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Self-consistent implementation of meta-GGA functionals for
the ONETEP linear-scaling electronic structure package

James C. Womack,1 Narbe Mardirossian,2 Martin Head-Gordon,2, 3 and Chris-Kriton Skylaris1, ∗

1School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
2Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry,

University of California, Berkeley, California 94720, USA
3Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Accurate and computationally efficient exchange-correlation functionals are critical to the successful applica-
tion of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are natu-
rally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic
interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated
and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA)
family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order
to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale
DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA function-
als in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement
τ-dependent meta-GGA functionals within ONETEP’s linear-scaling formalism. We present expressions for
the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We
also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of
the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy
of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB
meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized
local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other
codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale
calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing
size, up to tens of thousands of atoms.

I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT) [1] is
founded on the premise that the exact charge density of a sys-
tem of interacting electrons can be represented by the density
of an auxiliary system of independent particles. This ansatz
allows the total energy functional for a many-electron system
to be expressed in terms of large contributions from known
functionals for the non-interacting system, and a relatively
smaller correction for many-body exchange and correlation
effects. Unfortunately, at present no computationally prac-
ticable exact form for this exchange-correlation functional,
Exc[n], is known.

A key challenge presented by KS-DFT is the development
of accurate and computationally tractable forms for Exc[n].
Since the inception of KS-DFT, numerous approximate forms
have been proposed, varying significantly in their construc-
tion. The “Jacob’s ladder” of density functional approxima-
tions [2, 3] provides a useful metaphor for categorizing the
different types of approximations to Exc[n], arranging them
into “rungs” based on the density-dependent ingredients with
which they are built. Each rung on the ladder ascending to-
wards the “heaven of chemical accuracy” introduces addi-
tional density-dependent ingredients, which can be used to
construct density functionals of increasing sophistication and
accuracy.

∗ C.Skylaris@soton.ac.uk

The first three rungs of the Jacob’s ladder are occupied by
the local and semi-local functional families: the local den-
sity approximations (LDAs), generalized gradient approxima-
tions (GGAs) and meta-generalized-gradient approximations
(meta-GGAs). These share the general form

Exc[n] =
∫

dr ϵxc(r) (1)

where ϵxc(r) is the exchange-correlation energy per unit vol-
ume, which depends on the values of the density, and other
density-derived variables only at point r. Higher rungs on the
ladder introduce non-local dependence on the Kohn-Sham or-
bitals, {ψi }, and eigenvalues, {εi }, and have more complicated
and computationally demanding forms than Eq. 1.

The meta-GGA family of functionals offers the most so-
phisticated and flexible semi-local forms, in which ϵxc(r) de-
pends on the density, n(r), its gradient, ∇n(r), and the kinetic
energy density [4],

τ(r) =
1
2

Nocc∑

i

|∇ψi (r) |2, (2)

where the summation is over all Nocc occupied orbitals. The
use of τ to construct exchange-correlation functionals of-
fers significant theoretical benefits without abandoning the
computationally simple form of Eq. 1. Nevertheless, τ-
dependence does present additional challenges, particularly
with respect to self-consistent implementation. We discuss
these issues in sections II C and II D.

The addition of new density-dependent ingredients as the
Jacob’s ladder is ascended allows for the construction of more
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sophisticated functionals, which are typically more accurate
than those on the lower rungs. The metaphor of the Jacob’s
ladder is a useful shorthand for this general trend, however it
should be noted that this is not a strict rule. The accuracy of
any given functional depends on other factors not considered
in the ladder metaphor, such as the design of the functional
form and the context in which it is to be applied. When se-
lecting a functional to study a particular chemical system, it
is important to consider these other factors, rather than simply
assuming that a higher-rung functional is the best tool for the
job—a less computationally demanding lower-rung functional
may be more suitable.

The computational demands of any approximate exchange-
correlation functional must be considered in the context of
the overall KS-DFT procedure. Conventional DFT calcula-
tions have a computational cost which scales cubically with
the size of the system. This compares favorably to other quan-
tum chemical methods but still constrains the type of systems
which can practically be studied.

The cubic scaling cost of conventional DFT calculations
arises from the need to orthogonalize Kohn-Sham orbitals
which extend over the entire system, and may be overcome by
exploiting the locality of electronic interactions (see for ex-
ample Refs. 5 and 6). Using this “nearsightedness” [7], DFT
calculations may be performed with a cost that scales linearly
with the size of the system. These “linear scaling”, or O(N ),
methods have enabled DFT to be routinely applied to systems
containing thousands of atoms.

ONETEP [8] is one of several software packages which im-
plement linear-scaling DFT approaches. Other O(N ) DFT
packages include BigDFT [9], CONQUEST [10], OpenMX
[11], Quickstep [12] and SIESTA [13]. The combination
of readily available linear-scaling DFT software and highly
parallel modern supercomputing hardware has extended the
scope of DFT to systems such as complex biological macro-
molecules and nanomaterials (see Refs. 14–17 for some recent
applications of ONETEP to large systems of this type).

As mentioned above, a key challenge in the development
of quantum chemical approaches and their application is the
tension between computational cost and accuracy. This ten-
sion is particularly keenly felt in the development and exten-
sion of linear-scaling methods, where maintaining O(N ) scal-
ing in all components is of paramount importance. Ideally,
we would like to make use of the most accurate exchange-
correlation approximations, but, as has already been men-
tioned, higher rungs of the Jacob’s ladder of density functional
approximations introduce non-local ingredients which pose a
serious challenge for maintaining O(N ) scaling. High accu-
racy semi-local exchange-correlation functionals are of par-
ticular interest for linear-scaling DFT because they naturally
incorporate the locality of electronic interactions and are com-
putationally simple to evaluate using numerical integration.
We suggest that the meta-GGAs, as the most sophisticated
semi-local functionals, exist in a “Goldilocks zone” where ac-
curacy and computational expense can be particularly favor-
ably balanced for linear-scaling DFT approaches (Fig. 1).

Recently, linear-scaling exact exchange evaluation has been
demonstrated within ONETEP [18] using a density-fitting-

LDA

GGA

meta-GGA

hybrid

double-hybrid

(semi-)local

non-local

FIG. 1. The Jacob’s ladder of density functional approximations as-
cending towards the “heaven of chemical accuracy” [2, 3], each rung
introducing a new density-dependent ingredient. The region inside
the yellow box is our suggested “Goldilocks zone”, where the com-
putational cost and accuracy are particularly well-balanced for linear-
scaling DFT approaches.

based approach. This opens up access the fourth rung of
the Jacob’s ladder, albeit at the cost of introducing an aux-
iliary basis set. Nevertheless, the comparative simplicity of
the semi-local meta-GGAs remains highly desirable. Fur-
thermore, recently developed meta-GGAs offer impressive ac-
curacy. For example, the accuracy of the combinatorially
designed semiempirical B97M-V functional [19] is compa-
rable to popular hybrid functionals across a broad range of
datasets. In some circumstances, notably for non-covalent
interactions, B97M-V can outperform popular hybrid func-
tionals. Promising results have also been reported for the
recently developed nonempirical SCAN functional [20, 21].
In light of the performance of modern meta-GGAs such as
B97M-V, the “Goldilocks zone” of Fig. 1 becomes very ap-
pealing for linear-scaling DFT. Indeed, this balance of com-
putational simplicity and accuracy was the key motivator in
our implementing support for meta-GGAs in ONETEP.

In the remainder of this paper, the theoretical and computa-
tional details of our work to implement self-consistent meta-
GGA support within ONETEP are presented alongside results
demonstrating its numerical accuracy and computational ef-
ficiency. In section II, we describe the theoretical founda-
tions of this work, with particular emphasis on the linear-
scaling formalism used in ONETEP and the difficulties as-
sociated with self-consistent implementation of τ-dependent
functionals. The theoretical innovations necessary to im-
plement meta-GGAs within ONETEP’s linear-scaling frame-
work are described in section III. The meta-GGA function-
als we implemented in ONETEP to validate our approach,
PKZB [22] and B97M-V [19], are described in section III F.
We present results concerning the numerical and computa-
tional performance of self-consistent meta-GGA calculations
in ONETEP in section IV. Specifically, numerical compar-
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isons with other codes are presented in section IV A, while
the linear-scaling computational cost of our approach is ver-
ified in section IV B. Finally, in section V, we draw conclu-
sions based on these results and make some suggestions for
further work and potential future applications for meta-GGA
functionals in ONETEP.

II. THEORY

A. Density-matrix DFT

KS-DFT represents the exact ground state electronic den-
sity via the density of an auxiliary system of independent
particles [1], which interact via a mean-field. The principal
advantage of using this auxiliary density is that the states of
the independent electrons can be described by a set of one-
electron orbitals, {ψi }. These Kohn-Sham (KS) orbitals are
solutions to one-particle Schrödinger equations with eigenval-
ues, {εi },

(
−1

2
∇2 + VKS(r)

)
ψi (r) = εiψi (r). (3)

where VKS(r) is an effective local potential. This allows the
obstacle of expressing the kinetic energy as an explicit func-
tional of the density to be sidestepped, since the kinetic en-
ergy of a system of independent electrons has a simple form
in terms of the KS orbitals:

Ts[n] = −1
2

N∑

i=1

∫
drψ∗

i (r)∇2ψi (r). (4)

The state of the independent electron system may be fully
described by the one-particle density matrix

ρ(r,r′) =
N∑

i

f iψi (r)ψ∗
i (r′) (5)

with occupation numbers { f i } in the interval [0,1], and from
which the ground-state density is obtained from the density
matrix by setting r = r′,

n(r) = ρ(r,r) =
N∑

i

f iψi (r)ψ∗
i (r). (6)

The total energy functional of KS-DFT can be expressed in
terms of the one-particle density matrix, by re-casting Eq. 4 in
terms of ρ(r,r′),

Ts[n] =
∫

dr
[
−1

2
∇2

r ρ(r,r′)
]

r=r′
, (7)

where we have implicitly introduced a generalized definition
of Ts[n], which allows for fractional occupancies, { f i } (as de-
scribed in Ref. 23). The remaining external potential, Hartree
and exchange-correlation contributions are explicit function-
als of the density, and can be expressed in terms of ρ(r,r′)
using Eq. 6.

Formulating KS-DFT with the density matrix as the central
quantity facilitates the development of methods which exploit
the locality, or “nearsightedness” [7], of ρ(r,r′) and opens
the door to electronic structure methods in which computa-
tional cost scales linearly with system size, N . It is well-
known that the density matrix for an insulating system (i.e.
a system with a band-gap) decays exponentially with inter-
electronic distance, |r − r′ | (see for example Ref. 24, and ref-
erences therein). In practice, this locality can be enforced to
yield O(N ) computational cost by truncating the density ma-
trix such that ρ(r,r′) = 0 when |r − r′ | > rcut, where rcut is
a predetermined cutoff distance. This truncation of the den-
sity matrix is the fundamental premise upon which ONETEP
is designed.

B. ONETEP formalism

In ONETEP the density matrix is expressed in a separable
form,

ρ(r,r′) = ϕα (r)Kαβϕ∗β (r′) (8)

where {ϕα } are a set of strictly localized non-orthogonal or-
bitals, related to the KS orbitals by

ψi (r) = ϕα (r)Mα
i . (9)

and K is the density kernel,

Kαβ =

N∑

i=1

Mα
i f i M

† β
i , (10)

constructed from elements of the transformation matrix M and
occupation numbers { f i }. Expressing the density matrix in
separable form (Eq. 8) allows its intrinsic locality to be ex-
ploited by truncating the density kernel such that

Rαβ > rcut =⇒ Kαβ = 0 (11)

where Rαβ is the distance between the localized orbitals,
ϕα (r) and ϕβ (r), and rcut is a predetermined cutoff distance
(the “density kernel cutoff”) [8].

Note that in Eqs. 8 to 10 we have used the Einstein summa-
tion convention (implicit summation over repeated indices).
This convention will be used for the remainder of this paper,
though explicit summation signs will be used where this as-
sists clarity. We have also distinguished between contravari-
ant and covariant quantities by using upper and lower in-
dices, as is conventional. The necessity of this distinction
is a consequence of the non-orthogonality of ONETEP’s lo-
cal orbitals—care must be taken to respect the transformation
properties of these orbitals and related objects.

The non-orthogonal orbitals in Eq. 8, called “non-
orthogonal generalized Wannier functions” (NGWFs), are re-
stricted to spherical, atom-centered localization regions, so
Rαβ in Eq. 11 is simply the distance between atoms. The
NGWFs are constructed from an orthogonal basis of psinc
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(periodic cardinal sine) functions positioned on a regular real-
space grid [25–27], i.e.

ϕα (r) =
m∈Lα∑

m

D(r − rm )cmα (12)

where each psinc, D(r− rm ) is centered on a point of the real-
space Cartesian grid, rm . Strict locality is enforced by only
allowing psincs that fall within the localization region, Lα , to
have non-zero cmα .

The psinc functions which form ONETEP’s underlying ba-
sis can be thought of as a regular real-space grid of bandwidth-
limited, periodic delta functions, and are constructed as a fi-
nite sum over plane waves—see appendix A of Ref. 25 for a
detailed description of the psinc basis set. This relationship
between the psinc basis and plane waves allows ONETEP to
benefit from the useful properties of a plane wave basis, in
particular the use of a single parameter, the kinetic energy
cutoff, to systematically improve basis set quality. In addi-
tion, as in conventional plane wave DFT, it is simple to switch
between real and reciprocal space representations of the ba-
sis by Fourier transform, enabling the most advantageous rep-
resentation to be used for any given operation. To perform
reciprocal-space operations while maintaining overall linear-
scaling computational cost, ONETEP uses the “FFTbox” ap-
proximation, in which Fourier transforms are applied to a sub-
region of the simulation cell, rather than the entire simulation
cell—see Refs. 26, 28 for details.

A particular feature of the linear-scaling approach used in
ONETEP is that the total energy is variationally minimized
with respect to density kernel elements and the NGWFs [25,
29], using a conjugate gradients [30] scheme. This in situ
optimization of the NGWFs allows ONETEP to achieve high-
accuracy with a minimal set of NGWFs and has been shown
to eliminate basis set superposition error [31].

The energy minimization takes place via two nested loops:
in the inner loop, K is optimized with fixed NGWFs while in
the outer loop, the NGWFs are varied, i.e.

Emin = min
{ϕα }

(
min

K
E[K, {ϕα }]

)
. (13)

The procedure is repeated until a self-consistency threshold is
satisfied, subject to the constraints that (i) the number of elec-
trons in the system is unchanged, and (ii) the density kernel is
idempotent.

Constraining the density kernel to be idempotent is equiv-
alent to ensuring the orthogonality of the KS orbitals. This
constraint is applied in ONETEP using a modified Li-Nunes-
Vanderbilt (LNV) scheme [32, 33] (described in Ref. 34),
where the total energy is minimized with respect to an aux-
iliary density kernel, L, which is related to the true density
kernel by the purifying transform

K = 3LSL − 2LSLSL. (14)

Provided that L is nearly idempotent, the minimization pro-
cedure naturally drives K towards idempotency. The require-
ment that the total number of electrons, N , does not change

may be imposed by applying a constraint to the energy func-
tional, for which several methods are available—see section 4
of Ref. 34 for details.

There are two key computational issues associated with the
efficient implementation of this theoretical formalism in soft-
ware:

1. Taking advantage of the sparsity of the density kernel,
Hamiltonian and overlap matrices that naturally arises
as a consequence of the strict locality of the NGWFs.

2. Efficient utilization of the available computational re-
sources by distribution of computational work across
parallel processing units.

From the beginning, ONETEP was designed to effectively
address these practical issues, with efficient sparse matrix
algebra routines [35] and parallel algorithms built around
the Message Passing Interface (MPI) library [29]. More re-
cently, shared-memory parallelism has been added using the
OpenMP API [36] while support for graphics processing unit
(GPU) acceleration is under development [37]. The new
meta-GGA functionality described in this paper was devel-
oped to take full advantage of ONETEP’s existing framework
for sparse algebra and parallel computation.

C. Meta-GGA functionals

For local and semi-local exchange-correlation functionals,
the exchange-correlation energy density, ϵxc(r), at point r is
determined entirely by the density and density-derived vari-
ables in the locality of r (Eq. 1). The distinction between
the different classes of local/semi-local functionals lies in
which variables the exchange-correlation energy density is
constructed using, broadly categorized by rungs on the Jacob’s
ladder of density functional approximations (Fig. 1).

With each rung on the ladder, the introduction of new
density-dependent ingredients allows the construction of more
flexible and sophisticated functional forms, which correct for
deficiencies in functionals on lower rungs. For example, a
particular limitation of the LDAs is their tendency to overbind
molecules, resulting in the overestimation of atomization en-
ergies. With the introduction of dependence on the gradient
of the density, GGAs can dramatically improve upon LDA at-
omization energies, as well as many other properties (see, for
example, Refs. 2, 38–40).

The meta-GGAs attempt to improve upon the LDAs and
GGAs by introducing dependence on the kinetic energy den-
sity, τ (Eq. 2), i.e.

EMGGA
xc [n] =

∫
dr ϵxc(n(r),∇n(r),τ(r)). (15)

The physical relevance of τ to the description of exchange
and correlation is demonstrated by its appearance in expan-
sions of both the exchange and correlation holes, as described
in Refs. 41, 42. In practice, the addition of another density-
derived ingredient offers greater flexibility, which may be used
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to better satisfy formal constraints or fit empirical data (de-
pending on the predilections of the designer).

The improvements offered by meta-GGAs over GGAs are
typically less dramatic than those seen for GGAs over LDAs,
but still significant. For example, the TPSS and SCAN meta-
GGAs have been shown to consistently produce smaller errors
than the PBE GGA [40, 43] for the calculation of a variety of
properties [20, 44]. Since PBE, TPSS and SCAN are nonem-
pirical functionals, the improvements seen for the meta-GGAs
cannot be attributed to the quality of training data or fitting
method, and must be a consequence of improvements in the
functional form.

The addition of τ-dependence facilitates the construction
of functional forms which satisfy more formal constraints.
In particular, τ-dependence allows meta-GGAs to satisfy the
constraint that the correlation energy of any one-electron den-
sity, n1, is zero,

Ec[n1,0] = 0, (16)

where Ec is a functional of two spin densities, i.e. Ec[n↑,n↓].
This can be achieved using expressions constructed from τ
and the Weizsäcker kinetic energy density,

τW =
1
8
|∇n|2

n
. (17)

Since τW = τ for a one-electron density and it can be shown
that τW ≤ τ [45], the relationship between τW and τ can be
used to construct correlation energy functionals which vanish
for one-electron densities. For example, that (τW /τ)n = 1
for a one-electron density is used in the PKZB [22] meta-
GGA (section III F 1) to eliminate self-correlation (this form
is also used in PKZB’s successor, TPSS [44]). Similar self-
correlation correcting expressions have been employed in the
construction of many density functionals, including examples
by Becke [42, 46, 47] and Van Voorhis and Scuseria [48]
which precede PKZB’s 1999 publication. In addition, re-
lated τ-containing expressions such as the electron localiza-
tion function (ELF) [49] and localized orbital locator (LOL)
[50] have been described which distinguish regions of elec-
tron localization, and can be used to produce striking visual-
izations of atomic and molecular electronic structure.

Many variants of the meta-GGA form have been devel-
oped since Becke’s early work in the 1980s [42, 51, 52].
Some notable variants have already been mentioned, such as
PKZB [22] and its nonempirical successor TPSS [44]. An-
other notable set of meta-GGAs are the semiempirical “Min-
nesota” functionals, which include local M06-L [53], M11-L
[54] and the recent MN15-L [55], as well as hybrid variants
which add exact exchange to the meta-GGA form (for ex-
ample, M06 [56], M11 [57] and MN15 [58]). The devel-
opment and refinement of meta-GGA functionals is an on-
going effort—recently published examples include the semi-
empirical B97M-V (which we implemented in this work, see
section III F 2), the related range-separated hybrid meta-GGA,
ωB97M-V [59], and nonempirical SCAN [20] functionals.
For further examples and historical context, see the well-cited
accounts in Refs 19, 60.

D. Self-consistent meta-GGA evaluation

In order to self-consistently solve the Kohn-Sham equa-
tions (Eq. 3), it is necessary to evaluate the effective poten-
tial, VKS(r), which includes an exchange-correlation contri-
bution, defined as the functional derivative of the exchange-
correlation energy with respect to the density,

Vxc(r) =
δExc

δn(r)
. (18)

For LDA and GGA functionals, the exchange-correlation en-
ergy density is an explicit functional of the charge density, n
and its gradient, ∇n, and obtaining the functional form of Vxc
is a simple matter of evaluating the functional derivative.

The τ-dependence of meta-GGA functionals (Eq. 15)
presents an additional challenge because τ is itself an implicit
functional of the density. Since the explicit dependence of τ
on n is unknown, the functional derivative of Eq. 18 cannot be
straightforwardly evaluated in the case of meta-GGAs.

One approach to this issue is to simply avoid ever need-
ing to evaluate the meta-GGA exchange-correlation potential.
This can be achieved by self-consistently determining the KS
orbitals using a non-τ-dependent functional, and then evalu-
ating the meta-GGA energy expression non-self-consistently
using n and τ constructed from these orbitals. This method
was used in Refs. 22, 61, and reportedly yields results close
to those produced by self-consistent meta-GGA calculations.
However, the method has limited utility beyond total energy
evaluation, since the orbitals and density produced are com-
pletely determined by the non-τ-dependent functional used.

A second approach is to use the optimized effective po-
tential (OEP) method [62]. The OEP method produces lo-
cal, multiplicative exchange-correlation potentials for orbital-
dependent functionals and is based on the premise of finding
the local potential for which the total energy is stationary, i.e.
δE/δVKS(r) = 0. The local potential which satisfies this re-
quirement can be obtained by solution of an integral equation.
This is a non-trivial task and approximate methods are gener-
ally used (as in the Krieger-Li-Iafrate (KLI) approach [63]).
Although the OEP method is more often applied to function-
als incorporating exact exchange, it is also applicable to meta-
GGAs, as described in Refs. 64, 65. For a well-cited review
of the OEP method and approximations to this, see Ref. 60.

A third approach, which avoids the theoretical and com-
putational complexity of solving the OEP integral equation
is to express the exchange-correlation potential in terms of
functional derivatives with respect to the orbitals, rather than
the density. Originally described by Neumann, Nobes and
Handy [66] in the context of self-consistently evaluating the
τ-dependent Becke-Roussel exchange functional [52], this ap-
proach yields a non-multiplicative, orbital-specific potential.
Following Ref. 64, we refer to this approach as the “func-
tional derivatives of τ-dependent functionals with respect to
the orbitals”, or FDO, approach.

For this work, we adopted the FDO approach, motivated
by its relative simplicity compared to the OEP method. As
demonstrated in section III, the FDO approach allows self-
consistent calculations to be performed using τ-dependent
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exchange-correlation functionals with only minor extensions
to the existing density-matrix DFT framework used by
ONETEP.

The FDO approach has previously been described as an
“approximation”, since its orbital-specific potential represents
a step outside of the conventional Kohn-Sham method, which
assumes a local effective potential (as in Ref. 64). While the
FDO method could be considered an approximation to KS-
DFT with a local potential, this terminology could be mislead-
ing since the results obtained using this method are not neces-
sarily any less accurate or rigorous than those obtained using
the OEP method. The FDO approach falls within the wider
framework of the “generalized Kohn-Sham” (gKS) formal-
ism [67], in which alternate realizations of DFT may be con-
structed based on auxiliary systems other than the usual non-
interacting system of conventional KS-DFT. Such theories
permit non-local effective potentials, as in the FDO method.

Since the exchange-correlation part of the effective poten-
tial in the FDO approach is non-multiplicative, we would ex-
pect the solutions to the corresponding eigenvalue equations
(Eq. 3) to differ from those obtained using a local potential. It
has been observed that the differences between the FDO and
OEP methods for meta-GGAs are very small for total ener-
gies, though these can be more significant for quantities sen-
sitive to electronic structure, such as nuclear shielding con-
stants [64]. Additionally, recent work by Yang and cowork-
ers has shown that band gaps for the SCAN meta-GGA [20]
are improved using an FDO-type approach compared to OEP
[65].

The FDO approach is perhaps the most widely used method
of evaluating meta-GGA exchange-correlation potentials (see
for example Refs. 44, 48, 68, 69). The widespread use of
this approach is a further practical advantage, since in vali-
dating our work against other implementations which use the
FDO method, we do not need to consider any error arising
from the difference between the FDO and OEP approaches. In
section IV A, we compare self-consistent meta-GGA energies
calculated using ONETEP with those calculated in Q-Chem
[70], both using the FDO approach [71].

In the FDO method, the functional derivative of the
exchange-correlation energy with respect to the orbitals may
be arrived at using the functional derivative chain rule [72]

δEmGGA
xc

δψi (r)
=

∫
dr′

δEmGGA
xc

δn(r′)
δn(r′)
δψi (r)

(19)

and inserting the functional derivative

δn(r′)
δψi (r)

= 2ψi (r)δ(r′ − r), (20)

to give

δEmGGA
xc

δψi (r)
= 2

δEmGGA
xc
δn(r)

ψi (r). (21)

The relationship in Eq. 21 implies the following form for
the product of the exchange-correlation potential and an or-
bital:

1
2
δEmGGA

xc
δψi (r)

=
δEmGGA

xc
δn(r)

ψi (r) = V̂ FDO
xc ψi (r), (22)

where we have used operator notation to emphasize the non-
multiplicative nature of the FDO exchange-correlation poten-
tial, V̂ FDO

xc . Evaluating the functional derivative on the left
of Eq. 22 for a general meta-GGA dependent on n, ∇n and
τ (Eq. 15), yields the FDO exchange-correlation potential
[64, 68]

1
2
δEmGGA

xc
δψi (r)

=

{
∂ϵxc

∂n
− ∇ ·

(
∂ϵxc

∂∇n

)}
ψi (r)

− 1
2

(
∇∂ϵxc

∂τ

)
· ∇ψi (r) − 1

2
∂ϵxc

∂τ
∇2ψi (r).

(23)

A more compact expression of the FDO exchange-correlation
potential is

V̂ FDO
xc (r)ψi (r) = V GGA

xc ψi (r) +
{
V̂τ

xcψi (r)
}

(24)

which consists of a GGA-like part,

V GGA
xc =

∂ϵxc

∂n
− ∇ ·

(
∂ϵxc

∂∇n

)
, (25)

and a non-multiplicative, τ-dependent part,

V̂τ
xcψi (r) = −1

2

(
∇∂ϵxc

∂τ

)
· ∇ψi (r) − 1

2
∂ϵxc

∂τ
∇2ψi (r). (26)

Using the relationship in Eq. 22 to derive an exchange-
correlation potential means that the FDO exchange-
correlation potential is only defined where δExc/δn appears as
a product with a KS orbital. We have emphasized this relation-
ship with the KS orbital that appears in δExc/δψi by enclos-
ing the non-multiplicative part of Eq. 24 in curly braces. For-
tunately, in conventional self-consistent DFT calculations the
exchange-correlation potential only arises as a product with a
KS orbital in the evaluation of Hamiltonian matrix elements.
As we shall see, this is also the case with the direct energy
minimization approach used in ONETEP, though in this case a
per-NGWF form of the exchange-correlation potential is used
(section III B) and this additionally appears in expressions for
the gradient of the energy (sections III D and III E).

Note that in the above, we have referred to the orbitals
which solve the one-electron eigenvalue equations (Eq. 3) in
both conventional and generalized Kohn-Sham (i.e. FDO) ap-
proaches as “KS orbitals”. We will continue with this con-
vention for the remainder of the paper, since this clearly dis-
tinguishes the orbitals which solve the one-electron equations
from the localized orbitals (NGWFs) used in ONETEP.

III. IMPLEMENTATION

A. Kinetic energy density

To evaluate τ(r) within ONETEP’s linear-scaling DFT for-
malism (section II B), it is necessary to recast Eq. 2 in terms
of local quantities. This is easily achieved by expanding the
KS orbitals in Eq. 2 in terms of the NGWFs (Eq. 9),

τ(r) =
1
2

Nocc∑

i

f i
(
∇ϕα (r)Mα

i

)
·
(
∇M† β

i ϕ∗β (r)
)
, (27)
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and inserting the definition of the density kernel in terms of
the orbital coefficients (Eq. 10)

τ(r) =
1
2

∑

αβ

(∇ϕα (r)) ·
(
Kαβ∇ϕβ (r)

)
. (28)

The introduction of fractional occupation numbers, { f i }, in
Eq. 27, follows from the generalized definition of the kinetic
energy in terms of the density matrix (Eq. 7).

In practice, τ(r) is evaluated on the simulation cell grid in
a manner analogous to n(r),

n(r) = ϕα (r)Kαβϕ∗β (r), (29)

described in detail in Ref. 29. This starts with the evaluation
of “per-NGWF” contributions

τ(r; α) = (∇ϕα (r)) ·
⎛
⎜⎜⎝∇

∑

β

Kαβϕβ (r)

⎞
⎟⎟⎠ . (30)

where the summation over β is for all NGWFs which overlap
with ϕα . It is convenient to perform the summation over β
before applying the gradient operator, since this is easily ap-
plied to the summed quantity in reciprocal space, avoiding the
need to individually calculate the gradient of each β NGWF.
The per-NGWF contributions are then summed to yield the
quantity on the full simulation cell grid,

τ(r) =
1
2

∑

α

τ(r; α). (31)

For completeness, we note that the evaluation of τ(r) by
this method introduces a subtle approximation, not present
for the same method applied to n(r) [29]. For n(r), summing
over only NGWFs which overlap with ϕα to form n(r; α) (as
in Eq. 30) is exact, since the NGWFs are zero-valued outside
their localization regions. When the gradient operator is ap-
plied to a NGWF, however, it becomes delocalized. This is
a consequence of the form of the psinc basis functions from
which the NGWFs are constructed (Eq. 12)—while the psincs
are zero-valued at the grid points they are not centered upon,
they do not in general have zero gradient at these points. We
have not explored the effect of this approximation in this work,
but note that a similar approximation is assumed in ONETEP
for the evaluation of the kinetic energy integrals over NGWFs
(where the operator is the Laplacian, rather than the gradient)
and is expected to have a negligible effect in that context [28].

B. Exchange-correlation potential

As with the kinetic energy density (section III A), the
exchange-correlation potential must be expressed in a form
containing only local quantities in order to be compatible with
ONETEP’s linear-scaling formalism (section II B). For LDA
and GGA-type functionals, this is trivial, since the form of
the exchange-correlation potential, as determined by the func-
tional derivative δExc[n]/δn(r), is already a local potential.

For meta-GGAs using the FDO method, the situation is more
complicated, with a non-multiplicative “orbital-specific” po-
tential, which is defined with respect to a KS orbital (Eqs. 22
and 23)—this presents a potential issue for ONETEP, since we
must avoid explicit reference to the KS orbitals. Fortunately,
it is simple to derive a “per-NGWF” potential, which avoids
the need to deal directly with the KS orbitals.

Expanding the KS orbital in Eq. 23 in terms of NGWFs
(Eq. 9) and using Eq. 22, we obtain

∑

α

δExc

δn(r)
ϕα (r)Mα

i

=
∑

α

V GGA
xc ϕα (r)Mα

i + V̂τ
xcϕα (r)Mα

i ,
(32)

where the GGA-like and τ-dependent parts of the potential
are defined as in Eqs. 25 and 26 (but with ψi replaced by ϕα).
Recognizing that the orbital coefficients, Mα

i , commute with
the non-multiplicative part of the potential, Eq. 32 can be re-
arranged to give

∑

α

[
δExc

δn(r)
ϕα (r) − V GGA

xc ϕα (r) −
{
V̂τ

xcϕα (r)
}]

Mα
i = 0.

(33)

which implies a per-NGWF exchange-correlation potential

δExc

δn(r)
ϕα (r) = V̂ FDO

xc ϕα (r) = V GGA
xc ϕα (r) +

{
V̂τ

xcϕα (r)
}

(34)

with the same local GGA-like, and non-multiplicative τ-
dependent parts seen in Eqs. 25 and 26 (but with ψi replaced
by ϕα , as before).

Applying the product rule, the τ-dependent part can be ex-
pressed in a more compact form,

{
V̂τ

xcϕα (r)
}
= −1

2
∇ ·

(
∂ϵxc

∂τ
∇ϕα (r)

)
, (35)

which proves useful in evaluating integrals over the V̂τ
xc (sec-

tion III C).

C. Integrals

The self-consistent implementation of meta-GGAs under
the FDO method requires integrals over the τ-dependent part
of the exchange-correlation potential (Eq. 35), in addition
to the usual integrals over the local, GGA-like part of the
exchange-correlation potential (Eq. 25).

The form of the τ-dependent matrix element used in Neu-
mann, Nobes and Handy’s paper [66] and other later publica-
tions (e.g. Ref. 48) is

⟨ψi |V̂τ
xc |ψ j ⟩ =

1
2

∫
dr∇ψi (r) ·

(
∂ϵxc

∂τ
∇ψ j (r)

)
(36)

which may be arrived at from Eq. 35 via integration-by-parts.
This form of the integral has the apparent advantage that
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the derivative of the potential ∂ϵxc/∂τ is not required—only
derivatives of the orbitals are needed. This is an attractive
property for a Gaussian basis set code, since analytic deriva-
tives of the basis functions (and hence orbitals) are easily ac-
cessible and the need to evaluate the numerical derivative of
the potential is avoided.

The same result may be arrived at for NGWFs, when inte-
grated over a unit cell with periodic boundary conditions (via
the divergence theorem), i.e.

⟨ϕα |V̂τ
xc |ϕβ⟩ =

1
2

∫

V
dr∇ϕα (r) ·

(
∂ϵxc

∂τ
∇ϕβ (r)

)
, (37)

where V is the volume of the simulation cell. However, for
ONETEP, this form of the integral is problematic because the
gradients of psinc functions (and by extension, NGWFs) are
delocalized (as described in section III A).

For integrals over the local potential and kinetic energy op-
erator,

Vαβ =

∫

V
dr ϕα (r)Vloc(r)ϕβ (r), (38)

Tαβ = −
1
2

∫

V
dr ϕα (r)∇2ϕβ (r), (39)

the locality of the NGWFs naturally restricts the integration
region. In Vαβ , the integrand is zero where the α and β NG-
WFs do not overlap, and thus it can be assumed that Vαβ = 0
where the localization regions of ϕα and ϕβ do not overlap.
Similarly for Tαβ , the integrand is always zero outside the lo-
calization region of the α NGWF, and the approximation is
made that the Tαβ = 0 where there is no overlap between the
localization regions of ϕα and ϕβ (as described in Ref. 28).
For Eq. 37 the delocalization of the NGWF gradients prevents
the restriction of the integration to the localization sphere of
either NGWF, necessitating a further approximation in addi-
tion to the assumption that the integral is zero where the lo-
calization regions of ϕα and ϕβ are non-overlapping.

To make better use of the locality of the NGWFs, we use
an alternative form of the integral over the τ-dependent part
of the exchange-correlation potential, based on Eq. 35,

⟨ϕα |V̂τ
xc |ϕβ⟩ = −

1
2

∫

V
dr ϕα (r)∇ ·

(
∂ϵxc

∂τ
∇ϕβ (r)

)
, (40)

which has the advantage that the integrand is non-zero only in
the localization region of ϕα . The need to evaluate the diver-
gence of (∂ϵxc/∂τ)∇ϕβ is not a significant issue in ONETEP,
since the gradient operator can be trivially applied to each
Cartesian component of the vector field in reciprocal space.

The form of Eq. 40 closely resembles the form of the kinetic
energy integrals (Eq. 39). Indeed, for ∂ϵxc/∂τ = 1, the two in-
tegral types are equivalent—a property we used in testing the
code to evaluate ⟨ϕα |V̂τ

xc |ϕβ⟩. As for the kinetic energy inte-
grals [28] (and kinetic energy density, section III A), the eval-
uation of ⟨ϕα |V̂τ

xc |ϕβ⟩ in ONETEP makes the approximation
that integrals over NGWFs with non-overlapping localization
spheres are zero, despite the delocalizing effect of applying
the gradient operator to psinc functions.

D. Density kernel optimization

Direct minimization of the energy under the LNV scheme
used in ONETEP (section II B) requires the evaluation of the
gradient of the energy with respect to the elements of the aux-
iliary density matrix, L. This gradient is given by

∂E
∂Lαβ

=
∂E
∂Kηθ

∂Kηθ

∂Lαβ
. (41)

where ∂Kηθ/∂Lαβ can be derived from Eq. 14 (see Ref. 73).
For the purposes of this work, it is sufficient to note that
∂Kηθ/∂Lαβ does not depend on the form of Exc[n] and we
can therefore focus on the form of the ∂E/∂Kηθ .

The exchange-correlation component ∂E/∂Kηθ can be ex-
pressed in terms of the functional derivative of Exc[n] with
respect to the density,

∂Exc

∂Kηθ
=

∫
dr δExc

δn(r)
∂n(r)
∂Kηθ

, (42)

and thus the partial derivative with respect to the density ker-
nel elements depends on the form of the exchange-correlation
potential, Vxc(r) ≡ δExc/δn(r). For reference, the derivation
of Eq. 42 is reproduced in appendix A.

Using Eq. 29, the partial derivative on the right of Eq. 42 is

∂n(r)
∂Kηθ

= δαη δ
β
θ ϕα (r)ϕ∗β (r) (43)

and thus Eq. 42 becomes

∂Exc

∂Kηθ
=

∫
dr ϕ∗θ (r)

δExc

δn(r)
ϕη (r). (44)

For LDA or GGA functionals the functional derivative is
equivalent to the local exchange-correlation potential, and
Eq. 44 is simply a matrix element over the local potential:

∂Exc

∂Kηθ
= ⟨ϕθ |Vxc |ϕη⟩. (45)

Under the FDO approach (section II D), the meta-GGA
exchange-correlation potential consists of a local GGA-
like part (Eq. 25) and non-multiplicative, τ-dependent part
(Eq. 35). Inserting the per-NGWF exchange-correlation po-
tential (section III B) into Eq. 44 yields

∂Exc

∂Kηθ
=

∫
dr ϕ∗θ (r)V GGA

xc (r)ϕη (r)

+

∫
dr ϕ∗θ (r){V̂τ

xcϕη (r)}

= ⟨ϕθ |V GGA
xc |ϕη⟩ + ⟨ϕθ |V̂τ

xc |ϕη⟩,

(46)

the form of the exchange-correlation component of ∂E/∂Kηθ

for meta-GGAs under the FDO approach.
The implementation of Eq. 46 in ONETEP was a simple

matter of adding contributions from the additional matrix el-
ement, ⟨ϕθ |V̂τ

xc |ϕη⟩, to the existing gradient expression for
GGA-type functionals.
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E. NGWF optimization

In addition to the gradient of the energy with respect to den-
sity kernel elements described in section III D, direct mini-
mization of the energy in ONETEP also requires the evalua-
tion of the gradient of the energy with respect to the NGWFs.

Since the total energy is a functional of the NGWFs (via the
density, Eq. 29), the gradient of the energy with respect to the
NGWFs is a functional derivative. This functional derivative
has the form

δExc

δϕ∗α (r)
= ϕκ (r)[QV ]κα +

δExc

δn(r)
ϕκ (r)Kκα (47)

where

[QV ]κα = 3LκνVνµLµα

− 2LκγSγδLδνVνµLµα

− 2LκνVνµLµγSγδLδα

(48)

and

Vνµ =
∫

dr ϕ∗ν (r)
δExc

δn(r)
ϕµ (r). (49)

For reference, a derivation of Eq. 47 is presented in ap-
pendix B (based on work presented in Ref. 73). Note that the
result differs by a factor of two depending on whether the NG-
WFs are real or complex, and this is covered in appendix B. In
this section, we only consider the case of complex NGWFs.

Inserting the per-NGWF FDO exchange-correlation poten-
tial (Eq. 34) into Eq. 47 yields

δExc

δϕ∗α (r)
= ϕκ (r)[QV ,FDO]κα

+ V GGA
xc (r)ϕκ (r)Kκα + {V̂τ

xcϕκ (r)}Kκα .

(50)

where QV ,FDO is defined as in Eq. 48, but with Vνµ replaced
by

V FDO
νµ =

∫
dr ϕ∗ν (r)V GGA

xc (r)ϕµ (r)

+

∫
dr ϕ∗ν (r)

{
V̂τ

xc(r)ϕµ (r)
}
.

(51)

As with the gradient of the energy with respect to density
kernel elements, the implementation of Eq. 50 in ONETEP
was achieved by the modification of the existing gradient ex-
pression for GGA-type functionals. This involved adapting
the routines used to construct QV to use V FDO

νµ in place of the
usual local potential integral, and adding an extra term to the
GGA gradient expression, {V̂τ

xcϕκ (r)}Kκα .

F. Functionals

1. PKZB

The PKZB meta-GGA was first described in 1999 [22, 74]
and, following the design principles of the PBE GGA [40, 43],

was constructed to satisfy a number of known exact con-
straints on Exc[n] with only a single empirically fitted parame-
ter (see Ref. 3 for further details of this constraint-satisfaction
approach). Although PKZB performed well compared to con-
temporary semi-local functionals (see e.g. Ref. 45), it has
since been superseded by more modern meta-GGAs such as
the TPSS meta-GGA [44, 75, 76], a non-empirical refinement
of PKZB.

While PKZB has been surpassed by more modern meta-
GGAs, it has the advantage of theoretical simplicity. Our
implementation of PKZB to test the self-consistent meta-
GGA framework described above was primarily motivated by
this simplicity. In particular, the forms of the exchange and
correlation parts of the functional are closely related to the
PBE GGA, which was already available and well-tested in
ONETEP. This allowed PKZB to be relatively simply imple-
mented by reuse and modification of existing code.

A further advantage of using PKZB as a testbed for meta-
GGAs in ONETEP was its relatively wide availability in other
codes. Since the publication of the original PKZB paper in
1999, there has been ample time for the creation of mature,
stable implementations of the functional. We used this to our
advantage in the implementation of this functional and the
general framework for meta-GGAs in ONETEP, performing
preliminary tests of our work against independent implemen-
tations in Libxc [77], NWChem [78] and Q-Chem [70]. A
selection of results, validating our self-consistent implemen-
tation of PKZB against Q-Chem are reported in section IV A.

While the key equations required to evaluate energies us-
ing the PKZB functional are well described in the original
paper [22], equations for the derivatives of the exchange and
correlation energy density, ϵxc(r), necessary to evaluate the
exchange-correlation potential (sections II C and III B) are not
provided. For convenience and ease of reproducing our work,
the equations we derived for the derivatives of ϵxc(r) are pre-
sented in appendix C, alongside reproductions of the original
energy equations.

2. B97M-V

B97M-V [19] is a semi-local meta-GGA density func-
tional with VV10 non-local correlation [79] designed by
Mardirossian and Head-Gordon via a combinatorial approach
[80]. In the spirit of the original B97 density functional [81],
the semi-local part of B97M-V is partitioned into three com-
ponents: exchange, same-spin correlation, and opposite-spin
correlation. Consequently, B97M-V has three separate inho-
mogeneity correction factors (ICF) that enhance the three as-
sociated uniform electron gas energy densities. Each ICF is
a two-dimensional power series utilizing two variables: u, a
finite-domain dimensionless variable that depends on the den-
sity and its gradient [81], and w, a finite-domain dimension-
less variable that depends on the density and the kinetic en-
ergy density [82]. The final functional form of B97M-V was
selected by searching through more than 1010 of the over 1040

possible options and choosing the most transferable and well-
behaved fit. B97M-V has a total of 12 linear parameters—4
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for exchange, 4 for same-spin correlation, and 4 for opposite-
spin correlation. For non-covalent interactions and isomer-
ization energies that are not significantly affected by self-
interaction error, B97M-V is much more accurate than other
semi-local functionals such as B97-D3(BJ) [83–85], M06-L
[53], and MN15-L [55], and competitive with the best hybrid
functionals such asωB97X-V [86] andωB97M-V [59]. As an
example of its performance, across a database of 1744 closed-
shell non-covalent dimer binding energies, B97M-V affords
an RMSD of 0.24 kcal mol−1, while the three aforementioned
semi-local functionals manage RMSDs of 0.47, 0.55, and
1.38 kcal mol−1, respectively. Furthermore, across a database
of 755 isomerization energies, B97M-V has an RMSD of
0.27 kcal mol−1, compared to 0.78, 0.71, and 1.55 kcal mol−1,
respectively, for B97-D3(BJ), M06-L, and MN15-L [59].

As mentioned in section I, linear-scaling DFT methods are
particularly sensitive to the balance of computational cost and
accuracy. To produce meaningful results for very large chem-
ical systems, exchange and correlation must be treated with
accurate methods, but without compromising the computa-
tional scaling of the method such that calculations become in-
tractable. Our motivation for implementing B97M-V was its
potential to satisfy both of these requirements, sitting firmly
in the “Goldilocks zone” of Fig. 1.

A domain in which we are particularly interested in ap-
plying B97M-V is the description of biomolecular associ-
ation. ONETEP’s linear-scaling DFT approach enables a
full quantum-mechanical description of a protein-ligand sys-
tem [14, 15], avoiding the need to partition the system into
quantum and classical regions, as in competing QM/MM ap-
proaches. We hope that the combination of this capability with
B97M-V’s excellent accuracy in describing non-covalent in-
teractions will yield a powerful tool for the study of protein-
ligand binding, applicable to the challenging problem of com-
putational drug optimization. For non-covalent interaction en-
ergies, B97M-V has been shown to significantly outperform
several dispersion corrected GGAs (see Refs. 19, 59). For
biological systems, in which non-covalent interactions often
play an important role, we anticipate the use of B97M-V will
yield improved accuracy over the dispersion-corrected GGA
functionals that have been employed in previous studies us-
ing ONETEP (see for example, Refs. 14, 15). In practice, the
calculation of free energies of binding using B97M-V would
combine some kind of configurational sampling with the eval-
uation of the energies of configurations using DFT, as in the
QM-PBSA [14, 87, 88] method or the “stepping stone” ap-
proach of Sampson and coworkers [89].

It could be argued that B97M-V is not a “pure” meta-GGA,
because it incorporates a contribution from the VV10 non-
local correlation functional [79], in order to account for dis-
persion interactions. VV10 and similar non-local correlation
functionals in the vdW-DF family [90, 91] are not easily clas-
sified within the traditional Jacob’s ladder hierarchy because
their non-locality is a consequence of their functional form,
rather than dependence on KS orbitals. These functionals take
the form of a double integral

Enl
c [n] =

∫
dr1dr2n(r1)Φ(r1,r2)n(r2) (52)

where Φ(r1,r2) is a kernel depending on the interelectronic
distance, r1 − r2. Klimeš and Michaelides have proposed
a “stairway to heaven” of DFT-based dispersion corrections,
analogous to the Jacob’s ladder (Fig. 1) with the vdW-DF fam-
ily (including VV10) on the third step [92].

For clarity, we note that “VV10” is often used to refer to the
combination of specific semi-local exchange and correlation
functionals with the VV10 non-local correlation functional,
as described in Ref. 79. We will distinguish between the
non-local correlation component and the combined exchange-
correlation functional by referring to the non-local part as
“VV10 NLC”.

The implementation of VV10 NLC in ONETEP follows
the approach described in Ref. 93, which slightly modi-
fies the original VV10 NLC kernel in order to make use of
the efficient integration scheme for vdW-DF functionals de-
scribed by Román-Pérez and Soler [94] (for details of the
implementation of the vdW-DF functionals in ONETEP, see
Ref. 95). To obtain good agreement between this “revised
VV10” (rVV10), and the original VV10 [79] functional, Saba-
tini and coworkers reoptimized one of VV10’s two empirical
parameters, b and C [93]. ONETEP implements rVV10 NLC
as described in Ref. 93, and thus uses the reoptimized b value
(b = 6.3).

The implementation of B97M-V in ONETEP uses rVV10
NLC and we will refer to this combination of the local
part of the B97M-V functional with revised VV10 NLC as
“B97M-rV”, as distinct from “B97M-V”, which incorporates
the original VV10 NLC functional. Since the local part of
B97M-V [19] was optimized in combination with the original
VV10 NLC functional and we have not reoptimized the em-
pirical parameters for either part of B97M-rV to account for
use of rVV10 NLC, we might expect B97M-V and B97M-rV
to behave slightly differently. However, as described in sec-
tion IV A, we find the differences in relative energies obtained
using the two variants to be very small in most cases.

The impact of rVV10 NLC on the computational cost of
B97M-rV compared to a “pure” meta-GGA, such as PKZB,
is an interesting question, and particularly relevant to our in-
tended application of B97M-rV to large scale calculations.
This question is considered in section IV B.

To avoid the time-consuming process of implementing the
local component of B97M-rV from scratch, this was imple-
mented in ONETEP by adapting the existing Q-Chem rou-
tines for evaluating the B97M-V exchange-correlation energy
density, ϵxc(r), and its derivatives with respect to n, ∇n and
τ (as described in Ref. 19). The initial testing and debug-
ging of these modified routines within the context of ONETEP
was done by comparison with an independent implementation
of the local part of B97M-V in the Libxc library [77], which
could be called directly within ONETEP. Comparisons of full
self-consistent B97M-rV energies obtained using ONETEP
and Q-Chem are presented in section IV A.
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IV. RESULTS

A. Testing and validation

In order to test the numerical correctness of the theoret-
ical framework outlined in section III, we compared meta-
GGA energies calculated self-consistently using the ONETEP
and Q-Chem packages for a number of small molecular sys-
tems. Q-Chem is an all-electron Gaussian basis set code and
therefore differs substantially from ONETEP in its approach
to self-consistent solution of the Kohn-Sham equations (see
Refs. 70, 96, 97 for details). This difference presents both a
challenge and a opportunity. The challenge arises in setting
up calculations with comparable conditions in each package.
For example, it is not immediately clear what kinetic energy
cutoff and pseudopotential in ONETEP is appropriate to com-
pare with a given atomic orbital basis set and integration grid
in Q-Chem. The opportunity is in the strong independent val-
idation provided by comparison against an independent elec-
tronic structure code built upon an alternative theoretical foun-
dation.

For all Q-Chem results reported in this section, a devel-
opment version of Q-Chem 4 was used [70]. In these calcu-
lations, the def2-QZVPPD basis set was used for all atoms
[98, 99] and the (99,590) integration grid (99 radial shells per
atom, 590 angular grid points per shell) was used to evalu-
ate exchange-correlation functionals. The SG-1 grid [100]
was used to evaluate the rVV10 NLC component of B97M-rV
[101].

The ONETEP calculations were performed using norm-
conserving pseudopotentials from the Rappe-Bennett pseu-
dopotential library (GGA-optimized) [102] for H, C, N, O and
F nuclei [103]. The Opium pseudopotential generator [104–
106] was used to generate the pseudopotential for sulfur, used
in calculations on cysteine [107]. The pseudopotential files
used in the calculations presented in this section are included
in the supplementary material for ease of reproduction. The
number of NGWFs used to represent the valence electrons of
each atom was as follows: H, 1; C, 4; N, 4; O, 4; S, 9. This
corresponds to 1 NGWF for each valence-shell electron pair.

Through a set of calibration calculations, two combinations
of kinetic energy cutoff and NGWF localization sphere radii
were identified for comparison with the Q-Chem calculations,
corresponding roughly to settings that would be used in “stan-
dard” production and “high-accuracy” reference calculations.
The “standard” calculations used a kinetic energy cutoff of
900 eV and NGWF localization sphere radii of 8.0 a0 for all
nuclei, while the “high-accuracy” calculations used a kinetic
energy cutoff of 1200 eV and NGWF localization sphere radii
of 12.0 a0. Note that these kinetic energy cutoff values are the
values requested from ONETEP and in practice the kinetic en-
ergy cutoff used in the calculation deviates slightly from this
in order that an integer number of grid points is positioned
along each simulation cell dimension.

The simulation cell sizes used for each test case were de-
rived from the molecular geometry such that there was at least
a 5 a0 vacuum gap between the edge of the cell and the furthest
extent of the NGWF localization spheres (using 12 a0 radii) in

each Cartesian direction. This vacuum buffer was introduced
to avoid interactions between periodic images of the molecu-
lar systems. The simulation cell dimensions are provided with
molecular geometries in the supplementary material.

No correction for basis set superposition error (BSSE) was
applied in either the Q-Chem or ONETEP calculations. As
mentioned earlier, in situ optimization of NGWFs eliminates
the need for such corrections in ONETEP [31]. In the case
of Q-Chem, it was judged that BSSE correction was unnec-
essary for the large def2-QZVPPD atomic orbital basis set as
the monomer basis sets would already be highly saturated.

The binding energies of four non-covalently bound com-
plexes, shown in Fig. 2, and a set of relative energies for con-
formers of cysteine and melatonin, shown in Fig. 3, were used
to test the implementation of meta-GGAs in ONETEP against
Q-Chem. Geometry specifications for all the test cases are
available in the supplementary material. The comparison of
relative energies was necessary, since absolute energies from
all-electron codes are not equivalent to absolute energies from
pseudopotential codes, where the core orbitals are represented
by an effective ionic potential. The results of Q-Chem and
ONETEP calculations using the PKZB and B97M-rV meta-
GGAs are presented in Tables I and II. Results are also re-
ported for the PBE GGA, as a reference. Ideally, the differ-
ence between the codes for self-consistently evaluated meta-
GGA energies should be similar to the difference for GGA
energies, where the additional energy and gradient terms in-
troduced by τ-dependence (section III) are not required.

As mentioned in section III F 2, “B97M-rV” denotes the
B97M-V functional, used in conjunction with the revised
VV10 NLC functional of Ref. 93, rather than the original
VV10 NLC functional [79]. The results reported in the
B97M-rV rows of Tables I and II were obtained using the
B97M-rV functional in both Q-Chem and ONETEP, to avoid
introducing an additional error due to the difference between
original and revised VV10 NLC. The difference between
B97M-V and B97M-rV is typically small, on the order of
0.1 kcal mol−1 (see Table S1 in the supplementary material
for examples).

For all the test cases studied, the difference between
Q-Chem and ONETEP meta-GGA energies for both the
900 eV/8 a0 and 1200 eV/12 a0 settings was of a similar mag-
nitude to the differences seen for PBE, indicating that the im-
plementation of self-consistent meta-GGA evaluation is well-
behaved. For the binding energies, the RMSD for ONETEP
and Q-Chem PBE results is ∼ 0.1 kcal mol−1. Similar RMSDs
are obtained for PKZB and B97M-rV, though B97M-rV actu-
ally produces better agreement than PBE, with both RMSDs
slightly smaller than those obtained for PBE. For the confor-
mational energies, the RMSDs for PBE are slightly larger,
nearer to 0.2 kcal mol−1. The meta-GGAs produce RMSDs
close to 0.3 kcal mol−1 in this case. Differences between
Q-Chem and ONETEP for the melatonin conformer energies
are somewhat larger for PKZB and B97M-rV than for PBE,
with some absolute differences exceeding 0.4 kcal mol−1.
For B97M-rV, the larger Q-Chem/ONETEP difference seen
for the melatonin conformer energies is accompanied by
a comparatively large difference of 0.7 kcal mol−1 between
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ONETEP results with the two cutoff energy/NGWF radius
settings. This may indicate that the melatonin conformer en-
ergies calculated with the lower quality 900 eV/8 a0 basis set
using B97M-rV are not well-converged with respect to the ba-
sis set.

Given the limited size of our dataset and the substantial dif-
ferences between Q-Chem and ONETEP outlined earlier, it
is difficult to identify specific reasons why the RMSDs for
the conformational energies (Table II) are generally somewhat
larger than those for the binding energies (Table I). It is plau-
sible that the different magnitudes of the RMSDs observed for
the binding and conformational energies are simply an artifact
of the systems selected for this comparison—with a larger set
of data points, the differences between the conformational and
binding energies could evaporate. To draw meaningful com-
parisons between the differences in conformational energies
and binding energies calculated using ONETEP and Q-Chem
would require extensive benchmarking and comparison on a
much larger number of data points. In the present work, we
are primarily concerned with demonstrating the numerical va-
lidity of the implementation of meta-GGAs in ONETEP, using
the behavior of the PBE GGA as a reference. A more exten-
sive comparison of the differences in energies calculated using
ONETEP and Q-Chem is therefore beyond the scope of this
work.

In spite of the slightly larger deviations from the Q-Chem
results seen for the conformer energies in Table II, the
ONETEP results retain the same energetic ordering as the
Q-Chem results for all functionals and basis set settings: aa
< be < dw for melatonin, and I < II < III < IV for cysteine
with PBE and PKZB and I < III < II < IV for B97M-rV. In
addition, there is only one binding energy in which ONETEP
predicts binding where Q-Chem does not, C6H6···H2O (I)
with PKZB. In this case, Q-Chem produces a very small
positive binding energy of 0.026 kcal mol−1 while ONETEP
gives small negative binding energies of −0.011 kcal mol−1

and −0.034 kcal mol−1 for the 900 eV/8 a0 and 1200 eV/12 a0
settings, respectively.

The comparisons presented in Tables I and II demonstrate
that the theoretical framework outlined in this paper, as im-
plemented in ONETEP, yields self-consistent meta-GGA en-
ergies in good qualitative and quantitative agreement with a
well-established implementation in Q-Chem. In spite of the
significant theoretical and algorithmic differences between the
two codes, it is possible to produce results which agree to
within a fraction of a kcal mol−1, which is consistent with the
extent of agreement achieved with the well-tested PBE GGA.

B. Linear-scaling performance testing

A key motivation in implementing meta-GGA functionals
within ONETEP was their application to large systems with
many thousands of atoms. When studying systems of this size,
low scaling computational cost with respect to system size is
vital. To evaluate the computational scaling of our implemen-
tation of meta-GGAs in ONETEP, we performed a series of
single point DFT energy calculations on segments of a 13696

FIG. 2. The four systems for which binding energies are presented
in Table I. The geometries for CH3F···CH3F and C6H6···C6H3F3
were obtained from the X40 set of non-covalent interactions of
halogenated molecules [108] while the geometries for the two
C6H6···H2O structures were from the set of hydrocarbon-water in-
teractions presented in Ref. 109 (this is referred to as the HW30 set
in Refs. 19, 59).

atom amyloid fibril. The results are plotted in Fig. 4, and
clearly demonstrate the computational cost for self-consistent
single-point energy calculations using meta-GGAs, as mea-
sured in terms of overall execution time, increases linearly
with the number of atoms, N .

All calculations presented in Fig. 4 were performed using a
development version of ONETEP, running on the Iridis 4 su-
percomputer at the University of Southampton with 128 MPI
processes and 4 OpenMP threads per process. ONETEP was
compiled using the Intel Fortran compiler 16.0 and linked to
the Intel Math Kernel Library 11.3. The kinetic energy cutoff
and NGWF cutoff radii (for all atoms) were 600 eV and 7.0 a0,
respectively. These settings correspond to a medium quality
basis set and while they are sufficient for testing the compu-
tational scaling of our implementation, we would recommend
production calculations are run with a higher quality basis set
(higher kinetic energy cutoff, larger NGWF radii). The cal-
culation was converged until the RMS NGWF gradient was
less than 2.0 × 10−6 a.u. and a density kernel cutoff (Eq. 11)
of 20.0 a0 was used. This is a relatively small kernel cutoff,
suitable for testing purposes, but unlikely to be sufficient for
production calculations, where larger values would be neces-
sary. The structure of the 13696 atom fibril was kindly pro-
vided by the authors of Ref. 113 and smaller segments were
derived from this structure. The atomic coordinates used in all
the amyloid fibril calculations are provided in the supplemen-
tary material.
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The larger prefactor associated with the meta-GGAs ob-
served in Fig. 4 is unsurprising, given the additional opera-
tions required to evaluate the meta-GGA energy and gradient
terms. The meta-GGA code is still a work-in-progress and it
is likely that further optimization will improve the prefactor.

Though it may be possible to decrease the overall compu-
tational cost of meta-GGA calculations, we expect that meta-
GGA calculations will remain somewhat more expensive than
corresponding GGA and LDA calculations, for the simple rea-
son that the evaluation of τ(r) over the simulation cell is in-
herently more costly than the evaluation of n(r). As outlined
in section III A, the evaluation of τ(r) follows the same multi-
step procedure used to evaluate n(r) (described in Ref. 29).
However, the evaluation of τ(r) additionally involves applica-
tion of the gradient operator and a scalar product over Carte-
sian components (Eq. 30). Since the evaluation of the n(r) is
one of the more costly steps in a typical ONETEP calculation,
we would expect the additional cost of evaluating τ(r) to be
a major contributor to the overall greater cost of calculations
using meta-GGAs.

As a rough example of the extent of the additional cost as-
sociated performing a meta-GGA calculation, we can exam-
ine timings reported by ONETEP’s internal timing routines.
For the full 13696 atom fibril, the PKZB single-point energy

II III IV

be dw

FIG. 3. Conformations of melatonin and cysteine, for which relative
energies are presented in Table II. The structures of cysteine (I, II, III,
and IV) were obtained from Ref. 110, forming part of the CYCONF
set, which itself forms part of the GMTKN30 database [111]. The
structures of melatonin (“aa”, “be” and “dw”) were obtained from
Ref. 112 (this is referred to as the Melatonin52 set in Ref. 59). The
conformational energies in Table II are relative to the lowest energy
conformers, “I” and “aa” for cysteine and melatonin, respectively.
In this figure, the higher-energy conformations of each molecule are
superimposed on the lowest energy conformations, to illustrate the
structural differences.

calculation converged after 11 outer loop (NGWF optimiza-
tion) iterations in 7.3 h. The amount of time spent in the key
routines for evaluating the charge density and kinetic energy
density on the simulation cell grid was 0.9 h and 2.0 h, re-
spectively. For comparison, the PBE calculation took 3.4 h to
complete 11 outer loop iterations, with 0.9 h spent inside the
same key charge density evaluation routine. For the PKZB
calculation, the time spent inside routines for evaluating in-
tegrals over the τ-dependent part of the exchange-correlation
potential (Eq. 40) was 1.5 h, which accounts for most of the
remaining 1.9 h difference between for PKZB and PBE calcu-
lations. The last 0.4 h of this difference is difficult to attribute,
because the modifications made to ONETEP to support meta-
GGAs were spread throughout the codebase and thus affect
many individual routines to some extent. Nevertheless, these
timings suggest that the additional cost of evaluating the ki-
netic energy density and new exchange-correlation integrals
(Eq. 40) are significant contributors to the increased overall
cost of calculating meta-GGA energies over GGA energies in
our current implementation.

The data in Fig. 4 suggest that PKZB calculations have a
higher prefactor than B97M-rV, since the gradient of the fitted

TABLE I. Comparison of binding energies, in kcal mol−1, for the
four non-covalently bound systems presented in Fig. 2 calculated
using Q-Chem and ONETEP. Binding energies are presented for
the PBE, and PKZB and B97M-rV exchange-correlation function-
als. Monomer geometries were derived from the complex geometries
(without optimization). The differences between energies calculated
using Q-Chem and ONETEP are listed in the columns labeled ∆.
The def2-QZVPPD [98, 99] basis set was used for all atoms in the
Q-Chem calculations, while two levels of basis set quality were used
in ONETEP, denoted X /Y , where X is the kinetic energy cutoff in
eV and Y is the radius of the NGWF localization sphere in a0. The
RMSD of the Q-Chem and ONETEP energies is reported for each
functional at both the ONETEP basis set levels.

ONETEP

Q-Chem 900 eV/8 a0 ∆ 1200 eV/12 a0 ∆

PBE

CH3F···CH3F −0.925 −0.963 −0.038 −0.957 −0.033
C6H6 ···C6H3F3 0.650 0.856 0.206 0.794 0.144
C6H6 ···H2O (I) −0.922 −0.920 0.002 −0.925 −0.003
C6H6 ···H2O (II) −1.790 −1.706 0.084 −1.775 0.014

RMSD 0.113 0.074

PKZB

CH3F···CH3F −0.528 −0.607 −0.079 −0.619 −0.091
C6H6 ···C6H3F3 1.221 1.014 −0.207 0.956 −0.265
C6H6 ···H2O (I) 0.026 −0.011 −0.038 −0.034 −0.060
C6H6 ···H2O (II) −0.572 −0.716 −0.144 −0.790 −0.217

RMSD 0.133 0.180

B97M-rV

CH3F···CH3F −1.435 −1.496 −0.061 −1.497 −0.062
C6H6 ···C6H3F3 −4.508 −4.358 0.149 −4.443 0.065
C6H6 ···H2O (I) −1.214 −1.246 −0.032 −1.249 −0.034
C6H6 ···H2O (II) −3.283 −3.249 0.034 −3.329 −0.046

RMSD 0.084 0.053
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PKZB line appears larger than the gradient for the B97M-rV
line. At first glance, this is an unexpected result, since one
would expect B97M-rV to be more costly because of the ad-
ditional work associated with rVV10 NLC, not present in
PKZB. In fact, the explanation for this outcome is the slower
convergence of PKZB calculations relative to B97M-rV. For
all amyloid fibril segments, the PKZB calculations required 11
outer loop (NGWF optimization) iterations to achieve conver-
gence (based on the RMS NGWF gradient), while B97M-rV
required 8 or 9 iterations for most segments, as detailed in
Table III. For the 5136 and 8560 atom segments, B97M-rV
required 11 and 12 outer loop iterations to converge, respec-
tively, and these individual calculations were more costly than
the corresponding PKZB calculations. For comparison, the
PBE calculations all required 11 iterations to achieve conver-
gence. The results presented in Table III demonstrate that the
average time per outer loop iteration was consistently lower
for PKZB than for B97M-rV across all segment sizes, sup-
porting the suggestion that the unexpectedly good relative per-
formance of B97M-rV is a consequence of more rapid conver-
gence.

TABLE II. Comparison of conformational energies, in kcal mol−1,
for the conformers of cysteine and melatonin presented in Fig. 3,
calculated using Q-Chem and ONETEP. The conformational ener-
gies are relative to the lowest energy conformer, labeled “I” and
“aa” for cysteine and melatonin, respectively. As in Table I, dif-
ferences between energies calculated using Q-Chem and ONETEP
are listed in the columns labeled ∆ and the RMSDs of the ener-
gies calculated using Q-Chem and ONETEP are provided for each
exchange-correlation functional. The basis sets used for the Q-Chem
and ONETEP calculations are as described for Table I.

ONETEP

Q-Chem 900 eV/8 a0 ∆ 1200 eV/12 a0 ∆

PBE

Cysteine II 0.894 0.910 0.016 1.013 0.119
Cysteine III 3.033 3.261 0.228 3.292 0.259
Cysteine IV 3.161 3.385 0.224 3.339 0.178

Melatonin be 4.487 4.489 0.001 4.521 0.033
Melatonin dw 6.319 6.125 −0.194 6.469 0.151

RMSD 0.167 0.165

PKZB

Cysteine II 0.744 0.745 0.001 0.867 0.123
Cysteine III 1.194 1.565 0.370 1.573 0.379
Cysteine IV 2.102 2.484 0.382 2.212 0.110

Melatonin be 4.853 5.316 0.463 4.972 0.119
Melatonin dw 5.939 6.163 0.224 6.358 0.419

RMSD 0.331 0.268

B97M-rV

Cysteine II 1.481 1.528 0.048 1.699 0.219
Cysteine III 1.313 1.427 0.114 1.664 0.351
Cysteine IV 1.481 1.683 0.202 1.863 0.382

Melatonin be 5.582 5.193 −0.389 5.909 0.327
Melatonin dw 9.424 9.011 −0.414 9.731 0.306

RMSD 0.275 0.322
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FIG. 4. Execution times for single point DFT calculations
on amyloid fibril segments of increasing size, using the PBE
(green squares), PKZB (red triangles) and B97M-rV (blue circles)
exchange-correlation functionals. Linear least squares fits of the data
for each functional are plotted as dotted lines. The computational de-
tails of these calculations are described in section IV B.

PBE PKZB B97M-rV

Natoms Niter t/Niter Niter t/Niter Niter t/Niter

1712 11 191 11 400 9 538
3424 11 305 11 666 8 878
5136 11 451 11 925 11 1116
6848 11 567 11 1191 9 1401
8560 11 695 11 1538 12 1605
10272 11 815 11 1817 9 1984
11984 11 959 11 2168 9 2216
13696 11 1119 11 2379 9 2620

TABLE III. Outer loop iteration execution times, to the nearest sec-
ond, for single point DFT calculations on amyloid fibril segments of
increasing size. For each amyloid fibril segment, the number of outer
loop iterations, Niter, required to achieve convergence and the total
time taken, t, divided by the number of outer loop iterations are given
for the PBE, PKZB and B97M-rV functionals. The number of atoms
in each amyloid fibril segment, Natoms, is listed in the first column.

V. CONCLUSION

In this paper, we described a theoretical framework for self-
consistent evaluation of meta-GGA exchange-correlation en-
ergies within ONETEP’s linear-scaling DFT formalism. In
developing this framework, we used the FDO method to eval-
uate functional derivatives (section II D) with respect to the
density, yielding an orbital-specific exchange-correlation po-
tential. To ensure that our approach maintained linear-scaling
computational cost, we derived expressions for the kinetic en-
ergy density (section III A), τ, and exchange-correlation po-
tential (section III B) in terms of ONETEP’s strictly localized
orbitals (NGWFs, Eq. 12) and density kernel (Eq. 10). We
also derived expressions for the gradient of the τ-dependent
exchange-correlation energy with respect to these localized
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quantities in order that the meta-GGA energy could be
self-consistently optimized using ONETEP’s modified LNV
scheme (sections III D and III E).

The PKZB and B97M-rV meta-GGAs were implemented
in ONETEP, and their behavior within the self-consistent
framework was validated against existing implementations in
the Q-Chem package for a set of binding energies and rel-
ative conformational energies (Tables I and II). In all cases,
the numerical agreement between ONETEP and Q-Chem was
commensurate with the agreement obtained using the well-
tested PBE GGA functional, indicating that the additional gra-
dient and energy terms necessary to evaluate self-consistent
meta-GGA energies (section III) are well-behaved. In addi-
tion, agreement in terms of the ordering of conformer energies
was also observed for both the meta-GGAs tested (Table II).
Given the significant algorithmic and theoretical differences
between the Q-Chem and ONETEP packages, the quantita-
tive and qualitative agreement in meta-GGA energies calcu-
lated using both codes is a strong validation of the theoretical
framework presented in the preceding sections.

As outlined in the section I, a key motivation for this
work was the proposed “Goldilocks zone” occupied by the
meta-GGAs, balancing computational efficiency and numer-
ical accuracy (Fig. 1). Meta-GGAs are particular attractive
for linear-scaling DFT calculations because they have the po-
tential to improve upon the accuracy of LDA and GGA re-
sults, while retaining a computationally efficient semi-local
form (Eq. 15).

In section IV B we confirmed that our implementation of
self-consistent meta-GGA evaluation in ONETEP exhibited
O(N ) scaling, performing calculations on amyloid fibrils con-
sisting of thousands of atoms. The computational cost of
meta-GGA calculations was somewhat greater than for a cor-
responding GGA calculations, as would be expected due to
the additional complexities associated with τ-dependence. In
general, the meta-GGA calculations required approximately
double the amount of time to complete compared to the corre-
sponding GGA calculations, though even for the largest 13696
atom amyloid fibril, the total time was only around 7 h for
both meta-GGA functionals tested. Given the excellent ac-
curacy possible using modern meta-GGA functionals such as
B97M-V (section III F 2), we would suggest that this factor of
two increase in cost may be a price worth paying.

We anticipate that the implementation of self-consistent
meta-GGA evaluation in ONETEP described in this paper
will form the foundation for future applied studies in a va-
riety of contexts. One of our motivations in implementing
support for meta-GGAs in ONETEP was for the study of
biomolecular association. In particular, the excellent perfor-
mance of B97M-V [19, 59] for non-covalent interactions (sec-
tion III F 2) suggested that we might be able to achieve sig-
nificant improvements in accuracy over existing work with
dispersion-corrected GGAs [14, 15] without the need for
costly hybrid functionals. More broadly, meta-GGAs are ca-
pable of improving upon GGAs across a diverse range of
systems and types of bonding (see for example, recent ex-
amples using the nonempirical SCAN functional in Ref. 21).
This suggests that ONETEP users will find utility for meta-

GGAs in a variety of applications where accurate description
of exchange-correlation effects is important.

Of the linear-scaling DFT software packages listed in sec-
tion I, only Quickstep (part of the CP2K suite [114]) cur-
rently supports meta-GGA exchange-correlation functionals,
as mentioned in Ref. 12. Although both ONETEP and Quick-
step use linear-scaling methods in order to apply DFT in large-
scale calculations, the codes differ substantially in their im-
plementation. Perhaps the starkest difference is in the types
of basis function used. Quickstep is based on the Gaussian
and plane wave (GPW) method [115], utilizing a combination
of Gaussian functions and plane waves to construct the Kohn-
Sham orbitals and electron density, while ONETEP employs
self-consistently optimized NGWFs constructed from an un-
derlying psinc basis set (section II). The NGWF/psinc basis
and its in situ optimization presents unique challenges for the
implementation of meta-GGA exchange-correlation function-
als which have been addressed in this paper.

Although linear-scaling DFT packages can differ substan-
tially in design and implementation, they often share com-
mon theoretical foundations. The essential ideas of direct en-
ergy minimization with respect to a separable density matrix
and the use of strictly localized basis functions, as employed
in ONETEP, are a common starting point for linear-scaling
DFT methods (as described in Ref. 6). We therefore hope that
the detailed account of the implementation of meta-GGAs in
ONETEP presented in this paper will facilitate the implemen-
tation of meta-GGAs in other linear-scaling DFT codes which
share this foundation.

All the calculations in this paper were performed us-
ing norm-conserving pseudopotentials, since the current im-
plementation of self-consistent meta-GGA functionality in
ONETEP is restricted to pseudopotentials of this type. An
alternative approach to the problem of representing atomic
cores is the projector augmented wave (PAW) method [116],
in which all-electron orbitals are retained, but are expressed
in terms of smooth pseudofunctions and partial waves rep-
resenting the orbital in the region of the atomic core. The
PAW method has some significant advantages over norm-
conserving pseudopotentials for practical DFT calculations,
notably improved transferability and better convergence with
respect to the kinetic energy cutoff. Support for PAW has re-
cently been implemented in ONETEP [117], allowing LDA
and GGA calculations to be performed with the method. The
next step for the work described in this paper is to extend
this functionality to allow self-consistent meta-GGA evalua-
tion using PAW. This will require the kinetic energy density
to be decomposed into contributions from the smooth pseud-
ofunctions and partial waves, and will also involve additional
terms in the Hamiltonian, as described in Ref. 69.

SUPPLEMENTARY MATERIAL

See the supplementary material for: comparisons of bind-
ing and relative conformer energies calculated using B97M-V
and B97M-rV; structures for all molecules used for calcula-
tions in this paper; and the pseudopotentials used in calcula-
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tions reported in section IV A.
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Appendix A: Gradient of Exc with respect to the density kernel
elements

Eq. 42 may be derived by considering the definition of the
partial derivative in terms of a limit

∂Exc

∂Kηθ
= lim

h→0

Exc[n(r,Kηθ + h)] − Exc[n(r)]
h

(A1)

where the change in Kηθ affects the density, n, of which Exc
is a functional. The density with Kηθ varied by h is

n(r,Kηθ + h)

=
∑

αβ

ϕα (r)Kαβϕ∗β (r) + hϕη (r)ϕ∗θ (r)

= n(r) + h
∂n(r)
∂Kηθ

.

(A2)

The functional derivative of Exc[n] with respect to the density
may be written

∫
dr δExc[n]

δn(r)
ζ (r)

=
d
dϵ

Exc[n + ϵζ]
)))))ϵ=0

= lim
ϵ→0

Exc[n(r) + ϵζ (r)] − Exc[n(r)]
ϵ

(A3)

where ζ (r) is an arbitrary test function (see for example, ap-
pendix A of Ref. 118). Using ∂n(r)/∂Kηθ as test function in
Eq. A3 produces a limit identical to the limit in Eq. A1, i.e.

∫
dr δExc[n]

δn(r)
∂n(r)
∂Kηθ

= lim
ϵ→0

Exc[n(r) + ϵ ∂n(r)
∂Kηθ ] − Exc[n(r)]
ϵ

(A4)

where we have used Eq. A2 to express n(r,Kηθ + h). The
expression for the gradient of Exc with respect to the den-
sity kernel elements may therefore be written in terms of the
exchange-correlation potential (as in Eq. 42), i.e.

∂Exc

∂Kηθ
=

∫
dr δExc

δn(r)
∂n(r)
∂Kηθ

. (A5)

Appendix B: Gradient of Exc with respect to the NGWFs

The following derivation of the exchange-correlation com-
ponent of the gradient of the energy with respect to the NG-
WFs is based on work presented in Ref. 73 (ch. 7), and is
reproduced here for the convenience of interested readers.

Eq. 47 can be derived starting with the chain rule for func-
tional derivatives (see appendix A of Ref. 119):

δExc

δϕ∗α (r)
=

∫
dr′ δExc

δn(r′)
δn(r′)
δϕ∗α (r)

=

∫
dr′Vxc(r′) δn(r′)

δϕ∗α (r)
.

(B1)

The functional derivative of n(r) with respect to the complex-
conjugate of a NGWF can be expanded using the product rule
for functional derivatives (appendix A, Ref. 119):

δn(r′)
δϕ∗α (r)

= ϕµ (r′) δK µν

δϕ∗α (r)
ϕ∗ν (r′)

+ ϕµ (r′)K µν δϕ
∗
ν (r′)

δϕ∗α (r)
.

(B2)

The functional derivative in the second term of Eq. B2 is sim-
ply

δϕ∗ν (r′)
δϕ∗α (r)

= δαν δ(r − r′). (B3)

To evaluate the functional derivative in the first term, the chain
rule can be used again to yield

δK µν

δϕ∗α (r)
=

∫
dr′ δK µν

δSικ
δSικ
δϕ∗α (r)

. (B4)

Since K is a function of S, rather than a functional, δK µν/δSικ

reduces to partial derivative, i.e.

δK µν

δSικ
=
∂K µν

∂Sικ
δ(r − r′) (B5)

where, using the expression for the density kernel in terms of
the auxiliary density kernel (Eq. 14),

∂K µν

∂Sικ
= 3LµιLκν

− 2(LµιLκγSγδLδν + LµγSγδLδιLκν ).
(B6)

The other functional derivative in Eq. B4 is

δSικ
δϕ∗α (r)

= δαι ϕκ (r) (B7)
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and thus,

δK µν

δϕ∗α (r)
=
∂K µν

∂Sακ
ϕκ (r). (B8)

Using Eqs. B2, B3 and B8, Eq. B1 becomes

δExc

δϕ∗α (r)
= ϕκ (r)Vνµ

∂K µν

∂Sακ
+
δExc

δn(r)
ϕκ (r)Kκα (B9)

where Vνµ is as defined in Eq. 49.
Finally, recognizing that

[QV ]κα = Vνµ
∂K µν

∂Sακ
, (B10)

where [QV ]κα is defined in Eq. 48, Eq. B9 becomes

δExc

δϕ∗α (r)
= ϕκ (r)[QV ]κα +

δExc

δn(r)
ϕκ (r)Kκα (B11)

which is the expression provided earlier (Eq. 47).
Note that the preceding derivation was for complex NG-

WFs (where each NGWF and its complex conjugate may be
varied independently). For real NGWFs, Eq. B11 is simply
multiplied by a factor of two, i.e.

δExc

δϕα (r)
= 2ϕκ (r)[QV ]κα + 2

δExc

δn(r)
ϕκ (r)Kκα . (B12)

Appendix C: PKZB energy derivatives

To evaluate the PKZB exchange-correlation potential un-
der the FDO method, we require derivatives of the exchange-
correlation energy density, ϵxc, with respect to the charge
density, n, its gradient, ∇n, and the kinetic energy density,
τ. Equations for the PKZB exchange and correlation energy
were provided in Ref. 22, but the derivatives necessary to eval-
uate the exchange-correlation potential were not, and do not
appear to have been published elsewhere. To facilitate repro-
duction of our work, we present here the equations used to
evaluate the PKZB energy and potential.

1. Exchange

The PKZB exchange energy functional [22, 74] has the
form,

EPKZB
x [n] =

∫
dr ϵunif

x (n)Fx(n,∇n,τ) (C1)

where

ϵunif
x = − 3

4π
(3π2)1/3n4/3 (C2)

is the exchange energy per unit volume of the uniform electron
gas and

Fx(p, q̃) = 1 + κ − κ

1 + x/κ
(C3)

is the enhancement factor, which has a similar form to the
factor used for PBE [40, 43]. PKZB differs from PBE in the
definition of x:

x = c1p + c2q̃2 + c3q̃p + c4p2 (C4)

where

p =
|∇n|2

4(3π2)2/3n8/3 (C5)

q̃ =
3τ

2(3π2)2/3n5/3 −
9
20
− p

12
(C6)

with c1 = 10/81, c2 = 146/2025, c3 = −73/405 and

c4 =

⎡⎢⎢⎢⎢⎣
D +

1
κ

(
10
81

)2⎤⎥⎥⎥⎥⎦
. (C7)

In the preceding equations, κ and D are constants, with values
0.804 and 0.113, as set out in Ref. 22. The exchange energy
for a spin-polarized system may easily be obtained using the
well-known spin-scaling relation [120]:

Ex[n↑,n↓] =
1
2

Ex[2n↑] +
1
2

Ex[2n↓]. (C8)

The derivative of ϵPKZB
x with respect to n is

∂ϵPKZB
x
∂n

=
∂ϵunif

x
∂n

Fx + ϵ
unif
x

∂Fx

∂n
(C9)

where the derivative of ϵunif
x is trivial

∂ϵunif
x
∂n

= − (3π2)1/3

π
n1/3. (C10)

The derivative of the enhancement factor is

∂Fx

∂n
=
∂Fx

∂x
∂x
∂n

(C11)

where

∂Fx

∂x
=

(
1 +

x
κ

)−2
(C12)

and

∂x
∂n
= c1

∂p
∂n
+ 2c2q̃

∂q̃
∂n
+ c3

(
∂q̃
∂n

p + q̃
∂p
∂n

)
+ 2c4p

∂p
∂n
. (C13)

The derivatives of p and q̃ are:

∂p
∂n
= −8

3
|∇n|2

4(3π2)2/3n11/3 , (C14)

∂q̃
∂n
= −5

3
3τ

2(3π2)2/3n8/3 −
1
12

∂p
∂n
. (C15)

The derivative of ϵPKZB
x with respect to ∇n can be obtained

via the derivative with respect to |∇n|, using

∂ϵPKZB
x
∂∇n

=
∂ϵPKZB

x
∂ |∇n|

∇n
|∇n| (C16)
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where

∂ϵPKZB
x

∂ |∇n| = ϵ
unif
x

∂Fx

∂x
∂x

∂ |∇n| . (C17)

The form of ∂x/∂ |∇n| is identical to Eq. C13, but with deriva-
tives with respect to n replaced with derivatives with respect
to |∇n|. These derivatives with respect to |∇n| are

∂p
∂ |∇n| = 2

|∇n|
4(3π2)2/3n8/3 , (C18)

∂q̃
∂ |∇n| = −

1
12

∂p
∂ |∇n| . (C19)

Finally, the derivative of ϵPKZB
x with respect to τ is

∂ϵPKZB
x
∂τ

= ϵunif
x (n)

∂Fx

∂x
∂x
∂τ

(C20)

where, since p does not depend on τ,

∂x
∂τ
= 2c2q̃

∂q̃
∂τ
+ c3

∂q̃
∂τ

p (C21)

and

∂q̃
∂τ
=

3
2(3π2)2/3n5/3 . (C22)

2. Correlation

The PKZB correlation energy functional [22, 74] has the
form

EPKZB
c [n↑,n↓] =

∫
dr

⎧⎪⎪
⎨⎪⎪⎩
ϵPBE

c,↑↓ f1 −
∑

σ=↑,↓
f2,σϵ

PBE
c,σ

⎫⎪⎪
⎬⎪⎪⎭

(C23)

where the PBE correlation energy densities [40, 43] are

ϵPBE
c,↑↓ ≡ ϵPBE

c (n↑,n↓,∇n↑,∇n↓) (C24)

ϵPBE
c,σ ≡ ϵPBE

c (nσ ,0,∇nσ ,0) (C25)

and

f1 = 1 + C

⎛
⎜⎝
τW
↑ + τ

W
↓

τ↑ + τ↓

⎞
⎟⎠

2

(C26)

f2,σ = (1 + C)
(
τW
σ

τσ

)2

, (C27)

with τWσ = (1/8) |∇nσ |2/nσ , the Weizsäcker kinetic energy
density, and ↑, ↓ denoting the two spin components of the
charge density, n, and kinetic energy density, τ.

Clearly, the derivatives of the PKZB correlation energy
density, ϵPKZB

c (the terms inside the curly braces of Eq. C23),
with respect to n and ∇n will involve the corresponding
derivatives of the PBE correlation energy densities (Eqs. C24
and C25). However, since these derivatives can be evaluated

using unmodified code for the PBE functional (as in our im-
plementation of PKZB), we will not present explicit forms for
these here.

Since the spin-unpolarized PKZB derivatives can be ob-
tained from the spin-polarized forms via

∂ϵPKZB
c
∂n

=
∑

σ=↑, ↓

∂ϵPKZB
c
∂nσ

∂nσ
∂n

(C28)

with identical relationships for derivatives with respect to ∇n
and τ, it is only necessary to consider the spin-polarized
forms.

The derivative of ϵPKZB
c with respect to spin-density nσ is

∂ϵPKZB
c
∂nσ

=
∂ϵPBE

c,↑↓
∂nσ

f1 + ϵ
PBE
c,↑↓

∂ f1

∂nσ

−
⎛
⎜⎝
∂ϵPBE

c,σ

∂nσ
f2,σ + ϵ

PBE
c,σ

∂ f2,σ

∂nσ

⎞
⎟⎠ .

(C29)

In addition to the derivatives of the PBE correlation energy
density, derivatives of f1 and f2,σ are required. These are

∂ f1

∂nσ
= −2C

⎛
⎜⎝
τW
↑ + τ

W
↓

τ↑ + τ↓

⎞
⎟⎠
(

τW
σ

τ↑ + τ↓

)
1

nσ
(C30)

∂ f2,σ

∂nσ
= −2(1 + C)

(
τW
σ

τσ

)2 1
nσ
. (C31)

For the correlation part of the PKZB functional we imple-
mented the derivative of ϵPKZB

c with respect to ∇nσ directly,
rather than via ∂ϵPKZB

c /∂ |∇nσ |. This was done in order to
make use of the existing code for the spin-polarized PBE func-
tional in ONETEP, which outputs derivatives with respect to
|∇n|, rather than the spin-components of this, |∇nσ |. Deriva-
tives with respect to the spin components of the gradient of the
density, ∇nσ , can be obtained from derivatives with respect to
the magnitude of the gradient of the total density, |∇n|, using

∂ϵPBE
c

∂∇nσ
=
∂ϵPBE

c
∂ |∇n|

∂ |∇n|
∂∇nσ

=
∂ϵPBE

c
∂ |∇n|

∇n
|∇n| . (C32)

The derivative of ϵPKZB
c with respect to ∇nσ is identical to

Eq. C29, but with ∂nσ replaced with ∂∇nσ . The required
derivatives of f1 and f2,σ with respect to ∇nσ are

∂ f1

∂∇nσ
= 2C

⎛
⎜⎝
τW
↑ + τ

W
↓

τ↑ + τ↓

⎞
⎟⎠
(

1
τ↑ + τ↓

)
∂τW

σ

∂∇nσ
, (C33)

∂ f2,σ

∂∇nσ
= 2(1 + C)

(
τW
σ

τσ

) (
1
τσ

)
∂τW

σ

∂∇nσ
, (C34)

where

∂τW
σ

∂∇nσ
=

1
4
∇nσ
nσ
. (C35)

Finally, the derivative of ϵPKZB
c with respect to τσ is

∂ϵPKZB
c
∂τσ

= ϵPBE
c,↑↓

∂ f1

∂τσ
− ϵPBE

c,σ
∂ f2,σ

∂τσ
(C36)
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which has fewer terms than Eq. C29 because ϵPBE
c is indepen- dent of τσ . The required derivatives of f1 and f2,σ are

∂ f1

∂τσ
= −2C

⎛
⎜⎝
τW
↑ + τ

W
↓

τ↑ + τ↓

⎞
⎟⎠

2 (
1

τ↑ + τ↓

)
, (C37)

∂ f2,σ

∂τσ
= −2(1 + C)

(
τW
σ

τσ

)2 (
1
τσ

)
. (C38)

It is noteworthy that Eq. C37 is independent of σ, and thus
need only be evaluated once for both spin-components.
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