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Random laser imaging of bovine pericardium 
under the uniaxial tensile test 

NATANAEL CUANDO-ESPITIA,1 FRANCISCO SÁNCHEZ-ARÉVALO,2 AND JUAN 

HERNÁNDEZ-CORDERO
2,* 

1Department of Mechanical Engineering, University of California Riverside, Riverside, CA 92521, USA 
2Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, 
Cd. Universitaria, México D.F. 04510, México 
*jhcordero@iim.unam.mx

Abstract: We demonstrate random laser (RL) emission from within bovine pericardium (BP) 
tissue. The interest in BP relies on its wide use as a valve replacement and as a biological 
patch. By imaging the emitting tissue, we show that RL emission is mostly generated inside 
the collagen fibers. Multimode RL operation is thus achieved within the volume of each fiber. 
Image analysis reveals that the intensity of the RL emission from individual fibers is 
dependent on the relative orientation to the stress axis. Our results suggest that RL intensity 
may be used as an indicator of stress concentration in individual fibers. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (170.0170) Medical optics and biotechnology; (170.0110) Imaging systems; (170.6935) Tissue 
characterization. 
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1. Introduction 

Heart valve disease is a common condition affecting about 5 million people each year only in 
the US [1] and scales up to 13 million in European countries [2]. Due to its good performance 
and hemodynamics, biological prostheses are preferred over their mechanical counterparts for 
valve replacement in adults between 50 and 69 years [3]. One of the reasons for this limited 
age range is the high variability in performance of biological prostheses after 10 years of 
implantation that eventually leads to failure [4]. In general, valve failure is related to the 
degradation of the collagen network and thus deterioration of the mechanical properties of the 
valve [4]. Recent efforts in tissue engineering are focused on producing valves and organ 
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patches based on 3D printed technology [5]. However, a better understanding between the 
mechanical properties and the native structure of a tissue is still needed [6]. 

Collagen represents the building block of most connective tissue; it provides fundamental 
structural support and confers adequate mechanical properties to collagen-based tissues. This 
is particularly important for biological heart valve replacements because they are based on 
bovine pericardium (BP), a tissue mainly formed by collagen. Variations in the structural 
order and orientation of collagen lead to tissues with very different mechanical properties 
such as ligaments, skin, or corneal layers [7, 8]. In order to improve our understanding of a 
complex material such as collagen-based tissue, we need to know how the collagen structure 
confers the mechanical properties to the tissue. Amid the methods used for mechanical 
characterization, optical techniques provide non-contact means to determine features such as 
the preferred directions of collagen fibers under different loading conditions [9, 10]. This is 
relevant information for bioprosthetic heart valves because the mechanical response of the 
tissue used in the leaflets greatly depends on the fiber concentration, characteristics, and 
orientation [7,8]. Hence, advances in optical techniques, capable to resolve fiber attributes 
within the tissue are of great interest for these purposes. 

Recently, we explored the use of Mueller matrix imaging (MMI), enhanced backscattering 
(EBS) and digital image correlation (DIC) to assess the mechanical behavior of BP [11]. The 
combination of these techniques yielded interesting results providing information about 
structural changes in the tissue during mechanical tests. Other approaches used for elucidating 
the relationship between the mechanical properties of collagen-based tissue and the 
orientation and concentration of its collagen network include the use of confocal microscopy 
coupled with biaxial loading [12], and the use of an ultra-stable optical trap with high-
precision and high-bandwidth position detector [13]. Although all these techniques have 
showed promising results for structural analysis, they involve high-end facilities and 
elaborated experimental setups. 

Random laser (RL) action is another promising technique with potential use in the 
characterization of complex materials. In short, RL action is the result from stimulated 
emission in which the feedback mechanism is provided by an ensemble of scatterers with 
random positions. RL action has been achieved using laser powders [14], liquid crystals [15], 
dielectric particles [16] and biological tissue [17, 18], to name a few. The idea behind using 
RL action for biological tissue characterization is supported by the fact that, according to RL 
theory, even small changes in the scattering ensemble may lead to dramatic changes in the 
characteristics of the RL emission [19, 20]. In other words, RL allows for mapping the 
changes in the microstructure to the spectral features (e.g., wavelength and laser threshold) of 
the laser emission. Here, we report on a different approach for the application of RL action 
obtained from BP impregnated with a laser dye. More specifically and in contrast with our 
previous work [21], we demonstrate spatially resolved RL intensity mapping (i.e., RL 
imaging) of collagen-based tissue simply by filtering the residual pump energy. Moreover, we 
show that along with image analysis of the RL emission, it is possible to obtain information 
regarding the longitudinal stress from individual collagen fibers during a tensile test. 
Furthermore, using DIC analysis, we have identified that the highest intensities in RL 
emission are related to the main directions of the applied force. 

2. Materials and methods

2.1 Experimental setup 

A mechanical testing device designed to perform tensile tests on thin and soft materials was 
used to stretch the bovine pericardium (BP) samples [21]. This mechanical “minitester” 
further incorporates optical elements to achieve RL emission from BP samples impregnated 
with a laser dye and to acquire information of the emitted laser light. As depicted 
schematically in Fig. 1, a Nd:YAG pulsed laser (New wave research, CA, USA) at 532 nm 
(20mJ max energy per pulse, 20Hz max frequency) was used to irradiate the tissue samples 
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glycerin-Rhodamine 6G (R6G) solution until the experiments were performed. The optimum 
concentration of R6G in glycerin for these tests was determined in a separate experiment and 
was fixed at 0.8 g/l for all the experiments. Additionally, small slices of tissue were taken 
during the sample preparation processes. These were dehydrated in ethanol solutions, air 
dried at 60°C and then analyzed with a JEOL JSM-7600F scanning electron microscope 
(SEM). The SEM images shown in Fig. 2 depict a disordered fiber structure showing that 
collagen fibers maintain its naturally random disposition over the sample preparation process. 

 

Fig. 2. SEM images of the tissue at different stages of the preparation protocol. a) Native 
pericardium; b) pericardium after fixation with GA; c) pericardium after glycerin immersion; 
d) image of a dog bone shape pericardium sample after fixation and immersion in the glycerin-
R6G solution. 

2.3 DIC analysis 

Digital image correlation is a non-contact technique typically applied on full images to 
measure displacement/strain vector fields (DVFs) on the surface of materials. With the series 
of acquired images during the mechanical tests, the DVFs uk (xk, yk) and vk (xk, yk) between 
pair of images were calculated using the Willert and Gharib algorithm [24]. Here u and v 
represent the displacement vectors in the x and y directions of the object or region of interest 
[25, 26]. The position coordinates in each image were represented by x and y and the sub 
index k indicated the corresponding object/region of interest, which is defined as an area of 64 
× 64 pixels. Hence, a full image was divided in subimages (64 × 64 pixels) used to perform 
the DIC analysis yielding the DVF throughout the full image for a given loading state. The in-
plane strains in the sample were evaluated by minimizing the errors of a six parameters linear 
model (typically used in linear elasticity theory) and previously used in other materials, 
including bovine pericardium [25, 26]. This minimization yields the values for the normal 
strain in the x and y directions (εx and εy), translation, shear strain (εxy), and in-plane rotation 
within the analyzed region of the sample [26]. 

3. Results and discussion 

As customarily observed in RL experiments, spectral narrowing in the emission from the BP 
samples was observed as the pump energy was increased. After a given pump energy (~5 mJ), 
the full-width at half-maximum (FWHM) of the emission decreased to values of 5~7nm. 
Furthermore, for pump higher pump energies (up to 8 mJ), the output energy increased in a 

a b

c d

1μm1μm

1μm
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pump energy for these images was 8 mJ, well above the threshold value (~5mJ, see inset of 
Fig. 3). For direct comparison with the intensity maps, the displacement vector fields obtained 
by DIC for each deformation condition are shown as white arrows in the left column. Upon 
comparing both columns, it can be seen that the high RL intensity zones match most of the 
superficial fibers observed in the images (shown in Fig. 4 with black ovals). This indicates 
that most of the RL emission originates from within individual fibers, and not from the 
sections with higher fiber density in the sample. This was somewhat unexpected given that 
RL emission relies on a high concentration of scatterers: intuitively, one would expect 
increased scattering effects within the cross-linked sites for collagen treated tissue. However, 
our experimental results suggest that individual fibers can sustain RL emission. Because they 
are made of microfibers and fibrils in a complex and disordered arrangement [7, 9], collagen 
fibers may provide multiple scattering effects needed to achieve RL action. Moreover, RL 
action can be sustained inside individual collagen fibers and several volumetric modes may 
arise in each collagen fiber. A rough estimation on the number of modes in a collagen fiber 
can be computed using the Rayleigh–Jeans formula [28]: 

 
4

4
peak

V
N FWHMπ

λ
=  (1) 

In Eq. (1), FWHM is the spectral width of the emission, λpeak is the central wavelength of 
the emission, and V is the pumped volume of the gain medium. Considering a single pumped 
fiber with a diameter of 20 μm and 10 mm long, which are representative dimensions of the 
fibers shown in Fig. 4, and taking into account the spectral features of the RL emission (see 
Fig. 3), the number of modes would be in the order of 1 × 106. All of these modes, along with 
those from the rest of the pumped collagen fibers, would contribute to the combined laser 
emission registered in our experiments. The mode spacing within the spectral width of the RL 
emission (~10 nm) would therefore be extremely small, making impossible the identification 
of each lasing mode with the current experimental setup. 

The intensity map of the first row in Fig. 4 shows that initially, only a few spots of high 
RL intensity (red-orange colored) are obtained from the sample. As the stress increased 
during the test, more spots with high intensity were observed. Given that the pump energy 
was held constant, this behavior suggests that the RL becomes more efficient with the applied 
stress. During elongation, the fibers rearrange to minimize the mechanical energy induced by 
the stress condition [7]. This in turn generates zones with an increased concentration of 
scatterers, thus locally increasing the RL intensity. It is evident from the figures that some of 
the imaged fibers experience an increase in RL intensity. In general, the images obtained 
under increased elongation conditions showed higher laser intensity over the imaged area. 

A relationship between the RL and DIC analysis can be made upon comparing the 
displacement vector field (DVF) with the RL imaging. For an ER = 0.22 (Fig. 4, row II), DIC 
analysis yields a well-defined hyperbolic structure. This is a characteristic feature of a fiber 
ensemble undergoing uniaxial tension [25, 26]. The fiber with the highest RL intensity seems 
to align along the direction of the tension axis of the hyperbolic pattern. For the maximum 
stress induced during the test (ER = 0.33, Fig. 4, row III), the fiber exhibiting highest 
intensity emission matches not only the direction, but also the position of the vertical 
component of the DVF. Notice however that fiber populations with specific orientations will 
be realigned differently when undergoing tensile tests [9]. Hence, different behaviors for the 
RL emission can be expected for fibers with different alignments. 
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Fig. 4. Left column: white light images of the tissue samples. Right column: intensity maps of 
the RL emission and their corresponding DVF. The color scale was normalized to the 
maximum intensity value found during the test. Each row corresponds to a different stress 
condition (I: ER = 0.001, 0.2MPa; II: ER = 0.223, 4.7MPa; III: ER = 0.330, 7.3MPa). Black 
ovals show some of the superficial fibers matching the high intensity zones in the RL intensity 
mapping. The black arrow in the right indicates the direction of the applied load. 

To illustrate the effect of fiber orientation during the tensile test we selected another 
sample with a different fiber distribution. Specifically, the RL intensity of two fibers within 
the field of view was registered during the test. We selected the fibers that showed the most 
orthogonal orientations with respect to each other within the image (see Fig. 5(a)). These 
were chosen because they represent cases in which the fiber is either parallel or perpendicular 
to the applied stress. By tracking the position of these fibers individually, the corresponding 
RL intensity was analyzed for each elongation condition. Notice that because of the different 
orientations of each fiber, elongation will induce different local stresses on each of them 

Initially, one of the tracked fibers had an almost horizontal orientation (labeled as HF in 
Fig. 5(a)) with respect of the loading direction, and is thus oriented perpendicularly to the 
applied stress. In contrast, the other fiber selected for tracking had initially an oblique 
orientation (about 45° and labeled OF in Fig. 5(a)). While this fiber gradually realigned along 
the direction of the applied stress axis during elongation (see Fig. 5(c)), the orthogonal fiber 
showed less variation in its orientation (see Fig. 5(b)). Notice also that while for fiber OF the 
RL intensity increases with elongation, the corresponding intensity for the HF fiber decreases 
(see insets in Fig. 5(b) and Fig. 5(c)). This trend is further verified by plotting the variations 
in mean pixel intensity during elongation for each fiber (see plots in Fig. 5(b) and Fig. 5(c)). 
The difference in mean intensity pixel (ΔMean pixel intensity) shown in the plots of Fig. 5 is 
defined as (Ī0-Īn) × 100 where Ī0 correspond to the mean intensity per pixel of a fiber at the 
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lowest stress induced during the test and Īn correspond to the mean intensity per pixel of the 
fiber for a given elongation ratio during the test. Clearly, the stress conditions and hence the 
RL emission are both dependent on the orientation of the fibers. 

Fig. 5. Fiber tracking during the mechanical test. a) intensity map of the RL emission for the 
initial condition of the test. The ovals indicate the two fibers selected for tracking during the 
test (labeled HF and OF) and the black arrow indicate the direction of the applied load. b) and 
c) difference in mean pixel intensity obtained from the intensity maps and the longitudinal
stress as function of the ER for each selected fiber. Some of the corresponding intensity maps
of the fibers are shown as insets above the plots. d) longitudinal stress as a function of
difference in mean intensity pixel for the two selected fibers. The black solid line corresponds
to a least square fitting. 

A first approximation to correlate the RL intensity and the stress induced in the individual 
fibers may be derived from the in-plane strain equations from the generalized Hooke’s law. 
Hence, the longitudinal and transverse strains (εl, εt) for each fiber can be obtained as: 

1
( )

1
( )

l l t

t t l

E

E

ε σ υσ

ε σ υσ

= −

= −
(2)

These expressions are only valid under infinitesimal strain conditions and thus may be 
used for pair of images acquired under small deformation conditions [29]. Both strains can be 
calculated from the white light images by measuring changes in length and width of the 
selected fibers. The Young modulus E was considered constant during the test and was 
calculated from the stress-elongation ratio curve as in [21]. The Poisson ratio ν was assumed 
to be equal to 0.5 as commonly done for elastomeric materials. Under these considerations we 
can obtain the stresses along the longitudinal and transverse axes (σl, σt) from Eq. (2). The 
longitudinal stress as a function of the elongation ratio for each fiber is shown in Fig. 5(b) and 
Fig. 5(c), along with the corresponding RL intensity. As the elongation increases, the 
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longitudinal stress for the OF fiber increases accordingly, while the longitudinal stress for the 
HF fiber decreases. Our results indicate that these perpendicular fibers experience opposite 
stresses (tension and compression), in agreement with the Poisson ratio assumed for the 
calculations and with previous reports for similar tissues [9, 25]. 

Remarkably, the trend of the curves shown in Fig. 5(b) and Fig. 5(c) is similar, suggesting 
that the RL intensity may correlate to the induced stresses. This was verified upon plotting the 
longitudinal stress for the selected fibers calculated from Eq. (2) against the difference in 
mean intensity pixel obtained from the RL emission (see Fig. 5(d)). A least square fitting 
yields a correlation parameter R2 = 0.87. Notice that the plot represents both, the tension and 
compression experienced by the OF and HF fibers, respectively. Notice also that the only 
difference between these fibers is their relative orientation with respect to the stress axis, and 
yet the RL intensity variation is very different. A possible scenario explaining this 
optomechanical behavior is a local change in the scatterer density inside the fibers, induced 
by a tensional-compressional stress. When a fiber is subjected to tensional stress, its inner 
structure tends to pile into smaller diameters [7]; this may lead to an increase in the number of 
scatterers per unit volume thereby increasing the scattering force of the random medium [22]. 
Conversely, the compressive stress may decrease the scattering force of an individual fiber 
owing to an increase in fiber diameters. Even though the small change in the microstructure 
of the collagen fibers is not detectable by white light imaging or conventional mechanical 
tests, the RL effect seems to be sensitive to such changes because an adequate variation of 
scatterer density can lead to drastic changes in the amount of RL emission. Although the 
nature of the feedback mechanisms in RL is still controversial, it has been shown that the 
amount of scattering in a disordered medium can determine their regime of operation [30]. In 
this sense, from the perspective of the mechanical tests performed in our experiments, the RL 
intensity and the stress applied to individual fibers seem to be related by the modification of 
the inner structure of the fibers. 

The correlation between the RL intensity and the individual stress applied on each fiber 
may represent a simpler means to understand collagen hierarchy. Recently, nonlinear optical 
effects such as multiphoton photon absorption [31] and second harmonic generation [32] have 
improved the assessment of fiber structure in collagen-based tissues under mechanical loads. 
Similarly, birefringence measurements by means of polarized second harmonic generation (p-
SHG) have provided new insights on the orientation of the collagen fibers of tendon tissue 
under mechanical stretching [33]. As demonstrated with p-SHG, the imposed strain within the 
tissue tends to align the collagen fibers increasing the anisotropy, which in turns translates in 
an increase in birefringence. Our results are in good agreement with these findings because 
RL intensity depends on the density of scatterers per unit of volume (in our case fibrils per 
unit of volume). Since fibril alignment will vary under different loading conditions, it is 
reasonable to expect that the RL intensity will vary accordingly. In particular, our results 
suggest that fiber elongation leads to an increase scattering, whereas fiber compression will 
decrease it. Studies about deformation of collagen-based tissues at the nano-scale have been 
typically based on x-ray spectroscopy [7] and techniques such as wide-angle x-ray diffraction 
(WAXD) [34] and small angle x-ray scattering (SAXS) [35]. These approaches require 
elaborated setups and expensive facilities such as a synchrotron source, an enclosed fluid 
chamber with transparent windows and low noise x-ray detectors. Compared to WAXD and 
SAXS, RL emission imaging would allow probing the fibril hierarchy in a simple and cost-
effective manner. Recent advances on hyperspectral imaging may further increase the reach 
of RL intensity analysis during mechanical tests [36]. 

4. Conclusions 

We have demonstrated the application of laser emission obtained from BP tissue to obtain 
spatially resolved RL intensity mapping. This RL imaging technique offers a novel means to 
provide information of individual fibers within collagen-based tissue samples. In particular, 
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the variations on the RL intensity from each fiber can be correlated to the longitudinal 
stresses experienced by the fibers under uniaxial tension tests. For our experimental 
conditions, we were able to identify that RL emission is generated from within the collagen 
fibers of the tissue. Some of the implications of this statement are that for each collagen fiber 
pumped, a myriad of modes can be excited within the fiber. We believe that the information 
obtained with this technique may represent a simple means to obtain information about the 
structural features of complex materials such as collagen-based tissue. 
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