
UCLA
UCLA Electronic Theses and Dissertations

Title
Stochastic Optimization and Subgraph Search

Permalink
https://escholarship.org/uc/item/57q7g25v

Author
Moorman, Jacob

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/57q7g25v
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Stochastic Optimization and Subgraph Search

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Jacob Moorman

2021

© Copyright by

Jacob Moorman

2021

ABSTRACT OF THE DISSERTATION

Stochastic Optimization and Subgraph Search

by

Jacob Moorman

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021

Professor Andrea Bertozzi, Co-Chair

Professor Deanna M. Hunter, Co-Chair

In this thesis, we study randomized algorithms for numerical linear algebra and pattern

matching algorithms for multiplex networks. We first analyze the convergence of two classes

of randomized iterative methods for solving large linear systems of equations. In particular,

we analyze sketch-and-project methods with adaptive sampling strategies and parallelized

randomized Kaczmarz methods with averaging. We observe empirically that the convergence

of these methods reflects the worst-case convergence theory. We later discuss subgraph

matching and various related problems including inexact search. We introduce filtering

algorithms that are specialized to multiplex networks. In both the exact and inexact settings,

we aim to understand the entire solution space rather than simply finding one match for a

given pattern. We observe that there are often a combinatorially large number of matches

depending on the amount of symmetry in the pattern and data.

ii

The dissertation of Jacob Moorman is approved.

Luminita Aura Vese

Mason Alexander Porter

Deanna M. Hunter, Committee Co-Chair

Andrea Bertozzi, Committee Co-Chair

University of California, Los Angeles

2021

iii

TABLE OF CONTENTS

1 Introduction . 1

2 Adaptive Sketch-and-Project Methods . 3

2.1 Introduction . 3

2.1.1 Randomized Kacmarz . 4

2.1.2 Coordinate descent . 4

2.1.3 Sketch-and-project methods . 5

2.1.4 Sampling of indices . 6

2.1.5 Choosing the sketches and preconditioning 7

2.1.6 Additional related works . 8

2.2 Contributions . 8

2.2.1 Key quantity: Sketched loss . 8

2.2.2 Max-distance rule . 9

2.2.3 The capped adaptive rule . 9

2.2.4 The proportional adaptive rule . 10

2.2.5 Efficient implementations . 10

2.2.6 Consequences and future work . 10

2.3 Notation . 11

2.3.1 Organization . 12

2.4 Reformulation as importance sampling for SGD 12

2.5 Geometric viewpoint and motivational analysis 14

2.6 Selection rules . 18

iv

2.6.1 Fixed sampling . 18

2.6.2 Adaptive probabilities . 18

2.6.3 Max-distance rule . 19

2.7 Convergence . 20

2.7.1 Important spectral constants . 21

2.7.2 Sampling from a fixed distribution 24

2.7.3 Max-distance selection . 24

2.7.4 The proportional adaptive rule . 27

2.7.5 Capped adaptive sampling . 29

2.8 Implementation tricks and computational complexity 33

2.9 Summary of consequences for special cases 34

2.9.1 Adaptive Kaczmarz . 34

2.9.2 Adaptive coordinate descent . 35

2.10 Experiments . 36

2.10.1 Error per iteration . 38

2.10.2 Error versus approximate flops required 40

2.10.3 Spectral constant estimates . 40

2.11 Conclusions . 43

2.A Implementation tricks and computational complexity, cont. 44

2.A.1 Per-iteration cost . 45

2.A.2 Cost of sampling indices . 47

2.A.3 Sampling strategy specific costs . 48

2.B Auxiliary lemma . 52

v

3 Randomized Kaczmarz with Averaging . 53

3.1 Introduction . 53

3.1.1 Randomized Kaczmarz . 54

3.1.2 Randomized Kaczmarz with Averaging 55

3.1.3 Contributions . 55

3.1.4 Organization . 56

3.1.5 Related Work . 56

3.2 Convergence of RK with Averaging . 58

3.2.1 Coupling of Weights and Probabilities 60

3.2.2 General Weights . 61

3.3 Uniform Weights . 61

3.4 Consistent Systems . 63

3.5 Suggested Relaxation Parameter α for Consistent Systems With Uniform Weights 63

3.6 Experiments . 64

3.6.1 Procedure . 64

3.6.2 The Effect of the Number of Threads 65

3.6.3 The Effect of the Relaxation Parameter α 65

3.7 Conclusion . 69

3.A Proof of Lemma 3.2.1 . 70

3.B Proof of Theorem 3.2.2 . 70

3.C Proof of Theorem 3.5.1 . 72

3.D Corollary Proofs . 75

3.D.1 Proof of Corollary 1 . 75

3.D.2 Proof of Corollary 2 . 76

vi

4 Subgraph Matching on Multiplex Networks 77

4.1 Introduction . 77

4.1.1 Problem Statements . 79

4.1.2 Related Work . 83

4.1.3 Contributions . 87

4.2 Filtering . 88

4.2.1 Node Label Filter . 89

4.2.2 Node-level Statistics Filter . 89

4.2.3 Topology Filter . 91

4.2.4 Repeated-Sets Filter . 93

4.2.5 Neighborhood Filter . 94

4.2.6 Elimination Filter . 96

4.3 Solving the Problems . 100

4.3.1 Isomorphism Counting . 101

4.3.2 Validation . 103

4.4 Experiments . 104

4.4.1 Sudoku . 104

4.4.2 Multiplex Erdős–Rényi . 107

4.4.3 Crosswords . 109

4.4.4 Real-World Examples . 111

4.4.5 Adversarial Activity . 117

4.5 Conclusion . 125

5 Inexact Attributed Subgraph Matching . 129

vii

5.1 Introduction . 129

5.1.1 Related Work . 130

5.1.2 Contributions . 130

5.2 Algorithm . 130

5.2.1 Graph Edit Distance Based Cost Metric 131

5.2.2 Cost Bounds . 132

5.2.3 Constrained Cost Bounds . 133

5.2.4 Search for Optimal Solutions . 135

5.3 Experiments . 136

5.3.1 Analysis of Solution Space . 139

5.4 Conclusion . 143

5.A Varying Edgewise Weights . 144

5.B Restricting Candidates During Minimization 144

6 Conclusion . 146

References . 148

viii

LIST OF FIGURES

2.1 The geometric interpretation of Equation (2.5), as the projection of xk onto

an affine space that contains x?. The distance traveled is given by fi(x
k) =

‖xk+1 − xk‖2
B. 15

2.2 A comparison between different selection strategies for randomized Kaczmarz and

coordinate descent methods on matrices with i.i.d. standard Gaussian entries.

Squared error norms were averaged over 50 trials. The shaded areas indicate the

middle 95% performance. Subplots on the left show convergence for underdeter-

mined systems, while those on the right show the convergence for overdetermined

systems. 39

2.3 A comparison between different selection strategies for randomized Kaczmarz and

coordinate descent methods on matrices with i.i.d. standard Gaussian entries.

Squared error norms were averaged over 50 trials and are plotted against the

approximate flops aggregated over the computations that occur at each iteration.

The shaded areas indicate the middle 95% performance. Subplots on the left

show convergence for underdetermined systems, while those on the right show the

convergence for overdetermined systems. 41

2.4 A comparison between different selection strategies for randomized Kaczmarz and

coordinate descent methods on the Ash958 matrix. Squared error norms were

averaged over 50 trials and plotted against both the iteration and the approximate

flops required. The shaded areas indicate the middle 95% performance. 42

2.5 A comparison between different selection strategies for randomized Kaczmarz and

coordinate descent on the GEMAT1 matrix. Squared error norms were averaged

over 50 trials and plotted against both the iteration and the approximate flops

required. The shaded areas indicate the middle 95% performance. 43

ix

3.1 The effect of the number of threads on the average squared error norm vs iteration

for Algorithm 6 applied to inconsistent systems. The weights wi and probabilities

pi in a and b satisfy Assumption 2, while in c they do not. Shaded areas indicate

the middle 90% performance, measured over 100 trials. 66

3.2 The effect of the relaxation parameter α on the average squared error norm vs

iteration for Algorithm 6 applied to inconsistent systems. 67

3.3 Squared error norm after 50 iterations of Algorithm 6 on consistent systems for

various choices of relaxation parameter α. Shaded areas indicate the middle 90%

performance, measured over 100 trials. Diamond markers are estimates of the

optimal alpha using Theorem 3.5.1, and circle markers are estimates using the

formula from Richtárik and Takáč [RT20] . 68

3.4 Squared error norm after 50 iterations of Algorithm 6 on consistent systems

for various choices of relaxation parameter α. Uniform weights wi = α and

probabilities proportional to squared row norms pi = ‖Ai‖2
‖A‖2F

. 69

4.1 In the above networks, the shapes of the nodes corresponds to their labels (circle

or square) and the patterns of the edges correspond to their channel (solid green

or dashed blue). Given the template and world networks above, there are four

signals consisting of the subgraphs of the world induced by {1,2,6}, {1,6,8},

{4,5,7}, and {7,9,10}. 81

4.2 In the network shown, there is only one valid signal for the template: 1 for A, 2

for B, and 4 for C. 91

4.3 An example template and world for which the neighborhood filter plays a role in

eliminating candidates. 98

4.4 Subgraph matching problems consisting of Graph A, B and C. 99

4.5 Sudoku grid with initial clues. 105

x

4.6 Solving Sudoku puzzles as special case of a multiplex subgraph isomorphism

problem using the 9×9 and 9×9×3 representations. Scatter plot of solution times

(seconds) on the Sudoku puzzles from Peter Norvig’s GitHub [Nora], including

those from Project Euler problem 96 [Pro]. A black line is drawn where the

representations take an equal amount of time to aid in comparison. Mean solution

time for the 9 × 9 representation is 8.33 seconds on the 50 easy puzzles, 116.7

seconds on the top 95 puzzles, and 43.4 seconds on the hardest puzzles. Mean

solution time for the 9 × 9 × 3 representation is 11.24 seconds on the 50 easy

puzzles, 95.4 seconds on the top 95 puzzles, and 179.4 seconds on the hardest

puzzles. 108

4.7 Mean number of search iterations (recursive calls to IsoCount) taken by Al-

gorithm 13 to solve the SIP and SICP with one, two, and three channels as a

function of world size. Results are averaged over 500 trials. 109

4.8 An example of filling a crossword grid using a subgraph isomorphism algorithm. 111

4.9 Candidate count for each node in the Great Britain Transportation template after

applying the node-level statistics, topology, repeated-sets and elimination filters;

without node label filtering. 112

4.10 Candidate count for each node in the Great Britain Transportation template after

applying the node label filter with a 3 km radius in addition to the node-level

statistics, topology, repeated-sets, and elimination filters. 113

4.11 All candidates for the Great Britain Transportation dataset: blue nodes represent

template nodes and red nodes represent candidates for the SIP. 114

4.12 Candidate count for each node in the Higgs Twitter template after applying the

node-level statistics, topology, and repeated-sets filters. 115

4.13 Candidate count for each node in the commercial airline template after applying

the node-level statistics, topology and repeated-sets filters. 117

xi

4.14 (Top): The number of candidates for each template node after different levels

of filtering are applied to PNNL Version 6 B1-S1. (Bottom): The number of

template nodes for which each world node is a candidate.. Note that the Validation

histogram perfectly overlaps the Elimination histogram and the Neighborhood

histogram perfectly overlaps the Topology histogram. 120

4.15 Candidate count for each node in the PNNL Version 6 B1-S1 template after

applying the node-level statistics, topology, and repeated-sets filters, with and

without additionally applying the elimination filter. 121

4.16 Candidate count for each node in the PNNL Real World template after solving

the MCSP using validation. Edge colors correspond to their channels. 122

4.17 (Top): The number of candidates for each template node after different levels of

filtering are applied to PNNL Real World. (Bottom): The number of template

nodes for which each world node is a candidate. Note that the Validation histogram

almost perfectly overlaps the Elimination histogram. 123

4.18 Candidate count for each node in the GORDIAN Version 7 Batch-1 template after

applying the node-level statistics, topology, repeated-sets, and elimination filters. 124

4.19 (Top): The number of candidates for each template node after different levels

of filtering are applied to IvySys Version 7. (Bottom): The number of template

nodes for which each world node is a candidate. 126

4.20 Candidate count for each node in the IvySys Version 11 template after applying

the node-level statistics, topology, repeated-sets, and elimination filters. The

colors of the edges correspond to their different channels. 127

5.1 Structural Equivalence: Nodes C and D are structurally equivalent and F is

equivalent to neither. C, D, and F have the same node label and same set of

neighbors. However, the edge connecting F to E has a different label than the

edges connecting C and D to E, so F is not equivalent to C or D. 139

xii

5.2 Template graph and world subgraph for Problem 1B. Colored groups of nodes in

the world graph are candidates for nodes of the same color in the template graph.

The long arrows and shapes denote corresponding groupings. 141

xiii

LIST OF TABLES

2.1 Summary of convergence guarantees of Section 2.7. 33

2.2 Summary of convergence guarantees and costs of various sampling strategies

for the randomized Kaczmarz method. Here, γ = 1/maxi=1,...,m

∑m
j=1,j 6=i pi as

defined in Equation (2.37), P = Diag (p1, . . . , pm) is a matrix of arbitrary fixed

probabilities, and Ā := D−1
RKA, with DRK := Diag (‖A1:‖2, . . . , ‖Am:‖2). Only

leading-order flop counts are reported. The number of sketches is q, the sketch size

is τ and the number of rows and columns in the matrix A are m and n respectively. 35

2.3 Summary of convergence guarantees and costs of various sampling strategies

for adaptive coordinate descent. Here, γ = 1/maxi=1,...,m

∑n
j=1,j 6=i pi as defined

in Equation (2.37), P = Diag (p1, . . . , pn) is a matrix of arbitrary fixed probabilities,

and Ã = AD−1
CD, with DCD = Diag (‖A:1‖2, . . . , ‖A:n‖2). Only flop counts of

leading-order are reported. 37

2.4 Minimal expected step-size factor for each sampling method applied to matrices

of i.i.d. Gaussian entries. 44

2.5 Summary of the costs of Algorithm 5 excluding costs that are specific to the

sampling method. The number of sketches is q, the sketch size is τ and the number

of columns in the matrix A is n. 48

2.6 Precomputational costs for adaptive randomized Kaczmarz and adaptive coordi-

nate descent. The computational costs assume the previous elements have been

computed and give the cost of computing the value for all indices. 49

xiv

2.7 Rule-specific per-iteration costs of Algorithm 5. Only leading-order flop counts

are reported. The non-sampling flops are those that are independent of the

specific adaptive sampling method used and are those that correspond to the steps

indicated in Table 2.5a. The extra flops for sampling are those that are required

to calculate the adaptive sampling probabilities pk at each iteration. The number

of sketches is q, the sketch size is τ and the number of columns in the matrix A is n. 50

2.8 Rule-specific per-iteration costs of Algorithm 5. Only leading-order flop counts

are reported. The number of sketches is q, the sketch size is τ and the number of

columns in the matrix A is n. 51

3.1 Calculated optimal α? for matrix A used in Figure 3.3a. 68

4.1 A summary of the various problems defined in Subsection 4.1.1, in increasing

order of computation cost. 80

4.2 Solutions to SMP and MCSP corresponding to the template and world shown in

Figure 4.1. 81

4.3 In/out-degree for nodes in the template and world shown in Figure 4.2 91

4.4 Candidates per template node for the problem shown in Figure 4.2 after various

filters have been applied. 92

4.5 Candidates per template node for the problem shown in Figure 4.3 after various

filters have been applied. 99

4.6 Biadjacency matrix of B used in the matching problem between the neighborhoods

of template node C and world node 4. 100

xv

4.7 Sizes and filtering results on real-world examples in Sections 4.4.4.1, 4.4.4.2 and

4.4.4.3. The last column records the types of problems stated in Subsection 4.1.1

that we are able to solve. The names of the filters are abbreviated: L = Node Label;

S = Node-level Statistics; T = Topology; R = Repeated-Sets; N = Neighborhood;

E = Elimination. 112

4.8 Overview of the sizes and filtering results of different DARPA datasets. For each

instance of the datasets, the table records its basic statistics, which filters have

been applied, and the number of isomorphisms. The last column states the types

of problems stated in Subsection 4.1.1 that we can solve for each instance. The

names of the filters are abbreviated: L = Node Label; S = Node-level Statistics;

T = Topology; R = Repeated-Sets; N = Neighborhood; E = Elimination. 118

5.1 Results for the AIDA Version 2.1.2 dataset, showing time taken and the cost of

the best match that was found. The algorithm was cut off if it failed to complete

within 46.5 hours, taking the best match that it had found so far. 137

5.2 The number of solutions, representative solutions, candidate world nodes, and

equivalence classes for each subgraph matching problem from the AIDA Version

2.1.2 dataset. For templates 1D-F, the code was terminated due to runtime

constraints before all solutions could be found. 142

5.3 Equivalence classes when considering only part of the label and the full label . . 143

xvi

ACKNOWLEDGMENTS

I would like to thank my advisors Prof. Deanna Needell (Deanna M. Hunter) and Prof.

Andrea Bertozzi for their supervision and support during my studies. I would also like to

thank my collaborators for their hard work and enthusiasm. I am thankful to the members of

Deanna Needell’s research group for creating such an inspiring and supportive environment.

Chapter 2 is a version of [GMM19] and is joint work with Prof. Robert Gower, Denali

Molitor, and Prof. Deanna Needell. Robert Gower proposed the project, and co-supervised

the project with Deanna Needell. Robert Gower, Denali Molitor, and I contributed the

selection rules and convergence analysis. Denali Molitor and I contributed the experiments

and the computational complexity analysis.

Chapter 3 is a version of [MTM21] and is joint work with Thomas Tu, Denali Molitor, and

Prof. Deanna Needell. Deanna Needell supervised the project. Thomas Tu, Denali Molitor,

and I contributed the convergence analysis and the experiments.

Chapter 4 is a version of [MTC21] and is joint work with Thomas Tu, Qinyi Chen, Xie

He, Denali Molitor, and Prof. Andrea Bertozzi. Prof. Andrea Bertozzi supervised the

project. I developed the algorithms with help from Thomas Tu and Qinyi Chen. Thomas Tu

contributed the Sudoku and multiplex Erdős–Rényi experiments. Denali Molitor contributed

the crossword code and experiments. Qinyi Chen and Xie He contributed the real-world

experiments. Thomas Tu, Qinyi Chen, Xie He, and I contributed the adversarial activity

experiments. The primary difference between Chapter 4 and [MTC21] is the addition of

Subsection 4.4.3 where I have added a description of how Denali Molitor and I were able to

use a subgraph isomorphism solver to fill a crossword grid with answers. We thank Jamie

Atlas, Omri Azencot, Zachary Boyd, Jeremy Budd, Yonatan Dukler, Matthew Jacobs, Blaine

Keetch, Hao Li, Kevin Miller, Mason A. Porter, Bao Wang, Yotam Yaniv, and Baichuan Yuan

for helpful discussions. We thank the anonymous reviewers for their valuable suggestions.

Chapter 5 is a version of [TMY20] and is joint work with Thomas Tu, Dominic Yang,

xvii

Qinyi Chen, and Prof. Andrea Bertozzi. Prof. Andrea Bertozzi supervised the project. I

developed the algorithms with help from Thomas Tu and Qinyi Chen. Thomas Tu and

Dominic Yang contributed the experiments. The primary difference between Chapter 5 and

[TMY20] is the improvement of Subsection 5.2.3 where I added an explanation of how one

of the key subroutines can be implemented efficiently. This efficient implementation was

developed by Qinyi Chen and I. We thank George Chin, Joseph Cottam, Natalie Heller,

Patrick Mackey, Sumit Purohit, and the rest of the team at PNNL for providing us with the

AIDA dataset and the graph edit distance metric. We additionally thank Yurun Ge and Xie

He for helpful comments and discussions.

I am grateful to the UCLA Graduate Division (dissertation year fellowship), the Defense

Advanced Research Projects Agency (agreement number FA8750-18-2-0066), and the National

Science Foundation (NSF DGE-1829071) for financial support during my PhD.

The material in Chapters 4 and 5 is based on research sponsored by the Air Force Research

Laboratory and DARPA under agreement number FA8750-18-2-0066. The U.S. Government

is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding

any copyright notation thereon. The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of the Air Force Research Laboratory and DARPA

or the U.S. Government.

xviii

VITA

2012–2013 Game Development Consultant, Mission Critical Studios.

2015 Software Engineering Intern, Trillium Labs LLC.

2016 B.S. (Mathematics and Computer Science), NJIT.

2017 Artificial Intelligence Research Intern, NovaSignal.

2016–2018 Teaching Assistant, Mathematics Department, UCLA.

2018 M.A. (Mathematics), UCLA.

2019 Computer Vision Research Intern, HRL Laboratories LLC.

2018–Present Graduate Student Researcher, Mathematics Department, UCLA.

PUBLICATIONS

R. M. Gower, D. Molitor, J. D. Moorman, D. Needell, “Adaptive Sketch-and-Project Methods

for Solving Linear Systems.” SIAM Journal on Matrix Analysis and Applications, 2021. To

Appear. https://arxiv.org/abs/1909.03604.

J. D. Moorman, Q. Chen, T. K. Tu, X. He, A. L. Bertozzi, “Subgraph Matching on Multiplex

Networks.” IEEE Transactions on Network Science and Engineering, 2021. Early Access.

xix

https://arxiv.org/abs/1909.03604

J. D. Moorman, T. K. Tu, D. Molitor, D. Needell, “Randomized Kaczmarz with Averaging.”

BIT Numerical Mathematics, 61(1):337–359, 2021.

T. K. Tu, J. D. Moorman, D. Yang, Q. Chen, A. L. Bertozzi, “Inexact Attributed Subgraph

Matching.” In 2020 IEEE International Conference on Big Data, pp. 2575–2582. IEEE,

2020.

J. D. Moorman, T. K. Tu, D. Molitor, D. Needell, “Randomized Kaczmarz with Averaging.”

In Information Theory and Applications Workshop. 2019.

J. D. Moorman, Q. Chen, T. K. Tu, Z. M. Boyd, A. L. Bertozzi, “Filtering Methods for

Subgraph Matching on Multiplex Networks.” In 2018 IEEE International Conference on Big

Data, pp. 3980-3985. IEEE, 2018.

xx

CHAPTER 1

Introduction

With the increasing application of generic algorithms in high-impact applications such as

medicine, surveillance, finance, and epidemiology, a thorough understanding of each algorithm

is key. A lack of such an understanding, can lead to unexpected and significant negative

consequences. In applications where data has structure that does not perfectly match a

generic algorithm, an understanding of the algorithm can enable scientists to tailor it to their

application. In this thesis, we focus on deepening our understanding of iterative methods for

solving linear systems of equations and on specializing algorithms for pattern matching on

graph-structured data to applications where the graphs have attributes on the nodes and

edges.

Stochastic gradient descent (SGD) is an iterative optimization algorithm that approximates

the gradient descent algorithm by replacing the full gradient of an objective function F (x)

by a stochastic estimate thereof [BCN18]. It is typically used to minimize objective functions

of the form F (x) =
∑n

i=1 fi(x), where each i = 1, . . . , n corresponds to a datapoint di. Such

objective functions arise in domains such as physics, engineering, statistics, imaging, and

machine learning. SGD is particularly useful when the data {d1, . . . , dn} does not fit in

memory since the full gradient ∇F (x) is prohibitively expensive to compute in that case.

SGD begins with an initial guess for the optimum, x0. At each iteration k, one or more

of the datapoints di are chosen and the guess xk is updated based on the stochastic gradient

∇fi(xk) in an effort to decrease F (x). When more than one datapoint is chosen, an average

of the stochastic gradients is used. While convergence of SGD is well understood theoretically

in restricted settings such as smooth and strongly-convex F [BCN18], it is frequently applied

1

successfully to problems which do not satisfy such restrictions [LBH15]. In Chapters 2

and 3, we focus on objective functions corresponding to solving linear systems of equations,

where SGD is equivalent to the sketch-and-project method (SaP) [RT20] or the randomized

Kaczmarz method (RK) [NSW16] respectively.

When applying SGD, there are several hyperparameters that can be tuned to improve

the convergence of the algorithm. For example, one must choose the size of the step to take

at each iteration. We focus on two such hyperparameters in this work: how many stochastic

gradients ∇fi(xk) to use and how to select the indices i at each iteration. We investigate the

convergence of SaP as it relates to the strategy of choosing i in Chapter 2. We study the

convergence of RK as it relates to the strategy of choosing i and the number of stochastic

gradients sampled in Chapter 3.

In search applications where the data has graph structure and the query can be phrased as

a smaller pattern graph, finding a subgraph of the data that matches the pattern is called the

subgraph isomorphism problem (SIP) [Ull76]. Finding all such subgraphs is called the subgraph

matching problem (SMP) or simply subgraph matching (SM) [SWW12]. In Chapter 4, we

discuss these and other related problems, and observe how the difficulty of the problems vary

from dataset to dataset. We introduce algorithms for solving these search problems that are

tailored to settings where the data and pattern graphs are endowed with labels on the nodes

and edges. In Chapter 5, we introduce analogous algorithms for finding results which only

approximately match the pattern.

2

CHAPTER 2

Adaptive Sketch-and-Project Methods∗

2.1 Introduction

We consider the fundamental problem of finding an approximate solution to the linear system

Ax = b, (2.1)

where A ∈ Rm×n and b ∈ Rm. Here, we consider consistent systems, for which there exists

an x that satisfies Equation (2.1). We make no assumptions on the shape or rank of A. If A

has full rank with as many columns as rows (i.e., n ≥ m), the system is always consistent.

Otherwise, only b ∈ Range (A) will yield a consistent system. Given the possibility of multiple

solutions, we set out to find a least-norm solution given by

x?
def
= min

x∈Rn

1
2
‖x‖2

B subject to Ax = b, (2.2)

where B ∈ Rn×n is a symmetric positive definite matrix and ‖x‖2
B

def
= 〈Bx, x〉 .

In modern contexts, matrix vector projects Ax can be prohibitively expensive due to the

size of A. In such contexts, direct methods for solving Equation (2.2) can be infeasible, and

iterative methods are favored. In particular, Krylov subspace iterative methods including the

conjugate gradient algorithms [HS52] are the industrial standard so long as one can afford

full matrix vector products [GV13]. However, when A is too large to fit in memory, then

randomized iterative methods such as randomized Kaczmarz [Kac37, SV09] and coordinate

descent [MNR15, LL10] can be used since they require only part of the matrix per iteration.

∗This chapter is adapted from [GMM19].

3

2.1.1 Randomized Kacmarz

The randomized Kaczmarz method is typically used to solve linear systems of equations in

the large data regime, when the number of samples m is much larger than the dimension n.

The Kaczmarz method was originally proposed in 1937 and has seen applications in computer

tomography (CT scans), signal processing, and other areas [Kac37, SV09, GBH70, Nat01].

In each iteration k, the current iterate xk is projected onto the solution space of a selected

row of the linear system of Equation (2.1). Specifically, at each iteration,

xk+1 = arg min
x∈Rn

‖x− xk‖2 subject to Aik:x = bik ,

where Aik: is the row of A selected at iteration k. Let A>ik: denote the transpose of this row.

The Kaczmarz update can be written explicitly as

xk+1 = xk +
bik − 〈Aik:, x

k〉
‖Aik:‖2

A>ik:. (2.3)

Randomized Kaczmarz can also be interpreted as a special case of stochastic gradient descent

(SGD) applied to the loss function [NSW16]

F (x) =
n∑
i=1

fi(x) =
n∑
i=1

1

2
(Ai:x− bi)2.

2.1.2 Coordinate descent

Coordinate descent is commonly used for optimizing general convex optimization functions

when the dimensions are extremely large, since at each iteration only a single coordinate

(or dimension) is updated [RT14, RT16]. Here, we consider coordinate descent applied to

Equation (2.2). In this setting, it is sometimes referred to as randomized Gauss–Seidel [MNR15,

LL10].

At iteration k an index i ∈ {1, . . . , n} is selected and the coordinate xki of the current

iterate xk is updated such that the least-squares objective ‖b −Ax‖2 is minimized. More

formally,

xk+1 = arg min
x∈Rn, λ∈R

‖b−Ax‖2 subject to x = xk + λ ei,

4

where ei is the ith coordinate vector. Let A:i denote the ith column of A and A>:i denote the

transpose of this column. The explicit update for coordinate descent applied to Equation (2.2)

is given by

xk+1 = xk −
A>:ik(Axk − b)
‖A:ik‖2

eik . (2.4)

2.1.3 Sketch-and-project methods

Sketch-and-project is a general archetypal method that unifies a variety of randomized

iterative methods including both randomized Kaczmarz and coordinate descent along with

their block variants [GR15b]. At each iteration, sketch-and-project methods project the

current iterate onto a subsampled or sketched linear system with respect to some norm. Let

B ∈ Rn×n be a symmetric positive definite matrix. We will consider the projection with

respect to the B–norm given by ‖·‖B
def
=
√
〈·,B·〉.

Let Si ∈ Rm×τ for i = 1, . . . , q be the sketching matrices where τ ∈ N is the sketch size. In

general, the set of sketching matrices Si could be infinite, however, here, we restrict ourselves to

a finite set of q ∈ N sketching matrices. At the kth iteration of the sketch-and-project method,

a sketching matrix Si is selected and the current iterate xk is projected onto the solution

space of the sketched system S>ikAx = S>ikb with respect to the B–norm ‖·‖B
def
=
√
〈·,B·〉.

Mathematically, given a selected index ik ∈ {1, . . . , q} the sketch-and-project update is

xk+1 = arg min
x∈Rn

‖x− xk‖2
B subject to S>ikAx = S>ikb. (2.5)

The closed form solution to Equation (2.5) is given by

xk+1 = xk −B−1A>Hik(Axk − b), (2.6)

where

Hi
def
= Si(S

>
i AB−1A>Si)

†S>i , for i = 1, . . . , q, (2.7)

and † denotes the Moore–Penrose pseudoinverse.

One can recover the randomized Kaczmarz method under the sketch-and-project framework

5

by choosing the matrix B as the identity matrix and sketches Si = ei. If instead B = A>A

and sketches Si = Aei = A:i, then the resulting method is coordinate descent.

2.1.4 Sampling of indices

An important component of the methods above is the selection of the index ik at iteration k.

Methods often use independently and identically distributed (i.i.d.) indices, as this choice

makes the method and analysis relatively simple [SV09, Nes12]. In addition to choosing

indices i.i.d. at each iteration, several adaptive sampling methods have also been proposed,

which we discuss next. These sampling strategies use information about the current iterate in

order to improve convergence guarantees over i.i.d. random sampling strategies at the cost of

extra calculation per iteration. Under certain conditions, such strategies can be implemented

with an affordable increase in cost discussed in Sections 2.A and 2.8.

2.1.4.1 Sampling for the Kaczmarz method

The original Kaczmarz method cycles through the rows of the matrix A and makes projections

onto the solution space with respect to each row [Kac37]. In 2009, Strohmer and Vershynin

proved that sampling the rows randomly with probabilities proportional to the squared row

norms (i.e. pi ∝ ‖Ai:‖2
2) leads to provably exponential convergence [SV09].

Several adaptive selection strategies have also been proposed in the Kaczmarz setting. The

max-distance Kaczmarz or Motzkin’s method selects the index ik at iteration k that leads to

the largest magnitude update [NSL16, MS54]. In addition to the max-distance selection rule,

Nutini et al. also considered the greedy selection rule that chooses the row corresponding to

the maximal residual component, i.e., ik = arg maxi |Ai:x
k − bi| at each iteration, but showed

that the max-distance Kacmzarz method performs at least as well as this strategy [NSL16].

More complicated adaptive methods have also been suggested for randomized Kaczmarz, such

as the capped sampling strategies proposed in [BW18a, BW18b, BW19a] or the sampling

Kaczmarz Motzkin’s method of [LHN17].

6

2.1.4.2 Sampling for coordinate descent

For coordinate descent, several works have investigated adaptive coordinate selection strate-

gies [PCJ17, NSL15, Nes12, AG18]. As coordinate descent is not restricted to solving linear

systems, these works often considered more general convex loss functions. A common greedy

selection strategy for coordinate descent applied to differentiable loss functions is to select

the coordinate that corresponds to the maximal gradient component, which is known as

the Gauss–Southwell rule [Tse90, LT92, NSL15, Nes12] or adaptively according to a duality

gap [CQR15].

2.1.4.3 Sampling for sketch-and-project

The problem of determining the optimal fixed probabilities with which to select the index

ik at each iteration k was shown in Section 5.1 of [GR15b] to be a convex semi-definite

program, which is a harder problem than solving the original linear system. The problem

of determining the optimal adaptive probabilities is even harder as one must consider the

effects of the current index selection on the future iterates. Here, instead, we present adaptive

sampling rules that are not necessarily optimal, but are proven to have faster convergence

guarantees than certain fixed non-adaptive rules.

2.1.5 Choosing the sketches and preconditioning

Another key question is how we should choose the set of sketching matrices. This question

has been partially answered in Section 5.2 of [GR17], wherein the authors show that if a

preconditioned A were available, then the set of sketching matrices should be drawn from

row partitions or column partitions of this preconditioner. This strategy can be combined

with any index sampling rule for an overall faster algorithm. Here, we will assume a set of

sketching matrices has been provided, and focus only on the index sampling rule.

7

2.1.6 Additional related works

Various related works consider extensions to solving Equation (2.2) in the randomized Kacz-

marz, coordinate descent and sketch-and-project settings. The following summary of related

works is not exhaustive. While we consider consistent linear systems, others have analyzed

variants of the Kaczmarz and coordinate descent methods to handle inconsistent linear

systems [PP16, ZF13, Pop99, MNR15, Dum15]. An adaptive maximum-residual sampling

strategy has also been analyzed for the inconsistent extension [PP16]. The randomized

Kaczmarz method has also been studied in the context of solving systems of linear inequalities

[LL10, MS54, BN15, BW19b]. Block and accelerated variants of randomized Kaczmarz and co-

ordinate descent have also been analyzed [RT14, Nec19, NZZ15, NT14, LX15, NNG17, NS17b].

Recent works have considered combining ideas from random sketching methods with those

from the sketch-and-project framework [PJM19].

2.2 Contributions

Adaptive sampling strategies have not yet been analyzed for the general sketch-and-project

framework. We introduce three different adaptive sampling rules for the general sketch-

and-project method: the max-distance sampling rule, the capped-adaptive sampling rule,

and proportional sampling probabilities. We prove that each of these methods converge

exponentially in mean squared error with convergence guarantees that are strictly faster than

the guarantees for sampling indices uniformly.

2.2.1 Key quantity: Sketched loss

As we will see in Section 2.7, the convergence at each iteration depends on the current iterate

xk and a key quantity known as the sketched loss

fi(x
k)

def
= ‖Axk − b‖2

Hi
. (2.8)

8

Here, we use the notation ‖·‖Hi

def
=
√
〈·,Hi·〉. Recall that Hi, defined in Equation (2.7), is

symmetric positive semi-definite and thus ‖·‖Hi
gives a semi-norm. The sketched loss fi(x

k)

corresponding to sketch Si captures the amount by which an iteration using Si would reduce

the squared error. This sketched loss was introduced in [RT20] where the authors show that

the sketch-and-project method can be seen as a stochastic gradient method (we expand on

this in Section 2.4). We show that using adaptive selection rules based on the sketched losses

results in new methods with faster convergence guarantees.

2.2.2 Max-distance rule

We introduce the max-distance sketch-and-project method, which is a generalization of both

the max-distance Kaczmarz method (also known as Motzkin’s method) [NSL16, MS54, HN19],

greedy coordinate descent (Gauss-Southwell rule [NSL15]), and their block variants. Nutini

et al. showed that the max-distance Kaczmarz method performs at least as well as uniform

sampling and the non-uniform sampling method of [SV09], in which rows are sampled with

probabilities proportional to the squared row norms of A [NSL16]. We extend this result to

the general sketch-and-project setting and also show that the max-distance rule leads to a

convergence guarantee that is strictly faster than that of any fixed probability distribution.

2.2.3 The capped adaptive rule

A new family of adaptive sampling methods were recently proposed for the Kaczmarz and

coordinate descent type methods [BW18a, BW18b, BW19a]. We extend these methods

to the sketch-and-project setting, which allows their application in other settings such as

for coordinate descent. While introduced under the names greedy randomized Kaczmarz

[BW18a] and relaxed greedy randomized Kaczmarz [BW18b], we rename them here to

prevent confusion with the max-distance rule. We instead refer to such methods as capped

adaptive methods because they select indices i whose corresponding sketched losses fi(x
k)

are larger than a capped threshold given by a convex combination of the largest and mean

9

sketched losses. It was proven in [BW18a] that the convergence guarantee when using

the capped adaptive rule is strictly faster than the fixed non-uniform sampling rule given

in [SV09] in the randomized Kaczmarz setting. In Subsection 2.7.5, we generalize this capped

adaptive sampling to sketch-and-project methods and prove that the resulting convergence

guarantee of this adaptive rule is slower than that of the max-distance rule. Furthermore,

in Subsection 2.A.3, we show that the max-distance rule requires less computation at each

iteration than the capped adaptive rule.

2.2.4 The proportional adaptive rule

We also present a new and much simpler randomized adaptive rule as compared to the

capped adaptive rule discussed above, in which indices are sampled with probabilities that

are directly proportional to their corresponding sketched losses fi(x
k). We show that this rule

gives a resulting convergence that is strictly faster as when sampling the sketches uniformly.

2.2.5 Efficient implementations

Our adaptive methods come with the added cost of computing the sketched loss f(xk) of

Equation (2.8) at each iteration. Fortunately, the sketched loss can be computed efficiently

with certain precomputations as discussed in Section 2.8. We show how the sketched

losses can be maintained efficiently via an auxiliary update, leading to reasonably efficient

implementations of the adaptive sampling rules. We demonstrate improved performance of

the adaptive methods over uniform sampling when solving linear systems with both real and

synthetic matrices per iteration and in terms of the floating point operations (flops) required.

2.2.6 Consequences and future work

Our results on adaptive sampling are expected to hold analogously many other closely related

problems. For instance, a sampling strategy similar to our proportional adaptive rule has

10

been proposed for coordinate descent in the primal-dual setting for optimizing regularized

loss functions [PCJ17]. Also a variant of adaptive and greedy coordinate descent has been

shown to speed-up the solution of the matrix scaling problem [AG18]. The matrix scaling

problem is equivalent to an entropy-regularized version of the optimal transport problem

which has numerous applications in machine learning and computer vision [AG18, Cut13].

Thus the adaptive methods proposed here may be extended to these other settings such as

adaptive coordinate descent for more general smooth optimization [PCJ17]. The adaptive

methods and the analysis proposed in this chapter may also provide insights toward adaptive

sampling for other classes of optimization methods such as stochastic gradient, since the

randomized Kaczmarz method can be reformulated as stochastic gradient descent applied to

the least-squares problem [NSW16].

2.3 Notation

We now introduce notation that will be used throughout. Let ∆q denote the simplex in Rq

∆q
def
= {p ∈ Rq :

q∑
i=1

pi = 1, pi ≥ 0, for i = 1, . . . , q}.

For probabilities p ∈ ∆q and values ai depending on an index i = 1, . . . , q, we denote

Ei∼p [ai]
def
=
∑q

i=1 piai, where i ∼ p indicates that i is sampled with probability pi. At the kth

iteration of the sketch-and-project method, a sketching matrix Sik is sampled with probability

P(Sik = Si | xk) = pki , for i = 1, . . . , q, (2.9)

where pk ∈ ∆q and we use pk
def
= (pk1, . . . , p

k
q) to denote the vector containing these probabilities.

We drop the superscript k when the probabilities do not depend on the iteration.

For any symmetric positive semi-definite matrix G we write the semi-norm induced by

G as ‖·‖2
G

def
= 〈·,G·〉, where ‖·‖ denotes the standard 2-norm (‖·‖2). For any matrix M,

‖M‖F
def
=
√∑

i,j M2
ij. We use

λ+
min(G)

def
= min

v∈Range(G),v 6=0

‖v‖2
G

‖v‖2
2

11

to denote the smallest non-zero eigenvalue of G.

2.3.1 Organization

The remainder of this chapter is organized as follows. Sections 2.4 and 2.5 provide additional

background on the sketch-and-project method and motivation for adaptive sampling in this

setting. Section 2.4 explains how the sketch-and-project method can be reformulated as

stochastic gradient descent. The sampling of the sketches can then be seen as importance

sampling in the context of stochastic gradient descent. Section 2.5 provides geometric intuition

for the sketch-and-project method and motivates why one would expect adaptive sampling

strategies that depend on the sketched losses fi(x
k) to perform well.

Section 2.6 introduces the various sketch selection strategies considered throughout

the chapter, while Section 2.7 provides convergence guarantees for each of the resulting

methods. In Section 2.8, we discuss the computational costs of adaptive sketch-and-project

for the sketch selection strategies of Section 2.6 and suggest efficient implementations of the

methods. Section 2.9 discusses convergence and computational cost for the special subcases

of randomized Kaczmarz and coordinate descent. Performance of adaptive sketch-and-project

methods are demonstrated in Section 2.10 for both synthetic and real-world matrices.

2.4 Reformulation as importance sampling for SGD

The sketch-and-project method can be reformulated as a stochastic gradient method, as

shown in [RT20]. We use this reformulation to motivate our adaptive sampling as a variant

of importance sampling.

Let p ∈ ∆q. Consider the stochastic program

min
x∈Rd

F (x)
def
= Ei∼p [fi(x)] = Ei∼p

[
‖Ax− b‖2

Hi

]
. (2.10)

Objective functions F (x) such as the one in Equation (2.10) are common in machine learning,

where fi(x) often represents error of a model with parameters x with respect to datapoint i.

12

When Ei∼p [Hi] is invertible, solving Equation (2.10) is equivalent to solving the linear

system Equation (2.1). This invertibility condition on Ei∼p [Hi] can be significantly relaxed

by using the following technical exactness assumption on the probability p and the set of

sketches introduced in [RT20].

Assumption 1. Let p ∈ ∆q, Σ
def
= {S1, . . . , Sq} be a set of sketching matrices and Hi as

defined in Equation (2.7). We say that the exactness assumption holds for (p,Σ) if

Null (Ei∼p [Hi]) ⊂ Null
(
A>
)
.

This exactness assumption guarantees† that

Null (A) = Null
(
A>Ei∼p [Hi] A

)
. (2.11)

This in turn guarantees that the expected sketched loss of the point x is zero if and only if

Ax = b. Indeed, by taking the gradient of (2.10) and setting it to zero we have that

∇F (x) = A>Ei∼p [Hi] (Ax− b) = A>Ei∼p [Hi] A(x− x?) = 0.

By the convexity of F , we know that any extrema x must be a minimizer. So we see that

any minimizer x of Equation (2.10) satisfies

x− x? ∈ Null
(
A>Ei∼p [Hi] A

) (2.11)
= Null (A) , (2.12)

and thus A(x−x?) = Ax−b = 0. As shown in [GR15a] and [RT20] this exactness assumption

holds trivially under modest assumptions.

When the number of fi functions is too large to afford computing ∇F (x), the SGD

(stochastic gradient descent) method is typically the method of choice for solving Equa-

tion (2.10) [BCN18]. To view the sketch-and-project update in Equation (2.6) as a SGD

method, we sample an index ik ∼ p at each iteration and take a step

xk+1 = xk −∇Bfik(xk), (2.13)

†This can be shown by applying Lemma 2.B.1 in Section 2.B with with G = Ei∼p [Hi] and W = A.

13

where ∇Bfik(xk) is the gradient taken with respect to the B–norm. For fi(x
k) of Equa-

tion (2.8), the exact expression of this stochastic gradient is given by

∇Bfik(xk) = B−1A>Hik(Axk − b). (2.14)

By plugging Equation (2.14) into Equation (2.13) we can see that the resulting update is

equivalent to a the sketch-and-project update in Equation (2.6).

Though the indices i ∈ {1, . . . , q} are often sampled uniformly at random for SGD, many

alternative sampling distributions have been proposed in order to accelerate convergence,

including adaptive sampling strategies [CR18, JZ13, NSW16, ZZ15, KF18, LH15, ALS15].

Such sampling strategies give more weight to sampling indices corresponding to a larger loss

fi(x) or a larger gradient norm ‖∇Bfi(x)‖2
B. In the sketch-and-project setting, these two

sampling strategies result in similar methods since

fi(x) = ‖Ax− b‖2
Hi

= ‖∇Bfi(x)‖2
B

by Lemma 3.1 of [RT20].

In general, updating the loss and gradient of every fi(x) at each iteration can be too

expensive. Thus many methods resort to using global approximations of these values such as

the Lipschitz constant of the gradient [NSW16] that lead to fixed data-dependent sample

distributions. For the sketch-and-project setting, we demonstrate in Section 2.8 that the

adaptive sample distributions can be calculated efficiently, with a per-iterate cost on the

same order as is required for the sketch-and-project update.

2.5 Geometric viewpoint and motivational analysis

The sketch-and-project method given in Equation (2.5) can be seen as a method that calculates

the next iterate xk+1 by projecting the previous iterate xk onto an affine space. Indeed, the

constraint in Equation (2.5) can be re-written as

{x : S>i Ax = S>i b} = x? + Null
(
S>i A

)
. (2.15)

14

xk

xk+1

x?
x? + Null

(
S>i A

)
fi(x

k)

Figure 2.1: The geometric interpretation of Equation (2.5), as the projection of xk onto an

affine space that contains x?. The distance traveled is given by fi(x
k) = ‖xk+1 − xk‖2

B.

In particular, Equation (2.5) is an orthogonal projection of the point xk onto an affine

space that contains x? with respect to the B–norm. See Figure 2.1 for an illustration. This

projection is determined by the following projection operator.

Lemma 2.5.1. Let

Zi
def
= B−1/2A>Si(S

>
i AB−1A>Si)

†S>i AB−1/2 = B−1/2A>HiAB−1/2, (2.16)

for i = 1, . . . , q, which is the orthogonal projection matrix onto Range
(
B−1/2A>Si

)
. Conse-

quently

ZiZi = Zi, and (I− Zi)Zi = 0. (2.17)

Furthermore we have that (I− Zi) gives the projection depicted in Figure 2.1 since

B1/2(xk+1 − x?) = (I− Zik)B1/2(xk − x?). (2.18)

Finally we can re-write the sketched loss as

fi(x) = ‖B1/2(x− x?)‖2
Zi
, for i = 1, . . . , q. (2.19)

Proof. The proof of Equation (2.17) relies on standard properties of the pseudoinverse and is

given in Lemma 2.2 in [GR15b].

15

As for the proof of Equation (2.18), subtracting x? from both sides of Equation (2.6) we

have that

xk+1 − x? = xk − x? −B−1A>Hik(Axk − b)
Ax?=b

= xk − x? −B−1/2B−1/2A>HikAB−1/2B1/2(xk − x?)
(2.16)
= xk − x? −B−1/2ZikB

1/2(xk − x?). (2.20)

It now only remains to multiply both sides by B1/2.

Finally the proof of Equation (2.19) follows by using Ax? = b together with the definitions

of Hi and Zi given in Equation (2.7) and Equation (2.16) so that

fi(x) = ‖A(x− x?)‖2
Hi

= ‖x− x?‖2
A>HiA

(2.16)
= ‖B1/2(x− x?)‖2

Zi
. (2.21)

With the explicit expression for the projection operator we can calculate the progress made

by a single iteration of the sketch-and-progress method. The convergence proofs in Section 2.7

will rely heavily on Lemmas 2.5.2 and 2.5.3.

Lemma 2.5.2. Let xk ∈ Rd and let xk+1 be given by Equation (2.5). Then the squared

magnitude of the update is

‖xk+1 − xk‖2
B = fik(xk), (2.22)

and the error from one iteration to the next decreases according to

‖xk+1 − x?‖2
B = ‖xk − x?‖2

B − fik(xk). (2.23)

Proof. We begin by deriving Equation (2.23). Taking the squared norm in Equation (2.18)

16

we have

‖xk+1 − x?‖2
B = ‖(I−B−1/2ZikB

1/2)(xk − x?)‖2
B

= ‖(I− Zik)B1/2(xk − x?)‖2
2

=
〈
B1/2(xk − x?), (I − Zik)(I − Zik)B1/2(xk − x?)

〉
(2.17)
=
〈
B1/2(xk − x?), (I − Zik)B1/2(xk − x?)

〉
= ‖xk − x?‖2

B −
〈
ZikB

1/2(xk − x?),B1/2(xk − x?)
〉

(2.19)
= ‖xk − x?‖2

B − fi(xk). (2.24)

Finally we establish Equation (2.22) by subtracting xk from both sides of Equation (2.6)

so that

xk+1 − xk = −B−1/2ZikB
1/2(xk − x?).

It now remains to take the squared B–norm and use Equation (2.19).

Equation (2.22) shows that the distance traveled from xk to xk+1 is given by the sketch

residual fik(xk), as we have depicted in Figure 2.1. Furthermore, Equation (2.23) shows

that the contraction of the error xk+1 − x? is given by −fik(xk). Consequently Lemma 2.5.2

indicates that in order to make the most progress in one step, or maximize the distance

traveled, we should choose ik corresponding to the largest sketched loss fik(xk). We refer

to this greedy sketch selection as the max-distance rule, which we explore in detail in

Subsection 2.6.3.

Next we give the expected decrease in the error.

Lemma 2.5.3. Let pk ∈ ∆q. Consider the iterates of the sketch-and-project method given

in Equation (2.6) where ik ∼ pki as is done in Algorithm 2. It follows that

Ei∼pk
[
‖xk+1 − x?‖2

B | xk
]

= ‖xk − x?‖2
B − Ei∼pk

[
fi(x

k)
]
.

Proof. The result follows by taking the expectation over Equation (2.23) conditioned on

xk.

17

Lemma 2.5.3 suggests choosing adaptive probabilities so that Ei∼pk
[
fi(x

k)
]

is large. This

analysis motivates the adaptive methods described in Subsection 2.6.2.

2.6 Selection rules

Motivated by Lemmas 2.5.2 and 2.5.3, we might think that sampling rules that prioritize

larger entries of the sketched loss should converge faster. From this point we take two

alternatives, (1) choose the ik that maximizes the decrease (Subsection 2.6.3) or (2) choose a

probability distribution that prioritizes the biggest decrease (Subsection 2.6.2). Below, we

describe several sketch-and-project sampling strategies (fixed, adaptive, and greedy) and

analyze their convergence in Section 2.7. The adaptive and greedy sampling strategies require

knowledge of the current sketched loss vector at each iteration. Calculating the sketched loss

from scratch is expensive, thus in Section 2.8 we will show how to efficiently calculate the

new sketched loss f(xk+1) using the previous sketched loss f(xk).

2.6.1 Fixed sampling

We first recall the standard non-adaptive sketch-and-project method that will be used as a

comparison for the greedy and adaptive versions [GR15b]. In the non-adaptive setting the

sketching matrices are sampled from a fixed distribution that is independent of the current

iterate xk. For reference, the details of the non-adaptive sketch-and-project method are

provided in Algorithm 1.

2.6.2 Adaptive probabilities

Equation (2.23) motivates selecting indices that correspond to larger sketched losses with

higher probability. We refer to such sampling strategies as adaptive sampling strategies, as

they depend on the current iterate and its corresponding sketched loss values. In the adaptive

setting, we sample indices at the kth iteration with probabilities given by pk ∈ ∆q. Adaptive

18

Algorithm 1 Non-Adaptive Sketch-and-Project

1: input: x0 ∈ Rn, A ∈ Rm×n, b ∈ Rm, p ∈ ∆q, and a set of sketching matrices S =

[S1, . . . ,Sq]

2: for k = 0, 1, 2, . . .

3: ik ∼ pi

4: xk+1 = xk −B−1A>Hik(Axk − b)

5: output: last iterate xk+1

sketch-and-project is detailed in Algorithm 2.

Algorithm 2 Adaptive Sketch-and-Project

1: input: x0 ∈ Rn, A ∈ Rm×n, b ∈ Rm, and a set of sketching matrices S = [S1, . . . ,Sq]

2: for k = 0, 1, 2, . . .

3: fi(x
k) = ‖Axk − b‖2

Hi
for i = 1, . . . , q

4: Calculate pk ∈ ∆q . Typically based on f(xk).

5: ik ∼ pki

6: xk+1 = xk −B−1A>Hik(Axk − b)

7: output: last iterate xk+1

2.6.3 Max-distance rule

We refer to the greedy sketch selection rule given by

ik ∈ arg max
i=1,...,q

fi(x
k) = arg max

i=1,...,q
‖Axk − b‖2

Hi
, (2.25)

as the max-distance selection rule. If multiple indices lead to the maximal sketched loss, any

of these indices can be chosen. The max-distance rule leads to the best expected decrease in

mean squared error per iteration. The max-distance sketch-and-project method is described

in Algorithm 3. This greedy selection strategy has been studied for several specific choices of

B and sketching methods. For example, in the Kaczmarz setting, this strategy is typically

referred to as max-distance Kaczmarz or Motzkin’s method [GO12, NSL16, MS54]. For

19

coordinate descent, this selection strategy is the Gauss–Southwell rule [Nes12, NSL15]. We

provide a convergence analysis for the general sketch-and-project max-distance selection rule

in Theorem 2.7.5. We also show that max-distance selection leads to a convergence rate

that is strictly larger than the resulting convergence rate when sampling from any fixed

distribution in Theorem 2.7.7.

Algorithm 3 Max-Distance Sketch-and-Project

1: input: x0 ∈ Rn, A ∈ Rm×n, b ∈ Rm, and a set of sketching matrices S = [S1, . . . ,Sq]

2: for k = 0, 1, 2, . . .

3: fi(x
k) = ‖Axk − b‖2

Hi
for i = 1, . . . , q

4: ik = arg maxi=1,...,q fi(x
k)

5: xk+1 = xk −B−1A>Hik(Axk − b)

6: output: last iterate xk+1

2.7 Convergence

We now present convergence results for the max-distance selection rule, uniform sampling,

and adaptive sampling with probabilities proportional to the sketched loss. We summarize

the convergence guarantees discussed throughout Section 2.7 in Table 2.1. Note that these

are worst case convergence guarantees and thus are not guaranteed to reflect the expected

performance of each selection rule. Our first step in the analysis is to establish an invariance

property of the iterates in the following lemma.‡ In particular, Lemma 2.7.1 guarantees

the error vectors xk − x? remain in the subspace Range
(
B−1A>

)
for all iterations if x0 ∈

Range
(
B−1A>

)
, which allows a tighter convergence analysis.

Lemma 2.7.1. If x0 ∈ Range
(
B−1A>

)
then xk − x? ∈ Range

(
B−1A>

)
.

Proof. First note that x? ∈ Range
(
B−1A>

)
. This follows by taking the Lagrangian of

‡This lemma was first presented in [GR15a]. We present and prove it here for completeness.

20

Equation (2.2) given by

L(x, λ) = 1
2
‖x‖2

B + 〈λ,Ax− b〉 .

Taking the derivative with respect to x, setting to zero and isolating x gives

x? = −B−1A>λ ∈ Range
(
B−1A>

)
. (2.26)

Consequently x? − x0 ∈ Range
(
B−1A>

)
. Assuming that xk − x? ∈ Range

(
B−1A>

)
holds,

by induction we have that

xk+1 − x? (2.6)
= xk − x? −B−1A>Sik(S>ikAB−1A>Sik)†S>ik(Axk − b)︸ ︷︷ ︸

∈Range(B−1A>)

. (2.27)

Thus xk+1 − x? is the difference of two elements in the subspace Range
(
B−1A>

)
and thus

xk+1 − x? ∈ Range
(
B−1A>

)
.

We also make use of the following fact. For a symmetric positive semi-definite random

matrix M ∈ Rn×n drawn from some probability distribution D and for any vector v ∈ Rn

ED
[
‖v‖2

M

]
= ED [〈v,Mv〉] = 〈v,ED [Mv]〉 = ‖v‖2

ED[M]. (2.28)

2.7.1 Important spectral constants

We define two key spectral constants in the following definition that will be used to express

our forthcoming rates of convergence.

Definition 2.7.1 (Spectral Constants). The spectral constant for max-distance methods is

σ2
∞(B,S)

def
= min

v∈Range(B−1A>)
max
i=1,...,q

‖B1/2v‖2
Zi

‖v‖2
B

, (2.29)

while the spectral constant for a fixed distribution p ∈ ∆q is

σ2
p(B,S)

def
= min

v∈Range(B−1A>)

‖B1/2v‖2
Ei∼p[Zi]

‖v‖2
B

. (2.30)

21

Next we show that σ2
∞(B,S) and σ2

p(B,S) can be used to lower bound maxi fi(x) and

Ei∼p [fi(x)], respectively. This result will allow us to develop Equation (2.23) and Lemma 2.5.3

into recurrences used to prove the Theorems in the remainder of this section.

Lemma 2.7.2. Let p ∈ ∆q and consider the iterates xk given by Algorithm 2. The spectral

constants Equation (2.29) and Equation (2.30) are such that

max
i=1,...,q

fi(x
k) ≥ σ2

∞(B,S)‖xk − x?‖2
B, (2.31)

Ei∼p
[
fi(x

k)
]
≥ σ2

p(B,S)‖xk − x?‖2
B. (2.32)

Proof. From the invariance provided by Lemma 2.7.1 we have that xk−x? ∈ Range
(
B−1A>

)
and consequently

maxi=1,...,q fi(x
k)

‖xk − x?‖2
B

(2.19)
= max

i=1,...,q

‖B1/2(xk − x?)‖2
Zi

‖xk − x?‖2
B

≥ min
v∈Range(B−1A>)

max
i=1,...,q

‖B1/2v‖Zi

‖v‖2
B

(2.29)
= σ2

∞(B,S), ∀k. (2.33)

Analogously we have that

Ei∼p
[
fi(x

k)
]

‖xk − x?‖2
B

(2.19)
=

Ei∼p
[
‖B1/2(xk − x?)‖2

Zi

]
‖xk − x?‖2

B

≥ min
v∈Range(B−1A>)

Ei∼p
[
‖B1/2v‖2

Zi

]
‖v‖2

B

(2.30)+(2.28)
= σ2

p(B,S), ∀k. (2.34)

Thus Equation (2.31) and Equation (2.32) follow by re-arranging Equation (2.33) and Equa-

tion (2.34) respectively.

Finally, we show that σ2
p(B,S), σ2

∞(B,S) ≤ 1, and if the exactness Assumption 1 holds

then additionally σ2
p(B,S), σ2

∞(B,S) > 0.

Lemma 2.7.3. Let p ∈ ∆q and the set of sketching matrices {S1, . . . ,Sq} be such that that

exactness Assumption 1 holds. We then have the following relations:

0 < σ2
p(B,S) = λ+

min (Ei∼p [Zi]) ≤ σ2
∞(B,S) ≤ 1.

22

Proof. Using the definition of Zi given in Equation (2.16) and the fact that B is symmetric

positive definite, we have

Null (Ei∼p [Zi])
(2.16)
= Null

(
B−1/2A>Ei∼p [Hi] AB−1/2

)
= Null

(
A>Ei∼p [Hi] AB−1/2

) Lemma 2.B.1
= Null

(
AB−1/2

)
,

where we applied Lemma 2.B.1 with G = Ei∼p [Hi] and W = A. Taking the orthogonal

complement of the above we have that

Range (Ei∼p [Zi]) = Range
(
B−1/2A>

)
. (2.35)

Using Equations (2.30) and (2.35) we then have

σ2
p(B,S)

(2.30)
= min

v∈Range(B−1A>)

‖B1/2v‖2
Ei∼p[Zi]

‖v‖2
B

(2.35)
= min

B1/2v∈Range(Ei∼p[Zi])

‖B1/2v‖2
Ei∼p[Zi]

‖v‖2
B

= λ+
min (Ei∼p [Zi]) > 0.

Furthermore,

σ2
p(B,S)

(2.30)
= min

v∈Range(B−1A>)

‖B1/2v‖2
Ei∼p[Zi]

‖v‖2
B

(2.28)
= min

v∈Range(B−1A>)

Ei∼p
[
‖B1/2v‖2

Zi

]
‖v‖2

B

≤ min
v∈Range(B−1A>)

max
i=1,...,q

‖B1/2v‖2
Zi

‖v‖2
B

= σ2
∞(B,S).

Finally, using the fact that the matrix Zi is an orthogonal projection (Lemma 2.5.1), we have

that

σ2
∞(B,S) = max

i=1,...,q

‖B1/2v‖2
Zi

‖v‖2
B

(2.17)
= max

i=1,...,q

‖ZiB
1/2v‖2

‖B1/2v‖2
≤ max

i=1,...,q

‖B1/2v‖2

‖B1/2v‖2
= 1.

23

2.7.2 Sampling from a fixed distribution

We first present a convergence result for the sketch-and-project method when the sketches

are drawn from a fixed sampling distribution. This result will be used as a baseline for

comparison against the adaptive sampling strategies in Subsections 2.7.3 to 2.7.5.

Theorem 2.7.4. Consider Algorithm 1 for some set of probabilities p ∈ ∆q. It follows that

E
[
‖xk − x?‖2

B

]
≤
(
1− σ2

p(B,S)
)k ‖x0 − x?‖2

B.

Proof. Combining Lemma 2.5.3 and Equation (2.32) of Lemma 2.7.2 we have that

Eik∼p
[
‖xk+1 − x?‖2

B |xk
] Lemma 2.5.3

= ‖xk − x?‖2
B − Eik∼p

[
fi(x

k)
]

(2.32)

≤
(
1− σ2

p(B,S)
)
‖xk − x?‖2

B.

Taking the unconditional expectation and unrolling the recurrence, we arrive at the desired

result

E
[
‖xk − x?‖2

B

]
≤
(
1− σ2

p(B,S)
)
E
[
‖xk−1 − x?‖2

B

]
≤ . . . ≤

(
1− σ2

p(B,S)
)k ‖x0 − x?‖2

B.

There are several natural and previously studied choices for fixed sampling distributions,

for example, sampling the indices uniformly at random. Another choice is to pick p ∈ ∆q

in order to maximize σ2
p(B,S), but this results in a convex semi-definite program (see

Section 5.1 in [GR15b]). The authors of [GR15b] suggest convenient probabilities such that

pi ∝ ‖A>Si‖2
B−1 for which σ2

p(B,S) reduces to the scaled condition number.

2.7.3 Max-distance selection

The following theorem provides a convergence guarantee for the max-distance selection rule

of Subsection 2.6.3. To our knowledge, this is the first analysis of the max-distance rule for

general sketch-and-project methods.

24

Theorem 2.7.5. The iterates of max-distance sketch-and-project method in Algorithm 3

satisfy

‖xk − x?‖2
B ≤ (1− σ2

∞(B,S))k‖x0 − x?‖2
B,

where σ∞(B,S) is defined as in Equation (2.29) of Definition 2.7.1.

Proof. Combining Equation (2.23) and Equation (2.31) we have that

‖xk+1 − x?‖2
B

(2.23)
= ‖xk − x?‖2

B − max
i=1,...,q

fi(x
k)

(2.31)

≤
(
1− σ2

∞(B,S)
)
‖xk − x?‖2

B.

Unrolling the recurrence gives the desired result

‖xk − x?‖2
B ≤

(
1− σ2

∞(B,S)
)
‖xk−1 − x?‖2

B ≤ . . . ≤
(
1− σ2

∞(B,S)
)k ‖x0 − x?‖2

B.

One obvious disadvantage of sampling from a fixed distribution is that it is possible to

sample the same index on consecutive iterations. Since the current iterate already lies in the

solution space with respect to the previous sketch, no progress is made in such an update.

For adaptive distributions that only assign non-zero probabilities to non-zero sketched loss

values, the same index will never be chosen on consecutive iterations since the sketched loss

corresponding to the previous iterate will always be zero (Lemma 2.7.6). This fact allows

us to derive convergence rates for adaptive sampling strategies that are strictly better than

those for fixed sampling strategies.

Lemma 2.7.6. Consider the sketched losses f(xk) generated by iterating the sketch-and-

project update given in Equation (2.6). We have that

fik(xk+1) = 0, ∀ k ≥ 0.

Proof. Recall from Equation (2.19), we can write

fik(xk+1) = ‖B1/2(xk+1 − x?)‖2
Zik

=
〈
ZikB

1/2(xk+1 − x?),B1/2(xk+1 − x?)
〉
. (2.36)

25

Using Equation (2.18) and Lemma 2.5.1, we can show that the above is equal to zero

ZikB
1/2(xk+1 − x?) (2.18)

= ZikB
1/2(xk −B−1/2ZikB

1/2(xk − x?)− x?)

= ZikB
1/2(xk − x?)− ZikZikB

1/2(xk − x?))
(2.17)
= ZikB

1/2(xk − x?)− ZikB
1/2(xk − x?))

= 0.

We now use Lemma 2.7.6 to additionally show that the convergence guarantee for the

greedy method is strictly faster than for sampling with respect to any set of fixed probabilities.

Theorem 2.7.7. Let p ∈ ∆q where pi > 0 for all i = 1, . . . , q. Let σ2
p(B,S) be defined as in

Equation (2.30) of Definition 2.7.1 and define

γ
def
=

1

maxi=1,...,q

∑q
j=1, j 6=i pj

> 1. (2.37)

We then have that the max-distance sketch-and-project method of Algorithm 3 satisfies the

following convergence guarantee

‖xk+1 − x?‖2
B ≤ (1− γσ2

p(B,S))‖xk − x?‖2
B. (2.38)

Proof. Recall that fik(xk+1) = 0 by Lemma 2.7.6. Thus,

Ej∼p
[
fj(x

k+1)
]

=

q∑
j=1, j 6=ik

pjfj(x
k+1)

≤
(

max
j=1,...,q

fj(x
k+1)

)(q∑
j=1, j 6=ik

pj

)

≤
(

max
j=1,...,q

fj(x
k+1)

)(
max
j=1,...,q

q∑
j=1, j 6=i

pj

)
(2.37)
=

maxj=1,...,q fj(x
k+1)

γ
. (2.39)

26

From Equation (2.23) we have that

‖xk+1 − x?‖2
B

(2.23)
= ‖xk − x?‖2

B − max
i=1,...,q

fi(x
k)

(2.39)

≤ ‖xk − x?‖2
B − γEi∼p

[
fi(x

k)
]

(2.32)

≤
(
1− γσ2

p(B,S)
)
‖xk − x?‖2

B.

2.7.4 The proportional adaptive rule

We now consider the adaptive sampling strategy in which indices are sampled with probabilities

proportional to the sketched loss values. For this sampling strategy, we derive a convergence

rate that is strictly faster than that of Theorem 2.7.4 for uniform sampling.

Theorem 2.7.8. Consider Algorithm 2 with pk = f(xk)
‖f(xk)‖1 . Let u =

(
1
q
, . . . , 1

q

)
∈ ∆q and

σ2
u(B,S) be as defined in Equation (2.30). Let VARu [·] denote the variance taken with respect

to the uniform distribution over indices i ∈ {1, . . . , q}. It follows that for k ≥ 1,

E
[
‖xk+1 − x?‖2

B |xk
]
≤
(
1− (1 + q2VARu

[
pki
]
)σ2

u(B,S)
)
‖xk − x?‖2

B. (2.40)

Furthermore we have that

E
[
‖xk+1 − x?‖2

B

]
≤
(

1−
(

1 + 1
q

)
σ2
u(B,S)

)k
E
[
‖x1 − x?‖2

B

]
. (2.41)

Proof. Let Eu [·] denote the expectation taken with respect to the uniform distribution over

indices i ∈ {1, . . . , q}. First note that

VARu

[
fi(x

k)
]

= Eu
[
(fi(x

k))2
]
− Eu

[
fi(x

k)
]2

=
1

q

∑
(fi(x

k))2 − 1

q2

(∑
fi(x

k)
)2

. (2.42)

27

Given that pk = f(xk)
‖f(xk)‖1 ,

Ei∼pk
[
fi(x

k)
]

=

q∑
i=1

pki fi(x
k)

=

q∑
i=1

(fi(x
k))2∑q

i=1 fi(x
k)

(2.42)
=

qVARu

[
fi(x

k)
]

+ 1
q

(∑
fi(x

k)
)2∑q

i=1 fi(x
k)

=

(
q2VARu

[
fi(x

k)∑q
i=1 fi(x

k)

]
+ 1

)
1

q

q∑
i=1

fi(x
k). (2.43)

Recalling that pki = fi(x
k)∑q

i=1 fi(x
k)

and using Lemma 2.5.3 we have that

E
[
‖xk+1 − x?‖2

B |xk
]
≤ ‖xk − x?‖2

B − (1 + q2VARu

[
pki
]
)σ2

u(B,S)‖xk − x?‖2
B.

Furthermore, due to Lemma 2.7.1 we have that pk+1
ik

= 0. Therefore

VARu

[
pk+1
i

]
=

1

q

q∑
i=1

(
pk+1
i − 1

q

q∑
s=1

pk+1
s

)2

=
1

q

q∑
i=1

(
pk+1
i − 1

q

)2

≥ 1

q

(
pk+1
ik
− 1

q

)2

=
1

q3
.

This lower bound on the variance gives the following upper bound on Equation (2.40)

E
[
‖xk+1 − x?‖2

B |xk
]
≤
(

1−
(

1 + 1
q

)
σ2
u(B,S)

)
E
[
‖xk − x?‖2

B

]
.

Taking the expectation and unrolling the recursion gives the desired result

E
[
‖xk − x?‖2

B

]
≤
(

1−
(

1 + 1
q

)
σ2
u(B,S)

)
‖xk−1 − x?‖2

B

≤ . . .

≤
(

1−
(

1 + 1
q

)
σ2
u(B,S)

)k
‖x0 − x?‖2

B.

Thus by sampling proportional to the sketched losses the sketch-and-project method

enjoys a strictly faster convergence rate as compared to sampling uniformly. How much faster

28

depends on the variance of the adaptive probabilities through 1 + q2VARu

[
pki
]

which in turn

depends on the variance of the sketched losses.

This same variance term is used in [PCJ17] to analyze the convergence of an adaptive

sampling strategy based on the dual residuals for coordinate descent applied to regularized

loss functions and in [OAL16] for adaptive sampling in the block-coordinate Frank-Wolfe

algorithm for optimizing structured support vector machines.

2.7.5 Capped adaptive sampling

We now extend the capped adaptive sampling method and convergence guarantees of [BW18a,

BW18b, BW19a] for the randomized Kaczmarz and coordinate descent settings to the general

sketch-and-project setting. The extension is defined in Algorithm 4. At each iteration

k an index set Wk is constructed on Line 4 of Algorithm 4 that contains indices whose

sketched losses are sufficiently close to the maximal sketched loss and that are at least as

large as Ei∼p
[
fi(x

k)
]
, where p ∈ ∆q is a fixed reference probability. At each iteration, the

adaptive probabilities pki are zero for all indices that are not included in the set Wk. The

input parameter θ ∈ [0, 1] controls how aggressive the sampling method is. In particular,

if θ = 1, the method reduces to the max-distance rule. As θ → 0, the sampling method

remains adaptive, as only indices corresponding to sketched losses larger than Ei∼p
[
fi(x

k)
]

are

sampled with non-zero probability. Bai and Wu originally introduced an adaptive randomized

Kaczmarz method with θ = 1/2 [BW18a] and generalized this to allow the more general

choice of θ ∈ [0, 1][BW18b].

Algorithm 4 generalizes and improves upon the methods proposed in [BW18a, BW18b,

BW19a] in several ways. We generalize the methods from the randomized Kaczmarz setting

to the more general sketch-and-project setting. We additionally allow the use of any fixed

reference probability distribution p ∈ ∆q, whereas the methods of [BW18a, BW18b, BW19a]

use a specific reference probability when identifying the set of indices that will be selected

with nonzero probability. Lastly, we allow the use of any adaptive sampling strategy such

29

that the probabilities pki are zero outside of the set Wk whereas the methods proposed in

[BW18a, BW18b, BW19a] specify that a specific adaptive probability be used. The specific

probability is unnecessary in proving the accompanying convergence result Theorem 2.7.10.

Below, we provide two convergence guarantees for Algorithm 4. Theorem 2.7.9 provides a

convergence guarantee in terms of the spectral constants σ2
∞(B,S) and σ2

p(B,S) of Defini-

tion 2.7.1 and the parameter θ. Theorem 2.7.10 provides a generalization of the convergence

rate derived in [BW18b].

Algorithm 4 Capped Adaptive Sketch-and-Project

1: input: x0 ∈ Rn, A ∈ Rm×n, b ∈ Rm, p ∈ ∆q, θ ∈ [0, 1] and a set of sketching matrices

{S1, . . . ,Sq}

2: for k = 0, 1, 2, . . .

3: fi(x
k) = ‖Axk − b‖2

Hi
for i = 1, . . . , q.

4: Wk =
{
i | fi(xk) ≥ θmaxj=1,...,q fj(x

k) + (1− θ)Ej∼p
[
fj(x

k)
]}

5: Choose pk ∈ ∆q such that support(pk) ⊂ Wk

6: ik ∼ pk

7: xk+1 = xk −B−1A>Hik(Axk − b)

8: output: last iterate xk+1

Theorem 2.7.9. Consider Algorithm 4. Let p ∈ ∆q be a fixed reference probability and

θ ∈ [0, 1]. Let

Wk =

{
i | fi(xk) ≥ θ max

j=1,...,q
fj(x

k) + (1− θ)Ej∼p
[
fj(x

k)
]}

. (2.44)

It follows that

E
[
‖xk − x?‖2

B

]
≤
(
1− θσ2

∞(B,S)− (1− θ)σ2
p(B,S)

)k ‖x0 − x?‖2
B. (2.45)

Proof. First note that Wk is not empty since

max
j=1,...,q

fj(x
k) ≥ Ej∼p

[
fj(x

k)
]
,

30

and thus arg maxj=1,...,q fj(x
k) ∈ Wk. Since pki = 0 for all i 6∈ Wk, Lemma 2.5.3 gives that

Ei∼pk
[
‖xk+1 − x?‖2

B |xk
]

= ‖xk+1 − x?‖2
B −

∑
i∈Wk

pki fi(x
k). (2.46)

We additionally have∑
i∈Wk

fi(x
k)pki

(2.44)

≥
∑
i∈Wk

(
θ max
j=1,...,q

fj(x
k) + (1− θ)Ej∼p

[
fj(x

k)
])

pki

= θ max
j=1,...,q

fj(x
k) + (1− θ)Ej∼p

[
fj(x

k)
]

(2.47)

Lemma 2.7.2

≥
(
θσ2
∞(B,S) + (1− θ)σ2

p(B,S)
)
‖xk − x?‖2

B. (2.48)

Using Equation (2.48) to bound Equation (2.46) and taking the expectation gives the

result.

The resulting convergence rate is a convex combination of the spectral constant σ2
∞(B,S)

which corresponds to the max-distance convergence guarantee and σ2
p(B,S) corresponding to

the convergence guarantee for the fixed reference probabilities p. This convex combination is in

terms of the parameter θ and we can see that as θ → 1 the method and convergence guarantee

approach that of max-distance. When θ → 0, the convergence guarantee approaches that of

a fixed distribution, but still filters out sketches with sketched losses less than Ej∼p
[
fj(x

k)
]
.

This suggests that for θ ≈ 0 the convergence guarantee could be improved.

We now explicitly extend the analysis of Bai and Wu [BW18b, BW18b, BW19a] to derive

a convergence guarantee for our more general Algorithm 4.

Theorem 2.7.10. Consider Algorithm 4. Let p ∈ ∆q be a set of fixed reference probabilities

and θ ∈ [0, 1]. Let

γ
def
=

1

maxi=1,...,q

∑q
j=1, j 6=i pj

> 1. (2.49)

It follows for k ≥ 1

E
[
‖xk − x?‖2

B

]
(2.50)

≤
(
1− (θγ + (1− θ))σ2

p(B,S)
)k−1 (

1− θσ2
∞(B,S)− (1− θ)σ2

p(B,S)
)
‖x0 − x?‖2

B,

where the expectation is taken with respect to the probabilities prescribed by Algorithm 4.

31

Proof. By Lemma 2.7.6, at least one of the sketched losses is guaranteed to be zero for each

iterations k ≥ 1. Making the conservative assumption that this sketched loss corresponds

to the smallest probability p̂kik , we have, by Equation (2.39), that for an adaptive sampling

strategy that assigns pki = 0 to sketches Si with a sketched loss fi(x
k) = 0 that

maxj=1,...,q fj(x
k+1)

Ej∼p [fj(xk+1)]
≥ γ. (2.51)

Combining this with Equation (2.47), we obtain∑
i∈Wk

fi(x
k+1)pk+1

i ≥
(
θ

maxj=1,...,q fj(x
k+1)

Ej∼p [fj(xk+1)]
+ (1− θ)

)
Ej∼p

[
fj(x

k+1)
]

(2.51)

≥ (θγ + (1− θ))Ej∼p
[
fj(x

k+1)
]

(2.30)

≥ (θγ + (1− θ))σ2
p(B,S). (2.52)

Consequently for k ≥ 1, by Equation (2.46), we then have

E
[
‖xk+1 − x?‖2

B |xk
]
≤ ‖xk − x?‖2

B − (θγ + (1− θ))σ2
p(B,S)‖xk − x?‖2

B.

Taking the expectation and unrolling the recursion gives

E
[
‖xk+1 − x?‖2

B

]
≤
(
1− (θγ + (1− θ))σ2

p(B,S)
)k−1 ‖x1 − x?‖2

B.

Since, at the very first update, we cannot guarantee that there exists i ∈ [1, . . . , q] such that

fi(x
0) = 0, Equation (2.52) is not guaranteed for k = 0. So instead we use Equation (2.45) at

the last step in this recurrence to arrive at Equation (2.50).

The convergence rate for Algorithm 4 of Theorem 2.7.10 is an improvement over the

convergence guarantee for a fixed probability distribution since γ > 1. As was the case

for Theorem 2.7.9, the convergence rate is maximized when θ = 1, at which point the

resulting method is equivalent to the max-distance rule of Algorithm 3. Further, when θ = 1,

Theorem 2.7.10 guarantees

E
[
‖xk − x?‖2

B

]
≤
(
1− γσ2

p(B,S)
)k−1 (

1− σ2
∞(B,S)

)
‖x0 − x?‖2

B.

For θ = 0, Theorem 2.7.10 recovers the same convergence guarantee as for sampling according

to the non-adaptive probabilities p.

32

Sampling strategy Convergence rate bound Shown in

Fixed probabilities pki ≡ pi 1− σ2
p(B,S) [GR15b], Theorem 2.7.4

Max-distance 1− σ2
∞(B,S) Theorem 2.7.5

pki ∝ fi(x
k) 1−

(
1 + 1

q

)
σ2
u(B,S) Theorem 2.7.8

Capped 1− (θγ + (1− θ))σ2
p(B,S) Theorem 2.7.10

Table 2.1: Summary of convergence guarantees of Section 2.7.

2.8 Implementation tricks and computational complexity

One can perform adaptive sketching with the same order of cost per iteration as the standard

non-adaptive sketch-and-project method when τq, the number of sketches q times the

sketch size τ , is not significantly larger than the number of columns n. In particular,

adaptive sketching methods can be performed for a per-iteration cost of O(τ 2q+ τn), whereas

the standard non-adaptive sketch-and-project method has a per-iteration cost of O(τn).

Section 2.A discusses the costs of adaptive sketch-and-project methods in more detail.

Pseudocode for efficient implementation is provided in Algorithm 5.

The main computational costs of adaptive sketch-and-project (Algorithm 2) at each

iteration come from computing the sketched losses fi(x
k) of Equation (2.8) and updating the

iterate from xk to xk+1 via Equation (2.6). The iterate update for xk and the formula for the

sketched loss fi(x
k) = ‖Ax− b‖2

Hi
both require calculating what we call the sketched residual,

Rk
i

def
= C>i S>i (Axk − b), (2.53)

where Ci is any square matrix satisfying CiC
>
i = (S>i AB−1A>Si)

†. The adaptive methods

considered here require the sketched residual Rk
i for each sketch index i = 1, 2, . . . , q at each

iteration. For such adaptive methods, it is possible to update the iterate xk and compute

the sketched losses fi(x
k) more efficiently if one maintains the set of sketched residuals

{Rk
i : i = 1, 2, . . . , q} in memory.

33

Different sampling strategies require different amounts of computation as well. Among

the adaptive sampling strategies considered here, max-distance requires the least amount

of computation followed by sampling proportional to the sketched losses. Capped adaptive

sampling requires the most computation. The costs for each sampling strategy are discussed

in detail in Subsection 2.A.3 and are summarized in Tables 2.7 and 2.8.

2.9 Summary of consequences for special cases

We now discuss the consequences of the convergence analyses of Section 2.7 and the computa-

tional costs detailed in Section 2.8 for the special sketch-and-project subcases of randomized

Kaczmarz and coordinate descent. For Ci as defined in Equation (2.54), in both the random-

ized Kaczmarz method and coordinate descent, Ci is a scalar.

2.9.1 Adaptive Kaczmarz

By choosing the parameter matrix B = I and sketching matrices Si = ei for i = 1, . . . ,m

where ei ∈ Rn is the ith coordinate vector, we arrive at the Kaczmarz method discussed in

Subsection 2.1.1. For randomized Kaczmarz, the sketches Si = ei isolate a single row of the

matrix A, as S>i A = Ai:. In this setting, the number of sketches q = m for A ∈ Rm, and the

sketch size is τ = 1. In order to perform the adaptive update efficiently, the matrices

B−1A>SiCi =
A>i:
‖Ai:‖

and C>i S>i AB−1A>SjCj =
〈Ai:,Aj:〉
‖Ai:‖‖Aj:‖

∀ i, j = 1, 2, . . .m

should be precomputed.

In order to succinctly express the convergence rates, we define the diagonal probabil-

ity matrix P = Diag (p1, . . . , pm) and the normalized matrix Ā
def
= D−1

RKA, with DRK
def
=

Diag (‖A1:‖2, . . . , ‖Am:‖2) as in [NSL16]. In the randomized Kaczmarz setting, the projection

matrix Zi as defined in Equation (2.16) is the orthogonal projection onto the ith row of A

34

and takes the form

Zi =
Ai:A

>
i:

‖A2
i:‖

.

We then have

Ei∼p [Zi] = D−1
RKAPA>D−1

RK = Ā>PĀ.

The costs and convergence rates for the adaptive sampling strategies discussed in Section 2.6

applied to the Kaczmarz method are summarized in Table 2.2, where we use the notation

‖x‖∞
def
= maxi |xi| for any vector x.

Sampling

strategy
Convergence rate bound Shown in

Flops per

iteration

Uniform 1− 1
m
λ+

min(Ā>Ā) [NSL16], Theorem 2.7.4 2 min(n,m) + 2n

pi ∝ ‖Ai:‖2
2 1− λ+min(A>A)

‖A‖2F
[SV09], Theorem 2.7.4 2 min(n,m) + 2n

Max-distance 1− min
v∈Range(A>)

‖Āv‖∞
‖v‖2 [NSL16], Theorem 2.7.5 3m+ 2n

pki ∝ fi(x
k) 1− m+1

m
λ+

min(Ā>Ā) Theorem 2.7.8 5m+ 2n

Capped 1− (θγ + (1− θ))λ+
min(Ā>PĀ) [BW18b], Theorem 2.7.10 9m+ 2n

Table 2.2: Summary of convergence guarantees and costs of various sampling strategies

for the randomized Kaczmarz method. Here, γ = 1/maxi=1,...,m

∑m
j=1,j 6=i pi as defined

in Equation (2.37), P = Diag (p1, . . . , pm) is a matrix of arbitrary fixed probabilities, and

Ā := D−1
RKA, with DRK := Diag (‖A1:‖2, . . . , ‖Am:‖2). Only leading-order flop counts are

reported. The number of sketches is q, the sketch size is τ and the number of rows and

columns in the matrix A are m and n respectively.

2.9.2 Adaptive coordinate descent

By choosing the parameter matrix B = A>A and sketching matrices Si = Aei for i = 1, . . . , n

where ei ∈ Rm is the ith coordinate vector, we arrive at the coordinate descent method

discussed in Subsection 2.1.2. In this setting, the number of sketches q = n, where n is

35

number of columns in A, and the sketch size is τ = 1.

Coordinate descent uses fewer flops per iteration than indicated by the general computation

that will be given in Subsection 2.A.1. This computational savings arises from the sparsity

of the matrix B−1A>SikCik = ei/‖A:i‖. As a result, the iterate update of xk to xk+1 using

the sketched residuals Rk
ik

requires only O(1) flops instead of 2n flops as indicated in the

general analysis that is summarized in Table 2.5. The cost of a coordinate descent update is

dominated by the 2n flops required to calculate Rk
ik

by either the auxiliary update of Line 11

of Algorithm 5 or directly via Equation (2.53).

Similar to the randomized Kaczmarz case, we define the diagonal probability matrix P
def
=

Diag (p1, . . . , pn) and the normalized matrix Ã
def
= AD−1

CD, with DCD
def
= Diag (‖A:1‖2, . . . , ‖A:n‖2).

The projection matrix Zi as defined in Equation (2.16) is the projection given by

Zi = (A>A)−1/2A>A
eie
>
i

‖A:i‖2
A>A(A>A)−1/2 = (A>A)1/2 eie

>
i

‖A:i‖2
(A>A)1/2.

We then have

Ei∼p [Zi] = (A>A)1/2D−1
CDPD−1

CD(A>A)1/2.

Note that Ei∼p [Zi] is similar to PD−1
CDA>AD−1

CD = PÃ>Ã and thus

λ+
min(Ei∼p [Zi]) = λ+

min(PÃ>Ã).

The costs and convergence rates for the adaptive sampling strategies discussed in Section 2.6

applied to coordinate descent are summarized in Table 2.3.

2.10 Experiments

We test the performance of various adaptive and non-adaptive sampling strategies in the

special sketch-and-project subcases of randomized Kaczmarz and coordinate descent. We

report performance via three different measurements: norm-squared error versus iteration,

norm-squared error versus approximate flop count, and the worst expected convergence factor.

36

Sampling

strategy
Convergence rate bound Shown in

Flops per

iteration

Uniform 1− 1
n
λ+

min(Ã>Ã) Theorem 2.7.4 2n

pi ∝ ‖A:i‖2
2 1− λ+min(A>A)

‖A‖2F
[LL10] Theorem 2.7.4 2n

Max-distance 1− min
v∈Range(A>)

‖Ãv‖∞
‖v‖2 Theorem 2.7.5 3n

pki ∝ fi(x
k) 1− n+1

n
λ+

min(Ã>Ã) Theorem 2.7.8 5n

Capped 1− (θγ + (1− θ))λ+
min(PÃ>Ã) Theorem 2.7.10 9n

Table 2.3: Summary of convergence guarantees and costs of various sampling strategies for

adaptive coordinate descent. Here, γ = 1/maxi=1,...,m

∑n
j=1,j 6=i pi as defined in Equation (2.37),

P = Diag (p1, . . . , pn) is a matrix of arbitrary fixed probabilities, and Ã = AD−1
CD, with

DCD = Diag (‖A:1‖2, . . . , ‖A:n‖2). Only flop counts of leading-order are reported.

Results are averaged over 50 trials. For each trial a single matrix A is used. For the

experiments measuring error, a single true solution x? and vector b are used. The worst

expected convergence factor aims to approximate the spectral constants of Definition 2.7.1.

Since the max-distance method is deterministic, generating a new exact solution x? adds

variation between trials, hopefully leading to a more accurate approximation of the spectral

constant. The exact solutions x? are generated by

x? =
A>ω

‖A>ω‖B
,

where ω ∈ Rm is a vector of i.i.d. random normal entries. Thus ‖x?‖2
B = 1 is normalized

with respect to the B–norm and lies in the row space of A. The latter condition guarantees

that x? is indeed the unique solution to Equation (2.1). We measure the error in terms of

the B-norm. Recall that for randomized Kaczmarz B = I, while for coordinate descent,

B = A>A. The sketch-and-project methods are implemented using the auxiliary update

Line 11 of Algorithm 5. For the max-distance rule, if multiple sketches achieve the maximal

sketched-loss value, we select the first such sketch.

37

We consider synthetic matrices of size 1, 000× 100 and 100× 1, 000 that are generated

with i.i.d. standard Gaussian entries. We additionally test the various adaptive sampling

strategies on two large-scale matrices arising from real world problems. These matrices are

available via the SuiteSparse Matrix Collection [DH11]. The first system (Ash958) is an

overdetermined matrix with 958 rows, 292 columns, and 1,916 entries [DGL89, DGL92]. The

matrix comes from a survey of the United Kingdom and is part of the original Harwell sparse

matrix test collection [DGL92]. The second real matrix we consider is the GEMAT1 matrix,

which arises from optimal power flow modeling. This matrix is highly underdetermined and

consists of 4,929 rows, 10,595 columns, and 47,369 entries [DGL89, DGL92].

2.10.1 Error per iteration

We first investigate the convergence of the squared norm of the error ‖xk − x?‖2
B versus

the number of iterations in Figure 2.2. The first row of subfigures (Figures 2.2a and 2.2b)

shows convergence for randomized Kaczmarz, while the second row of subfigures (Figures 2.2c

and 2.2d) gives the convergence of various sampling strategies for coordinate descent. The first

column of subfigures (Figures 2.2a and 2.2c) uses an underdetermined system of 100× 1, 000

while the second column of subfigures (Figures 2.2b and 2.2d) considers an overdetermined

system of 1, 000× 100. Figures 2.4c and 2.4d demonstrate convergence per iteration for the

Ash958 matrix and Figures 2.5a and 2.5c for randomized Kaczmarz and coordinate descent

applied to the GEMAT1 matrix.

As expected, we see that the max-distance rule performs the best per iteration followed by

the capped adaptive strategy, then sampling proportional to the sketched residuals and finally

followed by the uniform strategy. For randomized Kaczmarz applied to underdetermined

systems and coordinate descent applied to overdetermined systems, max-distance and the

capped adaptive sampling strategies perform similarly in terms of squared error per iteration.

The convergence of randomized Kaczmarz for each sampling strategy applied to overdeter-

mined systems is very similar to that of coordinate descent applied to underdetermined

38

systems. Conversely, the convergence of randomized Kaczmarz for each sampling strategy

applied to underdetermined systems is very similar to that of coordinate descent applied

to overdetermined systems. For the large and underdetermined GEMAT1 matrix, we find

that randomized coordinate descent methods have much larger variance in their performance

compared to randomized Kaczmarz methods.

(a) Adaptive randomized Kaczmarz, A ∈

R100×1,000.

(b) Adaptive randomized Kaczmarz, A ∈

R1,000×100.

(c) Adaptive coordinate descent, A ∈ R100×1,000. (d) Adaptive coordinate descent, A ∈ R1,000×100.

Figure 2.2: A comparison between different selection strategies for randomized Kaczmarz and

coordinate descent methods on matrices with i.i.d. standard Gaussian entries. Squared error

norms were averaged over 50 trials. The shaded areas indicate the middle 95% performance.

Subplots on the left show convergence for underdetermined systems, while those on the right

show the convergence for overdetermined systems.

39

2.10.2 Error versus approximate flops required

If we take into account the number of flops required for each method, the relative performance

of the methods changes significantly. In order to approximate the number of flops required for

each sampling strategy, we use the leading-order flop counts per iteration given in Tables 2.2

and 2.3. We do not consider the precomputational costs, but only the costs incurred at

each iteration. The performance in terms of flops of each sampling strategy is reported

in Figure 2.3. Performance on the Ash958 matrix is reported in Figures 2.4c and 2.4d.

Performance on the GEMAT1 matrix for randomized Kaczmarz and coordinate descent is

reported in Figures 2.5b and 2.5d.

As discussed in Section 2.8, the adaptive methods are typically more expensive than

non-adaptive methods as one must update the sketched residuals Rk
i for i = 1, . . . , q at each

iteration k. Yet even after taking flops into consideration, we find that the max-distance

rule still performs the best overall. For randomized Kaczmarz applied to an overdetermined

synthetic matrix, uniform sampling performance is comparable to max-distance (Figure 2.3b).

In all other experiments, however, max-distance is the clear winner. Since the max-distance

rule performs at least as well per iteration as the other adaptive methods, yet the max-distance

rule is less expensive, it naturally outperforms the other adaptive methods when flop counts

are considered.

2.10.3 Spectral constant estimates

Theorems 2.7.4, 2.7.5 and 2.7.7 to 2.7.10 of Section 2.7 provide conservative views of the

convergence rates of each method, as the spectral constants of Definition 2.7.1 give the

expected convergence corresponding to the worst possible point x ∈ Range (B−1A) as

opposed to the iterates xk. In practice, the convergence at each iteration performs better

than the convergence bounds indicate.

Recall that the convergence rates derived in Section 2.7 are given in terms of spectral

40

(a) Adaptive randomized Kaczmarz, A ∈

R100×1,000.

(b) Adaptive randomized Kaczmarz, A ∈

R1,000×100.

(c) Adaptive coordinate descent, A ∈ R100×1,000. (d) Adaptive coordinate descent, A ∈ R1,000×100.

Figure 2.3: A comparison between different selection strategies for randomized Kaczmarz and

coordinate descent methods on matrices with i.i.d. standard Gaussian entries. Squared error

norms were averaged over 50 trials and are plotted against the approximate flops aggregated

over the computations that occur at each iteration. The shaded areas indicate the middle

95% performance. Subplots on the left show convergence for underdetermined systems, while

those on the right show the convergence for overdetermined systems.

constants (Definition 2.7.1) of the form

σ2
p(B,S)

def
= min

x∈Range(B−1A>)

Ei∼p [fi(x)]

‖x− x?‖2
B

.

We will refer to the value
Ei∼pk

[
fi(x

k)
]

‖xk − x?‖2
B

41

(a) Adaptive coordinate descent. (b) Adaptive randomized Kaczmarz.

(c) Adaptive coordinate descent. (d) Adaptive randomized kaczmarz.

Figure 2.4: A comparison between different selection strategies for randomized Kaczmarz

and coordinate descent methods on the Ash958 matrix. Squared error norms were averaged

over 50 trials and plotted against both the iteration and the approximate flops required. The

shaded areas indicate the middle 95% performance.

as the expected step-size factor and note that larger values indicate superior performance.

The smallest expected step-size factor observed for each method provides an estimate

and upper bound on the spectral constants in the derived convergence rates. The minimal

expected step-size factor for each sampling method applied to random Gaussian matrices of

size 1, 000×100 and 100×1, 000 are reported in Table 2.4. As expected, we find that uniform

sampling has the smallest value while max-distance has the largest. In Theorem 2.7.8, we

proved a bound on the convergence rate for sampling proportional to the sketched losses that

was strictly faster than the convergence guarantee for uniform sampling. We find that the

42

(a) Adaptive randomized Kaczmarz. (b) Adaptive randomized Kaczmarz.

(c) Adaptive coordinate descent. (d) Adaptive coordinate descent.

Figure 2.5: A comparison between different selection strategies for randomized Kaczmarz

and coordinate descent on the GEMAT1 matrix. Squared error norms were averaged over 50

trials and plotted against both the iteration and the approximate flops required. The shaded

areas indicate the middle 95% performance.

estimated spectral constants in Table 2.4 for the proportional sampling strategy are likewise

strictly larger than the estimated spectral constants for uniform sampling.

2.11 Conclusions

We extended adaptive sampling methods to the general sketch-and-project setting. We

presented a computationally efficient method for implementing the adaptive sampling strate-

gies using an auxiliary update. For several specific adaptive sampling strategies including

43

Sampling strategy
Randomized Kaczmarz Coordinate descent

1, 000× 100 100× 1, 000 1, 000× 100 100× 1, 000

Uniform 0.00705 0.00667 0.00656 0.00715

pi ∝ ‖A:i‖2
2 0.02019 0.01569 0.01722 0.02014

Capped 0.03885 0.01901 0.01952 0.03878

Max-distance 0.04593 0.01994 0.02171 0.04711

Table 2.4: Minimal expected step-size factor for each sampling method applied to matrices of

i.i.d. Gaussian entries.

max-distance selection, the capped adaptive sampling of [BW18a, BW18b, BW19a], and

sampling proportional to the sketched residuals, we derived convergence rates which show

that the max-distance rule has the fastest convergence guarantee among the sampling meth-

ods considered. This superior performance was observed in practice as well for both the

randomized Kaczmarz and coordinate descent subcases.

2.A Implementation tricks and computational complexity, cont.

We describe how one can perform adaptive sketching with the same order of cost per iteration

as the standard non-adaptive sketch-and-project method when τq, the number of sketches q

times the sketch size τ , is not significantly larger than the number of columns n. In particular,

we show how adaptive sketching methods can be performed for a per-iteration cost of

O(τ 2q+τn), whereas the standard non-adaptive sketch-and-project method has a per-iteration

cost of O(τn). The precomputations and efficient update strategies presented here are a

generalization of those suggested in [BW18a] for the Kaczmarz setting. Precomputational costs

are a one time expense and are independent of the sampling strategy. The precomputational

costs depend on the sparsity structure of the sketches and are summarized for randomized

Kaczmarz and coordinate descent in Table 2.6. The computational costs given in this section

44

may be over-estimates of the costs required for specific sketch choices such as when the

update is sparse, as is the case in coordinate descent. The special cases of adaptive Kaczmarz

and adaptive coordinate descent were analyzed in Section 2.9.

Pseudocode for efficient implementation is provided in Algorithm 5. Throughout this

section, we will frequently omit O(1) and O(log(q)) flop counts since they are insignificant

compared to the number of rows m, the number of columns n, and the number of sketches q.

2.A.1 Per-iteration cost

The main computational costs of adaptive sketch-and-project (Algorithm 2) at each iteration

come from computing the sketched losses fi(x
k) of Equation (2.8) and updating the iterate

from xk to xk+1 via Equation (2.6). We now discuss how these steps can be calculated efficiently.

An efficient implementation for adaptive sketch-and-project is provided in Algorithm 5. The

costs of each step of an iteration of the adaptive sketch-and-project method are summarized

in Table 2.5.

Let Ci be any square matrix satisfying

CiC
>
i = (S>i AB−1A>Si)

†. (2.54)

For example, Ci could be the Cholesky decomposition of (S>i AB−1A>Si)
†. The sketched

loss fi(x
k) and the iterate update from xk to xk+1 can now be written as

fi(x
k) = ‖S>i (Axk − b)‖2

CiC>i
= ‖C>i S>i (Axk − b)‖2

2

and

xk+1 = xk −B−1A>SikCikC
>
ik

S>ik(Axk − b).

Notice that both the iterate update for xk and the formula for the sketched loss fi(x
k) share

the sketched residual Rk
i

def
= C>i S>i (Axk − b) defined in Equation (2.53). In adaptive methods

one must compute the sketched residual Rk
i for i = 1, 2, . . . , q. When sampling from a fixed

distribution, however, calculating the sketched losses fi(x
k) is unnecessary and only the

sketched residual Rk
ik

corresponding to the selected index ik need be computed.

45

Depending on the sketching matrices Si and the matrix B, it is possible to update the

iterate xk and compute the sketched losses fi(x
k) more efficiently if one maintains the set

of sketched residuals {Rk
i : i = 1, 2, . . . , q} in memory. Using the sketched residuals, the

calculations above can be rewritten as

fi(x
k) = ‖Rk

i ‖2
2 (2.55)

and

xk+1 = xk −B−1A>SikCikR
k
ik
. (2.56)

The sketched residuals {Rk
i : i = 1, 2, . . . , q} can either be computed via an auxiliary

update applied to the set of previous set of sketched residuals {Rk−1
i : i = 1, 2, . . . , q} or

directly using the iterate xk. Using the auxiliary update,

Rk+1
i = C>i S>i (Axk+1 − b)

= C>i S>i

(
A(xk −B−1A>SikCikR

k
ik

)− b
)

= Rk
i −C>i S>i AB−1A>SikCikR

k
ik

(2.57)

with the initialization

R0
i = C>i

(
S>i (Ax0 − b)

)
.

If the matrix C>i S>i AB−1A>SjCj ∈ Rτ×τ is precomputed for each i, j = 1, 2, . . . , q, the

sketched residual Rk
i can be updated to Rk+1

i for 2τ 2 flops for each index i via Equation (2.57).

Using the precomputed matrices requires storing 1
4
τ(τ + 1)q(q + 1) floats.

In the non-adaptive case, one only needs to compute the single sketched residual Rk
ik

as

opposed to the entire set of sketched residuals, since the sketched losses fi(x
k) are not needed.

If the matrices

C>i S>i A ∈ Rτ×n and C>i S>i b ∈ Rτ ,

are precomputed for i = 1, 2, . . . , q, computing each sketched residual Rk
i directly from the

iterate xk costs 2τn flops via Equation (2.53). If qτ > n, then it is cheaper to compute the

46

sketched residual Rk
ik

using the auxiliary update Equation (2.57) rather than computing it

directly from xk.

From the sketched residual Rk
i , the sketched losses fi(x

k) can be computed for 2τ −1 flops

for each index i via Equation (2.55). If the matrix B−1A>SiCi ∈ Rn×τ is precomputed for each

i = 1, 2, . . . , q, the iterate xk can then be updated to xk+1 for 2τn flops via Equation (2.56).

These costs are summarized in Table 2.5.

Algorithm 5 Efficient Adaptive Sampling Sketch-and-Project

1: input: A ∈ Rm×n, b ∈ Rm, {Si ∈ Rm×τ : i = 1, 2, . . . , q}, B ∈ Rn×n, x0 ∈

Range
(
B−1A>

)
,

2: compute Ci = Cholesky
(

(S>i AB−1A>Si)
†
)

for i = 1, 2, . . . , q

3: . The Ci can be discarded after Line 6.

4: compute B−1A>SiCi ∈ Rn×τ for i = 1, 2, . . . , q

5: compute C>i S>i AB−1A>SjCj ∈ Rτ×τ for i, j = 1, 2, . . . , q

6: initialize R0
i = C>i

(
S>i (Ax0 − b)

)
∈ Rτ for i = 1, 2, . . . , q

7: for k = 0, 1, 2, . . .

8: compute fi(x
k) = ‖Rk

i ‖2
2 for i = 1, 2, . . . , q

9: sample ik ∼ pki , where pk ∈ ∆q is a function of f(xk)

10: update xk+1 = xk − (B−1A>SikCik)Rk
ik

11: update Rk+1
i = Rk

i − (C>i S>i AB−1A>SikCik)Rk
ik

for i = 1, 2, . . . , q

12: output: last iterate xk+1

2.A.2 Cost of sampling indices

The cost of computing the sampling probabilities pk from the sketched losses fi(x
k) depends

on the sampling strategy used. Sampling from a fixed distribution can be achieved with

an O(1) cost using precomputations of O(q) [Wal74]. Adaptive strategies sample from a

new, unseen distribution at each iteration, which can be achieved with a mean of q flops

using, for example, inversion by sequential search [Kem81, Dev86, p. 86]. In practice, the

47

Per iteration

computation
Flops

fi(x
k) ∀i via Eqn. (2.55) (2τ − 1)q

xk+1 via Eqn. (2.56) 2τn

Rk
i ∀i via Eqn. (2.57) 2τ 2q

Rk
ik

via Eqn. (2.53) 2τn

(a) Baseline flop counts. Flop counts

of O(1) have been omitted.

Stored object Storage

xk n

Rk
i ∀i τq

B−1A>SiCi ∀i τqn

C>i S>i AB−1A>SjCj∀i, j 1
4
τ(τ + 1)q(q + 1)

C>i S>i A and C>i S>i b ∀i τq(n+ 1)

(b) Storage costs.

Table 2.5: Summary of the costs of Algorithm 5 excluding costs that are specific to the

sampling method. The number of sketches is q, the sketch size is τ and the number of columns

in the matrix A is n.

probabilities pki corresponding to each index i are given by a function of the sketched losses

f(xki) and normalizing these values is unnecessary. Instead, one can sum the q sketched

losses and apply inversion by sequential search with a uniform random value r generated

between zero and the sum of these values. This summation requires q − 1 flops. Thus, the

total cost for sampling from an adaptive probability distribution for the methods considered

is approximately 2q flops on average. The costs for the sampling strategies discussed in

Section 2.6 are summarized in Tables 2.7 and 2.8. The calculations of these costs are discussed

in more detail in Subsection 2.A.3.

2.A.3 Sampling strategy specific costs

We now detail the calculations that lead to the costs associated with each of the specific

sampling strategies that are reported in Tables 2.7 and 2.8.

48

Abstract

computation

Randomized Kaczmarz Coordinate Descent

Computation Cost Computation Cost

Ci of Equation (2.54) 1
‖Ai:‖ 2mn+O(m) 1

‖A:i‖ 2mn+O(n)

B−1A>SiCi
A>i:
‖Ai:‖ mn ei

‖A:i‖ n

C>i S>i AB−1A>SjCj
〈Ai:,Aj:〉
‖Ai:‖‖Aj:‖ m2n+O(m2 +mn)

〈A:i,A:j〉
‖A:i‖‖A:j‖ mn2 +O(mn+ n2)

Table 2.6: Precomputational costs for adaptive randomized Kaczmarz and adaptive coordinate

descent. The computational costs assume the previous elements have been computed and

give the cost of computing the value for all indices.

2.A.3.1 Sampling from a fixed distribution

When sampling the indices i from a fixed distribution, computing the sketched losses fi(x
k)

is unnecessary and only the sketched residual Rk
ik

of the selected index ik is needed to update

the iterate xk. If qτ > n, where q is the number of sketches, τ is the sketch size and n is the

number of columns in the matrix A, it is cheaper to compute the sketched residual Rk
ik

using

the auxiliary update Equation (2.57) rather than computing it directly from xk. Ignoring

the O(1) cost of sampling from the fixed distribution, the iterate update takes either 4τn

flops if qτ > n and one maintains the set of sketched residuals via the auxiliary update

Equation (2.57) or 2τ(n+ q) flops if the sketched residual Rk
ik

is calculated from the iterate

xk directly via Equation (2.53).

2.A.3.2 Max-distance selection

Performing max-distance selection requires finding the maximum element of the length q

vector of sketched losses given in Equation (2.55). Assuming the maximal element is uniformly

distributed among the entries, the mean cost is q +O(log q) flops, where q flops are used to

check each element and O(log q) flops arise from updates to the running maximal value. For

convenience, we ignore the O(log q) flops and consider the cost of the selection step using the

49

Sampling strategy
Flops from sampling

Non-sampling flops

τ > 1 τ = 1

Fixed probabilities pki ≡ pi O(1) O(1) 2τ min(n, τq) + 2τn

Max-distance q O(log(q)) (2τ 2 + 2τ − 1)q + 2τn

pki ∝ fi(x
k) 2q 2q (2τ 2 + 2τ − 1)q + 2τn

Capped 6q 6q (2τ 2 + 2τ − 1)q + 2τn

Table 2.7: Rule-specific per-iteration costs of Algorithm 5. Only leading-order flop counts

are reported. The non-sampling flops are those that are independent of the specific adaptive

sampling method used and are those that correspond to the steps indicated in Table 2.5a.

The extra flops for sampling are those that are required to calculate the adaptive sampling

probabilities pk at each iteration. The number of sketches is q, the sketch size is τ and the

number of columns in the matrix A is n.

max-distance rule to be q flops. If the sketches Si are vectors, or equivalently we have τ = 1,

then the sketched residuals Rk
i are scalars and finding the maximal sketched loss fi(x

k) is

equivalent to finding the sketched residual Rk
i of maximal magnitude. We can thus save q

flops per iteration by skipping the step of computing the sketched losses and instead taking

the sketched residual of maximal magnitude.

2.A.3.3 Sampling proportional to the sketched loss

Sampling indices with probabilities proportional to the sketched losses fi(x
k) requires ap-

proximately 2q flops on average using inversion by sequential search.

50

Sampling strategy
Flops per iteration

τ > 1 τ = 1

Fixed probabilities pki ≡ pi 2τ min(n, τq) + 2τn 2 min(n, q) + 2n

Max-distance (2τ 2 + 2τ)q + 2τn 3q + 2n

pki ∝ fi(x
k) (2τ 2 + 2τ + 1)q + 2τn 5q + 2n

Capped (2τ 2 + 2τ + 5)q + 2τn 9q + 2n

Table 2.8: Rule-specific per-iteration costs of Algorithm 5. Only leading-order flop counts are

reported. The number of sketches is q, the sketch size is τ and the number of columns in the

matrix A is n.

2.A.3.4 Capped adaptive sampling

Recall from Subsection 2.7.5 that using capped adaptive sampling requires identifying the set

Wk =

{
i | fi(xk) ≥ θ max

j=1,...,q
fj(x

k) + (1− θ)Ej∼p
[
fj(x

k)
]}

.

Sampling with the capped adaptive sampling strategy requires identifying the set Wk and

sampling an index from this set. Identifying the set Wk requires q + O(log q) flops to

identify the maximal sketched loss fi(x
k), 2q flops to compute the weighted average of the

sketched losses Ej∼p
[
fj(x

k)
]
, O(1) flops to calculate the threshold for the set Wk, and q

flops to compare each sketched loss against the threshold. Sampling an index from the

set Wk requires on average 2q flops by using inversion by sequential search as discussed

in Subsection 2.A.2.§ Thus, the total cost of the sampling step is 6q + O(log q) flops.

When a uniform average is used in place of the weighted average, the expected sketched loss

Ej∼p
[
fj(x

k)
]

can be computed in just q flops as opposed to 2q. In that case, the total cost

of the sampling step is only 5q +O(log q).

§The analyses of [BW18a, BW18b] omitted the cost of sampling the index from a new distribution at

each iteration, and thus our cost calculations differ by 2q.

51

2.B Auxiliary lemma

We now invoke a lemma taken from [GR16].

Lemma 2.B.1. For any matrix W and symmetric positive semidefinite matrix G such that

Null (G) ⊂ Null
(
W>) , (2.58)

we have that

Null (W) = Null
(
W>GW

)
. (2.59)

Proof. In order to establish Equation (2.59), it suffices to show the inclusion Null (W) ⊇

Null
(
W>GW

)
since the reverse inclusion trivially holds. Letting s ∈ Null

(
W>GW

)
, we

see that ‖G1/2Ws‖2 = 0, which implies G1/2Ws = 0. Consequently

Ws ∈ Null
(
G1/2

)
= Null (G)

(2.58)
⊂ Null

(
W>) .

Thus Ws ∈ Null
(
W>) ∩ Range (W) which are orthogonal complements which shows that

Ws = 0.

52

CHAPTER 3

Randomized Kaczmarz with Averaging∗

3.1 Introduction

In computed tomography, image processing, machine learning, and many other fields, a

common problem is that of finding solutions to large linear systems of equations that do not

fit in memory. Given A ∈ Rm×n and b ∈ Rm, we aim to find x ∈ Rn which solves the linear

system of equations

Ax = b. (3.1)

We will generally assume the system is overdetermined, with m� n. For simplicity, we assume

throughout that A has full rank so that the solution is unique when it exists. However, this

assumption can be relaxed if one is interested in the least-norm there are multiple solutions.

When a solution to Equation (3.1) exists, we denote the solution by x? and refer to the

problem as consistent. Otherwise, the problem is inconsistent, and x? instead denotes the

least-squares solution

x?
def
= arg min

x∈Rn

1

2
‖b−Ax‖2

2.

The least-squares solution can be equivalently written as x? = A†b, where A† is the Moore–

Penrose pseudoinverse of A. We denote the least-squares residual as r?
def
= b−Ax?, which is

zero for consistent systems.

∗This chapter is adapted from [MTM21].

53

3.1.1 Randomized Kaczmarz

Randomized Kaczmarz (RK) is a popular iterative method for approximating the least-squares

solution of large, overdetermined linear systems [Kac37, SV09]. At each iteration, an equation

is chosen at random from the system in Equation (3.1) and the current iterate is projected

onto the solution space of that equation. The distribution for sampling the equation is a

parameter of the method. In a relaxed variant of RK, a step is taken in the direction of this

projection with the size of the step depending on a relaxation parameter.

Let xk be the kth iterate. We use Ai to denote the ith row of A and ‖·‖ def
= ‖·‖2. The

relaxed RK update is given by

xk+1 = xk − λk,ik
Aikx

k − bik
‖Aik‖2

A>ik , (3.2)

where ik is sampled from some fixed distribution D at each iteration and λk,i are relaxation

parameters [CZT12]. Fixing the relaxation parameters λk,i = 1 for all iterations k and indices

i leads to the standard RK method in which one projects the current iterate xk onto the

solution space of the chosen equation Aikx = bik at each iteration [SV09]. Choosing relaxation

parameters λk,i 6= 1 can be used to accelerate convergence or dampen the effect of noise in

the linear system Ax = b [CZT12, HN90a, HN90b].

For consistent systems, RK converges exponentially in expectation to the solution x?

[SV09], which when multiple solutions exist is the least-norm solution [ZF13, MNR15]. For

inconsistent systems, there exists at least one equation Ajx = bj that is not satisfied by x?.

As a result RK cannot converge for inconsistent systems, since it will occasionally project onto

the solution space of such an equation. One can, however, guarantee exponential convergence

in expectation to within a radius of the least-squares solution [Nee10, ZF13, NT14]. This

radius is commonly referred to as the convergence horizon. The size of the convergence

horizon depends on several factors including the least squares residual r?, spectral properties

of A, and the choice of relaxation parameter λk,ik .

54

3.1.2 Randomized Kaczmarz with Averaging

In order to take advantage of parallel computation and speed up the convergence of RK, we

consider a simple extension of the RK method, where at each iteration multiple independent

updates are computed in parallel and a weighted average of the updates is used. Specifically,

we write the averaged RK update

xk+1 = xk − 1

q

∑
i∈τk

wi
Aix

k − bi
‖Ai‖2

A>i , (3.3)

where τk is a random set of q row indices sampled with replacement and wi represents the

weight corresponding to the ith row. RK with averaging is detailed in Algorithm 6. If τk is a

set of size one and the weights are chosen as wi = 1 for i = 1, . . . ,m, we recover the standard

RK method.

Algorithm 6 Randomized Kaczmarz with Averaging

1: Input A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, weights w ∈ Rm, number of maximum number of

iterations K, distribution D, number of threads q

2: for k = 0, . . . , K − 1

3: τk ← q indices sampled from D

4: Compute δ ← 1
q

∑
i∈τk wi

Aix
k−bi

‖Ai‖2 A>i in parallel

5: Update xk+1 ← xk − δ

6: Output xK

3.1.3 Contributions

We derive a general convergence result for RK with averaging, and identify the conditions

required for convergence to the least-squares solution. These conditions guide the choices of

weights and probabilities of row selection, up to a relaxation parameter α. When q = 1 and

appropriate weights and probabilities are chosen, we recover the standard convergence for

RK [SV09, Nee10, ZF13].

55

For uniform weights and consistent systems, we relate RK with averaging to a more general

parallel sketch-and-project method [RT20]. We also provide an estimate of the optimal choice

for the relaxation parameter α, and compare to the estimated optimal relaxation parameter

for the sketch-and-project method [RT20]. Through experiments, we show that our estimate

lies closer to the empirically optimal value than the previously best known estimate.

3.1.4 Organization

In Section 3.2, we analyze the convergence of RK with averaging, and state our general

convergence result in Subsection 3.2.2. In Section 3.3, we discuss the special case where

the weights are chosen to be uniform, and in Section 3.4, we discuss the special case where

the system is consistent. In Section 3.5, we derive an estimate of the optimal relaxation

parameter for consistent systems. In Section 3.6, we experimentally explore the effects of the

number of threads q, the relaxation parameter α, the weights wi, and the distribution D on

the convergence properties of RK with averaging.

3.1.5 Related Work

The Kaczmarz algorithm was originally proposed by Kaczmarz in 1937 [Kac37], though it

was later independently developed by researchers in computed tomography as the algebraic

reconstruction technique [GBH70, Byr07]. The original Kaczmarz method cycles through

rows in a fixed order; however, this is known to perform poorly for certain orders of the rows

[HS78]. Other Kaczmarz variants [XZ02] use deterministic methods to choose the rows, but

their analysis is complicated and convergence results are overly pessimistic.

Some randomized control methods were proposed [HM93], but with no explicit proofs of

convergence until Strohmer and Vershynin’s 2009 paper [SV09], which proved RK converges

linearly in expectation, with a rate directly related to spectral properties of the matrix A.

This proof was later extended to inconsistent systems [Nee10, ZF13], showing convergence

within a convergence horizon ‖r?‖/σmin(A) of the least-squares solution.

56

RK is a well-studied method with many variants. We do not provide an exhaustive review

of the related literature [LL10, ZF13, NW13, CP12, EN11], but instead only remark on some

closely related parallel extensions of RK.

Block Kaczmarz [Elf80, EHL81, AC89, NT14, XY15] randomly selects a block of rows from

A at each iteration and computes its Moore–Penrose pseudoinverse. The pseudoinverse is

then applied to the relevant portion of the current residual and added to the estimate, solving

the least-squares problem only on the selected block of rows. Computing the pseudoinverse,

however, is costly and difficult to parallelize.

The component-averaged row projections algorithm (CARP) [GG05] also distributes rows

of A into blocks. However, instead of taking the pseudoinverse, the Kaczmarz method is then

applied to the rows contained within each block. Multiple blocks are computed in parallel,

and a component-averaging operator combines the approximations from each block. While

CARP is shown to converge for consistent systems, and to converge cyclically for inconsistent

systems, no exponential convergence rate is given.

AsyRK [LWS14] is an asynchronous parallel RK method that results from applying

Hogwild! [NRR11] to the least-squares objective. In AsyRK, each thread chooses a row Ai at

random and updates a random coordinate within the support of that row Ai with a weighted

RK update. AsyRK is shown to have exponential convergence, given conditions on the step

size. The analysis AsyRK requires that A is sparse, while we do not make this restriction.

RK falls under a more general class of methods often called sketch-and-project methods

[GR15b]. For a linear system Ax = b, sketch-and-project methods iteratively project the

current iterate onto the solution space of a sketched subsystem S>Ax− S>b. In particular,

RK is a sketch-and-project method with S> = Ii, where Ii is the ith row of the identity

matrix. Other popular iterative methods such as coordinate descent can also be framed

as sketch-and-project methods. In [RT20], the authors discuss a more general version of

Algorithm 6 for sketch-and-project methods with averaging. Their analysis and discussion,

however, focus on consistent systems and require uniform weights. We instead restrict our

57

analysis to RK, but allow inconsistent systems and general weights wi.

RK can also be interpreted as a subcase of stochastic gradient descent (SGD) [RM51]

applied to the loss function [NSW16]

F (x) =
n∑
i=1

fi(x) =
n∑
i=1

1

2
(Aix− bi)2.

In this context, RK with averaging can be seen as mini-batch stochastic gradient descent

[Bot98, NW17] with importance sampling, with the update

xk+1 = xk − 1

q

∑
i∈τk

wi
Li
∇fi(x),

where Li = ‖Ai‖2 is the Lipschitz constant of ∇fi(x) = (Aix− bi)A>i .

3.2 Convergence of RK with Averaging

For inconsistent systems, RK satisfies the error bound

E
[
‖ek+1‖2

]
≤
(

1− σ2
min(A)

‖A‖2
F

)
E
[
‖ek‖2

]
+
‖r?‖2

‖A‖2
F

, (3.4)

where ek
def
= xk − x? is the error of the kth iterate, σmin (A) is the smallest nonzero singular

value of A, the squared Frobenius-norm is ‖A‖2
F =

∑
i,j A2

ij and r? is the least-squares

residual [Nee10, ZF13]. Iterating this error bound yields

E
[
‖ek‖2

]
≤
(

1− σ2
min(A)

‖A‖2
F

)k
‖e0‖2 +

‖r?‖2

σ2
min(A)

.

For consistent systems the least-squares residual is r? = 0 and this bound guarantees

exponential convergence in expectation at a rate 1− σ2
min(A)

‖A‖2F
[SV09]. For inconsistent systems,

this bound only guarantees exponential convergence in expectation to within a convergence

horizon ‖r?‖2/σ2
min(A).

We derive a convergence result for Algorithm 6 which is similar to Equation (3.4) and

leads to a better convergence rate and a smaller convergence horizon for inconsistent systems

58

when using uniform weights. To analyze the convergence, we begin by finding the update to

the error at each iteration. Subtracting the exact solution x? from both sides of the update

rule in Equation (3.2) and using the fact that Aie
k − r?i = Aix

k − bi, we arrive at the error

update

ek+1 = ek − 1

q

∑
i∈τk

wi
Aie

k − r?i
‖Ai‖2

A>i . (3.5)

To simplify notation, we define the following matrices.

Definition 3.2.1 (Weighted Sampling Matrix). Define the weighted sampling matrix

Mk
def
=

1

q

∑
i∈τk

wi
I>i Ii
‖Ai‖2

,

where τk is a set of indices sampled independently from D with replacement and I is the

identity matrix.

Using Definition 3.2.1, the error update from Equation (3.5) can be rewritten as

ek+1 = (I−A>MkA)ek + A>Mkr
?. (3.6)

Definition 3.2.2 (Normalization, Probability, and Weight Matrices). Let Diag (d1, d2, . . . , dm)

denote the diagonal matrix with d1, d2, . . . dm on the diagonal. Define the normalization matrix

D
def
= Diag (‖A1‖, ‖A2‖, . . . , ‖Am‖)

so that the matrix D−1A has rows with unit norm, the probability matrix

P
def
= Diag (p1, p2, . . . , pm) ,

where pj = P(i = j) with i ∼ D, and the weight matrix

W
def
= Diag (w1, w2, . . . , wm) .

The convergence analysis additionally relies on the expectations given in Lemma 3.2.1,

whose proof can be found in Section 3.A.

59

Lemma 3.2.1. Let Mk,P,W, and D be defined as in Definitions 3.2.1 and 3.2.2. Then

E [Mk] = PWD−2

and

E
[
M>

k AA>Mk

]
=

1

q
PW2D−2 +

(
1− 1

q

)
PWD−2AA>PWD−2.

3.2.1 Coupling of Weights and Probabilities

Note that the weighted sampling matrix Mk is a sample mean, with the number of samples

being the number of threads q. Thus, as the number of threads q goes to infinity, we have

Mk
q→∞−→ Ei∼D

[
wi

I>i Ii
‖Ai‖2

]
= PWD−2.

Therefore, as we take more and more threads, the averaged RK update of Equation (3.3)

approaches the deterministic update

xk+1 = (I−A>PWD−2A)xk + A>PWD−2b

and likewise the corresponding error update in Equation (3.6) approaches the deterministic

update

ek+1 = (I−A>PWD−2A)ek + A>PWD−2r?.

Since we want the error of the limiting averaged RK method to converge to zero, we should

require that this limiting error update have the zero vector as a fixed point. Thus, we require

that

0 = A>PWD−2r?

for any least-squares residual r?. This is guaranteed if Assumption 2 holds.

Assumption 2. The probability matrix P and weight matrix W are chosen to satisfy

PWD−2 = αI

for some scalar relaxation parameter α > 0.

60

3.2.2 General Weights

We now state a general convergence result for RK with averaging in Theorem 3.2.2. The

proof is given in Section 3.B. Theorem 3.2.2 in its general form is difficult to interpret, so we

defer a detailed analysis to Section 3.3 in which the assumption of uniform weights simplifies

the bound significantly.

Theorem 3.2.2. Suppose P and W of Definition 3.2.2 are chosen such that PWD−2 = α
‖A‖2F

I

for relaxation parameter α > 0. Then the error at each iteration of Algorithm 6 satisfies

E
[
‖ek+1‖2

]
≤ σmax

((
I− αA>A

‖A‖2
F

)2

− α2

q

(
A>A

‖A‖2
F

)2
)
‖ek‖2 +

α

q

‖rk‖2
W

‖A‖2
F

,

where rk
def
= b−Axk is the residual of the kth iterate, ‖·‖2

W = 〈·,W·〉 and ‖A‖2
F =

∑
i,j A2

ij.

Here, and for the remainder of the chapter, we take the expectation E
[
‖ek+1‖2

]
conditioned

on ek.

As we shall see in Section 3.3, the relaxation parameter α and number of threads q are

closely tied to both the convergence horizon and convergence rate. The convergence horizon is

proportional to α2

q
, so smaller α and larger q lead to a smaller convergence horizon. Increasing

the value of α improves the convergence rate of the algorithm up to a critical point beyond

which further increasing α leads to slower convergence rates. Increasing the number of threads

q improves the convergence rate, 1
q
-asymptotically approaching an optimal rate as q →∞.

3.3 Uniform Weights

We can simplify the analysis significantly if we assume that W = αI, or equivalently that the

weights are uniform. In this case, the update for each iteration becomes

xk+1 = xk − α

q

∑
i∈τk

Aix
k − bi
‖Ai‖2

A>i ,

where i ∈ τk are independent samples from D with pi = ‖Ai‖2
‖A‖2F

. Under these conditions,

the expected error bound of Theorem 3.2.2 can be simplified to remove the dependence on

61

rk. This simplification leads to the more interpretable error bound given in Corollary 1.

In particular, increasing q leads to both a faster convergence rate and smaller convergence

horizon. If the relaxation parameter is chosen as α = 1 and a single row is selected at each

iteration, we arrive at the RK method [SV09]. Using a relaxation parameter α 6= 1 results in

the relaxed RK method [HN90b, HN90a].

Corollary 1. Suppose pi = ‖Ai‖2
‖A‖2F

and W = αI. Then the expected error at each iteration of

Algorithm 6 satisfies

E
[
‖ek+1‖2

]
≤ σmax

((
I− αA>A

‖A‖2
F

)2

+
α2

q

(
I− A>A

‖A‖2
F

)
A>A

‖A‖2
F

)
‖ek‖2 +

α2‖r?‖2

q‖A‖2
F

.

The proof of Corollary 1 follows immediately from Theorem 3.2.2 and can be found in

Subsection 3.D.1.

3.3.0.1 Randomized Kaczmarz

If a single row is chosen at each iteration, with W = I and pi = ‖Ai‖2
‖A‖2F

, then Algorithm 6

becomes the version of RK stated in [SV09]. In this case,

‖rk‖2
W = ‖Aek‖2 + ‖r?‖2. (3.7)

Applying Theorem 3.2.2 leads to the following corollary, which recovers the error bound in

Equation (3.4).

Corollary 2. Suppose q = 1, W = I and pi = ‖Ai‖2
‖A‖2F

. Then the expected error at each

iteration of Algorithm 6 satisfies

E
[
‖ek+1‖2

]
≤ σmax

(
I− A>A

‖A‖2
F

)
‖ek‖2 +

‖r?‖2

‖A‖2
F

=

(
1− σ2

min(A)

‖A‖2
F

)
‖ek‖2 +

‖r?‖2

‖A‖2
F

.

A proof of Corollary 2 is included in Subsection 3.D.2.

62

3.4 Consistent Systems

For consistent systems, Algorithm 6 converges to the solution x? exponentially in expectation

with the following guaranteed convergence rate.

Corollary 3. Suppose P and W of Definition 3.2.2 are chosen such that PWD−2 = α
‖A‖2F

I

for some constant α > 0. Then the error at each iteration of Algorithm 6 satisfies

E
[
‖ek+1‖2

]
≤ σmax

((
I− αA>A

‖A‖2
F

)2

+
A>

‖A‖F

(
α

q
W − α2

q

AA>

‖A‖2
F

)
A

‖A‖F

)
‖ek‖2.

Corollary 3 results from taking r? = 0 in the proof of Theorem 3.2.2.

3.5 Suggested Relaxation Parameter α for Consistent Systems

With Uniform Weights

For consistent systems and using uniform weights, Algorithm 6 becomes a subcase of the

parallel sketch-and-project method described by Richtárik and Takáč [RT20]. They suggest a

choice of relaxation parameter

α =
q

1 + (q − 1) σ2
max(A)

‖A‖2F

, (3.8)

which is chosen to optimize their convergence rate guarantee.

Analogously, for uniform weights, we can calculate the value of α to minimize the bound

given in Corollary 1.

Theorem 3.5.1. Suppose pi = ‖Ai‖2
‖A‖2F

and W = αI. Then, the relaxation parameter α which

yields the fastest convergence rate guarantee in Corollary 1 is

α? =

q

1+(q−1)smin
, 1− (q − 1)(smax − smin) ≥ 0,

2q
1+(q−1)(smin+smax)

, 1− (q − 1)(smax − smin) < 0

where smin =
σ2
min(A)

‖A‖2F
and smax = σ2

max(A)

‖A‖2F
.

63

The proof of this result can be found in Section 3.C.

When q = 1, the second condition cannot hold, so only the first formula is used. Plugging

in q = 1, the term that depends on smin vanishes and we get that α? = 1. When q > 1, we can

divide by q − 1 and express the condition in terms of the spectral gap as smax − smin ≤ 1
q−1

.

For matrices where the spectral gap is positive, we can also view this as a condition on the

number of threads, q ≤ 1 + 1
smax−smin

. We see that for low numbers of threads, we expect

α? =
q

1 + (q − 1)smin

while for high numbers of threads, we expect

α? =
2q

1 + (q − 1) (smin + smax)
.

Note that this differs from the relaxation parameter α suggested by Richtárik and Takáč

[RT20], given in Equation (3.8). This is due to the fact that our convergence rate guarantee

is tighter, and thus we expect that our suggested relaxation parameter α should be closer

to the truly optimal value. We compare these two choices of the relaxation parameter α

experimentally in Subsection 3.6.3 and show that our suggested relaxation parameter α? is

indeed closer to the true optimal value, especially for large numbers of threads q.

3.6 Experiments

We present several experiments to demonstrate the convergence of Algorithm 6 under various

conditions. In particular, we study the effects of the number of threads q, the relaxation

parameter α, the weight matrix W, and the probability matrix P.

3.6.1 Procedure

For each experiment, we run 100 independent trials each starting with the initial iterate

x0 = 0 and average the squared error norms ‖ek‖2 across the trials. We sample A from

100 × 10 standard Gaussian matrices and least-squares solution x? from 10-dimensional

64

standard Gaussian vectors, normalized so that ‖x?‖ = 1. To form inconsistent systems, we

generate the least-squares residual r? as a Gaussian vector orthogonal to the range of A,

also normalized so that ‖r?‖ = 1. Finally, b is computed as r? + Ax?. While small, these

examples are useful to illustrate the behavior of Algorithm 6 as it relates to its parameters.

3.6.2 The Effect of the Number of Threads

In Figure 3.1, we see the effects of the number of threads q on the approximation error of

Algorithm 6 for different choices of the weight matrices W and probability matrices P. In

Figures 3.1a and 3.1b, W and P satisfy Assumption 2, while in Figure 3.1c they do not.

In Figures 3.1a and 3.1b, as the number of threads q increases by a factor of ten, we

see a corresponding decrease in the magnitude of the convergence horizon by approximately

the same factor. This result corroborates what we expect based on Theorem 3.2.2 and

Corollary 1. For Figure 3.1c, we do not see the same consistent decrease in the magnitude of

the convergence horizon. As q increases, for weight matrices W and probability matrices P

that do not satisfy Assumption 2, the iterates xk approach a weighted least-squares solution

instead of the desired least-squares solution x? (see Subsection 3.2.1).

The rate of convergence in Figure 3.1 also improves as the number of threads q increases.

As q increases, we see diminishing returns in the convergence rate. We expect this behavior

based on the dependence on 1
q

in Theorem 3.2.2 and Corollary 1.

3.6.3 The Effect of the Relaxation Parameter α

In Figure 3.2, we observe the effect on the convergence rate and convergence horizon as

we vary the relaxation parameter α. From Theorem 3.2.2, we expect that the convergence

horizon increases with α and indeed observe this experimentally. The squared norms of the

errors behave similarly as α varies for both sets of weights and probabilities considered, each

of which satisfy Assumption 2.

65

(a) Uniform weights wi = 1 and proba-

bilities proportional to squared row norms

pi = ‖Ai‖2
‖A‖2F

.

(b) Weights proportional to squared row

norms wi = m‖Ai‖2
‖A‖2F

and uniform probabil-

ities pi = 1
m .

(c) Uniform weights wi = 1 and uniform prob-

abilities pi = 1
m .

Figure 3.1: The effect of the number of threads on the average squared error norm vs iteration

for Algorithm 6 applied to inconsistent systems. The weights wi and probabilities pi in a

and b satisfy Assumption 2, while in c they do not. Shaded areas indicate the middle 90%

performance, measured over 100 trials.

66

(a) Uniform weights wi = α, probabilities pro-

portional to squared row norms pi = ‖Ai‖2
‖A‖2F

,

and number of threads q = 10.

(b) Weights proportional to squared row

norms wi = αm‖Ai‖2
‖A‖2F

, uniform probabilities

pi = 1
m , and number of threads q = 10.

Figure 3.2: The effect of the relaxation parameter α on the average squared error norm vs

iteration for Algorithm 6 applied to inconsistent systems.

For larger values of the relaxation parameter α, the convergence rate for Algorithm 6

eventually decreases and the method can ultimately diverge. This behavior can be seen in

Figure 3.3, which plots the squared error norm after 100 iterations for consistent Gaussian

systems, various α, and various numbers of threads q. In Figure 3.3a, we use uniform

weights wi = α with probabilities proportional to the squared row norms pi = ‖Ai‖2
‖A‖2F

, and

in Figure 3.3b, we use weights proportional to the row norms wi = αm‖Ai‖2
‖A‖2F

with uniform

probabilities pi = 1
m

.

For each value of q, we plot two markers on the curve at the estimated optimal values

of α. The diamond markers are estimates computed using Theorem 3.5.1, and the circle

markers are estimates using the formula from Richtárik and Takáč [RT20]. These values

are also contained in Table 3.1. In terms of the number of iterations required, we find that

the true optimal value increases with q. Comparing the α values from [RT20] with the α

that minimize the curves in Figure 3.3, we find that they generally underestimate the true

optimal α. In comparison, the estimates calculated using Theorem 3.5.1 are much closer to

the observed optimal values of α, especially for high q

67

(a) wi = α, pi = ‖Ai‖2
‖A‖2F

. (b) wi = αm‖Ai‖2
‖A‖2F

, pi = 1
m .

Figure 3.3: Squared error norm after 50 iterations of Algorithm 6 on consistent systems for

various choices of relaxation parameter α. Shaded areas indicate the middle 90% performance,

measured over 100 trials. Diamond markers are estimates of the optimal alpha using

Theorem 3.5.1, and circle markers are estimates using the formula from Richtárik and Takáč

[RT20]

Table 3.1: Calculated optimal α? for matrix A used in Figure 3.3a.

q = 5 q = 10 q = 25 q = 100

α (Eqn 3.8) [Richtárik et al.] 3.00 4.00 5.00 5.72

α? (our Theorem 3.5.1) 4.06 6.57 7.83 8.61

We believe that the main reason our estimate of α? is closer than that of Richtárik and

Takáč [RT20] is due to our bound being relatively tighter than Equation (3.8). In Figures 3.4a

and 3.4b, we plot the error bounds produced by Equation (3.8) and Theorem 3.5.1 after 50

iterations for q = 10 and q = 100. We observe that as the number of threads increases, our

bound approaches the empirical result, while the bound of Richtárik and Takáč [RT20] does

not.

68

(a) q = 10. (b) q = 100.

Figure 3.4: Squared error norm after 50 iterations of Algorithm 6 on consistent systems

for various choices of relaxation parameter α. Uniform weights wi = α and probabilities

proportional to squared row norms pi = ‖Ai‖2
‖A‖2F

.

3.7 Conclusion

We proved a general error bound for RK with averaging given in Algorithm 6 in terms

of the number of threads q and a relaxation parameter α. We found a coupling between

the probability matrix P and the weight matrix W that leads to a reduced convergence

horizon. We demonstrated that for uniform weights, i.e. W ∝ I, the rate of convergence and

convergence horizon for Algorithm 6 improve both in theory and practice as the number

of threads q increases. Based on the error bound, we also derived an optimal value for

the relaxation parameter α which increases convergence speed, and compared with existing

results.

69

3.A Proof of Lemma 3.2.1

Proof. Expanding the definition of the weighted sampling matrix Mk as a weighted average

of the i.i.d. sampling matrices
I>i Ii
‖Ai‖2 , we see that

E [Mk] = E

[
1

q

∑
i∈τk

wi
I>i Ii
‖Ai‖2

]
= E

[
wi

I>i Ii
‖Ai‖2

]
=

m∑
i=1

piwi
I>i Ii
‖Ai‖2

= PWD−2.

Likewise, we can compute

E
[
M>

k AA>Mk

]
= E

[(
1

q

∑
i∈τk

wi
I>i Ai

‖Ai‖2

)(
1

q

∑
j∈τk

wj
A>j Ij

‖Aj‖2

)]

=
1

q
E
[(
wi

I>i Ai

‖Ai‖2

)(
wi

A>i Ii
‖Ai‖2

)]
+ (1− 1

q
)E
[
wi

I>i Ai

‖Ai‖2

]
E

[
wj

A>j Ij

‖Aj‖2

]

=
1

q
E
[
w2
i

I>i Ii
‖Ai‖2

]
+

(
1− 1

q

)
PWD−2AA>PWD−2

=
1

q
PW2D−2 +

(
1− 1

q

)
PWD−2AA>PWD−2

by separating the cases where i = j from those where i 6= j and utilizing the independence of

the indices sampled in τk.

3.B Proof of Theorem 3.2.2

Proof. We prove Theorem 3.2.2 starting from from the error update in Equation (3.6).

Expanding the squared error norm,

‖ek+1‖2 = ‖(I−A>MkA)ek + A>Mkr
?‖2

= ‖(I−A>MkA)ek‖2 + 2〈(I−A>MkA)ek,A>Mkr
?〉+ ‖A>Mkr

?‖2.

Upon taking expections, the middle term simplifies since A>E [Mk] r
? = 0 by Assumption 2.

Thus,

E
[
‖ek+1‖2

]
= E

[
‖(I−A>MkA)ek‖2

]
− 2E

[
〈A>MkAe

k,A>Mkr
?〉
]

+ E
[
‖A>Mkr

?‖2
]
.

(3.9)

70

Making use of Lemma 3.2.1 to take the expectation of the first term in Equation (3.9),

E
[
‖(I−A>MkA)ek‖2

]
= E

[〈
ek, (I−A>MkA)>(I−A>MkA)ek

〉]
=

〈
ek, (I− 2A>E [Mk] A + A>E

[
M>

k AA>Mk

]
A)ek

〉
=

〈
ek,

(
I− 2α

A>A

‖A‖2
F

+
α

q

A>WA

‖A‖2
F

+ α2

(
1− 1

q

)(
A>A

‖A‖2
F

)2
)
ek
〉

=

〈
ek,

((
I− αA>A

‖A‖2
F

)2

+
A>

‖A‖F

(
α

q
W − α2

q

AA>

‖A‖2
F

)
A

‖A‖F

)
ek
〉
.

Since A>r? = 0, for the second term,

2E
[
〈A>MkAe

k,A>Mkr
?〉
]

= 2〈Aek,E
[
M>

k AA>Mk

]
r?〉

= 2
α

q‖A‖2
F

〈Aek,Wr?〉.

Similarly, for the last term,

E
[
‖A>Mkr

?‖2
]

=
α

q

‖r?‖2
W

‖A‖2
F

.

Combining these in Equation (3.9),

E
[
‖ek+1‖2

]
=

〈
ek,

(
I− αA>A

‖A‖2
F

)2

ek
〉

+

〈
ek,

A>

‖A‖2
F

(
α

q
W − α2

q

AA>

‖A‖2
F

)
Aek

〉
− 2

α

q

〈Aek,Wr?〉
‖A‖2

F

+
α

q

‖r?‖2
W

‖A‖2
F

=

〈
ek,

((
I− αA>A

‖A‖2
F

)2

− α2

q

(
A>A

‖A‖2
F

)2
)
ek
〉

+
α

q

‖rk‖2
W

‖A‖2
F

≤ σmax

((
I− αA>A

‖A‖2
F

)2

− α2

q

(
A>A

‖A‖2
F

)2
)
‖ek‖2 +

α

q

‖rk‖2
W

‖A‖2
F

.

71

3.C Proof of Theorem 3.5.1

Proof. We seek to optimize the convergence rate constant from Corollary 1,

σmax

((
I− αA>A

‖A‖2
F

)2

+
α2

q

(
I− A>A

‖A‖2
F

)
A>A

‖A‖2
F

)
with respect to α. To do this, we first simplify from a matrix polynomial to a maximum over

scalar polynomials in α with coefficients based on each singular value of A. We then show

that the maximum occurs when either the minimum or maximum singular value of A is used.

Finally, we derive a condition for which singular value to use, and determine a value of α

that minimizes the maximum singular value.

Defining Q>ΣQ = A>A
‖A‖2F

as the eigendecomposition, and the polynomial

p(σ)
def
= 1− 2ασ + α2

(
σ

q
+

(
1− 1

q

)
σ2

)
,

the convergence rate constant from Corollary 1 can be written as σmax

(
p
(

A>A
‖A‖2F

))
. Since

p
(

A>A
‖A‖2F

)
is a polynomial of a symmetric matrix, its singular vectors are the same as those

of its argument, while its corresponding singular values are the polynomial p applied to the

singular values of the original matrix. That is,

p

(
A>A

‖A‖2
F

)
= p

(
Q>ΣQ

)
= Q>p (Σ) Q.

Thus, the convergence rate constant can be written as

σmax

(
p

(
A>A

‖A‖2
F

))
= σmax (p(Σ)) .

Moreover, we can bound this extremal singular value by the maximum of the polynomial

p over an interval containing the spectrum of Σ

σmax (p (Σ)) ≤ max |p (σ)| subject to σ ∈ [smin, smax] .

Here, the singular values of Σ are bounded from below by smin
def
=

σ2
min(A)

‖A‖2F
and above by

smax
def
= σ2

max(A)

‖A‖2F
since Σ is the diagonal matrix of singular values of A>A

‖A‖2F
. Note that the

72

polynomial can be factored as p(σ) = (1− σα)2 + σα2

q
(1− σ), and is positive for σ ∈ [0, 1],

which contains [smin, smax]. Also, since the coefficient of the σ2 term of the polynomial p is

α2
(

1− 1
q

)
, and α2

(
1− 1

q

)
≥ 0, the polynomial is convex in σ on the interval [smin, smax].

Thus, the maximum of p on the interval [smin, smax] is attained at one of the two endpoints

smin, smax and we have the bound

σmax (p (Σ)) = max (p (smin) , p (smax)) .

To optimize this bound with respect to α, we first find conditions on α such that

p(smin) < p(smax). If smax = smin, this obviously never holds; otherwise, smax > smin and

1− 2αsmin + α2

[
smin

q
+

(
1− 1

q

)
s2

min

]
< 1− 2αsmax + α2

[
smax

q
+

(
1− 1

q

)
s2

max

]
.

Grouping like terms and cancelling, we get

α

(
2− α

q

)
(smax − smin) < α2

(
1− 1

q

)(
s2

max − s2
min

)
.

Since α
q
> 0, we can divide it from both sides to find

(2q − α) (smax − smin) < α (q − 1)
(
s2

max − s2
min

)
.

Since smax > smin, we can divide both sides by smax − smin and simplify to

2q − α < α (q − 1) (smax + smin)

2q < α (1 + (q − 1) (smax + smin))

α >
2q

1 + (q − 1) (smin + smax)
def
= α̂.

Thus, we see

σmax (p (Σ)) =

p (smax) , α ≥ α̂

p (smin) , α < α̂

For the first term,

∂

∂α
p(smax) = −2smax + 2

(
smax

q
+

(
1− 1

q

)
s2

max

)
α

≥ −2smax + 2

(
smax

q
+

(
1− 1

q

)
s2

max

)
α̂

73

since α ≤ α̂ and the coefficient is positive. Factoring 2smax

q
from the second term and

substituting for α̂, we get

= −2smax +
2smax

q
(1 + (q − 1) smax) α̂

= −2smax +
2smax

q
(1 + (q − 1) smax)

2q

1 + (1− q) (smin + smax)

= −2smax + 2smax
2 (1 + (q − 1)smax)

1 + (q − 1)(smax + smin)

= 2smax

[
−1 +

2 (1 + (q − 1)smax)

1 + (q − 1)(smax + smin)

]
= 2smax

[
1 + (q − 1)(smax − smin)

1 + (q − 1)(smax + smin)

]
> 0

since all terms in both numerator and denominator are positive. Thus, the function is

monotonic increasing on α ∈ [α̂,∞), and the minimum is at the lower endpoint α? = α̂.

Similarly, for the second term,

∂

∂α
p(smin) = −2smin + 2

(
smin

q
+

(
1− 1

q

)
s2

min

)
α

< −2smin + 2

(
smin

q
+

(
1− 1

q

)
s2

min

)
α̂

= 2smin

[
1− (q − 1)(smax − smin)

1 + (q − 1)(smax + smin)

]
.

If

1− (q − 1)(smax − smin) < 0, (3.10)

this function is monotonic decreasing on α ∈ (−∞, α?], and the minimum is at the upper

endpoint α = α?. Otherwise, the minimum occurs at the critical point, so we set the derivative

74

to 0 and solve for α?

∂

∂α
p(smin) = −2smin + 2

(
smin

q
+

(
1− 1

q

)
s2

min

)
α?

= −2smin +
2smin

q
(1 + (q − 1) smin)α?

= 0

2smin

q
(1 + (q − 1) smin)α? = 2smin

α? =
q

1 + (q − 1)smin

.

3.D Corollary Proofs

We provide proofs for the corollaries of Section 3.2, which follow from Theorem 3.2.2.

3.D.1 Proof of Corollary 1

Proof. Suppose pi = ‖Ai‖2
‖A‖2F

and W = αI. From the proof of Theorem 3.2.2,

E
[
‖ek+1‖2

]
=

〈
ek,

((
I− αA>A

‖A‖2
F

)2

− α2

q

(
A>A

‖A‖2
F

)2
)
ek
〉

+
α

q

‖rk‖2
W

‖A‖2
F

.

In this case, since A>r? = 0, 〈Aek, r?〉 = 0 and

‖rk‖2
W = α‖Aek‖2 + 2α〈Aek, r?〉+ α‖r?‖2

= α〈ek,A>Aek〉+ α‖r?‖2.

Combining the two expressions above, we arrive at the desired result

E
[
‖ek+1‖2

]
=

〈
ek,

((
I− αA>A

‖A‖2
F

)2

+
α2

q

(
I− A>A

‖A‖2
F

)
A>A

‖A‖2
F

)
ek
〉

+
α2‖r?‖2

q‖A‖2
F

≤ σmax

((
I− αA>A

‖A‖2
F

)2

+
α2

q

(
I− A>A

‖A‖2
F

)
A>A

‖A‖2
F

)
‖ek‖2 +

α2‖r?‖2

q‖A‖2
F

.

75

3.D.2 Proof of Corollary 2

Proof. Suppose q = 1, W = I and pi = ‖Ai‖2
‖A‖2F

.

E
[
‖ek+1‖2

]
≤ σmax

(
I− A>A

‖A‖2
F

)
‖ek‖2 +

‖r?‖2

‖A‖2
F

=

(
1− σ2

min(A)

‖A‖2
F

)
‖ek‖2 +

‖r?‖2

‖A‖2
F

.

From the proof of Theorem 3.2.2,

E
[
‖ek+1‖2

]
=

〈
ek,

((
I− A>A

‖A‖2
F

)2

−
(

A>A

‖A‖2
F

)2
)
ek
〉

+
‖rk‖2

‖A‖2
F

.

Decomposing rk,

‖rk‖2 = ‖Aek‖2 + ‖r?‖2

= 〈ek,A>Aek〉+ ‖r?‖2.

Combining the expressions above, we arrive at the desired result

E
[
‖ek+1‖2

]
=

〈
ek,

((
I− A>A

‖A‖2
F

)2

−
(

A>A

‖A‖2
F

)2

+
A>A

‖A‖2
F

)
ek
〉

+
‖r?‖2

‖A‖2
F

=

〈
ek,

(
I− A>A

‖A‖2
F

)
ek
〉

+
‖r?‖2

‖A‖2
F

≤ σmax

(
I− A>A

‖A‖2
F

)
‖ek‖2 +

‖r?‖2

‖A‖2
F

=

(
1− σ2

min(A)

‖A‖2
F

)
‖ek‖2 +

‖r?‖2

‖A‖2
F

.

76

CHAPTER 4

Subgraph Matching on Multiplex Networks∗

4.1 Introduction

Multiplex networks [KAB14] are increasingly useful data structures for representing entities

and their interactions in disciplines such as bioinformatics [ZL17], social networks [Ver79],

ecological networks [PPP17], and neural networks [BBB16]. Here, we focus on the special case

of multiplex networks consisting of labeled directed multigraphs (Definition 4.1.1). Subgraph

matching is the process of determining whether a given pattern called a template network

occurs as a subgraph of a larger world network, and if so, exactly where it occurs and how

many times [CFS03].

Subgraph matching is commonly used in bioinformatics [ZLY09], social network analysis

[Fan12, YG13], and other applications [CFS03]. It is also an important subroutine in frequent

subgraph mining [YH02, HWP03] and graph database search [ZMC11]. Despite the abundance

of multiplex network data in these applications, there are relatively few subgraph matching

algorithms that expressly support multiplex networks [IIP16, MBF20] compared to the

number of algorithms that support single-channel networks [Ull76, CFS04, CFS17, CFS18,

Sol10, HLL13, BCL16]. In this chapter, we introduce a new algorithm for subgraph matching

on multiplex networks and discuss some simplifications of the subgraph matching problem.

We refer to any subgraph of the world that matches the template as a signal. For sufficiently

simple templates, there are efficient algorithms for counting and listing all corresponding

∗This chapter is adapted from [MTC21].

77

signals [SW05, RKR17, ANR15]. However, in general there can be a combinatorially large

number of signals, particularly when the template has a large automorphism group. In

such cases, listing or even counting the signals can be computationally intractable. In such

situations, it is appealing to have methods that characterize the space of all signals in some

way. For example, one might identify the world nodes that participate in at least one signal.

Alternatively, one may seek the set of world nodes that correspond to a particular template

node in at least one signal. We find that these problems can be feasible, even when it is

prohibitive to list or count all of the signals.

Definition 4.1.1 (Multiplex Network). A multiplex network G = (V , E ,L, C) is a set of

nodes (frequently called vertices), directed edges between the nodes, labels on the nodes, and

channels on the edges. The number of nodes is denoted n. Each node v ∈ V has a label L(v)

belonging to some arbitrary set of labels. There can be any number of edges between each pair

of nodes (u,v) in either direction. Each edge belongs to one of the channels C. Edges between

the same pair of nodes in the same channel with the same direction are indistinguishable. The

function E : V ×V → N|C| describes the number of edges in each channel between each pair of

nodes. In particular, E(u,v) can be represented as a |C|-dimensional vector the kth element

of which is the number of edges from node u to node v in the kth channel. The number of

distinguishable edges in G is denoted |E|0 .

In the remainder of this section, we define several problems related to subgraph matching

and discuss existing approaches to solve these problems. In Subsection 4.1.3, we explain

our contributions to solving these problems. We expand on the details of our approach in

Section 4.2 and Subsections 4.3.1 and 4.3.2. In Section 4.4, we perform several experiments

to show that the methods we discuss are successful in solving the problems of interest. We

make some concluding remarks in Section 4.5 respectively.

78

4.1.1 Problem Statements

Given two multiplex networks, a template Gt = (Vt, Et,Lt, C) and a world Gw = (Vw, Ew,Lw, C),

we explore the space of all subgraphs of the world that match the template. There are several

closely related problems with different computational costs. Each of these problems relies on

the same concept of subgraph isomorphism (SI) as described below.

Definition 4.1.2 (SI: Subgraph Isomorphism)). An injective function f : Vt → Vw is called

a subgraph isomorphism (SI) from Gt = (Vt, Et,Lt, C) to Gw = (Vw, Ew,Lw, C) if

Lt(v) = Lw(f(v)) ∀v ∈ Vt

Et(u,v) ≤ Ew (f(u), f(v)) ∀u,v ∈ Vt × Vt.

The set of all SIs from Gt to Gw is denoted F(Gt,Gw).

In short, an injective function f mapping template nodes to world nodes is an SI if each

node v in the template has the same label as the corresponding node f(v) in the world, and

for each pair of nodes (u,v) in the template, the corresponding pair of nodes (f(u), f(v)) in

the world have at least as many edges in each channel and direction as u and v have between

them. This is sometimes referred to as a “subgraph monomorphism” in the literature. We

use the term induced SI when there are exactly the same number of edges in each channel

and direction. The problems introduced in the remainder of Subsection 4.1.1 are summarized

in terms of SIs in Table 4.1.

Nodes in the image of an SI are called signal nodes, and the induced subgraph of the image

of an SI is called a signal. Figure 4.1 highlights several signals in an example problem. Note

that there may be more edges between signal nodes than there are between the corresponding

template nodes. As an example, in Figure 4.1 there are more edges between 5 and 7 than

there are between B and C.

A typical definition of SI would include a map from template edges to world edges.

However, we omit this consideration since we consider edges to be indistinguishable. If edges

79

Problem Description

SIP Check if there are any SIs.

SNSP Find all the world nodes involved in SIs.

MCSP Find all pairs (u,v) where u = f(v) for some SI f .

SICP Count the number of SIs.

SMP Find all the SIs.

Table 4.1: A summary of the various problems defined in Subsection 4.1.1, in increasing order

of computation cost.

were considered to be distinct, there would be four SIs in Figure 4.1, all corresponding to

signal 2, one for each way to choose the dashed blue edge between template nodes B and C

from among those between world nodes 5 and 7 and the solid green edges between template

nodes A and C from among those between world nodes 4 and 7.

Definition 4.1.3 (SIP: Subgraph Isomorphism Problem). Given a template Gt = (Vt, Et,Lt, C)

and a world Gw = (Vw, Ew,Lw, C), check if there is at least one SI from the template Gt to the

world Gw. That is,

check if F(Gt,Gw) = Ø. (SIP)

Typically the SIP is solved by exhaustively searching for any SI f ∈ F(Gt,Gw). If none

can be found, then F(Gt,Gw) = Ø. Though the SIP is NP-complete [GJ79], it can be solved

in practice even for some networks with over a billion nodes [SWW12, RKR17]. The challenge

of finding all SIs, rather than simply checking whether there are any, is called the subgraph

matching problem (SMP).

Definition 4.1.4 (SMP: Subgraph Matching Problem). Given a template Gt = (Vt, Et,Lt, C)

and a world Gw = (Vw, Ew,Lw, C), find all SIs from the template Gt to the world Gw. That is,

find all f ∈ F(Gt,Gw). (SMP)

80

Figure 4.1: In the above networks, the shapes of the nodes corresponds to their labels (circle

or square) and the patterns of the edges correspond to their channel (solid green or dashed

blue). Given the template and world networks above, there are four signals consisting of the

subgraphs of the world induced by {1,2,6}, {1,6,8}, {4,5,7}, and {7,9,10}.

The solution to the SMP for Figure 4.1 is the set of SIs F(Gt,Gw) = {f1, f2, f3, f4}, where

the fi are described in Table 4.2. Notice that SIs can differ by as little as one node, for

example f1(v) = f3(v) for every template node v except when v = B. Additionally, some

SIs are completely disjoint. For example, f2(Vt)
⋂
f3(Vt) = Ø.

Template

node v
f1(v) f2(v) f3(v) f4(v)

⋃
i{fi(v)}

A 1 4 1 7 {1,4,7}

B 2 5 8 9 {2,5,8,9}

C 6 7 6 10 {6,7,10}

Table 4.2: Solutions to SMP and MCSP corresponding to the template and world shown in

Figure 4.1.

Since any algorithm for solving the SMP must list all of the SIs F(Gt,Gw), the computation

time required, at minimum, must scale with the number of SIs |F(Gt,Gw)|. The number of

81

SIs can be as large as the number of injective maps from Vt to Vw which is O(|Vw||Vt|). The

problems described in the remainder of this section can be used to explore the space of SIs,

especially when solving the SMP is computationally prohibitive.

In certain contexts, one may wish to only count the number of SIs from the template to

the world. Examples of such contexts include summary statistics of the world network, as in

triangle counting [SW05] or motif counting [ADH08]. This is called the SI counting problem

(SICP).

Definition 4.1.5 (SICP: Subgraph Isomorphism Counting Problem). Given a template

Gt = (Vt, Et,Lt, C) and a world Gw = (Vw, Ew,Lw, C), determine the number of SIs from the

template Gt to the world Gw. That is,

find |F(Gt,Gw)| . (SICP)

Another concise summary of the set of SIs is the set of all signal nodes, i.e. those nodes

that are in the image of at least one SI. Finding this set of nodes is the signal node set

problem (SNSP). The number of signal nodes is bounded from above by the total number of

world nodes |Vw|. Though the SNSP lacks the completeness of the full set of SIs, it is much

cheaper to calculate.

Definition 4.1.6 (SNSP: Signal Node Set Problem). Given a template Gt = (Vt, Et,Lt, C)

and a world Gw = (Vw, Ew,Lw, C), find all world nodes that belong to at least one signal. That

is,

find
⋃

f∈F(Gt,Gw)

f(Vt). (SNSP)

A compromise between the compactness of the SNSP and the completeness of the SMP

is to find the minimal candidate sets. For each template node, the minimal candidate set

is the smallest set containing all world nodes that correspond to that template node in any

signal. This preserves the relation between template nodes and world nodes, but loses some

information about compatibility between candidates for different template nodes.

82

Definition 4.1.7 (MCSP: Minimal Candidate Sets Problem). Given a template Gt =

(Vt, Et,Lt, C) and a world Gw = (Vw, Ew,Lw, C), for each template node v ∈ Vt find all world

nodes which correspond to v in at least one signal. That is,

find
⋃

f∈F(Gt,Gw)

{f(v)} for each v ∈ Vt. (MCSP)

A naive algorithm for solving the MCSP is to solve the SIP with the added constraint

u = f(v) for each (u,v) ∈ Vw × Vt. Thus, solving the MCSP is at most |Vt| |Vw| times as

computationally expensive as the most expensive among those SIPs.

4.1.2 Related Work

Most state of the art algorithms for subgraph matching follow one of three approaches

[CFS17, CFS18]: tree-search, constraint-propagation, and graph-indexing. The majority of

existing algorithms are specialized to the single-channel case and are not directly applicable

to multiplex networks without some adaptation. Also, existing algorithms focus mainly on

addressing the SIP, SMP, and SICP, and do not address the MCSP or SNSP directly.

Tree-search approaches keep track of a search state, and navigate the tree of possible

search states, backtracking when they reach the end of a branch. Due to the enormity of

this tree, to limit computational complexity as much as possible, these approaches refine

the search space at each step of the search to avoid unnecessary branches. Examples of

tree-search approaches include Ullmann’s algorithm [Ull76], VF2 [CFS04] and its variants

(VF2Plus [CFV15], VF3 [CFS17, CFS18], VF2++ [JM18]), and for specific graphs, RI/RI-DS

[BGP13].

Constraint-propagation approaches view subgraph isomorphism as a constraint satisfaction

problem, where variables are assigned values while satisfying a given set of constraints. These

approaches keep track of a compatibility matrix which indicates the world nodes that are

possible matches for each template node. By repeatedly applying local constraints, this matrix

is reduced until only a few possible matches remain. The matrix can then be explored to find

83

all solutions. Examples of constraint-propagation approaches include McGregor [McG79],

nRF+ [LV02], ILF [ZDS10], LAD [Sol10] (and its variants, IncompleteLAD and PathLAD

[KMS16]), McCreesh and Prosser (Glasgow) [MP15], and FocusSearch [Ull10].

Graph-indexing approaches seek to retrieve from a database of graphs all graphs that match

a given subgraph query. To accelerate searching, they construct indexes for the database,

so that future searches will be efficient. These indexes are often based on characteristic

substructures of the template. A Cartesian product is then performed on the results of

these indexed queries, identifying all possible matches. Next, there is a verification step to

check which retrieved graphs fully match the pattern; this typically involves running another

subgraph isomorphism algorithm, such as VF2. Examples of graph-indexing approaches

include GraphQL [HS08], SPath [ZH10], GADDI [ZLY09], QuickSI [SZL08], TurboISO

[HLL13], BoostISO [RW15], CFL-Match [BCL16], and CNI-Match [NS17a]. Our problem

does not involve graph databases and we thus do not construct indices. However, several

graph-indexing approaches involve filtering techniques which can be used independently of

the indices they construct [SL19].

4.1.2.1 Ullmann’s Algorithm

Ullmann’s algorithm [Ull76] is a backtracking tree-search with refinement. For each template

node v, it creates a list of candidate nodes in the world that could correspond to v. Initially,

this is simply all nodes with degree greater than or equal to the degree of v. At each step in

the tree-search, a candidate node u is chosen as a match for template node v. To reduce

computation time, the remaining candidates are then refined as follows. For every pair of

template nodes joined by an edge, their candidates should also be joined by an edge in the

world. Any candidate for one of these connected nodes that does not have an edge to any

candidate for the other connected node can be removed from consideration. Our topology

filter, as detailed in Subsection 4.2.3, is a simple extension of this constraint to the multiplex

network case.

84

4.1.2.2 VF2

VF2 [CFS04] generalizes Ullmann’s algorithm to directed graphs and extends refinement with

additional semantic feasibility rules. It distinguishes matched nodes (nodes with only one

candidate) from other nodes, and ensures that candidates have more matched neighbors and

unmatched neighbors than their corresponding template node; in the directed case, these

neighbors must have edges with matching directions. It also enforces a matching order where

neighbors of previously matched nodes are matched before other nodes.

4.1.2.3 Constraint-Propagation Approaches

In [LV02], the authors classify existing constraints using two categorizations: binary vs. non-

binary and forward checking (FC) vs. really forward look ahead (RF). Binary constraints map

n variables to m values using an n×m matrix of binary-valued variables, while non-binary

constraints use a vector of length n, whose entries are restricted to m values. The authors

propose nRF+, a non-binary really forward lookahead algorithm, with specific look ahead for

subgraph isomorphism. They enforce the constraint that if vw is a candidate for template

node vt, then the number of vt’s neighbors must be less than or equal to the number of

candidates for those neighbors that are adjacent to vw.

The work [Sol10] classifies many constraints previously used in different subgraph isomor-

phism algorithms. The author proposes a new algorithm, LAD, using the constraint that

for a match to exist between nodes m and n, there must exist a matching between their

neighborhoods subject to the alldifferent constraint introduced in [Reg94], which can be

identified using the Hopcroft–Karp algorithm [HK73]. The alldifferent constraint requires

that the matchings between neighborhoods must be one-to-one.

85

4.1.2.4 Graph-Indexing Approaches

In GraphQL [HS08], the authors describe a graph query language and provide an algorithm

for resolving graph database queries. In particular, they iterate a constraint similar to that of

[Sol10], where there must exist a bipartite matching between the neighborhoods of a template

node and its candidate. This approach is further expanded upon in SPath [ZH10], where the

k-distance neighborhood is also considered.

TurboISO proposes a method for handling permutable template nodes, as well as addressing

the order of matching when identifying isomorphisms. It constructs an NEC tree, whose

vertices represent groups of permutable template nodes, and perform matching using this

tree. It then combines and permutes the candidates for each of these template nodes. For

the matching order, it divides the graph into candidate subregions, each of which contains a

group of candidates that may take part in a signal. It then prioritizes searching the smaller

candidate subregions. We take a similar approach in Subsection 4.3.1, prioritizing nodes with

the fewest candidates.

In CFL-Match [BCL16], the template is first decomposed into three types of structures:

Core, Forest, and Leaf. To do this, it first constructs a spanning tree of the template. Then,

it computes the minimal connected subgraph containing all nontree edges of the template.

It then iteratively removes all nodes with degree 1, updating the degree counts after each

removal. The remaining nodes form the core.

For each node in the core that is connected to a non-core node, a forest structure is

created, consisting of that node and all non-core nodes it is connected to. Finally, the leaf

structure consists of chains of removed non-core nodes.

After decomposing the template in this way, each structure is queried independently. In

order to postpone the Cartesian product of the results as much as possible, the core is queried

first, and the results are then used to restrict queries for each forest structure. Similarly, the

leaf queries are restricted by the results of the forest queries.

86

4.1.2.5 Multiplex Approaches

Though most subgraph isomorphism algorithms in the literature focus on the single-channel

networks, there are two algorithms that explicitly solve the multiplex SMP. SuMGrA [IIP16]

is a graph-indexing and backtracking tree-search approach and RI [BGP13] can be extended

to the multiplex case (MultiRI) [MBF20]. These existing multiplex approaches are designed

to solve the SMP. However, the SMP is infeasible when there are too many SIs as in many

of the problem instances in Section 4.4. Additionally, the networks considered by SuMGrA

and MultiRI differ slightly from Definition 4.1.1. Though they allow multiple edges between

nodes, they do not allow multiple edges between a pair of nodes in the same channel. SuMGra

also does not allow directed edges.

To extend any existing single-channel algorithms to multiplex networks, one possibility is

to use a single-channel approach (e.g., VF2, LAD) to solve the SMP in each channel and take

an intersection across all channels. However, this approach is infeasible when there are too

many SIs in any channel, even if there are few SIs overall. In Section 4.4, we show examples

where the number of SIs is too large to solve the multiplex SMP, let alone the single-channel

SMP.

4.1.3 Contributions

We extend existing constraint satisfaction approaches to operate on multiplex networks.

We demonstrate experimentally that these approaches allow us to list or count all SIs for

world graphs with thousands to hundreds of thousands of nodes and templates with tens to

hundreds of nodes.

Due to the underconstrained nature of the templates in some datasets, there are often too

many SIs to reasonably list, or sometimes even count. In such situations, we propose that a

natural problem to solve in place of the SMP or SICP is the MCSP. On datasets where we

can solve the MCSP, we observe that the output of our filters can be a good approximation

87

to the solution of the MCSP.

We have published our code as an open-source Python package available on GitHub

(https://github.com/jdmoorman/uclasm/tree/master) [MTC20].

4.2 Filtering

Our algorithms for solving the problems discussed in Subsection 4.1.1 revolve around the

use of filters to cheaply approximate the solution of the MCSP (Definition 4.1.7). For each

template node vt ∈ Vt, we keep track of its candidates D(vt) ⊆ Vw. Initially, we treat every

world node as a candidate for every template node. Each filter enforces a different set of

constraints to eliminate candidates that cannot be part of any signal. The filters are applied

repeatedly until no further candidates can be eliminated (Algorithm 7), applying the cheaper

filters before the more expensive ones.

Algorithm 7 Filtering

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt, list of filters filters

2: converged ← False

3: while converged is False

4: converged ← True . Stop unless progress is made

5: for filter ∈ filters

6: D ← filter(Gt,Gw, D) . Apply the filter

7: if |D(vt)| decreased for some vt ∈ Vt

8: converged ← False . Progress was made

9: Break . Restart from the first filter

10: Output updated candidate set D(vt) for each vt ∈ Vt

In this chapter, in general, we are not searching for induced subgraphs; we do not require

equal number of edges to exist between nodes in the template and nodes in the world graph.

Instead, we only require the edges between template nodes to be less than or equal to the

88

https://github.com/jdmoorman/uclasm/tree/master

number of edges between their corresponding candidates in the world. However, modifying

our filters to find induced subgraphs is simple. In Algorithm 9, change ≥ to == on Lines 6

and 7, and in Algorithm 11, change ≥ to == each time it appears on Line 8. Additionally, all

nodes must be considered as “neighbors” of each other, even if they have no edges between

them; this affects Line 2 of Algorithm 9 and Lines 4 and 5 of Algorithm 11.

4.2.1 Node Label Filter

In order for a world node vw to be a candidate for a template node vt, the label Lw(vw) must

match the label Lt(vt). For example, consider the template and world shown in Figure 4.1

in which the node labels correspond to their shapes. By the label filter, the square world

nodes 2, 5, 8, and 9 can be eliminated as candidates for the circular template nodes A and

C, while the circular world nodes 1, 3, 4, 6, 7, and 10 can be eliminated as candidates for

the square template node B. The label filter is run only once, immediately after receiving

the template and world.

In some examples, template node labels cannot be specified exactly. For example, in

geospatial applications, template node labels may represent broad regions, whereas world

node labels may represent exact coordinates. In such applications, it does not make sense to

require equality between template node labels and world node labels. Rather, one should

require the world node labels to be somehow “compatible” with the template node labels.

The notion of compatibility depends on the application. In Subsection 4.4.4.1 we discuss an

example application where a world node is compatible with a template node if the coordinates

of the world node lie within the region of the template node.

4.2.2 Node-level Statistics Filter

The idea behind the node-level statistics filter (Algorithm 8) is intuitive: for a world node vw

to be a candidate for a template node vt, certain statistical properties of vw should not be

less than those of vt. The idea of the node-level statistics filter has been applied to simpler

89

settings in the related literature [Sol10, MBF20]. Any statistic that is non-decreasing as

nodes and/or edges are added to a graph can be used as part of the filter. The statistics

that are applied in our filter include in/out-degree, number of in/out-neighbors, number of

reciprocated edges, and number of self-edges. Each of these statistics is used in each channel

in the networks.

Algorithm 8 Node-level Statistics Filter

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: for statistic ∈ [in-degree, out-degree, . . .]

3: for template or world node v ∈ Vt ∪ Vw

4: Compute statistic(v)

5: for template node vt ∈ Vt

6: for candidate vw ∈ D(vt)

7: if statistic(vw) < statistic(vt)

8: Remove vw from D(vt)

9: Output updated candidate set D(vt) for each vt ∈ Vt

Other more complex statistics can be used channel-wise, such as number of triangles,

number of nodes within k steps, and number of paths of length `. Statistics combining

information from multiple channels can also be used, such as the number of in-neighbors in

channel a that are also out-neighbors in channel b. We use only statistics the computational

cost scales linearly in the number of distinguishable edges (edges whose source, destination,

direction, and channel are distinct).

As an example, consider applying an in/out-degree filter to the problem in Figure 4.2.

The in-degree and out-degree of each template and world node are listed in Table 4.3. Node

A has one outgoing edge and one incoming edge, thus nodes 2 and 5 can be ruled out as

candidates since node 2 has no outgoing edges and node 5 has no incoming edges. Similarly,

node B has one incoming edge, so node 5 can be ruled out as a candidate since it does not

have any incoming edges. Finally, node C has two outgoing edges and one incoming edge, so

90

Figure 4.2: In the network shown, there is only one valid signal for the template: 1 for A, 2

for B, and 4 for C.

Template World

A B C 1 2 3 4 5

in-degree 1 1 1 1 2 2 1 0

out-degree 1 0 2 1 0 1 2 2

Table 4.3: In/out-degree for nodes in the template and world shown in Figure 4.2

all world nodes except 4 are eliminated as candidates since 4 is the only world node with at

least two outgoing edges and at least one incoming edge. The candidates for each template

node after applying the node-level statistics filter are summarized in the “Statistics” column

of Table 4.4.

The node-level statistics filter is the second cheapest filter to apply, after the node label

filter, and is most effective when some template nodes have statistic values that are uncommon

in the world. Narrowing down the candidates for even one template node can help the other

filters to refine the candidates for the remaining template nodes.

4.2.3 Topology Filter

In the topology filter, we enforce the constraint proposed by [Ull76], extended to multiplex

networks. The original constraint, denoted as AC(Edges) [Sol10], is that if vw is a candidate

91

Filters run

statistics
statistics,

topology

statistics,

topology,

repeated-sets

Candidates for A 1,3,4 1 1

Candidates for B 1,2,3,4 1,2 2

Candidates for C 4 4 4

Table 4.4: Candidates per template node for the problem shown in Figure 4.2 after various

filters have been applied.

for template node vt, then for every template node ut that neighbors vt, there must exist a

candidate uw for ut that neighbors vw. The natural extension to multiplex networks is that

if vw is a candidate for template node vt, then for every template node ut that neighbors vt,

there must exist a candidate uw for ut that has as many edges in each channel and direction

between vw and uw as there are between vt and ut.

To clarify the concept, consider applying the topology filter to the problem in Figure 4.2

after applying the node-level statistics filter. Since node 4 is the only candidate for node C,

nodes 3 and 4 are eliminated as candidates for both nodes A and B because they do not

have neighbors that are candidates for node C. These results are shown in Table 4.4.

In terms of computational complexity, the topology filter scales linearly with the number

of distinguishable template edges, and with the number of world nodes squared. In practice,

by using sparse matrices, the second factor can be reduced to the number of distinguishable

world edges leading to a computational complexity of O(|Et|0 |Ew|0).

The topology filter is particularly useful when one or more template nodes have few

candidates remaining after applying other filters. In such situations, it can significantly

reduce the candidates for neighboring template nodes.

92

Algorithm 9 Topology Filter

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: for neighboring template nodes vt and ut

3: for candidate vw ∈ D(vt)

4: nbr cand found ← False

5: for candidate uw ∈ D(ut)

6: enough out ← Ew(vw,uw) ≥ Et(vt,ut)

7: enough in ← Ew(uw,vw) ≥ Et(ut,vt)

8: if enough out and enough in

9: nbr cand found ← True

10: break

11: if nbr cand found is not True

12: Remove vw from D(vt)

13: Output updated candidate set D(vt) for each vt ∈ Vt

4.2.4 Repeated-Sets Filter

Here, we apply another constraint, GAC(AllDiff) [Hoe, Sol10]: generalized arc consistency

(also known as hyper-arc consistency) for the alldifferent constraint. GAC(AllDiff) requires

that for a world node vw to be a candidate for template node vt, there must exist some

injective mapping from the template nodes to their candidates under which vt is mapped to

vw. To enforce GAC(AllDiff), we identify sets of template nodes T ⊆ Vt where the union

of their candidates
⋃

vt∈T D(vt) has the same cardinality as T . These are known as tight

sets [Hoe]. Candidates for template nodes in a tight set cannot be candidates for any nodes

outside of the tight set, since this would violate GAC(AllDiff).

Standard algorithms for enforcing GAC(AllDiff) run in O
(√
|Vt|+ |Vw|

∑
vt∈Vt |D(vt)|

)
time complexity [Reg94, GMN08]. Some improvements and modifications to the standard

algorithms have been explored to mixed benefit [GMN08]. In the repeated-sets filter (Al-

gorithm 10), we enforce GAC(AllDiff) by directly considering unions of candidate sets to

93

find tight sets. Though the number of candidate set unions grows exponentially with the

number of template nodes [Hoe], we restrict this growth by not considering unions with more

nodes than there are template nodes. We also keep track of template nodes that belong to

tight sets and do not use them in unions. In practice, templates are often hundreds of nodes

or smaller, and we don’t observe the worst case exponential scaling. In terms of the world

graph, naive maximum cardinality matching-based algorithms scale as O(|Vw|3/2), whereas

Algorithm 10 scales linearly with |Vw|.

To illustrate the application of the repeated-sets filter, consider the example in Figure 4.2.

Using the node-level statistics and topology filters, the candidates for the template nodes

were narrowed down to those in Table 4.4. Since A has only one candidate, {A} is a tight

set and 1 can be removed as a candidate for the remaining template nodes. This leaves only

one candidate for each template node, exactly corresponding to the only signal in Figure 4.2.

The repeated-sets filter is most important when some template nodes have only one

candidate, since any template node with only one candidate forms a tight set. It is also useful

for templates such as those in Subsections 4.4.5.1 and 4.4.5.5 that contain nodes that are

indistinguishable.

4.2.5 Neighborhood Filter

In this filter, we extend the local alldifferent (LAD) constraint introduced in [Sol10] to the

multiplex network case. In the undirected single-channel graph context, the LAD constraint

ensures that for a world node vw to be a candidate for a template node vt, there must be

some injective mapping f` from the neighbors of vt to their candidates under which f`(ut) is

a neighbor of vw for each ut. We extend this to the multiplex network context by requiring

not just that f`(ut) neighbors of vw, but also that there are enough edges in each channel

and direction

Ew(vw,uw) ≥ Et(vt,ut)

and Ew(uw,vw) ≥ Et(ut,vt)
(4.1)

94

Algorithm 10 Repeated-Sets Filter

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: unions← EmptyMap()

. Map sets of world nodes Uw to sets of template nodes Ut for which Uw =
⋃

vt∈Ut D(vt).

Any Ut with |unions[Ut]| == |Ut| is a tight set.

3: T ← Ø . Nodes known to belong to tight sets.

4: todo← {vt ∈ Vt : |D(vt)| < |Vt|} . Template nodes with too many candidates

cannot belong to a tight set.
5: while |todo| > 0

6: vt ← element of todo with fewest candidates D(vt)

7: todo← todor {vt}

8: for (Uw,Ut) ∈ unions

9: Uw ← Uw ∪D(vt)

10: if |Uw| < |Vt|

11: Ut ← Ut ∪ {vt}

12: if |Ut| == |Uw| . Ut is a tight set.

13: T ← T ∪ Ut

14: D(ut)← D(ut) r Uw for ut ∈ Vt r Ut

15: else

16: unions[Uw]← Ut

17: if D(vt) 6∈ unions

18: if |D(vt)| == 1 . {vt} is a tight set.

19: T ← T ∪ {vt}

20: D(ut)← D(ut) rD(vt) for ut ∈ Vt r {vt}

21: else

22: unions[D(vt)]← {vt}

23: todo← {vt ∈ todo : |D(vt)| < |Vt r T |}

24: Output updated candidate set D(vt) for vt ∈ Vt

95

where uw = f`(ut). In the neighborhood filter (Algorithm 11), we enforce the multiplex LAD

constraint by searching for such a mapping f`. If none exists, we eliminate vw as a candidate

for vt.

We now transform the search for a mapping f` into a matching problem on a bipartite

graph B. Let Nvt and Nvw denote the neighborhoods of vt and vw respectively. Define

the undirected bipartite graph B with parts Nvt and Nvw to have an edge between nodes

ut ∈ Nvt and uw ∈ Nvw whenever uw is a candidate for ut and Equation (4.1) holds. A

matching on B is a subset of its edges where no two edges share a node. A mapping f`

is equivalent to a matching on B of size |Nvt | where each edge (ut,uw) in the matching

corresponds to f`(ut) = uw. The Hopcroft–Karp algorithm [HK73] can be used to find the

maximum cardinality matching on B in O(
√
|Nvt|+ |Nvw | |EB|) time, where EB denotes the

set of edges of B.

In the example from earlier, in Figure 4.2, the node-level statistics, topology, and repeated-

sets filters were sufficient to narrow down the candidates until they solve the MCSP (Defi-

nition 4.1.7). In Figure 4.3, we give an example where those filters are not sufficient. The

resulting candidates before and after neighborhood filter are given in Table 4.5. Before the

neighborhood filter is applied, node 4 remains a candidate for node C because node 3 is a

candidate for its neighbors A and B. The biadjacency matrix of B corresponding to vt = C

and vw = 4 is shown in Table 4.6. Each row of the biadjacency matrix corresponds to a

neighbor of vt and each column corresponds to a neighbor of vw. Entries correspond to the

conditions on Line 8 of Algorithm 11. Since the maximum cardinality matching on B has

only two elements, the neighborhood filter is able to eliminate node 4 from the candidates of

node C.

4.2.6 Elimination Filter

The elimination filter (Algorithm 12) attempts to eliminate candidates by identifying any

contradictions that would result from them being assigned. For each template node-candidate

96

Algorithm 11 Neighborhood Filter

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: for template node vt ∈ Vt

3: for candidate vw ∈ D(vt)

4: Nvt ← Neighborhood(vt)

5: Nvw ← Neighborhood(vw)

6: B ← EmptyBipartiteGraph(Nvt ,Nvw)

7: for (ut,uw) ∈ Nvt ×Nvw

8: if

uw ∈ D(ut)

and Ew(vw,uw) ≥ Et(vt,ut)

and Ew(uw,vw) ≥ Et(ut,vt)

9: Add an edge between ut and uw in B

10: max match = MaxCardinalityMatching(B)

11: if |max match| < |Nvt |

12: Remove vw from D(vt)

13: Output updated candidate set D(vt) for each vt ∈ Vt

97

Figure 4.3: An example template and world for which the neighborhood filter plays a role in

eliminating candidates.

pair (vt,vw), we do a one step lookahead. We assign vw to vt and iterate over all other filters

until convergence. If this results in one or more template nodes having no candidates, then

vt cannot be mapped to vw and we eliminate vw as a candidate for vt.

Algorithm 12 Elimination Filter

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: S ← copy(D) . Save the candidate sets

3: for template node vt ∈ Vt

4: for candidate vw ∈ D(vt)

5: D(vt)← {vw} . Assign vw to vt

6: Iterate all filters to convergence

7: if D(ut) is empty for any ut ∈ Vt

8: Remove vw from D(vt) in S

9: Reset candidate sets to S

10: Output updated candidate set D(vt) for each vt ∈ Vt

As the elimination filter is a very expensive operation, scaling with the number of remaining

candidates, we restrict its use until all other filters have converged and no further candidates

can be removed by other means. In certain contexts, the elimination filter can be impractical

98

Filters run

statistics,

topology,

repeated-sets

statistics,

topology,

repeated-sets,

neighborhood

Candidates for A 1, 3, 4 1, 4

Candidates for B 1, 3, 4 1, 4

Candidates for C 3, 4 3

Candidates for D 2, 5, 6 5

Table 4.5: Candidates per template node for the problem shown in Figure 4.3 after various

filters have been applied.

to use. However, in others, it can greatly reduce the number of candidates. A simple

example where elimination filter proves useful can be seen in Figure 4.4, where we have three

cycle graphs consisting of 3, 4 and 5 nodes respectively. We also assume that each edge is

bidirectional and there is only one channel.

Figure 4.4: Subgraph matching problems consisting of Graph A, B and C.

Suppose we use Graph A as the template graph and Graph B as the world graph (see

Figure 4.4). After applying the node-level statistics, topology, and neighborhood filters, every

99

NC

N4
2 3 6

A 0 1 0

B 0 1 0

D 1 0 1

Table 4.6: Biadjacency matrix of B used in the matching problem between the neighborhoods

of template node C and world node 4.

node in Graph B remains a candidate of every template node in Graph A. By including

elimination filter, we are able to correctly tell that there is no valid signal for this problem.

A more difficult problem arises when we use Graph B as the template graph and Graph C as

the world graph. In this case, the node-level statistics, topology, and neighborhood filters do

not get rid of any invalid candidates. Only after additionally applying the elimination filter

can we conclude that there is no valid signal existing in Graph C.

In practice, the elimination filter that iterates over node-level statistics, topology, and

repeated-sets filters is often sufficient, since iterating over neighborhood filters is expensive.

However, in situations like the second example posed above, we might need to apply all of

the existing filters to determine the solution. In particular, the elimination filter is useful

in many synthetic and real-world datasets, especially in some of the examples discussed in

Subsection 4.4.5.

4.3 Solving the Problems

We present the details of how to solve the SICP and MCSP using the filters from Section 4.2

as a subroutine. The SIP and SMP can be solved with similar methods to SICP, and the

SNSP can be solved with a similar method to MCSP.

100

4.3.1 Isomorphism Counting

After applying the filters described in Section 4.2, some template nodes may have exactly

one candidate. Template nodes that still have multiple candidates we refer to as unspecified

nodes. When an edge exists between two unspecified nodes, we have to enforce that a

corresponding edge exists between the two candidates we choose for them. As this makes

counting isomorphisms computationally complex, we start by finding a set of unspecified

nodes that, if specified, would cause the remaining unspecified nodes to have no edges between

them. This set is called a node cover, and the smallest such set is called the minimal node

cover.

For example, in Figure 4.2, if all three template nodes have multiple candidates, the

minimal node cover would be {C}. Since the minimal node cover NP-hard to compute in

general, we settle for a small node cover [BE85].

Next, we iterate through all possible choices of candidates for nodes in the node cover.

For each choice, we reapply the topology and repeated-sets filters so we can be sure that any

remaining candidates belong to signals. Since the remaining unspecified nodes have no edges

between them, it is much simpler to count the ways to choose their candidates. The only

constraint is that the same candidate cannot be chosen for more than one node, which is

simply the alldifferent constraint satisfaction problem [Reg94].

Simple modifications can be made in order to solve the SIP and SMP. For the SIP, the

algorithm exits and returns true once a solution is found, i.e. once CountAllDiff (Line 4

of Algorithm 13) returns a nonzero result. For the SMP, replace CountAllDiff with an

algorithm that returns a list of all solutions to the alldifferent problem, and instead of adding

the counts together, combine the two lists of solutions.

101

Algorithm 13 Isomorphism Counting

1: function IsoCount

2: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt, unspecified node

cover NC

3: if NC = Ø

4: Nisos ← CountAllDiff(D)

5: else

6: Nisos ← 0

7: vt ← NC.pop()

8: S ← copy(D) . Save the candidate sets

9: for world node vw ∈ D(vt)

10: D(vt)← {vw} . Assign vw to vt

11: Apply filters

12: Nisos ← Nisos + IsoCount(Gt,Gw, D,NC)

13: Reset candidate sets to S

14: Output number of isomorphisms Nisos

102

4.3.2 Validation

A simpler problem than listing or counting all isomorphisms (SMP or SICP) is the minimal

candidate sets problem (MCSP) of Definition 4.1.7. Here, we refer to the procedure for

solving the MCSP as validation, in which we seek to identify all template node-candidate

pairs that participate in at least one isomorphism. An algorithm for validation is as follows

(Algorithm 14). First, pick an unvalidated pair of a template node and its candidate.

Next, make assignments until an isomorphism is found, running filters after each step and

backtracking as needed. If all possible assignments fail, then the pair is invalid; remove

the pair from the set of possible candidates. Otherwise, validate every assignment made as

part of the isomorphism, including the initial one; these pairs are validated as taking part

in at least one isomorphism. Repeat this process until all pairs are validated or removed

from candidates. This ensures that every candidate-template node pairing remaining after

validation is valid i.e. participates in at least one signal. This is because in order to pass

validation, it must participate in at least one isomorphism that was found, and in order to

fail, there must not exist an isomorphism containing it.

An optimization for Algorithm 14 when using the node cover approach in Subsection 4.3.1

is that if the node cover has been assigned, the topology and repeated-sets filters have

been run to convergence, and the problem has thus been reduced to an alldifferent problem.

Then, instead of attempting to find a single solution to the alldifferent problem, all possible

candidate pairs corresponding to the alldifferent problem can be simultaneously validated.

This is because all remaining candidate pairs passed the repeated-sets filter, which enforces

GAC(AllDiff): thus, there must exist a solution for each pair, and thus an isomorphism since

edges were previously enforced by the topology filter.

This algorithm can also be modified to solve the SNSP. If, instead of adding the tuple

(ut, f(ut)) to validated, only the element f(ut) is added, then the algorithm will validate

only which world nodes participate, without respect to which template nodes they are

candidates for.

103

Algorithm 14 Validation

1: Input template Gt, world Gw, candidate set D(vt) for each vt ∈ Vt

2: D′(vt)← Ø for each vt ∈ Vt . Valid candidates

3: for template node vt ∈ Vt

4: for candidate vw ∈ D(vt) rD′(vt)

5: S ← copy(D)

6: S(vt)← {vw} . Assign vw to vt

7: Attempt to find an SI f using S . Solve the SIP

8: if isomorphism found

9: D′(ut)← D′(ut) ∪ {f(ut)} for each ut ∈ Vt

10: else

11: Remove vw from D(vt)

12: Output minimal candidate set D′(vt) for each vt ∈ Vt

4.4 Experiments

Unless otherwise specified, the experiments were run on an HP Z8 G4 Workstation with

two 12-core 6,136 3.0 2,666MHz CPUs, using version 0.2.0 of the python code available on

GitHub (https://github.com/jdmoorman/uclasm/tree/v0.2.0) [MTC20]. The node-level

statistics, topology, and repeated-sets filters run in under a minute for all datasets and under a

second for most. The elimination filter takes longer, between minutes and hours, depending on

the dataset. Validation, if used, can also take hours or longer. The combinatorial complexity

of the solution space is largely responsible for the long time needed for the elimination,

counting and validation.

4.4.1 Sudoku

The puzzle game of Sudoku involves a 9× 9 grid that is partitioned into nine 3× 3 blocks.

Each cell of the grid must be filled with a digit 1–9 so that each row, column, and block

104

https://github.com/jdmoorman/uclasm/tree/v0.2.0

Figure 4.5: Sudoku grid with initial clues.

contains each digit 1–9 exactly once. A Sudoku puzzle begins with some of the cells pre-filled

with digits so that there is exactly one correct solution (Figure 4.5).

One algorithm for solving Sudoku is Donald Knuth’s dancing links algorithm [Knu00],

which models Sudoku as an exact cover problem. This is a backtracking tree-search with

refinement on a sparse Boolean matrix, using doubly linked lists for efficiency. Sudoku

can also be modeled as a constraint satisfaction problem [Sim05]; see e.g. Peter Norvig’s

constraint-propagation algorithm [Norb]. Here, the two constraints propagated are that cells

in the same row must contain different digits and that every cell must have a digit. After

these constraints have been iterated, the algorithm uses a depth first backtracking search to

find the solution.

The constraint satisfaction problem to solve Sudoku has much in common with subgraph

isormorphism algorithms; here we show that Sudoku can be written in multiple ways as a

subgraph isomorphism problem. We chose this example to test our algorithms primarily

because constraint-propagation is considered state of the art for Sudoku. Here, our goal is to

validate the reasonable use of our code on this problem, rather than trying to beat the best

Sudoku solvers.

105

4.4.1.1 9× 9 Representation

Sudoku is equivalent to a single-channel subgraph isomorphism problem using the following

correspondence: consider the cells as nodes of the template, two cells in the template are

linked if they are in the same row, column, or 3× 3 block. We consider the world as a set

of 81 nodes, each corresponding to a digit. Each digit is locked to a particular 3× 3 block,

leading to nine sets of nine digits each, having values 1–9. And here, two nodes are linked

if they do not have the same value. This graph has the same number of nodes, but more

edges than the template, so this is a subgraph isomorphism problem. To represent known

digits (to start the puzzle), we can restrict the initial candidates. This can be done simply: if

a cell is filled in with a value, we identify which 3× 3 block the cell is in, find the digit in

the world that corresponds to that block and has the matching value, and say that the only

candidate for the cell is that digit. The Sudoku puzzle is thus a semi-supervised version of

the subgraph graph isomorphism problem and is designed to have a unique solution, unlike

the unsupervised examples in our other experiments.

4.4.1.2 9× 9× 3 Representation

One can also assign different edge types (i.e. row, column or block correspondences) to

different channels, along with another channel that identifies which cells are the same. The

template has three nodes for each cell, a row-node, a column-node, and a block-node. All

three are linked by edges in a special “same-cell” channel. Otherwise, the three channels

are completely separate: row-nodes are only linked to other row-nodes in the same row,

column-nodes to column-nodes, etc. The world is then three channels of nine digits each, so

there are once again the same number of world nodes as template nodes. In each channel,

sets of nine digits are identified as being in the same row/column/block by edges. In these

channels, there are the same number of edges as in the template. However, for the “same-cell”

channel, we add an edge between any two nodes that could represent the same cell. Since

each 3 × 3 block only intersects three rows and three columns, these edges are restricted.

106

Similar to before, we add an additional initial restriction that a row-node in the template

can only have the nine row-digits in the world corresponding to its row as candidates, and

the same for columns and blocks.

4.4.1.3 Results

To test our filters, we use the sets of Sudoku puzzles obtained from Peter Norvig’s GitHub

[Nora], including those from Project Euler problem 96 [Pro]. Though our code is not

specialized for the task, it still solves all Sudoku examples in the dataset. The time taken

to solve each Sudoku example is plotted in Figure 4.6. Overall, it appears that the 9 × 9

representation works best on the easier puzzles, while the 9× 9× 3 representation is faster

on harder puzzles. On the hardest puzzles, the 9× 9 representation is faster on average; this

is primarily due to outliers for which the 9× 9× 3 representation takes much longer.

4.4.2 Multiplex Erdős–Rényi

To test the scalability of our algorithm, we perform experiments on randomly generated

multiplex Erdős-Rényi networks, where each edge in each channel has the same probability p

of occurring. For the templates, pt = 0.5. For the worlds, the probability

pw = 1− 1− |C|
√

1− pt + p2
t

pt

is scaled up as the number of channels increases to maintain a fixed probability of length |C|

edge vectors matching

P(Et(ut,vt) ≤ Ew(uw,vw)) = 0.75

for all template nodes ut, vt and world nodes uw, vw. Templates are generated with 10

nodes, while worlds are generated with sizes ranging from 10 nodes to 300 nodes. We cap the

algorithm runtime at 10,000 seconds per instance.

To measure the difficulty of each instance, we count the number of search iterations

(recursive calls to IsoCount) taken by Algorithm 13 to solve the SIP and SICP. For the

107

Figure 4.6: Solving Sudoku puzzles as special case of a multiplex subgraph isomorphism

problem using the 9× 9 and 9× 9× 3 representations. Scatter plot of solution times (seconds)

on the Sudoku puzzles from Peter Norvig’s GitHub [Nora], including those from Project Euler

problem 96 [Pro]. A black line is drawn where the representations take an equal amount of

time to aid in comparison. Mean solution time for the 9× 9 representation is 8.33 seconds on

the 50 easy puzzles, 116.7 seconds on the top 95 puzzles, and 43.4 seconds on the hardest

puzzles. Mean solution time for the 9× 9× 3 representation is 11.24 seconds on the 50 easy

puzzles, 95.4 seconds on the top 95 puzzles, and 179.4 seconds on the hardest puzzles.

SIP, the counting is terminated after a single isomorphism is found, or once the entire search

space has been checked and no isomorphisms are found. We observe similar difficulty scaling

for one, two, and three channel instances (Figure 4.7).

For the SIP, there is an initial sharp rise in search iterations with a peak around 100

iterations, followed by a decline back to a constant level of 10 iterations. This pattern is

partially due to the SIP being easier when SIs are either extremely likely or extremely unlikely

[MPS18]. When SIs are unlikely, as when the world is near the size of the template, filtering

often rules out all SIs before reaching the bottom of the search tree. When SIs are common,

as when the world is large (e.g. over 100 nodes), every branch of the search tree is likely to

have one, so the number of search iterations converges to the number of template nodes, 10.

For the SICP, the mean number of search iterations scales monotonically with the number

108

25 50 75 100 125 150 175 200
Number of World Nodes

100

101

102

103

M
ea

n
Nu

m
be

r o
f I

te
ra

tio
ns

Mean Number of Iterations for SIP/SICP
SIP 1 channel
SICP 1 channel
SIP 2 channels
SICP 2 channels
SIP 3 channels
SICP 3 channels

Figure 4.7: Mean number of search iterations (recursive calls to IsoCount) taken by

Algorithm 13 to solve the SIP and SICP with one, two, and three channels as a function of

world size. Results are averaged over 500 trials.

of world nodes. This is to be expected, as the expected number of SIs to be counted also

scales monotonically with the number of world nodes, and the effort taken to count the SIs is

closely related to the number of SIs.

4.4.3 Crosswords

A crossword is a type of word puzzle typically consisting of a grid of black and white cells.

For an example of a blank crossword grid and a solved crossword grid, see Figures 4.8a

and 4.8b respectively. To solve a crossword, one must fill each cell with a letter so that each

horizontal or vertical sequence of consecutive letters answers a corresponding clue. Each

horizontal or vertical sequence of cells is identified by the number shown in its leftmost or

topmost cell respectively and is read left-to-right or top-to-bottom respectively. For example,

“10 Across” corresponds to the answer “USA” in the filled grid (Figure 4.8b), while “8 Down”

corresponds to the answer “SPARED”. Clues have been omitted for the crossword shown in

Figure 4.8, but as an example, the clue for 10 Across could be “Country between Mexico and

Canada, for short”.

109

To design a crossword, a crossword constructor must fill a grid with answers and write a

clue for each answer. Moreover, answers may only appear once in each puzzle and answers

that intersect must share a letter at the point of intersection. For example, the answer for 1

Across must share its final letter with the first letter of the answer for 6 Down in Figure 4.8a.

To aid in this process, specialized software is often used [Bur10]. Here, we observe that filling

a crossword grid with answers can be viewed as a special case of the subgraph isomorphism

problem and we use a specialized version of the Glasgow subgraph solver [MP15] to fill the

crossword grid shown in Figure 4.8. We note that this is far from the first time filling a

crossword grid has been viewed as a constraint satisfaction problem [RDM08, BCS01, Gin11],

but it is the first time it has been viewed as a multiplex subgraph isomorphism problem to

the best of our knowledge.

To view crossword construction as a special case of the subgraph isomorphism problem,

we use the template to represent the crossword grid and the world to represent the dictionary

of possible answers. We let each node in the template represent an entry in the grid that must

be filled by an answer (e.g. 10 Across) and we connect nodes corresponding to intersecting

entries by an edge whose channel indicates which letters must be shared between their answers.

In the world, we let each node represent a possible answer (e.g. “USA”) and we connect

nodes with edges whose channels indicate which letters they share. With this definition of the

template and world, a subgraph isomorphism yields a mapping from entries in the crossword

grid to corresponding answers where each answer is used at most once and any intersecting

answers share the necessary letter at their intersection. Thus, subgraph matching algorithms

can be used to construct crosswords.

As a proof of concept, we convert the empty crossword grid shown in Figure 4.8a to a

template network as described above. For the dictionary, we use the answers collected by

Matthew L. Ginsberg [Gin11] restricted to those that occur at least 10 times. We do not

convert the dictionary explicitly to a world network. Instead, we store the dictionary as a

list of strings and compare characters between the strings to check compatibility with the

110

template edges. We adapted the Glasgow subgraph solver [MP15] to solve the multiplex

subgraph isomorphism problem and to accept data in the format described. In about 30

seconds runtime, we are able to fill the crossword grid with the answers shown in Figure 4.8b.

1 2 3 4 5 6

7 8

9

10 11

12 13

14 15 16

17

18

(a) Empty crossword grid.

A
1

D
2

S
3

O
4

R
5

B
6

S
7

P E E D E R S
8

C
9

O L D S N A P

U
10

S A O
11

C A

B
12

T W V
13

E R

A
14

L A N
15

H
16

A L E

S
17

E R R A T E D

S
18

E C R E T

(b) Filled crossword grid.

Figure 4.8: An example of filling a crossword grid using a subgraph isomorphism algorithm.

4.4.4 Real-World Examples

We apply the algorithms to three real-world examples. From each dataset, we extract a

small subgraph as our template and try to locate its matching subgraphs in the world graph.

Table 4.7 summarizes the sizes and filtering results.

4.4.4.1 Great Britain Transportation

The Great Britain Transportation Network [GB15] combines the public transportation dataset

available through the United Kingdom open-data program [Dep15] with timetables of domestic

flights in the UK to obtain a multiplex time-dependent network that reflects the transportation

network in the UK. There are six channels representing different transportation methods,

including air, ferry, railway, metro, coach, and bus. This dataset has 262,377 nodes and

475,502 edges. The original dataset can be found at [GB15].

111

Dataset
Template World

Channels
Number of

isomorphisms
Filters Problems solved

Nodes Edges Nodes Edges

Britain Transportation 53 56 262,377 475,502 5 N/A S, T, R, E SIP

Britain Transportation (3 km) 53 56 262,377 475,502 5 3.76× 107 L, S, T, R, E SIP, SNSP, MCSP, SICP

Higgs Twitter 115 2,668 456,626 15,367,315 4 1.03× 1014 S, T, R SIP, SNSP, MCSP, SICP

Commercial Airlines 37 210 450 7,177 37 3.65× 109 S, T, R SIP, SNSP, MCSP, SICP

Table 4.7: Sizes and filtering results on real-world examples in Sections 4.4.4.1, 4.4.4.2 and

4.4.4.3. The last column records the types of problems stated in Subsection 4.1.1 that we

are able to solve. The names of the filters are abbreviated: L = Node Label; S = Node-level

Statistics; T = Topology; R = Repeated-Sets; N = Neighborhood; E = Elimination.

Figure 4.9: Candidate count for each node in the Great Britain Transportation template after

applying the node-level statistics, topology, repeated-sets and elimination filters; without

node label filtering.

112

Figure 4.10: Candidate count for each node in the Great Britain Transportation template

after applying the node label filter with a 3 km radius in addition to the node-level statistics,

topology, repeated-sets, and elimination filters.

To test our algorithm, we first create a template. We identify a small set of locations that

interact with each other through all channels (excluding airlines, since this channel is very

sparse). If a location involves all five non-air channels in the network, we assume that it is

important. There are only three nodes that interact in these 5 channels, and we chose one

of them as our template center, which is Blackfriars Station in London. Starting from this

node, we use a random walk to create a template, which has 53 nodes and 56 edges. The

results are shown in Figure 4.9.

We can improve this result using the node label filter; the result is shown in Figure 4.10.

In Figure 4.11, we see that the remaining candidates after filtering are geographically

distributed across the UK. As previously mentioned in Subsection 4.2.1, these nodes are

actually transportation stops with given latitude and longitudes. If we know a priori that a

certain node should be confined in a region, say a radius of 3 km, then we can apply the node

label filter. Node labels help reduce the size of the world before we apply filtering. Without

the node label filter, even after the elimination filter, there are still too many candidates to

113

Figure 4.11: All candidates for the Great Britain Transportation dataset: blue nodes represent

template nodes and red nodes represent candidates for the SIP.

114

count. However, if we apply geographical information before we run other filtering algorithms

and restrict the candidates to be within 3 km from the coordinates of the template node,

then we reduce the size of remaining candidates to a tractable level.

4.4.4.2 Higgs Twitter

The Higgs Twitter dataset [DLM13] records Twitter activities from July 1–7, 2012, during

and after the discovery of the Higgs boson particle. It can be formulated into a directed,

multiplex network with four channels, representing retweets, replies, mentions and follower

relationships. The world graph contains 456,626 nodes (Twitter users) and 15,367,315 edges

(interactions), and the user identities are aligned across all channels. To demonstrate how

our filtering algorithm performs on detecting a small, relatively dense template, we select a

group of 115 Twitter users frequently involved in retweets or replies during the week, and

whose induced subgraph is connected, has multi-edges and contains edges in all four channels.

The template has a total of 2,668 edges.

Figure 4.12: Candidate count for each node in the Higgs Twitter template after applying the

node-level statistics, topology, and repeated-sets filters.

115

We apply our filtering methods to the world graph and the template. Our methods narrow

down the candidates significantly and find exact matches for 102 out of the 115 template

nodes (Figure 4.12). For the template nodes that have multiple remaining candidates, many

of these candidates do belong to a valid subgraph isomorphism. We proceed to compute the

number of subgraph isomorphisms, totaling 1.03 × 1014 valid isomorphisms. Our method

works particularly well in detecting signals that exist across different channels and have

multi-edges, as these graph properties provide us with enough information to remove invalid

candidates.

4.4.4.3 Commercial Airlines

We also test our filtering methods on a commercial airlines dataset [CGZ13]. This dataset

contains a multiplex airline network in Europe which consists of 37 channels, each representing

a different airline. Compared with the other real world examples above, its world graph has

a smaller scale, only containing 450 nodes (airports) and 7,177 directed, unweighted edges

(flights).

We construct a template that has 37 nodes and 210 edges by taking the induced subgraph

of 20 core nodes and introducing some additional periphery nodes and edges. When creating

the template, we also ensure that it has nodes and edges across all channels to fully test the

capability of our algorithm. Due to the small size of the dataset, our filtering algorithm is

able to return the final candidate lists of all template nodes within a second, the result of

which can be seen in Figure 4.13. The node-level statistics filter alone manages to find the

exact match candidate of 10 templates, while the topology filter increases the number of

exact matches to 28 nodes. Our counting algorithm also concludes that there exist around 3.6

million subgraph isomorphisms in the world graph. By using just the topological properties of

the multiplex airline network, our algorithm is able to effectively identify the exact identities

of most of the target airports as well as the potential identities of the remaining ones.

116

Figure 4.13: Candidate count for each node in the commercial airline template after applying

the node-level statistics, topology and repeated-sets filters.

4.4.5 Adversarial Activity

We apply our filtering methods to a series of datasets developed for the DARPA MAA

program [XTL18, DZJ18]. This program uses networks to represent activities (e.g., human

trafficking, financial transactions, email communication, phone calls, distribution of narcotics)

some of which may be adversarial. Because these activities can be covert, they may not

be detectable through a single activity type. Multiplex networks provide a mathematical

structure for identifying related network modalities for such complex adversarial actions.

Thus, an important area of research is to match like patterns from an activity template

to part of a larger dataset of multiplex actions. Here, we present some results on datasets

created by three different teams: (1) Pacific Northwest National Laboratory (PNNL), (2)

the Graphing Observables from Realistic Distributions In Activity Networks (GORDIAN)

team, and (3) IvySys Technologies. These datasets consist of a 1,000–200,000 node world

graph with one or more roughly 100-node templates, that simulate a scenario of activities by

a specific group of agents.

117

Dataset Instance
Template World

Channels
Number of

Isomorphisms
Filters

Problems

SolvedNodes Edges Nodes Edges

B0-S0 74 1,620 22,996 12,318,861 7 1,152 S, T, R SIP, SNSP, MCSP, SICP, SMP

B5-S0 64 1,201 22,994 12,324,975 7 1,152 S, T, R SIP, SNSP, MCSP, SICP, SMP

B1-S1 75 1,335 22,982 12,324,340 7 1,152 S, T, R, E SIP, SNSP, MCSP, SICP, SMP

PNNL

Version 6

B7-S1 81 1,373 23,011 12,327,168 7 3.13× 108 S, T, R, E SIP, SNSP, MCSP, SICP

PNNL

Real World
35 158 6,407 74,862 3 2.12× 1012 S, T, R, N, E SIP, SNSP, MCSP, SICP

Batch-1 156 3,045 190,869 123,267,100 10 4.27× 1015 S, T, R, E SIP, SNSP, MCSP, SICPGORDIAN

Version 7 Batch-2 44 715 190,869 123,264,754 10 1.35× 1016 S, T, R, E SIP, SNSP, MCSP, SICP

IvySys

Version 7
92 195 2,488 5,470,970 3 N/A S, T, R, N, E SIP

IvySys

Version 11
103 387 1,404 5,719,030 5 N/A S, T, R, E SIP

Table 4.8: Overview of the sizes and filtering results of different DARPA datasets. For

each instance of the datasets, the table records its basic statistics, which filters have been

applied, and the number of isomorphisms. The last column states the types of problems

stated in Subsection 4.1.1 that we can solve for each instance. The names of the filters are

abbreviated: L = Node Label; S = Node-level Statistics; T = Topology; R = Repeated-Sets;

N = Neighborhood; E = Elimination.

118

Table 4.8 summarizes the sizes and filtering results of each dataset. In each instance,

there is one world graph with an embedded signal that is isomorphic to the template. We

identify the signal with our filtering methods, and when there are multiple signals, we solve

the SICP or MCSP to understand the solution space. For all of the datasets, we have applied

the node-level statistics and topology filters to reduce the number of candidates. When the

candidate counts remain high, we apply the neighborhood and elimination filters to further

narrow them down.

4.4.5.1 PNNL Version 6

PNNL Version 6 [CPM18] has 12 instances, each consisting of one world and two templates.

The worlds have around 23,000 nodes and over 12,000,000 edges each. The templates have

74–81 nodes and 1,200–1,650 edges.

By filtering based on node-level statistics, topology and repeated-sets, we identify the

signals for most of the given templates. However, there remain templates (e.g., instances

B1-S1, B7-S1 according to Table 4.8) where we cannot solve the MCSP by applying the

previous filters. Under such circumstances, we additionally apply the elimination filter, which

narrows down the candidate counts further as shown in Figure 4.14.

Figure 4.14 gives an overview of how different filters gradually reduce the number of

candidates for each template node in instance B1-S1. In the bottom histogram, we observe

that after node-level statistics and topology filters, around 5,000 world nodes still remain

candidates of at least one template node. However, the subsequent application of elimination

filter reduces the number of candidate world nodes to roughly 100. Figure 4.15 shows the

comparison of filtering results on instance B1-S1 before and after adding in the elimination

filter. The sharp contrast in their candidate counts shows that the elimination filter sometimes

reduces the number of candidates significantly. After applying all filters, we observe in

Figure 4.15 that some of the template nodes are permutable and share the same candidates,

which lead to 1,152 SIs in this dataset.

119

Figure 4.14: (Top): The number of candidates for each template node after different levels of

filtering are applied to PNNL Version 6 B1-S1. (Bottom): The number of template nodes for

which each world node is a candidate.. Note that the Validation histogram perfectly overlaps

the Elimination histogram and the Neighborhood histogram perfectly overlaps the Topology

histogram.

120

(a) Without elimination filter. (b) With elimination filter.

Figure 4.15: Candidate count for each node in the PNNL Version 6 B1-S1 template after

applying the node-level statistics, topology, and repeated-sets filters, with and without

additionally applying the elimination filter.

The experiments on different instances of the PNNL Version 6 dataset demonstrate the

efficacy of node-level statistics and topology filters for solving subgraph matching problems.

The filtering results on the more difficult instances also display the potential of the elimination

filter, especially in tackling problems that initially appear resistant to the node-level statistics

and topology filters.

4.4.5.2 PNNL Real World

This dataset was created by PNNL from a social media dataset collected by Matteo Magnani

and Luca Rossi [CDM10, MR11]. It involves friend/follower relationships on three social

media platforms, each of which corresponds to a channel.

After applying all of the filters, we identify unique candidates for 20 template nodes.

Many of the remaining template nodes have hundreds of candidates. By additionally applying

validation to solve the MCSP, we verify that all of the remaining candidates participate in at

least one signal. This suggests that the filters have the potential to reduce the candidates all

the way to the solution of the MCSP.

121

Figure 4.16: Candidate count for each node in the PNNL Real World template after solving

the MCSP using validation. Edge colors correspond to their channels.

Both histograms in Figure 4.17 demonstrate how candidates get eliminated as different

filters are applied. All filters are able to reduce the number of candidates. In the top

histogram, the number of remaining candidates after the elimination filter entirely overlaps

with that after validation, confirming that the result after the elimination filter is nearly

identical to the solution to the MCSP, identifying all world nodes that correspond to each

template node in at least one signal. In the bottom histogram, we can clearly observe how

each filter eliminates the candidacy of world nodes in stages.

4.4.5.3 GORDIAN Version 7

GORDIAN Version 7 [KSG18] has two instances: Batch-1 and Batch-2. The Batch-1 template

has 156 nodes and 3,045 edges, while the Batch-2 template has 44 nodes and 715 edges.

Both instances have worlds with 190,869 nodes and about 123,265,000 edges. Despite the

distinction in sizes and structures of their respective templates, both instances can be solved

with node-level statistics, topology and repeated-sets filters. For example, in Batch-1, even

122

Figure 4.17: (Top): The number of candidates for each template node after different levels

of filtering are applied to PNNL Real World. (Bottom): The number of template nodes for

which each world node is a candidate. Note that the Validation histogram almost perfectly

overlaps the Elimination histogram.

123

without applying the more advanced elimination and neighborhood filters, we manage to

find the exact match for 129 template nodes out of 156. In Figure 4.18, we plot the largest

connected component of instance Batch-1, in which we can clearly see that the majority of

the template nodes are matched with their single candidate. These filtering results again

demonstrate the potential of our basic filters (node-level statistics, topology, repeated-sets) in

narrowing down the solution to subgraph matching problems. The small number of remaining

candidates also enables us to apply validation and verify that all remaining candidates

participate in some signal. We also compute the number of isomorphisms to be 1.51× 1012,

and the enormous number here is a direct result of the permutability of some template nodes.

Figure 4.18: Candidate count for each node in the GORDIAN Version 7 Batch-1 template

after applying the node-level statistics, topology, repeated-sets, and elimination filters.

124

4.4.5.4 IvySys Version 7

IvySys Version 7 [BJU18] has three channels corresponding to financial, communication and

logistics transactions. Due to the sparsity of the template relative to that of the world, we

are unable to identify any template nodes with unique candidates after applying different

levels of filtering methods, as seen in Figure 4.19. However, after our filtering methods reduce

the size of the search space, we find that there are in fact many signals in the world graph,

some of which are almost completely disjoint from each other. It is their existence that leads

to the abundance of candidates for each template node. Our approach allows us to easily

solve the subgraph isomorphism problem (SIP) for IvySys Version 7, which is finding just one

valid signal. However, the complexity of the solution space makes it unreasonable to proceed

to solve the rest of the variants, like SICP, SNSP and MCSP.

4.4.5.5 IvySys Version 11

IvySys Version 11 consists of a single instance with five channels. It is somewhat similar to

that of IvySys Version 7, as illustrated in Figure 4.20. The template has 103 nodes and 387

edges, while the world has 1,404 nodes and 5,719,030 edges. Even after the application of all

of our existing filters, we can only identify exact matches for 13 out of the 103 template nodes.

The majority of the template nodes still have a considerable number of candidates. A closer

examination of Figure 4.20 shows the existence of permutable sets of template nodes. This

suggests the possibility that we might have already reduced the graph to the point where

almost all of the remaining candidates serve as part of a valid signal.

4.5 Conclusion

We have introduced a series of filtering methods that can be used to attack subgraph

isomorphism problems within a large-scale multiplex network. The filtering approaches

reduce the search space using node attributes, node-level statistics, topology, and alldifferent

125

Figure 4.19: (Top): The number of candidates for each template node after different levels of

filtering are applied to IvySys Version 7. (Bottom): The number of template nodes for which

each world node is a candidate.

126

Figure 4.20: Candidate count for each node in the IvySys Version 11 template after applying

the node-level statistics, topology, repeated-sets, and elimination filters. The colors of the

edges correspond to their different channels.

127

constraints. When applied iteratively until convergence, our filtering methods can significantly

narrow down the search space. We also implement a more computationally expensive

isomorphism counting approach, which can be applied after filtering to solve the Subgraph

Isomorphism Counting Problem (Definition 4.1.5). We can also proceed with a validation

step that checks whether each world node participates in at least one subgraph isomorphism,

hence solving the Signal Node Set Problem (Definition 4.1.6).

We have applied our methods to multiple types of networks: Sudoku puzzles, three real-

world datasets, and synthetic datasets created by PNNL, GORDIAN and IvySys as part of the

DARPA MAA program. In all of these experiments, our methods have greatly narrowed down

the candidates of the template nodes and provided us with an understanding of the size of the

solution space. When applied to the Higgs Twitter network, the commercial airline network,

PNNL Version 6, PNNL Real World and GORDIAN Version 7, our methods are capable of

solving most of the proposed subgraph isomorphism problems. However, even in settings

where we cannot solve the problems, such as the Great Britain Transportation and IvySys

Versions 7 and 11, our methods reduce the search space to a much smaller scale. Our results

show that further narrowing down the candidates of template nodes is often hindered by an

abundance of subgraph isomorphisms existing in the world graphs. Under such circumstances,

leveraging more node attributes such as geospatial coordinates or timestamps can assist in

making further progress, as shown with the Great Britain Transportation example.

128

CHAPTER 5

Inexact Attributed Subgraph Matching∗

5.1 Introduction

Subgraph matching involves searching for a prescribed template graph as a subgraph of a

world graph. One may want to find one occurrence, all occurrences, or some other summary

of the solution space, depending on the application [CFS03]. In applications where the graphs

have attributes on the nodes and edges, it is common to search for subgraphs of the world

which only approximately match the template. This is called inexact attributed subgraph

matching.

Definition 5.1.1 (Attributed Graph). An attributed graph G = (V , E ,L,A) consists of a

set of nodes V, a set of edges E ⊆ V × V, a set of attributes A, and a map L : V ∪ E → A

from nodes and edges to their attributes.

Given two attributed graphs, a template Gt = (Vt, Et,Lt,A) and a world Gw = (Vw, Ew,Lw,A),

we are interested in one-to-one maps f : Vt → Vw where the induced subgraph of the image

is similar to the template. Such a map f is called an inexact match of Gt. The cost metric

used to measure similarity between the template and the image of f is denoted C(f ;Gt,Gw)

and is described in Subsection 5.2.1.

The process of finding the map f ? which minimizes C(f ;Gt,Gw) is called inexact attributed

subgraph isomorphism (ASI), while the process of finding all maps f with distance at most ε

∗This chapter is adapted from [TMY20].

129

is called inexact attributed subgraph matching (ASM). Finding the k most similar maps is

called top-k inexact ASM.

In the remainder of this section, we discuss existing approaches to ASI/ASM and inexact

ASI/ASM, as well as our contributions. In Section 5.2, we describe our approach to solving

inexact ASI, inexact ASM, and top-k inexact ASM. In Section 5.3, we evaluate our methods

on the AIDA V2.1.2 dataset which consists of knowledge graphs collected from news articles

about political events in the Ukraine.

5.1.1 Related Work

Algorithms for exact subgraph matching are discussed in Subsection 4.1.2. Algorithms

for inexact subgraph matching are more diverse than those for exact subgraph matching.

Different applications and research areas define the inexact subgraph matching problem in

different ways. Some algorithms take tree search, constraint propagation, or graph indexing

approaches similar to that seen in exact subgraph matching [PTT14, JHW19, KX19, LZ17],

while other algorithms relax the discrete optimization problem into a continuous one in order

to apply traditional continuous optimization techniques such as gradient descent [SPP20].

5.1.2 Contributions

We introduce algorithms for inexact attributed subgraph isomorphism and matching to find

optimal subgraphs as measured by graph edit distance. We show results for noisy queries on

knowledge graphs collected from news articles about political events in the Ukraine.

5.2 Algorithm

In Subsection 5.2.1, we define the cost metric C(f ;Gt,Gw) that will be minimized in inexact

ASI/ASM. In Subsections 5.2.2 and 5.2.3, we explain how to compute lower bounds on

C(f ;Gt,Gw) under the constraint f(tc) = wc for each tc ∈ Vt and wc ∈ Vw. Using these

130

constrained lower bounds, in Subsection 5.2.4 we describe a tree search procedure for inexact

ASI/ASM.

5.2.1 Graph Edit Distance Based Cost Metric

The graph edit distance [SF83, GXT10] is a measure of the distance between two graphs, as

defined by the total cost of the cheapest sequence of edits which transform one graph into

another. The six possible edits usually considered are node addition, node deletion, node

substitution, edge addition, edge deletion, and edge substitution. Here, we consider a cost

metric using only the latter four edits.

The node substitution costs are measured by a user-defined function DV : (Vt×Vw)→ R+

that typically compares the labels of the nodes. A common node substitution function is

DV(vt, vw) = 1 [Lt(vt) 6= Lw(vw)]

so that
∑

t∈Vt DV(t, f(t)) counts the number of node assignments which do not preserve the

node label. If the node labels belong to a normed vector space, the corresponding norm can

be used

DV(vt, vw) = ‖Lt(vt)− Lw(vw)‖.

Likewise, the edge substitution, addition and deletion costs are measured by user-defined

functions D : (Et × Ew) → R+, D+ : Ew → R+ and D− : Et → R+. The edge related cost

functions are combined into a single function DE for brevity

DE(e, f(e)) =

D(e, f(e)), e ∈ Et, f(e) ∈ Ew,

D−(e), e ∈ Et, f(e) 6∈ Ew,

D+(f(e)), e 6∈ Et, f(e) ∈ Ew,

0, e 6∈ Et, f(e) 6∈ Ew.

(5.1)

For convenience, we use the shorthand f((t1, t2)) = (f(t1), f(t2)) so that f(e) is well-defined.

Given a template Gt, a world Gw, and a map f : Vt → Vw, the cost metric C(f ;Gt,Gw) is

131

defined as

C(f ;Gt,Gw) =
∑
t∈Vt

DV(t, f(t)) +
∑

e∈Vt×Vt

DE(e, f(e)). (5.2)

5.2.2 Cost Bounds

We now discuss lower bounds on the cost metric. The cost metric C(f ;Gt,Gw) can be

decomposed as

C(f ;Gt,Gw) =
∑
t∈Vt

L(t, f(t);Gt,Gw, f),

where L(t, f(t);Gt,Gw, f) are local costs related to each template node t and matching world

node f(t). We use decompositions where the local cost L has the form

L(t, w;Gt,Gw, f) = DV(t, w) +
1

2

∑
to∈Vt

[
DE
(
(t, to), (w, f(to))

)
+DE

(
(to, t), (f(to), w)

)]
.

(5.3)

This way, the local cost L(t, w;Gt,Gw, f) captures the cost incurred by assigning world node

w to template node t and half of the cost of assigning the edges incident to w to those incident

to t. Edge costs are halved so that the local costs sum to the correct total cost C(f ;Gt,Gw);

otherwise, edge costs would be counted twice, once for each endpoint. If the edge addition

cost were neglected (i.e. D+ ≡ 0), the summation
∑

to∈Vt reduces to
∑

to∈Nt
, where Nt is the

set of neighbors of t. One often useful variation is to alter these factors independently for

each edge to place more importance on certain nodes; we omit this discussion for now, but

refer to Section 5.A for the details.

To bound the full cost, we start by bounding the local cost L(t, w;Gt,Gw, f) from below

by B(t, w;Gt,Gw) defined as follows

B(t, w;Gt,Gw) := DV(t, w) +
1

2

∑
to∈Vt

min
wo∈Vw

(
DE
(
(t, to), (w,wo)

)
+DE

(
(to, t), (wo, w)

))
≤ L(t, w;Gt,Gw, f).

(5.4)

Note that the local bound B(t, w;Gt,Gw) has no dependence on the map f . Within the

context of inexact ASI/ASM, the set Vw iterated over in the minimization can often be

132

reduced for practical purposes; we refer to Section 5.B for the details. We can extend the

bound on the local cost to a naive bound on the full cost

GNaive(Gt,Gw) :=
∑
t∈Vt

min
w∈Vw

B(t, w;Gt,Gw)

≤
∑
t∈Vt

B(t, f(t);Gt,Gw)

Eqn. (5.3)

≤
∑
t∈Vt

L(t, f(t);Gt,Gw, f) = C(f ;Gt,Gw).

(5.5)

Alternatively, we can compute a tighter lower bound

GLAP(Gt,Gw) := min
g:Vt→Vw

s.t. g is 1-1

∑
t∈Vt

B(t, g(t);Gt,Gw)

≤
∑
t∈Vt

B(t, f(t);Gt,Gw)

Eqn. (5.3)

≤
∑
t∈Vt

L(t, f(t);Gt,Gw, f) = C(f ;Gt,Gw).

(5.6)

by leveraging the fact that f must be one-to-one (1-1). We refer to GNaive and GLAP as

“global cost bounds”.

Computing the global cost bound GLAP is equivalent to solving a rectangular linear

assignment problem (LAP) of size |Vt| × |Vw|. Many algorithms exist to solve the LAP

and its rectangular variant. The most notable algorithms include the Hungarian algorithm

[Kuh55], the Munkres algorithm [Mun57], the Jonker–Volgenant (JV) algorithm [JV87], and

the auction algorithm [Ber88]. In our implementation, we apply a modified JV algorithm

[Cro16], which is designed to efficiently solve rectangular LAPs. The time complexity of the

solver is O(|Vt| |Vw|2). In contrast, the time required to compute the naive global cost bound

GNaive is only O(|Vt| |Vw|).

5.2.3 Constrained Cost Bounds

To use the global cost bounds from Equations (5.5) and (5.6) in our algorithm, we must

compute the bounds under the constraint f(tc) = wc for each tc ∈ Vt and each wc ∈ Vw.

133

These constrained global cost bounds will be used as a heuristic for performing a tree search

described in Subsection 5.2.4. The corresponding constrained global cost bounds are

Gc
Naive(tc, wc;Gt,Gw) := B(tc, wc;Gt,Gw) +

∑
t∈Vt
t6=tc

min
w∈Vw
w 6=wc

B(t, w;Gt,Gw) (5.7)

for the naive global cost bound and

Gc
LAP(tc, wc;Gt,Gw) := min

g:Vt→Vw
s.t. g is 1-1

s.t. g(tc)=wc

∑
t∈Vt
t6=tc

B(t, f(t);Gt,Gw) (5.8)

for the LAP-based global cost bound.

To compute these constrained global cost bounds, the first step in either case is to compute

the local boundsB(t, w;Gt,Gw) for each t ∈ Vt and w ∈ Vw. This takesO (|Vt| |Vw| avgtime(B))

time, where avgtime(B) denotes the mean time to compute the local bound for a fixed pair

of nodes t, w ∈ Vt × Vw. The remaining calculations to compute Equation (5.7) for each

tc ∈ Vt and wc ∈ Vw can be done in O(|Vt| |Vw|) time. Computing Equation (5.8) is more

complicated.

To compute Equation (5.8) we must solve a LAP of size (|Vt|−1)×(|Vw|−1) for each tc ∈ Vt

and wc ∈ Vw. Solving each of these LAPs separately would require |Vt| |Vw| applications

of the O(|Vt| |Vw|2) LAP solver for a total of O(|Vt|2 |Vw|3) compute time. However, this

approach can be improved since each LAP is a constrained version of the same unconstrained

LAP in Equation (5.6).

To start, we solve the unconstrained LAP in Equation (5.6) to find the map

g? = arg min
g:Vt→Vw

s.t. g is 1-1

∑
t∈Vt

B(t, g(t);Gt,Gw)

in O(|Vt| |Vw|2) time. Next, we use the dynamic Hungarian algorithm [KSD07] to enforce the

constraint g(tc) = wc on the unconstrained map g? for each tc ∈ Vt and wc ∈ Vw. Enforcing

the constraint g(tc) = wc frees up g?(tc) to potentially be reassigned to some other template

node. When wc is not in the image of g?, reassigning g?(tc) costs O(|Vt|2) for each tc ∈ Vt,

134

independent of wc, for a total of O(|Vt|3). When wc is in the image of g?, the constraint

g(tc) = wc also frees up g−1
? (wc) to be reassigned to some other world node.

5.2.4 Search for Optimal Solutions

From Subsection 5.2.3, we have a procedure for computing lower bounds on C(f ;Gt,Gw)

under the constraint f(tc) = wc for each tc ∈ Vt and wc ∈ Vw. Now, we treat these lower

bounds as a heuristic for performing a greedy depth first search. For each template node t,

we assign f(t) = w for the candidate w with the lowest bound, then recompute the bounds

under that additional assignment. We assign candidates to template nodes with the fewest

minimum bound candidates first, as this gives an indication of which template nodes have

only a few “good” choices. After assigning all template nodes in this way, we obtain a map f .

Although f may not be the optimal map f ? that we seek, it can be used to drastically

cut down on the list of possible assignments we have to consider going forward. We compute

the cost of f to serve as an upper bound on the cost of the optimal map f ?. We keep track

of the cost threshold U and set it equal to the smallest cost Cmin we have seen so far, with

fmin the corresponding map. Using Cmin, the search space is refined by skipping assignments

f(t) = w which lead to lower bounds that are greater than or equal to Cmin, since in inexact

ASI we are only interested in the map f ? which minimizes the cost.

After identifying a new map or eliminating all remaining possibilities due to the cost

bounds, we backtrack and try assigning different world nodes to some template nodes. This

is done until there are no options left to explore, at which point we have found the optimal

map f ? = fmin.

To perform inexact ASM instead of inexact ASI, one can fix U ≡ ε and record all of the

maps f that are observed during the search. In this context, we only skip assignments when

their cost bound is strictly greater than ε, so that we do not accidentally skip matches whose

cost is exactly ε.

To perform top-k inexact ASM, keep track of f1, . . . , fk and C1, . . . , Ck which track the

135

k best maps seen so far and their costs. Use Ck instead of Cmin to prune the search space,

and only prune when the cost bound is greater than or equal to Ck. When the search is

completed, f1, . . . , fk are the k maps with the lowest cost.

One way to speed up the search in inexact ASI and top-k inexact ASM is to set an initial

value for U . However, this approach can lead to no solutions being found if the chosen value

is lower than the cost of the optimal solution C(f ?;Gt,Gw).

5.3 Experiments

We test our algorithms on the AIDA Version 2.1.2 dataset created by Pacific Northwest

National Laboratory (PNNL) for the DARPA–MAA program. This dataset consists of a

knowledge graph collected from news articles about political events in the Ukraine. Pro-

vided also is a measure of distance between attributes, which can be used to construct the

corresponding graph edit distance. The world graph has 98,817 nodes and 138,127 edges.

Three templates are provided, each with six different variations labeled A-F. These templates

are much smaller than the world graph, consisting of 11-33 nodes and 11-40 edges. These

templates were created by taking a known “ground truth” existing subgraph and adding

increasing levels of noise. The A template has no noise and is guaranteed to have at least one

exact match. Provided also is the ground truth mapping for the A version of each template.

All experiments were run on an HP Z8 G4 Workstation with two 12-core 6,136 3.0 2,666MHz

CPUs.

We perform top-k inexact ASM on these templates, with k = 5. We use two approaches:

the first approach (labeled “Normal”) in the table, simply runs the algorithm with no initial

cost threshold, while the second uses the ground truth cost bound (labeled “GTCB”) from

the A template to derive an appropriate initial cost threshold for the other templates in

each series (1,2,3). To identify this threshold, we first impose the matching from the ground

truth, then set our algorithm to find optimal assignments for any remaining nodes that

were not included in the ground truth. Using only this initial cost threshold, we discard all

136

Table 5.1: Results for the AIDA Version 2.1.2 dataset, showing time taken and the cost of

the best match that was found. The algorithm was cut off if it failed to complete within 46.5

hours, taking the best match that it had found so far.

Time Cost

Template Normal GTCB Normal Ground Truth GTCB

1A 27.8 min 1.5 sec 0.0 0.0 0.0

1B 24.5 min 0.2 sec 0.347 0.351 0.347

1C 46.5 hrs 5.48 hrs 8.783 3.610 2.254

1D 46.5 hrs 64.1 min 15.470 1.639 1.636

1E 46.5 hrs 35.9 hrs 16.194 2.642 2.638

1F 46.5 hrs 76.7 min 13.596 2.328 1.772

2A 2.25 min 0.06 sec 0.0 0.0 0.0

2B 3.07 min 0.15 sec 0.307 0.335 0.307

2C 6.35 min 10.6 sec 4.070 4.891 4.070

2D 12.4 min 32.9 sec 3.839 5.942 3.839

2E 4.58 min 22.4 sec 3.848 4.533 3.848

2F 18.5 min 42.3 sec 4.012 4.704 4.012

3A 2.33 min 0.08 sec 0.0 0.0 0.0

3B 2.27 sec 0.15 sec 0.145 0.191 0.145

3C 4.10 min 3.56 sec 2.452 2.452 2.452

3D 10.3 min 2.48 min 2.312 2.585 2.312

3E 20.8 min 10.9 min 2.472 3.471 2.472

3F 4.80 min 0.94 sec 1.314 1.348 1.314

137

other matching information from the ground truth and proceed to optimize over the space of

matches with lower cost than the cost of the ground truth. The cost of the ground truth for

each template is listed in the Ground Truth column under Cost. In real world contexts, the

ground truth is unknown. However, it is not unreasonable that another, possibly suboptimal,

approximate match exists that we can use for the purpose of setting the initial cost threshold

to restricting the solution space.

The results of the two approaches on the AIDA Version 2.1.2 dataset are shown in

Table 5.1. The algorithm was cut off if it failed to complete within 46.5 hours, taking the

best match that it had found so far. Although we perform top-k matching, we list only one

cost for each template; this is because for all templates considered, all 5 matches found were

of the same cost. We observe that for all of the A templates, both the normal and GTCB

approaches converge to the expected result of an exact match with 0 graph edit distance. For

all templates other than 1C-F, both approaches were able to complete within the limit of 46.5

hours, and arrive at the optimal solutions. For 1C-F, the normal version hit the runtime limit,

yielding the best solutions found within that time. For the GTCB version, only template 1E

was aborted early, after 35.9 hours. This was done because, when examining the branching

structure of the search algorithm, the approach was deemed unlikely to complete. The other

three templates completed and reached optimal solutions.

After identifying optimal solutions (for all templates except 1E), we then apply the

approach for inexact ASM discussed in Subsection 5.2.4 to find all optimal solutions by

setting the cost threshold to the cost of an optimal solution. The number of optimal solutions

found is listed in Table 5.2. In the case of 1E, we set this cost threshold to be the cost of the

best solution found; we observe that all found solutions were of the same cost.

For templates 1D, 1E, and 1F, the optimal solution search was cut off after 209 hours

due to time and memory limitations. We believe that there exist more solutions than those

that were found, possibly orders of magnitude more. We have marked these templates with a

> in Table 5.2 to indicate this.

138

5.3.1 Analysis of Solution Space

For real world applications it is important to understand the solution space beyond simply

finding one match. For example, in security applications, the match may point to specific

people or places, some of which could be imposters. We show an example here of a map from

the template to the full solution space — something that could be visualized for analysts

trying to understand the connectivity of the template nodes in the full solution space. After

using the methods discussed in prior sections to discover subgraph matchings of minimal

cost, we can appeal to symmetries apparent in the template graph and world graph to attain

a more compact representation of the solution space. Symmetry in graph structures has been

studied in depth in the context of subgraph matching [HLL13, RW15, BCL16, NYG19]. It is

a confounding factor for subgraph discovery that can lead to redundant work while exploring

symmetric areas of the graph. The kind of symmetry most often utilized is where nodes

are considered structurally equivalent if they have the same label and are connected to the

same neighbors by edges with the same attributes [Sai79]. For an example of this type of

symmetry, see Figure 5.1.

Figure 5.1: Structural Equivalence: Nodes C and D are structurally equivalent and F is

equivalent to neither. C, D, and F have the same node label and same set of neighbors.

However, the edge connecting F to E has a different label than the edges connecting C and D

to E, so F is not equivalent to C or D.

139

In the matching problems on the AIDA dataset, symmetry in the graph accounts for

the combinatorial explosion in solutions for certain template graphs, especially in instances

where more noise is present. Figure 5.2 demonstrates various forms of symmetry in the world

graph and how they affect the structure of the solution space for Template 1B. We present

the template graph and its matches to a subgraph of the world graph containing only those

nodes appearing in an optimal solution. We color each node in the template graph the same

as its candidates in the world graph. The blue and orange nodes in the world graph are two

groups of structurally equivalent nodes and so can be swapped out arbitrarily in any solution

and maintain a matching of the same cost. The red and lavender groups of world nodes

present a slightly more complex form of symmetry (automorphic). Exploiting it for purposes

of generating more solutions would require a more intelligent scheme that assigns the red

and lavender template nodes as a unit. We leave automorphic symmetry for future work and

only consider structural equivalence in this chapter. In this example, the problem has 6,120

optimal cost solutions; applying structural equivalence, we can reduce it to 2,520 solutions

from which we can generate the rest.

An a posteriori analysis of the solutions generated by our search enables us to compress

the solution space as well as to illustrate potential ways to significantly speed up the subgraph

search. We take the subgraph of world nodes that appear in a minimal cost solution and

compute groups of nodes that are structurally equivalent. Then to compress the solution

space, we eliminate any solution that can be generated by swapping out equivalent world

nodes in another mapping. We do this by examining the classes of solutions generated by

interchanging structurally equivalent nodes and identifying a representative from each.

Table 5.2 demonstrates the extent to which structural equivalence reduces the description

of the solution space to a smaller set. We also list the number of world nodes that appear in

a minimal cost solution as well as the number of structural equivalence classes to show the

level of equivalence in the solution space. If the number of equivalence classes is significantly

smaller than the number of world nodes, there is a great deal of equivalence. We observe

140

Figure 5.2: Template graph and world subgraph for Problem 1B. Colored groups of nodes in

the world graph are candidates for nodes of the same color in the template graph. The long

arrows and shapes denote corresponding groupings.

that in certain cases, e.g., templates 1E and 1F, the size of the representative solution set

is nearly ten times smaller. If an algorithm were to efficiently compute these symmetries

and incorporate them in a subgraph search, then we might expect speedups of an order of

magnitude for these problems.

An analysis through a symmetry lens also exposes how introducing noise into a subgraph

matching problem impacts the solution space. Broadly, if more information is known about

the labels and neighbors of vertices in both the template and world, there will be less

symmetry apparent in the matching problem. This can be seen in Table 5.2 with increased

noise as we go from A to F which significantly expands the solution space. Intuitively, having

more label information allows nodes to distinguish themselves from each other and break

symmetry. If we introduce noise into a problem, say by removing a template node’s label,

then the labels of the world graph become irrelevant as the label cost will be the same.

The graphs provided in the AIDA datasets have three different labels: “rdf:type”, which

indicates the semantic type of a node (e.g. Person, Location, Vehicle, etc.), “hasName”, which

141

Table 5.2: The number of solutions, representative solutions, candidate world nodes, and

equivalence classes for each subgraph matching problem from the AIDA Version 2.1.2 dataset.

For templates 1D-F, the code was terminated due to runtime constraints before all solutions

could be found.

Template

1A 1B 1C 1D 1E 1F

Solutions 6 6,120 324 >392k >382k >400k

Rep. Sols. 3 2,520 162 >315k >34k >58k

World Nodes 38 99 47 109 3,169 3,141

Eq. Classes 37 95 46 105 1,686 1,692

2A 2B 2C 2D 2E 2F

Solutions 78 1,400 39 13,780 1,248 17,368

Rep. Sols. 6 60 3 1,160 128 4,160

World Nodes 29 41 27 45 37 48

Eq. Classes 17 23 15 30 26 36

3A 3B 3C 3D 3E

Solutions 6 6 36 198 198

Rep. Sols. 4 4 16 92 92

World Nodes 16 16 21 26 23

Eq. Classes 15 15 18 23 23

gives the names of entities, and “textValue”, which contains miscellaneous text information

associated with the node. Table 5.3 lists the number of equivalence classes for the first set of

templates when considering only the “rdf:type” label as compared to considering all labels.

As can be seen, when considering only the type label, we have significantly fewer equivalence

142

classes. This is especially apparent in template 1E and 1F for which the minimal cost solution

requires two edge mismatches leaving an isolated template node that may match any world

graph node as long as the label matches. Of course, when constructing a matching, we must

consider all label information; however, understanding the relationship between different

levels of noise and symmetry appears critical to fully understanding the solution space of a

given problem.

Table 5.3: Equivalence classes when considering only part of the label and the full label

Template 1A 1B 1C 1D 1E 1F

Type Eq. Classes 37 67 45 73 36 67

Full Eq. Classes 37 95 46 105 1,686 1,692

5.4 Conclusion

We provided an approach for inexact subgraph matching on attributed graphs via optimization

of the graph edit distance. Using an approach analogous to constraint propagation, we

developed lower bounds on the cost of individual assignments, then combined them using

linear sum assignment. Using these cost bounds as a heuristic, we performed a guided depth

first search for optimal solutions. We applied our approach to the AIDA V2.1.2 knowledge

graph dataset.

In the future, we hope to extend our method to more general types of graph templates,

such as templates with pairwise relative attribute constraints. For example, one could impose

a constraint that requires two nodes have attribute values whose difference lies within a

minimum and maximum range. This is important in the context of temporal data, where

two events may be required to occur within a certain time window of each other. Similarly,

for spatial data, it may be useful to require two nodes to be within a certain distance of each

other.

143

5.A Varying Edgewise Weights

In some situations, the costs of certain nodes become more important than other nodes.

For example, when a node has a known assignment, it is less important to know the cost

associated with that node, and more important to know the costs of its surrounding nodes,

so that they may too be assigned candidates using the best possible heuristic.

We repeat the cost bound formulation from Equation (5.3), but replace 1
2

by a parameter

function α(t, to)

Lα(t, w;Gt,Gw, f) = DV(t, w) +
∑
to∈Vt

α(t, to)
(
DE
(
(t, to), (w, f(to))

)
+DE

(
(to, t), (f(to), w)

))
.

The new parameter function α(t, to) has the property that α(t, to) + α(to, t) = 1 under the

constraint 0 ≤ α(t, to) ≤ 1∀t, to. If we wish to assign t more importance than to, we use

α(t, to) = 1, α(to, t) = 0.

Similarly, we extend B(t, w;Gt,Gw) to Bα(t, w;Gt,Gw) defined as follows

Bα(t, w;Gt,Gw) := DV(t, w) +
∑
to∈Vt

α(t, to) min
wo∈Vw

(
DE
(
(t, to), (w,wo)

)
+DE

(
(to, t), (wo, w)

))
.

In practice, the modified local cost bound above is used during the search algorithm to

put less weight on assigned nodes. When a node is given an assignment, it is also given a

relative weight of α = 0, while its neighbors are given a weight of α = 1 with respect to that

node. For an edge between two assigned nodes, we default to α = 1
2
.

5.B Restricting Candidates During Minimization

Within the context of the search approach detailed in Subsection 5.2.4, at certain points in

the algorithm, we have an upper bound U on the cost. At this point in the algorithm, the

exact value of the cost bound is not needed if it is greater than or equal to U (or strictly

greater in the context of inexact ASM).

144

Thus, we can instead define the local cost bound as

B(t, w;Gt,Gw) :=

min
(
U,DV(t, w) +

∑
to∈Vt

α(t, to) min
wo∈C(to)

[
DE
(
(t, to), (w,wo)

)
+DE

(
(to, t), (wo, w)

)])
where C(to) is defined to be the set of world nodes wo for which the known constrained cost

bound G(to, w;Gt,Gw) is strictly less than U (less than or equal to for inexact ASM). Doing

so drastically improves computational performance and provides a tighter bound on costs

which lie below U . This also refines cost bounds analogously to constraint propagation; as

tighter global cost bounds G are found, this leads to tighter local cost bounds, which are

then used to compute even tighter global cost bounds until we reach a final set of bounds.

145

CHAPTER 6

Conclusion

In this thesis, we studied iterative methods for solving linear systems of equations and

specialized algorithms for pattern matching on multiplex networks. These algorithms are of

fundamental importance as subroutines in numerical linear algebra, statistics, data analysis,

cheminformatics, knowledge bases, and other areas. Our analysis and experiments cast light

on how to choose the appropriate algorithm for a given problem and how to specialize it to

desired applications.

We analyzed the convergence of sketch-and-project methods with adaptive sampling

strategies. According to our new convergence theory, the greediest strategies enjoy the fastest

convergence guarantees among all such strategies. We also analyzed the convergence of

averaged Kaczmarz methods with fixed sampling strategies. As the number of samples in the

averaging increases, we see that the rate of convergence improves and the convergence horizon

for inconsistent systems decreases. We demonstrated empirically that the convergence of the

adaptive sketch-and-project methods and averaged Kaczmarz methods reflects our worst-case

convergence theory.

We discussed subgraph matching and various related problems related to searching graph

data. We introduced filtering algorithms that are specialized to multiplex networks. Finding

one match is typically much easier than finding all matches, but for some patterns we were

still able to find or count all subgraphs matching the pattern. When the problems were

relaxed to allow subgraphs that only approximately match the pattern, we modified the

filtering approach to identify subgraphs which match as closely as possible. In both the exact

and approximate settings, we observed that there are often a combinatorially large number

146

of matching subgraphs depending on the amount of symmetry of the pattern and data.

Solving linear systems of equations and graph search algorithms are important subroutines

in numerous areas. Improvements in these subroutines translate directly to improvements in

corresponding applications. Looking forward, one avenue for further improvements would be

to design and analyze distributed methods. Such methods would be particularly useful when

data is not centralized to a single location. Another avenue would be carefully implementing

the methods discussed as high-performance computing programs. These advances would

further broaden the types and increase the scale of data to which the methods could be

applied in practice.

147

REFERENCES

[AC89] R. Aharoni and Y. Censor. “Block-iterative projection methods for parallel
computation of solutions to convex feasibility problems.” Linear Algebra and its
Applications, 120:165–175, 1989.

[ADH08] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp. “Biomolec-
ular network motif counting and discovery by color coding.” Bioinformatics,
24(13):i241–i249, 2008.

[AG18] B. K. Abid and R. Gower. “Stochastic algorithms for entropy-regularized optimal
transport problems.” In Proceedings of the 21st International Conference on
Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning
Research, pp. 1505–1512. PLMR, 2018.

[ALS15] G. Alain, A. Lamb, C. Sankar, A. Courville, and Y. Bengio. “Variance reduction
in SGD by distributed importance sampling.” arXiv preprint arXiv:1511.06481,
2015.

[ANR15] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. “Efficient graphlet counting
for large networks.” In 2015 IEEE International Conference on Data Mining, pp.
1–10. IEEE, 2015.

[BBB16] B. Bentley, R. Branicky, C. L. Barnes, Y. Chew, E. Yemini, E. T. Bullmore, P. E.
Vértes, and W. R. Schafer. “The multilayer connectome of caenorhabditis elegans.”
PLoS Computational Biology, 12(12):e1005283, 2016.

[BCL16] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. “Efficient subgraph matching
by postponing Cartesian products.” In Proceedings of the 2016 International
Conference on Management of Data, pp. 1199–1214. ACM, 2016.

[BCN18] L. Bottou, F. E. Curtis, and J. Nocedal. “Optimization methods for large-scale
machine learning.” Siam Review, 60(2):223–311, 2018.

[BCS01] A. Beacham, X. Chen, J. Sillito, and P. van Beek. “Constraint programming
lessons learned from crossword puzzles.” In Advances in Artificial Intelligence, pp.
78–87. Springer, 2001.

[BE85] R. Bar-Yehuda and S. Even. “A local-ratio theorem for approximating the weighted
vertex cover problem.” In Analysis and Design of Algorithms for Combinatorial
Problems, volume 109 of North-Holland Mathematics Studies, pp. 27–45. Elsevier,
1985.

[Ber88] D. P. Bertsekas. “The auction algorithm: A distributed relaxation method for the
assignment problem.” Annals of Operations Research, 14:105–123, 1988.

148

[BGP13] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro. “A subgraph
isomorphism algorithm and its application to biochemical data.” BMC Bioinfor-
matics, 14(7):S13, 2013.

[BJU18] K. O. Babalola, O. B. Jennings, E. Urdiales, and J. A. DeBardelaben. “Statistical
methods for generating synthetic email data sets.” In 2018 IEEE International
Conference on Big Data, pp. 3986–3990. IEEE, 2018.

[BN15] J. Briskman and D. Needell. “Block Kaczmarz method with inequalities.” Journal
of Mathematical Imaging and Vision, 52(3):385–396, 2015.

[Bot98] L. Bottou. “Online algorithms and stochastic approximations.” In Online Learning
and Neural Networks. Cambridge University Press, 1998.

[Bur10] J. Burston. “Crossword compiler ver. 8.1.” CALICO Journal, 28(1):175–190,
2010.

[BW18a] Z.-Z. Bai and W.-T. Wu. “On greedy randomized Kaczmarz method for solving
large sparse linear systems.” SIAM Journal on Scientific Computing, 40(1):A592–
A606, 2018a.

[BW18b] Z.-Z. Bai and W.-T. Wu. “On relaxed greedy randomized Kaczmarz methods
for solving large sparse linear systems.” Applied Mathematics Letters, 83:21–26,
2018b.

[BW19a] Z.-Z. Bai and W.-T. Wu. “On greedy randomized coordinate descent methods
for solving large linear least-squares problems.” Numerical Linear Algebra with
Applications, 26(4):e2237, 2019a.

[BW19b] Z.-Z. Bai and W.-T. Wu. “On partially randomized extended Kaczmarz method for
solving large sparse overdetermined inconsistent linear systems.” Linear Algebra
and its Applications, 578:225–250, 2019b.

[Byr07] C. L. Byrne. Applied Iterative Methods. Ak Peters/CRC Press, 2007.

[CDM10] F. Celli, F. M. L. Di Lascio, M. Magnani, B. Pacelli, and L. Rossi. “Social network
data and practices: the case of FriendFeed.” In Advances in Social Computing, pp.
346–353. Springer, 2010.

[CFS03] D. Conte, P. Foggia, C. Sansone, and M. Vento. “Graph matching applications in
pattern recognition and image processing.” In International Conference on Image
Processing, volume 2, pp. II–24. IEEE, 2003.

[CFS04] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. “A (sub)graph isomorphism
algorithm for matching large graphs.” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(10):1367–1372, 2004.

149

[CFS17] V. Carletti, P. Foggia, A. Saggese, and M. Vento. “Introducing VF3: A new
algorithm for subgraph isomorphism.” In Graph-Based Representations in Pattern
Recognition, pp. 128–139. Springer, 2017.

[CFS18] V. Carletti, P. Foggia, A. Saggese, and M. Vento. “Challenging the time complexity
of exact subgraph isomorphism for huge and dense graphs with VF3.” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(4):804–818, 2018.

[CFV15] V. Carletti, P. Foggia, and M. Vento. “VF2 plus: An improved version of VF2 for
biological graphs.” In Graph-Based Representations in Pattern Recognition, pp.
168–177. Springer, 2015.

[CGZ13] A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. del Pozo,
and S. Boccaletti. “Emergence of network features from multiplexity.” Scientific
Reports, 3(1344), 2013.

[CP12] X. Chen and A. M. Powell. “Almost sure convergence of the Kaczmarz algorithm
with random measurements.” Journal of Fourier Analysis and Applications,
18(6):1195–1214, 2012.

[CPM18] J. A. Cottam, S. Purohit, P. Mackey, and G. Chin. “Multi-channel large network
simulation including adversarial activity.” In 2018 IEEE International Conference
on Big Data, pp. 3947–3950. IEEE, 2018.

[CQR15] D. Csiba, Z. Qu, and P. Richtarik. “Stochastic dual coordinate ascent with
adaptive probabilities.” In Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
674–683. PLMR, 2015.

[CR18] D. Csiba and P. Richtárik. “Importance sampling for minibatches.” The Journal
of Machine Learning Research, 19(1):962–982, 2018.

[Cro16] D. F. Crouse. “On implementing 2D rectangular assignment algorithms.” IEEE
Transactions on Aerospace and Electronic Systems, 52(4):1679–1696, 2016.

[Cut13] M. Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport.” In
Proceedings of the 26th International Conference on Neural Information Processing
Systems, pp. 2292–2300. Curran Associates, 2013.

[CZT12] Y. Cai, Y. Zhao, and Y. Tang. “Exponential convergence of a randomized Kaczmarz
algorithm with relaxation.” In Proceedings of the 2011 2nd International Congress
on Computer Applications and Computational Science, pp. 467–473. Springer,
2012.

[Dep15] Department for Transport. “National public transport data repository.”
https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/

150

https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/national-public-transport-data-repository-nptdr
https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/national-public-transport-data-repository-nptdr

national-public-transport-data-repository-nptdr, 2015. Accessed:
2021-05-30.

[Dev86] L. Devroye. Non-Uniform Random Variate Generation. Springer, 1986.

[DGL89] I. S. Duff, R. G. Grimes, and J. G. Lewis. “Sparse matrix test problems.” ACM
Transactions on Mathematical Software, 15(1):1–14, 1989.

[DGL92] I. S. Duff, R. G. Grimes, and J. G. Lewis. “Users’ guide for the Harwell–Boeing
sparse matrix collection.” Technical Report TR/PA/92/86, CERFACS, 1992.

[DH11] T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix Collection.”
ACM Transactions on Mathematical Software, 38(1):1–25, 2011.

[DLM13] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. “The anatomy of a
scientific rumor.” Scientific Reports, 3(2980), 2013.

[Dum15] B. Dumitrescu. “On the relation between the randomized extended Kaczmarz
algorithm and coordinate descent.” BIT Numerical Mathematics, 55(4):1005–1015,
2015.

[DZJ18] J. Douglas, B. Zimmerman, A. K. ana J. Xu, D. Sussman, and V. Lyzinski.
“Metrics for evaluating network alignment.” In 11th ACM International Conference
on Web Search and Data Mining, Workshop on Graph Techniques for Adversarial
Activity Analytics. ACM, 2018.

[EHL81] P. P. B. Eggermont, G. T. Herman, and A. Lent. “Iterative algorithms for large
partitioned linear systems, with applications to image reconstruction.” Linear
algebra and its Applications, 40:37–67, 1981.

[Elf80] T. Elfving. “Block-iterative methods for consistent and inconsistent linear equa-
tions.” Numerische Mathematik, 35:1–12, 1980.

[EN11] Y. C. Eldar and D. Needell. “Acceleration of randomized Kaczmarz method via
the Johnson–Lindenstrauss lemma.” Numerical Algorithms, 58(2):163–177, 2011.

[Fan12] W. Fan. “Graph pattern matching revised for social network analysis.” In
Proceedings of the 15th International Conference on Database Theory, pp. 8–21.
ACM, 2012.

[GB15] R. Gallotti and M. Barthelemy. “The multilayer temporal network of public
transport in Great Britain.” Scientific Data, 2(140056), 2015.

[GBH70] R. Gordon, R. Bender, and G. T. Herman. “Algebraic reconstruction techniques
(ART) for three-dimensional electron microscopy and x-ray photography.” Journal
of Theoretical Biology, 29(3):471–481, 1970.

151

https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/national-public-transport-data-repository-nptdr
https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/national-public-transport-data-repository-nptdr
https://data.gov.uk/dataset/d1f9e79f-d9db-44d0-b7b1-41c216fe5df6/national-public-transport-data-repository-nptdr

[GG05] D. Gordon and R. Gordon. “Component-averaged row projections: A robust,
block-parallel scheme for sparse linear systems.” SIAM Journal on Scientific
Computing, 27(3):1092–1117, 2005.

[Gin11] M. L. Ginsberg. “Dr. Fill: Crosswords and an implemented solver for singly
weighted CSPs.” Journal of Artificial Intelligence Research, 42:851–886, 2011.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co, 1979.

[GMM19] R. M. Gower, D. Molitor, J. D. Moorman, and D. Needell. “Adaptive sketch-and-
project methods for solving linear systems.” arXiv preprint arXiv:1909.03604,
2019.

[GMN08] I. P. Gent, I. Miguel, and P. Nightingale. “Generalised arc consistency for the
AllDifferent constraint: An empirical survey.” Artificial Intelligence, 172(18):1973–
2000, 2008.

[GO12] M. Griebel and P. Oswald. “Greedy and randomized versions of the multiplicative
Schwarz method.” Linear Algebra and its Applications, 437(7):1596–1610, 2012.

[GR15a] R. M. Gower and P. Richtárik. “Stochastic dual ascent for solving linear systems.”
arXiv preprint arXiv:1512.06890, 2015a.

[GR15b] R. M. Gower and P. Richtárik. “Randomized iterative methods for linear systems.”
SIAM Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015b.

[GR16] R. Gower and P. Richtárik. “Linearly convergent randomized iterative methods
for computing the pseudoinverse.” arXiv preprint arXiv:1612.06255, 2016.

[GR17] R. M. Gower and P. Richtárik. “Randomized quasi-Newton updates are linearly
convergent matrix inversion algorithms.” SIAM Journal on Matrix Analysis and
Applications, 38(4):1380–1409, 2017.

[GV13] G. H. Golub and C. F. Van Loan. Matrix Computations. JHU press, 4 edition,
2013.

[GXT10] X. Gao, B. Xiao, D. Tao, and X. Li. “A survey of graph edit distance.” Pattern
Analysis and applications, 13:113–129, 2010.

[HK73] J. E. Hopcroft and R. M. Karp. “An n5/2 algorithm for maximum matchings in
bipartite graphs.” SIAM Journal on Computing, 2(4):225–231, 1973.

[HLL13] W. Han, J. Lee, and J. Lee. “Turboiso: towards ultrafast and robust subgraph
isomorphism search in large graph databases.” In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pp. 337–348. ACM,
2013.

152

[HM93] G. T. Herman and L. B. Meyer. “Algebraic reconstruction techniques can be made
computationally efficient (positron emission tomography application).” IEEE
Transactions on Medical Imaging, 12(3):600–609, 1993.

[HN90a] M. Hanke and W. Niethammer. “On the acceleration of Kaczmarz’s method
for inconsistent linear systems.” Linear Algebra and its Applications, 130:83–98,
1990a.

[HN90b] M. Hanke and W. Niethammer. “On the use of small relaxation parameters
in Kaczmarz method.” Zeitschrift fur Angewandte Mathematik und Mechanik,
70(6):T575–T576, 1990b.

[HN19] J. Haddock and D. Needell. “On Motzkin’s method for inconsistent linear systems.”
BIT Numerical Mathematics, 59(2):387–401, 2019.

[Hoe] W.-J. van Hoeve. “The AllDifferent constraint: A survey.”
http://www.andrew.cmu.edu/user/vanhoeve/papers/alldiff.pdf. Accessed:
2021-05-30.

[HS52] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving linear
systems.” Journal of Research of the National Bureau of Standards, 49(6):409–436,
1952.

[HS78] C. Hamaker and D. Solmon. “The angles between the null spaces of x rays.”
Journal of Mathematical Analysis and Applications, 62(1):1–23, 1978.

[HS08] H. He and A. Singh. “Graphs-at-a-time: query language and access methods
for graph databases.” In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of data, pp. 405–418. ACM, 2008.

[HWP03] J. Huan, W. Wang, and J. Prins. “Efficient mining of frequent subgraphs in
the presence of isomorphism.” In Third IEEE International Conference on Data
Mining, pp. 549–552. IEEE, 2003.

[IIP16] V. Ingalalli, D. Ienco, and P. Poncelet. “SuMGra: Querying multigraphs via
efficient indexing.” In Database and Expert Systems Applications, pp. 387–401.
Springer, 2016.

[JHW19] H. Jin, X. He, Y. Wang, H. Li, and A. L. Bertozzi. “Noisy subgraph isomorphisms
on multiplex networks.” In 2019 IEEE International Conference on Big Data, pp.
4899–4905. IEEE, 2019.

[JM18] A. Jüttner and P. Madarasi. “VF2++—an improved subgraph isomorphism
algorithm.” Discrete Applied Mathematics, 242:69–81, 2018.

[JV87] R. Jonker and A. Volgenant. “A shortest augmenting path algorithm for dense
and sparse linear assignment problems.” Computing, 38:325–340, 1987.

153

[JZ13] R. Johnson and T. Zhang. “Accelerating stochastic gradient descent using predic-
tive variance reduction.” In Proceedings of the 26th International Conference on
Neural Information Processing Systems, pp. 315–323. Curran Associates, 2013.

[KAB14] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter.
“Multilayer networks.” Journal of Complex Networks, 2(3):203–271, 2014.

[Kac37] M. S. Kaczmarz. “Angenäherte auflösung von systemen linearer gleichungen.”
Bulletin International de l’Académie Polonaise des Sciences et des Lettres. Classe
des Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques, 35:355–
357, 1937.

[Kem81] A. Kemp. “Efficient generation of logarithmically distributed pseudo-random
variables.” Journal of the Royal Statistical Society: Series C (Applied Statistics),
30(3):249–253, 1981.

[KF18] A. Katharopoulos and F. Fleuret. “Not all samples are created equal: Deep
learning with importance sampling.” In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 2525–2534. PMLR, 2018.

[KMS16] L. Kotthoff, C. McCreesh, and C. Solnon. “Portfolios of subgraph isomorphism
algorithms.” In Learning and Intelligent Optimization, pp. 107–122. Springer,
2016.

[Knu00] D. E. Knuth. “Dancing links.” Millennial Perspectives in Computer Science, pp.
187–214, 2000.

[KSD07] G. A. Korsah, A. Stentz, and M. B. Dias. “The dynamic Hungarian algorithm for
the assignment problem with changing costs.” Technical Report CMU-RI-TR-07-
27, Carnegie Mellon University, 2007.

[KSG18] K. Karra, S. Swarup, and J. Graham. “An empirical assessment of the complexity
and realism of synthetic social contact networks.” In 2018 IEEE International
Conference on Big Data, pp. 3959–3967. IEEE, 2018.

[Kuh55] H. W. Kuhn. “The Hungarian method for the assignment problem.” Naval
Research Logistics Quarterly, 2(1-2):83–97, 1955.

[KX19] A. Kopylov and J. Xu. “Filtering strategies for inexact subgraph matching on
noisy multiplex networks.” In 2019 IEEE International Conference on Big Data,
pp. 4906–4912. IEEE, 2019.

[LBH15] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning.” Nature, 521(7553):436–444,
2015.

154

[LH15] I. Loshchilov and F. Hutter. “Online batch selection for faster training of neural
networks.” arXiv preprint arXiv:1511.06343, 2015.

[LHN17] J. A. D. Loera, J. Haddock, and D. Needell. “A sampling Kaczmarz-Motzkin
algorithm for linear feasibility.” SIAM Journal on Scientific Computing, 39(5):S66–
S87, 2017.

[LL10] D. Leventhal and A. S. Lewis. “Randomized methods for linear constraints: conver-
gence rates and conditioning.” Mathematics of Operations Research, 35(3):641–654,
2010.

[LT92] Z.-Q. Luo and P. Tseng. “On the convergence of the coordinate descent method
for convex differentiable minimization.” Journal of Optimization Theory and
Applications, 72(1):7–35, 1992.

[LV02] J. Larrosa and G. Valiente. “Constraint satisfaction algorithms for graph pattern
matching.” Mathematical Structures in Computer Science, 12(4):403–422, 2002.

[LWS14] J. Liu, S. J. Wright, and S. Srikrishna. “An asynchronous parallel randomized
Kaczmarz algorithm.” arXiv preprint arXiv:1401.4780, 2014.

[LX15] Z. Lu and L. Xiao. “On the complexity analysis of randomized block-coordinate
descent methods.” Mathematical Programming, 152(1–2):615–642, 2015.

[LZ17] Y. Liang and P. Zhao. “Similarity search in graph databases: A multi-layered index-
ing approach.” In 2017 IEEE 33rd International Conference on Data Engineering,
pp. 783–794. IEEE, 2017.

[MBF20] G. Micale, V. Bonnici, A. Ferro, D. Shasha, R. Giugno, and A. Pulvirenti. “MultiRI:
Fast subgraph matching in labeled multigraphs.” arXiv preprint arXiv:2003.11546,
2020.

[McG79] J. J. McGregor. “Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms.” Information Sciences, 19(3):229–250, 1979.

[MNR15] A. Ma, D. Needell, and A. Ramdas. “Convergence properties of the randomized
extended Gauss–Seidel and Kaczmarz methods.” SIAM Journal on Matrix Analysis
and Applications, 36(4):1590–1604, 2015.

[MP15] C. McCreesh and P. Prosser. “A parallel, backjumping subgraph isomorphism
algorithm using supplemental graphs.” In Principles and Practice of Constraint
Programming, pp. 295–312. Springer, 2015.

[MPS18] C. McCreesh, P. Prosser, C. Solnon, and J. Trimble. “When subgraph isomorphism
is really hard, and why this matters for graph databases.” Journal of Artificial
Intelligence Research, 61(1):723–759, 2018.

155

[MR11] M. Magnani and L. Rossi. “The ML-model for multi-layer social networks.” In 2011
International Conference on Advances in Social Networks Analysis and Mining,
pp. 5–12. IEEE, 2011.

[MS54] T. S. Motzkin and I. J. Schoenberg. “The relaxation method for linear inequalities.”
Canadian Journal of Mathematics, 6:393–404, 1954.

[MTC20] J. D. Moorman, T. K. Tu, Q. Chen, D. Yang, and X. He. “jdmoorman/uclasm:
v0.2.0.” Zenodo. https://doi.org/10.5281/zenodo.4052353, 2020.

[MTC21] J. D. Moorman, T. Tu, Q. Chen, X. He, and A. L. Bertozzi. “Subgraph matching
on multiplex networks.” IEEE Transactions on Network Science and Engineering,
2021. Early Access.

[MTM21] J. D. Moorman, T. K. Tu, D. Molitor, and D. Needell. “Randomized Kaczmarz
with averaging.” BIT Numerical Mathematics, 61(1):337–359, 2021.

[Mun57] J. Munkres. “Algorithms for the assignment and transportation problems.” Journal
of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[Nat01] F. Natterer. The Mathematics of Computerized Tomography. SIAM, 2001.

[Nec19] I. Necoara. “Faster randomized block Kaczmarz algorithms.” SIAM Journal on
Matrix Analysis and Applications, 40(4):1425–1452, 2019.

[Nee10] D. Needell. “Randomized Kaczmarz solver for noisy linear systems.” BIT Numer-
ical Mathematics, 50(2):395–403, 2010.

[Nes12] Y. Nesterov. “Efficiency of coordinate descent methods on huge-scale optimization
problems.” SIAM Journal on Optimization, 22(2):341–362, 2012.

[NNG17] I. Necoara, Y. Nesterov, and F. Glineur. “Random block coordinate descent meth-
ods for linearly constrained optimization over networks.” Journal of Optimization
Theory and Applications, 173(1):227–254, 2017.

[Nora] P. Norvig. “pytudes GitHub repository.” https://github.com/norvig/pytudes,
a. Accessed: 2021-05-30.

[Norb] P. Norvig. “Solving every Sudoku puzzle.” http://www.norvig.com/sudoku.

html, b. Accessed: 2021-05-30.

[NRR11] F. Niu, B. Recht, C. Ré, and S. J. Wright. “HOGWILD!: A lock-free approach to
parallelizing stochastic gradient descent.” In Proceedings of the 24th International
Conference on Neural Information Processing Systems, pp. 693––701. Curran
Associates, 2011.

[NS17a] C. Nabti and H. Seba. “Compact neighborhood index for subgraph queries in
massive graphs.” arXiv preprint arXiv:1703.05547, 2017a.

156

https://doi.org/10.5281/zenodo.4052353
https://github.com/norvig/pytudes
http://www.norvig.com/sudoku.html
http://www.norvig.com/sudoku.html

[NS17b] Y. Nesterov and S. U. Stich. “Efficiency of the accelerated coordinate descent
method on structured optimization problems.” SIAM Journal on Optimization,
27(1):110–123, 2017b.

[NSL15] J. Nutini, M. Schmidt, I. Laradji, M. Friedlander, and H. Koepke. “Coordinate
descent converges faster with the Gauss–Southwell rule than random selection.” In
Proceedings of the 32nd International Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pp. 1632–1641. PMLR, 2015.

[NSL16] J. Nutini, B. Sepehry, I. Laradji, M. Schmidt, H. Koepke, and A. Virani. “Con-
vergence rates for greedy Kaczmarz algorithms, and faster randomized Kaczmarz
rules using the orthogonality graph.” In Proceedings of the 32nd Conference on
Uncertainty in Artificial Intelligence, pp. 547–556. AUAI Press, 2016.

[NSW16] D. Needell, N. Srebro, and R. Ward. “Stochastic gradient descent, weighted
sampling, and the randomized Kaczmarz algorithm.” Mathematical Programming,
155:549–573, 2016.

[NT14] D. Needell and J. A. Tropp. “Paved with good intentions: Analysis of a randomized
block Kaczmarz method.” Linear Algebra and its Applications, 441:199–221, 2014.

[NW13] D. Needell and R. Ward. “Two-subspace projection method for coherent overde-
termined systems.” Journal of Fourier Analysis and Applications, 19(2):256–269,
2013.

[NW17] D. Needell and R. Ward. “Batched stochastic gradient descent with weighted
sampling.” In Approximation Theory XV: San Antonio 2016, volume 201 of
Springer Proceedings in Mathematics & Statistics, pp. 279–306. Springer, 2017.

[NYG19] T. Nguyen, D. Yang, Y. Ge, H. Li, and A. L. Bertozzi. “Applications of structural
equivalence to subgraph isomorphism on multichannel multigraphs.” In 2019
IEEE International Conference on Big Data, pp. 4913–4920. IEEE, 2019.

[NZZ15] D. Needell, R. Zhao, and A. Zouzias. “Randomized block Kaczmarz method
with projection for solving least squares.” Linear Algebra and its Applications,
484:322–343, 2015.

[OAL16] A. Osokin, J.-B. Alayrac, I. Lukasewitz, P. Dokania, and S. Lacoste-Julien. “Mind-
ing the gaps for block Frank-Wolfe optimization of structured SVMs.” In Pro-
ceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pp. 593–602. PMLR, 2016.

[PCJ17] D. Perekrestenko, V. Cevher, and M. Jaggi. “Faster coordinate descent via adaptive
importance sampling.” In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning
Research, pp. 869–877. PMLR, 2017.

157

[PJM19] V. Patel, M. Jahangoshahi, and D. A. Maldonado. “An implicit representation
and iterative solution of randomly sketched linear systems.” arXiv preprint
arXiv:1904.11919, 2019.

[Pop99] C. Popa. “Characterization of the solutions set of inconsistent least-squares
problems by an extended Kaczmarz algorithm.” Korean Journal of Computational
and Applied Mathematics, 6(1):51–64, 1999.

[PP16] S. Petra and C. Popa. “Single projection Kaczmarz extended algorithms.” Nu-
merical Algorithms, 73(3):791–806, 2016.

[PPP17] S. Pilosof, M. A. Porter, M. Pascual, and S. Kéfi. “The multilayer nature of
ecological networks.” Nature Ecology & Evolution, 1(0101), 2017.

[Pro] “Project Euler problem 96: Su Doku.” https://projecteuler.net/problem=96.
Accessed: 2021-05-30.

[PTT14] R. Pienta, A. Tamersoy, H. Tong, and D. H. Chau. “MAGE: Matching approximate
patterns in richly-attributed graphs.” In 2014 IEEE International Conference on
Big Data, pp. 585–590. IEEE, 2014.

[RDM08] L. Rigutini, M. Diligenti, M. Maggini, and M. Gori. “A fully automatic crossword
generator.” In 2008 7th International Conference on Machine Learning and
Applications, pp. 362–367. IEEE, 2008.

[Reg94] J. Régin. “A filtering algorithm for constraints of difference in CSPs.” In Pro-
ceedings of the 12th National Conference on Artificial Intelligence, volume 1, pp.
362–367. AAAI, 1994.

[RKR17] T. Reza, C. Klymko, M. Ripeanu, G. Sanders, and R. Pearce. “Towards practical
and robust labeled pattern matching in trillion-edge graphs.” In 2017 IEEE
International Conference on Cluster Computing, pp. 1–12. IEEE, 2017.

[RM51] H. Robbins and S. Monro. “A stochastic approximation method.” The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

[RT14] P. Richtárik and M. Takáč. “Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function.” Mathematical Programming,
144(1):1–38, 2014.

[RT16] P. Richtárik and M. Takáč. “Distributed coordinate descent method for learning
with big data.” Journal of Machine Learning Research, 17(75):1–25, 2016.

[RT20] P. Richtárik and M. Takáč. “Stochastic reformulations of linear systems: Algo-
rithms and convergence theory.” SIAM Journal on Matrix Analysis and Applica-
tions, 41(2):487–524, 2020.

158

https://projecteuler.net/problem=96

[RW15] X. Ren and J. Wang. “Exploiting vertex relationships in speeding up subgraph
isomorphism over large graphs.” Proceedings of the VLDB Endowment, 8(5):617–
628, 2015.

[Sai79] L. D. Sailer. “Structural equivalence: Meaning and definition, computation and
application.” Social Networks, 1(1):73–90, 1978–1979.

[SF83] A. Sanfeliu and K. Fu. “A distance measure between attributed relational graphs
for pattern recognition.” IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13(3):353–362, 1983.

[Sim05] H. Simonis. “Sudoku as a constraint problem.” In Proceedings of the 4th In-
ternational Workshop on Modelling and Reformulating Constraint Satisfaction
Problems, pp. 13–27, 2005.

[SL19] S. Sun and X. Luo. “Scaling up subgraph query processing with efficient subgraph
matching.” In 2019 IEEE 35th International Conference on Data Engineering, pp.
220–231. IEEE, 2019.

[Sol10] C. Solnon. “AllDifferent-based filtering for subgraph isomorphism.” Artificial
Intelligence, 174(12–13):850–864, 2010.

[SPP20] D. Sussman, Y. Park, C. E. Priebe, and V. Lyzinski. “Matched filters for noisy
induced subgraph detection.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 42(11):2887–2900, 2020.

[SV09] T. Strohmer and R. Vershynin. “A randomized Kaczmarz algorithm with exponen-
tial convergence.” Journal of Fourier Analysis and Applications, 15(2):262–278,
2009.

[SW05] T. Schank and D. Wagner. “Finding, counting and listing all triangles in large
graphs, an experimental study.” In Experimental and Efficient Algorithms, pp.
606–609. Springer, 2005.

[SWW12] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. “Efficient subgraph matching on
billion node graphs.” Proceedings of the VLDB Endowment, 5(9):788––799, 2012.

[SZL08] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. “Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism.” Proceedings of the VLDB
Endowment, 1(1):364–375, 2008.

[TMY20] T. K. Tu, J. D. Moorman, D. Yang, Q. Chen, and A. L. Bertozzi. “Inexact
attributed subgraph matching.” In 2020 IEEE International Conference on Big
Data, pp. 2575–2582. IEEE, 2020.

[Tse90] P. Tseng. “Dual ascent methods for problems with strictly convex costs and linear
constraints: A unified approach.” SIAM Journal on Control and Optimization,
28(1):214–242, 1990.

159

[Ull76] J. R. Ullmann. “An algorithm for subgraph isomorphism.” Journal of the ACM,
23(1):31–42, 1976.

[Ull10] J. R. Ullmann. “Bit-vector algorithms for binary constraint satisfaction and
subgraph isomorphism.” Journal of Experimental Algorithmics, 15(1.6), 2010.

[Ver79] L. M. Verbrugge. “Multiplexity in adult friendships.” Social Forces, 57(4):1286–
1309, 1979.

[Wal74] A. J. Walker. “New fast method for generating discrete random numbers with
arbitrary frequency distributions.” Electronics Letters, 10(8):127–128, 1974.

[XTL18] J. Xu, H. Tong, T. Lu, J. He, and N. Bliss. “GTA3 2018: Workshop on graph
techniques for adversarial activity analytics.” In Proceedings of the 11th ACM
International Conference on Web Search and Data Mining, p. 803. ACM, 2018.

[XY15] Y. Xu and W. Yin. “Block stochastic gradient iteration for convex and nonconvex
optimization.” SIAM Journal on Optimization, 25(3):1686–1716, 2015.

[XZ02] J. Xu and L. Zikatanov. “The method of alternating projections and the method
of subspace corrections in Hilbert space.” Journal of the American Mathematical
Society, 15(3):573–597, 2002.

[YG13] L. Yartseva and M. Grossglauser. “On the performance of percolation graph
matching.” In Proceedings of the First ACM Conference on Online Social Networks,
pp. 119–130. ACM, 2013.

[YH02] X. Yan and J. Han. “gspan: Graph-based substructure pattern mining.” In 2002
IEEE International Conference on Data Mining, pp. 721–724. IEEE, 2002.

[ZDS10] S. Zampelli, Y. Deville, and C. Solnon. “Solving subgraph isomorphism problems
with constraint programming.” Constraints, 15:327–353, 2010.

[ZF13] A. Zouzias and N. M. Freris. “Randomized extended Kaczmarz for solving least-
squares.” SIAM Journal on Matrix Analysis and Applications, 34(2):773–793,
2013.

[ZH10] P. Zhao and J. Han. “On graph query optimization in large networks.” Proceedings
of the VLDB Endowment, 3(1–2):340–351, 2010.

[ZL17] M. Zitnik and J. Leskovec. “Predicting multicellular function through multi-layer
tissue networks.” Bioinformatics, 33(14):190–198, 2017.

[ZLY09] S. Zhang, S. Li, and J. Yang. “GADDI: distance index based subgraph matching
in biological networks.” In Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology, pp. 192–203.
ACM, 2009.

160

[ZMC11] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. “gStore: answering SPARQL
queries via subgraph matching.” Proceedings of the VLDB Endowment, 4(8):482–
493, 2011.

[ZZ15] P. Zhao and T. Zhang. “Stochastic optimization with importance sampling for
regularized loss minimization.” In Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
1–9. PMLR, 2015.

161

	Introduction
	Adaptive Sketch-and-Project Methods
	Introduction
	Randomized Kacmarz
	Coordinate descent
	Sketch-and-project methods
	Sampling of indices
	Choosing the sketches and preconditioning
	Additional related works

	Contributions
	Key quantity: Sketched loss
	Max-distance rule
	The capped adaptive rule
	The proportional adaptive rule
	Efficient implementations
	Consequences and future work

	Notation
	Organization

	Reformulation as importance sampling for SGD
	Geometric viewpoint and motivational analysis
	Selection rules
	Fixed sampling
	Adaptive probabilities
	Max-distance rule

	Convergence
	Important spectral constants
	Sampling from a fixed distribution
	Max-distance selection
	The proportional adaptive rule
	Capped adaptive sampling

	Implementation tricks and computational complexity
	Summary of consequences for special cases
	Adaptive Kaczmarz
	Adaptive coordinate descent

	Experiments
	Error per iteration
	Error versus approximate flops required
	Spectral constant estimates

	Conclusions
	Implementation tricks and computational complexity, cont.
	Per-iteration cost
	Cost of sampling indices
	Sampling strategy specific costs

	Auxiliary lemma

	Randomized Kaczmarz with Averaging
	Introduction
	Randomized Kaczmarz
	Randomized Kaczmarz with Averaging
	Contributions
	Organization
	Related Work

	Convergence of RK with Averaging
	Coupling of Weights and Probabilities
	General Weights

	Uniform Weights
	Consistent Systems
	Suggested Relaxation Parameter for Consistent Systems With Uniform Weights
	Experiments
	Procedure
	The Effect of the Number of Threads
	The Effect of the Relaxation Parameter

	Conclusion
	Proof of averaged:lem:EMk
	Proof of averaged:thm:expectederror
	Proof of averaged:thm:unifoptalpha
	Corollary Proofs
	Proof of averaged:cor:unifweighterr
	Proof of averaged:cor:RKconv

	Subgraph Matching on Multiplex Networks
	Introduction
	Problem Statements
	Related Work
	Contributions

	Filtering
	Node Label Filter
	Node-level Statistics Filter
	Topology Filter
	Repeated-Sets Filter
	Neighborhood Filter
	Elimination Filter

	Solving the Problems
	Isomorphism Counting
	Validation

	Experiments
	Sudoku
	Multiplex Erdős–Rényi
	Crosswords
	Real-World Examples
	Adversarial Activity

	Conclusion

	Inexact Attributed Subgraph Matching
	Introduction
	Related Work
	Contributions

	Algorithm
	Graph Edit Distance Based Cost Metric
	Cost Bounds
	Constrained Cost Bounds
	Search for Optimal Solutions

	Experiments
	Analysis of Solution Space

	Conclusion
	Varying Edgewise Weights
	Restricting Candidates During Minimization

	Conclusion
	References

