on chromosome 12, and has been shown to mediate 

repression of transcription of HOXD genes on chromosome 2 via PRC2 (33). While little is 

known about the specific lncRNAs that we have identified or their target genes, it is likely 

that associated SNPs in these lncRNAs might exert their effects on chromatin modifying 

proteins that regulate genes involved in ovarian cancer progression. ENCODE ChIP-seq data 

for normal ovarian cell lines at the 1q22 locus shows evidence of histone modification in the 

region of RP11-284F21.8, and rs6674079 at this locus is perfectly correlated with 

rs11264489 which lies within the super-enhancer MEF2D (Figure 4). Expression studies of 

MEF2D in hepatocellular carcinoma showed that elevated expression promoted cancer cell 

growth and was correlated with poor prognosis in patients (34). Further analysis of 

rs6674079 and other SNPs identified in this study in lncRNAs would be necessary to 

determine their putative regulatory effects and potential impact on ovarian cancer metastasis 

and progression.

Several protein-coding genes within 1Mb of rs6674079 at 1q22 were also found to be 

significantly associated with ovarian cancer progression in unrestricted analyses of KM-

plotter data (Supplementary Table 6). Above-median expression of SLC25A44 (probe 

32091_at), a recently identified member of the SLC25 family of mitochondrial carrier 

proteins, was significantly associated with worse PFS in analysis in the larger unrestricted 

dataset of epithelial ovarian cancer (log-rank p≤1.9×10−8; Supplementary Figure 4A). While 

relatively little is known about specific functions or disease-gene associations with 

SLC25A44, changes in expression of some members of the SLC25 family of transporters 

have been implicated in resistance to cell death in other cancers (35). Similarly high 

expression of the signalling protein SEMA4A (probe 219259_at; Supplementary Figure 4B) 

was significantly associated with better PFS (log-rank p=4.2×10−6). SEMA4A is a member 

of the semaphorin family of soluble and transmembrane proteins which mediate their signal 

transduction effects through plexins, both of which have been shown to have tumorigenic 

properties and are aberrantly expressed in human cancers, (36, 37). Also high expression of 

SH2D2A (probeset 21925_at) which encodes a T-cell-specific adaptor protein (TSAd), was 

associated with significantly better PFS (log-rank p=8.4×10−8; Supplementary Figure 4C). 

Chromosmal imbalance at 1q22 was previously identified as a candidate region for response 

to chemotherapy in human glioma cell lines (38) and it has been shown that alterations on 

the long arm of chromosome 1, particularly gain of function, are among the most commonly 

reported chromosomal abnormalities in human cancers (39). Further studies would be 

necessary to delineate the relevance of these novel findings in EOC outcome.

We found that that PFS-associated SNPs in the ‘standard chemo’ dataset were most 

significantly enriched in a pathway containing target genes of the transcriptional co-

activators YAP1 and WWTR1 and the antisense RNA gene TAZ (40, 41). YAP1, an 
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established ovarian cancer oncogene (42), is known to regulate the cell cycle and epithelial-

mesenchymal transition, promoting tumor survival even in the absence of oncogenic KRAS 

signaling (43, 44). A gene expression signature representing YAP1 activation in ovarian 

tumors has also recently been found to be predictive of response to taxane-based adjuvant 

chemotherapy regimens and is associated with overall survival in ovarian cancer (45). The 

HDL-mediated lipid transport pathway driven by genes that included APOA1 was associated 

with OS in the setting of standard chemotherapy. Higher APOA1 expression in serous 

ovarian cancer effusions has previously been associated with improved overall survival in a 

small cohort (46). Apolipoprotein A-I activity has been shown to reduce viability of 

platinum-resistant human ovarian cancer cells in vitro and inhibit tumor development in a 

mouse model of ovarian cancer (47).

In our exploratory histology-adjusted analysis of OS in ‘all OCAC’ we observed significant 

associations with SNPs in PARK2 and decreased survival. PARK2, a component of E3 

ubiquitin ligase complexes that drive cyclin D and E degradation, is frequently lost in human 

cancers, and knock-down in a range of cancer cell lines has been shown to correlate with 

increased cell proliferation and transcription of genes related to cell cycle control, 

suggesting a role in disease progression and prognosis (48). ANKLE1 and BABAM1 at 

19p13.11 (p≤9.5×10−6 ; Supplementary Table 8) were also identified and SNPs at this locus 

were previously implicated in ovarian cancer risk and survival (49). However in our fully 

adjusted analysis of ~2900 patients for which we had all covariates, we observed no 

significant association for any SNP at this locus (p≥0.002). This may be accounted for by 

the lower power to detect the effects seen in the larger ‘all OCAC’ analysis, or the fact that 

the lower p-value in the ‘all OCAC’ analysis is an artefact resulting from partial adjustment 

for confounders of outcome. Further analyses including FIGO stage, grade and residual 

disease would be necessary to evaluate this locus. We also observed no significant 

association for candidate SNPs previously identified to be associated with response to 

chemotherapy using the NHGRI GWAS catalog (http://www.genome.gov/gwastudies/ ) with 

any of our four analyses (Supplementary Table 9).

Our validation analysis of genotyped data also highlighted the potential for spurious 

associations using imputed data in smaller samples sets. Although current strategies of ‘pre-

phasing’ has improved imputation accuracy for SNPs with MAF 1-3% and prior imputation 

r2 as low as 0.6 in Europeans (50), we observed a high degree of discordance in estimates 

from imputed data compared to actual genotypes, even for SNPs with reasonable imputation 

quality (r2=0.6-0.9) and particularly for SNPs with MAF<3% (Supplementary Methods and 

Supplementary Table 3). We therefore selected SNPs for validation from ~2.8 million SNPs 

with good imputation quality (r2≥0.9) to reduce the risk of false positives.

In conclusion we have identified three SNPs in lncRNAs that have not been previously 

reported on that were associated with PFS in ovarian cancer regardless of chemotherapy 

regimens. We also identified two other SNPs, rs7950311 at 11p15.4 associated with OS in 

the ‘standard chemo’ analysis and rs3795247 at 19p12 associated with PFS in the ‘all 

chemo’ analysis, both of which reside in genes that have not been previously implicated in 

solid tumors. To our knowledge this is the largest study that comprehensively analyzes 

genetic variation across the genome for an association with ovarian cancer outcomes, both 
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with regard to first-line standard-of-care chemotherapy and regardless of treatment. Since 

residual disease is a strong predictor of overall and progression-free survival, patients were 

included in our main analyses if they received a minimum of cytoreductive surgery and had 

available information on level of residual disease. SNPs were prioritized on the basis of 

good imputation quality (r2 ≥0.9) and final estimates were derived from meta-analysis of all 

available data imputed and genotyped samples from OCAC and publicly available TCGA 

data. To circumvent methodological flaws we restricted the analysis to European invasive 

EOC patients participating in the OCAC with standardized definitions of clinical and 

pathological characteristics. Despite our rigorous analysis approach, there are inherent 

limitations in the observational design of our study that a randomized clinical trial would 

circumvent, in that standardized treatment and outcome measurements would be available, 

and the presence of a control group receiving an alternative treatment would allow 

assessment of a likely causal relationship between the putative associations and treatment 

modalities.

Pharmacogenomic studies hold the promise of improving treatment approaches by the 

identification of genetic markers which may enhance the clinical approaches and cost-

effectiveness of these treatment approaches. However, large clinical trials or well-designed 

prospective cohort studies that take into account differential responses according to EOC 

tumor types, as well as functional studies that shed light on putative associations are 

required to succeed in defining the role of genetics in ovarian cancer progression and 

survival.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Although several genetic loci have been identified for ovarian cancer risk, finding loci 

associated with outcome remains a challenge primarily because of treatment 

heterogeneity and small sample sizes. We comprehensively analyzed ~2.8 million 

variants in the largest collection to date of epithelial ovarian cancer cases with detailed 

chemotherapy and clinical follow-up data, and identified SNPs in three long non-coding 

RNAs (lncRNAs) that were associated with progression-free survival, one of which lies 

within a super-enhancer recently shown to be associated with poor prognosis in another 

solid tumor. There is a growing body of evidence that lncRNAs are cancer-specific 

regulators in signalling pathways underlying metastasis and disease progression. While 

additional work is needed to delineate the role of associated SNPs on lncRNA expression 

and validate their role in a larger sample, our findings have important implications for the 

development of diagnostic markers of progression and novel therapeutic targets for 

epithelial ovarian cancer.
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Figure 1. Manhattan plots of ~2.8 million SNPs in four analyses of the cohort selected for first-
line chemotherapy
SNPs with MAF ≥0.02 and imputation r2 ≥0.9 associated with Overall Survival in A. ‘All 

Chemo’ and B. ‘Standard chemo’, and Progression-free survival in C. ‘All chemo’ and D. 

‘Standard chemo’; the blue line represents suggestive significance (p=1×10−5) and the red 

line represents genome wide significance (p=5×10−8).
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Figure 2. Progression-free survival in ‘all chemo’ analysis for rs4910232
A. Kaplan Meier curve for PFS in ‘all chemo’ dataset (n=3,177); P-values derived from 

adjusted Cox PH models of genotyped samples; 0=common homozygotes AA, 

1=heterozygotes AG, 2=rare homozygotes GG. B. Forest plot showing site-specific 

estimates for PFS and rs4910232 in ‘all chemo’ dataset.
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Figure 3. ENCODE ChIP-seq data at 1q22 locus
Manhattan plot of all iCOGS imputed/genotyped SNPs at 1q22, black enclosed circles 

represent genotyped SNPs while open red circles are imputed SNPs. Hash marks indicate 

location of highly correlated SNPs (r2 >0.9). Colored histograms denote histone 

modification for H3K4me1 and H3K27ac in normal ovary ChIP-seq data from UCSD and 

ENCODE.
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Figure 4. Overall survival in ‘all chemo’ for rs6674079
A. Kaplan Meier curve for OS in the ‘all chemo’ dataset. P-value derived from adjusted Cox 

PH models of genotyped samples (n=4,399): 0=common homozygotes AA, 1=heterozygotes 

AG, 2=rare homozygotes GG. B. Forest plot showing site-specific estimates for OS and 

rs6674079 in ‘all chemo’ dataset
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