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Abstract

Lucanthone and hycanthone are thioxanthenone DNA intercalators used in the 1980s as antitumor agents. Lucanthone is in
Phase I clinical trial, whereas hycanthone was pulled out of Phase II trials. Their potential mechanism of action includes DNA
intercalation, inhibition of nucleic acid biosyntheses, and inhibition of enzymes like topoisomerases and the dual function
base excision repair enzyme apurinic endonuclease 1 (APE1). Lucanthone inhibits the endonuclease activity of APE1,
without affecting its redox activity. Our goal was to decipher the precise mechanism of APE1 inhibition as a prerequisite
towards development of improved therapeutics that can counteract higher APE1 activity often seen in tumors. The IC50

values for inhibition of APE1 incision of depurinated plasmid DNA by lucanthone and hycanthone were 5 mM and 80 nM,
respectively. The KD values (affinity constants) for APE1, as determined by BIACORE binding studies, were 89 nM for
lucanthone/10 nM for hycanthone. APE1 structures reveal a hydrophobic pocket where hydrophobic small molecules like
thioxanthenones can bind, and our modeling studies confirmed such docking. Circular dichroism spectra uncovered change
in the helical structure of APE1 in the presence of lucanthone/hycanthone, and notably, this effect was decreased
(Phe266Ala or Phe266Cys or Trp280Leu) or abolished (Phe266Ala/Trp280Ala) when hydrophobic site mutants were
employed. Reduced inhibition by lucanthone of the diminished endonuclease activity of hydrophobic mutant proteins (as
compared to wild type APE1) supports that binding of lucanthone to the hydrophobic pocket dictates APE1 inhibition. The
DNA binding capacity of APE1 was marginally inhibited by lucanthone, and not at all by hycanthone, supporting our
hypothesis that thioxanthenones inhibit APE1, predominantly, by direct interaction. Finally, lucanthone-induced
degradation was drastically reduced in the presence of short and long lived free radical scavengers, e.g., TRIS and DMSO,
suggesting that the mechanism of APE1 breakdown may involve free radical-induced peptide bond cleavage.
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Introduction

APE1 (also termed Ref-1, APEX, HAP1, AP endo) is a

multifunctional protein with distinct activities assigned to different

parts of its structure. The N-terminal region is responsible for its

redox function, whereas the endonuclease activity is mediated by

the larger C-terminal portion [1–3]. APE1 is abundant in human

cells and accounts for nearly all of the apurinic/apyrimidinic (AP)

site cleavage activity found in cellular extracts [4]. APE1 has a

strong Mg2+ -dependent AP endonuclease activity, a 39-phospho-

diesterase activity, a 39-mismatch exonuclease activity, and in

addition to its DNA repair functions, a redox activity whereby it can

reduce a conserved cysteine residue in a target transcription factor,

e.g. AP-1 (Jun/Fos), to activate cognate DNA binding. APE1 also

stimulates the sequence-specific DNA binding activities of HIFa,

NFkB, Pax5, Pax8, Myb and related activating transcription factor/

cAMP – responsive element binding proteins [5].

APE1 incision activity is altered in response to radiation and

chemotherapy in medulloblastoma and primitive neuroectodermal

tumors [6]. Silber et al. also showed that APE1 repair activity,

which is increased by oxidative stress, contributes to resistance of

human glioma cells to alkylating agents [7]. Human glioma cell

lines that show lower APE1 expression were more sensitive to

methyl methanesulfonate (MMS) and H2O2, known inducers of

AP sites and single strand breaks in DNA [8]. Robertson et al [9]

have shown that over-expression of APE1 in NT2 cells confers
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resistance to bleomycin and radiation. Recently, we demonstrated

a correlation between APE1 and radiation sensitivity with glioma

cell culture models [10]. When APE1 was over-expressed in U251

cells, they became more radioresistant contingent on the level of

APE1 over-expression, whereas siRNA depletion of APE1 was

associated with radiation sensitivity. This correlation was reiter-

ated by recent studies where APE1 siRNA down-regulation in

either colorectal tumor cells in vitro or in a subcutaneous nude

mouse colon cancer model enhanced radiosensitivity as revealed

by increased apoptosis [11]. In addition to the siRNA studies, we

modulated APE1 repair nuclease function using two of its known

small molecule inhibitors, lucanthone (1-[2-diethylaminoethyla-

mino]-4-methylthioxanthen-9-one) [12] and CRT0044876 (7-

Nitroindole-2-carboxylic acid) [13], and showed that APE1

inhibition resulted in increased radiosensitivity.

Due to the dual function of APE1, several inhibitors are being

discovered which selectively inhibit either its DNA repair or redox

function. The DNA repair inhibitors include the indirect inhibitor

methoxamine (MX) [5,14] and the direct/indirect inhibitors such

as lucanthone and CRT0044876. The redox function (Ref-1)

inhibitors are soy isoflavones [15], E3330 [16–17] and its

benzoquinone and naphthoquinone analogues [18], PRNI-299

[19], BQP [20] and resveratrol [21]. Thus, recent efforts have

focused on the potential to strategically regulate APE1 protein

activity in cells, possibly through the use of small molecular

inhibitors, as a means of improving therapeutic agent response.

Lucanthone (CAS479-50-5) and hycanthone (CAS3105-97-3)

belong to a family of thioxanthenones and were originally

synthesized for use as anti-schistosomal drugs. They were also

determined to be DNA intercalators, and like actinomycin D,

inhibited RNA synthesis as well as the DNA processing enzymes

topoisomerases I and II [22]. The effects of lucanthone are

thought to be mediated by its bioactive metabolite, hycanthone

[23]. Hycanthone was shown to be a better anti-schistosomal [24]

agent than lucanthone. However, due to the negative side effects of

hycanthone, including acute hepatic necrosis [25], strong

mutagenicity [26] and weak carcinogenicity [27], the use of

hycanthone for treatment of human schistosomiasis has been

discontinued. Lucanthone, on the other hand, has been used to

treat schistosomiasis for almost 20 years before being replaced by

new drugs. Work by Turner et al [28] showed that radiolabeled

lucanthone was more concentrated in neoplastic tissue relative to

the surrounding muscle and skin. Since lucanthone is able to cross

the blood brain barrier and inhibit cell proliferation without

affecting normal non-cycling cells, the compound has been used as

an adjuvant for brain tumor radiotherapy [29] and is currently in

clinical trial.

Lucanthone is known to inhibit APE1 AP endonuclease activity,

without affecting its redox function [12]. Lucanthone is also

known to promote accumulation of AP sites in HeLa cells [30],

lesions that are substrates for APE1. Since Bailly et al [31] showed

that both lucanthone and hycanthone preferentially intercalate at

AT-rich sequences in DNA, APE1 may be prevented from

accessing the AP site due to the presence of DNA-bound

lucanthone/hycanthone. Alternatively, lucanthone may elicit its

inhibitory effect on APE1 incision activity via direct binding to the

protein. As previously reported APE1 structures (PDB ID: 2ISI,

1DEW and 1DE9) show the presence of a hydrophobic site lined

by Phe266, Trp280 and Leu282, overlapping the active site of the

protein, we hypothesized that hydrophobic molecules like

lucanthone/hycanthone would bind at these residues. In addition,

based on past evidence [32], we postulated that lucanthone/

hycanthone may induce protein oxidation due to the binding

capacity and other features of the compound. Data are presented

here in support of the idea that lucanthone and its structural

analogue hycanthone show very little, if any, inhibition of the

DNA (depurinated) binding capacity of APE1 and can indeed

predominantly inhibit APE1 endonuclease activity by direct

binding to the hydrophobic site and inducing cleavage of the

protein via oxidative damage.

Materials and Methods

Reagents
The U251-MG glioblastoma multiforme (GBM) cell line was a

kind gift from Dr. Dennis Deen of UCSF. These cells were

maintained in Eagle’s Minimal Essential Medium with 2 mM L-

glutamine and 1.5 g/L sodium bicarbonate, supplemented with

10% fetal bovine serum (FBS), and sub-cultured twice a week (1:3).

Cell culture media and FBS were obtained from Invitrogen

(Carlsbad, CA). APE1 protein was detected using polyclonal anti-

APE1 (Santa Cruz Biotechnology, Santa Cruz, CA) and tubulin

was detected using polyclonal anti-�-tubulin (Sigma-Aldrich, St.

Louis, MO). ECL kit from Invitrogen has anti-mouse and anti-

rabbit –HRP conjugated secondary antibodes which were used at

1: 30,000 dilution. Lucanthone and hycanthone (Figure S1)

obtained (in 1970s by Michael Waring) from Dr S. Archer,

Sterling-Winthrop Research Institute, Rensselaer, NY, were

maintained at 4C under hygroscopic conditions, and were

dissolved in sterile double distilled water just prior to reactions.

Plasmids consisting of full length APE-1 in pET15b and pCMV10

were kind gifts from Dr. T. Izumi and Dr. Hua Fung, of Louisiana

State Health Center, New Orleans, LA and Harvard Medical

School, Boston, respectively.

Cells extract preparation
0.5–1.56106 cells were resuspended in 200 ml of ice-cold 16cell

extraction buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA,

100 mM NaCl and 1 mM PMSF) and sonicated for 5–10 s in a

4uC bath sonicator (Sonifier Cell Disruptor, Plainview, NY) at a

setting of 20 mHz. The sonicates were centrifuged at 10,000 rpm

for 5 min at 4uC. Soluble and insoluble fractions were collected

(the insoluble pellet was resuspended in 200 ml of cell extraction

buffer) and assayed for APE1 protein and enzyme activity as

described below.

Expression and purification of full length APE1
E.coli BL21/DE3 were transformed with the pET15b plasmid

containing full length APE1 and these bacterial cultures (500 ml

YTB medium) were grown to OD600 of 0.6 and the full length

APE1 protein was successfully expressed and purified to 25–30 mg

protein/L (20 mM HEPES, 200 mM NaCl buffer pH 7.5) culture

according to method of Agarwal et al [33]. Additional stocks of

wild-type, full length APE1, and the APE1 mutant proteins (e.g.

F266A), were generated as described [34]. A pCMV-APE1

plasmid [19] was transfected into U251 cells using Lipofectamine

2000 as per manufacturer’s instructions followed by selection in

G418 as detailed in our recent paper [10] and clones selected for

APE1 overexpression.

SDS-PAGE and Western blot
Total purified protein concentration was determined by the

ratio of A280/A260. 250 ng of APE1 treated with lucanthone or

hycanthone (0.05–100 mM) for 2 h at 37uC in final volume of

30 ml were mixed with an equal volume of gel loading buffer

(0.001% bromophenol blue, 4% SDS, 10% 2-ME, 20% glycerol,

and 125 mM Tris pH 6.8) and denatured at 95uC for 5 min.

Total protein concentration in cell extracts was determined using

Thioxanthenones Inhibit APE1

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e23679



the Bradford assay (BioRad, Hercules, CA) and 25 mg of total

protein from soluble or insoluble cell fractions were mixed with an

equal volume of gel loading buffer (0.001% bromophenol blue,

4% SDS, 10% 2-ME, 20% glycerol, and 125 mM Tris pH 6.8)

and denatured at 95uC for 5 min. This mixture was separated by

SDS-PAGE (4% stacking, 7.5% resolving gel) for 2–3 h at 40 mA

on a BioRad MiniPROTEAN II Electrophoresis Cell. To detect

proteins, proteins were transferred onto a trans-Blot nitrocellulose

membrane (0.45 mm; BioRad) overnight at 4uC at 15 mA in

standard Tris-Glycine buffer containing 20% ethanol. Membranes

were probed using polyclonal anti-APE1 or polyclonal anti-�-

tubulin at 1/1,000 dilution in TTBS (0.1% Tween 20 in TBS

(pH 7.5)) with secondary, anti-rabbit HRP-conjugated antibody

used at 1/30,000 dilution to detect APE1 and �-tubulin protein

control. Chemi-luminescence was developed using an ECL kit

according to the manufacturer’s instructions and detected by

exposing the blot to HyperfilmECL for 30 s–3 min. (GE

Healthcare Biosciences, Piscataway, NJ).

APE1 Endonuclease activity
APE1 endonuclease activity was determined using an assay that

measures the conversion of plasmid DNA from supercoiled to

relaxed form by incision at an abasic site [35–36]. Briefly, the

substrate used was 200 ng of depurinated pUC18 DNA in 10 ml of

16APE1 buffer containing 50 mM Hepes, pH 7.4, 150 mM KCl,

5 mM MgCl2 and 100 mg/ml of BSA in presence of different

concentrations of the cell extract (1 ml containing 0–55 ng of total

protein). Similar reactions mixtures were set up with untreated

pUC18, which served as the internal control. This reaction

mixture was incubated at 37uC for 15 min, and the reaction was

stopped by addition of alkaline stop mix (0.25% bromocresol

green in 0.25N NaOH, 50% glycerol) and left at room

temperature for 10–15 min. Then the products were resolved on

a 0.8% agarose gel in 40 mM Tris-acetate and 2 mM EDTA for

2 h. The gel was stained with ethidium bromide to visualize

supercoiled and relaxed plasmid DNA and imaged with a digital

imaging system [37] and the area under the supercoiled and

relaxed form was determined. Final calculations were done in

femtomoles (fmol) of abasic sites incised/min/mg protein with

normalization done using Pyruvate Kinase units (PKU) present in

these extracts. Poisson distribution calculations were done on

supercoiled and relaxed bands to estimate incisions per plasmid

molecule and the resulting depurinated pUC18 had 1 AP site per

molecule. The endonuclease activity inhibition by lucanthone was

analyzed using standard Lineweaver-Burke Plot to determine if the

inhibition was competitive or non-competitive.

Cleavage of APE1 by lucanthone and CRT0044876
Western blotting was carried out by 7.5% SDS-PAGE of cell

extracts (20 mg total protein per lane) either from APE1

overexpresser clone 5 pretreated with 2.5–200 mM concentration

of lucanthone/CRT0044876 or recombinant APE1 for 2 h at

37uC in presence of protease inhibitor cocktail (2 tablets (Roche, #
11836153001) containing mixture of several protease inhibitors

with broad inhibitory specificity for serine, cysteine and metallo-

proteases in all systems, dissolved in 20 ml of APE1 buffer).

CRT0044876 was used as another APE1 small molecule inhibitor

with possible direct interaction between itself and APE1 [13].

Pretreatment of Ape1 overexpressor clone 5 cultures with 10 mg/

ml of cycloheximide (CHX) for 4 h prior to lucanthone/

hycanthone addition, was carried out to determine if these

thioxanthenones affected Ape1 protein synthesis. Radioquenchers

like 10 mM TRIS, ascorbic acid (100 mM), N-acetyl cysteine

(100 mM) (with recombinant APE1) or 1% DMSO (with cell

extracts) were used to inhibit the cleavage reactions.

Direct binding of APE1 to lucanthone/hycanthone
APE1 (and its hydrophobic mutants) and lucanthone/hycan-

thone reaction stoichiometry was studied using surface plasmon

resonance on a BIACORE 2000 apparatus (Biacore, GE

Healthcare, Sweden) at the protein core facility in SUNYSB, to

determine the affinity of the two drugs for APE1 (or ND40 APE1).

APE1 and its mutants (10 mg) (RUmax values were 9000 RU units

after immobilization) were immobilized on a CM5 chip by amine

coupling (as per the manufacturer’s instructions) and binding

experiments were performed at 20uC in 10 mM HBS-EP buffer,

pH 7.4. Lucanthone (or hycanthone) (20–700 mM) was injected as

analyte over the sensor chip in HBS-EP buffer at 10 ml/min. The

regeneration was achieved by 10 mM glycine-HCl, pH 3.0

between each analyte (drug) concentration.

Circular Dichroism
APE1 and its mutant proteins (10 mg/ml), 50 ml (500 mg)

(14 mM) in APE1 buffer (50 mM HEPES, pH 7.4, 150 mM KCl,

5 mM MgCl2), were mixed with lucanthone/hycanthone (1 mg/

ml), 50 ml (50 mg), 140 mM and incubated at 37uC for 60 min and

far UV-CD spectra were recorded at NSLS U11 beam line at

BNL. Lucanthone and hycanthone were also scanned as drug

controls. The scanning parameters used were a 0.001 cm path

length quartz cell, scanning wavelengths from 260 to 170 nm,

bandwidth of 0.5 nm, digital integration time of 1 s, time constant

of 200 ms, step size of 1 nm, and sensitivity of 200 mV. The data

were corrected with blank subtraction from APE1 buffer alone.

The secondary structure for APE1 with or without lucanthone or

hycanthone was analyzed using CDSSTR program DICHRO-

WEB [38].

MALDI-TOF
100 nM of APE1 protein was treated with 100 mM of

lucanthone, hycanthone or CRT at 37uC for 2 h and 24 h and

analyzed on sinipinic acid matrix on a Voyager-DE STR (Applied

Biosystems) MALDI-TOF instrument at the Proteomics facility at

SUNYSB in a linear mode.

Ape1 fragment identification by MALDI-TOF and LC/MS
The full length APE1 and its 25 kDa fragment were digested in

gel by trypsin and analyzed by MALDI-TOF and LC/MS.

Voyager-DE STR (Applied Biosystems) MALDI-TOF instrument

at the Proteomics facility at SUNYSB in a reflector mode was used

and the matrix was Alpha-cyano-4-hydoxycinnamic Acid (CHCA).

Docking studies
The screening used the AutoDock suite of programs [39–41].

The screening was driven by a set of scripts described in Mezei et al

[42]. Models of lucanthone and hycanthone were generated with

Marvin Sketch (figure S1) (ChemAxon, Budapest, Hungary), and

the structures optimized with the semiempirical AM1 method, as

implemented in Gaussian-03 [REF_G] – the script set referred to

above includes utilities to create the Gaussian input and the

extraction of the optimized coordinates. The terminal amine was

protonated, as determined previously and the overall structures

were in good agreement with the X-ray structure of hycanthone

[43]. The protein structure was obtained from the Protein Data

Bank (PDB ID: 2ISI). Assignment of atom types, and partial charges

(using Gasteiger –Marsili method) and merging of non-polar

hydrogens with their carbons was performed with AutoDockTools

Thioxanthenones Inhibit APE1
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(http://mgltools.scripps.edu/downloads). The generation of the

energy grids, the preparation of ligand files for docking and the

actual docking was driven by a script that keeps a user-defined

number of docking jobs running on different processors of our SGI

cluster [42].

Dockings were based on a 1266106*126 grid, with grid spacing

of 0.375 Å that targeted the hydrophobic pocket lined by

hydrophobic amino acids Trp280, Phe266 and Leu282. The

minimization resulting in docked poses was performed using

Lamarckian genetic algorithm (LGA) and pseudo-Solis and Wets

method. Each LGA job consisted of 200 runs with 270, 000

generations in each run and maximum number of energy

evaluations of 2,000,000. After clustering of the docked poses by

Autodock the program Dockres (URL: http://inka.mssm.edu/

,mezei/dockres) sorted cluster representatives of the docked poses

and extracted the list and coordinates of the top-scoring ones in

complex with the target protein.

Molecular dynamics (MD) simulations
The docking top-scoring poses APE1-lucanthone and APEI-

hycanthone were solvated, using VMD [44], in a water box

extending 10 Å beyond the edge of the complex in all directions,

using the TIP3P water model [45]. The system was neutralized

with chloride ions and consisted of a total of ,36,100 atoms. MD

calculations were performed with NAMD [46] using the

AMBER99SB force field [47]. The ligand parameters were

determined with ANTECHAMBER [48] using the General

Amber Force Field (gaff) [49]. Partial atomic charges were

determined with the AM1-BCC method. The systems were

energy minimized with 10,000 steps of conjugate gradient energy

minimization, followed by gradual heating from 0 to 310 K in

30 ps, and then maintained at constant temperature and pressure

(1.01325 bar). The simulations were carried with periodic box

conditions, with a 2 femptosecond time step, a uniform dielectric

constant of 1, a 1–4 scaling value of 0.833333, a cutoff of non-

bonded forces with a switching function starting at 10 Å and

reaching 0 at 12 Å, PME with a tolerance of 1026, and all bonds

involving hydrogens constrained with the SHAKE algorithm. A

production run was performed for 30 ns and the trajectories were

analyzed with VMD.

EMSA assay
In order to elucidate whether lucanthone and hycanthone could

inhibit APE1 by interfering with APE1-DNA interaction through

their DNA intercalation ability, we measured the DNA binding

capacity of APE1 in the presence of lucanthone and hycanthone

by incubating different concentrations of APE1 (10 nM and

25 nM) with 100 mM of lucanthone and/or hycanthone for

30 min and subsequently incubating the mixture with 25 nM of

THF-containing substrate at 25uC in binding buffer (50 mM

HEPES, pH 7.5, 150 mM NaCl, 0.1 mg/ml BSA, 0.5 mM

EDTA and 1 mM DTT) for 30 min. THF stands for tetrahydro-

furan that represents a synthetic abasic site. This is commonly

inserted into an oligonucleotide substrate for measuring APE1

cleavage activity. 59-incision of THF by APE1 results in a residue

that mimics reduced 59-deoxyribose phosphate group. Since THF

group lacks the 19-OH group, it blocks b-elimination that is

required for mediating any dRP lyase activity. The sequence of the

APE1 substrate with THF group is 59CTGCAGCT-

GATGCGCFGTGCGGATCCGGTGC-39 as described by Liu

et al [50].

APE1-DNA complex was then separated from unbound

substrate DNA by electrophoresis under native conditions in a

1% agarose-0.1% acrylamide gel at 4uC for 1.5 h as described

previously [50–51].

Results

Lucanthone/hycanthone promotes APE1 cleavage
Previously, we created an APE1 overexpressor glioma cell line,

the U251 1–5 clone [52], to determine the contribution of APE1

to radio-resistance. Since past studies had shown that lucanthone

inhibits DNA and RNA synthesis [53] [54] with or without

affecting protein synthesis [53], we determined the effect of

lucanthone on APE1 protein expression in the U251 1–5 APE1

overexpressor cell line pre-treated with 10 mg/ml cycloheximide

(CHX) (a protein synthesis inhibitor) for 4 h. We found that de

novo APE1 synthesis was not affected significantly, as seen by the

near normal levels of intact APE1 in CHX treated cells (Figure 1).

However, lucanthone and hycanthone were found to induce

cleavage of APE1 as seen by the formation of a 25 kDa fragment.

To begin to define the mechanism of cleavage, we treated whole

cell extracts from the U251 1–5 APE1 overexpressor clone with

increasing concentrations of lucanthone (2.5–100 mM) and

examined APE1 protein stability in the presence of a protease

inhibitor cocktail. We found that lucanthone at 50 and 100 mM

caused APE1 cleavage and/or degradation as evidenced by a

decrease in the full-length 35.5 kDa fragment and an increase in a

,25 kDa fragment (Figure 2). These data suggested a direct effect

of lucanthone on APE1 protein integrity, as effects on gene

expression are not relevant in this paradigm. It is highly unlikely

that the drug preparation was contaminated with a protease, as the

compound was synthesized by organic methods de novo and

handled to avoid any protease contamination. In addition, we

found no evidence of non-specific degradation of other control

proteins, such as tubulin and human NTH1 (human Nth was used

as a DNA repair enzyme control, since like APE1, human Nth has

a disordered N-terminus; data not shown).

Figure 1. Lucanthone/Hycanthone promotes APE1 cleavage in
presence of CHX and this cleavage is inhibited by 1% DMSO.
Western blot of total cell extract from APE1-5 overexpresser clone
pretreated with 10 mg/ml of cycloheximide for 4 h followed by 25–
100 mM lucanthone/hycanthone for 2 h (12.5 mg of total cell protein
loaded per lane).
doi:10.1371/journal.pone.0023679.g001
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We next determined the effect of lucanthone, as well as CRT, a

commercially available APE1 inhibitor modeled to bind at the

hydrophobic site of the protein [13], on the stability of APE1 and

tubulin in the presence of a protease inhibitor cocktail. As shown

in Figure 3, we found that lucanthone caused cleavage of APE1 at

50 mM in U251 1–5 whole cell extracts, whereas for similar

cleavage to occur with CRT, we needed to use 200 mM of the

inhibitor. The tubulin protein was unaffected by lucanthone, but

showed some shift in its migration at 200 mM CRT.

Recombinant full length APE1 is also cleaved by
lucanthone

To further delineate the mechanism of lucanthone-induced

cleavage, studies were performed with recombinant full length

APE1 protein. When the recombinant protein was treated with

10–50 mM lucanthone at 37uC for 2 h, we observed an increase in

the formation of the 25 kDa fragment and a corresponding

decrease in AP endonuclease activity (Figure 4A and 4B). When

we studied the kinetics of inhibition shown by lucanthone, we

found that lucanthone appeared most likely to be a non-

competitive inhibitor of APE1 (Figure 4B). When human Nth

was treated with lucanthone, we did not observe any cleavage

(data not shown), indicating specificity for APE1. These data imply

that lucanthone directly binds to APE1.

As we observed that lucanthone/hycanthone induced cleavage

of APE1, we determined if this cleavage might be due to oxida-

tive damage of the peptide bonds in the protein. We therefore per-

formed an experiment in the presence of the short and long lived

radical quenchers: 10 mM (final) tris(hydroxymethyl)aminomethane

(TRIS), 100 mM ascorbic acid or 100 mM N-acetyl cysteine (for

purified APE1 protein) and 1% DMSO (for APE1 protein from

overexpressor cell extracts), and found that lucanthone-induced

cleavage of APE1 was significantly inhibited (Figure 5 and Figure 6).

As lucanthone is made of a strong hydrogen bonding acid, a

Figure 2. Lucanthone promotes APE1 cleavage in presence of protease inhibitor. Western blot of APE1 over expresser clone 5 pretreated
with increasing (2.5–100 mM) concentration of lucanthone in presence of protease inhibitor cocktail for 2 h at 37uC (10 mg of total cell protein loaded
per lane). An arrow indicates the corresponding increase in APE1 25 kDa fragment in last two lanes with a decrease in 35.5 kDa APE1 protein.
doi:10.1371/journal.pone.0023679.g002

Figure 3. Lucanthone/Hycanthone promote APE1 cleavage at
lower concentration than CRT. Western blot of APE1 over expresser
clone 5 pretreated with increasing concentration of lucanthone (2.5–
100 mM) and CRT0044876 (2.5–200 mM) in presence of protease
inhibitor cocktail for 2 h at 37uC (10 mg of total cell protein loaded
per lane). The corresponding decrease in 35.5 kDa APE1 protein band
and increase in 25-kDa-degradation product is indicated by the arrows.
doi:10.1371/journal.pone.0023679.g003

Figure 4. Lucanthone promotes APE1 cleavage in vitro by
possible non-competitive binding. A. Recombinant APE1 protein
(250 ng) treated with 10–50 mM lucanthone at 37uC for 2 h, the
numbers in italic font represent fold change in APE1 and its 25 kDa
fragment as measured by area analysis using Image J quantification
program. B. Lineweaver-Burke plot for endonuclease assay determina-
tions as detailed in Materials and Methods. Units of 1/v were min/
fmoles of abasic sites incised and for 1/[S] was inverse of nM of
depurinated plasmid DNA.
doi:10.1371/journal.pone.0023679.g004
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secondary amine and two proton bonding bases (the carbonyl and

tertiary amine substituent) and is known to possess a strong

intramolecular amino carbonyl hydrogen bond [32], which can

possibly attack the amide linkage in APE1, this may be one of the

ways it can affect APE1 integrity.

APE1 directly interacts with lucanthone and hycanthone
CD spectral studies revealed considerable conformational

changes in APE1 in the presence of either lucanthone or

hycanthone, indicating a direct physical interaction between the

protein and small molecule (Figure 7). In particular, a significant

change in the helical portion of the protein was evident, as seen by

a decrease in the average helical length per segment (Table 1).

To further characterize the apparent molecular interaction

between APE1 and lucanthone/hycanthone, direct binding studies

were undertaken using measurements of surface plasmon reso-

nance relative response units (RU) on a BIACORE 2000, which

can determine the binding constant, as well as the rates and the

stoichiometry of the reaction [48]. In these experiments, a very

good binding response was observed between APE1 and

hycanthone (Figure 8, top), with weaker binding to lucanthone

(Figure 8, bottom). The association phase was weak for lucanthone

(see Figure 8, bottom and Table 2), whereas for hycanthone there

was a much stronger association, with the ka and kd of full length

APE1 being about 10-fold higher and 100-fold lower, respectively,

for hycanthone. The spike in RU value seen with lucanthone may

be due to the initial injection coupled with poor binding, which

causes an uneven plateau formation (these seen also figure S2);

when higher concentration was used, a clear plateau was seen

(figure S2). The negative values seen for lower concentrations of

lucanthone are most probably due to very poor interaction of

lucanthone with APE1 under BIACORE binding conditions,

which when compared to buffer control resulted in no surface

plasmon resonance. As the drugs were dissolved in distilled water,

we did not see any precipitation until 1 mM. The APE1:

lucanthone/hycanthone stochiometry appeared to be close to 1

for hycanthone, but may have been lower for lucanthone. ‘‘r’’

versus Cfree plot was done to determine the differences in affinity

of lucanthone and hycanthone and it was clear that hycanthone

had much higher binding affinity as compared to lucanthone.

Lucanthone Cleavage site identification with LC/MS
Preliminary data with sequence identification of APE1 protein

(sample 1) and its 25 kDa fragment (sample 3) found the cleavage

site to be between amino acid (aa) 53–63 resulting in about a

20 kDa fragment as shown in Figure 9. Peptide analysis of aa 64–

73 reveals that sample 3 begins at aa 64 and that this peptide is

about 100 times lower in concentration in sample 3. Peptide

analysis of aa 282–299 reveals that sample 3 ends after aa 299.

Peptide aa 53–63 is not present in sample 3. It appears that the

degraded protein (sample 3) has peptide present from aa 64 until

at least aa 299. Peptide aa 53–63 is not present, suggesting that the

cut/degradation is in the vicinity of aa 53–63. The precise N-

terminal sequence identification is needed to get the exact cleavage

site and studies are under way to determine that site.

Degradation of APE1 by lucanthone and hycanthone
MALDI TOF analysis was undertaken for samples analyzed

previously (SDS-PAGE/western blot; see earlier) to determine the

nature of the APE1 protein fragments in the presence of

lucanthone, hycanthone, or CRT at 37uC for 2 or 24 h. These

studies revealed steady degradation of APE1 into smaller

fragments (Figure 10) by lucanthone with time; the signal of the

parent 35.5 kDa peak was also significantly reduced, consistent

with APE1 breakdown. CRT treatment at the same concentration

resulted in much less cleavage of APE1, with the 35.5 kDa peak

remaining almost intact, particularly at 2 h, and only a couple of

smaller fragments of 10, 12 and 17 kDa appearing at 24 h.

Hycanthone showed cleavage of APE1 as evidenced mainly by 10,

11 and 17 kDa peaks, without the other smaller fragments seen

with lucanthone. By 24 h at 37uC, the full length APE1 peak was

almost completely degraded in the lucanthone/hycanthone

treated samples, whereas there was still an intact 35.5 kDa peak

with CRT (Figure 10). Even though we saw cleavage of

recombinant APE1, we did not see the 25 kDa fragment observed

Figure 5. Lucanthone promotes APE1 cleavage in vitro which is
inhibited by TRIS. Western blot of recombinant APE1 protein
(250 ng) treated with 10–50 mM lucanthone at 37uC for 2 h in absence
and presence of radical quencher, 10 mM Tris-HCl, pH 7.4.
doi:10.1371/journal.pone.0023679.g005

Figure 6. Thioxanthenones and CRT cleavage of APE1 is
inhibited by Ascorbic acid but not by N-Acetyl cysteine.
Western blot of recombinant APE1 protein (250 ng) treated with
100 mM of radical quenchers, NAC and Ascorbic acid and 100 mM of
lucanthone (L)/hycanthone (H) or 200 mM of CRT (C) at 37uC for 2 h.
doi:10.1371/journal.pone.0023679.g006

Figure 7. Lucanthone and hycanthone directly alter APE1
conformation. CD spectra of APE1 in presence of lucanthone and
hycanthone as described in materials and methods, which was analyzed
by Dichroweb program CDSSTR.
doi:10.1371/journal.pone.0023679.g007
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in the extract studies or recombinant protein experiments

described above (Figures 1 and 4). However, as we did see

fragments of 10–17 kDa on MALDI, it is possible that the 25 kDa

fragment degraded into these smaller fragments during the

analysis.

Molecular docking of lucanthone and hycanthone at the
hydrophobic site of APE1

To examine possible binding modes of lucanthone and

hycanthone with APE1, in silico molecular docking was performed

with the AutoDock suite of programs (Figure 11). To account for

the flexibility of structural elements and aa side chains, the top-

scoring pose of each ligand (based on the energy evaluation of

AutoDock and clustering of the poses) was fully solvated and

submitted to a 30 ns MD simulation. After an initial equilibration

in which the protein side chains and the ligand re-adjusted their

positions, the ligands were in a stable conformation for up to the

30 ns simulated, undergoing an average rmsd ,2 Å for the second

half of the simulation (data not shown). Overall, the docked

complexes of APE1-lucanthone and APE1-hycanthone superpose

with the MD simulated structures with an r.m.s.d. (root mean

square deviation) of 1.8 Å/1.7 Å (Figure 12A and B). Lucanthone

binds deep in the hydrophobic pocket (Figure 12A), interacting

with the protein mainly via apolar contacts. The phenyl group of

lucanthone forms a parallel-displaced pi-stacking interaction to

Phe266, while the carbonyl group forms a transient hydrogen

bond with Thr268, with a average distance of 3.4 Å between

donor and acceptor throughout the simulation. The long flexible

side chain of the tertiary amine of lucanthone extended to the

DNA binding groove. The hycanthone binding site was shifted

towards the DNA binding groove and the unsubstituted ring was

buried in the hydrophobic pocket of the protein, in a position to

form a parallel pi-stacking interaction with Phe266. The hydroxyl

group of hycanthone formed a stable hydrogen bond with His309,

while the oxygen atom was stably coordinated with the APE1

bound magnesium cation (Figure 12B). The flexible side chain of

hycanthone extended into the solvent and made no protein

contacts.

Hydrophobic site mutants do not undergo dramatic
conformational changes in the presence of lucanthone

In light of the docking studies above, and since previous APE1

inhibitors (e.g. CRT and L-DOPA) were postulated to interact in

a similar manner with the protein [13,55], we determined

whether mutating a single hydrophobic site residue, Phe266 to

Ala/Cys (F266A or F266C), or mutating two hydrophobic

residues, Phe266Ala/Trp280Ala (F266A/W280A), would pre-

vent the lucanthone-induced conformational changes in APE1.

Bovine serum albumin (BSA) was included as a non-specific

protein control and the active site APE1 mutant Asp210Arg

(D210N) was included as a non-hydrophobic site control,

presenting the same binding ability but failing to cleave the

DNA. Human NTH1 and E.coli endonuclease IV (Nfo) were

used as other DNA repair enzyme controls. As shown in

Figure 13, lucanthone was able to induce conformational

changes in the wild type and D210N active site mutant APE1

proteins, but altered the hydrophobic site mutant protein F266A

or F266C to a lesser extent, while inducing almost no

conformational change in the double mutant F266A/W280A.

Lucanthone also caused little conformational changes on human

Nth and E.coli Nfo. These data indicate the importance of the

hydrophobic site residues F266 and W280 in binding the small

molecule inhibitor, and support the binding mechanism pro-

posed by molecular modeling.

Hydrophobic site mutants are not cleaved by lucanthone
and show lower inhibition of their endonuclease activity
in the presence of lucanthone

As we found that F266A, F266C or F266A/W280A proteins did

not undergo a significant conformational change in the presence of

lucanthone, we hypothesized that due to impaired binding,

lucanthone would show a lesser effect on protein cleavage and

endonuclease incision efficiency [34]. As seen in Figure 14A and

B, all the hydrophobic site mutants, except W280S, did not

undergo cleavage (this W280S mutant also showed conformational

change, figure S3), whereas the active site mutant D210N,

His309Ser (H309S) and His309Arg (H309N) were degraded. In

addition, lucanthone caused a corresponding inhibition of the

endonuclease activity of wild type, but no inhibition was detected

for the already reduced activity of the single mutants (F266A or

W280S), whereas the effect on endonuclease activity of the double

hydrophobic mutant’s endonuclease activity could not be detected,

as this double mutant (F266A/W280A) had very reduced activity

as reported earlier [56].

Lucanthone and hycanthone only marginally inhibit the
DNA binding capacity of APE1

As lucanthone and hycanthone are well known DNA inter-

calators, preferentially intercalating at AT rich sites in DNA, we

determined whether inhibition of APE1 endonuclease activity was

due to compound-DNA interactions, which may block APE1

access to the abasic substrate. The results from a gel mobility shift

assay demonstrated that both lucanthone and hycanthone, which

were pre-incubated with the protein prior to incubation with the

substrate DNA, only marginally inhibited or failed to inhibit APE1

DNA binding capacity as shown in Figure 15.

Table 1. Changes in APE1 conformation in presence of lucanthone and hycanthone.

Sample Helix 1 Helix 2
Av. helix length
per segment Strand 1 Strand 2

Av. strand length
per segment Turns Unordered

APE1 0.01 0.069 4.512 0.261 0.140 5.791 0.126 0.394

APE1 +Luc 0.00 0.071 4.053 0.262 0.140 5.762 0.125 0.403

APE1 +Hyc 0.00 0.069 4.020 0.267 0.141 5.799 0.124 0.399

Differences in CD conformation in presence of Lucanthone and Hycanthone. Data in Table 1 represent the CD analysis of APE1 in presence of lucanthone and
hycanthone (Figure 7) which are shown as changes in a helix, b sheet and unordered conformation of APE1 protein. APE1 protein (5 mg/ml), 50 ml (250 mg) in APE1
buffer (50 mM HEPES, 150 mM KCl, 5 mM MgCl2), was mixed with lucanthone/hycanthone (1 mg/ml), 50 ml (50 mg), incubated at 37uC for 60 min and far UV-CD spectra
were recorded at NSLS U11 beam line at BNL. These data are representation of three independent repeats.
doi:10.1371/journal.pone.0023679.t001
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Discussion

Our recent studies [10] showed that APE1 plays a significant

role in the survival of the glioblastoma cell line U87 as compared

to U251. Indeed, we found a direct correlation between the level

of APE1 expression and radio-resistance. In addition to our APE1

overexpressor studies with the radio-sensitive cell line U251, we

also showed that suppressing APE1 protein levels with the small

molecule inhibitor lucanthone caused radio-sensitization. Lucan-

thone was chosen as an APE1 inhibitor for several reasons: It is in

a Phase I clinical trial for tumor radiotherapy, its side effects are

almost negligible, and it can inhibit APE1 endonuclease activity

without affecting its redox function. However, as lucanthone has

good DNA intercalation ability, we hypothesized that the final

outcome of APE1 inhibition might be due to a fine balance

between direct and indirect effects. Thus, we sought to elucidate

the mechanism of APE1 endonuclease inhibition by lucanthone.

As APE1 has a well-characterized hydrophobic site within its

active site, we hypothesized those small hydrophobic molecules

like lucanthone may stack in this site through van der Waals

interactions and thus alter the active site causing repair

endonuclease inhibition. When we treated U251 1–5 glioma cells

with increasing concentrations of lucanthone, we observed a

concentration-dependent decrease in the normal 35.5 kDa APE1

protein band, along with an increase in a 25 kDa fragment. Since

this fragmentation was seen in the presence of protease inhibitors,

it is not likely the result of enzyme-mediated proteolysis, but may

occur due to a direct effect of lucanthone on the APE1 protein. We

reproduced the finding of lucanthone induced APE1 degradation

with purified recombinant protein, indicating that the cell

machinery was not required for the cleavage event. MALDI

TOF analysis of APE1 protein treated with lucanthone or

hycanthone revealed a significant degradation of the 35.5 kDa

peak and lower molecular weight species, although the 25 kDa

fragment could not be found. This observation may suggest that

the 25 kDa fragment is further degraded into smaller fragments.

Sequencing of the 25 kDa APE1 fragment by MALDI TOF

indicated the approximate cleavage site to be between aa 53–63.

Our finding that short and long lived free radical quenchers, such

as TRIS, ascorbic acid and DMSO, inhibit this degradation

implies that protein fragmentation may be facilitated through a

Figure 8. APE1 binds directly with lucanthone and hycanthone
with different affinities. APE1 protein (100 mg) (ligand) was
immobilized on carboxymethyl-5 (CM-5) chip by amine coupling
according to manufacturer’s instructions. Hycanthone (top figure)
(analyte) and lucanthone (analyte) (lower figure) (analyte) at different
concentrations (as shown as numbers representing mM values) were
tested for binding to APE1 on BAICORE 2000 SPR measurement system
available at SUNYSB proteomics core facility. The observed maximum
response (RU) was determined by direct curve fitting of the obtained
data assuming a 1:1 interaction model. The third sub figure shows plot
of r (RU/RUmax) versus Cfree. Binding studies were carried out 3 times
and data presented are representative of those 3 separate experiments.
doi:10.1371/journal.pone.0023679.g008

Table 2. Kinetics of lucanthone and hycanthone binding to
APE1.

Inhibitor Conc (mM) RUligand RUmax ka (1/Ms) kd (1/s) KD (nM)

LUC 20 282 91 878 7.7661025 89

40 226

80 2.5

160 77

320 94

640 62

HYC 22 24 90 90 8.961027 10

44 45

88 78

176 79

352 90

704 118

Hycanthone shows higher binding affinity as compared to Lucanthone. Data in
Table 1 show affinity analysis of lucanthone (LUC) and hycanthone (HYC)
binding to APE1 immobilized on CM5 chip (Figure 6A and 6B) using
BIAsimulation software available at the Biacore facility at SUNYSB.
RU = Resonance units are measure of changes in refractive index;
ka = association constant; kd = dissociation constant and KD = Affinity constant.
These data are representation of two independent repeats.
doi:10.1371/journal.pone.0023679.t002
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free radical mediated peptide bond cleavage reaction. The lack of

inhibition of this cleavage by N-acetyl cysteine may indicate that a

higher concentration of this free radical quencher may be needed

or that thioxanthenones are able to render this quencher

ineffective.

Our molecular docking, biochemical and biophysical studies,

including those using various hydrophobic site and active site

mutant APE1 proteins, support our hypothesis that lucanthone

docks at the hydrophobic site. Furthermore, another APE1

inhibitor study found that several potent APE1 inhibitors contain

two negatively charged ionizable groups separated by a hydro-

phobic core [57], features characteristic in lucanthone/hycan-

thone. As recently shown for the phenyl ring of the APE1

inhibitor, 6-hydroxy-DL-DOPA [55], the tri phenyl ring of

lucanthone could form a pi stacking interaction to Phe266. Since

our binding studies revealed that the Ka for hycanthone is about 8-

fold higher than lucanthone, additional interactions between the

former compound and the APE1 active site can be implied.

Indeed, molecular docking revealed that in addition to key non-

covalent van der Waals interactions seen with lucanthone, the

extra hydroxyl groups of hycanthone can hydrogen bond with

His309 and coordinate the APE1 bound magnesium cation. Our

experimental studies found that lucanthone exhibited a lesser

effect on the conformational status of the APE1 single hydropho-

bic site mutants F266A and F266C, and almost no effect on the

double hydrophobic mutant F266A/W280A, consistent with no

cleavage or significant effect on the endonuclease activity of these

mutants (Figure 12A and B). However, surprisingly, we did see

significant cleavage with W280S indicating that replacing the

tryptophan residue with a serine did not alter the lucanthone

induced cleavage. This is in stark contrast to the dramatic

inhibition observed when phenylalanine was replaced by an

alanine or cytosine, presumably reflecting lucanthone being able to

bind the phenylalanine residue at 266 (as well as leucine at 282).

Figure 9. Identification of an approximate lucanthone cleavage site in APE1. LC/MS/MS identification of APE1 fragment after treatment
with 100 mM of lucanthone for 2 h at 37uC. The data were analyzed with Inspect. A). Peptide aa64–73 analysis of 35.5 Kda (Sample 1) and 25 kDa
(Sample 3). B). Elution profile of peptide aa64–73 in sample 1 and 3. C). Peptide aa282–299 analysis of 35.5 Kda (Sample 1) and 25 kDa (Sample 3). D).
Peptide aa53–63 analysis of 35.5 Kda (Sample 1) and 25 kDa (Sample 3). B). Elution profile of peptide aa53–63 in sample 1 and 3.
doi:10.1371/journal.pone.0023679.g009
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Figure 10. Lucanthone, Hycanthone and CRT cause APE1 degradation. Mass spectroscopic (MALDI-TOF) analysis of APE1 in presence of
lucanthone and CRT as described in materials and methods. APE1 (100 mM) was treated with 100 mM lucanthone and CRT for 2 h and 24 h and
changes in its mass was determined as described in Materials & Methods.
doi:10.1371/journal.pone.0023679.g010
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Apparently F266 is the more critical residue involved in

lucanthone binding.

We used another APE1 specific inhibitor CRT0044876 as a

control, as it was modeled to bind to the hydrophobic site [13].

However, the effects of this inhibitor are unclear, as recent data on

CRT have shown that its specificity for APE1 is controversial [58–

60]. Nonetheless, in our cell system, CRT could inhibit APE1

protein at high concentrations (200 mM), as opposed to the

inhibition we observed by lucanthone at 50 mM. The MALDI

analysis also revealed clear degradation of APE1 in the presence of

100 mM lucanthone by 2 h, whereas at the same concentration,

CRT0044876 did not cause degradation of APE1 until 24 h.

These studies indicate that lucanthone and hycanthone are more

potent APE1 inhibitors than CRT0044876.

As lucanthone and hycanthone were first used as DNA

intercalators with good anti-tumor activity, another aspect of the

inhibition of APE1 endonuclease activity likely involves an

indirect effect. For instance, like the indirect effect seen for

lucanthone or IA-5 on Topoisomerase II [61], the lucanthone–

DNA intercalation may cause a distortion in DNA, leading to an

Figure 11. Lucanthone and hycanthone docks at hydrophobic site in APE1. A) The lowest energy pose of docked APE1/lucanthone (gray)
superposes with the structure of the complex post 30 ns of MD simulation with an r.m.s.d. of 1.8. Å. B) docked APE1/hycanhone (gray) superposes
with the structure of this complex post 30 ns of molecular dynamics simulation with an r.m.s.d. of 1.7. Å.
doi:10.1371/journal.pone.0023679.g011

Figure 12. Molecular Dynamics simulation of APE1-bound Lucanthone and Hycanthone. A: lucanthone (magenta sticks) binds in the
hydrophobic pocket of Ape1, represented by its solvent accessible surface. Ape1 interacts with lucanthone mainly via apolar contacts with W280, pi-
stacking with F266, and M270. Additionally, a hydrogen bond forms between the carbonyl oxygen and T268. B) Hycanthone (magenta sticks) binds in
the DNA groove/hydrophobic pocket of APE1. In addition to apolar contacts and pi-stacking with F266, it forms a hydrogen bond with His309 and
coordinates with the APE1-bound magnesium cation (represented as gray sphere).
doi:10.1371/journal.pone.0023679.g012
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Figure 13. Lucanthone does not alter conformation of double hydrophobic site APE1 mutant, human Nth and bacterial Nfo
proteins. CD spectra of APE1 and its mutants in presence of lucanthone. APE1- hydrophobic site mutant proteins F266A/C, F266A/W280A, active site
mutant D210N and non-related BSA protein or human Nth or E.coli Nfo(10 mg/ml), 50 ml (500 mg) (14 mM) in APE1 buffer (50 mM HEPES, 150 mM
KCl, 5 mM MgCl2), was mixed with lucanthone (1 mg/ml), 50 ml (50 mg) (140 mM), incubated at 37uC for 60 min and far UV-CD spectra with
specifications.
doi:10.1371/journal.pone.0023679.g013
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impaired recognition of an abasic site by APE1. However, it is

important to note that researchers have found no quantitative

correlation between the ability of thioxanthenones to bind DNA

and their antitumor ability [62], indicating that DNA interca-

lation is not sufficient for antitumor activity. These studies

therefore indicate an important role for other macromolecules

like proteins, such as DNA repair enzymes and accessory factors

like HMGB1, in the potency of these compounds. Since the

DNA binding ability of APE1 was only marginally altered by

lucanthone and not by hycanthone, our data indicate that the

effect of lucanthone is more likely due to its direct effect on the

enzymology of APE1. Although lucanthone induced cytotoxicity

has been attributed more to inhibition of Topo II [63], our

present study, along with the past biochemical and cellular

effects reported, indicate that APE1 is likely an important

biological target. We therefore believe that APE1 may be

developed as a biomarker for lucanthone-based treatment

efficacy and that these studies provide a molecular framework

for the design of more efficacious and clinically safe thiox-

anthenones.

Figure 14. Lucanthone causes cleavage of APE1 with intact hydrophobic site. (A). Western blot of recombinant and mutant APE1 proteins
(upper panel) treated with 100 mM lucanthone (lower panel) at 37uC for 2 h. (B). Endonuclease activity inhibition of wild type and F266A mutant of
APE1 in presence of 100 mM of lucanthone for 2 h at 37uC.
doi:10.1371/journal.pone.0023679.g014
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Supporting Information

Figure S1 Lucanthone (left) and Hycanthone (right). The

Molecular structure was generated with Marvin Sketch.

(TIF)

Figure S2 Lucanthone binding with APE1 reached
saturation at higher concentration. APE1 protein (100 mg)

(ligand) was immobilized on carboxymethyl-5 (CM-5) chip by

amine coupling according to manufacturer’s instructions. lucan-

thone (analyte) with higher concentration (20–1325 mM) was

tested for binding to APE1 on BAICORE 2000 SPR measurement

system available at SUNYSB proteomics core facility.

(TIF)

Figure S3 CD spectra of APE1 and its mutant W280S in
presence of lucanthone. APE1/W280 S (10 mg/ml), 50 ml

(500 mg) (14 mM) in APE1 buffer (50 mM HEPES, 150 mM KCl,

5 mM MgCl2), was mixed with lucanthone (1 mg/ml), 50 ml

(50 mg) (140 mM), incubated at 37uC for 60 min and far UV-CD

spectra with specifications taken as described previously.

(TIF)
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Figure 15. Lucanthone and Hycanthone do not significantly affect the DNA binding capacity of APE1. Gel mobility shift assay for
determining the effect of lucanthone and hycanthone on DNA binding capacity of APE1. APE1 at 10 nM and 25 nM was mixed with 100 mM
lucanthone or 100 mM hycanthone in the buffer that contained 50 mM HEPES, 150 mM KCl, 0.1 mg/ml BSA, 0.5 mM EDTA and 1 mM DTT. The
mixture was incubated at room temperature for 30 min. Subsequently, 10 nM radiolabeled substrate that contained an abasic site was added in the
mixture and incubated with the enzyme for additional 30 min to allow binding of APE1 to the substrate. 8 ml binding mixture was subject to
electrophoresis at 4uC, 100 V for 1.5 h in a 1% agarose–0.1% acrylamide gel. The gel was then dried on DE81 paper, and APE1-DNA complex was
detected by phosphorimager as described previously [52].
doi:10.1371/journal.pone.0023679.g015
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