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Abstract 

The Locally Bayesian Learning (LBL) approach bridges the 
gap between optimal Bayesian learning and suboptimal 
performance that arises from human behavior. Although this 
learning model has considerable potential, it has been 
underdeveloped and has remained in its original form for 
several decades. In this paper, we extend the original LBL 
model to an exemplar approach, which we refer to as the 
exemplar-LBL model. Two notable features of this extension 
are that (a) the model can take continuous features as inputs 
and (b) can conduct exemplar-based categorization. We report 
various simulations, which show that the model can generate 
numerous important predictions about category learning. 
Additionally, we introduce the extra-learning hypothesis, 
which can account for how classification and observation 
training can produce differential learning. Our results 
showcase scenarios under which classification training is 
superior to observation training and other instances in which 
the opposite occurs.  

Keywords: Locally Bayesian Learning; Categorization; 
Classification Training; Observational Training; Exemplar-
based Learning. 

Introduction 

The Bayesian framework has been applied to different areas 

of human cognition, which has led to important insights (e.g., 

Kersten et al., 2004; Lee, 2006; Tenenbaum & Griffiths, 2001; 

Xu & Tenenbaum, 2007). These models hold the potential to 

enhance our understanding of human cognition by addressing 

how learners update their beliefs when they encounter new 

data during problem solving (Chater et al., 2010; Griffiths et 

al., 2008; Perfors et al., 2011). However, there is a gap 

between the optimal performance predicted by Bayesian 

models and the sub-rational or suboptimal behavior that 

humans engage in.  

Kruschke (2006) argued that computational constraints 

explain why people cannot fully use Bayes’ rule during 

inferential decision making. To account for this gap, 

Kruschke proposed a Locally Bayesian Learning (LBL) 

approach. The basics of the LBL are that a cognitive task can 

be separated into different modules, in which each of them 

represents a psychological process. For example, in a 

category learning task, people learn about which parts of an 

item they should attend to (e.g., shape, color, size) and learn 

to associate these elements to the corresponding category 

labels. According to the LBL model, learning within modules 

is purely Bayesian, but the communication between modules 

may not conform with the Bayesian framework. Instead, an 

approximate message is passed from module to module, 

which makes its behavior as a whole non-Bayesian. 

 

 
  

Figure 1: Diagram of (A) Globally Bayesian Learning 

(GBL), (B) Locally Bayesian Learning (LBL), and (C) 

exemplar-Locally Bayesian Learning (exemplar-LBL). 

Taken and edited from Sanborna and Silva (2013). 

Globally Bayesian Learning (GBL) and Locally 

Bayesian Learning (LBL) Models 

Kruschke (2006) constructed Globally Bayesian Learning 

(GBL) and LBL in a three-layer neural network and 

compared the two approaches to show the properties of LBL. 

The illustrative models were applied to a simple associative 

learning task that first mapped two features to two 

attentionally filtered features and then mapped attentionally 

filtered inputs to the outcome. The activation of a node was 

the sum over the weighted incoming connections and was 

rescaled by a sigmoid function.  

yhid = sig(Whid⋅xhid) (1) 

Where Whid was a 2×2 hidden weight matrix and xhid was a 

2×1 vector of inputs. Whid⋅xhid was the dot product. Because 

the hidden nodes, as the attended features, represented the 

input features, Kruschke (2006) constrained the 

corresponding weights (i.e., from 1st input node to 1st hidden 

node and from 2nd input node to 2nd hidden node) to be 

excitatory, with values of either 4 or 6, and the 

noncorresponding weights to be inhibitory, with values of 

either 0 or -4. Any particular set of weights is a hypothesis, 

which makes 16 hypotheses (i.e., 24) for the hidden weights. 
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Similarly, the activation of the output layer was computed 

from xout. 

yout = sig(Wout⋅xout) (2) 

Where Wout was a 1×2 hidden weight vector and xout was a 

2×1 vector representing the attended features. For simplicity, 

each output weight was allowed to take the values of 5, 0, or 

-5. As a result, there were 9 (i.e., 32) combinations and thus 

hypotheses of outcome weights. The activation of the single 

output node, yout, represented the probability of selecting one 

outcome category over the other exclusive category. 

In the GBL approach, all layers were treated as one 

integrated mapping. The lower layer output was passed to the 

next layer as the input in a probabilistically distributed form. 

As a result, the global hypothesis space was the cross of Whid 

and Wout, yielding 144 (i.e., 24×32) hypotheses. When 

provided with a target output t, the probability distribution of 

the hypotheses was updated according to Bayes’ theorem. 

On the other hand, the LBL model splits the layers into two 

modules: (a)_the mapping from input to hidden (i.e., the 

“lower” module) and (b) the mapping from hidden to 

outcome (i.e., the “upper” module). Each module updated the 

representation with Bayes’ rule but was not provided with the 

entire state of the probability distribution represented in the 

other module. The upper module only received the mean 

output value from the lower module as the input. Also, when 

a target output t was provided, the weights in the upper 

module were first updated, then only the value of yhid-max that 

maximizes the probability of the target was passed to the 

lower module. The lower module was blind to t and only 

updated its weights according to yhid-max. As a result, the LBL 

model had in total 25 (i.e., 24+32) hypotheses. 

Merits of Locally Bayesian Learning (LBL) 

In this illustrative example, the GBL model had to conduct 

Bayesian learning on 144 hypotheses while the LBL model 

only had 25. The comparison is more extreme if the number 

of input nodes or output nodes is increased.  

The large hypothesis space of the GBL model not only 

makes the model fitting computationally demanding and 

intractable, but also raises questions as to whether people can 

work on updating their beliefs about that many hypotheses, 

which can occur either overtly or covertly. Thus, it is more 

plausible to assume separate cognitive modules processing in 

the Bayesian approach themselves with simple 

communication between them, rather than an aggregated 

global Bayesian module with overwhelming computations. 

A more significant merit of the LBL approach is that it can 

produce order effects. Kruschke (2006) demonstrated that 

LBL can predict (a) highlighting (assigning ambiguous 

stimuli as belonging to the less frequent of two categories, 

rather than to the more common category; Medin & Edelson, 

1988), (b) blocking (the previously learned stimuli 

preventing the learning on latter stimuli; Kamin, 1968), and 

(c) unovershadowing (the release from overshadowing; 

Larkin et al., 1998). In contrast, the GBL approach cannot 

readily produce these phenomena if they assume the equal 

representation of instances, regardless of their order (e.g., 

Anderson, 1990; Dayan, et al, 2000). 

Although the LBL approach can account for people’s near-

optimal Bayesian learning (Kruschke, 2006; Sanborn & Silva, 

2013), it has typically been discussed at an abstract, 

theoretical level or with only simple tasks. The 

underdevelopment of LBL models was induced by the 

limitation that previous LBL models only take discrete values 

as input and works on simple associative learning tasks. In 

light of this issue, our goal here is to extend the LBL model 

to predict performance on tasks that involve relatively 

complex cognitive processing, which allows for continuous 

inputs. We decided to focus on category learning, not only 

because categorization is foundational to many practices of 

cognition, but also following the suggestions from Kruschke 

(2006).  

In this study, we revised the LBL model, with the 

exemplar-based approach, to extend it to a category-learning 

task. Simulation results are reported to show the properties 

and predictions of different scenarios with our extension of 

the model. Moreover, we demonstrate that the new model can 

differentiate observational and classification training in 

learning simple categories. As described in the results 

sections, the implementation illustrates the merits of the LBL 

models in modeling a trial-order-related algorithm and 

predicting how expectations (priors) affect learning. The 

implementation results provide insights into when 

classification training leads to better learning than 

observation training, as well as when observation training 

leads to better learning than classification training. 

Model 

We extended the LBL model to account for exemplar-

based categorization, which we will refer to as the exemplar-

LBL. This model has three layers that are separated into two 

modules. The lower module maps the input to the exemplars 

and the upper module maps the exemplars to the category 

label response. 

The input remains the same as the features. The weights 

from the inputs to exemplars represent the selective attention 

given to each feature dimension. As a result, the weights from 

the same input node to the exemplars have the same values. 

The weights can take real positive numbers, but for simplicity, 

we only consider these values being 0, 0.2, 0.4, 0.6, 0.8, or 1, 

where weight = 0 indicates ignoring the corresponding 

feature. We also do not constrain the sum of these attention 

weights to be 1, which allows the features to be both attended 

to or both be ignored. The prior on the combination of the 

weights is set to be uniform. 

Based on the attention weights, the activation of each 

exemplar node represents the similarity between the input 

item and the exemplar. The similarity between two items is 

computed as the approach in the Generalized Context Model 

(GCM; Nosofsky, 1986). 
 

𝑑𝑖𝑗 =  [ ∑ 𝑤𝑚

𝑀

𝑚=1

|𝑥𝑖𝑚 − 𝑥𝑗𝑚|
𝑟

]

1
𝑟⁄

 (3) 
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The computation of the distance between item i and exemplar 

j is shown in equation 1. M is the total feature dimensions in 

the psychological space. 𝑤𝑚  denotes the attention weight on 

feature dimension m. 𝑥𝑖𝑚  denotes the value of item i on 

dimension m and 𝑥𝑗𝑚 denotes the value of exemplar j on the 

same dimension; r determines what distance calculation is 

used. We set r to be one, indicating the city-block distance 

calculation method. 

 𝑆𝑖𝑗 =  𝑒−𝑐𝑑𝑖𝑗
𝑝
 (4) 

Equation 4 shows the formula for computing the similarity 

between item i and exemplar j. The value for c is the 

sensitivity parameter reflecting the rate at which similarity 

declines with distance. The value p determines the shape of 

the function relating similarity to distance, and for simplicity, 

is set to 1. 

From the activation of the exemplars, the upper module in 

the exemplar-LBL maps the exemplars to the category 

outcome. Following Kruschke (2006), the weights between 

the exemplar nodes and the output node are allowed to take 

the values of 5, 0, or -5. The prior on the weights is assigned 

a probability proportional to the density under a pseudo-

Gaussian distribution with M = 0 and SD = 5, which favors 

the weight combinations that have more zeros. For the 

outcome, we consider a two-exclusive-categories (i.e., 

Category A and Category B), so there is only one output node 

where a value closer to 1 indicates a higher probability of 

classifying the item into Category A. 

Basically, the model is similar to an attention learning 

covering map model (ALCOVE model; Kruschke, 1992), but 

with a locally Bayesian updating approach. The difference, at 

the computational level (Marr, 1982), is assuming layers only 

pass partial information during error-driven learning. 

Although other means might also be feasible, in this study, 

the computational theory is implemented with the algorithm 

(i.e., the algorithm level; Marr, 1982) that learning is toward 

to the maximum a posteriori (MAP). 

Results 

In this section, we report the simulation results of the 

exemplar-LBL model to demonstrate the properties and the 

predictions of different scenarios with the model. 

Simulated Prediction 

Considering the simplest settings, the model could be asked 

to categorize items that consist of two-features into one of 

two categories. As a result, there would be two input nodes, 

and one output node that indicates the probability of 

classifying the item into Category A. The value on both 

features can take any real number but for illustrative purposes, 

we separated both features into 7 levels. The scales were 

standardized when fed into the model.   

We can test on different category structures including uni-

dimensional rules, conjunctive rules, XOR rules, or other 

non-linear separable structures. However, the first two 

structures were too easy; the model almost achieved ceiling 

performance, even just after one 8-exemplar training block. 

On the other hand, the nonlinear boundary categories 

required more trials to learn and became more 

computationally demanding. As a result, we opted to simulate 

the XOR rule, which were learnable and able to show the 

learning curve with different model settings and scenarios. 

In the following simulation results, each block of training 

contains these eight items in the following order: (1,1,A), 

(2,2,A), (6,6,A), (7,7,A), (1,7,B), (2,6,B), (6,2,B), and (7,1,B). 

A model prediction was said to be better if it had a higher 

average accuracy, which for convenience, was computed as 

(the probability of responding ‘A’ on ‘A’ exemplars) + (1 - 

the probability of saying ‘A’ on ‘B‘ exemplars) divided by 

the total number or exemplars. Since there were only two 

category labels, chance performance was .5. 

 

Exemplar-LBL on Learning XOR First, the simulation 

results showed that the larger the training trials, the better the 

performance. After one block of training, the average 

accuracy was only .503. As shown in Figure 2, the prediction 

showed a unidimensional structure. However, after four 

blocks, the accuracy was increased to .744, and the model 

was able to demonstrate the XOR pattern. Adding more 

training trials further increased performance. Specifically, 

after eight blocks of training, accuracy reached .839. This 

result shows that in the model, learning accumulates in the 

expected manner. 

Second, the exemplar-LBL model predicts order effects 

and also represents trial-by-trial learning, just as in the 

original LBL model (Kruschke, 2006). When presenting all 

the A exemplar trials prior to the B exemplar trials, even with 

the same total number of training trials as the 4-block 

condition, accuracy was greatly reduced and dropped to .504. 

Furthermore, as shown in Figure 2, the model did not learn 

the XOR in this setting. 

The reason for the model’s inability to learn can be 

explained by online trial-by-trial learning. After learning the 

batch of the Category A exemplars, the model classified all 

items into the A category. However, in the first few trials in 

the Category B batch, the probabilities of classifying an item 

as being from Category A decreased significantly. Critically, 

this decrease extended to all items (i.e., both Category A and 

B items). After this decrease, there were no trials in the 

Category B batch that could guide the learning of Category 

A resulting in the model’s inability to differentiate the 

Category A and B exemplars. 

Furthermore, by changing the training targets from binary 

(1 & 0) to probability, we modeled the probabilistic category 

learning. For example, we set the model to learn all A 

exemplars to be A with 90 % probability and all B exemplars 

to be A with 10% probability (i.e., the (0.9 & 0.1)). The 

performance accuracy decreased to .693. When we 

incorporated more uncertainty and set the model to learn 

(0.75 & 0.25), performance dropped further to .622.  

The exemplar-LBL model can also take different priors on 

both the hypotheses between the input to hidden layer and the 

hidden to output layer. The difference in prior is a way to 

model people’s prior knowledge, bias, or preferences on the 
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task. We first tested the model’s sensitivity to changes in the 

priors on the weights between hidden to output layer by 

increasing or decreasing the concentration of the prior on 

specific regions of hypothesis space. 

For example, a belief could be that items sharing similar 

features should be in the same category and items with both 

features very different, such as the pairs (1,1)-(7,7) and (1,7)-

(7,1), should be in different categories. We implemented this 

prior by assigning higher likelihood to the hypotheses that 

align with this belief. The accuracy of the 4-block-XOR 

was .650, which was lower than the accuracy without 

manipulation on the priors (.744). On the other hand, when 

implementing the prior that items with dissimilar features 

should be in the same category, which aligned with the XOR 

structure, the performance after four training blocks was 

higher than the one with the original prior and increased 

to .799. 

A similar pattern was observed when manipulating the 

priors on the input to hidden layer attention strengths. 

Performance slightly increased to .825 when the model held 

a strong prior that both dimensions should be equally and 

moderately or highly attended to. With a prior that both 

dimensions should not be equally attended to, which was a 

conflict prior to the XOR structure, performance trivially 

decreased to .740. Due to space limitations, additional 

manipulations of the priors are not reported here. However, 

across different attempts, the model showed that the more 

extreme the prior, the larger the change (improvement or 

deterioration) that can be expected in the model’s 

performance compared to a flat prior. 

Parameter Recovery 

Next, we conducted parameter recovery on the exemplar-

LBL model. The model was fitted to the data that it generated, 

which produced the recovered parameters results. Parameter 

recovery was evaluated by examining the correlation 

between the generated parameters and the recovered 

parameters. A higher correlation shows that the model is 

better able to discover the true parameters of the data. Here, 

we focused on the c parameters, which affected the 

calculation of similarity. The c parameters were sampled 

from a Gamma distribution of values 2 and 1, so extreme 

values were less likely to be selected, and the mode was 1. 

We used the optim() function in R to conduct the 

optimization. 

The results of the correlations between the 20 pairs of the 

generated parameters and the recovered parameters are 

shown in Figure 3. Although the correlation was significant 

(r = .54, p = .01), visually, it is apparent that the model 

struggled to recover the larger c values. 

An Illustrative Implementation 

In this section, we demonstrate an application of exemplar-

LBL model to generate predictions on when classification 

training would lead to better learning than observational 

training. 

  

  
 

Figure 2: Visualized category structure predicted by the 

exemplar-LBL model. The darker the cell, the higher the 

probability of making a classify it into Category A 

judgment. For illustrative purposes, the category spaces 

were separated into 7x7 matrix. 
 

In classification training, participants are presented with 

some stimuli and are asked to make a classification judgment 

by selecting the correct category label. Next, participants are 

presented corrective feedback, wherein they are shown the 
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correct response as well as whether their response was correct. 

Thus, participants can learn the categories by trial and error. 

In contrast, in an observational learning task, the category 

label is presented with the stimulus, and participants are only 

asked to study and learn it. 

Previous studies have shown inconsistent advantages of 

one form of training over the other. (e.g., Ashby et al., 2002; 

Hsu & Griffiths, 2010; Levering & Kurtz, 2015). Here, we 

implement a simple algorithm to differentiate the 

classification and observational learning: participants learn 

from their own responses when asked to classify the item in 

a classification task. As a result, participants have an extra 

learning opportunity on a classification trial compared with 

an observation trial.  

 This approach demonstrates the power of the exemplar-LBL 

model, because one major characteristic of the extra-learning 

hypothesis is that initial learning opportunity always occurs 

prior to feedback. Since the LBL approach, as described, 

before is sensitive to the training trial-order, it is better able 

to assess the potential of the extra-learning hypothesis in 

explaining learning patterns. 

 

Observation Versus Classification in exemplar-LBL In 

exemplar-LBL, when asked to classify the training items, the 

model generates the responses by making explicit predictions 

about the current input and weights. Next, the generated 

response and the cues are treated as a separate training trial 

that goes into the model and updates the weights. To 

eliminate randomness in model predictions, the responses are 

represented as probabilities of responding ‘A’ (between 0 and 

1) rather than being assigned a Bernoulli-generated label of 

either 0 or 1. Another benefit of this approach is that it 

considers different degrees of belief, numerically. We set up 

the parameter e (for extra learning), indicating the probability 

that the model learns from its own response. 

Observation Versus Classification Results. Built on the 

extra-learning hypothesis, the exemplar-LBL model 

differentiates classification learning from observational 

learning by providing an extra learning opportunity on its 

own classification response. Table 1 shows these simulation 

results. The model performed better with classification 

training than with observational training when (a) the priors 

matched the to-be-learned rules (see compatible prior rows 

in Table 1) or (b) the training was noisy or probabilistic (see 

probability form rows in Table 1). Conceptually, 

classification training outperforms observational training 

when the benefit of having the additional self-learning 

opportunities outweighs the risk of forming incorrect 

representation of the categories, and vice versa.  

Discussion 

In this study, our goal was to extend the LBL model to be 

able to handle continuous stimulus dimensions rather than 

discrete stimulus features. Based on this goal, we revised the 

LBL to be an exemplar-based model that has two modules. 

In the lower module, the model conducts Bayesian updating 

on the selective attention weight on each feature dimension. 

With the attention weights, the model computes the similarity 

between the item and the exemplar as the activation on the 

corresponding exemplar node in the hidden layer. The upper  

           Instance 

Model 
(1,1) (2,2) (6,6) (7,7) (1,7) (2,6) (6,2) (7,1) Accuracy 

Perfect XOR 1 1 1 1 0 0 0 0  

 Observation  

1-block .65  .61  .37  .36  .64  .61  .37  .35 .503 

4-block .79 .69 .70 .78 .22 .29 .29 .21 .744 

8-block .88 .80 .80 .88 .12 .20 .20 .12 .839 

all A then B .59 .52 .40 .43 .51 .47 .44 .48 .504 

conflict output prior .67 .63 .63 .67 .34 .37 .37 .32 .650 

compatible output prior .84 .76 .76 .84 .16 .25 .24 .16 .799 

conflict hidden prior .78 .69 .70 .78 .22 .30 .30 .22 .740 

compatible hidden prior .87 .78 .78 .87 .13 .22 .22 .13 .825 

probability 

form 

0.1/0.9 .74 .65 .65 .73 .27 .34 .34 .27 .693 

0.25/0.75 .65 .59 .59 .65 .35 .40 .40 .35 .622 

 Classification  

1-block .63 .59 .39 .38 .62 .59 .39 .38 .502 

4-block .72 .62 .63 .69 .31 .36 .37 .29 .666 

8-block .82 .73 .73 .82 .18 .27 .27 .18 .775 

all A then B .60 .55 .39 .41 .50 .46 .47 .50 .504 

conflict output prior .67 .61 .62 .64 .36 .38 .39 .32 .636 

compatible output prior .85 .76 .76 .85 .15 .24 .24 .15 .804 

conflict hidden prior .75 .67 .67 .74 .26 .34 .35 .25 .703 

compatible hidden prior .73 .68 .67 .74 .27 .35 .36 .25 .698 

probability 

form 

0.1/0.9 .73 .63 .64 .72 .28 .34 .34 .28 .685 

0.25/0.75 .66 .62 .62 .66 .33 .38 .38 .34 .641 

Note. Each row was a prediction on the four items after training. The numbers show the probabilities of classifying that 

item into Category A. The actual rule was the XOR structure that (1,1), (2,2), (6,6), and (7,7) were items from Category 

A and the other exemplars were items from Category B. If not specified, there were four training blocks. The accuracy 

was the average probability of correctly categorizing the items. 

 

Table 1: Model predictions. 
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Figure 3: The parameter recovery results. 

 

 

module also conducts Bayesian learning on its own. The 

associative weights between hidden and the output layer 

connect the exemplars to the category labels and thus direct 

the assignment of the current item based on its relative 

similarities to the exemplars. 

We evaluated this exemplar-LBL model by conducting 

simulations on category learning tasks with different settings. 

The results showed that the model captured learning 

performance and the trial-order effect at the individual level. 

One potential application on these results is to model 

learning-during-test (LDT) processes. As Nosofsky and Hu 

(2022) mentioned, the LDT process takes part in how people 

generalize their learning to unseen items. Since LDT on each 

trial should only affect subsequent judgments, the model for 

LDT should account for order effects, which is a critical 

strength of the LBL (Kruschke, 2006) and the exemplar-LBL 

models. The extra-learning hypothesis on classification 

training also corresponds to LDT.  

Besides, the merits of the LBL models being able to predict 

trial-order effects, compared to some other associative 

models (e.g., Rescorla & Wagner, 1972; Shanks, 1992), the 

LBL model emphasizes the importance of including attention 

shifting in categorization models (also see Kruschke, 2009). 

For our secondary question, we studied how classification 

and observational training could differ. We proposed the 

extra-learning hypothesis, which posits that people learn 

from their own response, even before receiving corrective 

feedback. By implementing this mechanism into the 

exemplar-LBL model, we showed that classification training 

outperformed observation training when the probability of 

responding correctly is high and when the learning 

opportunities are scarce. 

One possible explanation for the difference between 

classification and observation training is the different levels 

of commitment to a given hypothesis. Under the 

classification task, participants might sharpen and enlarge the 

likelihoods of their hypotheses to make it easier to find the 

maximum likelihood that a given hypothesis is true, which is 

then used to generate the classification response. As a result, 

participants who receive classification training might be 

more likely to commit to a smaller set of hypotheses, while 

participants who receive observational training may engage 

in more explorative hypothesis testing. If the participants 

have prior beliefs of the category structure that align with the 

task assignment, they might therefore learn better with 

classification training as they commit to the true structure 

sooner. On the other hand, if the starting priors are farther 

away from the true structure in the task, participants should 

learn better with observational training, as they should be less 

committed to their hypotheses and more open to alternative 

hypotheses. The extra-learning algorithm implements the 

distinct levels of commitment to the corresponding 

hypotheses by assuming that learning can occur from one’s 

own responses during classification training. 

However, slight adjustments in the parameter values or 

model settings can result in notable changes in the outcomes, 

causing a shift in which training mode (i.e., classification or 

observation) yields better learning. This result might 

therefore shed light on why the results in the literature have 

been inconsistent, wherein some studies have shown benefits 

of classification over observation training (Ashby et al., 

2002), whereas others have shown the opposite pattern (e.g., 

Levering & Kurtz, 2015). 

Nevertheless, the success of differentiating classification 

and observational training indicates the potential of the LBL 

models on predicting the spacing effect (e.g., Cepeda et al., 

2006; Donovan & Radosevich, 1999) and the benefits of 

interleaving (Taylor & Rohrer, 2010) in the category learning 

or other psychological fields.  

For future directions, a major next step is to fit the model 

to behavioral data. It is also important to compare the current 

exemplar-LBL model to the GBL model as well as other non-

Bayesian models. It is also interesting to study if the partially 

selected message passing between modules can induce rapid 

performance changes and thus relieve the disadvantage of the 

neural-network-based models on predicting a steep, stage-

shape learning curve on an individual level. 

Conclusion 

In this study, we extended the LBL model to include 

exemplar-based categorization and to deal with continuous 

stimulus dimensions. This exemplar-LBL model is similar to 

ALCOVE as both incorporate the connectionist network with 

item features as the input, exemplars as the hidden, and the 

attention strengths as the input-to-hidden associations. But 

apart from it, the current model assumes the communication 

of summarized but not full information between layers. The 

simulation results showed that this exemplar-LBL model had 

desirable properties when fit to category learning data and is 

a promising candidate to explain trial-order effects. Moreover, 

with the hypothesis that classification training provides extra 

learning opportunities to learn from the classification 

responses, the exemplar-LBL model can explain task 

differences between classification and observational training. 

We note that the results from the extra-learning hypothesis 

that we introduce can shed light on the inconsistent results 

between classification and observation training in the 

category-learning literature. 
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