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ABSTRACT OF THE DISSERTATION

Triple-Alpha Process and the General Relativistic Instability in Super-Massive Stars

by

Sébastien Zein Tawa

Doctor of Philosophy in Physics

University of California San Diego, 2020

Professor George Fuller, Chair

The existence of super-massive (> 104M�) Pop III stars has been theorized, but never

observed. If such stars were to have existed during early galaxy formation, it has long been

thought that in absence of heavy metals (A > 4), they would have collapsed due to instabilities

caused by general relativity. Such a collapse would have resulted in the creation of a super-

massive black hole, possibly emitting gravitational waves if accompanied by an anisotropic

neutrino burst. Super-massive black holes have been detected very early on in galaxy formation

(red shift: z ≈ 7), and their origin remains unknown. Gravitational waves created by such a

collapse may be detectable by next generation gravitational wave detectors.

Recent simulations have suggested that a narrow range of super-massive stars with masses
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around 5×104M� may have exploded due to simultaneously reaching the general relativistic

instability and the ignition of triple-α fusion. If such explosions were to have occurred, depending

on their frequency of occurrence, they may have left behind a measurable elemental signature of

heavy elements in an otherwise primordial elemental composition during early galaxy formation.

This dissertation details the investigation of post-instability energetics, both from a

theoretical stand point as well as via simulations using the KEPLER stellar evolution code.

Previous research has found that for a small range of stars with masses around 5×104M�, due to

the extreme temperature sensitivity of the triple-α process at its ignition point (∼ 2×108 K), there

is a theoretical basis for accelerated nuclear energy production to possibly reverse the collapse

before too much energy is lost in electron-positron pair annihilation neutrinos combined with

in-falling kinetic energy. However, complimentary findings via simulations were not found to

be satisfactory. Future three dimensional simulations with high precision accounting of nuclear

energy production as well as energy losses and kinematics would be necessary to definitively

conclude whether such explosions are energetically possible.
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Chapter 1

Introduction

1.1 Pop III Stars and Super-Massive Black Holes

Pop III stars are theorized to have been the first generation of stars to form in the universe.

Consequently, they should have primordial chemical abundances, i.e. zero metallicity (A > 4). It

is possible, however, for some younger or longer lived, i.e. smaller Pop III stars to have gained

metallicity, if they were sprayed by heavy metals due to another larger/older Pop III star having

gone supernova nearby. Although stellar evolution models suggest that Pop III stars would have

had typical masses around 102M� [1–4], it has been theorized that in the absence of heavy metals,

combined with the relatively warmer temperature of the universe at that epoch, these stars may

have had masses of up to ≈ 108M� [5–7]. Although originally proposed as a possible source of

strong radio emissions, it was quickly noticed that if such stars existed, they could have been

progenitors of SMBH’s [5, 8–11]. It should be noted, that Pop III stars are a hypothetical stellar

population, and have never been directly observed; however, possible indirect evidence for them

has been proposed via gravitational lensing [12].

On the other hand, super-massive black holes (SMBH) with mass ranges of, 105M� −→

109M�, have been observed less than 1Gyr after the Big Bang, z = 7 [13–17]. It remains a
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mystery however, how such large black holes could have formed so soon after the Big Bang.

Broadly speaking, two possible pathways have been proposed: via primordial black holes [18–20]

and via collapsing gravitationally bound clouds or stars. In the latter case, there are multiple

routes starting from a primordial gas cloud [21–26] or dense star cluster [27–30] and ending in a

SMBH [31, 32], some of which involve the collapsing of super-massive Pop III stars [33, 34](see

fig. 1.1). If such a collapse were to have occured in an asymmetric fashion, it could have emitted

gravitational waves detectable by next generation gravitational wave detectors [35, 36], resulting

from large neutrino bursts near the black hole formation [37–39]. However, as mentioned earlier,

Pop III stars are not thought to have masses of 109M�, and any blackhole resulting from one would

still have to undergo rapid accretion to explain early SMBH’s. It is nevertheless advantageous for

such a process to begin with as large of a seed back hole as possible.

Pop III stars are the only candidates for such massive stars, as previous research has

shown that for stars to reach such large masses (>̃104M�) they must have zero metallicity to

avoid thermonuclear explosion [40], (see fig. 1.3).
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Figure 1.1: Pathways to SMBH.
Begelman and Rees flow chart hypothesizing the various paths to creating a SMBH [31], some of
which involve the creation of a SMS (referred to as a ‘Massive Object’).

1.2 Very Massive Stars

Very massive stars (VMS), have a total mass-energy dominated by baryon rest-mass, but

are primarily supported by radiation pressure, and are characterized by the electron-positron pair

instability (EPPI). The EPPI is an effective loss of pressure support due to high energy photons

creating non-relativistic electron-positron pairs. This dissertation will not delve into a detailed

analysis of this effect, but a basic overview will be described in sect. 4.2. Their ultimate fate

is dependent on their mass and metallicity [41]. Assuming Pop III stars with zero metallicity,

lower mass VMS’s as well as higher mass VMS’s are predicted via stellar evolution models to

collapse to black holes; while VMS’s of intermediate masses (∼ 140− 260M�), will become

pair-instability supernovae, leaving behind no remnants [41] (see fig. 1.2).
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We can increase the mass of a VMO to maximize the mass of the seed for a SMBH,

however, above a certain mass, due to non-linear general relativistic gravitational corrections,

the star will go unstable via the Feynman-Chandrasekhar General Relativistic Instability (GRI)

[42, 43] prior to experiencing the EPPI (see sect. 4.2). This boundary between the GRI and the

EPPI will loosely define the difference between a Very Massive Star and a Super-Massive Star

(SMS). The details of this boundary will be explored in sect. 4.2.

Figure 1.2: Fate of VMS’s.
Simulated fates of VMS’s depending on stellar mass (horizontal axis) and metallicity (vertical
axis). The white region in the bottom right corner represents pair-instability supernovae. Figure
source: [41]
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1.3 Super-Massive Stars

As will be shown in sect. 4.2, adhering to our definition of a SMS versus a VMS, SMS’s

are characterized by masses greater than ∼ 104M�. Like VMS’s, these stars’ mass-energy is

predominately baryon rest-mass, but they are even more radiation dominated than VMS’s due to

having larger masses. Consequently they have lower densities, higher temperatures, and reach the

GRI prior to the EPPI.

The details of the internal structure of SMS’s will be discussed in chapt. 2. Past theoretical

research on SMS’s has found that, similarly to VMS’s, the ultimate fate of an SMS depends on its

mass and metallicity (see fig. 1.3) [40].
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Figure 1.3: Regions of Stability in Super-Massive Stars vs. Metallicity.
Theoretical fate of SMS’ depending on stellar mass (vertical axis) and metallicity (horizontal
axis). X0 =

1H mass abundance, Z = metal (A > 4) mass abundance. The ‘equilibrium’ region
signifies that the star will reach hydrostatic equilibrium and continue along its main sequence
phase. Figure source: [40].
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Figure 1.4: Regions of Stability in Super-Massive Stars vs. 4He Content.
Theoretical fate of zero metallicity (Z0 = 0) SMS’ depending on stellar mass (vertical axis) and
4He mass fraction, Y , (horizontal axis). The dashed line allows for quasi-static contraction, while
the solid line doesn’t. A SMS with mass less than ∼ 4−5×104M� will burn 4He stably. Figure
source: [40].

As per fig. 1.3, it was previously thought that zero-metallicity SMS, should all eventually

collapse to a black hole [40], but recent computer simulations have found that there may exist

a small mass range (∼ 5.5×104M�), for which a SMS will go unstable only upon completing

its main sequence phase and beginning to fuse helium into carbon via the triple-α process; that

may explode rather than collapse [44]. This result was found using both 1-D (KEPLER) and 2-D
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(CASTRO) stellar evolution codes (KEPLER for the lifetime of the star and CASTRO to model

the collapse and explosion). It is uncertain, however, whether this result is due to numerical

effects, or real physical processes. If the effect is real, the physics leading to the explosion has

not been fully explored.

If there existed Pop III SMS’ that exploded, the explosion would have blown heavy

elements into the universe, possibly leaving a measurable signature on the chemical abundances

of heavy elements in early galaxies [45–47]. If the SMS was near other SMS’, the explosion

would have sprayed them with metals, possibly triggering other explosions (see fig. 1.3. Such

explosions could also be marked by a pulse of gravitational waves, akin to those emanating

from core collapse and pair-instability supernovae [48–53]. This dissertation will investigate the

nuclear evolution and energy budget of a post-main sequence SMS near the GRI, and compare to

stellar evolution simulations using KEPLER to determine what possible theoretical mechanisms

could lead to the explosions found in [44].

This dissertation is organized as follows: Chapters 2 - 4 overview the theoretical frame-

work for the physics of SMS’, the GRI, and the EPPI. Chapters 5-7 present a theoretical model

describing the energetics and nuclear physics determining the future of an SMS once the GRI

has been reached. Chapters 8-9 discuss the results of KEPLER simulations of SMS’s; and how

they compare to the expectations of the theory laid out in the previous chapters. Throughout this

dissertation, natural units will be used: G =h̄ = c = KB = 1.
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Chapter 2

Overview of Stellar Physics

2.1 Stellar Structure

Consider a spherically symmetric star of mass M, pressure P, density ρ, and entropy per

baryon S; all functions of the radial distance, r. Given an equation of state, P(ρ,S), the star’s

structure must satisfy the following equations:

dM(r)
dr

= 4πr2
ρ (mass continuity) (2.1)

∇P =
dP
dr

=−m(r)ρ
r2 (hydrostatic equilibrium) (2.2)

Combining eqs. 2.1 and 2.2 yields:

d
dr

(
r2

ρ

dP
dr

)
=−4πρr2 (2.3)

The theoretical model used in this dissertation we will assume a polytrope relation

with index n: r = r0ξ, ρ = ρcθn and P = KρΓ, where ρc = the central density, K = constant,

r0 =
[
(n+1)K

4π

]1/2
ρ
(1−n)/(2n)
c , and Γ = 1+1/n. This results in the Lane-Emden Equation [54]:

9



d
dξ

(
ξ

2 dθ

dξ

)
=−ξ

2
θ

n (2.4)

with boundary conditions: θ(0) = 1 and dθ

dξ

∣∣∣
ξ=0

= 0. The radius of the star, R, is determined by

setting the pressure to 0: θ(ξ1) = 0, such that R = r0ξ1. It should be noted that in actuality the

boundary of a real star is ill-defined, and so the polytrope radius, R, is a somewhat coarse-grained

quantity. Consequentially, one should expect the polytrope model to break down in the outer

regions of the star. This is generally not a problem, as most of the mass and important physics is

concentrated in the star’s central regions. Issues related to the radius of the star are discussed in

8.3.

The mass of the star is given by:

M =
∫ R

0
4πr2

ρdr = 4πr3
0ρc

∫
ξ1

0
ξ

2
θ

ndξ (2.5)

Using the Lane-Emden equation (eq. 2.4) we have:

M =−4πr3
0ρc

∫
ξ1

0

d
dξ

(
ξ

2 dθ

dξ

)
dξ = 4πr3

0ρcξ
2
1
∣∣θ′(ξ1)

∣∣= 4π

[
(n+1)K

4π

]3/2

ρ
3−n
2n

c ξ
2
1
∣∣θ′(ξ1)

∣∣
(2.6)

Consequentially:

r0 =

[
M

4πξ2
1 |θ′|

]1/3

ρ
− n−1

2n
c (2.7)

and

R = r0ξ1 =

[
M

4πξ2
1 |θ′|

]1/3

ρ
− n−1

2n
c ξ1 (2.8)

The mass can then be related to the radius by:

10



M = 4π

(
R
ξ1

) 3−n
1−n
[
(n+1)K

4π

] n
n−1

ξ
2
1
∣∣θ′(ξ1)

∣∣ (2.9)

Notice that for n = 3, the radius of the star is independent of its mass. The mean density

of the star is:

ρ =
M
V

=
3 |θ′(ξ1)|

ξ1
ρc (2.10)

Pressure support for the star will be provided in part by radiation pressure, and in part by

gas pressure. Defining β≡ Pgas/P for a some volume, V , we have:

Pgas = βP =
N
V

T =
ρ

µmb
T (2.11)

where mb = mass of a baryon (1.67×10−24g), and µ = the mean particle mass in units

of mb as defined by eq. 2.12.

µ≡ m
mb ·∑i Ni

(2.12)

where Ni is the number of particles of the ith non-relativistic species within a volume with

total mass m. The radiation pressure is:

Prad = (1−β)P =
a
3

T 4 (2.13)

where a is a constant that depends on the particle species making up the radiation. If only

photons are relativistic, then a = π2

15 . Solving for pressure and temperature gives:

T =

(
3(1−β)

ambµβ

)1/3

ρ
1/3 = Tcθ, P =

[(
1

mbµ

)4 3
a

1−β

β4

]1/3

ρ
4/3 = Pcθ

4 (2.14)
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Hence,

K =

[(
1

mbµ

)4 3
a
(1−β)

β4

]1/3

, Γ =
4
3
, and n = 3 (2.15)

For the polytrope assumption to hold, β must be constant throughout the star. This

condition is known as the ‘standard’ or ‘Eddington’ model of stellar structure; and it turns out

that for typical stars, i.e. ∼ 1M� the energy generation rate and opacity vary with radius inversely

to one another as to keep β constant throughout the star [54, 55]. In the case of a SMS however,

despite the bulk of the star being radiation dominated the envelope of the star is dominated by gas

pressure, causing star to progressively shed its envelope [54]. Consequently β must change in the

star’s outer regions, and we should expect the polytrope model break down in the outer regions of

the star. This is not an issue as the important physical processes are concentrated in the interior of

the star; and the mass lost in the envelope accounts for a negligible fraction of the the total mass

of the star [44, 56–59]. Consequently, the constant β assumption, and hence the polytrope model,

should hold for the bulk of the star. The mass of the star is:

M = 4
(

3
πa

)1/2 1
m2

b
ξ

2
1
∣∣θ′(ξ1)

∣∣ √1−β

µ2β2 ≈ 18M�

√
1−β

µ2β2 (2.16)

If β is small, we have:

β≈
√

18M�
M

(
1
µ

)
(2.17)

Plugging back into eqs. 2.15 and 2.7 gives:

K =

[
π

(
M

4ξ2
1 |θ′(ξ1)|

)2
]1/3

and r0 =

[
M

4πξ2
1 |θ′|ρc

]1/3

(2.18)

For stars with M >> 20M�, we get:
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β≈
√

18M�
M

1
µ
� 1 (2.19)

and

T ≈
(

1500√
2π2mb

√
M4

)1/3

ρ
1/3 (2.20)

where M4 = the mass of the star in units of 104M�. Note that β, should be interpreted

as the fraction of gas pressure a star requires in order to remain in hydrostatic equilibrium. If β

drops below this fraction, then the luminosity is too high and the star will expand. Conversely, if

β is too high, then the star will contract.

2.2 Newtonian Energy Balance

From the First Law of Thermodynamics, we have the change in internal energy:

dU =−PdV +T dS+T ∑
i
(ηidNi) (2.21)

Let us assume all processes to be adiabatic, i.e. there is no heat flow,

dQ = T dS+T ∑
i
(ηidNi) = 0 (2.22)

where ηi and Ni are the degeneracy parameter (chemical potential over temperature) and

particle number for the ith species, respectively. For a fixed number of particles, the second

term on the right-hand side of eq. 2.22 can be dropped. The first term on the right-hand side

of eq. 2.22 will be close to zero as for radiation dominated regimes the entropy per baryon is

constant throughout the star (see appendix A.7.2). This does not hold in the envelope of the star,
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which is gas dominated. Because the entropy is constant, despite the temperature decreasing

with increased radius, the star tends to be convectively unstable and therefore the entire star is

convective up to the envelope. This causes the star to shed its envelope [54, 55], as mentioned in

sect. 2.1. Furthermore, this causes the material in the star to be continuously mixed keeping, the

mean particle mass, µ, more or less constant throughout most of the star (although it will increase

in time from nuclear fusion, see chapt. 6). Since for adiabatic processes we have dQ = 0, the

First Law of thermodynamics (eq. 2.21) will reduce to dU =−PdV .

From the n=3 polytrope relation (Γ = 4
3 ), we have:

dP(ρ,S)
dρ

=
∂P
∂ρ

∣∣∣∣
S
+

∂P
∂S

∣∣∣∣
ρ

dS
dρ

= Γ · P(ρ,S)
ρ

=
4
3
· P(ρ,S)

ρ
(2.23)

We shall now define the adiabatic index, Γ1, such that:

∂P
∂ρ

∣∣∣∣
S
≡ Γ1

P
ρ
=⇒ Γ1 ≡

∂ln(P)
∂ln(ρ)

∣∣∣∣
S

(2.24)

whereas,

Γ≡ d ln(P)
d ln(ρ)

(2.25)

Plugging back into eq. 2.23 we have:

dP(ρ,S)
dρ

= Γ
P
ρ
= Γ1

P
ρ
+

∂P
∂S

∣∣∣∣
ρ

dS
dρ

(2.26)

or, rearranging:

Γ1 = Γ− ρ

P
· ∂P

∂S

∣∣∣∣
ρ

dS
dρ

(2.27)

Note that Γ1 = Γ only if the entropy is constant (e.g. no gas pressure), and hence for a

SMS, Γ1 ≈ Γ. Physically speaking, Γ1 quantifies an answer to the following question: If a lump
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of matter is quickly squeezed such that no heat has time to flow, how does the pressure respond?

In a sense, Γ1 is akin to a spring constant for the material under adiabatic compression/expansion.

For a given mass element, the density is inversely proportional to the volume, so we can rewrite

eq. 2.24 as:

dP
P

∣∣∣∣
S
+Γ1

dV
V

= 0 (2.28)

.

We shall now find Γ1. For the radiation field the internal energy is Urad = 3PradV = aT 4V .

For an ionized gas of N particles, the internal energy is Ugas =
3
2NT = 3

2 ·
Pgas
V . Hence we have:

U = aT 4V +
3
2

NT (2.29)

P =
1
3

aT 4 +
NT
V

(2.30)

Differentiating eqs. 2.29 and 2.30, and applying the 1st Law of Thermodynamics (eq.

2.21), gives:

dU =−PdV = 3(1−β)PV
(

4
dT
T

+
dV
V

)
+

3
2

βPV · dT
T

(2.31)

dP = 4(1−β)P · dT
T

+β

(
dT
T
− dV

V

)
(2.32)

Eliminating dT
T gives:

dP
P

+
32−24β−3β2

3(8−7β)

dV
V

= 0 (2.33)

Hence, from eq. 2.28:
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Γ1 =
32−24β−3β2

3(8−7β)
(2.34)

As β goes from 0→ 1, Γ1 goes from 4
3 →

5
3 . For radiation dominated stars, Γ1 can be

approximated to first order in β:

Γ1 ≈
4
3
+

β

6
(if β << 1) (2.35)

It should be noted that eq. 2.34 does not take into consideration shifts in the equilibrium

ratio of the number photons to electron-positron pairs, and as a result is not valid in a regime

where pair creation is significant, i.e. it does not hold when considering the EPPI.

Since we are only considering adiabatic processes, we shall take Γ = Γ1 for the remainder

of this dissertation, unless stated otherwise. The total internal energy of the star, U will be
∫

udm,

where u≡ dU
dm (the internal energy per unit mass. Taking a mass element, ∆m, we have:

dU =−PdV =−Pd
(

1
ρ

)
·∆m. Hence: du =

P
ρ2 dρ (2.36)

Therefore,

u =
∫

Kρ
Γ1−2dρ =

KρΓ1−1

Γ1−1
+ const. (2.37)

The constant term corresponds to the rest-mass energy density (ρx), which can be sub-

tracted off. The gravitational potential energy of the star is:

−
∫ m(r)

r
dm (2.38)

So the total Newtonian binding energy of the star will be

E = Eint +Egrav =
∫ M

0
udm−

∫ M

0

m(r)
r

dm (2.39)
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Integrating over an n = 3 polytrope gives:

E = α1KMρ
Γ1−1
c −α2M5/3

ρ
1/3
c (2.40)

where α1 and α2 are constants of order 1 resulting from integrating over the polytrope

profile. In order to find the equilibrium central density and corresponding energy, we must find the

stationary point(s) of E, by differentiating eq. 2.40 with respect to ρc (the only free parameter):

dE
dρc

= 0 = (Γ1−1)α1KMρ
Γ1−2
c − 1

3
·α2M5/3

ρ
−2/3
c ⇒ α1KMρ

Γ1−1
c =

α2M5/3ρ
1/3
c

3(Γ1−1)
(2.41)

Plugging back into the eq. 2.40, we find the equilibrium energy of the star:

Eeq =−
α2M5/3ρ

1/3
c

Γ1−1

(
Γ1−

4
3

)
(2.42)

For a star that is entirely radiation dominated (Γ1 = 4
3) everywhere, the total binding

energy is 0. We can now expand the energy about Eeq to get:

E = Eeq +E ′eq∆ρc +
1
2
·E ′′eq(∆ρc)

2 + ...≈ Eeq +0+
1
2
·E ′′eq(∆ρc)

2 (2.43)

The star will be unstable to perturbations about Eeq when E ′′eq < 0. Solving for E ′′eq gives:

E ′′eq =
1
3
·α2M5/3

ρ
−5/3
c

(
Γ1−

4
3

)
(2.44)

The star will therefore be unstable when Γ1 < 4
3 . Under “normal” thermodynamic

conditions Γ1 ranges from 4
3 −→

5
3 , and hence E ′′eq is always greater than 0, therefore from a

Newtonian perspective, stars in hydrodynamic equilibrium are always stable under adiabatic

processes, unless some atypical process takes place in the star, that makes eq. 2.34 invalid and

drives Γ1 below 4
3 , i.e. the EPPI. Physically speaking, barring atypical processes such as the EPPI
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(discussed in 4.2), if a star is slightly contracted, the changes pressure will always be sufficient

to counteract the changes in gravitational forces (and similarly when the star is expanded).

Alternatively, we can say that the net force (gravitation + pressure) under expansion/contraction

will always be restoring. If Gamma1 is exactly 4
3 , then the pressure scales exactly as gravity

(∼ 1
r2 ), and contracting or expanding the star costs zero energy, resulting in equilibrium at any

radius/density.

There are two important points to note here. Firstly, recall that we are considering

adiabatic processes, and Γ1 is adiabatic index Γ1 =
∂ ln(P)
∂ ln(ρ)

∣∣∣
S
, not the polytrope index, 1+ 1

n = 4
3 .

Secondly, since Γ1 is not necessarily constant throughout the star, a more rigorous and general

analysis of perturbative deviations about the polytrope profile, yields that in fact the relevant

quantity in eq. 2.44 is not Γ1, which is ill-defined for the entire star if not constant, but the

pressure weighted average of Γ1 [10, 60]:

Γ̃1 ≡
∫

PΓ1dV∫
PdV

(2.45)

A full analysis of perturbations about the polytrope profile will not be covered in this

dissertation, but this is a well known result in the physics of stellar stability. A full derivation of

this result is the subject of chapter 6 of [60].
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Chapter 3

General Relativistic Energy Corrections

For a massive, radiation dominated star, since the total energy is nearly 0, the first

order correction to the energy due to general relativity (GR) will become important, and must

be considered. The Newtonian binding energy was defined as Etherm +Egrav, which can be

interpreted as the total amount of energy needed to unbind the star (disperse the matter to infinity).

From a GR perspective, an unbound gas at zero-temperature will have a total energy simply equal

to its total rest-mass, i.e. Nmb, where N is the number of baryons in the gas. Hence the binding

energy will be the energy difference between the stars’ total gravitational mass/energy, and Nmb.

If the star is is static and spherically symmetric, it will be described by Schwarzschild geometry.

In this case we have:

E = M−Nmb = M−
∫ dm

(1+u)
√

1− 2m(r)
r

=
∫
(1+u)

√
1− 2m(r)

r
dmx−Mx (3.1)

where x-subscripts indicate proper quantities, i.e. as measured by a local Minkowski

observer. The factors of 1√
1− 2m(r)

r

are typically interpreted as accounting for the curvature of space

when integrating over proper-space, and are the grr components of the Schwarzschild metric (see
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appendix A.2 for further explanation).

The Newtonian energy (eq. 2.40) is of first order in Mx
Rx

and u. To get the first correction

we expand eq. 3.1 to second order in Mx
Rx

and u to find a total binding energy of:

E = α1KMρ
Γ1−1
c −α2M5/3

ρ
1/3
c −α3M7/3

ρ
2/3
c (3.2)

where α3 is again a constant of order 1, resulting from integrating over the polytrope

profile of the star (see Appendix A.1 for full derivation of eq. 3.2). We can now find equilibrium

and stability criteria as was done in the Newtonian case, yielding:

Eeq =−
1

Γ1−1

[
α2M5/3

ρ
1/3
c

(
Γ1−

4
3

)
−α3M7/3

ρ
2/3
c

(
5
3
−Γ1

)]
(3.3)

and

E ′′eq =
1
3

[
α2M5/3

ρ
−5/3
c

(
Γ1−

4
3

)
−2α3M7/3

ρ
−4/3
c

(
5
3
−Γ1

)]
(3.4)

Instability sets in when when the central density, ρc, exceeds a critical density, ρcrit :

ρcrit =

[(
α2

2α3

)(
Γ1− 4

3
5
3 −Γ1

)]3
1

M2 (3.5)

Substituting eq. 3.5 back into eq. 3.3, we find the energy at instability to be:

Ecrit =−
α2

2
(
Γ1− 4

3

)2

2α3(Γ1−1)
(5

3 −Γ1
)M (3.6)

Recall that the important quantity for perturbations about the polytrope profile is actually

the pressure averaged Γ̃1 (see eq. 2.45). We can use eq. 2.8 and Γ1 ≈ 4
3 , to rearrange eq. 3.5 and

find the instability criteria to be:

Γ̃1−
4
3
< 1.124

2M
R

(3.7)
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In the Newtonian case, we found that net forces were always restoring (excepting the

EPPI). However, when including GR, if the star slightly contracts, the increase in the strength of

gravity will be a bit more than for Newtonian gravity, but not the pressure. If the criteria in eq.

3.7 is met, where under Newtonian gravity the increased pressure would have been just enough

to counteract the increased gravitational force, now gravity is a bit stronger and will win, and

the star will contract a little more. Due to the non-linear nature of GR, this will increase the

gravitational forces even further, and the star will go into runaway collapse.

When including GR corrections, a Γ1 =
4
3 everywhere (radiation only) self gravitating

object, which would have been just on the edge of stability in Newtonian gravity, will now always

be unstable. In the case of a star however, there is always some gas pressure, so terms of first

order in β must be kept. Combining eqs. 2.35, 2.17, 3.5, and 3.6 gives:

ρcrit =

[
α2

4α3

√
18M�

]3

· 1
M7/2µ3

=
ρ0

µ3

(
M�
M

)7/2

(3.8)

Ecrit =−α3M7/3
ρ

2/3
crit =−

E0

µ2 (3.9)

where, ρ0 ≡ 2.496(1017) g/cc, and E0 = 8.964(1053)ergs = 0.501M�. Therefore the

energy at instability is independent of the stars’ mass, and only depends of the mean particle mass,

µ. We can find the corresponding critical central temperature to first order in β from eq. 2.14:

Tcrit =

(
3ρcrit

ambµβ

)1/3

=
T0

µ

(
M�
M

)
(3.10)

where T0 = 1.245(1013)K. The mean particle mass, µ, is not necessarily constant through-

out the star, and has turned up as a result of Γ1− 4
3 ∝

1
µ . As a result, it is the pressure averaged

inverse of µ that is the relevant quantity. Plugging eqs. 2.17 and 2.35into eq. 2.45, and using

dV = dm
ρ

, we get:
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Γ̃1 ≈
4
3
+

(
M�
2M

)1/2
(

1̃
µ

)
(3.11)

where: (
1̃
µ

)
≡

∫
P1

µdV∫
PdV

=

∫ P
ρ
· 1

µdm∫ P
ρ

dm
(3.12)

For convenience Γ̃1 has been expressed in terms mass integrals, as the KEPLER stellar

evolution code uses mass zones rather than radial zones. For radiation dominated stars, the

dominant mechanism for heat transfer throughout the entire star is convection. As a result the

material throughout the star is regularly mixed and µ is approximately constant throughout the

star as mentioned in chapter 2.1.

There is another subtle point that we must consider. Clearly, eq. 3.7 only holds while

2M
R < 1 (formation of a black hole). Furthermore, we have assumed that the metric deviation is

small: 2M
R � 1, and of order β. However, for an n = 3 polytrope, the maximum metric deviation

occurs somewhere inside the star rather than at its surface. If a trapped surface were to occur, it

would first be created inside the star. So for good measure we must verify that at no point in the

star, the metric deviation exceeds unity. Using eq. 2.4 we have:

m(r) = 4πr3
0ρc

∫
ξ

0
θ

3
ξ

2dξ =−4πr0ρcξ
2
θ
′(ξ) and r = r0ξ (3.13)

2m(r)
r

=−8πr2
0ρcθ

′(ξ)ξ (3.14)

Differentiating eq. 3.14 with respect to ξ yields that
[

2m(r)
r

]
max

is reached when:

−θ
′(ξ)ξ = θ

3(ξ)ξ2 i.e. when:
m(r)

r
=

dm(r)
dr

(3.15)

Where the condition in eq. 3.15 is met can be found numerically, yielding:
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[
2m
r

]
max

= 1.935
2M
R

(3.16)

and the enclosed mass when the metric deviation is largest is:

m
( [

2m
r

]
max

)
= .731M (3.17)

Figure 3.1: 2m(r)
r for n = 3 Polytrope.

Radial dependence of the metric deviation (in blue) normalized by the metric deviation at the
star’s surface for a n = 3 polytrope. The maximum metric deviation is inside the star and is equal
to almost twice the metric deviation at the surface of the star. Enclosed mass as a function of
radius (in red), normalized by the total stellar mass.

Setting
[2m

r

]
max� 1 at ρc = ρcrit (eq. 3.8),we find that for this analysis to be valid we
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must have:

M� 1.48 |Ecrit |=
.741M�

µ2 (3.18)

This condition is satisfied for a SMS. For notational simplicity we shall drop the tilde and

use Γ̃1 −→ Γ1, β̃−→ β, and
(

1̃
µ

)
−→ 1

µ , with the understanding that these quantities are implied

to be pressure averaged (labeled with tildes) quantities. Note that if µ is taken to be uniform

throughout the star, then quantities with tildes don’t differ from those without.
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Chapter 4

Mass Ranges for the General Relativistic

Instability

4.1 Upper Bound

We have derived the criteria for a star going unstable due to GR corrections. However,

this effect is not valid for all star masses. In order for a star to remain in thermal equilibrium

as it approaches the instability point, the material in the star must have time to quickly readjust

to thermal changes. This means the hydrodynamic timescale must be shorter than the thermal

evolution timescale. The thermal timescale, tthermal can be estimated as the magnitude of the

star’s energy divided by its photon luminosity, Lγ. While the hydrodynamic timescale, thydro, is

approximately the star’s free-fall time:

tthermal ≈
|Ecrit |

Lγ

thydro ≈ (ρ)−1/2 (4.1)

The luminosity of the a SMS will be very close to the Eddington luminosity (see appendix

A.5). We can now use eq. 3.8 with µ≈ 1 to get:
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thydro < tthermal =⇒

√√√√ (
M

M�

)7/2
ξ1

3ρcrit |θ(ξ1)|
<

E0

4πMmb/σthom
=⇒M<̃108M� (4.2)

where σT hom is the Thomson cross section, equal to 6.65×10−29 m2.

4.2 Lower Bound and the Electron-Positron Pair Instability

Although more massive stars require a higher central temperature to counteract the

increased inward gravitational forces, the critical temperature decreases as the stellar mass

increases (eq. 3.10). Lower mass SMS’s, will therefore reach the GRI at temperatures where the

electron-positron pair production will become important. At some point the critical temperature

will be sufficiently high that the star will undergo the EPPI at the same time as the GRI.

As stated in sect. 1.2, the EPPI can be thought of as an effective pressure loss due to high

energy photons converting into electron-positron pairs (eq. 4.3 and the first diagram in fig. 4.1).

More precisely, the electron+positron number, ne = n− + n+, will be in equilibrium (forward and

reverse rates in eq. 4.3 are equal) with photon numbers, nγ, numbers via:

2γ ⇀↽ e−+ e+ (4.3)

The ratio ne/nγ increases with temperature, which in turn decreases, Γ1. Furthermore, as

electrons and photons are transferred back and forth, occasionally an electron positron pair will

annihilate to a neutrino anti-neutrino pair instead (bottom diagrams in fig. 4.1):

e−+ e+ −→ ν+ν (4.4)
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Figure 4.1: Feynman Diagrams for Electron-Positron Pair Creation/Annihilation

This process is a non-equilibrium process, as the neutrinos will then free-stream out of

the star carrying away energy, further reducing the pressure. A basic overview is as follows.

For a pair of photons to annihilate to an electron-positron pair, the two photons must have

a combined energy of at least 2me = 2×511MeV = 2 · (6×109)K. The temperature in the core

of stars is (typically) well below this temperature (hydrogen and helium fuse at around 107K

and 108K respectively), consequently photons with sufficient energy to annihilate will only be

found far in the high energy tail of the Planck distribution where the photon number decreases

exponentially with energy, ε:

dnγ(ε) ∝ e−ε/T · ε2dε (4.5)

As a result, annihilations mostly take place closer to a total energy of 2me. This means

that radiation energy is mostly converted into rest mass, taking away pressure from the radiation

field, and not compensating in gas pressure. Alternatively, the created pairs, will have to absorb

energy from the surrounding heat bath to reach thermal equilibrium, resulting in a net pressure

loss. From the point of view of Γ1, if the material in the star is squeezed, some of the energy

which would have gone into heat, increasing the pressure and pushing back against the increased

gravity, now instead gets dumped into creating rest mass, and Γ1 drops below 4
3 , i.e. there is no

longer a restoring force. This effect holds even in absence of GR. At this point the star will begin
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to collapse, as the more it contracts, the more photons are converted to pairs.

When including the effects of pair production, Γ1 (eq. 2.35) will be modified [61]:

Γ1 ≈
4
3
+

β

6
· f (T,η) (4.6)

with

f (T, η) =
2Z

3(1+Z)

[(
me

T
· ε−3T

me

)2

tanh(η)+
me

T

(
3 · ε−3T

me
− me

T

)
coth(η)+

3
2Z

]
(4.7)

where ε = is the average energy of a single electron (including rest mass), η = the electron

degeneracy parameter, Z = the mean nuclear charge. The number densities and energy densities

of electrons and positrons are:

n∓ =
T 3

π2

∫
∞

0

x2

e[q(x)∓η]+1
dx (4.8)

n∓ =
T 4

π2

∫
∞

0

x2 ·q(x)
e[q(x)∓η]+1

dx (4.9)

where the q(x)≡
√

x2 +
(me

T

)2
= ε

T (energy divided by temperature). Eqs. 4.8 and 4.9

cannot be integrated analytically in general, but analytical approximations for the number density

and mean energy per particle [61, 62] (see appendix A.7.3) are:

n∓ =
m3

e
π2 ·

(
T
me

)
·K2

(me

T

)
e±η (4.10)

where Ki(x) = the ith order modified Bessel function. It follows that the average energy

of a single electron/positron is:
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ε = 3T +me
K1
(m2

T

)
K2
(me

T

) (4.11)

In the limiting cases of T << me and T >> me, eq. 4.11 converges to:

ε−→

 me +
3
2T for T << me

3T for T >> me

(4.12)

Substituting eq. 4.11 into eq. 4.7 we have:

f (T, η) =
2Z

3(1+Z)

(me

T
·

K1
(m2

T

)
K2
(me

T

))2

tanh(η)+
me

T

(
3 ·

K1
(me

T

)
K2
(me

T

) − me

T

)
coth(η)+

3
2Z


(4.13)

At sufficiently high temperatures, f (T,η) go negative, causing Γ1 to drop below 4
3 , and

the star will go unstable. In the limit where T << me and tanh(η)−→ 1, eq. 4.13 will reduce to:

f (T << me ,η)≈ 1− 5Z
2(1+Z)

·
(

T
me

)
≈ 1− 5µYe

2
·
(

T
me

)
(4.14)

where Ye = Z/A and A is the average atomic number. Since Z is the number of protons

per atomic nucleus, i.e. the number non-pair-created electrons per nucleus, we have:

np = n−−n+ =
ρYe

mb
(4.15)

Substituting eqs. 4.10 and 2.20 into eq. 4.15 we find:

sinh(η) =

( √
2π4Ye

3000
√

M4

)
·

[
1(me

T

)2 K2
(me

T

)] (4.16)

Now substituting eq. 4.16 into eq. 4.13, we can eliminate η to get:
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f (T, η)−→ f (T, M) (4.17)

Figure 4.2: f (T, M) vs. Temperature.
Plot of f (T, M) vs. temperature for various masses, as derived by [61] (eq. 4.13). Plots are
made for a 4He composition: Ye =

1
2 , µ = 4

3 , Z = 2. Note that for M<̃3M4, µ will be greater
than 4

3 , i.e. the star’s composition will include significant amounts of elements heavier than 4He
(see fig. 8.11). When f (T, M) < 0, Γ1 will drop below 4

3 , and the star will undergo the EPPI.
Increasing the mass of the star pushes the EPPI to lower temperatures. The ‘boundary’ between a
VMO and a SMS is loosely defined by the point where the EPPI and the GRI occur at the same
central temperature or mass. The purple line is the low temperature approximation (T << me) of
f (T, M) (eq. 4.14), and is mass independent.
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Figure 4.3: Regions of Instability for EPPI, GRI, and Elemental Composition.
The region of instability when considering both the EPPI and GRI (in blue) completely encloses
the lower boundaries of instability when only considering the EPPI or GRI alone (in orange and
green respectively). The EPPI alone has a lower threshold temperature of T9 > 0.6, with almost
no dependence on stellar mass and composition; as well as an upper limit of T9 < 5≈ me. Above
this temperature the pairs are relativistic, and converting photons to electrons doesn’t result in
pressure loss, as both species contribute to radiation. The GRI alone is initially suppressed by the
creation of non-relativistic electron-positron pairs, as they reduce the mean particle mass. As the
temperature increases and the electrons become relativistic, they no longer contribute to the mean
particle mass and µ−→ A.
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As mentioned in sect. 1.2, traditionally the distinction between VMS’s and SMS’s has

been defined by whether a star goes unstable due to the EPPI or the GRI, respectively. However,

this definition is somewhat misleading, as in actuality a star will always go unstable due to both

effects.

Ignoring the GRI, the instability criteria is:

Γ1 <
4
3

(4.18)

The EPPI is caused by a rise in electron-positron pair creation, leading to Γ1 being driven

down until it is below 4
3 , i.e. changes in the left-hand side of eq. 4.18. On the other hand, the

GRI doesn’t modify Γ1, but instead increases the threshold for the minimum stable Γ1 to give an

instability criteria of:

Γ1 <
4
3
+O

(
2M
R

)
(4.19)

That is, a modification of the right-hand side of eq. 4.18. The two are not mutually

exclusive however, and as Γ1 is driven down, it will always reach 4
3 +O

(2M
R

)
before reaching 4

3 .

Similarly, the effects of pair creation will always be present, even if small, eq. 4.6 will always

push the star closer to instability, than if ignoring their effects. However, it is nonetheless possible

to delineate ranges where one effect alone would still result in instability, separated by a region

where neither effects of the EPPI nor those of the GRI alone will cause instability, but instability

will set in only when both are considered. Hence the boundary between the two is somewhat

fuzzy. These regions are shown in fig. 4.3. Luckily, the region where both effects are important is

relatively small, and it can be loosely said that the lower bound on the GRI is roughly M4 ≈ 1.8,

or, more accurately, when T8,c > 6 (see fig. 4.3). For SMS with M4 ≈ 5 (depending on the value

of µ),the effects of pair creation can be neglected.
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Chapter 5

Behavior at the Critical Point

Let us define the dimensionless quantities x ≡
(

ρ

ρM

)1/3
= T

TM
, and ε ≡ E

E0
; with ρM ≡

ρ0 ·
(

M�
M

)7/2
and TM ≡ T0 · M�

M . Substituting into eq. 3.3 gives:

ε = x2− 2x
µ

, xcrit =
1
µ

, and εcrit =−
1
µ2 (5.1)

Alternatively, xcrit and εcrit can also be found by setting ∂ε

∂x

∣∣∣
µ
= 0. If the curve εcrit(µ) =

− 1
µ2 is superimposed onto the graph of ε vs. x (the dashed magenta curve in fig. 5.1), we can

see that as the star undergoes nuclear fusion, converting nuclei with atomic mass A1 to heavier

nuclei with atomic mass A2 (A2 > A1), µ will increase and the star will move upwards (closer to

instability) in fig. 5.1. This means, that unless the star sufficiently expands/cools (corresponding

to a leftward shift in fig. 5.1), it will eventually cross the curve εcrit(µ) =− 1
µ2 and go unstable.
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Figure 5.1: ε vs. x for Various Values of µ.
Dimensionless binding energy, ε vs. dimensionless proxy for central temperature or central
density, x in a n = 3 polytrope star in hydrostatic equilibrium, for various values of the mean
particle mass, µ. Solid lines represent stable regimes. Dotted lines represent unstable regimes.
The magenta dashed line depicts the critical point energies vs. critical point densities/temperatures
as a function of µ (ε =− 1

µ2 , x = 1
µ ). As µ increases the star becomes less bound at the same value

of x, and the instability density and temperature shift to lower values. As a result, as a star fuses
nuclei to form heavier nuclei, the star will move up in this plot from from a given µ, to a higher µ.
Unless the central density/temperature sufficiently decreases (in general it will increase), the star
will inevitably reach the GRI (cross the dotted magenta line).

Now suppose a star has just reached its critical point. In a time dt, some amount of nuclear

fuel with atomic mass A1 will be converted through fusion to atomic mass A2. This will result

in a release of nuclear binding energy, dE, a corresponding change in mean particle mass, dµ,

and a change in x of dx. This will move the star from an equilibrium curve ε(µ,x) to a new curve
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ε(µ+dµ, 1
µ +dx). Hence we get:

[ε(µ,x)+dε]crit =−
1
µ
+

∂ε

∂µ

∣∣∣∣
µ, 1

µ

·dµ+
∂ε

∂x

∣∣∣∣
µ, 1

µ

·dx =− 1
µ2 +

2
µ3 ·dµ+0 ·dx (5.2)

=⇒ dεcrit =
2dµ
µ3 (5.3)

So at the critical point, an increase in µ will move the star vertically to the point[
ε(µ+dµ, 1

µ),
1
µ

]
, which will necessarily be in an unstable regime, as it will have moved to

the right of the ε(µ+dµ,x) instability point. If the energy increase from nuclear fusion, dE, is

greater than E0dε than the star will be too deep in the potential well, and will collapse, as it will

sit below the ε(µ+ dµ,x) equilibrium curve. If, on the other hand, dE > E0 · dε, then energy

losses must be taken into account to determine the fate of the star. In other words, for a star to

expand rather than collapse upon going unstable we must have:

dE > E0 ·dεcrit +dEloss (5.4)

It should be noted that if this condition is satisfied, this does not necessarily imply an

explosion, simply a runaway expansion and unbinding of the star of some sort. In order to

determine the fate of an SMS undergoing the GRI, we must first determine the nuclear energy

generation and losses.

35



Chapter 6

Nuclear Rates and Energy Generation

6.1 Mean Particle Mass

The quantity µ has been defined to be the mean particle mass in units of mb. This quantity

will increase as lighter nuclei fuse to heavier nuclei. Consider a mass element, m, that is fusing

helium to a heavier nuclei with atomic number, A. The mean particle mass in terms of the mass,

the electron number, Ne, and number of particles of a given nuclear species, Ni, is: .

µ≡ m
mb (∑i Ni +Ne)

=
M
mb

1
Nα +NA +Ne +Nother

(6.1)

(6.2)

where Nα, NA, and Nother are the numbers of 4He, daughter nuclei with atomic mass, A,

and any other nuclei, respectively. The electron fraction, Ye is:

Ye ≡
Nprotons

Nbaryons
=

Ne−−Ne+

Nbaryons
=

∑i NiZi

∑i NiAi
==

(
Z
A

)
= ∑

i
Xi

Zi

Ai
(6.3)

where Xi’s are mass fractions (Xi = Ni ·Ai ·mn/m) and the ‘barred’ value is the average.
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Using dNe = ∑i dNiZi, and dNα =− A
Aα

dNA (Aα = 4), we get:

dµ =− m
mb

dNα(1+Zα)+dNA(1+Z)

(Nα +NA +Ne +Nother)
2 =

µ2mb

Aαm
[A(1+Zα)−Aα(1+Z)]dNA (6.4)

or plugging in values for Aα and Zα:

µ̇ =
3µ2mb

4M

[
A− 4

3
(1+Z)

]
ṄA (6.5)

6.2 Nuclear Fusion via the Triple-α Process

For a star that has fused all or most of its hydrogen and left the Main Sequence, the next

phase in nuclear burning is the triple-α process: 3× 4He−→ 12C via the two step process:

4He+ 4He ⇀↽ 8Be−0.1 MeV =⇒ 8Be+ 4He−→ 12C+7.4 MeV (6.6)

The first reaction in eq. 6.6 is endothermic, and consequently less energetically favorable

to 2× 4He, and so 8Be is not a stable nucleus, and most of the time it will split back into 2× 4He.

This reaction is also in nuclear statistical equilibrium (NSE), i.e. forward and reverse rates are

equal. In order to make 12C, a third 4He must be captured prior to the very short decay time of

8Be (half-life = 8.2×10−17s [63]) for the second reaction in eq. 6.6 to take place, and 12C to

form. Because the reaction 2× 4He ⇀↽ 8Be is in NSE, there is a fixed net amount of 8Be at any

given time. The 8Be mass fraction can be calculated via the Saha equation (see appendix A.8).

Consequently, the number ratio of 8Be to 4He is found to be [55]:
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N(8Be)
N(4He)

≈ 2.8×10−10 ·

(
ρ ·X(4He)

T 3/2
8

)
·10−4.64/T8 ≈ 3.6×10−10 ·

(
T 3/2

8 ·X(4He)√
M4

)
·10−4.64/T8

(6.7)

where N()’s are particle numbers of a given species, X()’s are the mass fractions, ρ is in

units of g/cc, and eq. 2.20 has been used in the expression on the right. Evaluating eq. 6.7 at the

GRI gives:

N(8Be)
N(4He)

∣∣∣∣
crit
≈ 1.6×10−8 ·

(
X(4He)
µ3/2M2

4

)
·10−0.373µM4 (6.8)

As a result of the low numbers of 8Be per 4He (∼ 10−12 around M4 = 5), the formation

of 12C is very slow. The (non-NSE) reaction, 4He+ 8Be−→ 12C, was found to be too slow to

produce sufficient amounts 12C to support a star [55, 64]. It was consequently predicted, and

then discovered, that the 4He+ 8Be−→ 12C reaction must be amplified by the existence of a 0+

excited state of 12C, having a resonant energy with 4He+ 8Be at stellar temperatures [55, 64, 65],

shown in fig. 6.1.
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Figure 6.1: 4He+ 8Be−→ 12C, ‘Hoyle Level’ Resonance
The 0+ excited state of the 12C nucleus, resonant with 8Be+ 4He (also 0+) at stellar

temperatures, was predicted by Fred Hoyle [64] and soon after discovered [65]. Its existence
allows for accelerated production of 12C in stellar interiors. Diagram adapted from [55].

The net triple-α energy production rate from combining

2× 4He ⇀↽ 8Be and 4He+ 8Be−→ 12C (6.9)

can be calculated [55] to be:

ε3α ≈ 3.9×1011 ρ2X3(3He)
T 3

8
· e
[
− 42.94

T8

]
ergs/g/s (6.10)

From eq. 6.10 and effective triple-α nuclear rate, σ3α can be backed out, via the differential

equation:

ṅα =−n3
ασ3α (6.11)
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where nα and ṅα are the helium number density and its time derivative, respectively. The

comparison of eq. 6.10 to the experimental values from [66] is shown in fig. 6.2.

Figure 6.2: Triple-α Nuclear Rates
Triple-α nuclear capture rates as a function of temperature for the effective reaction:

3× 4He−→ 12C with the corresponding differential equation for the helium number density:
ṅα =−n3

ασ. Theoretical rates derived from eq. 6.10 [55]. Experimental rates are taken form [66].

Despite being helped by the resonant ’Hoyle Level’, the triple-α fusion rate is nonetheless

relatively slow. Combined with the relatively small amount of nuclear binding energy released

(0.6MeV/baryon), the net result is a relatively weak energy generation rate.

However, once a 12C nucleus is made, it can fuse with another 4He nucleus to form a

16O nucleus, which can in turn capture another 4He to make 20Ne, and so on. This is called

the α-process, and in principle this chain reaction can continue (along with two e−-captures)

up to 56Fe, so long as temperatures are sufficiently high to overcome Coulomb barriers. If the

temperature is too low, then the process will be halted at some intermediate nucleus with atomic
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mass, Amax. Therefore the set of differential equations that must be solved to determine the

number densities of each species, ni, is:

ṅα =−(nα)
3

σ(3α−∑
Amax−1
Ai=12C nαnAiσ(Ai,α)

ṅ12C = 1
3 (nα)

3
σ(3α,12C)−n12Cnασ(12C,α)

ṅ16O = n12Cnασ(12C,α)−n16OnHe4σ(16O,α)

...

ṅAi = nAi−1nασ(Ai−1,α)−nAinασ(Ai,α)

...

ṅAmax = nAmax−1nασ(Amax−1,α)

(6.12)

where σ( )’s = the temperature dependent capture rates between atomic species. The

energy generation rate for a differential mass element with volume dV , will be the sum of the

number generation rates times the binding energy released for each capture:

dĖ =
Amax

∑
12C

Ai∆EiṅidV (6.13)

where ∆Ei binding energy per nucleon of the ith species minus the binding energy per

nucleon of 4He. Unfortunately, because of the (nα)
3 terms in the triple-α process this set of

equations is not solvable analytically. However, they can be constrained by looking at two limiting

cases.
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6.3 Instantaneous α-Process

Suppose that once a 12C nucleus is made, it instantaneously captures α’s up to some

atomic species, A. A could range from 12−→ 56 in multiples of 4. If A = 12, then the process

stops at 12C and all we have is the triple-α process. And if A = 56, then 4He is being converted

straight to 56Fe. In this way we can simply multiply the triple alpha rate by A
12 to account for

the extra α’s being captured. For convenience we will make the following change in notation:

σ(3α)≡ σ. This means we can reduce the set of equations 6.12 and 6.13 to the following equations:

ṅα =− A
12

n3
ασ (6.14)

ṅA =− 4
A

ṅα (6.15)

dĖ = A∆EṅAdV (6.16)

where the ∆E will depend on which A is chosen. Solving with the initial condition that

nα = ρ

4mb
(the star is entirely 4He) gives:

nα(t) =
ρ

4mb
√

1+Aω(ρ,T )t
(6.17)

nA(t) =
ρ

Amb

(
1− 1√

1+Aω(ρ,T )t

)
(6.18)

dĖ(t,V ) = A∆EdV ṅA(t) =
A∆Eρω(ρ,T )dV

2mb [1+Aω(ρ,T ) · t]3/2 (6.19)

where

ω(ρ,T )≡ ρ2σ(T )
96m2

b
(6.20)
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If the star is not entirely composed of 4He, from eq. 6.14, the energy generation will scale

as three powers of the mass fraction: X3
α. There are other nuclear fusion channels, but during

helium burning phase, the α-process will be the dominant channel, and so we can safely say

that the true energy generation rate will lie somewhere between the cases of (A,Z) = (12,6) and

(A,Z) = (56,26). The width of this range is in fact relatively small (about a factor of 13), as the

majority of the binding energy of a 56Fe nucleus is lost during 1H fusion. We can see this by

comparing the two rates at t = 0:

Ė(A,Z = 12,6)< Ėtrue < Ė(A,Z = 56,26) =⇒ Ė(A,Z = 12,6)< Ėtrue < 13Ė(A,Z = 12,6)

(6.21)

where we have used ∆E12C = .6 MeV and ∆E56Fe = 1.7 MeV. Using eqs. 5.3 and 6.19, eq.

5.4 can be rewritten in terms of ṅA to give:

A∆EṅAdV
(

1− 2E0

A∆Eµ3
dµ

dNA

)
> Ėloss (6.22)

Combining eqs. 6.19, 5.3, 5.4, and 6.5, and integrating over the entire volume of the star

at the GRI we find that an SMS will unbind if:

A∆EṄA

[
1− mbE0 [3A−4(1+Z)]Tcrit

2M�A∆ET0

]
> Ėloss (6.23)

In order to avoid the EPPI, we must have T8,crit < 6 (see sect. 4.2) which limits the factor

inside the large brackets in eq. 6.23 is greater than 0.98, and can therefore be set to 1. In order to

evaluate ṄA we need to know the triple-α (3× 4He−→ 12C) capture rate, σ. In this dissertation,

the experimental capture rates from [66] were used; which are given per mole, rather than per

particle. Hence we must divide σ by Na
2 (Avogadro’s Number), in order to use the values in

these tables. At early times (ωt ≈ 0), we can integrate eq. 6.19 over an n = 3 polytrope at the
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instability point to find the energy generated via triple-α to be:

Ė =
A∆Eρ3

critr
3
0

192m3
bN2

a

∫
ξ1

0
σ(T )θ9

ξ
2dξ (6.24)

σ is highly sensitive to temperature. A two order of magnitude change in temperature

from about 107 −→ 109 K results in σ ranging from 10−47 −→ 10−10 cc2/mole2/s [66]. In order

to numerically evaluate the integral in eq. 6.24, a continuous function, σ(T ) (recall that T = Tcθ),

can be approximated by interpolating the σ values found in the [66] tables, via a linear scheme in

logσ:

log [σ(Ti ≤ T ≤ Ti+1)] = log(σi)+
log(σi+1)− log(σi)

Ti+1−Ti
(T −Ti) (6.25)

where the ith σ’s and T ’s correspond to entries in the [66] tables.

6.4 Neutrino Emission and Energy Loss

As long as a star in hydrostatic equilibrium is not ejecting or accreting mass, i.e. baryons,

the energy loss rate, Ėloss, is determined via only two mechanisms: photon emission from the

surface and neutrino emission from the interior. The photon luminosity constitutes energy lost

from the surface of the star, and is not relevant to the energy balance inside the star where

thermonuclear reactions are taking place. However, while the star is in a stable regime the photon

luminosity does indicate how much nuclear energy must be generated to support the star against

gravity. Since a SMS is radiation dominated, it will radiate photons at nearly the Eddington

luminosity (eq. 6.26). For a SMS to explode, it must at least produce enough energy to overcome

gravitational forces plus the neutrino loss, that is, Ėnuc > LEdd +Lν.
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LEdd =
4πMmp

σT homYe
(see appendix A.5) (6.26)

Neutrinos, are primarily created in the center of the star, where the temperatures are higher,

as their scattering cross sections are energy dependent. They then free stream their way out of

the star, as they have mean free path of order 104 AU (see appendix A.6.3). Although, in a given

regime, only one neutrino channel may be significant, in general there are numerous neutrino

processes that need to be considered, while accounting for both neutral current (via a Z-Boson

exchange) and charged current (via a W-Boson exchange) channels:

Lpair ≡ Electron-positron annihilation (Pair Neutrino Process):

e−+ e+ −→ ν+ν

Figure 6.3: Pair Neutrino Process

Lphoto ≡ Inelastic electron-photon scattering (Photo-Neutrino Process):

e−+ γ−→ e−+ν+ν

Figure 6.4: Photo-Neutrino Process

Lplasma ≡ Plasmon scattering (Plasma Neutrino Process):
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γ+ plasmon−→ ν+ν

Figure 6.5: Plasma Neutrino Process

Lbrems ≡ Bremsstrahlung between weakly degenerate electrons and baryons (Bremsstrahlung

Neutrino Process):

e−+(A,Z)−→ e−+(A,Z)+ν+ν

Figure 6.6: Bremsstrahlung Neutrino Process
*Note that the bold Z refers to the Z-boson, while the non-bold Z refers to the charge of the

nucleus with atomic number A.
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Lrec ≡ Atomic capture of electrons (Recombination Neutrino Process):

(A,Z)+ e−f ree −→ (A,Z)+ e−bound +ν+ν

Figure 6.7: Recombination Neutrino Process
*Note that the bold Z refers to the Z-boson, while the non-bold Z refers to the charge of the

nucleus with atomic number A.

Calculations of these neutrino loss processes were done using fitting formulas by [67]

(see appendix A.3), which are also used in KEPLER. Fig. 6.8 shows the different neutrino loss

rates for different star masses at instability.
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Figure 6.8: Luminosities of Neutrino Processes at the GRI.
Neutrino luminosities at the GRI (left vertical axis) as a function of stellar mass for various
neutrino processes. Critical densities and temperatures at the GRI are on the right vertical axis.
All neutrino processes are determined using the fits from [67] (also used in KEPLER). At lower
temperatures, the photo-neutrino process (in red) accounts for most of the neutrino losses, while
at higher temperatures (T8>̃4), the pair-neutrino process (in blue) dominates. Coincidentally,
below this temperatures, neutrino losses are also small compared to photon emissions (see fig.
6.9), and hence only the pair-neutrinos need to be considered. All other neutrino processes can be
neglected in energy calculations.

The lower mass limit on SMS’s, as defined by undergoing the GRI rather than EPPI, can

be well approximated by where Lpair becomes the dominant neutrino process. This will occur

around M4 < 2. Above this mass the dominant neutrino process is the photo-neutrino process

(see fig. 6.8).

Neutrinos created through nuclear fusion/weak processes must also be accounted for, e.g.,

proton-proton chain. However in the processes being considered, weak interactions as a result of
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fusing α’s don’t come into play until A > 40, at which point β-decay will convert some protons to

neutrons in some unstable nuclei. Without β-decay, building up a heavier nuclei via the α-process,

would lead to all nuclei having Z = A
2 . Therefore, ∆E for the creation of elements with A > 40

will be slightly over estimated since a fraction of that energy produced will be lost to the neutrinos

produced though β-decay.

Combining eqs. 6.24, 6.23, Lν, LEdd , and integrating over an n = 3 polytrope, the

condition for an SMS to support itself via :

A∆Eρ3
crit

192m3
bN2

a
·4πr3

0 ·
∫

ξ1

0
σ(T )θ9

ξ
2dξ > 4πr3

0 ·
∫

ξ1

0
∑

i
Qi(T )ξ2dξ+LEdd (6.27)

or, in units of
[

ergs
sg

]
,

9.0×1058
(

A∆E
MeV

)
M−6

4

∫
ξ1

0
σ(T )θ9

ξ
2dξ > 1.2×1033M9/2

4 ·
∫

ξ1

0
∑

i
Qi(T )ξ2dξ + 2.5×1042M4

(6.28)

where Qi’s are in units of
[ergs

cc·s
]
, µ has been set to 4

3 , Ye =
1
2 , and the values of σ, in units

of
[

cc2

mole2·s

]
are those found in [66], interpolated via eq. 6.25.
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Figure 6.9: Nuclear Energy Generation and Neutrino Luminosity at the GRI.
Various energy generation/loss rates at the GRI (left vertical axis) as a function of stellar mass.
ĖC is the energy generation rate of a star only fusing 3α−→ 12C. ĖFe is the energy generation
rate of a star fusing 4He straight to 56Fe. The bump around M4 = 7 is a numerical artifact of the
interpolation scheme. Both assume µ = 4

3 (mass fraction of 4He = 1). Neutrino luminosities are
calculated using the fits in [67]. The energy generation rate required to support the star against
gravity is LEdd +Lν (green + black) . A SMS with mass <̃ 4M4, will produce enough energy
through triple-α fusion to support the star against gravity. If the star is to explode, it must reach
instability before this point, while still being hot enough to fuse 4He (T8>̃1−→M4<̃9, see fig.
8.11), and while still containing enough 1H for the star to be primarily supported by the CNO
process. Note that EPPI boundary is a ‘soft’ boundary, and that the Lν, pair ≈ LEdd is a very
good proxy for the location of the EPPI. If temperatures exceed T8 ≈ 5, the star won’t be able to
explode, as most of the energy generated will be lost in neutrinos.

From fig. 6.9, we see that a star with mass above M4 ≈ 3.5 will not produce enough

energy via the triple-α process to support itself as it reaches the reaches the GRI. Above this mass,

for a star to be in equilibrium, it must have some 1H fusing to 4He either partially or entirely
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providing the pressure support against gravity if it is to be in hydrostatic equilibrium. Although

a SMS will initially fuse 1H to 4He via the proton proton chain, by the time it gets close to the

GRI it will be fusing 1H via the CNO cycle, as only a small amount of heavier elements need to

be produced to switch from the proton proton chain to the CNO cycle [55]. The CNO cycle has

multiple channels for fusing 1H, which are composition and temperature dependent. As a result,

computing the energy output analytically is difficult. However, for temperatures below T8 ≈ 2

(cold CNO), the CN portion of the dominant loop , will account for most of the energy output,

and the emissivity can be approximated [55] as:

7.4×1024 ·
ρX2

1H

T 2/3
8

· e−32.814/T 1/3
8 ergs/g/s (6.29)

If the star has been powered by the CNO cycle for over ∼ 104 years, then eq. 6.29

will be within be within ∼ 10% of the total CNO emissivity [55]. Hence eq. 6.29 is a decent

approximation for the cold CNO emissivity near the instability point.

For T8 > 2, the hot CNO cycle will dominate. Coincidentally, for a SMS with M4 ≈ 5, the

critical temperature will be about 2T8, right where hot and cold CNO channels are about equal.

Hence, around this temperature, the total emissivity will be approximately 2× eq. 6.29. Fig. 6.10

compares the emissivities of CNO vs triple-α at the GRI; where one can see that around T8 ≈ 2,

even a small amount of hydrogen can result in super-Eddington emissivities.
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Figure 6.10: Triple-α vs. CNO at the GRI.
Emissivities vs. central temperature at the GRI assuming a 4He mass fraction of 1. This
assumption will not hold for masses less than ≈ 3M4 (see fig. 8.11). The CNO emissivity curves
are only approximate, and will vary based on temperature, density, and composition. A SMS with
T8crit<̃3 (M4>̃4) will require X1H>̃10−6 to produce enough energy via CNO to support itself
(Eddington). Note that for T8 ≈ 1−→ 4, the triple-α emissivity has a very strong temperature
dependence.
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Chapter 7

Collapsing Super-Massive Stars

In order to determine the consequences of reaching the GRI, let us consider three regimes:

low temperature, intermediate temperature, and high temperature; corresponding to high mass,

intermediate mass, and low mass, respectively. The low temperature regime will corresponds to a

Tcrit below which triple-α emissivity is negligible. From fig. 6.10 this corresponds to T8,crit<̃1, or

M4>̃9. The intermediate regime will correspond to where triple-α is highly temperature sensitive,

but less than Eddington: 1<̃T8,crit<̃3, or 3<̃M4<̃9. And the high temperature regime where

the star burns triple-α stably at a relatively weaker temperature dependence; corresponding to

T8,crit>̃3 or M4<̃3.

If the star is in the low temperature regime when it goes unstable, energy output will be

dominated by CNO burning, and far from igniting significant triple-α. As it collapses, the increase

in temperature will have little effect on the energy output, as the CNO cycle has a relatively weak

temperature dependence. By the time the temperature has increased enough to ramp up triple-α

burning, it will have picked up too much in-falling kinetic energy to overturn the collapse, and

will collapse to a black hole.

If the star is in the high temperature regime, it will reach stable triple-α burning prior

to the GRI. Consequently, it will fuse 4He at a more or less fixed temperature until it begins to
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run out of fuel, and only then will it continue to contract and heat up. As a result, by the time it

reaches the GRI, it will be depleted of 4He (the fusion rate is proportional to X3
α). The star will

already be struggling just to stay in equilibrium when it reaches the GRI, and as it collapses not

only will the triple-α emissivity be weakened by the lack of fuel, but it will also be in a regime

of comparably weaker temperature dependence. This will be further compounded by the fact

that hitting the GRI at such high temperatures, and further increasing the temperature as the star

contracts, will significantly increase the neutrino emissions, as the production of electron positron

pairs ramps up. Having run out of 4He fuel, the next stage in nuclear fusion is carbon fusion,

which will become significant only after reaching the EPPI, and so the star will collapse to a black

hole.

If the star is in the intermediate regime, then despite being essentially entirely made

up of 4He, it will be entirely or mostly supported by a small amount of hydrogen fusion.

A mass fraction of X1H>̃10−6 is enough support the star via CNO burning (see fig. 6.10).

Furthermore, at these temperatures triple-α emissivity will be highly temperature dependent(
∼ T 40 at T8 = 1 and ∼ T 18 at T8 = 2

)
[55]. In this case, a small increase in temperature will

quickly drive triple-α up to Eddington or super-Eddington emissions. All of this energy will go

into unbinding the star, as on the one hand, CNO burning will already be producing enough energy

to support the star, and on the other hand, neutrino emissions have not become important yet. As

long as the initial temperature at collapse, is not too low, then the increased triple-α burning may

kick in before the star has picked up too much in-falling kinetic energy, and it may be possible for

the star to generate more nuclear energy than in-falling kinetic energy, without neutrino losses,

and explode. The estimate on this narrow window is likely too wide, as at T8 = 1 the triple-α rate

is still very low; and at T8 = 3 the rate is already approaching Eddington and most of the energy is

going into maintaining equilibrium. If this window exists, the exact width can be better estimated

via simulations. Note that the explosion found by [44] was for a M4 = 5.55, T8,crit = 1.7 star;

which is in the middle of this window.
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As the star collapses, it will accrue a debt of in-falling kinetic energy which it will have to

be overcome, if it is to unbind, the new energy balance equation will be:

∆Enuc > K.E.+∆Eloss (7.1)

Having discovered a mechanism that may explain the narrow window of exploding SMS’s

numerous simulations were run using KEPLER to verify if the results of [44] could be replicated.
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Chapter 8

KEPLER Simulations

8.1 Overview of KEPLER

KEPLER is a 1-D, implicit, Lagrangian, hydrodynamics stellar evolution code written

in Fortran [68]. Despite being a Newtonian code, it has the ability to add 1st order general

relativistic corrections to the kinematics and energy calculations [44, 68]. Because it can only

deal with small corrections to Newtonian physics, these corrections can only be considered

accurate for small metric deviations, 2m
r << 1 and small velocities, U << 1. As 2m

r −→ 1 and/or

U −→ 1, the results of the code cannot be considered valid. A priori this is not a problem for the

purposes of this dissertation, as SMS’s are entirely Newtonian in structure (see chapt. 3), and

the post-Newtonian correction is only important to determine the instability point. Details of the

post-Newtonian correction are discussed in sect. 8.7.

Despite these limitations, KEPLER has the advantage of having a highly detailed network

of nuclear processes, both weak and strong, including neutrino losses [44, 68, 69]. This is

important, because as was found in chapt. 6, the existence of a narrow window in which a SMS

may explode is largely dependent on comparing the nuclear energy generation to the neutrino

energy losses. Contributions from electron-positron pair production as well as relativistic and
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non-relativistic electrons and positrons, both degenerate and non-degenerate, are also computed

by KEPLER [44, 68, 70].

Stars in KEPLER are divided up into a grid of mass zones. Each zone has a list of

associated properties such as radius, temperature, density, etc. The equations of motion for

the zone velocity, U = dr
dt , and the zone internal energy per gram, u, are solved in co-moving

coordinates [68] and have the form:

dU
dt

=−4πr2 ∂P
∂m
− m

r2 +
4π

r
∂Q
∂m

(8.1)

du
dt

=−4πP
∂

∂m

(
Ur2)+4πQ

∂

∂m

(
U
r

)
− ∂L

∂m
+ ε (8.2)

where r = the zone radius, P = the zone pressure, m = the enclosed mass (independent

variable), Q = zone dynamic viscosity, L = the luminosity through the zone, and ε = the zone

energy emissivity (energy generation rate per gram). Eqs. 8.1 and 8.2 are solved implicitly by

linearizing them in terms of the density, temperature, and luminosity and solving them over

incremental time steps, assuming a fixed composition [68]. Changes in composition due to

convective mixing and nuclear processes are then solved explicitly using the set of converged

quantities [68]. As time evolves, physical processes and kinematics are calculated zone by zone,

taking into consideration quantities that flow across zones. Zones can be created and added based

on criteria involving thresholds in changes across a given zone or a pair of zones, e.g. if the

difference in density across a zone is very large, the zone may be broken up into two zones,

while keeping track of conserved quantities. KEPLER also has a range of artificial schemes to

mimic processes the require higher spatial dimensions, i.e. rotation, torques, etc. The full nuclear

network (ISEnet) was turned on for all simulations.

Initially runs were done to see if the results found by [44] could be reproduced, i.e. the

existence of a narrow window around 5.55M4 where a SMS would explode. A number of runs
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were done, with masses ranging from 1M4 −→ 10M4. Runs began with primordial nuclear

abundances, i.e. zero metallicity above 4He. An example of a start file is found in A.9. The

relevant parameters that were varied were:

Stellar mass

Temperatures and densities in initial grid

Initial nuclear abundances

Number of initial zones

Artificial rotation: ‘rigidl’

Strength of the post-Newtonian correction (see eq. 8.8): p358

Nuclear burning networks: ‘Approx’, ‘ISE’, ‘NSE’, ‘ISENET’

Time-steps and backups: p6, p7, p8, p9, p55

Rezoning and convergence precisions: p11, p12, p78, p79, p80, p81, p83, p84

Surface boundary pressure: p69

For details on the exact functions of these parameters see [71].

8.2 KEPLER and the Polytrope Profile

The first thing that needed to be verified was whether the polytrope model accurately

describes stars in KEPLER. After all, the model is a simplified analytical approximation, and the

true profile is determined numerically by KEPLER. While KEPLER initially assumes a polytrope

profile, it is not constrained to maintaining it as time evolves. It was also important to verify if

the predicted location of the instability point (see chapt. 3) agreed with the results from KEPLER.

For the latter let us define, as a function of enclosed mass, m:
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γ(m)≡ Γ̃1(m)− 4
3
−δ ·

(
2m
r

)
(8.3)

(the −2m
r term may or may not be included). δ is a structure dependent term of order

unity. In the polytrope model it will vary with radial distance, being equal to 1.124 at the surface

of the star, with a max value of 1.935 inside the star (see chapt. 3). As the polytrope is already an

approximation, small changes in the value of δ are likely negligible; so in calculating γ(m), δ has

either been set to 1, when including the GRI, or 0 when ignoring it.

The star is predicted to go unstable when γ < 0, which should correspond to ρc < ρcrit ;

however these two conditions were not met simultaneously in the simulations. The three rows in

fig. 8.1, depict an example comparing the polytrope density, temperature, and pressure profiles

with those generated by KEPLER at three different stages in the star’s evolution: At the start of

the simulation, when γ first drops below 0, and some time after collapse has commenced. The

polytrope profile matches the KEPLER profiles very well, except in the very outer regions of

the star. This is mostly due to the fact that, while the polytrope model has a clearly defined

surface for the star (when θ = 0), in actuality, as well as in KEPLER, stars do not have a clearly

defined surface. This lack of precise stellar radius, is the cause of some discrepancies between the

polytrope model and the simulations, as well as some computational challenges for KEPLER (see

sect. 8.3 for more details). This discrepancy is further compounded by the constant β throughout

the star assumption breaking down in the outer envelope of the star; which is predicted to be shed

with time. As a result, the stellar radius computed by KEPLER tends to be about 10 times larger

than that of the polytrope model (although only a very small fraction of the stellar mass is in this

very low density region). The temperature profile has the largest discrepancy, because it is also

dependent on the mean particle mass, µ, which does change a bit with radius as time evolves in

KEPLER, but is also assumed to be constant in the polytrope model.

The majority of the mass, and consequently most important physical processes, however,

are concentrated in the inner regions of the star, where KEPLER agrees very well with the
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polytrope profile. Despite this general agreement, it is expected that there will be discrepancies

between observed and predicted quantities that depend on stellar radius, e.g. the point in the

star’s evolution where γ = 0, i.e where ρc = ρcrit . As a consequence one can see in fig. 8.1 that

although the instability is clearly dominated by the GRI, at the surface of the star, the effects of

the GRI disappear due to the much larger stellar radius, resulting in 2M
R ≈ 0).

Figure 8.1: Comparison of the Polytrope Model with KEPLER.
Comparison of density, temperature and pressure profiles in KEPLER with the polytrope profile
at three different times: initially, at the instability point (γ = 0), and after collapse has taken place.
The polytrope model matches KEPLER closely except in the outer regions of the star, as the
stellar radius is over twice as large as predicted by the polytrope model. This discrepancy in the
envelope of the star was expected (see sect. 2.1, especially as time evolved. After collapse, the
star goes out of hydrostatic equilibrium, deviating from the polytrope profile.
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Figure 8.2: Determination of the Location of the GRI
Comparison of γ at three different times: initially, at instability (γ = 0), and after collapse has
taken place. The blue curve includes GR effects, while the green curve doesn’t. Due to the
extended radius of the star in KEPLER, if γ were calculated only considering the metric deviation
at the star’s surface, the polytrope model would fail to accurately predict the location of the GRI.

8.3 Stellar Radius Issues

The polytrope model predicts the GRI to occur when Γ̃1 < 1.124
(2M

R

)
(see chapt. 3).

However, as can be seen from fig. 8.1, the polytrope stellar radius is considerably smaller than

the stellar radius determined by KEPLER. If the dominant cause of instability is the GRI, than

large differences in R will cause large differences in the expected ρcrit . As stated in sect. 8.2, the

disagreement in stellar radius is caused by the the polytrope profile having a definite radius where

ρ = 0. In reality though, there is no such radius, and in practice, stellar surfaces are generally

defined as the radius of the photosphere, via the Stefan-Boltzmann Law. In KEPLER, the radius

is also defined by ρ = 0; but zero density is reached more or less asymptotically, unlike in the

polytrope profile. On top of the large disagreement in stellar radius, because of the asymptotic

nature of the profile, as the density gets very low, numerical precision requirements become more

difficult meet. In fact, when the density becomes very low, the very outer regions of the star
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will tend to drift out to infinity (particularly for radiation dominated stars), and KEPLER will

get caught attempting to find numerical convergence with increasingly smaller iteration steps

over increasingly larger radii, and crash (fail to converge within allowable iterations). KEPLER’s

solution to this is a parameter (p69) that adds a small amount of pressure where ρ = 0, and in

essence create a little surface tension, to keep the very outer regions of the star bound. One must

be careful, however, as cranking this parameter too high will do PdV work on the star, possibly

even causing it to collapse; while having it to low may cause KEPLER to crash.

As a result of the much larger stellar radius in KEPLER, 2M
R −→ 0, and the criteria for

the GRI found in chapt. 3 is not met until well after the collapse. This brought up the problem of

determining the criteria for instability in KEPLER. Initially it was guessed that a better measure

of instability was to look at the condition:

γ(r) = Γ̃1(r)−
4
3
−1.124

(
2m(r)

r

)
<= 0 (8.4)

It was guessed that the star would go unstable once γ(r)<= 0 anywhere in the star, rather

than at the surface of the star. However, given that for a n = 3 polytrope profile the maximum

metric deviation is always inside the star, i.e.
[

2m(r)
r

]
max
6= 2M

R (see chapt. 3 and fig. 3.1), if the

criteria for instability were in fact γ(r)<= 0, anywhere inside the star, rather than γ(R)<= 0,

this would have been concluded via the theoretical derivation in the first place. Hence, this

guess was made with some skepticism, and proved to not predict the instability point accurately.

Instead, accounting for the relationship between the maximum metric deviation and the metric

deviation at the surface of the star in the polytrope profile,
[

2m(r)
r

]
max

= 1.935
(2M

R

)
(see chapt.

3), it was found that in practice, a better method for determining the instability point was to use

1
1.935 ·

[
2m(r)

r

]
max

instead of 2M
R in eq. 8.4, shown in the bottom row of fig. 8.1. This eliminated

effects due to large deviations from the polytrope profile in the outer regions of the star. However,

it also ignored effects due to changes in mean particle mass in the outer regions of the star.

Consequentially, small differences between the predicted critical density, temperature, and energy
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using xcrit =
(

1̃
µ

)
and εcrit =−

(
1̃
µ

)2
, respectively (see chapt. 5) were still expected, as the value

of
(

1̃
µ

)
was only integrated to the point of maximum metric deviation. This is a small effect, as

the outer regions carry progressively lower weights.

8.4 Simulation Results

Various KEPLER simulations were run for masses of M4 =1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 5.55,

6.0, 7.0, and 10.0. The results, overlaid on the theoretical dimensionless energy (ε vs. x) curves

from fig. 5.1 are seen in are seen in figs. 8.3, 8.4, and 8.5. Initially, all masses were given the

same start file (A.9), with the initial mass being the only difference. In all cases the star collapsed

to a black hole upon going unstable (KEPLER cannot actually track a star down to a blackhole,

as it is not a relativistic code, but the result is inferred as infall velocities reached the speed of

light). This result disagrees with the findings of [44]. The conditions at the instability point for

this set of simulations are summarized in the table in fig. 8.11. It should be noted, that the values

in fig. 8.11 are taken from the first output file in which the star has passed the instability point.

In actuality the star reached instability some time earlier, and hence the values in the table are

likely a bit higher than they were at the true instability point. For masses of 2.0 M4 and above, the

effects of pair production were negligible, and only the GRI was important, which is in agreement

with fig. 4.3. Figs. 8.6 - 8.10 show the elemental abundance profile at instability.
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Figure 8.3: Results from KEPLER Simulations (1).
M4 = 1−3. KEPLER simulation results overlaying the polytrope model dimensionless binding
energy (ε = E/E0) vs. dimensionless central temperature and density (x = Tc/TM = (ρc/ρM)1/3),
as defined in chapt. 5. Simulations for all masses resulted in a collapse to a black hole. Despite
the agreement of the density and temperature profiles of the polytrope model with KEPLER (fig.
8.1), the binding energies in KEPLER disagree with those predicted by the polytrope model, as
all simulations should have started on the ‘primordial abundances’ curve (cyan). The location
of the instability point is predicted by the polytrope model to lie along the dotted magenta line.
The solid portions of the parabolic theoretical equilibrium ε curves are stable regimes, while
the dotted portions are unstable. The green and black lines are x(Tc) and x(ρc) respectively for
the KEPLER runs. Their divergence from one another indicates a departure from hydrostatic
equilibrium.
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Figure 8.4: Results from KEPLER Simulations (2).
M4 = 4−6. The 4M4 simulation (top left) had significant numerical convergence issues; requiring
on average about 100 times as many iterations to find convergence as simulations for different
stellar masses. After reaching the GRI, the simulation stalled, reducing to time steps of less than
1 second (the life time of the star is about 1M years). Despite not being evident in this figure, it
nevertheless collapsed, as infall velocities reached of order 1% the speed of light. See fig. 8.3 for
a full figure description.
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Figure 8.5: Results from KEPLER Simulations (3).
M4 = 7 and 10. Expected binding energies for these larger mass stars differed significantly from
the KEPLER results, as the started well below the primordial abundance equilibrium curve (cyan).
See fig. 8.3 for a full figure description.
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Figure 8.6: Elemental Abundances at Instability (1).
M4 = 1 and 1.5. Elemental abundances by mass fraction, X , (left vertical axis) vs. enclosed mass
at the instability point. Corresponding zone temperature and density profiles are plotted on the
right vertical axis.
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Figure 8.7: Elemental Abundances at Instability (2).
M4 = 2 and 3. See fig. 8.6 for a full figure description.
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Figure 8.8: Elemental Abundances at Instability (3).
M4 = 4 and 5. See fig. 8.6 for a full figure description.
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Figure 8.9: Elemental Abundances at Instability (4).
M4 = 5.55 and 6. See fig. 8.6 for a full figure description.
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Figure 8.10: Elemental Abundances at Instability (5).
M4 = 7 and 10. See fig. 8.6 for a full figure description.
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Figure 8.11: Location of Instability in KEPLER Simulations.
Expected and observed quantities at the instability point for various stellar masses. Expected
values are calculated using the, µ’s (mean particle mass) found by KEPLER at the critical
point. Effects of the EPPI are estimated using the low temperature electron-positron creation
approximation (eq. 4.14). Observed (KEPLER) quantities are taken from the first output file with
γ < 0 (see eq. 8.4 and sect. 8.3). Hence the observed values are slightly more elevated than right
at the instability point, when γ = 0.
∗The large discrepancies between expected and KEPLER values for the 1M4 case, are likely due
to the low temperature pair creation approximation no longer being accurate.
∗∗The 4M4 simulation had convergence issues, and is likely not reliable. This may explain the
large discrepancy between expected and KEPLER results for ρcrit .

As seen in fig. 8.11, that all masses collapsed to a black hole. As a result, various

modifications to the 5.55M4 start file were made in an attempt to make the SMS explode. It was
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found that a 5.55M4 could be made to explode, but only if the number of zones was increased

(form 1080 to 1200) and the convergence precisions were slightly lowered (fig. 8.12). The star

did not explode if only one of these was changed. This suggested that the explosion was possibly

not real, but rather due to numerical inaccuracies in energy conservation and zoning. Stars with

artificial rotation were also simulated, but this did not result in any significant differences in the

outcome, and all simulations resulted in collapse rather than explosion. This was true even when

the rotation was set high enough so that centrifugal forces exceed gravitation, strongly suggesting

that the 1-D rotational ‘fudge’ in KEPLER (parameter ‘rigidl’) is only reliable for low angular

momentum ( L2

MR2 << M2

R ).

Despite the explosion being likely due to numerics, it does provide important information

regarding the yield of heavy elements that would have been injected into a universe of primordial

elemental abundance, were such explosion to have occurred. An explosion of this type would

look considerably different from other forms of exploding stars/supernovae. Most notably,

from the nucleosynthetic signature. Almost no elements above 28Si were synthesized, as the

nucleosynthesis was drastically halted at 28Si. There were no Fe peak or r-process elements.

Apart from 4He (the bulk of the material), the most abundant metal in the yield was 24Mg. There

was also no carbon burning, as temperatures never reached much higher than T9 of 1. This is

considerably different from the yields of, say, a type II supernova [72–74]or a pair instability

supernovae [45, 46, 75, 76], which both have r-process elements as well as containing large

amounts of first peak metals e.g. Fe, Co, Ni . Furthermore, these supernova contain little 4He, as

the progenitor cores are largely C and O [45, 46, 72–76]. The yield was consistent with the yield

resulting from the exploding SMS in [44]. A table of the yield abundances is found in fig. 8.13.
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Figure 8.12: Numerical Effects in KEPLER.
KEPLER simulation results when adjusting numerical factors: number of zones and numerical
convergence tolerance. Higher precision tolerance: < 10−7. Low precision tolerance: < 10−6.
All four simulations are for a 5.55M4 SMS. Explosion only occurred with both increased number
of zones and reduced numerical precisions (bottom right).
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Figure 8.13: Elemental Yield form Exploding SMS
Elemental yield from a 5.55M4 exploding super-massive star, simulated in KEPLER

After numerous trials with varying parameters, it was not possible to reproduce the results

found by [44]. That is, it was not possible to simulate a star of order ∼ 5M4 that resulted in

an explosion after reaching the GRI, unless numerical tolerances in energy conservation were

relaxed, combined with increasing the number of zones. This strongly suggest that an explosion

is a result of numerical artifacts, rather than real physical processes. It also points to these stars

being on a knife edge between collapsing and exploding, as small numerical inaccuracies can tip

the scale from one outcome to the other. Furthermore, KEPLER struggled to find convergence

near the instability point, and would often exceed the number of numerical iterations allowed

in the setup, and terminate; further suggesting numerical difficulties around the GRI. It remains

possible that there were relevant differences in parameters and processes used by [44], that were

overlooked in the present simulations. Unfortunately, [44] did not give a start file or a sufficiently

detailed description of their initial setup, to confidently compare to their simulations.

Nevertheless, having derived a possible theoretical mechanism for an explosion in the

same mass range, as [44], it is at least possible to compare the physics in KEPLER to the theory.

Investigating the energetics on KEPLER revealed a number of issues involving energy calcula-
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tions, most notably in the calculation of the binding energy of the star.

8.5 Triple-α Networks in KEPLER

KEPLER has multiple methods for calculating triple-α rates [71]. The main subroutine

is based on experimental rates from [66] (also used in this dissertation), plus updates from [77].

However, the subroutine combines the experimental rates with a number of possible theoretical

rates and fits from various papers [71, 78–80], depending the value of the corresponding parameter

set in the start file (p 484). This parameter can also be used to change the overall strengths of

the rates by some factor in the default network. As a result, the explosion found by [44] may be

due to them having used a different triple-α network, or modifying the default strengths. In this

dissertation, only the default network was used.

8.6 Disagreement of the Total Binding Energy

When comparing the total binding energies calculated by KEPLER, it was found they

that did not agree with the theoretical relationship between binding energy and central density or

temperature predicted by the polytrope model in chapt. 3. In figs. 8.3 - 8.5, all SMS’s should

have started somewhere along the solid cyan curve (µ = primordial abundances). In some cases

the binding energy was below the lowest allowed equilibrium binding energy of −E0
µ2 (vertex

of curve for a given µ). This is despite a good agreement with all other quantities at the GRI

(µ, Tcrit , ρcrit), as well as with the polytrope profile throughout the star’s evolution.

KEPLER computes the total energy in two different ways: by summing up the thermal,

gravitational, and kinetic energy of each zone, and by adding/subtracting the energy created/lost
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through thermonuclear and neutrino processes in each zone [11, 68, 71]. These two energies do

not generally agree in KEPLER (although they should in theory), and also progressively diverge

as time evolves. The magnitude of these differences are small (around a factor of 2-5), and in

most circumstances are irrelevant to the results of the simulation. However, in this case, when

dealing with a star that is not only teetering on instability, but who’s energy generation rates

are on a knife edge between being sufficient to cause an explosion versus collapse; even small

inaccuracies in the energy budget are relevant to the fate of the star.

The simplest explanation for these discrepancies is that the star cannot in fact be modeled

by a n = 3 polytrope. Comparing the density/temperature profiles of KEPLER runs to the poly-

trope model, however, reveals a very close match between the two (fig. 8.1). Only in the very

outer regions of the star deviate from the model. This small amount of mass in the outer regions

of the star is not important, as the bulk of the mass and important physics are concentrated in the

core, as already discussed in sect. 8.3

8.7 Discrepancies in the General Relativistic Correction

As mentioned, KEPLER has a parameter that includes a general relativistic correc-

tion to the kinematics equations [11, 44, 68, 71]. The correction is adapted from the Tolman-

Oppenheimer-Volkoff (TOV) equation (eq. 8.5) [81, 82], which is the general relativistic analog

in a spherically symmetric geometry (while assuming a perfect fluid), to the Newtonian condition

for hydrostatic equilibrium. While the modifications in KEPLER are simply first order correction

to Newtonian gravity, the TOV equation (8.5) is fully general relativistic.

dP(r)
dr

=−m(r)ρ(r)
r2 −→ dP(r)

dr
=−m(r)ρ(r)

r2 ·


(

1+ P(r)
ρ(r)

)(
1+ 3P(r)

ρ(r)

)
1− 2m(r)

r

 (8.5)
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where ρ= the total energy density, excluding curvature, i.e ρ= ρx(1+u). If this parameter

is flagged, then the KEPLER multiplies the gravitational acceleration and gravitational potential

energy by a simplified version of the factor in eq. 8.5:

∆v =−m(r)
r2 ∆t −→ ∆v =−m(r)

r2 ∆t · (strength factor) ·


(

1+ P(r)
ρx(r)

+ 3P(r)
ρx(r)

)
1− 2m(r)

r

 (8.6)

∆Egrav =−
m(r)

r
∆m−→ ∆Egrav =

m(r)
r

∆m · (strength factor) ·


(

1+ P(r)
ρx(r)

+ 3P(r)
ρx(r)

)
1− 2m(r)

r

 (8.7)

where the ’strength factor’ is a float that can be adjusted to increase or decrease the

magnitude of the gravitational force (default is 1).

For radiation dominated matter, the internal energy per gram is u = 3P
ρx

; which can be

substituted into eq. 8.7 to get:

∆EKEPLER = ∑

m(r)
r

∆m · (strength factor) ·


(

1+ u
r +

4πρxur3

3m(r)

)
1− 2m(r)

r

 (8.8)

which, in the differential limit is not equal (but close) to ∆EGR (eq. A.9).

It should also be noted that when considering relativistic effects, there is a distinction

between rest mass and total mass energy that doesn’t exist in a purely Newtonian regime. For

the most part, KEPLER deals with this by treating all mass quantities as rest-mass. But not in

all cases. The acceleration due to gravity (eq. 8.6), should depend on total mass energy, not

just rest-mass. As a result the accelerations due to gravity computed by KEPLER when the

general relativistic correction is flagged are slightly larger than they should be, by a factor of
mx(r)
m(r) ≈ 1− Ebind(r)

mx(r)
(recall Ebind < 0). Again, these are small discrepancies which are not likely

to be relevant in most cases, but may matter in special situations, where the fate of the star is

sensitive to the precise value of the energy.
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Finally, this discussion of discrepancies in energy calculations may in fact be a moot

point. Before worrying about the proper post newtonian expansion, we must determine what is

the correct definition of energy in GR (if there even exist such a thing). In GR, the definition of

energy is not clear. Conserved quantities in GR require the existence of a symmetry, which may

or may not have a Newtonian analog. Furthermore, Newtonian quantities may have multiple GR

analogs, resulting in an ambiguity in how they are to be extended into GR. A deeper look into

this subject is found in appendix A.2.
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Chapter 9

A Final Look at In-Falling Energetics

Having failed to produce an exploding SMS around helium ignition, a final comparison of

the in-falling energetics to the increased nuclear fusion as the temperature and density rise, can be

done to get an idea if overcoming in-falling kinetic energy via increased triple-α is a possibility.

To do so we can make a toy model of the collapse, by assuming that due to there being some

pressure resisting the collapse, the star collapses at some fraction, f , of the free-fall rate, i.e. the

net acceleration is: a =− f · M
R2 , where f ranges from 0−1. This yields:

Ekin ≈ f ·
(

M2

R
− M2

Rcrit

)
(9.1)

Using eqs. 2.8 and 2.20, and ignoring deviations from the polytrope profile during the

collapse, we find:

Ekin ≈ f ·1054M3/2
4 · (T8−T8,crit) ergs (9.2)

Fig. 9.1 shows the ratio of the energy loss (in-falling kinetic energy + neutrino losses

+ change in binding energy) to the nuclear energy gain generated by triple-α + CNO. The star

initially picks up a debt of in-falling kinetic energy; but as the temperature rises and the energy
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produced ramps up, it rapidly catches up until the temperature has risen enough for pair-neutrino

production to take over. At this point, a significant fraction the nuclear energy produced is dumped

into the neutrinos and lost, and a black hole will eventually form. The ratio of the losses to the

gains reaches a minimum somewhere around T9 ≈ 1.5, before neutrino losses take over. If the

star collapses in complete free-fall, the net energy produced maxes out at about ∼ 1% of the net

energy loss. However, if the star collapses at less than∼ 1% the free-fall rate, there will be a point

where the net energy of the star is positive, and it will unbind, likely via an explosion. It should

be noted that there are other nuclear fusion channels, as the nuclear matter moves towards NSE,

that will also dump energy into the star. They are not accounted for in this simplified calculation,

as they are secondary energy sources, an would only be relevant to the energy budget if the star

could approach sufficient energy levels to explode via triple-α alone.

Figure 9.1: Energy Loss/Gain During Collapse.
Comparison of net energy lost and gained throughout the entire star for two cases: free-fall
collapse (left) and 1% of free-fall collapse. For masses around ∼ 4M4−7M4, if the net in-falling
accelerations are less than 1% free-fall, the net energy gained through fusion may be enough to
unbind the star, prior to neutrino losses taking over.

Fig. 9.1 should be interpreted as a coarse grained and qualitative result, as it only looks at

the net energy produced/lost of the star as a whole, and does not consider regional effects inside
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the star. In actuality, the nuclear energy produced would be concentrated at the star’s center. If it

were to rapidly expand, it would shock into in-falling material from the outer regions of the star.

In order to truly get the energetics correct, a precise accounting of the energetics and kinematics

must be done, as these stars are on a knife edge between exploding and collapsing. This would

require using a stellar simulation code with a sophisticated nuclear network, such as KEPLER. A

Newtonian code with and accurate post-Newtonian correction should be good enough to calculate

the energies, as the kinematics are entirely Newtonian, with the exception of the location of the

GRI. However, hydrodynamic calculations in 1-D, or even 2-D, do not necessarily translate to

3-D; and hence in order to have confidence in the results, a 3-D code is recommended.
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Chapter 10

Conclusion

The objective of this dissertation was to investigate the effects of changes in the mean

particle mass on the GRI, and determine if there is a theoretical basis for the existence of a narrow

mass range of SMS’s around 5M4 to explode as a result of reaching the GRI at the onset triple-α

fusion. Additionally, it was a secondary objective to test, using the KEPLER stellar evolution

code, if such an explosion, as found by [44], could be reproduced.

Along the way, arose the problem of defining the binding energy of a star in GR. It was

found that the general relativistic definition of a star’s binding energy is ambiguous. It was found

that integrating the time-component of the 4-momentum of each differential rest-mass over the

entire star, is the closest analog to the Newtonian energy. However, this approach failed when

using the TOV equation, possibly due to the perfect fluid assumption of the stress-energy tensor

not holding for stellar matter. The conventional definition of taking a time slice and integrating the

rest-mass over a curved manifold is equivalent, but only for a spherically symmetric space-time

geometry.

It was not possible to produce a SMS that resulted in an explosion, except when adjusting

the number of mass zones and lowering the numerical precision. This strongly suggests that the

results in [44] are due to numerical factors. However, it also points to the fact that these stars are
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on a knife edge regime between exploding and collapsing, as small numerical changes can have

significant effects on the outcome. It was also found that while the polytrope profile accurately

matches the KEPLER results, the predicted corresponding binding energies of the stars do not.

While unimportant in most cases, in a regime where outcomes are so sensitive to the energy, these

discrepancies are relevant, and an accurate accounting of the energetics is paramount. It is also

possible that differences between the current results and those of [44], may also have been due to

relevant differences in the processes flagged in KEPLER.

Despite failing to reproduce the explosion in [44], it was found, on a theoretical basis,

that the most likely regime for an explosion, was for a star to go unstable as it transitioned form

CNO to -triple-α, i.e. while leaving the main sequence. In this regime the triple-α emissivity is

highly temperature sensitive, but starts off relatively low. As a result, if the star goes unstable

at too low a temperate (higher mass), even a very large increase in triple-α emissivity may not

amount to large net amount of energy, and by the time the energy generation is significant, the

debt of in-falling kinetic energy is large. The result is that it will take longer for the energy

generated to turn the collapse around, and by that time the temperature will be sufficiently high

for pair-neutrinos to take over, and the star will collapse to a black hole. On the other hand, if

the initial temperature at the GRI is a bit higher (lower mass), the boost in energy may release

enough nuclear energy, combined with remaining CNO burning, to unbind the star before it picks

up too much in-falling kinetic energy, and before losses from pair-neutrinos kick in. At this

point an explosion would be possible, but only if the net in-falling accelerations are less than

about 1% free-fall. However, if the star reaches stable helium burning before the GRI, it will

stop contracting until it starts running out helium fuel. In this case, there will be no 1H left to

help generate energy, and the increased triple-α rate as the temperatures rises will not only be

suppressed by a factor of X3
α, but the GRI will occur very close to the EPPI, and neutrino losses

will take over very quickly, resulting in a collapse to a black hole. An (wide) estimate on the

mass range for which an explosion may be possible is 3<̃M4<̃7, corresponding to critical central
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temperatures and densities of 1<̃T8,crit<̃3 and 1.0<̃ρcrit<̃20 g/cc.

In order to definitively determine if an explosion is possible, and for what mass range, it is

recommended that high precision simulations be done using a hydrodynamic stellar evolution code

containing the following: A) a 3-dimensional grid, B) a detailed nuclear fusion network (including

neutrinos), and C) an accurate post-Newtonian correction. High precision is required as these stars

are energetically on the edge between collapsing and unbinding. A 3-D code is recommended as

1-D and 2-D hydrodynamic results do not necessarily translate to 3-D. Furthermore, circulatory

effects, such as turbulence, convection, torques, magnetic effects, etc. can be more reliably

modeled in 3-D. In order to get the energetics right, a detailed accounting of nuclear processes

is also needed, particularly prior to collapse, as this will determine the location of the GRI via

the mean particle mass, the abundances of relevant nuclei, particularly 1H, CNO catalysts, and

4He. A fully general relativistic code is probably not necessary, as the structure and kinematics

of SMS’s are entirely Newtonian. Only the energy of the star and the location of the GRI require

knowledge of general relativistic corrections, as the Newtonian energy is zero.

There are three possible observable signals resulting from an exploding SMS. In theory

the photon luminosity could be observed, but at such high red shift it would be unlikely to be

detected. If the star were to explode anisotropically, it may be accompanied by a large anisotropic

neutrino burst, which could result in measurable gravitational wave signal. Finally, the explosion

would results in an injection of heavy elements (mainly 4He, 24Mg, 16O, 20Ne, and 28Si) into a

background of primordial elemental abundances, during the epoch of early galaxy formation.

85



Chapter A

Appendix

A.1 General Relativistic Correction to the Binding Energy

This derivation is adapted from chapter 6.9 in [60]. The General Relativistic gravitational

binding energy is defined as:

E = M−Nmb = M−
∫ dm√

1−2m(r)/r
(A.1)

Where N = the number of baryons. That is, Nmb = Mx = the baryonic rest-mass in

flat (Minkowski) space at zero temperature. It is convenient to rewrite eq. A.1 in terms of the

mbdN = ρxdVx = ρx
4πr2dr√

1−2m(r)/r
, since this quantity is an invariant. The x-subscripts indicate

proper quantities. This gives:

E =
∫ R

0

[
ρ

√
1− 2m(r)

r
−ρx

]
dVx (A.2)

Here ρ = ρx(1+u). Expanding to 2nd order in m
r and u gives:

E =
∫ R

0
ρx

[
u− m

r
−u

m
r
− 1

2

(m
r

)2
]

dVx (A.3)
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The Newtonian energy is: ENewt =
∫ R

0 ρxudVx−
∫ M

0
mx
rx

dmx. We can now subtract ENewt

off of eq. A.3 to find the 1st order GR correction:

∆EGR =
∫ R

0

[
mx

rx
− m

r
−u

m
r
− 1

2

(m
r

)2
]

dmx (A.4)

where we have used dmx = ρxdVx. We must now expand mx
rx

.

Vx =
4π

3
r3

x = 4π

∫ (
1− 2m

r

)−1/2

r2dr ≈ 4π

∫ (
1+

m
r

)
r2dr (A.5)

Solving for rx =
(

3Vx
4π

)1/3
to first order we get:

rx ≈ r
(

1+
1
r3

∫ r

0
mrdr

)
(A.6)

Now we expand mx:

mx =
∫ dm

(1+u)
√

1−2m/r
≈ m

(
1− 1

m

∫ m

0
udm+

1
m

∫ m

0

m
r

dm
)

(A.7)

Hence we get:

mx

rx
≈ m

r
− 1

r

∫ m

0
udm+

1
r

∫ m
r

dm− m
r4

∫ r

0
mrdr (A.8)

Plugging into eq. A.4 gives:

∆EGR =
∫ Mx

0

[
−u

m
r
− 1

2

(m
r

)2
− 1

r

∫ m

0
udm+

1
r

∫ m

0

m
r

dm− m
r4

∫ r

0
mrdr

]
dmx (A.9)

Since every term in the brackets is already of second order in m
r and u, we can evaluate

the integrals over dmx→ dm. Using an n = 3 polytrope to numerically integrate we get:
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∆EGR =−α3M7/3
ρ

2/3
c (A.10)

where α3 is a constant of order 1 resulting form the integration. Hence the total binding

energy is:

E = ENewt +∆EGR = α1KMρ
Γ1−1
c −α2M5/3

ρ
1/3
c −α3M7/3

ρ
2/3
c (A.11)

where similarly to α3, α1 and α2 are constants of order 1.

A.2 Definition of Energy in General Relativity

A.2.1 General Definitions

Defining energy in GR is to some extent arbitrary. In order to have a conserved quantity

in GR, there needs to be an associated symmetry. Furthermore, it is not guaranteed that that such

a symmetry will have a unique Newtonian analog (or one at all); so one must be careful when

attempting to connect the two.

We have used the fact that in GR, rest mass is not only a constant (assuming no mass

accretion or ejection), but also invariant under coordinate transformations [82], to define the total

binding energy as the mass defect between the total mass energy of the star, M, as measured

via its gravitational field, and its rest mass, Mx. This definition is analogous to the definition of

binding energy of nuclei bound by the strong nuclear force. It should be noted, however that

unlike nuclear binding energy, there is no experiment that we know of that can measure the rest

mass of star, as this would require the observer to first measure the mass of an unbound cloud,

then wait around for millions of years until the cloud has collapsed into a star, and then remeasure

its mass. Hence, the value of Mx, is purely theoretical.
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The problem arises when deciding how to count up the rest mass. Thus far we have

done so integrating the density over the proper volume, i.e. accounting for the fact that space

is curved (see chapt. 3 and appendix A.1). This geometric interpretation of GR, in which the

spacial components of the metric account for the curvature of space, is the conventional way of

calculating the rest mass of a star, used throughout the literature and in text books.

However, when dealing with kinematics, the energy of a lump of rest-mass (or test particle),

dmx, in a gravitational field is conventionally defined as time component of the canonical 4-

momentum. Starting from the principle of least action, dmx∆τ, where τ is the proper time, and

using a (+−−−) metric signature, we have:

dmx ·∆τ = dmx ·
∫

dτ = dmx ·
∫ √

gµνUµUνdτ (A.12)

where Uµ is the 4-velocity. Minimizing proper time leads to the effective corresponding

Lagrangian:

L = dmx ·gµνUµUν = dmx (A.13)

If the 4-momentum is Pµ ≡ dmxUµ, then the corresponding canonical momentum Pµ =

gµνPν is defined via the effective Lagrangian as:

Pµ =
1
2

L
∂Uµ (A.14)

If EGR ≡ the time component of the 4-momentum, we have:

EGR ≡
1
2

∂L
∂U t =

1
2

∂U t
(
gµνUµUν

)
dmx (A.15)

If the mass has some temperature, then the internal energy is added to its rest-mass:

dmx −→ dmx(1+u).

89



In a static (no time-dependence in the metric) and spherically symmetric situation, the

star will be Schwarzschild [81], i.e. the metric/spacetime interval will be of the form:

gtt(r)dt2− dr2

1− 2m(r)
r

− r2dΩ
2 = dτ

2 (A.16)

Assuming a perfect fluid, the stress-energy tensor in a co-moving coordinate system [82]

is:

Tt
t = ρx(1+u), Ti

i = P, Tµ6=ν
ν = 0 (A.17)

Solving the Einstein Field Equations (EOF) with a perfect fluid, using eq. A.16, yields

8.5 and the condition:

d ln(gtt)

dr
=

1
r

(
1− 2m(r)

r

)−1(2m(r)
r

+8πP(r)r2
)

(A.18)

Using d
(2m

r

)
= dm

r −
m
r2 dr , and defining w(r) ≡ 1+u(r)+ P(r)

ρx(r)
, eq. A.18 can be inte-

grated to yield:

gtt(r) = A ·
(

1− 2m(r)
r

)
· e2 f (r) (A.19)

where

f (r) =
∫ r

0

4πr′ρx(r′) ·w(r′)
1− 2m(r′)

r′
dr′ (A.20)

and A is a constant of integration which can be set to 1 by demanding that gtt(0) = 1.

Combining eqs. A.15, A.16, and A.19, with velocities set to zero for hydrostatic equilibrium, and

finally subtracting off the rest mass yields:
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dEbind = [(1+u)
√

gtt−1]dmx =

[
(1+u)

√
1− 2m(r)

r
· e f (r)−1

]
dmx (A.21)

If f (r) = 0, at all radii, then we get back our original curved-space definition of binding

energy (eq. 3.1). This would require w = 1+u+ P
ρx

= 0 everywhere, implying P =−ρ. Not only

is this condition not physical for stellar matter, but eq. A.21 does not reduce to the Newtonian

binding energy in the weak field limit (for w 6= 0). So clearly, this definition cannot be the general

relativistic extension to the Newtonian energy. But why not? The integration of eq. A.21 is simply

adding up all the kinematic energy in the star, i.e. the summation of the time-component of the

momentum four-vector over the entire star. Alternatively this is the kinetic energy lost when a

mass element accretes onto the surface of the star, summed over the entire star, and therefore

must be the total energy. Furthermore, KEPLER’s GR correction is based on the TOV equation,

and hence implicitly based on this definition of energy. Incidentally, it is interesting to note that

P =−ρ does hold for dark energy.

How to resolve this apparent disagreement in definitions of energy in GR? The most

straight forward way would be to simply accept that the kinematic and geometric definitions

of energy are measuring different quantities, and hence there is no reason to expect them to

agree. In this case, since the kinematic definition does not reduce to the Newtonian energy in

the weak field limit, it cannot be its analogue, and we must use the geometric definition. This

is somewhat unsatisfactory, however, as it is difficult to get around the idea that simply adding

up the total kinematic energy (which, for a test particle in a gravitational field, does reduce to

the Newtonian definition) of the material in the star is somehow not equivalent to or measuring

something different from the Newtonian energy in the weak field limit.

Let us conduct the following thought experiment: Imagine a spherically symmetric and

static star with total mass-energy M and a shell of mass dMx at infinity (see fig. A.1). Outside
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of the star, space-time is Schwarzschild and static as there are no other fields. For the moment,

we are not concerned with the geometry inside the star. Since the star is gravitationally bound,

it has already lost its binding energy (whatever its value) to the universe. The total energy in

the universe is then M + dMx−Ebind (Ebind < 0). Later on the shell has collapsed and is now

sitting on the surface of the star in thermal equilibrium with the star. It is true that there is a

time-changing field across the boundary of the shell as it falls in (an in-falling DC offset as the

total mass enclosed changes when the shell pass by), but long after the shell has accreted onto

the star, the field in the universe will once again be Schwarzschild. The total mass-energy of the

shell is now its bare rest mass, plus its thermal energy, all sitting in the gravitational field of the

star. In order to be at rest on its surface, the in-falling kinetic energy picked up must in part be

transferred to internal energy, and the rest lost to the universe, e.g. as radiation, which we shall

call the binding energy of that shell. The total energy of the universe must not change, and hence

we have:

Euniverse = M+dMx−Ebind = M+dMx(1+u)
√

gtt−Ebind−dEbind (A.22)

Solving for the binding energy of the shell, dEbind:

dEbind = dMx [(1+u)
√

gtt−1] (A.23)

That is, the kinematics definition of binding energy. Since the shell at infinity and at the

star’s surface is in a Schwarzschild background, we have:

gtt = 1− 2m
r

=
1

grr
(A.24)

and therefore, the geometric and kinematic definitions of binding energy are equivalent

for the shell. By Birchoff’s Theorem, the shell only knows about the interior mass. As more

shells pile onto the star, the metric at the location of the first shell, as well as everywhere inside
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the star, does not change, and therefore neither does the binding energy of the first shell.

Figure A.1: Mass Accretion onto a Star and Binding Energy.
A spherical shell of rest mass dMx accretes onto the surface of a spherically symmetric star with
total mass-energy M and radius R. The in-falling kinetic energy of the shell is in part conserved
in the shell as heat, with the rest being lost to the universe. This loss of kinetic energy is defined
to be the binding energy of the shell.

Although this example does not imply that the geometric and kinematic definitions of

energy are equivalent for a general metric, we have found them to equivalent in a spherically

symmetric space-time geometry.

But this still disagrees with the results derived via the TOV equation (eq.A.21). Notice

when the kinematics point of view was derived using the TOV equation, explicit use of the

stress-energy tensor, Tµν, inside the star was needed, but no knowledge of Tµν inside the star

was necessary when using the geometric point of view, as grr(r) = (1− 2m(r)
r )−1, results from

imposing rest-mass conservation [82]. Knowledge of Tµν inside the star was also not necessary in

the previous thought experiment, as the every subsequent shell always remains outside the star. It

may therefore be the case that choice of Tµν in deriving the TOV equation is not physically sound
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for a star. That is, the perfect fluid assumption/approximation is not valid for normal matter.

A.3 Neutrino Processes

All neutrino emission rates are taken from [67], with µe =
1
Ye

= A
Z = 2 and number of

neutrino species = 2.

A.3.1 e−+ e+ ⇀↽ ν+ν

The neutrino energy loss rate from electron positron pair annihilation is the only relevant

neutrino process for the purposes of this dissertation. Although in this dissertation, the rate per

unit volume, Qpair, was computed using the fits from [67], it can be calculated analytically.

Qpair = n−n+ · (E−+E+)v ·σ (A.25)

where n±, E± are the electron/positron number densities and energies, v is the relative

velocity, and σ is the cross section. If µ± is the chemical potential, from the thermodynamic

potential eq. A.55, we have:

n± =−∂Ω±
∂µ±

=
2

(2π)3

∫ d3 p
e(E−µ±)/T +1

(A.26)

Since the electrons and positrons are in thermal equilibrium with the photons we have:

2µγ = µ−+µ+ = 0−→ µ− =−µ+ (A.27)

where we have used µγ = 0. Calling µ≡ µ−, we have:
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Qpair =
4

(2π)6

∫ d3 p−
e(E−−µ)/T +1

· d3 p+
e(E++µ)/T +1

· (E−+E+)v ·σ (A.28)

The combination v ·σ for this interaction works out to be [83]:

v ·σ =
G2

F
12πE−E+

·
{(

C2
V +C2

A
)[

m4
e +3m2

e(p− ·p+)+2(p− ·p+)
2
]

+3
(
C2

V −C2
A
)[

m4
e +m2

e(p− ·p+)
]}

(A.29)

where GF id Fermi’s constant. The m2
e(p− ·p+) terms are spherically odd, and with go

to zero after integrating over the angular dimensions. Substituting the remaining terms into eq.

A.28, and making the following variable changes: x≡ p/T , ε≡ E/T , and η≡ µ/T ; the result of

the angular integration is:

Qpair =
G2

FT 5m4
e

6π5

(
2C2

V −C2
A
)∫ x2

−
e(ε−−η)+1

·
x2
+

e(ε++η)+1
· (ε−+ ε+)

ε−ε+
dx−dx+

+
2G2

FT 9

3π5

(
C2

V +C2
A
)∫ x4

−
e(ε−−η)+1

·
x4
+

e(ε++η)+1
· (ε−+ ε+)

ε−ε+
dx−dx+ (A.30)

As the temperature approaches me, the pair-neutrino emissivity will go a T 9.

A.4 Polytrope Numerical Integration

The following details the procedure used to numerically integrate the Lane-Emden Equa-

tion with an n = 3 polytrope (eq. 2.4). A simple 2nd order Taylor series was used to approximate

θ(ξ) over k zones.
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k ≡ # of zones, dξ≡ ξ1

k−1
(A.31)

where ξ1 = 6.95808863 is defined such that θ(ξ1) = 0.

Start with initial conditions: ξ0 = 0, θ0 = 1, θ′0 = 0. We still need to find θ′′0 . By eq. 2.4:

θ′′0 +
2θ′0
ξ0

+θ3
0 = 0 −→ θ′′0 + 20

0 + 1 = 0. Using L’Hopital’s Rule we have: θ′′0 +
2θ′′0

1 = −1 −→

θ′′0 =−1
3 . From here we can use a recursive Taylor expansion to 2nd order:

ξi+1 = ξi +dξ (A.32)

θi+1 = θi +θ
′
i ·dξ+

1
2

θ
′′
i · (dξ)2 (A.33)

θ
′
i+1 = θ

′
i +θ

′′
i ·dξ (A.34)

θ
′′
i+1 =−

2θ′i+1

ξi+1
−θ

3
i+1 (use eq. 2.4) (A.35)

A.5 Eddington Luminosity

The Eddington luminosity is the luminosity a star would have were it to be entirely

supported by photon radiation pressure. The radiation momentum flux through a spherical surface,

pγ, is:

pγ =
Lγ

4πr2 (A.36)

The photons will primarily scatter off of electrons and positrons, consequently dragging

positively charged nuclei with them. Balancing the gravitational force with the radiation force on
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a single nucleus (A,Z), with Ne electrons/positrons per baryon, we have:

Ne pγσT hom =
NeLγσT hom

4πr2 =
m(r)mb

r2 (A.37)

where σT hom is the Thomson cross section. In a regime where electrons-positron pairs are

negligible, Ne =
Z
A = Ye. Solving for the luminosity at the surface of the star, we get:

LEdd =
4πMmb

σT hom

A
Z
=

4πMmb

σT homYe
(A.38)

A.6 Mean Free Path Calculations

A.6.1 Derivation

To determine the mean free path, λ, of a particle we start with a single particle streaming

through a medium with a number density of targets, nT . In a time dt, the particle will travel a

distance dx, through the medium. The probability that it will scatter, ps, in a differential volume

with cross section σ and length, dx, containing NT targets is:

ps = f ·nT σdx (A.39)

where f is some factor that can be absorbed into σ. For numerous particles we simply

multiply ps by the number of particles, N, with psN = dN, the number of scattered particles:

dN = NnT σdx (A.40)

Now imagine a source emits N0 particles. After traveling dx, the number of remaining
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particles (those that haven’t scattered) will be:

N(dx) = N0−dN0 = N0(1−nT σdx) (A.41)

After another distance of dx, the number of particles remaining will be:

N(2dx) = N(dx)−dN(dx) = N(dx)(1−nT σdx) = N0(1−nT σdx)2 (A.42)

Repeating the process k times we have:

N(kdx) = N0(1−nT σdx)k (A.43)

The total distance travelled, r, will be kdx. Now we define z≡ nT σdx, and take the limit

as (dx, z)−→ 0. eq. A.43 becomes:

N(r) = lim
z→0

[
N0(1− z)

rnT σ

z

]
= N0

[
lim
z→0

(1− z)
1
z

]rnT σ

= N0e−rnT σ ≡ N0e−
r
λ (A.44)

Hence the mean free path is:

λ = (nT σ)−1 (A.45)

A.6.2 Photons

The primary targets for photons scattering are electrons. Their number density in a gas of

average atomic nuclei (A,Z), if electron-positron pairs are negligible is Zρ

Amb
. While the scattering

cross section is simply the Thomson cross section. Hence from eq. A.45 we have that the photon

mean free path is:
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λγ =
Amb

ZρσT hom
=

mb

YeρσT hom
(A.46)

The average photon mean free path at the GRI is ≈ 3 ·M7/2
4 mm.

A.6.3 Neutrinos

The mean free path of a particle is (σntargets)
−1. The neutrino scattering cross section

is approximately G2
FEνEe. In a regime where electron-positron pairs are rare, and electrons are

non-relativistic, most of the electrons and positrons will have energies close to their rest mass. For

neutrinos created by electron-positron annihilation, the typical energy will therefore be about one

electron mass. The number of targets (electrons) will be approximately the number of protons, as

electron-positron pairs will be negligible in comparison. Hence we have:

ne ≈
Zρcrit

Amb
=

Yeρcrit

mb
(A.47)

σν ≈ (GFme)
2 −→ λν ≈

mb

YeG2
Fm2

eρcrit
−→ λν ≈ 104M7/2

4 AU (A.48)

A.7 Thermodynamic Calculations

A.7.1 Thermodynamic Potential

The general thermodynamic potential, Ω, for a given species with rest mass, m, is given

as:
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Ω =− gV
6π2

∫
∞

0

p4d p

E(p) ·
[

e
(

E(p)
T −η

)
±1
] (A.49)

where g is the particle degeneracy, V = volume, T = temperature, p = the momentum

states, E(p) =
√

m2 + p2 is the associated energy, η is the degeneracy parameter (chemical

potential divided by temperature), and the ± is for fermions/bosons. Defining x ≡ p/T and

ε(x)≡ E(p)/T , yields:

Ω(T,V,η) =−gV T 4

6π2

∫
∞

0

x4dx
ε(x) ·

[
e(ε(x)−η)±1

] (A.50)

The following thermodynamic quantities are given via Ω:

Pressure: P =−∂Ω

∂V
(A.51)

Entropy: s =−∂Ω

∂T
(A.52)

Number: N =− 1
T

∂Ω

∂η
(A.53)

Energy: E =−PV +T s+T ηN = Ω−T · ∂Ω

∂T
−η · ∂Ω

∂η
(A.54)

A.7.2 Entropy in a SMS

For a a given particle species, the general thermodynamic potential (see eq. A.50) for a

volume, V , at temperature, T , is:

Ω =−gV T 4

6π2

∫
∞

0

x4dx
ε(x) ·

(
eε(x)−η±1

) (A.55)

For radiation dominated matter (ε = x), we can calculate S ≈ Srad . Starting from the

thermodynamic potential for a relativistic species in a volume, V ,is:
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Ω =−gV T 4

6π2

∫
∞

0

x3dx
ex−η±1

(A.56)

The total entropy, s, for a given radiation species is given by:

s =−∂Ω

∂T
=

2gV T 3

3π2

∫
∞

0

x3− 4
3ηx2

ex−η±1
dx (A.57)

For the purposes of this dissertation, the only radiative species are photons, which have

g = 2 and η = 0. If temperatures were to approach the electron mass, then relativistic electrons

would also be included in the radiation. The number of baryons in a volume with mass, m, will

be m
mb

. Using V = m
ρ

, the entropy per baryon, S, for a given volume of material is:

S≈ Sγ =
mp

ρ
· 4T 3

3π2

∫
∞

0

x3dx
ex−1

(A.58)

The integral evaluates to π4

15 . Using the relation T 3 ∝ ρ (eq. 2.20) we find:

S≈ 94
√

M4 (A.59)

Hence the entropy per baryon is constant everywhere in the star. This results in the star

being convectively unstable. Note that this result holds under the assumption that the ratio of the

gas pressure to the total pressure, β, is also constant throughout the star. As this assumption does

not hold in the outer regions (envelope) of the star, the convective currents do not penetrate the

envelope, eventually resulting in the envelope being shed.

A.7.3 Number Density of Electrons

The number density for electrons/poistron, n∓, is given from general thermodynamic

potential for fermions (eqs. A.50, A.51):
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n∓ =− 1
T

∂Ω

∂η∓
=

T 3

π2

∫
∞

0

x2dx
e(ε±η)+1

=
T 3

π2

∫
∞

µ

√
ε2−µ2 · εdε

e(ε±η)+1
(A.60)

where we have used g = 2, η ≡ η− = −η+ (Saha relation), and ε =
√

x2 +µ2, with

µ≡ me/T . Now using:

1
e(ε∓η)+1

=
e−(ε∓η)

1+ e−(ε∓η)
= e−(ε∓η) ·

∞

∑
n=0

(−1)n · e−n(ε∓η) (A.61)

to find:

n∓ =
T 3

π2

∞

∑
n=1

(−1)n+1e±n·η
∫

∞

µ

√
ε2−µ2 · ε · e−n·εdε (A.62)

Note that the series only converges if e−(ε−η) < 1−→ |η|< µ. Integrating be parts gives:

n∓ =
T 3

3π2

∞

∑
n=1

(−1)n+1 ·n · e±n·η
∫

∞

µ

(
ε

2−µ2)3/2
e−n·εdε (A.63)

We can now solve the integral with the use of modified Bessel functions of the second

kind, Kν(x):

Kν(n ·µ) =
√

π ·nν

(2µ)ν ·Γ(ν+1/2)

∫
∞

µ

(
ε

2−µ2)ν−1/2
e−n·εdε (A.64)

Substituting K2 (n ·µ) into n∓ yields:

n∓ (T, η) =
m3

e
π2 ·

(
T
me

)
∞

∑
n=1

(−1)n+1

n
e±n·η ·K2

(
n · me

T

)
(A.65)

If me > T the first term in eq. A.65 will dominate, and n∓ can approximated as:

n∓ (T, η)≈ m3
e

π2 ·
(

T
me

)
e±η ·K2

(me

T

)
(A.66)
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A.7.4 Number Density and Chemical Potential in Maxwell-Boltzmann Regime

For a Maxwell-Boltzmann gas we have the conditions: m >> T and η < m
T . From eqs.

A.51, number density of a given species is:

n =
gT 3

2π2

∫
∞

0

x2

eε(x)−η±1
dx (A.67)

Using µ≡ m
T >> 1 and ε =

√
x2 +µ2 ≈ µ+ x2

2µ . Since η > m
T , the integral can be rewritten

in terms of ε≡ ε−µ and η≡ η−µ to give:

n≈ gT 3

π2

√
µ3

2
eη

∫
∞

0
e−ε · ε1/2dε (A.68)

The integral is simply Γ(3/2), giving:

n≈ g
(

m ·T
2π

)3/2

eη (A.69)

Or solving for η in terms of the number density:

η = η− m
T

= ln

[(
2π

m ·T

)3/2

· n
g

]
(A.70)

A.8 Nuclear Abundance in NSE

For matter in NSE, the details of individual reaction rates need not be considered. Instead

the net reaction sequence can be summarized by the disintegration rate of nuclei into bare protons

and neutrons, being in equilibrium with the binding of bare neutrons and protons into nuclei:
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Zp +Nn ⇀↽ A(Z,N)+ γ (A.71)

The corresponding Saha equation for the chemical potentials, µi, [55] is:

Z ·µp +N ·µn = µA (A.72)

The chemical potentials can be rewritten in terms of a kinetic contribution, µ, plus the rest

mass: µi = mi +µi, to give:

Z ·µp +N ·µn = µA−Q(Z,N) (A.73)

where −Q(Z,N) ≡ −Z ·mp−N ·mn + mA is the binding energy of a given nucleus.

Treating the baryons as a Maxwell-Boltzmann gas, the chemical potentials can be written in terms

of the species’ corresponding number density (eq. A.70). Plugging eq. A.70 into eq. A.73 we get:

ln

( 2π

T ·mZ
p

)3/2(np

2

)Z

+ ln

[(
2π

T ·mN
n

)3/2(nn

2

)N
]
= ln

[(
2π

T ·mA

)3/2( np

G(Z, A)

)]
− Q

T

(A.74)

where G(Z, A) = ∑i(2Ji+1)e−Ei/T is the statistical weight of a nucleus with energy levels

Ei and spin Ji [55]. Rearranging, and using mp ≈ mn ≈ mA/A≡ mb gives:

nA ≈ G(Z, A)

[
A
(

2π

T ·mb

)A−1
]3/2

nZ
p ·nN

n

2A e
QA
T (A.75)

Converting the number densities to mass fractions using: ni = Xi
ρ

mi
, eq. A.75 becomes:

XA ≈ G(Z,A) · A
5/2

2A

[(
2π

T

)3/2
ρ

m5/2
b

]A−1

·XZ
p ·XN

n · e
QA
T (A.76)

Now using eq. 2.20 to replace ρ yields:
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XA ∝
1
2
·G(Z,A) ·A5/2

[
4 ·10−18 ·

T 3
8

M4

] (A−1)
2

·XZ
p ·XN

n · e
QA
T (A.77)

A.9 Start File Example

c zero composition
c
c box and id information:
box q85
c
c input for approx network (network #1):
net 1 h1 he3 he4 n14 c12 o16 ne20 mg24 si28 s32
net 1 ar36 ca40 ti44 cr48 fe52 ni56 fe54 pn1 nt1
c
c include ise and nse networks (networks #2 and #3)
isenet
c
c zero metallicity abundances (weight %):
c data from B Fields, p.c. 2002
c mapping H1+H2–¿h2
c mapping H3+Li6...B11–¿he3
c mapping C12+C13+N15–¿c12
c mapping O16+O17+O18–¿o16
m zero 0.751276498 h1
m zero 6.450198e-5 he3
m zero 0.248659 he4
m zero 0.0 o16
m zero 0.0 c12
m zero 0.0 ne20
m zero 0.0 fe56
m zero 0.0 n14
m zero 0.0 si28
m zero 0.0 mg24
m zero 0.0 s32
m zero 0.0 ne22
m zero 0.0 mg26

105



m zero 0.0 ar36
m zero 0.0 fe54
m zero 0.0 mg25
m zero 0.0 ca40
m zero 0.0 al27
m zero 0.0 ni58
m zero 0.0 c13
c This abundance set should also be used for BURN
c mass units 1E4 Msolar
p 273 1.9892E+37
c initial grid (zone #, exterior mass(g), network #,...
c ... temp(K), rho(g/cc), [omega(1/s)[, u(cm/s)]])
g 0 -1.50000E+02 1 zero 5.000E+07 6.000E-02 0.000E+00
g 1 -1.49998E+02 1 zero 4.000E+07 4.800E-02
g 2 -1.49995E+02 1 zero 4.000E+07 4.000E-02
g 3 -1.49990E+02 1 zero 4.000E+07 4.000E-02
g 4 -1.49985E+02 1 zero 4.000E+07 4.000E-02
g 5 -1.49980E+02 1 zero 4.000E+07 4.000E-02
g 6 -1.49975E+02 1 zero 4.000E+07 4.000E-02
g 7 -1.49970E+02 1 zero 4.000E+07 4.000E-02
g 8 -1.49963E+02 1 zero 4.000E+07 4.000E-02
g 9 -1.49955E+02 1 zero 4.000E+07 4.000E-02
g 10 -1.49948E+02 1 zero 4.000E+07 4.000E-02
g 11 -1.49940E+02 1 zero 4.000E+07 4.000E-02
g 12 -1.49880E+02 1 zero 4.000E+07 4.000E-02
g 13 -1.49820E+02 1 zero 4.000E+07 4.000E-02
g 276 -1.34040E+02 1 zero 8.000E+06 3.300E-02
g 277 -1.33980E+02 1 zero 8.000E+06 3.300E-02
g 386 -1.23100E+02 1 zero 8.000E+06 3.000E-02
g 387 -1.22960E+02 1 zero 8.000E+06 3.000E-02
g 696 -7.96400E+01 1 zero 8.000E+06 3.000E-02
g 697 -7.95000E+01 1 zero 8.000E+06 3.000E-02
g 717 -7.66000E+01 1 zero 8.000E+06 3.000E-02
g 718 -7.64550E+01 1 zero 8.000E+06 3.000E-02
g 796 -6.51450E+01 1 zero 8.000E+06 3.000E-02
g 797 -6.50000E+01 1 zero 8.000E+06 3.000E-02
g 855 -5.21000E+01 1 zero 8.000E+06 2.100E-02
g 856 -5.18000E+01 1 zero 8.000E+06 2.100E-02
g 898 -3.92000E+01 1 zero 8.000E+06 2.100E-02
g 941 -2.63000E+01 1 zero 8.000E+06 1.920E-02
g 984 -1.34000E+01 1 zero 8.000E+06 1.800E-02
g 985 -1.31000E+01 1 zero 8.000E+06 1.800E-02
g 1036 -5.00000E-01 1 zero 8.000E+06 1.200E-02
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g 1046 -5.00000E-02 1 zero 8.000E+06 6.000E-03
g 1056 -5.00000E-03 1 zero 8.000E+06 3.600E-03
g 1066 -5.00000E-04 1 zero 8.000E+06 2.400E-03
g 1076 -5.00000E-05 1 zero 8.000E+06 1.800E-03
g 1080 0.000000E+00 1 zero 1.000E+06 1.500E-03
c scale mass
rescalem 150. div
rescalem 4.d4 mult
c specify burn-generator-file name to turn on isotopic co-processing
c genburn ¡to be specified¿
c
c adjust initial temperature to yield hydrostatic equilibrium
hstat
c
c rotation c rigidl 5.00e+60
c reset default parameter values:
c
c time-step and back-up controls (changed 6,7,8,9,55)
c p 6 .05
p 6 .1
c p 7 .035
p 7 .07
c p 8 .1
p 8 .2
c p 9 .05
p 9 .1
p 25 1.00000E+11
p 46 .15
p 47 .001
c p 55 2.00000E+00
p 55 4.0
p 205 .3
p 206 .001
c
c turn off postprocessor edits
p 299 1000000
c
c convergence control parameters
p 11 1.e-7
p 12 1.e-7
c
c problem termination criteria
p 158 9999999

107



p 306 1.e+11
c
c turn on sparse matrix inverter
p 258 1
c
c special command execution
p 331 1.2e+9
p 332 .05
c
c linear artificial viscosity coefficient (reset to 0.1 at zero-age ms)
p 13 1000.
c
c edit and dump controls
p 16 1000000
p 18 100
p 156 50
p 197 1000
p 268 53
c
c equation of state parameters
p 92 1.e-8
c
c semiconvection and overshoot mixing coefficients
p 24 0.1
p 148 0.01
p 324 4.
p 325 0.1
p 326 0.01
c
c graphics parameters
p 42 10240750
p 64 50
p 113 2713
c
c rezoning criteria (changed 78,79,80,81,83,84)
c p 78 .2
p 78 .4
c p 79 .08
p 79 .16
c p 80 .2
p 80 .4
c p 81 .08
p 81 .16
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c p 83 1.e+4
p 83 1.e+5
c p 84 1.e-8
p 84 1.e-7
p 86 0
p 87 1
p 138 4.70000E-01
p 139 5.66667E-01
p 150 2.24000E-03
p 151 2.32000E-03
p 152 4.80000E-03
p 193 1.06667E-01
p 195 9.60000E-04
p 216 3
c
c ise control parameters
p 185 -1.0
p 203 1.e+5
c
c c12(a,g) rate multipliers
c (obsolete)
p 227 1.7
p 228 1.7
c
c post-processor-dump control parameters
p 44 6000000
c p 300 8192
p 303 0.5
c
c set the time at which to make zero-age-main-sequence parameter changes
p 308 5.e+10
c
c turn on rezoner at the zero-age main sequence by reseting p 86
c to the value of p 309
p 309 1
c
c turn down the linear artificial viscosity at the zero-age main
c sequence by reseting p 13 to the value of p 310
p 310 .1
c
c set the core temperature at which to make pre-carbon-burning
c parameter changes
p 311 1.e99
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c
c raise floor on abundances considered in calculating the time-step
c just before carbon ignition by reseting p47 to the value of p312
p 312 .003
c
c finely zone zone #2 just before carbon ignition
c by reseting p195 to the value of p313 and p150 to the value of p314
c (currently not used)
p 313 9.60000E-04
p 314 2.24000E-03
c
c —————————————————————–
c [ALIASES]
c —————————————————————–
c
c Definitions of aliased commands...
c The tnchar command is executed when the central temperature
c exceeds tempchar (p333) degK.
c The cdep command is executed when the central temperature
c exceeds tempcdep (p331) degK.
c The odep command is executed when the oxygen abundance drops below
c o16odep (p332) in weight
c exceeds tqselim (p184) degK.
c The presn command is executed when the infall velocity exceeds
c vinfall (p306) cm/sec.
c
alias tnchar ”p 87 1”
alias cdep ”p 206 .003, p 331 1.e+99”
alias odep1 ”p 6 .02, p 7 .02, p 8 .02, p 11 1.e-8”
alias odep2 ”p 12 1.e-8, p 54 10., p 55 10., p 70 1.e+99”
alias odep3 ”p 73 1.e+99, p 206 3.e-3, p 332 -1.e+99, zerotime”
alias odep ”odep1, odep2, odep3”
c
c for our convenience (...)
alias t1 ”tq,1,1 i”
c
c —————————————————————–
c EXTENSIONS beyond WW95
c —————————————————————–
c
c write out convection data file
p 376 1
c
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c write out wind data file
p 390 1
c
c no convective surface layers
p 408 0.666d0
c
c turn off Niewenhuijzen & de Jager mass loss
p 363 0.0d0
c
c maximum APPROX network number for BURN coprocessing
p 240 2
c
c surface boundary pressure
p 69 1.0e5
c
c under-relaxation for Newton-Raphson solver
p 375 0.333
c
c turn on burn co-processing down to T= 0.0010000000
p 233 1.00E-03
p 235 -1.D99
c
c 1.2 times Buchmann et al. (2000, priv. com) C12(a,g) rate
p 208 1.2
c
c use Jaeger et al. Ne22(a,g) rate
p 421 6
c
c switch on adaptive network
p 137 1
c
c undo mixing in case of backup
p 433 2
c
c resolve fine abundances in Z=0 stars
p 246 1.d-10
p 206 1.d-4
p 47 1.d-4
c
c mass conservation
p 204 -1.d-6
c
c do not trace Al26 in Z=0 stars
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c p 266 1.d0 (originally on)
c
c allow more backups
p 52 50
c
datapath ../../../../../source/data/
c mass and radius rezoning restrictions
p 336 2.e30
p 88 5.e13
c red giant mass loss off
p 363 0.
p 387 0.
c magnetic torques off
p 423 0
c abar and zbar rezoning restrictions
p 426 4.
p 427 2.
c hstat
c p 386 1.e35
c swich on rotational mixing processes (nangmix)
p 364 1
p 365 5.00D-2
p 366 3.33D-2
p 367 1.0
p 368 2.5D+3
p 369 0.25
p 370 1.0
p 371 1.0
p 372 0.9
p 373 0.9
p 374 0.9
c smoothing of gradients and time derivative
p 380 0.2
p 381 2
p 382 1.0D-3
p 383 1.0D-3
p 14 30000
c turn on postnewtonian gravity
p 358 1.0
c turn on magnetic torques
c p 423 2
c p 65 1.e7
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