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Abstract. We compute the Borel-Moore homology of unramified affine Springer

fibers for GLn under the assumption that they are equivariantly formal and
relate them to certain ideals discussed by Haiman. For n = 3, we give an ex-

plicit description of these ideals, compute their Hilbert series, generators and

relations, and compare them to generalized (q, t)-Catalan numbers. We also
compare the homology to the Khovanov-Rozansky homology of the associated

link, and prove a version of a conjecture of Oblomkov, Rasmussen, and Shende

in this case.
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1. Introduction

In this paper, we study a broad class of affine Springer fibers and their equivariant
Borel-Moore homology, using geometric and algebraic techniques. This homology
is related to the Langlands program [22], Hilbert schemes of singular curves [26,
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25], and is conjectured to be related to knot homology [27]. Sometimes these
relationships are discussed in terms of compactified Jacobians, which are equivalent
to affine Springer fibers [23].

Given a matrix γ ∈ gln((t)) (or sln((t))), the affine Springer fiber Spγ is a certain
ind-subvariety of the affine Grassmanian, see Definition 2.3.

The connection to knot homology is of particular interest. Given γ, its charac-
teristic polynomial p(λ, t) = det(γ − λI) defines a singular curve Cγ in C2, called
the spectral curve of γ. As long as Cγ is reduced, Spγ depends only on its spectral
curve Cγ , in particular on its completion at the origin (Cγ ,0). In this paper we
will work with γ with distinct eigenvalues so that Cγ will be reduced.

Fact 1.1 ([28]). If (Cγ ,0) is irreducible, then Spγ is a projective variety, but if
(Cγ ,0) is not irreducible, Spγ is an ind-variety with infinitely many irreducible
components.

Intersecting the Cγ with a small sphere around the origin (where Cγ is often
singular) gives a link Lγ in S3. Each irreducible component of (Cγ ,0) corresponds
to a component of the link, and the intersection numbers of irreducible components
are the linking numbers of the corresponding link components. Any smooth compo-
nents of the curve correspond to unknots. Oblomkov, Rasmussen, and Shende [27]
have conjectured that the homology of Spγ is closely related to the triply-graded
Khovanov-Rozansky homology [20, 19] (also called HHH) of Lγ . This relationship
has previously been shown for all torus knots, and for (n,nd)-torus links by Kivinen
in [21].

Conjecture 1.2 (ORS [27]). If Lγ is the link associated to γ, we have

grPH∗(Spγ) ⊗C[x] ≅ HHHa=0
(Lγ)

where grP is a certain perverse filtration on H∗(Spγ).

Example 1.3. For the matrix

γ = (
0 t2

t 0
) ,

the characteristic polynomial is given by p(λ, t) = λ2 − t3. The associated link to
this curve in C2 is a trefoil. The affine Springer fiber Spγ is isomorphic to P1, and

the reduced HHH homology of the trefoil is isomorphic to H∗(P1).

In this paper, we will calculate the homology for a large class of affine Springer
fibers with γ of the form

(1) γ =
⎛
⎜
⎝

z1t
d1 0
⋱

0 znt
dn

⎞
⎟
⎠
,

with zi ∈ C∗ pairwise distinct and di > 0, under the assumption that Spγ is equiv-
ariantly formal (see Definition 2.6).

The characteristic polynomial of this γ is ∏i(λ − zit
di). The corresponding

curve Cγ has n smooth irreducible components with pairwise intersection numbers
dij =min(di, dj). So the corresponding link Lγ is a link of n unknots with pairwise
linking numbers dij . In Section 6, we calculate HHH of this link Lγ for n = 3 and
compare the result to H∗(Spγ).
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1.1. Homology of Affine Springer Fibers. In Section 3, we focus on computing
the equivariant Borel-Moore homology HT

∗ (Spγ) with respect to the natural torus
action of T = (C∗)n on Spγ (explained in Section 2). Given the assumption that
Spγ is equivariantly formal with respect to T , we can recover the ordinary Borel-
Moore homology of Spγ by quotienting out by the equivariant parameters, see Fact
2.7.

In order to calculate HT
∗ (Spγ), we view it as a module over

R =H∗T (pt) ⊗C[Λ] ≅ C[t1, . . . , tn, x±1 , . . . , x
±
n].

Here, the ti’s are our equivariant parameters, and the xi’s parametrize the integer
lattice Λ which acts on Spγ by translations.

In [10], Goresky, Kottwitz, and MacPherson (GKM) conjectured that Spγ is pure
for all unramified (i.e. diagonal) γ. The following is a more narrow conjecture that
is what we will rely on in this paper.

Conjecture 1.4 ([10]). For γ as above, Spγ is equivariantly formal, as defined in
Definition 2.6.

Assuming that Spγ is equivariantly formal, we can calculate its equivariant Borel-
Moore homology.

Theorem 1.5. Consider γ as in (1). Define the ideal

J = Jγ = ⋂
i<j
(ti − tj , xi − xj)

dij ⊆ R

with dij = min(di, dj). If Spγ is equivariantly formal, then as R-modules,

∆HT
∗ (Spγ) ≅ J where ∆ =∏

i<j
(ti − tj)

dij .

These J ideals are slightly more general than the similar ideals considered by
Haiman in his work on the Hilbert schemes of points [9], so we refer to them as
generalized Haiman ideals. Since ∆ is a polynomial, multiplication by ∆ is injective,
and

HT
∗ (Spγ) ≅∆H

T
∗ (Spγ) ≅ J

as modules over R = C[t1, . . . , tn, x±1 , . . . , x±n]. It is still useful to keep track of ∆
if we want to retain the localization information of HT

∗ (Spγ), but we can omit ∆

when we only care about HT
∗ (Spγ) as an R-module. Given the assumption that

Spγ is equivariantly formal, we can recover the ordinary Borel-Moore homology of
Spγ as well.

Corollary 1.6. For γ as in (1), if Spγ is equivariantly formal, then

H∗(Spγ) ≅ J /(t)J .

Here (t) ⊆H∗T (pt) ≅ C[t] is the maximal ideal generated by t1, . . . , tn.

If n = 3,4, it is known that Spγ is equivariantly formal, shown in [24] and [7]
respectively. It is also known for the equivalued case, when di = d for all i, due to
GKM [10].

Corollary 1.7. If n ≤ 4, or if di = d for all i, then

∆HT
∗ (Spγ) ≅ J = ⋂

i<j
(ti − tj , xi − xj)

dij .
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The equivalued case of 1.7 was previously shown by Kivinen in [21] using GKM
theory as defined in [12]. The proof of Theorem 1.5 relies on this result by Kivinen.

In [15] Gorsky, Kivinen and Oblomkov define a graded algebra AG = ⊕
∞
d=0 0Ad

depending only on a reductive group G with some specific properties, called the
graded Coulomb branch algebra. Here we consider the case G = GLn. One of the
key properties is that for any γ ∈ g, the direct sum of homologies of affine Springer
fibers

Fγ =
∞
⊕
k=0

H∗(Sptkγ)

is a graded module over AG or, equivalently, that there is a corresponding quasi-
coherent sheaf Fγ on Proj ⊕∞d=0 0Ad. They conjecture the following.

Conjecture 1.8 ([15]). The module Fγ is finitely generated and the sheaf Fγ is
coherent.

Theorem 1.9. Conjecture 1.8 holds for G = GL3 and γ as in (1).

This result and many of the results in Section 1.2 rely on the specific combi-
natorics of the ideal J when n = 3, which is covered in detail in Section 4, with
additional proofs in Section 5.

1.2. Generalized Haiman Ideals. For the rest of the introduction we assume
that the di’s are ordered: d1 ≤ . . . ≤ dn. We will consider a similar ideal to J
defined above,

J ′(d1, . . . , dn) = ⋂
i<j
(ti − tj , xi − xj)

dij ⊆ C[t1, . . . , tn, x1, . . . , xn].

The ideal J is obtained from J ′(d1, . . . , dn) by localization in (x1⋯xn).
In Section 4.1, we define two rational functions, H(d1, . . . , dn) and F (d1, . . . , dn).

The function F (d1, . . . , dn) is also known as the generalized (q, t)-Catalan number,
see [13].

Conjecture 1.10. a) The Hilbert series of the ideal J ′(d1, . . . , dn) equals H(d1, . . . , dn).
b) The Hilbert series of the generating set J ′(d1, . . . , dn)/mJ

′(d1, . . . , dn) equals
F (d1, . . . , dn), where m is the maximal ideal m = (t1, . . . , tn, x1, . . . , xn).

In particular, Conjecture 1.10 implies that F (d1, . . . , dn) is a polynomial in q and
t with nonnegative coefficients (see [13, Conjecture 1.3]) and provides an explicit
algebraic interpretation of these coefficients. Similarly, the conjecture implies that
H(d1, . . . , dn) is a power series in q and t with nonnegative coefficients. In Theorem
4.10, we show that this Conjecture holds for n = 3.

Theorem 1.11. Conjecture 1.10 holds for n = 3.

If di = d for all i, we will say that the ideal J ′ is equivalued. In [9], Haiman
shows the following.

Theorem 1.12 (Haiman [9]). For any n,

(1) The ideal J ′(d, . . . , d) is free as a C[t]-module.
(2) The ideal J ′(d, . . . , d) is equal to a product,

J ′(d, . . . , d) = J ′(1, . . . ,1)d.
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It is easy to see that in general

J ′(d1, . . . , dn) ⋅ J
′
(d′1, . . . d

′
n) ⊆ J

′
(d1 + d

′
1, . . . , dn + d

′
n).

We conjecture that Theorem 1.12 can be generalized to the non-equivalued case,
and that the above inclusion is always an equality.

Conjecture 1.13. For any n, assume d1 ≤ d2 ≤ ⋯ ≤ dn. Then,

(1) The ideal J ′(d1, . . . , dn) is free as a C[t]-module.
(2) The ideal J ′(d1, . . . , dn) can be written as the product

J ′(d1, . . . , dn) = J
′
(1, . . . ,1)d1 ⋅ J ′(0,1, . . . ,1)d2−d1 ⋅ . . . ⋅ J ′(0, . . . ,0,1)dn−1−dn−2 .

Statement (1) immediately follows in any cases where Spγ is known to be equiv-
ariantly formal, in particular for n ≤ 4. In Corollary 4.5 we show that statement
(2) holds in the n = 3 case.

Theorem 1.14. The ideal J ′(d1, d2) can be written as a product

J ′(d1, d2) = J
′
(1,1)d1 ⋅ J ′(0,1)d2−d1

1.3. Link Homology. In Section 6, we use a recursive process of Hogancamp and
Elias [8] to compute HHHa=0

(Lγ) for n = 3. We are then able to relate HHHa=0
(Lγ)

to the ideal J , and thus the homology of Spγ , to show that a weaker version of
Conjecture 1.2 (without the perverse filtration) holds in this case. In order to show
this, we use the y-ified Khovanov-Rozansky homology HY as defined by Gorsky
and Hogancamp in [14].

Theorem 1.15. For n = 3 and γ as in 1,

HYa=0
(Lγ) ⊗C[x] C[x,x±] ≅∆HT

∗ (Spγ)

and

HHHa=0
(Lγ) ⊗C[x] C[x,x±] ≅H∗(Spγ).

We are optimistic that the proof of Theorem 1.15 can be generalized to larger n,
and one may actually be able to find an explicit recursion to compute HHHa=0

(Lγ)

for any n, which would tell us more about the structure of H∗(Spγ) beyond n = 3.

1.4. The Fundamental Domain. Finally, in the appendix we discuss the cells
of the fundamental domain of Spγ , as described by Chen in [6], and relate this to
the combinatorics of J ′ for n = 3. We show that there is a bijection between half of
the cells in the fundamental domain and the generators of the ideal J ′(d1, d2). We
expect that this bijection indicates a stronger relationship between the cells of Spγ
and the combinatorics of J ′ and of generalized (q, t)-Catalan numbers.
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2. Background

First, some notation. Let K = C((t)) be the field of Laurent power series in t, and
O = C[[t]] be the ring of power series in t. For nonzero f ∈ K, let ν(f) denote the
order of f , which is the degree of the smallest nonzero term. Throughout, HT

∗ (X)
will refer to the equivariant Borel-Moore homology of X, and H∗(X) refers to
regular Borel-Moore homology.

Definition 2.1. A lattice Λ ⊆ Kn is a free O-submodule of Kn of rank n such that
Λ⊗O K = K

n. In other words, it is the O-span of a basis of Kn over K.

Definition 2.2. The affine Grassmanian GrGLn(C) of GLn over C is an ind-scheme
defined as the space of all lattices Λ ⊆ Kn.

We can equivalently define the affine Grassmanian as

GLn(K)/GLn(O),

as GLn(K) acts transitively on the space of lattices, and the stabilizer of the stan-
dard lattice On is precisely GLn(O). We will often conflate a matrix g ∈ GLn(K)

with its coset representative in Gr(GLn).
We define Gr(SLn) similarly, either as SLn(K)/SLn(O), or as the space of lattices

of SLn type. We say that a lattice Λ is of SLn type if it can be written as Λ = gOn

for some g ∈ SLn(K).
We will always be working over C, so we will use Gr(GLn) or Gr(SLn) for the

affine Grassmanian, or just Gr when the group G is clear.

Definition 2.3 ([18]). The affine Springer fiber Spγ of an element γ ∈ gln(K) is
a sub ind-scheme of the affine Grassmanian, defined accordingly as the space of
lattices Λ ∈ GrGLn such that γΛ ⊆ Λ, or as the space of g ∈ GLn(K)/GLn(O) such
that g−1γg ∈ gln(O).

Fact 2.4 ([28]). If γ is regular, semi-simple, and topologically nilpotent, then Spγ is
finite dimensional, although it can still have infinitely many irreducible components.
In our cases, these conditions essentially are that γ is diagonalizable, has distinct
eigenvalues λi (over K̄), and that ν(λi) > 0 for all i.

Example 2.5 ([28]). Consider the matrix

γ = (
t 0
0 −t

)

in sl2(K). Then Spγ looks like an infinite chain of P1’s connected at 0 and ∞.

There is a C∗ action that scales each P1, and a Z action that translates them.

There is a natural action of the centralizer C(γ) on Spγ . In the case where γ
is diagonal, this gives a torus action of T = (C∗)n and lattice action of Λ = Zn on
Spγ over GLn (or (C∗)n−1 and Zn−1 over SLn) that can be respectively seen as
multiplication by the matrices in C(γ):

λ =
⎛
⎜
⎝

λ1
⋱

λn

⎞
⎟
⎠
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and

Z =
⎛
⎜
⎝

tm1

⋱

tmn

⎞
⎟
⎠
.

In general for a T -ind-scheme X, HT
∗ (X) is naturally a module over H∗T (pt) via

the cap product.

Definition 2.6. We will say that X is equivariantly formal if HT
∗ (X) is free as a

module over H∗T (pt).

Fact 2.7. (GKM [12]) If X is equivariantly formal, then

H∗(X) ≅H
T
∗ (X)/(t)H

T
∗ (X),

as modules over H∗T (pt). Here (t) ⊆ H∗T (pt) ≅ C[t] is the maximal ideal gener-
ated by t1, . . . , tn.

We will need the following localization lemma as stated by Brion.

Lemma 2.8 (Brion [5]). Let X be a T -ind-scheme and T ′ ⊆ T a subtorus. If

i ∶XT ′ →X is the inclusion of T ′-fixed points, then the induced map

i∗ ∶H
T
∗ (X

T ′
) →HT

∗ (X)

is an isomorphism after inverting finitely many characters of T that restrict non-
trivially to T ′. Further, if X is equivariantly formal, then the induced map i∗ is
injective, and we have that

∏
χ,χT ′≠0

χHT
∗ (X) ⊆H

T
∗ (X

T ′
)

where we take the product over all characters of T that restrict nontrivially to T ′.

We will also make frequent use of the Iwasawa decomposition for Gr(GLn), which
tells us that all g ∈ Gr(GLn) can be represented by a product DU of a diagonal
matrix

(2) D =
⎛
⎜
⎝

tm1

⋱

tmn

⎞
⎟
⎠

with a unipotent matrix U with 1’s on the diagonal and entries χij above the
diagonal [28]. Further, these χij ’s are unique up to O, so we can choose them
to have all coefficients of nonnegative powers of t be 0, so that each matrix DU
represents a unique element g ∈ Gr.

Lemma 2.9. The T -fixed points of Gr(GLn) can be uniquely represented by diag-
onal matrices D as in the Iwasawa decomposition.

Proof. Let λ ∈ T and g = DU be as in the Iwasawa decomposition. Since λ−1 ∈
GLn(O), up to multiplication on the right by GLn(O), we get

λg = λgλ−1 =DU ′,

where D is as above, and U ′ is unipotent with λi

λj
χij above the diagonal. If g is a

fixed point under the action of T , we must have λi

λj
χij = χij for all i, j and for all

λ ∈ T . This can only happen if χij = 0 for all i, j, so g =D is diagonal as desired. □
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Since the T -action on Spγ comes from the action on Gr, the T -fixed points of
Spγ are simply the T -fixed points of Gr that are contained in Spγ .

Lemma 2.10. If γ is diagonal and the orders of its eigenvalues are all nonnegative,
then

SpTγ = GrT .

Proof. For any γ, SpTγ ⊆ GrT as stated above. If g ∈ GrT , then

g =
⎛
⎜
⎝

tm1

⋱

tmn

⎞
⎟
⎠

by Lemma 2.9. As g and γ are diagonal, g−1γg = γ, and γ ∈ gln(O), since the

eigenvalues of γ are all in O. So GrT ⊆ SpTγ . □

In particular, this means that the T -fixed points of Spγ are discrete and isomor-
phic to the integer lattice Λ = Zn, so can view H∗(Spγ) as a module over

H∗T (Sp
T
γ ) ≅H

∗
T (pt) ⊗C[Λ] ≅ C[t1, . . . , tn, x±1 , . . . , x

±
n].

Here, the ti’s are our equivariant parameters, and a monomial xa1

1 ⋯x
an
n corresponds

to the fixed point diag(ta1 , . . . , tan). The lattice Λ acts on SpTγ and on Spγ by
translation.

Lemma 2.11. Fix i < j. If T ′ ⊆ T is a codimension 1 subtorus cut out by ti = tj,
then the T ′-fixed points of Gr(GLn) are of the form DU , where D is as in (2) and

U =
⎛
⎜
⎝

1 χij

⋱

1

⎞
⎟
⎠

with all χ’s zero except for χij.

Proof. As before, up to equivalence,

λg = λgλ−1 =DU ′,

where U ′ has λk

λl
χkl above the diagonal. If g is a fixed point for T , since λi = λj ,

χij can be arbitrary, but χkl = 0 for all (k, l) ≠ (i, j). So the fixed points are as
described. □

Corollary 2.12. If T ′ is a codimension 1 subtorus of T cut out by ti = tj, then

Gr(GLn)
T ′
≅ Gr(GL2) ×Zn−2.

Proof. Each of the T ′ fixed points is represented by DU above. Looking at the 2×2
submatrix of DU in rows and columns i, j, we see a copy of Gr(GL2). The rest of
the mi are free integers, and there are n − 2 of them. □
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3. Borel-Moore Homology of Spγ

We want to find the equivariant Borel-Moore homology HT
∗ (Spγ) of the class of

affine Springer fibers with

γ =
⎛
⎜
⎝

γ1 0
⋱

0 γn

⎞
⎟
⎠
=
⎛
⎜
⎝

z1t
d1 0
⋱

0 znt
dn

⎞
⎟
⎠
.

Here zi ∈ C∗ are pairwise distinct and di ≥ 0. We can assume up to a change of
basis that d1 ≤ ⋅ ⋅ ⋅ ≤ dn.

It is known that for γ as above, Spγ is equivariantly formal (see Definition 2.6)
over GLn for n ≤ 4 (see [24] for n = 3 and [7] for n = 4), and it is known to be
equivariantly formal for all n if di = d for all i [11]. But it is not known over GLn

in general. It would be sufficient to know that the homology of Spγ is supported
in even degrees, and we conjecture that this is the case for all n. We will need to
assume that Spγ is equivariantly formal in order to calculate its homology.

We consider HT
∗ (Spγ) as a module over

H∗T (pt) ⊗C[Zn
] ≅ C[t1, . . . , tn, x±1 , . . . , x

±
n] = R.

Theorem 3.1. Consider γ as in (1). Define the ideal

J ⊆ R

J = ⋂
i<j
(ti − tj , xi − xj)

dij

with dij = min(di, dj). If Spγ is equivariantly formal, then as R-modules,

∆HT
∗ (Spγ) ≅ J ,

where ∆ = ∏i<j(ti − tj)
dij .

Note that multiplication by ∆ is injective, so

HT
∗ (Spγ) ≅∆H

T
∗ (Spγ) ≅ J

asR-modules. It can be useful to keep track of ∆ if we want to retain the localization
information of HT

∗ (Spγ), but we can omit ∆ when we only care about HT
∗ (Spγ) as

an R-module.
The rough outline of the proof of Theorem 3.1 is as follows:

(1) Take a codimension one subtorus T ′ ⊆ T . The T ′-fixed points of Spγ are

essentially isomorphic to an affine Springer fiber Spβ̃ with β̃ ∈ gl2 whose
homology is known.

(2) Relate the homology of Spβ̃ to that of Spγ using Lemma 2.8.

(3) Take enough subtori T ′ and piece together their homologies to find the
homology of Spγ .

Step 3 will require the assumption that Spγ is equivariantly formal.

Lemma 3.2. If T ′ ⊆ T is the subtorus cut out by ti = tj, then up to Zn−2, the
T ′-fixed points of Spγ are isomorphic to an affine Springer fiber over GL2,

SpT
′

γ ≅ Spβij
×Zn−2,

where

βij = (
zit

di 0
0 zjt

dj
) .
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Proof. In Lemma 2.11 we’ve already characterized the T ′-fixed points of Gr as DU ,
where U is unipotent with only a single nonzero χij . We just need to check which

of those fixed points are in Spγ . If g ∈ Gr(GLn)
T ′ , then

g−1γg =
⎛
⎜
⎝

z1t
d1 χij(zit

di − zjt
dj)

⋱

0 znt
dn

⎞
⎟
⎠
.

Again looking at the 2 × 2 i, j submatrix, we see a matrix identical to g−1βijg. So
a T ′-fixed point g is in Spγ if and only if the 2 × 2 matrix

(
tmi χij

0 tmj
)

is in Spβij
, i.e. Spγ ≅ Spβij

×Zn−2. □

Lemma 3.3. Given βij ∈ gl2 as in Theorem 1, we have Spβij
≅ Spβ̃ij

, where

β̃ij = (
zit

dij 0
0 zjt

dij
)

and dij = min(di, dj).

Proof. Again using the Iwasawa decomposition, write g =DU , where

U = (
1 χij

0 1
) .

Then,

g−1γg = (
γi χij(γi − γj)
0 γj

) .

By definition, g ∈ Spβij
if and only if χij(γi − γj) ∈ O. Since we assume that the zi

are distinct, ν(γi − γj) = min(ν(γi), ν(γj)) = min(di, dj) = dij . So g ∈ Spβij
if and

only if χij has order at least −dij . This is the same as the condition for g to be in
Spβ̃ij

, since

g−1β̃ijg = (
zit

dij (zi − zj)χijt
dij

0 zjt
dij

) .

□

Remark 3.4. The one-dimensional quotient torus T /T ′ naturally acts on SpT
′

γ . On

the other hand, T /T ′ is isomorphic to the one-dimensional torus (C∗)2/C∗ which
acts on Spβij

and on Spβ̃ij
. The isomorphisms constructed in Lemmas 3.2 and 3.3

are T /T ′-equivariant.

The homology for the affine Springer fiber of matrices like β̃ij with all powers
the same is known. It is found using GKM theory by Kivinen in [21].

Theorem 3.5 (Kivinen [21]). If

γ =
⎛
⎜
⎝

z1t
d 0
⋱

0 znt
d

⎞
⎟
⎠
,

then ∆HT
∗ (Spγ) injects into

H∗T (pt) ⊗C[Zn
] ≅ C[t1, . . . , tn, x±1 , . . . , x

±
n],
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where ∆ = ∏i<j(ti − tj)
d. As a submodule, there is a canonical isomorphism

∆HT
∗ (Spγ) ≅∏

i<j
(ti − tj , xi − xj)

d.

Corollary 3.6. We have the following canonical isomorphism of C[ti − tj , x±i , x±j ]-
modules:

(ti − tj)
dijH

T /T ′
∗ (Spβ̃ij

) ≅ (ti − tj , xi − xj)
dij ⊆ C[ti − tj , x±i , x

±
j ].

Here T /T ′ acts on Spβ̃ij
as in Remark 3.4.

Now in order to piece together these homologies of Spβ̃ij
, we use the following

fact:

Lemma 3.7 (Algebraic Hartogs’ lemma). If A is an integrally closed Noetherian
integral domain, then

A = ⋂
p codimension 1

Ap,

where we take the intersection over all codimension 1 prime ideals of A of Ap inside
the fraction field Frac(A). If M is a free A-module, then we also have

M = ⋂
p codimension 1

Mp,

where the intersection is taken inside M ⊗A Frac(A).

Since we assumed that Spγ is equivariantly formal, HT
∗ (Spγ) is free over H

∗
T (pt).

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 2.8, we have that, up to localization away from
(ti − tj),

HT
∗ (Spγ) ≅loc H

T
∗ (Sp

T ′

γ ) ≅H
T /T ′
∗ (SpT

′

γ )⊗H
∗
T ′(pt) =H

T /T ′
∗ (Spβ̃ij

×Zn−2
)⊗H∗T ′(pt).

Here ≅loc indicates an isomorphism after localization. Note that after localiza-
tion, ∆ = (ti − tj)

dij up to an invertible factor, so by Lemma 3.3 we get

∆HT
∗ (Spγ) ≅loc (ti−tj)

dijH
T /T ′
∗ (Spβ̃i,j

)⊗H∗T ′(pt)⊗C[Z
n−2
] = (ti−tj , xi−xj)

dij ⊆ C[t,x±].

We have inclusion map

SpT
′

γ

i
Ð→ Spγ

and by Lemma 2.8

∏
(k,ℓ)≠(i,j)

(tk − tℓ)H
T
∗ (Spγ) ⊆ i∗H

T
∗ (Sp

T ′

γ ).

We also have that

∆HT
∗ (Spγ) ⊆ ∏

(k,ℓ)≠(i,j)
(tk − tℓ)(ti − tj)

dijHT
∗ (Spγ).

By the above, this is contained in

i∗(ti − tj)
dijHT

∗ (Sp
T ′

γ ) = (ti − tj , xi − xj)
dij .

We conclude that
∆HT

∗ (Spγ) ⊆ (ti − tj , xi − xj)
dij .
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This holds for all codimension-1 subtori T ′ = (ti − tj) ⊆ T with i < j, so we have

∆HT
∗ (Spγ) ⊆ ⋂

i<j
(ti − tj , xi − xj)

dij .

In fact we have already seen that (ti − tj , xi − xj)
dij is exactly the localization

HT
∗ (Spγ)p where p = (ti − tj).
So by Lemma 3.7 we conclude that

∆HT
∗ (Spγ) ≅ ⋂

i<j
(ti − tj , xi − xj)

dij .

□

This proof required the assumption that Spγ is equivariantly formal. If di = d for
all i, then it is known to be equivariantly formal [11] and we recover the homology
result of Theorem 3.5 from Kivinen [21].

Conjecture 3.8. Spγ is equivariantly formal for all d1, . . . , dn and all n.

4. Generalized Haiman Ideal J for n = 3

When n = 3, it is known that Spγ is equivariantly formal, so by Theorem 3.1, up
to denominators (∆), its equivariant Borel-Moore homology is isomorphic to the
ideal J ⊆ C[t1, t2, t3, x±1 , x±2 , x±3] defined as

J = J (d1, d2) = (t1 − t2, x1 − x2)
d1 ∩ (t1 − t3, x1 − x3)

d1 ∩ (t2 − t3, x2 − x3)
d2

seen as a module over C[t1, t2, t3, x±1 , x±2 , x±3]. Here we are assuming that d1 ≤ d2 ≤ d3,
so that d1, d1, d2 are equal to the pairwise minima dij .

We consider a similar ideal J ′ ⊂ C[t1, t2, t3, x1, x2, x3]

J ′ = J ′(d1, d2) = (t1 − t2, x1 − x2)
d1 ∩ (t1 − t3, x1 − x3)

d1 ∩ (t2 − t3, x2 − x3)
d2

It is easy to see that J = J ′ ⊗C[x] C[x±], so the generators for J over C[t,x±]
will be the same as generators of J ′ over the polynomial ring C[t,x]. Next we will
do a change of variables:

a = t1 − t2, b = x1 − x2, c = t3 − t2, d = x3 − x2

and consider the ideal

J = J(d1, d2) = (a, b)
d1 ∩ (c, d)d2 ∩ (a − c, b − d)d1

over R = C[a, b, c, d]. Clearly, we get

J ′(d1, d2) = J(d1, d2) ⊗C C[x1 + x2 + x3, t1 + t2 + t3],
so again all three ideals have the same generators up to this change of variables.

We can also consider these as bigraded ideals, where the ti’s (or a and c) have
bidegree q, and the xi’s (b and d) have bidegree t.

We will frequently use the polynomial

ad − bc = d(a − c) − c(b − d) ∈ (a, b) ∩ (c, d) ∩ (a − c, b − d).

Theorem 4.1. The ideal J = (a, b)d1 ∩(c, d)d2 ∩(a− c, b−d)d1 over R = C[a, b, c, d]
has the following families of generators (0 ≤ j ≤ d1):

(1) Ai,j = a
d1−jcd2−j(a−c)i(b−d)d1−j−i(ad−bc)j ,1 ≤ i ≤ d1−j. These generators

have bidegree qd1+d2−j+itd1−i, and there are d1−j of these for a fixed j. They
are characterized by degt < d1.
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(2) Bi,j = a
d1−j−ibidd2−j(b−d)d1−j(ad−bc)j ,1 ≤ i ≤ d1−j. Such generators have

bidegree qd1−itd1+d2−j+i, and there are d1 − j of these for a fixed j. They are
characterized by degq < d1.

(3) Ci,j = a
d1−jcidd2−j−i(b−d)d1−j(ad−bc)j ,1 ≤ i ≤ d2−j. Such generators have

bidegree qd1+itd1+d2−j−i, and there are d2 − j of these for a fixed j. They are
characterized by degq > d1,degt ≥ d1.

(4) Dj = a
d1−jdd2−j(b − d)d1−j(ad − bc)j has bidegree qd1td1+d2−j, there is one

such generator for each j. They are characterized by degq = d1.

Remark 4.2. For j = d1, the generators Ai,j and Bi,j are not defined, while Ci,d1 =

cidd2−d1−i(ad − bc)d1 for 1 ≤ i ≤ d2 − d1 and Dd1 = d
d2−d1(ad − bc)d1 .

In particular, it is easy to see that there is at most one generator in each (q, t)-
bidegree, see also Proposition 4.12. Also notice that we chose the generators in
Theorem 4.1 such that the monomial factor in Ai,j does not contain b or d, and the
monomial factors in Bi,j ,Ci,j ,Dj do not contain bc (unless j = d1).

Theorem 4.1 follows from Proposition 4.3, which we prove in Section 5.1.

Proposition 4.3. The ideal J(d1, d2) has the following basis (over C):
m(a, c)Ai,j ,m(a, b, d)Bi,j ,m(a, c, d)Ci,j ,m(a, d)Dk (j ≤ d1 − 1)

where m are arbitrary monomials in the corresponding variables. For j = d1 we
have to add all polynomials of the form

aαbβcγdδ(ad − bc)d1 , γ + δ ≥ d2 − d1.

Example 4.4. For d1 = d2 = 1 we get the following 5 generators of J(1,1):

A1,0 = ac(a − c), B1,0 = bd(b − d), C1,0 = ac(b − d), D0 = ad(b − d), D1 = (ad − bc).

We can change the variables back to see that the generators of J over C[t1, t2, t3, x±1 , x±2 , x±3]
are

A1,0 = (t1 − t2)(t3 − t2)(t1 − t3), B1,0 = (x1 − x2)(x3 − x2)(x1 − x3),

C1,0 = (t1 − t2)(t3 − t2)(x1 − x3), D0 = (t1 − t2)(x3 − x2)(x1 − x3),

and

D1 = det
⎛
⎜
⎝

1 1 1
x1 x2 x3
t1 t2 t3

⎞
⎟
⎠

Corollary 4.5. We have that

J(d1, d2) = J(1,1)
d1 ⋅ J(0,1)d2−d1 ,

J ′(d1, d2) = J
′
(1,1)d1 ⋅ J ′(0,1)d2−d1

and
J (d1, d2) = J (1,1)

d1 ⋅ J (0,1)d2−d1 .

Proof. We prove the first equation, and the other two equations follow immediately.
The containment J(1,1)d1 ⋅ J(0,1)d2−d1 ⊆ J(d1, d2) is clear, so it is sufficient to

show that any generator of J(d1, d2) can be written as a product of d1 generators
of J(1,1) (listed in Example 4.4) and d2 − d1 generators of J(0,1) = (c, d). Indeed:

Ai,j = a
d1−jcd2−j(a−c)i(b−d)d1−j−i(ad−bc)j = (ac(a−c))i⋅(ac(b−d))d1−j−i⋅(ad−bc)j ⋅cd2−d1 ,

Bi,j = a
d1−j−ibidd2−j(b−d)d1−j(ad−bc)j = (ad(b−d))d1−j−i(bd(b−d))i(ad−bc)jdd2−d1 ,
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Ci,j = a
d1−jcidd2−j−i(b − d)d1−j(ad − bc)j =

(ac(b − d))x(ad(b − d))d1−j−x(ad − bc)jci−xdd2−d1−i+x,

where x = max(0, i + d1 − d2). Note that i ≤ d2 − j, so i + d1 − d2 ≤ d1 − j and hence
x ≤ d1 − j. Also, d1 ≤ d2, so i + d1 − d2 ≤ i and x ≤ i. Therefore all exponents are
indeed nonnegative. Finally,

Dj = a
d1−jdd2−j(b − d)d1−j(ad − bc)j = (ad(b − d))d1−j(ad − bc)jdd2−d1 .

□

Remark 4.6. Note that by Remark 4.2 the polynomials aαbβcγdδ(ad−bc)d1 , γ+δ ≥
d2 − d1 are either multiples of Ci,d1 or of Dd1 .

In [15], Gorsky, Kivinen, and Oblomkov define a graded algebra AG = ⊕
∞
d=0Ad,

depending only on a reductive group G, with some specific properties. One of the
key properties is that for any γ ∈ g, the direct sum of homologies of affine Springer
fibers

Fγ =
∞
⊕
k=0

H∗(Sptkγ)

is a graded module over AG, or equivalently, that there is a corresponding quasi-
coherent sheaf Fγ on Proj⊕∞d=0Ad. They conjecture that Fγ is finitely generated
and that this sheaf is coherent [15, Conjecture 8.1]. In the case where G = GLn,
they show that this graded algebra is generated in degrees 0 and 1, and that
Proj⊕∞d=0Ad = Hilbn(C∗ ×C). A special case of this conjecture follows from Theo-
rem 4.1 and its corollaries.

Indeed, it is proved in [15] that A0 is the space of symmetric polynomials in
C[t1, . . . , tn, x±1 , . . . , x±n], and A1 is the space of antisymmetric polynomials.

Theorem 4.7. In the case of G = GL3 and γ as in (1), the graded module Fγ

is finitely generated over AG, and defines a coherent sheaf on Hilb3(C∗ × C), i.e.
Conjecture 8.1 holds in this case.

Proof. By Corollary 3.8.3 in [9], the ideal generated by A1 is exactly J (1,1). There
is a natural inclusion of ideals

J (d1, d2) ⋅ J (1,1) → J (d1 + 1, d2 + 1).

It follows from Corollary 4.5 that this map is actually surjective as well. Since
H∗(Sptkγ) corresponds to the ideal J (d1 + k, d2 + k), this shows that the module
Fγ is generated in degree 0, and therefore finitely generated by the generators of
J (d1, d2). □

4.1. Hilbert Series. Let us introduce two rational functions

H(d1, . . . , dn) = ∑
T

zdn

1 ⋯z
d1
n

(1 − q)n(1 − t)n

n

∏
i=2

1

(1 − z−1i )
∏
i<j
ω(zi/zj)

and

F (d1, . . . , dn) = ∑
T

zdn

1 ⋯z
d1
n

n

∏
i=2

1

(1 − z−1i )(1 − qtzi−1/zi)
∏
i<j
ω(zi/zj).

Here the sums are over standard tableaux T with n boxes, zi is the (q, t)-content

qc−1tr−1 of the box labeled by i in row r and column c in T , and ω(x) = (1−x)(1−qtx)(1−qx)(1−tx) .
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By convention, all the factors of the form (1 − 1) in the above products (either in
the numerator or in denominator) should be ignored.

The function F (d1, . . . , dn) is also known as generalized (q, t)-Catalan number,
see [13] for more details and context. Note that the order of the di is reversed here
compared to [13].

Conjecture 4.8. We have that:
a) The Hilbert series of the ideal J ′(d1, . . . , dn) equals H(d1, . . . , dn).
b) The Hilbert series of the generating set J ′(d1, . . . , dn)/mJ

′(d1, . . . , dn) equals
F (d1, . . . , dn). Here m is the maximal ideal m = (t1, . . . , tn, x1, . . . , xn).

In particular, this conjecture implies that F (d1, . . . , dn) is a polynomial in q and
t with nonnegative coefficients (see [13, Conjecture 1.3]) and provides an explicit
algebraic interpretation of these coefficients. Similarly, the conjecture implies that
H(d1, . . . , dn) is a power series in q and t with nonnnegative coefficients.

Example 4.9. For n = 2 we get J(d1, d2) = (x1 − x2, y1 − y2)
d1 . We change coor-

dinates to x1 − x2 = a, y1 − y2 = b and x = x1 + x2, y = y1 + y2, then J(d1, d2) has
generating set ad1 , ad1−1b, . . . , bd1 , so the Hilbert series for the generating set equals

qd1 + qd1−1t + . . . + td1 =
qd1

1 − t/q
+

td1

1 − q/t
= F (d1, d2).

Similarly, J(d1, d2) is free over C[x, y] with basis aαbβ , α + β ≥ d1, so by Lemma
5.6 below we get the Hilbert series

1

(1 − q)(1 − t)
∑

α+β≥d1

qαtβ =
qd1

(1 − q)2(1 − t)(1 − t/q)
+

td1

(1 − q)(1 − t)2(1 − q/t)
.

Theorem 4.10. Conjectures 4.8(a) and 4.8(b) hold for n = 3 for all d1, d2, d3.

The statement of (a) follows from the Hilbert series calculation in Section 5.2,
and the proof of (b) will be in Section 4.2.

4.2. Combinatorics of J . We’ve already seen in Example 4.4 that J(1,1) has
5 generators, and that in general the generators of J each have a unique (q, t)-
bidegree. We can plot the bidegrees of these generators as below.

Example 4.11. Here is an example where d1 = d2 = 3:
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Proposition 4.12. The generators of J are in bijection with the integer lattice
points inside the trapezoid bounded by the following inequalities:

2d1 + d2 ≥ x + y ≥ d1 + d2, x + 2y ≥ 2d1 + d2, 2x + y ≥ 2d1 + d2.

Proof. It is easy to check that all of the generators of J satisfy these inequalities
on their bidegrees (x, y) = (degq,degt). Since the generators all have unique (q, t)-
bidegree, it is sufficient to count the number of points in the integer lattice and
check that it is the same as the number of generators.

We will count the lattice points going by diagonals, starting with the top diagonal
x+y = 2d1 +d2. On this diagonal, x+2y ≥ 2d1 +d2 and 2x+y ≥ 2d1 +d2 are trivially
satisfied, since x, y ≥ 0. So x and y can both range from 0 to 2d1 + d2, and there
are 2d1 + d2 + 1 points on this diagonal.

On the next diagonal, x + y = 2d1 + d2 − 1, we have that x + 2y = 2d1 + d2 − 1 + y
and 2x+ y = 2d1 + d2 − 1+ x are both at least 2d1 + d2. This implies that x, y ≥ 1 so
we have points

(1,2d1 + d2 − 2), (2,2d1 + d2 − 1), . . . (2d1 + d2 − 2,1),

which amounts to 3 less points than the first diagonal. If we keep going, each
diagonal will have 3 less points than the last, until the final diagonal x+y = d1+d2,
which will have d2 − d1 + 1 points. If we index the diagonal x+ y = 2d1 + d2 − j by j,
j will range from 0 to d1. So in total the number of points in the lattice is

d1

∑
j=0
[2d1 + d2 + 1 − 3j].
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If we count the generators of J as laid out in Theorem 4.1, we get

Ai,j ∶
d1

∑
j=0
(d1 − j), Bi,j ∶

d1

∑
j=0
(d1 − j), Ci,j ∶

d1

∑
j=0
(d2 − j), Dj ∶

d1

∑
j=0

1,

and combining the sums, we get the same count. So we have shown the desired
bijection.

□

Proof of Theorem 4.10(b). In Example 1.2 in [13], the authors show that

F (d1, d2, d3) = [2d1 + d2 + 1]q,t + qt[2d1 + d2 − 2] + ⋅ ⋅ ⋅ + q
d1td1[d2 − d1 + 1]q,t,

where [n + 1]q,t ∶= q
n + qn−1t + ⋅ ⋅ ⋅ + qtn−1 + tn.

We can see from the proof of Proposition 4.12 that this exactly matches up
with the coordinates of the lattice points, grouped by diagonals, and therefore by
Proposition 4.12, this is in bijection with the generators of J and their (q, t) degrees.

Any choice of basis of J(d1, . . . , dn)/mJ(d1, . . . , dn) lifts to a set of generators of
J by Nakayama’s lemma. So the Hilbert series of J(d1, . . . , dn)/mJ(d1, . . . , dn) is
precisely the degree count of the generators of J , so indeed it is F (d1, d2, d3). □

5. Proofs

5.1. Proof of Theorem 4.1. After doing the change of variables to C[a, b, c, d],
the upshot is that we’ve reduced the number of variables, and we can use the fact
that J = M ∩ (a − c, b − d)d1 , where M = (a, b)d1 ∩ (c, d)d2 is a monomial ideal.
In this section we will find a basis for J over C by characterizing when elements
of (a − c, b − d)d1 are in the monomial ideal M , proving Proposition 4.3 and by
extension Theorem 4.1. First, we will need a few key lemmas.

SinceM is a monomial ideal, a polynomial f is inM if and only if all monomials
m of f that have nonzero coefficients are in M . If m is a monomial, then let
deg1(m) be the combined (a, b) degree of m, i.e. the sum of its a and b degrees,
and similarly let deg2(m) be its combined (c, d) degree. Then the monomial m is
in M if and only deg1(m) ≥ d1, and deg2(m) ≥ d2. Note that these degrees should
not be confused with degq and degt defined above.

Consider some f ∈ R of the form

f = φ(b − d) + ψ(ad − bc) ∈M

for some φ,ψ ∈ R. Notice that for any γ ∈ R, we can modify the coefficients φ,ψ by
simultaneously substituting:

(3) φ→ φ + γ(ad − bc), ψ → ψ − γ(b − d)

without changing f .

Lemma 5.1. If
f = φ(b − d) + ψ(ad − bc) ∈M

for some φ,ψ ∈ R, then up to the relation (3), we can assume that φ ∈M .

Proof. Since M is a monomial ideal, φ(b − d) + ψ(ad − bc) ∈M if and only if every
monomial term of φ(b−d)+ψ(ad−bc) is inM . If m is a monomial in the expansion
of this expression, either m is in M , or m cancels with some other monomial.

When we expand, all monomials come in pairs from distributing b− d or ad− bc.
These pairs look like m ( b

d
) −m or m (ad

bc
) −m, where each term is appropriately
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divisible so that there are no denominators. If one of these monomials cancels with
another monomial, that other monomial also must be part of a pair like the above.
For example,

m

cd
(ad − bc) +

m

d
(b − d) =m(

b

d
)(

ad

bc
) −m(

b

d
) +m(

b

d
) −m =m(

b

d
)(

ad

bc
) −m.

We can continue to follow a chain of cancellation until either we get two terminal
monomials that do not cancel with anything, or we eventually reach a monomial
that cancels with the starting monomial m, creating a cycle. We can visualize
these chains of cancellations by oriented paths in a 2 dimensional lattice. Vertices
represent monomials, vertical edges represent a difference of two monomials of the
form m ( b

d
)−m, and horizontal edges represent a difference of the form m (ad

bc
)−m.

The full path represents the sum of all the pairs of monomials represented by each
edge, and the end vertices of the path are the terminal monomials. For example,
the above cancellation can be represented by the path:

m

m ( b
d
) m (ad

bc
) ( b

d
)

Cycles in these paths correspond exactly to the equivalence

φ(b − d) + ψ(ad − bc) = (φ + γ(ad − bc))(b − d) + (ψ − γ(b − d))(ad − bc).

To see this, let m be a monomial. A cycle looks like this:

m

m ( b
d
) m (ad

bc
) ( b

d
)

m (ad
bc
)

This corresponds to the identity

m

d
(b − d) +

m

cd
(ad − bc) −

ma

bc
(b − d) −

m

bc
(ad − bc) = 0.

For all of these terms to be monomials, b, c, d must all divide m. Multiplying
through by bcd and grouping, we get

−m(ad − bc)(b − d) +m(b − d)(ad − bc) = 0.

Adding this cycle corresponds to using the above equivalence with γ =m. Adding
any number of these cycles along our path corresponds to modifying the coefficients
φ and ψ with relation (3) without changing the overall sum f .

We can add and subtract this square loop to any path in order to both eliminate
any loops, and to reorder cancellation. For example:
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m

m ( b
d
) m (ad

bc
) ( b

d
)

=

m

m ( b
d
) m (ad

bc
) ( b

d
)

m (ad
bc
)

+
m m (ad

bc
)

m (ad
bc
) ( b

d
)

So up to relation (3), we can make any path into one with vertical edges first

and horizontal edges after, going from m to m ( b
d
)
k
to m ( b

d
)
k
(ad
bc
)
j
, with k and j

possibly negative or 0.

m

m ( b
d
)
k

m (ad
bc
)
j
( b
d
)
k

This reduced path corresponds to φ(b − d) + ψ(ad − bc), where

φ =
m ( b

d
)
k
−m

b − d
and ψ =

m ( b
d
)
k
(ad
bc
)
j
−m ( b

d
)
k

ad − bc
.

Notice for any monomial m, m (ad
bc
)
j
∈M if and only if m ∈M , as multiplying by

a
b
does not change the combined (a, b) degree of a monomial, and the same for c

d
.

Given a reduced path as above, we know that the terminal monomials m and

m ( b
d
)
k
(ad
bc
)
j
are in M . But since m ( b

d
)
k
(ad
bc
)
j
∈ M , by the above, m ( b

d
)
k
is in

M . Now we want to show that φ ∈M .

Since m ( b
d
)
k
∈M , it follows that m

dk ∈ (c, d)
d2 , since multiplying by bk does not

change the (c, d) degree. Since m is in (a, b)d1 , it follows that m
dk ∈ (a, b)

d1 , since it
has the same (a, b) degree as m. So m

dk ∈M , and therefore indeed

φ =
m

dk
bk − dk

b − d
∈M.

For a general φ(b − d) + ψ(ad − bc), we can break the terms into a sum of discrete
cancellation chains,

∑
i

[φ1,i(b − d) + φ2,i(ad − bc)] .

For each cancellation chain, we have shown that up to equivalence, φ1,i ∈ M , and
therefore

φ = ∑
i

φ1,i ∈M.

□

Lemma 5.2. We have that φ(b − d) ∈M if and only if φ ∈M , and φ(a − c) ∈M if
and only if φ ∈M .

Proof. This is essentially what the final argument of the above proof shows. If we
expand the expression φ(b−d) into monomials, then as in the proof of Lemma 5.1,
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we will get chains of cancellations with two terminal monomials that do not cancel,
which looks like the path:

m

m ( b
d
)
k

This chain corresponds to

φ =
m ( b

d
)
k
−m

b − d
,

and as before, m,m ( b
d
)
k
∈M together imply that φ ∈M . Any general φ(b−d) can

be split into the sum of distinct cancellation chains, and thus φ ∈M .
The same argument applies to φ(a−c) since M is symmetric in (b, d), (a, c). □

Next, we characterize how we can best express f ∈ (a − c, b − d)d1 in order to see
when f ∈M .

Lemma 5.3. Any f ∈ (a − c, b − d) can be written as

f = α1(a − c) + α2(b − d) + α3(ad − bc),

where αi ∈ R and α1 is a polynomial in a and c only.

Proof. If f ∈ (a − c, b − d), then

f = γ1(a − c) + γ2(b − d)

for some γ1, γ2 ∈ R. Observe that

b(a − c) = a(b − d) + (ad − bc),

and
d(a − c) = c(b − d) + (ad − bc).

So by applying this to any term in γ1 with a factor of b or d, we can ensure that
γ1 only depends on a and c. □

Lemma 5.4. If f ∈ (a − c, b − d)d1 ∩M , we can write f = ∑i fi, where

fi =
d1−i
∑
j=0

αi,j(a − c)
i
(b − d)d1−i−j(ad − bc)j

and each fi ∈M .

Proof. Consider f ∈ (a − c, b − d)d1 . Following Lemma 5.3, we can express f as a
linear combination of products of (a − c), (b − d), and (ad − bc),

f = ∑
i,j

αi,j(a − c)
i
(b − d)d1−i−j(ad − bc)j .

Further, we can assume that every coefficient of a term with a factor of (a − c)
depends only on a and c, because for any term with coefficient α with i > 0, we can
write

α(a − c)i(b − d)d1−i−j(ad − bc)j
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= [α(a − c)] (a − c)i−1(b − d)d1−i−j(ad − bc)j

= [α1(a − c) + α2(b − d) + α3(ad − bc)] (a − c)
i−1
(b − d)d1−i−j(ad − bc)j

where α1 only depends on a and c by Lemma 5.3. We can continue this process by
induction until all the modified coefficients αi,j only depend on a and c.

Now we will group terms of f by their combined (b, d) degree. For all i > 0,
since αi,j depends only on a and c, we know that the combined b, d degree of every
monomial of

αi,j(a − c)
i
(b − d)d1−i−j(ad − bc)j

is k = degt(m) = d1 − i. If any monomial from this term cancels, it must cancel
with another term with the same (b, d) degree. So in fact, every monomial with
degt(m) = k must come from the sum

fi =
k

∑
j=0

αi,j(a − c)
i
(b − d)k−j(ad − bc)j

= (a − c)i
k

∑
j=0

αi,j(b − d)
k−j
(ad − bc)j

with fixed i. In other words, monomials can cancel within each fi, but not between
them. This implies that for all i > 0, each fi ∈M , since after internal cancellation,
each fi is a sum of monomials in M .

Since f = ∑i fi is in M and fi ∈M for all i > 0,

f0 =
d1

∑
j=0

αi,j(b − d)
k−j
(ad − bc)j

must also be in M .
□

By Corollary 5.2, we know that

fi = (a − c)
i

k

∑
j=0

αi,j(b − d)
k−j
(ad − bc)j ∈M

implies that

(4)
k

∑
j=0

αi,j(b − d)
k−j
(ad − bc)j ∈M.

Now we fix i and look at a single fi, which we will call f to avoid unnecessary
indices. Also let k = d1 − i as before.

Proposition 5.5. If

f =
k

∑
j=0

αj(b − d)
k−j
(ad − bc)j ∈M,

for some αj ∈ R, then there exists α′j ∈ R such that

f = ∑
j

α′j(b − d)
k−j
(ad − bc)j

and each term α′j(b − d)
k−j(ad − bc)j of the sum is in M .
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Proof. We can rewrite f as

(5) f =
k−1
∑
j=0
[φj(b − d) + ψj(ad − bc)] (b − d)

k−1−j
(ad − bc)j ,

where initially φj = αj for all 0 ≤ j ≤ k − 1, ψk−1 = αk, and the rest of the ψj ’s
are 0. Essentially we have taken the previous sum for f and added some redundant
terms; in particular, ψj and φj+1 are coefficients for like terms for 0 ≤ j ≤ k − 1. So
we have two relations we can use to modify the coefficients of (5) without changing
the sum:

ψj → ψj + γ, φj+1 → φj+1 − γ(6)

φj → φj + γ(ad − bc), ψj → ψj − γ(b − d).(7)

The first comes from the redundant coefficients, and the second is the same relation
(3) used in Lemma 5.1.

We will induct on k = d1 − i. If k = 0, then i = d1, and our sum (4) is just the
single term α0(a − c)

d1 , which is in M by assumption. Now assume by induction
that if

k−1
∑
j=0

αj(b − d)
k−1−j

(ad − bc)j

is in M , then we can modify the coefficients using only (7) to get all terms
αj(b−d)

k−1−j(ad−bc)j inM . We can apply this to (5) with αj = φj(b−d)+ψj(ad−
bc). Using (7) on the αj ’s actually just amounts to using (6) on the φj ’s and ψj ’s,
as adding γ(ad − bc) to αj is the same as adding γ to ψj , and subtracting γ(b − d)
from αj is the same as subtracting γ from φj . So the inductive hypothesis implies
that up to (6), we can get

[φj(b − d) + ψj(ad − bc)] (b − d)
k−1−j

(ad − bc)j

in M for all j. By Corollary 5.2, this implies that

(8) [φj(b − d) + ψj(ad − bc)] (ad − bc)
j
∈M.

Notice that multiplying a monomial (polynomial) by (ad − bc) raises its combined
(a, b) degree and (c, d) degree each by one. So (8) is in M = (a, b)d1 ∩(c, d)d2 if and
only if [φj(b − d) + ψj(ad − bc)] ∈ N = (a, b)

d1−j ∩ (c, d)d2−j . Now we apply Lemma
5.1 on N to get both φj(b − d) and ψj(ad − bc) in N , and then when multiply by
(ad − bc)j , we get that both terms of (8) are in M .

So we have shown that if

f =
k−1
∑
j=0
[φj(b − d) + ψj(ad − bc)] (b − d)

k−1−j
(ad − bc)j ,

up to relations (6) and (7), we can get all terms of this sum to be in M . Now
simply recombine like terms to get

f = ∑
j

αj(b − d)
d1−i−j(ad − bc)j

with all terms in M as desired.
□
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Now we can lay out a basis for the ideal

J(d1, d2) = (a, b)
d1 ∩ (c, d)d2 ∩ (a − c, b − d)d1

over C.

Proof of Proposition 4.3. We know by Proposition 5.5 that J(d1, d2) is generated
by polynomials of the form

αi,j(a − c)
i
(b − d)d1−i−j(ad − bc)j ,

where αi,j only depends on a, c for i > 0. Here 0 ≤ j ≤ d1 and 0 ≤ i ≤ d1 − j. So as a
vector space, J(d1, d2) is generated by

aαbβcγdδ(a − c)i(b − d)d1−i−j(ad − bc)j

with the conditions that α + β + j ≥ d1, γ + δ + j ≥ d2, and β = δ = 0 if i > 0. Among
these generators, the only kind of relations remaining are those that come from the
fact that bc = ad − (ad − bc).

If i > 0, then this relation is irrelevant, and we get linearly independent generators
of the form

m(a, c)Ai,j .

If i = 0 and β, γ > 0, then we can write

aαbβcγdδ = aα+1bβ−1cγ−1dδ+1 + aαbβ−1cγ−1dδ(ad − bc).

Continue reducing bc this way until we end up in one of the following situations:

(1) γ = 0, β ≠ 0, in which case we are left with

m(a, b, d)Bβ,j

with 0 ≤ j ≤ d1 and 1 ≤ β ≤ d1 − j.
(2) β = 0, γ ≠ 0, in which case we are left with

m(a, c, d)Cγ,j

with 0 ≤ j ≤ d1 and 1 ≤ γ ≤ d2 − j.
(3) β = 0, γ = 0, in which case we are left with

m(a, d)Dj

with 0 ≤ j ≤ d1.
(4) The exponent of (ad − bc) is greater than or equal to d1, in which case we

are left with a linear combination of terms of the form

m(a, b, c, d)(ad − bc)d1 .

□

Theorem 4.1 immediately follows from Proposition 4.3.
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5.2. Hilbert Series Calculation. Let us compute the Hilbert series using the
basis in Proposition 4.3.

Lemma 5.6. We have

∑
α+β≥s

qαtβ =
qs

(1 − q)(1 − t/q)
+

ts

(1 − t)(1 − q/t)
.

Proof. We have

∑
α+β≥s

qαtβ =
s−1
∑
β=0

qs−βtβ

(1 − q)
+
∞
∑
β=s

tβ

1 − q
=

qs − ts

(1 − q)(1 − t/q)
+

ts

(1 − q)(1 − t)
.

Now we can use the identity

1

(1 − q)(1 − t)
−

1

(1 − q)(1 − t/q)
=

1

(1 − t)(1 − q/t)
.

□

Theorem 5.7. The bigraded Hilbert series of J(d1, d2) is equal to

q2d1+d2

(1 − q)2(1 − t/q)(1 − t/q2)
+

t2d1+d2

(1 − t)2(1 − q/t)(1 − q/t2)
+

qd1td2(1 + t)

(1 − q)(1 − t)(1 − q/t)(1 − t2/q)
+

qd2td1(1 + q)

(1 − t)(1 − q)(1 − t/q)(1 − q2/t)
.

Proof. We compute the contribution of various basis elements.
1. The contribution of m(a, c)Ai,j , j ≤ d1 − 1 equals

1

(1 − q)2

d1−1
∑
j=0

d1−j
∑
i=1

qd1+d2−j+itd1−i =

1

(1 − q)2

d1−1
∑
j=0

qd1+d2−j+1td1−1 − q2d1+d2−2j+1tj−1

(1 − q/t)
=

qd1+d2+1td1−1 − qd2+1td1−1

(1 − q)2(1 − q−1)(1 − q/t)
−
q2d1+d2+1t−1 − qd2+1td1−1

(1 − q)2(1 − q/t)(1 − t/q2)
.

2. The set m(a, b, d)Bi,j ∪m(a, d)Dj , j ≤ d1 − 1 consists of elements

aαbβdγ(b − d)d1−j(ad − bc)j , α + β ≥ d1 − j, γ ≥ d2 − j,

so by Lemma 5.6 we get the Hilbert series

d1−1
∑
j=0
[

qd1−j

(1 − q)(1 − t/q)
+

td1−j

(1 − t)(1 − q/t)
]
qjtd1+d2−j

(1 − t)
=

d1−1
∑
j=0
[

qd1td1+d2−j

(1 − t)(1 − q)(1 − t/q)
+

qjt2d1+d2−2j

(1 − t)2(1 − q/t)
] =

qd1td1+d2 − qd1td2

(1 − t−1)(1 − t)(1 − q)(1 − t/q)
+

t2d1+d2 − qd1td2

(1 − q/t2)(1 − t)2(1 − q/t)

3. Similarly, for m(a, c, d)Ci,j ∪m(a, d)Dj , j ≤ d1 − 1 we get

aαcβdγ(b − d)d1−j(ad − bc)j , α ≥ d1 − j, β + γ ≥ d2 − j,
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so the Hilbert series equals

d1−1
∑
j=0
[

qd2−j

(1 − q)(1 − t/q)
+

td2−j

(1 − t)(1 − q/t)
]
qd1td1

(1 − q)
=

qd1+d2td1 − qd2td1

(1 − q−1)(1 − q)2(1 − t/q)
+

qd1td1+d2 − qd1td2

(1 − t−1)(1 − q)(1 − t)(1 − q/t)
.

4. We overcount by m(a, d)Dj , j ≤ d1 − 1 which contribute

1

(1 − q)(1 − t)

d1−1
∑
j=0

qd1td1+d2−j =
qd1td1+d2 − qd1td2

(1 − t−1)(1 − q)(1 − t)

5. For j = d1 we have special terms

aαbβcγdδ(ad − bc)d1 , γ + δ ≥ d2 − d1,

which contribute

1

(1 − q)(1 − t)
[

qd2−d1

(1 − q)(1 − t/q)
+

td2−d1

(1 − t)(1 − q/t)
] qd1td1 .

6. Finally, we collect the coefficients at similar terms:

qd1+d2td2 [
qt−1

(1 − q)2(1 − q−1)(1 − q/t)
+

1

(1 − q−1)(1 − q)2(1 − t/q)
] = 0;

qd2td1[−
1

(1 − q)2(1 − q−1)(1 − q/t)
+

1

(1 − q)2(1 − q/t)(1 − t/q2)
−

1

(1 − q−1)(1 − q)2(1 − t/q)
+

1

(1 − q)(1 − t)(1 − q)(1 − t/q)
] =

qd2td1(1 + q)

(1 − t)(1 − q)(1 − t/q)(1 − q2/t)
.

q2d1+d2 [−
qt−1

(1 − q)2(1 − q/t)(1 − t/q2)
] +

t2d1+d2

(1 − q/t2)(1 − t)2(1 − q/t)
=

q2d1+d2

(1 − q)2(1 − t/q)(1 − t/q2)
+

t2d1+d2

(1 − t)2(1 − q/t)(1 − q/t2)
;

qd1td1+d2[
1

(1 − t−1)(1 − t)(1 − q)(1 − t/q)
+

1

(1 − t−1)(1 − q)(1 − t)(1 − q/t)
−

1

(1 − t−1)(1 − q)(1 − t)
] = 0;

qd1td2[−
t−1

(1 − t−1)(1 − t)(1 − q)(1 − t/q)
−

qt−2

(1 − q/t2)(1 − t)2(1 − q/t)
−

t−1

(1 − t−1)(1 − q)(1 − t)(1 − q/t)
+

t−1

(1 − t−1)(1 − q)(1 − t)
+

1

(1 − q)(1 − t)(1 − t)(1 − q/t)
] =

qd1td2(1 + t)

(1 − q)(1 − t)(1 − q/t)(1 − t2/q)
.

□



26 JOSHUA P. TURNER

6. Braid Recursion

In this section we compute Khovanov-Rozansky homology for the link Lγ associ-

ated to γ as in (1) for n = 3. It is the closure of the braid βd1,d2 = (FT2)
d2−d1 ⋅(FT3)

d1

where FT2 = σ
2
1 and FT3 = (σ

2
1)σ2σ

2
1σ2 are the full twist braids on two and three

strands respectively. We will also use the Jucys-Murphy braids JM2 = FT2 and
JM3 = FT

−1
2 FT3 = σ2σ

2
1σ2, so that βd1,d2 = JM

d2

2 JMd1

3 . It is well-known that JM2

and JM3 commute in the braid group.
We use the recursion for triply graded Khovanov-Rozansky homology defined by

Elias and Hogancamp in [8], as described in [16]. Each braid-like diagram represents
a complex of Soergel bimodules, where crossings correspond to Roquier complexes,
and stacking a complex above (or below) represents taking a tensor product with
that complex on the right (or left respectively). The Kn are certain complexes of
Soergel bimodules defined in [8] that satisfy the relations below.

(a) K1 = (b)

⋯

Kn =

⋯

Kn

⋯

=

⋯

Kn

(c)

⋯

⋯

Kn+1 = (tn + a)

⋯

⋯

Kn

(d) Kn = t−n Kn+1 q Kn

For this section, we think of Khovanov-Rozansky homology HHH as a certain
functor from complexes of Soergel bimodules to triply graded vector spaces over C.
For a braid, HHH(β) is HHH of the complex associated to its braid diagram. For
some braids, we can use the above recursions to compute HHH by starting with its
braid diagram and applying these rules until all strands are closed up. We refer to
[16] and references therein for all details.

The three gradings of HHH(β) are typically denoted Q,T, and A. These are
related to the lowercase q, t, and a by the change of variables

q = Q2, t = T 2Q−2, a = AQ−2.

Definition 6.1. For any braid or braid-like diagram β, we say that HHH(β) is
parity if it is supported in only even T degrees. We will also say β itself is parity
if HHH(β) is parity.
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Fact 6.2 ([16]). If both complexes on the right-hand side of step (d) are parity,
then the left-hand side is also parity, and we can replace the map with addition
(corresponding to a direct sum of modules).

Essentially, we do our calculations assuming that the right-hand side of (4) is
parity. If we can successfully reduce β down to complexes that are known to be
parity, then we have shown that β and all of the intermediate complexes were also
parity, and we can compute HHH(β) along the way. We will often take the a-degree
0 component of HHH, denoted HHHa=0.

Theorem 6.3. For all d2 ≥ d1 HHHa=0
(βd1,d2) is parity.

Proof. To make the calculation simpler, we translate the braid pictures into equa-
tions, so for example, (d) translates to

Kn ⋅ JMn+1 = t
−nKn+1 + qt

−nKn,

where JMi is the Jucys-Murphy braid on i strands. In general when we write
Ki,JMi, or FTi (for a full twist), it is always on the first i strands, and multi-
plication represents vertical stacking from bottom to top (or equivalently a tensor
product of Soergel bimodules).

We can resolve the first FT2 by the process:

FT2 =K1 ⋅ FT2 =K1 ⋅ JM2 = t
−1K2 + qt

−1K1.

Since K2 absorbs any crossings on the first two strands, this leaves us with

βd1,d2 = t
−1K2 ⋅ (FT3)

d1 + qt−1βd1,d2−1.

Now we resolve αd1 = K2 ⋅ (FT3)
d1 by first writing FT3 as the product JM2 ⋅JM3.

The JM2 gets absorbed by K2, so we get

K2 ⋅ (FT3)
d1 =K2 ⋅ JM3 ⋅(FT3)

d1−1 = t−2K3 + qt
−2K2(FT3)

d1−1,

where the K3 has absorbed the rest of the FT3’s. When we close up K3, we get t3,
and α0 =K2 closes up to t

1−q . So we get a simple recursion:

HHHa=0
(αd1) = t + qt

−2HHHa=0
(αd1−1),

with HHHa=0
(α0) =

t
1−q . We can write this in a closed form as

HHHa=0
(αd1) = t [

1 − (qt−2)d1

1 − qt−2
+
(qt−2)d1

q − 1
] .

So overall we have the recursive relation

(9) HHHa=0
(βd1,d2) = [

1 − (qt−2)d1

1 − qt−2
+
(qt−2)d1

q − 1
] + qt−1HHHa=0

(βd1,d2−1),

with βd1,0 = (FT3)
d1 = T (3d1,3), which is parity (with known homology) by [8]. □

To compare this to H∗(Spγ), it can be checked by direct computation that the
Hilbert series H(d1, d2) of Spγ satisfies essentially the same recursion (9). But we
can also apply a theorem of Gorsky and Hogancamp (Proposition 5.5 in [14]). Here
HY is the y-ified Khovanov Rozansky homology defined in [14].

Theorem 6.4 ([14]). Assume that β = JMdn

1 . . . JMd1
n , dn ≥ dn−1 ≥ ⋯ ≥ d1, and

HHHa=0
(β) is parity. Then:

(1) HYa=0
(β) = HHHa=0

(β) ⊗C[y1, . . . , yn] and HHHa=0
(β) = HYa=0

(β)/(y)
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(2) I(d1, . . . , dn) ⊆ HYa=0
(β) ⊆ J ′(d1, . . . , dn), where I is the product

I(d1, . . . , dn) = J
′
(1, . . . ,1)d1 ⋅ J ′(0,1, . . . ,1)d2−d1 ⋅ . . . ⋅ J ′(0, . . . ,0,1)dn−1−dn−2 .

In our case β can be expressed exactly as above, and Theorem 6.3 along with
Corollary 4.5 implies that for n = 3:

HYa=0
(Lγ) = J

′
(d1, d2).

Note the analogy between the relationship of HY to HHH in statement (1) of
Theorem 6.4, and the relationship of HT

∗ (Spγ) to H∗(Spγ) due to Fact 2.7. The
result is the following weaker version of Conjecture 1.2.

Theorem 6.5. For n = 3 and γ as in 1,

HYa=0
(Lγ) ⊗C[x] C[x,x±] =∆HT

∗ (Spγ)

and

HHHa=0
(Lγ) ⊗C[x] C[x,x±] =H∗(Spγ).

In order to show Theorem 6.5, we used Corollary 4.5, but one could instead show
that the link splitting map defined in [14] is canonical for β as above, analogous
to Proposition 6.11 in [14]. This means that Theorem 6.5 could be generalized to
higher n solely by showing that β is parity, such as with more explicit recursions.
We are optimistic that this can be done for n = 4 and possibly for higher n.

Appendix A. Generalized (q, t)-Catalan Numbers and the
Fundamental Domain for n = 3

by Eugene Gorsky and Joshua P. Turner

In [6] Zongbin Chen introduced a notion of the fundamental domain for an
unramified affine Springer fiber, which captures the behavior of cells in Spγ under
translations by the lattice Λ. More precisely, for n ≤ 4 (and conjecturally in general)
Spγ admits a cell decomposition with cells parametrized by the lattice Λ. There is
one torus fixed point in each cell. In general, the dimension of a cell is a complicated
piecewise-linear function on Λ which stabilizes outside of the fundamental domain
P. The cells corresponding to points in Λ outside P can be obtained by translation
of cells corresponding to points in P.

At the same time, by Theorem 1.5 the (non-equivariant) homology of Spγ as a
module over Λ is captured by J /(y)J as a module over C[x±1 , . . . , x±n], so the cells
in P should correspond to the generators of J , and (following Conjecture 1.10) to
the generalized (q, t)-Catalan numbers F (dn, . . . , d1).

In this appendix we explore the definition and some general properties of P and
establish its precise relation with the generalized (q, t)-Catalan numbers for n = 3.
We hope to generalize this to higher n in future work.

A.1. The Fundamental Domain. We define the action of Sn on Rn by σ(x1, . . . , xn) =
(xσ(1), . . . , xσ(n)). Note that for the basis vectors ei we have σei = eσ−1(i).

We start with the matrix γ = diag(γ1, . . . , γn) as in (1), where γi are pairwise
distinct monomials with order di. We will always assume that d1 ≤ . . . ≤ dn. Define
dij =min(di, dj) for i ≠ j, noting that dij is the order of γi − γj .
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Definition A.1. (Compare with [6, Proposition 2.8]) We define the polytope
P(d1, . . . , dn) as the convex hull of the points pσ = σ(b1,σ, . . . , bn,σ) where:

bi,σ = ∑
j<i
dσ−1(i),σ−1(j), σ ∈ Sn.

Example A.2. For n = 2 we get two points pe = (0, d1) and p(1 2) = (d1,0), and P
is the segment connecting them.

Example A.3. For n = 3 we get 6 points shown in the following table

σ (b1,σ, b2,σ, b3,σ) pσ
e (0, d1, d1 + d2) (0, d1, d1 + d2)
(1 2) (0, d1, d1 + d2) (d1,0, d1 + d2)
(1 3) (0, d2,2d1) (2d1, d2,0)
(2 3) (0, d1, d1 + d2) (0, d1 + d2, d1)
(1 2 3) (0, d1, d1 + d2) (d1, d1 + d2,0)
(1 3 2) (0, d2,2d1) (2d1,0, d2)

● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ●

● ● ● ●

(0, d1, d1 + d2) (d1,0, d1 + d2)

(0, d1 + d2, d1)

(d1, d1 + d2,0) (2d1, d2,0)

(2d1,0, d2)

Figure 1. Fundamental domain for (d1, d2) = (3,5)

Example A.4. Suppose that di = d for all i. Then bi,σ = d(i − 1),

pσ = (d(σ(1) − 1), . . . , d(σ(n) − 1)),

and P is the standard (n − 1)-dimensional permutahedron dilated d times.

We now establish some general properties of P.

Lemma A.5. The polytope P(d1, . . . , dn) is contained in the hyperplane ∑xi =

∑i<j dij.

Proof. For any σ we have ∑i bi,σ = ∑j<i dσ−1(i),σ−1(j) = ∑i<j dij . □



30 JOSHUA P. TURNER

Proposition A.6. Let ei denote the i-th basis vector. Then P(d1, . . . , dn) is the
Minkowski sum of (n

2
) segments connecting dijei and dijej.

Proof. Let P ′(d1, . . . , dn) denote the above Minkowski sum. We can write

pσ = σ
⎛

⎝
∑
i<j
dσ−1(i),σ−1(j)ei

⎞

⎠
= ∑

i<j
dσ−1(i),σ−1(j)eσ−1(i) = ∑

σ(i)<σ(j)
dijei.

Given a permutation σ and i < j, we can choose one end of the segment connect-
ing dijei and dijej as follows: if σ(i) < σ(j), we choose ei, otherwise we choose
ej . Clearly, the sum of these points equals pσ, so pσ ∈ P

′(d1, . . . , dn). Therefore
P(d1, . . . , dn) ⊆ P

′(d1, . . . , dn).
On the other hand, P ′(d1, . . . , dn) is a zonotope with edges parallel to the edges

of the standard permutahedron P(1, . . . ,1). It follows e.g. from [2, Section 9] that
the vertices of P ′(d1, . . . , dn) are in bijection with the vertices of P(1, . . . ,1), and
are given by pσ. So P

′(d1, . . . , dn) ⊂ P(d1, . . . , dn). □

Example A.7. For n = 3 we get three segments [(d1,0,0), (0, d1,0)], [(d1,0,0), (0,0, d1)]
and [(0, d2,0), (0,0, d2)].

Remark A.8. Quite surprisingly, a similar polytope appeared in a recent work of
Alishahi, Liu and the first author on Heegaard Floer homology [1].

A.2. Generalized (q, t)-Catalans for n = 3. Given d1 ≤ d2, we can consider the
Young diagram λd1,d2 = (d1 + d2, d1). We will draw Young diagrams in French
notation, with the corner at (0,0), see Figure 2. We also consider the line

ℓd1,d2 = {x + d2y = d1 + 2d2 + ε}

where ε is a small positive number. The following lemma shows that λd1,d2 is a
triangular partition in the sense of [3].

Lemma A.9. The diagram λd1,d2 is the largest Young diagram below the line ℓd1,d2 .
If a diagram µ is strictly below ℓd1,d2 , then µ ⊂ λd1,d2 .

Proof. Let us describe all integer points (x, y) satisfying x + d2y < d1 + 2d2 + ε. For
y = 1 we get x < d1 +d2 + ε, so x ≤ d1 +d2. For y = 2 we get x < d1 + ε, so x ≤ d1. For
y ≥ 3 we get x < d1 + (2 − y)d2 + ε < 0, so there are no integer points (here we used
d1 ≤ d2). The result follows. □

Figure 2. The line ℓd1,d2 and the diagram λd1,d2 for (d1, d2) = (3,5).

Following [3], we define two statistics on subdiagrams of λd1,d2 .
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Definition A.10. Given µ ⊂ λd1,d2 , we define area(µ) = ∣λd1,d2 ∣ − ∣µ∣ and

dinv(µ) = {◻ ∈ µ ∶
a(◻)

ℓ(◻) + 1
≤ d2 <

a(◻) + 1

ℓ(◻)
}

Here a(◻) and ℓ(◻) are respectively the arm and the leg of a box ◻ in µ.

Note that d2 in the definition of dinv is negative reciprocal to the slope of the
line ℓd1,d2 .

Theorem A.11. The map ϕ ∶ µ ↦ (area(µ),dinv(µ)) yields a bijection between
the subdiagrams µ ⊂ λd1,d2 and the integer points in the trapezoid

(10) {d1 + d2 ≤ x + y ≤ 2d1 + d2, 2x + y ≤ 2d1 + d2, x + 2y ≤ 2d1 + d2}.

As a consequence, we get the generalized (q, t)-Catalan number

(11) ∑
µ⊂λd1,d2

qarea(µ)tdinv(µ) = F (d1, d2).

Equation (11) is a special case of the main result of [4], but we give a more direct
proof here generalizing [17, Theorem 4.1].

Proof. Let us write µ = (a + b, a), then 0 ≤ a ≤ d1 and 0 ≤ b ≤ d1 + d2 − a. We have
the following cases (see Figure 3):

(a) If a + b ≤ d2 then dinv(µ) = a + b, so

ϕ(µ) = (2d1 + d2 − 2a − b, a + b) = (x, y).

We have a = 2d1+d2−x−y, b = 2y+x−2d1−d2, so the inequalities 0 ≤ a, a ≤ d1,0 ≤ b
and a + b ≤ d2 respectively translate to the inequalities x + y ≤ 2d1 + d2, x + y ≥
d1 + d2,2y + x ≥ 2d1 + d2 and y ≤ d2.

(b) If a + b > d2, b ≤ d2 then dinv(µ) = 2a + 2b − d2, so

ϕ(µ) = (2d1 + d2 − 2a − b,2a + 2b − d2) = (x, y).

We have y = d2 mod 2, and

a =
4d1 + d2 − 2x − y

2
, b = x + y − 2d1

The inequalities 0 ≤ a, a ≤ d1,0 ≤ b, b ≤ d2 and a+ b > d2 respectively translate to the
inequalities

2x + y ≤ 4d1 + d2, 2x + y ≥ 2d1 + d2, x + y ≥ 2d1, x + y ≤ 2d1 + d2, y > d2.

The second, fourth and fifth inequalities define a triangle T with vertices (0,2d1 +
d2), (d1, d2) and (2d1, d2) with the bottom side removed. The other two inequalities
are satisfied on this triangle. In other words, in this case the image of ϕ is the set
of all integer points in the triangle T satisfying y = d2 mod 2.

(c) If b > d2 then dinv(µ) = 2a + d2 + 1, so

ϕ(µ) = (2d1 + d2 − 2a − b,2a + d2 + 1) = (x, y).

We have y = d2 + 1 mod 2, and

a =
y − d2 − 1

2
, b = 2d1 + 2d2 + 1 − x − y.

The inequalities 0 ≤ a, a ≤ d1, b > d2 and a + b ≤ d1 + d2 respectively translate to the
inequalities

y ≥ d2 + 1, y ≤ 2d1 + d2 + 1, x + y < 2d1 + d2 + 1, 2x + y ≥ 2d1 + d2 + 1.
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a

b

d1 + d2

d1

(d1, d2)d2

(d1, d2 − d1)

0

(a)

(b)

(c)

y

x

2d1 + d2

2d1 + d2

(d1, d2)

(d2, d1)

(2d1, d2)

(a)

T

(b),(c)

Figure 3. The bijection ϕ

Similarly to (b), the image of ϕ in this case is the set of all integer points in the
triangle T satisfying y = d2 + 1 mod 2. □

Finally, we compare the above combinatorial results with the fundamental do-
main. Observe that for n = 3 the fundamental domain P(d1, d2) is a hexagon with
an axis of symmetry, which cuts it into two equal halves (see Figure 1).

Theorem A.12. The integer points in a half of P(d1, d2) (including boundary) are
in bijection with the generators of the ideal J (d1, d2).

Proof. We construct the desired bijection in several steps:
1) The integer points in a half of P(d1, d2) are in bijection with the subdiagrams

of λd1,d2 . Indeed, we can write such points as (d1,0, d1+d2)+a(1,0,−1)+b(0,1,−1).
It is easy to see by comparing Figures 1 and 3 that 0 ≤ a ≤ d1 and 0 ≤ b ≤ d1+d2−a,
and hence (a, b) define a subdiagram µ = (a + b, a).

2) By Theorem A.11, we have a bijection ϕ between the subdiagrams of λd1,d2

and the points in the trapezoid (10).
3) By Proposition 4.12, there is a bijection between the generators of J (d1, d2)

and the points in the trapezoid (10). □

We expect that the bijection in Theorem A.12 is far more than a combinatorial
coincidence. In particular, by tracing through the bijections we see that dinv defines
a piecewise linear function on the fundamental domain P(d1, d2), and we expect this
function to be closely related to the dimension of cells in an appropriately chosen
cell decomposition of Spγ . The corresponding (equivariant) homology classes of the
cells would then correspond to some elements of J (d1, d2), and we expect that these
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would indeed generate the ideal. We plan to study these questions and generalize
them to n > 3 in future work.
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