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Abstract

Pediatric-onset ataxias often present clinically with developmental delay and intellectual 

disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe 

a novel clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy 

together with ataxia, coarsened facial features and intellectual disability, due to truncating 

mutations in sorting nexin 14 (SNX14), encoding a ubiquitously expressed modular PX-domain-

containing sorting factor. We found SNX14 localized to lysosomes, and associated with 

phosphatidyl-inositol (3,5)P2, a key component of late endosomes/lysosomes. Patient cells 

showed engorged lysosomes and slower autophagosome clearance rate upon starvation induction. 
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Zebrafish morphants showed dramatic loss of cerebellar parenchyma, accumulated 

autophagosomes, and activation of apoptosis. Our results suggest a unique ataxia syndrome due to 

biallelic SNX14 mutations, leading to lysosome-autophagosome dysfunction.

The hereditary cerebellar ataxias are a group of clinical conditions presenting with 

imbalance, poor coordination, and atrophy/hypoplasia of the cerebellum, most often with 

deterioration of neurological function. A common hallmark of cerebellar ataxias is a 

progressive cerebellar neurodegeneration due to Purkinje cell loss. A combination of 

dominant, recessive and X-linked forms of disease, including the spinocerebellar ataxias, 

Friedreich ataxia, and ataxia telangectasia contribute to the estimated prevalence of 8.9 per 

100,0001. In addition to the dominant trinucleotide repeat disorders that lead to toxic 

accumulation of unfolded protein2, 3, the recessive forms of disease are associated with 

inactivating mutations and early-onset presentations. The genes implicated to date suggest 

defects in neuronal survival pathways4, 5, but many mechanisms are still lacking and most 

patients elude genetic diagnosis.

Recessive ataxias often show clinical overlap with lysosomal disorders, and in fact, many 

lysosomal diseases such as Niemann-Pick, Tay-Sachs, and I-cell disease show evidence of 

Purkinje cell loss and clinical features of ataxia, in addition to the well established features 

of enlarged organs and coarsening of facial features6–8. These overlaps suggest that 

cerebellar cells are exquisitely sensitive to otherwise generalized perturbations of lysosomal 

function.

Autophagy is the major pathway for intracellular catabolic degradation of most long-lived 

proteins and organelles, thus providing nutrients during starvation9. When core components 

are impaired, the result is multisystem organ involvement that includes 

neurodegeneration9–13. In the major pathway, termed macroautophagy, the autophagosome 

fuses with multivesicular body (MVB) or the lysosome, and the contents are degraded via 

acidic hydrolases. The fusion events are at least partially regulated by the phosphatidyl-

inositol (PI) lipid components of the respective membranes, with PI(3)P associated with 

autophagosomes and PI(3,5)P2 associated with MVBs and lysosomes14. Yet the proteins 

regulating these relatively late-stage fusion events are mostly unknown.

We studied a cohort of 96 families presenting with likely autosomal childhood-onset 

recessive cerebellar atrophy with ataxia, 81 of which had a history of parental consanguinity, 

and 76 of which had two or more affected members without congenital malformations or 

environmental risk factors. We performed whole exome sequencing (WES) on at least one 

member of each of the families, according to published protocols15. For families with 

documented consanguinity, we prioritized homozygous, rare (<0.2% allele frequency in our 

in-house exome database of 3000 individuals) and potentially damaging variants (Genomic 

Evolutionary Rate Profile (GERP) score >4 or phastCons (genome conservation) >0.9). 

Many of the families displayed damaging mutations in genes already implicated in 

cerebellar atrophy, including NPC1, and GRID2. Overall, 15% of cases showed mutations in 

genes that fully explained their presentation (Supplementary Table 1), 60% of families 

showed no obvious candidates, and 25% displayed putative mutation in a gene or genes not 

previously implicated in human disease (Fig. 1a).
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To identify causative mutations, we focused on Family 468, with three similarly affected 

and one healthy child, which allowed for parametric linkage analysis, defining a single 

major locus between chr6:55153677-91988281 (hg19) (LOD = 2.528) (Supplementary Fig. 

1). Alignment of all LOD > -2 loci with WES from two affecteds highlighted a single c.

1132C>T variant in the SNX14 gene predicting a p.Arg378*. Turning our attention to this 

gene from the remaining WESed patients, we identified a total of 16 patients from 8 families 

with truncating variants throughout the coding region, nearly all in constitutively spliced 

exons, and predicted as loss of function (Fig. 1b-d, Supplementary Fig. 2, Supplementary 

Table 2). All patients displayed a block of homozygosity on chromosome 6, containing the 

SNX14 gene (Supplementary Fig. 1) and mutations segregated according to a recessive mode 

of inheritance. Variants in other genes in these patients were either previously described 

SNPs in other populations or were of unknown significance (Supplementary Table 3). Three 

families shared the same p.Arg378* mutation and analysis confirmed a common 1.5 mb 

haplotype, supportive of a founder mutation (Supplementary Fig. 1). Overall, patients with 

SNX14 variants accounted for 10% of families, making it the single most commonly mutated 

gene in our cohort. Furthermore, while preparing this manuscript, WES from an additional 

consanguineous family with 4 children with cerebellar atrophy independently identified a 

homozygous truncating mutation in SNX14 (Supplementary Fig. 2).

SNX14 encodes 946 amino acids, and contains two transmembrane domains, a regulator of 

G protein signaling (RGS) domain, predicted to act as a GTPase activating protein (GAP) 

and a phox homology (PX) domain predicted to bind phosphoinositide lipids and function in 

intracellular trafficking. Alternate splicing results in transcript variants encoding distinct 

isoforms. Patient SNX14 variants predicted both early and late truncating events, suggesting 

loss of function as the disease mechanism (Fig. 1c-d).

Patients showed several common features in addition to the age-dependent atrophy of the 

cerebellum, with evidence of cerebral cortical atrophy in about half (Table 1 and 

Supplementary Table 4). One deceased patient studied neuropathologically showed near 

absence of Purkinje cells. The few Purkinje cells remaining were ectopically located and 

atrophic with enlarged apical neurites. Bergmann gliosis was prominent in the depopulated 

Purkinje cell layer and neurofilament immunostaining revealed radially oriented bundles of 

distended axons located on the superficial part of the internal granule layer. Forebrain also 

presented neuronal loss although less severe than in the cerebellum (Fig. 1e, Supplementary 

Fig. 3).

Most patients presented between birth and 1 year of age with global developmental delay 

and hypotonia. Seizures developed in half by 2 years, and were well controlled with 

anticonvulsant medication. Nystagmus, difficulty ambulating and reduced deep tendon 

reflexes were seen in most children, and sensorineural hearing loss was seen in about one 

third. Coarsened facial features with prominent forehead, epicanthal folds, upturned nares, 

long philtrum, and full lips were seen in all, features approximating mucopolysaccharidosis 

or other lysosomal storage disorders (LSDs) (Fig. 1b and Supplementary Fig. 2b). Likewise, 

ultrastructural analysis of spinal cord tissue found axonal spheroids filled with membranous 

structures reminiscent of cytoplasmic membranous bodies in LSDs16 (Supplementary Fig. 

3c). Palpable liver or spleen edge was detected in 5 of 18 patients, but no evidence of 
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abnormal liver, urine or hematological chemistries were apparent. Urine oligosaccharides 

showed an abnormal pattern in one affected, and two patients showed elevated urinary 

glycosoaminoglycans. However detailed lysosomal enzyme analysis in plasma and 

leukocytes from two affected members proved unremarkable (Supplemental Note). 

Although initially WES was required to identify patients, as the clinical presentation 

clarified, we were able to predict mutations with 100% certainty, identifying an additional 4 

patients from 3 families with homozygous SNX14 mutations, suggesting a, heretofore 

unknown, clinically recognizable condition (Fig. 1, Supplementary Fig. 2 and Table 2).

SNX14 mRNA showed nearly uniformly even expression in human fetal and adult tissue 

(Fig. 2a). Cellular fractionation aimed to distinguish the major membrane-bound pools in 

wildtype human neural precursor cells identified SNX14 predominantly associated with a 

lysosomal rich fraction (Fig. 2b). Tagged SNX14 overexpression confirmed overlapping 

localization with lysosomes (Fig. 2c, Supplementary Fig. 4), but not with other endosomal 

or Golgi markers that were present in the SNX14 fraction, suggesting a role in lysosomal 

function. Furthermore, lipid binding assay with the recombinant PX domain from SNX14 

showed specific albeit relatively weak direct binding with PI(3,5)P2, the predominant 

phosphoinositide (PI) associated with lysosomes (Fig. 2d).

To identify lysosomal defects associated with SNX14 mutations, we generated induced 

pluripotent stem cells (IPSCs) and then differentiated neural precursor cells (NPCs) through 

reprograming of SNX14 patients and control fibroblasts from families 468 and 138217, 18. 

Like the patient fibroblasts, SNX14 protein was absent from patient NPCs (Fig. 3a and 

Supplementary Fig. 5). While we noted no difference in reprogramming, differentiation or 

cellular survival in culture (Supplementary Fig. 5), lysosomes appeared increased in size in 

patient NPCs (Fig. 3b, Supplementary Fig. 6). To quantitate this effect, we performed flow 

cytometric analysis to gate for fluorescent signal upon Lysotracker labeling, and found about 

twice the number of patient cells falling outside of the normalized intensity distribution 

(Supplementary Fig. 6a).

In order to assess if this lysosomal enlargement affected lysosomal activity, we tested NPCs 

for active Cathepsin D (which depends upon both lysosomal localization of the enzyme and 

acidification), using Bodipy FL Pepstatin A19 and found no obvious differences in intensity 

of stained lysosomes (Supplementary Fig. S6d). However immunoblot analysis detected 

slight but significant reduction in Cathepsin D levels in affected compared to unaffected 

NPCs (Supplementary Fig. 7c), suggesting that a fraction of lysosomes may be defective for 

Cathepsin D. Although defects in other lysosomal enzyme activities were not tested in 

NPCs, our findings are reminiscent of lysosomal storage disorders (LSDs).

Autophagy requires fusion of lysosomes with autophagosomes, so lysosomal abnormalities 

could result in autophagic defects such as those observed in LSDs6–8. In order to test for 

potential autophagic defects, patient NPCs were cultured under starvation conditions, then 

assessed for lipidated LC3 (i.e. LC3 II) levels, which marks autophagosomes. While all lines 

showed increased LC3 II levels upon serum starvation, patient cells showed a more dramatic 

response, which was reproduced by an alternative induction of autophagy through mTOR 

pathway inhibition with rapamycin. Importantly, the increased LC3 II levels were recovered 

Akizu et al. Page 5

Nat Genet. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to basal rates by forced expression of tagged SNX14 into patient cells (Fig. 4a). By LC3 flux 

analysis in nutrient deprived conditions, where LC3II ratios in the presence and absence of 

lysosomal inhibitors (Leupeptin and NH4Cl) were calculated20, we identified slower LC3 

flux in patient cells compared to controls. This, together with no differences observed in 

autophagosome formation (assessed as the increase in LC3-II levels at two time points after 

inhibition of lysosomal proteolysis, Fig. 4b), suggests that SNX14 mutant neural progenitors 

are defective in autophagosome clearance. To confirm, we performed electron microscopy 

and found that patient cells show autophagosome accumulation (Fig. 4c), consistent with 

disrupted autophagosome clearance.

We thus repeated the cell fractionation analysis upon serum starvation to induce autophagy, 

and observed SNX14 enriched in the most heavily LC3-lipidated fractions (Supplementary 

Fig. 7a). Furthermore, upon serum starvation, SNX14 showed overlapping 

immunofluorescence localization with LC3 (Supplementary Fig. 7b), suggesting at least 

some fraction of SNX14 associates with autophagic structures, consistent with a role in 

autophagosome clearance.

In order to demonstrate the role of SNX14 in cerebellar function, we established an in vivo 

zebrafish model, where we found a single snx14 ortholog (NM_001044793), with strong 

neural expression (Supplementary Fig. 8). Injection of a specific snx14 translation blocking 

morpholino resulted in loss of neural tissue volume (Fig. 5a). Immunostaining of these 

embryos for Zebrin II, an early Purkinje cell marker, showed significantly reduced cellular 

area, an effect that was quantifiably rescued by co-injection with the human SNX14 ortholog 

(Fig. 5b). Morpholino injection into the Tg(ptf1a:EGFP) zebrafish line, which expresses 

GFP in the hindbrain21, confirmed overall reduction in GFP intensity (Fig. 5c) and 

suggested SNX14 is required for hindbrain and Purkinje cell generation or survival. To 

distinguish between these possibilities, we performed staining for activated caspase 3, and 

found a dramatic increase in signal throughout the assessed neural tissue. Transmission 

electron microscopy analysis of neural cells demonstrated accumulation of autophagic 

structures in snx14 morphants. These data suggests that SNX14 mutations leads to neuronal 

cell death associated with impaired autophagic degradation.

In summary, we have characterized a cerebellar ataxia syndrome (SCAR17), caused by null 

mutations in SNX14. Our paper adds to the recent report of cerebellar atrophy with 

intellectual disability and coarse facies also showing homozygous SNX14 mutations22. Our 

work, with the addition of a larger cohort, helps identify clinical features that are variable, 

such as camptodactyly, macrocephaly, and epilepsy and delineate the common pathology 

clearly distinguishable from other ataxias confirming this as a novel syndrome as 

suggested23.

Our study identifies the association of SNX14 with autophagy and neurodegeneration. 

Currently, of the 30 or so SNX genes in humans, only SNX10 is linked to human Mendelian 

disease, with a homozygous mutation in a single family with malignant infantile 

osteopetrosis24. Other SNX proteins are suggested to play roles in synaptic function25, 26, 

and neuronal survival especially relevant in Alzheimer’s disease27–30 through their function 

in cargo sorting, but SNX14 is the first to be genetically implicated. We propose a role for 
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SNX14 mediating fusion of lysosomes with autophagosomes, an area of intense research, 

and through manipulation of autophagy, may provide a promising therapeutic target 

currently under investigation for other degenerative conditions31.

ONLINE METHODS

Patient Ascertainment

Patients were enrolled and sampled according to standard local practice in approved human 

subject protocols at the University of California. Patients were recruited from developmental 

child neurology clinics throughout the Middle East, North Africa and Central Asia 

presenting with features of neurodevelopmental delay or regression, ataxia, intellectual 

disability, autism, epilepsy or structural brain malformations between 2004 and 2012. 

Recruitment was focused in the major population centers of the Middle East including 

Morocco, Libya, Egypt, Saudi Arabia, Kuwait, UAE, Oman, Jordan, Pakistan, Turkey and 

Iran, with consanguinity rates (i.e. rate of marriage between first or second cousins) of 

approximately 50% compared with <1% is US and Western Europe. Among the recruited 

cohort, consanguinity was present in 63% of parents, suggesting some bias in sampling 

towards those with affected children due to recessive disease. Sampling was performed on 

both parents and all available genetically informative siblings to include affected and 

unaffected members, as well as extended family members if appropriate, upon informed 

consent approval and consistent with IRB guidelines. General and neurological examination, 

clinical records, radiographs, photographs, videos documenting movement, and past history 

were reviewed and patients were examined by one or more of the authors. Analysis of all 

patients presenting with a presumptive diagnosis of Cerebellar Atrophy were included in the 

analysis, based upon the finding of reduced cerebellar volume, and excessively prominent 

interfolial spaces on axial or sagittal sections. Patients with MRI showing pronounced 

pontine atrophy, severe peripheral neuropathy, white matter disease, telangiectasias, retinal 

blindness, or major cortical malformations such as cobblestone lissencephaly, were 

excluded. Patients with evidence of mitochondrial disease, abnormal transferrin isoelectric 

focusing, lysosomal storage such as mucolipidosis or ceroid were excluded. All patients 

were excluded for the common Friedreich ataxia expansion, and tested normal for alpha-

fetoprotein and albumin. Blood and/or saliva was collected on all consenting potentially 

informative family members, DNA extracted with the Qiagen AutoPure instrument, and 

subject to quality control measures to measure concentration/purity and to confirm 

inheritance, and subject to subsequent genetic investigation.

Whole exome sequencing

WES was performed on two affected members per family when available, or both parents 

and affected member from singleton cases. Genomic DNA was subject to Agilent Human 

All Exon 50Mb kit library preparation, then paired-end sequencing (2x150bp) on Illumina 

HiSeq 2000 instrument. For each patient sample, >96% of the exome was covered at >12x. 

GATK1 was used for variant identification. We tested for segregating rare structural variants 

using XHMM2. We then prioritized homozygous variants using custom Python scripts 

(available upon request), to remove alleles with >0.1% frequency in the sequenced 

population, not occurring in homozygous intervals at least 2 cM in size or linkage intervals 

Akizu et al. Page 7

Nat Genet. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with more than -2 LOD score, or without high scores for likely damage to protein function. 

All variants were prioritized by allele frequency in publically available databases, 

conservation, and predicted effect on protein function, and were tested for segregation with 

disease.

Sanger sequencing

Primers were designed using the Primer3 program and tested for specificity using NIH 

BLAST software. PCR products were treated with Exonuclease I (Fermentas) and Shrimp 

Alkaline Phosphatase (USB Corporation) and sequenced using BigDye terminator cycle 

sequencing Kit v.3.1 on an ABI 3100 DNA analyzer (Applied Biosystems). Sequence data 

was analyzed by Sequencher 4.9 (Gene Codes) to test segregation of the mutation with the 

disorder under a recessive mode of inheritance, taking advantage of all informative meioses 

in each family.

Cloning of human SNX14

The human SNX14 from adult brain cDNA was amplified and cloned into pdsRED2-C1 

vector, and subcloned into doxycycline inducible lentiviral pINDUCER20 vector3. For N 

terminal Flag, SNX14 was amplified from adult brain cDNA using a 5’ primer containing 

Flag sequence and cloned into pINDUCER20 vector. SNX14 PX domain was amplified and 

cloned into pGEX-6P-1 vector for purified protein expression.

Human brain histology, oligosaccharide and glycosaminoglycan measurement

Sections were deparaffinized, and stained with 0.1% Luxol fast blue, 0.1% Cresyl violet or 

hematoxylin-eosin. Immunohistochemistry was performed with primary dilution of 1:200 

antibody (Calbindin ABCAM ab11426, Neurofilament Pierce MIC-N18) and visualized 

with secondary HRP antibody (Jackson Labs). Control tissue corresponds to biobank 

identification number BB-0033-00082. Oligosaccharide and glycosaminoglycan 

measurements were performed as described4.

Fibroblast, IPSC and Neural Progenitor Cell culture

Fibroblasts were generated from explants of dermal biopsies collected from affected and 

unaffected volunteers, previously genotyped, and cultured in MEM (Gibco)/20% FBS 

(Gemini). IPSCs were generated as previously described from5. Briefly, three micrograms of 

expression plasmid mixtures (OCT3/4, SOX2, KLF4, L-MYC, LIN28 and p53 shRNA) 

were electroporated into 6X105 of cell, trypsinized 7d afterwards, and 1.5X105 cells were 

re-plated onto 100-mm dishes with 1.5X105 irradiated CF-1 mouse embryonic fibroblasts 

(MEF) feeder layer. The culture medium was replaced the next day with standard hESC/

IPSC medium, DMEM:F12 supplemented with 20% KOSR and 20 ng/ml bFGF (Invitrogen) 

1X nonessential amino acids, 110 µM 2-Mercaptoethanol. Colonies were selected for further 

cultivation and evaluation. After 3 passages IPSCs cells were transferred to MEFs free 

plates and growth in mTeSr medium (Stem Cells Technologies). Neural progenitors cells 

(NPCs) were obtained as previously described6. Briefly, embryoid bodies (EBs) were 

formed by mechanical dissociation of cell clusters and plated in suspension in differentiation 

medium (DMEM F12, 1X N2, 1µM Dorsomorphin (Tocris), 2 µM A8301 (Tocris)) and kept 
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shaking at 95 rpm for 7 days. Resultant EBs were plated onto Matrigel (BD Biosciences) 

coated dishes in NBF medium (DMEM F12, 0.5X N2, 0.5X B27, 20ng/ul bFGF). Rosettes 

were collected after 5–7 days, dissociated with Accutase (Millipore), and resultant NPCs 

plated onto poly-ornithine/laminin (Sigma) dishes with NPC medium. Medium was replaced 

every 2 days. Cells were routinely tested for mycoplasma. All experiments were performed 

with NPCs at passage 5–8.

For the genetic replacement experiments, patient NPCs were transduced with lentivirus 

containing Flag or dsRED tagged SNX14 (NM_153816) in pINDUCER20 vector3 in the 

presence of 8 µg/mL polybrene. Following one-week selection with 200 µg/ml G418, NPCs 

were treated with 50 ng/ml doxycyline for the transgene expression. Bright field images 

were taken in Olympus IX51 inverted microscope or in EVO microscope and processed with 

Photoshop CS5 (Adobe Systems). For autophagic induction cells were cultured in EBSS 

(Earl’s balanced salt solution) for 1.5–2 hr and treated with Leupeptin 200 µM and NH4Cl 

20 mM for experiments performed to quantify LC3 II flux and autophagosome formation.

Cell fractionation assay

Cell fractionation was carried out as described previously7. Proteins in each fraction were 

precipitated with methanol-chloroform and resuspended in 60 µl of protein loading buffer 

from which 20 µl was processed for immunoblot analysis.

Lipid binding assay

The lipid blots were performed essentially as described previously8 with minor 

modifications. Briefly, 180, 60 and 20 pmol lipids were spotted on PVDF membranes and 

probed with 0.75ug of bacterially expressed GST-tagged PX domains. Proteins were 

detected by blotting with an anti-GST antibody.

Cellular Immunofluorescence and biochemical assays

Cells were fixed in 4% PFA for 10 min, permeabilized with 0.05% Triton in PBS or 

methanol, blocked for 1 hr in PBS containing 0.05% and 2% donkey serum, then incubated 

with primary antibody (LC3, 1:200, Cell Signaling (2775), Lamp1, 1:200, DSHB (H4A3), 

Lamp2, 1:200, Abcam (Ab25631), EEA1, 1:200, BD (610456), GM130 1:200, Cell 

Signaling (2296)), overnight at 4°C, washed, and incubated with fluorescent secondary 

antibodies (Jackson ImmunoResearch) for 2 hr. Imaging was on an Olympus IX51, Leica 

SP5, or Nikon A2, processed with Photoshop CS5 (Adobe Systems). Cathepsin D activity 

was assessed with 2µg/ml Bodipy FL Pepstatin A for 45 min at 37°C, then fixed in 4% PFA 

before imaging.

For immunoblot assays fibroblasts or NPCs were lysed with ice-cold RIPA buffer 

supplemented with protease and phosphatase inhibitor cocktails (Roche). Proteins were 

separated in 10% SDS-PAGE gels and transferred to PVDF membrane, blocked with 5% 

milk in 1x TBS-T, and blotted with primary antibody (mouse anti-SNX14, 1:1000, Sigma 

(SAB1304492), rabbit anti-LC3, 1:5000, Novus Biological (NB600-1384), mouse anti-

Tubulin, 1:1000, Sigma (T6074), mouse anti-GAPDH, 1:1000, Millipore (MAB347), anti-

Ribophorin, 1:1000, Abcam (ab38451), p62, 1:1000 Progen Biotechnik (GP62-C), 

Akizu et al. Page 9

Nat Genet. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cathepsin D, 1:1000, Santa Cruz (C20), EEA1, 1:500, BD (610456), Lamp1, 1:500, DSHB 

(H4A3), GM130 1:500, Cell Signaling (2296)) overnight at 4°C. Detection used a 

peroxidase-coupled anti-IgG antibody (Pierce) and an enhanced chemiluminescence 

substrate (Thermo Scientific Pierce ECL). Experiments were replicated three times.

For RT-PCR, total RNA was extracted with RNeasy Mini Kit (Qiagen), a total of 2 µg RNA 

was transcribed to cDNA using the SuperScript (Invitrogen) with oligodT. Specific primers 

were used for PCR.

Flow cytometry for Lysotracker intensity analysis

Neural progenitor cells were harvested, brought to 10x5 cells/ml and incubated with 100 nM 

Lysotracker Green DND-26 for 15 min at 37°C. Live cells were analyzed for Lysotracker 

fluorescence intensity levels by first gating on all cell material except small debris in the 

origin of a FSC versus SSC dot-plot. Lysotracker signal from samples were then compared 

by dot plot and histogram analysis.

Zebrafish In situ hybridization, knockdown and immunofluorescence

Adult male and female zebrafish (<18 months old) from wild-type (AB Tübingen) and 

transgenic strains were maintained under standard laboratory conditions. At least three adult 

pairs were used to generate embryos at 0–5 d.p.f. for each experiment, with embryos from 

the same pair used both for control and snx14 morpholino injections. No randomization was 

performed. Translational blocking antisense morpholino oligonucleotides (MO) for snx14 or 

scrambled sequence MO were injected into one-cell stage embryos. Full-length human wild-

type SNX14 mRNA (50 ng) was co-injected with the MO as described9. Optic tectum and 

right eye width was measured digitally to assess neural affectation. Whole-mount in situ 

hybridization was performed on 24 and 48 hours post fertilization (hpf) zebrafish embryos 

using snx14 RNA probes generated by PCR. Experiments followed NIH guidelines and were 

performed in compliance with IACUC at University of California San Diego.

Transmission electron microscopy

Samples were immersed in modified Karnovsky’s fixative (2.5% glutaraldehyde and 2% 

paraformaldehyde in 0.15 M sodium cacodylate buffer, pH 7.4) for at least 4 hours, 

postfixed in 1% osmium tetroxide in 0.15 M cacodylate buffer for 1 hour and stained en bloc 

in 2% uranyl acetate for 1 hour. Samples were dehydrated in ethanol, embedded in 

Durcupan epoxy resin (Sigma-Aldrich), sectioned at 50 to 60 nm on a Leica UCT 

ultramicrotome, and picked up on Formvar and carbon-coated copper grids. Sections were 

stained with 2% uranyl acetate for 5 min and Sato's lead stain for 1 min. Grids were viewed 

using a Tecnai G2 Spirit BioTWIN transmission electron microscope equipped with an 

Eagle 4k HS digital camera (FEI).

Statistical analysis

All experiments were replicated at least twice. Data are expressed as means with variance as 

s.e.m. or s.d. For all quantitative measurements a normal distribution was assumed and we 

used the two-tailed Student t-test to perform between group comparisons. p-value <0.05 was 

considered indicative of statistical significance. No statistical methods were used to 
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predetermine sample sizes, which were determined empirically from previous experimental 

experience with similar assays and/or from sizes generally employed in the field. Data 

collection and analysis were not performed with blinding. Raw values used to generate plots 

is available as source data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SNX14 mutations cause a syndromic form of severe cerebellar atrophy and coarsened 
facial features
(a) Summary of exome results from 81 families with cerebellar atrophy. SNX14 accounted 

for 9.88% of the total families, with other genes making individual contributions. (b) 

Midline sagittal (top) or axial (middle) MRI and facies of affected individuals from 

representative families. Prominent atrophy of cerebellum evidenced by reduced volume and 

apparent folia (arrows and circles). Facies show prominent forehead, epicanthal folds, long 

philtrum and full lips. Consent to publish images of the subject was obtained. (c) SNX14 

exons as ticks and location of mutations indicated. Scale bar 50 kb. (d) Truncating mutations 

relative to predicted protein domains. TM: Transmembrane, PXA: Phox homology 

associated, RGS: Regulator of G protein signaling, PX: Phox homology, PXC: Sorting 

Nexin, C-terminal. (e) ABD-II-2 (p.Arg378*) hematoxylin-eosin stained cerebellum 

compared with control showing reduction in internal granule cell layer (arrow, top), near 

complete depletion of Purkinje cells (arrow, middle), and dystrophic degenerating remnant 

Purkinje cell (arrow, bottom). Scale bar 100 µm.
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Figure 2. SNX14 localizes to late endosome/lysosome compartments
(a) RT-PCR expression pattern of human SNX14 showing ubiquitous expression in 

representative fetal and adult human tissues. GAPDH: loading control. (b) Cell fractionation 

from human neural progenitor cells (NPCs). SNX14 was enriched in lysosomal-endosomal 

compartments (red). (c) LAMP2, EEA1 and GM130 (green) in dsRED tagged SNX14 

expressing NPCs. SNX14 overlapped in localization with LAMP2 lysosomal marker 

(arrows). Scale bar 10 µm. (d) Lipid binding assay with SNX14 PX domain on 
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phosphoinositides-spotted membrane, showed preferential binding to PI(3,5)P2 (red), 

compared with p40phox PX domain control.
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Figure 3. Patient-derived SNX14 mutant neural progenitor cells display enlarged lysosomes
(a) Immunoblot of IPSC-derived neural progenitor cells (NPCs) from families 468 

(p.Arg378*) and 1382 (p.Lys395Argfs*22), with affected (A, red) and unaffected (U, black) 

labeled. Affecteds showed undetectable SNX14 protein. GAPDH: loading control. (b) 
Lysotracker Green DND-26 staining with engorged lysosomes in affecteds NPCs (arrows). 

Scale bar 5 um. Dot plot shows relative area for individual LysoTracker positive lysosomes 

(n = 223 and 194 lysosomes from 2 families unaffected and affected NPCs respectively, N = 

2). Graph bars represent average number of LysoTracker-positive lysosomes per cell (n = 17 
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and 18 from 2 families unaffected and affected NPCs respectively, N = 2). Error bars, S.D. 

*** p < 0.0005, N.S. not significant (two tiled t-test).
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Figure 4. Patient-derived SNX14 mutant neural progenitor cells display abnormal starvation-
induced autophagic response
(a) Immunoblot analysis of LC3 II in affected (red), unaffected and affected transduced with 

SNX14 (grey) NPCs upon induction of autophagy by starvation with 1 hr 30 min EBSS 

(Eagle’s Balanced Salt Solution) or rapamycin (1 µM for 2 hr). Graph bars represent average 

LC3II/αTubulin levels relative to feeding condition. Error bars S.D. (N = 3 clones) * p < 

0.05, ** p < 0.005, N.S. not significant (two tiled t-test). Affected cells display an 

accumulation of LC3 II levels upon autophagic induction, partially rescued by exogenous 
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SNX14 expression. (b) LC3 immunoblot (left) for quantification of autophagic flux 

measured by LC3 II ratio in lane 3 vs. lane 2 for unaffected and lane 7 vs. lane 6 for affected 

(red) (middle), and quantification of autophagosome formation (left) assessed as the increase 

in LC3-II levels at two time points (lane 4 vs. lane 3 for control, and lane 8 vs. lane 7 for 

affected) after inhibition of lysosomal proteolysis with Leupeptin 200 µM and NH4Cl 20 

mM (PI 30 min/PI 1 hr). Graph represent mean ± S.D. (N = 3 clones) * p < 0.05, N.S. not 

significant (two tailed t-test) (c) Transmission electron microscopic analysis of 2 hr EBSS 

treated unaffected (black) and affected (red) NPCs showing autophagic structures in 

affecteds (arrowheads). Data represents results from one NPC clones from each affected or 

unaffected.
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Figure 5. Morphant snx14 zebrafish show apoptosis, excessive autophagic vesicles, and loss of 
neural tissue including cerebellar primordium
(a) Comparison of scrambled (6ng) and snx14 (3ng and 6ng) morphant zebrafish 48 hours 

postfertilization (hpf). Calipers: measured distance. Scale bar 250 µm. Graphs: Reduced 

optic tectum and right eye width in morphants. Mean ± SEM (n = 15 embryos for NI, 16 for 

Scramble, 31 for MO 3ng and 18 for MO 6ng, N = 2). *p < 0.05; **p < 0.005 (two tiled t-

test). (b) Scramble or snx14 morphants for Zebrin II (Purkinje cell marker), rescued with 

human SNX14 (50 pg). Scale bar 50 µm. Graph: Zebrin II compartment area relative to 
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scramble MO injected embryos. Mean ±SEM (n = 10 embryos for Scramble, 6 for MO 3ng, 

9 for MO 6ng and 9 for rescue) *p < 0.05; **p < 0.005 (two tiled t-test). (c) Maximum 

confocal projection from 36 hpf Tg(ptf1a:eGFP) (green) zebrafish with scramble or snx14 

MO showing reduced Purkinje cell progenitors. (d) Maximum confocal projection with 

increased caspase 3 (red) positive cells in 36 hpf snx14 morphants. Blue: DAPI. Scale bar 50 

µm. (e) Transmission electron microscopy showing autophagic structures in 48 hpf snx14 

and scrambled morphant neurons residing between the optic lobes. Box: Highlighted areas. 

Arrowheads: autophagic structures.
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Table 1

Clinical findings in SNX14 mutated individuals. (See Supplemental Table 4 for detailed clinical information).

Development Percent of patients displaying feature

Delayed gross motor 22/22

Delayed fine motor 22/22

Delayed or absent language 22/22

Delayed or absent social 22/22

Autistic-like behavior 12/22

Neurological Findings

Epileptic Seizures 8/22

Hypotonia 22/22

Nystagmus 11/22

Gait wide based or absent 22/22

Cerebellar atrophy on brain MRI 22/22

Storage disorder phenotype

Coarse facies 22/22

Hearing loss (SNHL) 5/22

Kyphoscoliosis, clinodactyly 10/22

Hepatosplenomegaly 5/22

Hypertrichosis 12/22

Macroglossia 12/22

Atrial septal defect or patent ductus 2/22

Urine oligosaccharides or glycosylaminoglycans 5/22
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