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ARTICLE
Translational Therapeutics

Regorafenib is effective against neuroblastoma in vitro and
in vivo and inhibits the RAS/MAPK, PI3K/Akt/mTOR and
Fos/Jun pathways
Divya Subramonian1, Nikki Phanhthilath1, Hannah Rinehardt1, Sean Flynn1, Yuchen Huo1, Jing Zhang2, Karen Messer2, Qianxing Mo3,5,
Shixia Huang3, Jacqueline Lesperance1 and Peter E. Zage1,4

BACKGROUND: Regorafenib is an inhibitor of multiple kinases with aberrant expression and activity in neuroblastoma tumours that
have potential roles in neuroblastoma pathogenesis.
METHODS: We evaluated neuroblastoma cells treated with regorafenib for cell viability and confluence, and analysed treated cells
for apoptosis and cell cycle progression. We evaluated the efficacy of regorafenib in vivo using an orthotopic xenograft model. We
evaluated regorafenib-mediated inhibition of kinase targets and performed reverse-phase protein array (RPPA) analysis of
neuroblastoma cells treated with regorafenib. Lastly, we evaluated the efficacy and effects of the combination of regorafenib and
13-cis-retinoic acid on intracellular signalling.
RESULTS: Regorafenib treatment resulted in reduced neuroblastoma cell viability and confluence, with both induction of apoptosis
and of cell cycle arrest. Regorafenib treatment inhibits known receptor tyrosine kinase targets RET and PDGFRβ and intracellular
signalling through the RAS/MAPK, PI3K/Akt/mTOR and Fos/Jun pathways. Regorafenib is effective against neuroblastoma tumours
in vivo, and the combination of regorafenib and 13-cis-retinoic acid demonstrates enhanced efficacy compared with
regorafenib alone.
CONCLUSIONS: The effects of regorafenib on multiple intracellular signalling pathways and the potential additional efficacy when
combined with 13-cis-retinoic acid represent opportunities to develop treatment regimens incorporating regorafenib for children
with neuroblastoma.

British Journal of Cancer (2020) 123:568–579; https://doi.org/10.1038/s41416-020-0905-8

BACKGROUND
Neuroblastoma is the most common extracranial solid tumour of
childhood, and children with high-risk neuroblastoma currently
have long-term survival rates under 40% despite intensive,
multimodal treatment regimens that include chemotherapy,
surgical tumour resection, autologous stem cell transplantation,
radiation therapy, and maintenance immunotherapy combined
with 13-cis-retinoic acid.1,2 Children with high-risk neuroblastoma
also frequently suffer from treatment-resistant tumours and
disease relapse, and children with recurrent or refractory
neuroblastoma respond poorly to additional chemotherapy.3–5

New treatments and therapeutic combinations directed at
relevant targets are needed for these children to reduce relapse
rates and improve survival.
Neuroblastoma cells and primary tumours express a wide range

of growth factors and receptor kinases that represent potential
therapeutic targets.6–20 However, therapeutic agents directed
against individual targets or individual signalling pathways have

had limited success in children with neuroblastoma, suggesting
that therapies that target multiple relevant targets concurrently
are likely to demonstrate increased efficacy.
Regorafenib (BAY 73-4506) is an orally active, diphenylurea

multikinase inhibitor that has been FDA approved for the
treatment of metastatic colorectal cancer, advanced gastrointest-
inal stromal tumours (GIST) and progressive hepatocellular
carcinoma after prior sorafenib therapy.21–24 Regorafenib potently
inhibits the RET, RAF1, VEGFR2, c-kit, VEGFR1, PDGFRβ, VEGFR3
and FGFR1 kinases, with IC50 values of 1.5 nM, 2.5 nM, 4.2 nM, 7
nM, 13 nM, 22 nM, 46 nM and 202 nM, respectively, in cell-free
assays.21 Regorafenib furthermore has demonstrated significant
antitumour activity in a range of preclinical models, including
models of paediatric solid tumours.25,26 We therefore hypothe-
sised that regorafenib would demonstrate efficacy against
neuroblastoma preclinical models via the combined inhibition of
multiple critical surface receptors and intracellular signalling
pathways.
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METHODS
Cells and culture conditions
The neuroblastoma cell lines used in this study have been
previously utilised by our laboratory27–29 and were purchased
from American Type Culture Collection (ATCC, www.atcc.org) or
were generously provided by Shahab Asgharzadeh (Children’s
Hospital Los Angeles, Los Angeles, CA), Susan Cohn (The
University of Chicago Children’s Hospital, Chicago, IL), Jill Lahti
(St. Jude Children’s Research Hospital, Memphis, TN), John Maris
(Children’s Hospital of Philadelphia, Philadelphia, PA) or the
Children’s Oncology Group (COG) Cell Culture and Xenograft
Repository (www.cogcell.org). Cell lines were grown at 37 °C in 5%
CO2 in appropriate media (Invitrogen, Carlsbad, CA) supplemented
with 10% heat-inactivated foetal bovine serum (FBS) (Life
Technologies, Grand Island, NY), L-glutamine, sodium pyruvate
and non-essential amino acids (Sigma-Aldrich, St. Louis, MO). All
cell lines were authenticated by DNA profiling prior to use. Cell
line features are listed in Supplemental Table 1.

Therapeutic agents
Regorafenib (BAY 73-4506) was generously provided by Bayer, AG
(Berlin, Germany). A 10mM stock solution was generated in 100%
DMSO (Sigma-Aldrich) and stored at –20 °C. Regorafenib was
diluted in phosphate-buffered saline (PBS) immediately before
use. For in vivo studies, regorafenib was diluted to a final
concentration of 5 mg/mL in 1,2-propanediol, polyethylene glycol
400 and pluronic F68 (42.5/42.5/15) (Sigma-Aldrich) as previously
described.21,30 All compound preparations were stored at room
temperature in the dark and used the same day. 13-cis-retinoic
acid (Sigma-Aldrich) was diluted directly into media prior to use.

Cell viability assays
Human neuroblastoma cell lines were tested for sensitivity to
regorafenib in vitro using a modified methyl tetrazolium (MTT,
Sigma-Aldrich) assay.28,29 0.5–1.0 × 104 exponentially growing cells
in 135-μL media were plated in individual wells in 96-well plates,
and 24 h later, regorafenib or vehicle alone was added to each
well at specified concentrations using an automated drug delivery
system (Biomek Automated Laboratory Workstation, Beckman
Coulter, Inc., Fuller, CA). After 72 h of continuous drug exposure,
15 µL of 5 mg/ml MTT was added to each well, and the plates were
incubated for 4 h at 37 °C. Media was replaced with 150 µL of
DMSO, and the optical density (OD) was measured at 550 nm
using a microplate spectrophotometer (Anthos Labtec Instru-
ments, Wals, Austria). Relative cell viability was calculated by
subtracting the background OD of media alone and then dividing
by the OD of control wells. Replicates of three wells were used for
each drug concentration, and assays were repeated on separate
days. Concentration that inhibits 50% (IC50) values were derived
using best-fit trendlines, and values calculated using the relevant
curve-fit equations as previously published.27–29

For regorafenib and 13-cis-retinoic acid combination studies,
cells were plated as above and treated with regorafenib alone, 5
μM 13-cis-retinoic acid alone or combinations of 5 μM 13-cis-
retinoic acid and increasing concentrations of regorafenib for 72 h.
Cell viability was determined as above. Analysis of variance
(ANOVA) was used to investigate potential synergy by including
an interaction term between 13-cis-retinoic acid (CRA) and
regorafenib across the tested neuroblastoma cell lines.

Cell confluence assays
Continuous live-cell imaging was performed as previously
described.31 Briefly, neuroblastoma cells were plated in 96-well
plates at seeding densities between 10,000 and 25,000 cells/well
and treated with regorafenib alone and in combination with 13-
cis-retinoic acid as above. The plates were placed into the
IncuCyte® ZoomTM continuous live-cell imaging system (Essen
Bioscience, Ann Arbor, MI), and phase-contrast images were taken

every 6 h at 10× magnification for 72 h. Cell confluence was
calculated using IncuCyte® analysis software. Replicates of at least
three wells were used for each experimental condition, and the
assay was performed at least three independent times. Cell
growth curves were generated from the calculated percent cell
confluence. IC50 values were derived using best-fit trendlines, and
the values were calculated using the appropriate curve-fit
equations as above.

Caspase 3/7 apoptosis assays
Neuroblastoma cells were plated at 2000 cells/well in 96-well
plates and placed into the IncuCyte® ZoomTM as above. After 24 h,
cells were treated with 2.5 µM, 5 µM or 10 µM regorafenib, and 5
μM IncuCyte® Caspase 3/7 Green Reagent (Essen Bioscience) was
added. Phase-contrast and fluorescence images were taken every
6 h, with four non-overlapping images taken per well at 10×
magnification for 72 h as above. Average green object counts
(each representing individual cells with increased caspase
activity) per field were generated and normalised to control.
Replicates of at least three wells were used for each experimental
condition.

Western blots
Neuroblastoma cells were plated in 6-well plates or 10-cm tissue
culture dishes in media with 10% FBS at ~80% confluency and
allowed to adhere overnight. Cells were then treated with either
regorafenib or vehicle for designated times. Treated cells were
harvested, washed with cold PBS and lysed using RIPA buffer
supplemented with Pierce Protease inhibitor and phosphatase
inhibitor (Life Technologies).
Protein concentration was measured using a BCA Protein Assay

Kit (Thermo Fisher Scientific, San Diego, CA). Equal amounts of
protein were loaded onto 4–12% Bis-Tris gels (Invitrogen,
Carlsbad, CA) with MOPS SDS running buffer (Life Technologies)
and transferred to PVDF membranes (Thermo Fisher) using the
iBlot2 Dry Blotting transfer system (Invitrogen) or using the
Invitrogen Mini Blot Module and Novex Transfer Buffer (Life
Technologies).
Membranes were blocked in 5% BSA in TBST (TBS+ 0.1%

Tween-20) for 1 h at room temperature and then incubated
overnight with primary antibodies (all from Cell Signaling,
Danvers, MA, except as noted below) to total MEK (9126;
1:1000), phosphorylated MEK (9154; 1:1000), total ERK (4695;
1:1000), phosphorylated ERK (4370; 1:1000), total PDGFR-β (3175;
1:1000), phosphorylated PDGFR-β (4549; 1:500), total RET (3220;
1:1000), phosphorylated RET (3221; 1:500), total FGFR1 (9740;
1:1000), phosphorylated FGFR1 (2544; 1:500), GAPDH (5174;
1:2000), p38 MAPK (8690; 1:1000), total Akt (9272; 1:1000),
phosphorylated Akt (4060; 1:2000), total S6 (2217; 1:1000),
phosphorylated S6 (4858; 1:2000), c-Jun (9165; 1:1000), poly-ADP
ribose polymerase (PARP) (9542; 1:1000), GATA3 (558656; 1:1000,
BD Pharmingen, San Diego, CA), Vinculin (ab1290002; 1:1000,
Abcam, Cambridge, MA) or β-actin (AS316; 1:20000, Sigma-
Aldrich).
All antibodies were diluted in blocking buffer to achieve the

specified concentrations. Membranes were then washed three
times with PBS-T (PBS+ 0.1% Tween-20) and incubated for 1 h at
room temperature with HRP-conjugated anti-rabbit (W401B;
1:5000, Promega, Madison, WI) or anti-mouse (W402B; 1:5000,
Promega) IgG secondary antibodies. The signal was visualised
using Amersham ECL Prime Luminol Enhancer and Peroxide
Solution (GE Healthcare, Piscataway, NJ), and membranes were
developed using SuperSignal™ West Pico Plus Chemiluminescent
Substrate (Thermo Fisher). Membranes were exposed to film using
Amersham Biosciences Hypercassettes and Denville Scientific
HyBlot CL Films (Thomas Scientific, Swedesboro, NJ), and film
was developed in an ECOMAX™ X-ray film processor (Protec,
Oberstenfeld, Germany).
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Flow cytometry
Neuroblastoma cells were plated as above and treated with
regorafenib or vehicle for 24 h. Cells were then harvested and
washed with ice-cold PBS and centrifuged for 5 min at 500 g. The
cell pellet was resuspended in 200 μL of PBS/0.1% FBS, and 4mL
of ice-cold 70% ethanol was added to the cells dropwise. The fixed
cells were then incubated overnight at –20 °C. Cells were
resuspended and rehydrated in PBS, treated with 100 μg/ml
RNAse and then stained with 50 μg/ml propidium iodide. The cell
pellet was then incubated in 1 mL of propidium iodide (PI)
solution (50 μg/mL PI (Sigma-Aldrich), 100 μg/mL RNaseA and
0.1% Triton X-100 in PBS) at 37 °C for 1 h. Flow cytometry was
performed on a FACSCanto-II flow cytometer (BD Biosciences,
Franklin Lakes, NJ), and the results were analysed using FlowJo
flow cytometry analysis software (v10, Tree Star Inc., Ashland, Ore)
to determine the distribution of different cell cycle phases.

Reverse phase protein arrays
Reverse-phase protein array (RPPA) assays were carried out as
described previously with minor modifications.32,33 SK-N-SH, SK-N-
AS, IMR-32 and SK-N-BE(2) neuroblastoma cells were plated as
above and treated with 5 μM regorafenib, 5 μM 13-cis-retinoic
acid, the combination of 5 μM regorafenib plus 5 μM 13-cis-
retinoic acid or vehicle alone for 24 h. Cells were harvested, and
protein lysates were prepared from treated and untreated cells
using tissue protein extraction reagent (Pierce, Rockford, IL)
supplemented with 450 mM NaCl and a mixture of protease and
phosphatase inhibitors (Roche Life Science, San Francisco, CA).
Protein levels were quantified as above, and protein lysates at 0.5
μg/μL were denatured in SDS sample buffer (Life Technologies)
with 2.5% (vol/vol) 2-mercaptoethanol at 100 °C for 8 min. The
Aushon 2470 Arrayer (Aushon BioSystems, Billerica, MA) with a 40-
pin (185 μm) configuration was used to spot lysates onto
nitrocellulose-coated slides (Grace Bio-Labs, Bend, OR) using an
array format of 960 lysates/slide (2880 spots per slide) with each
sample spotted as technical triplicates, including test and control
lysates. The slides were processed as described,32,33 and probed
with a set of 214 validated antibodies (https://www.bcm.edu/
centers/cancer-center/research/shared-resources/antibody-based-
proteomics) against total and phosphorylated proteins using an
automated slide stainer Autolink 48 (Dako, Carpinteria, CA). Each
slide was incubated with one specific primary antibody, and the
negative control slide was incubated with only antibody diluent
containing no primary antibody. Primary antibody binding was
detected using a biotinylated secondary antibody followed by
streptavidin-conjugated IRDye680 fluorophore (LI-COR Bios-
ciences, Lincoln, NE). Total protein content of each spotted lysate
was assessed by fluorescent staining with Sypro Ruby Protein Blot
Stain according to the manufacturer’s instructions (Molecular
Probes, Eugene, OR). Fluorescence-labelled slides were scanned
on a GenePix AL4200 scanner, and the images were analysed with
GenePix Pro7.0 (Molecular Devices, Sunnyvale, CA). Total fluores-
cence signal intensities of each spot were obtained after
subtraction of the local background signal for each slide and
were then normalised for variation in total protein, background
and nonspecific labelling using a group-based normalisation
method as described.32,33 Each image, along with its normalised
data, was carefully evaluated for quality through manual
inspection and control samples. Antibody slides that failed the
quality inspection were either repeated at the end of the staining
runs or removed before data reporting. Differentially expressed
proteins across samples were determined by one-way ANOVA,
and the expression values were log2-transformed and mean-
centred for visualisation in heat maps using Java TreeView.

Statistical analyses
The results from the RPPA analyses (above) were log transformed
in base 2, and the average values of technical replicates (3 for each

sample) were used for analysis. Analysis of variance (ANOVA) was
used to compare treatment groups across the four tested
neuroblastoma cell lines (see equation 1). P values for the main
treatment effects across all cell lines were calculated for each
protein. Proteins were tagged as differentially expressed between
two groups if p < 0.05 for the main treatment effect. The
Benjamini–Hochberg correction was used to correct raw p values,
with a 25% false discovery rate (FDR).

Fit ¼ lm protein � cell SKNASþ cell SKNSHþ cell SKNBEð
þcell IMR32þ treat main� 1;data ¼ dataÞ (1)

To evaluate whether MYCN amplification has an effect on
observed changes in protein expression, an interaction was added
to the formula (see equation 2).

Fit ¼ lm protein � cell SKNASþ cell SKNSHþ cell SKNBEð
þ cell IMR32þ treat mainþ treat main�AMP� 1; data ¼ dataÞ

(2)

Similarly, to evaluate whether known sensitivity to retinoic acid
has an effect on the observed changes in protein expression, an
interaction term was added to the formula (see equation 3).

Fit ¼ lm protein � cell SKNASþ cell SKNSHþ cell SKNBEð
þ cell IMR32þ treat mainþ treat main�SENS� 1;data ¼ dataÞ

(3)

Similar analyses were performed to compare the RPPA results
obtained from cells treated with regorafenib to those treated
with vehicle alone, with 13-cis-retinoic acid to vehicle alone, and
to cells treated with regorafenib plus 13-cis-retinoic acid to
vehicle alone. Additional similar analyses were performed using
analysis of variance (ANOVA) to investigate potential synergy by
including an interaction term between 13-cis-retinoic acid (CRA)
and regorafenib across the tested neuroblastoma cell lines (as
above).

Animal experiments
To evaluate the efficacy of regorafenib against neuroblastoma
tumours in vivo, 4- to 6-week-old female athymic nu/nu mice
weighing 20–25 g were purchased from the UCSD Animal Care
Program and housed in the UCSD Moores Cancer Center vivarium.
Mice were anaesthetised with ketamine/medetomidine in vivar-
ium procedure rooms, the left flanks were shaved and prepared in
sterile fashion using betadine followed by 70% ethanol, and
transverse incisions were performed to expose the left kidneys
and adrenal glands. In total, 1 × 106 SK-N-SH neuroblastoma cells
engineered to constitutively express firefly luciferase were
suspended in 5 μL of PBS and injected into exposed adrenal
glands using a 27-gauge needle, which results in >90% of mice
developing tumours.28,29,34 The peritoneum and the skin were
then closed in two separate layers, and wound clips were placed.
Animal body temperature was maintained during the surgery
using Delta Phase Pads (Braintree Scientific), and buprenorphine
was administered prior to the procedure as an analgesic, followed
by additional doses as needed every 8–12 h after the procedure.
After recovery from surgery, mice were placed in cages in their
appropriate cage location. Wound clips were removed after
10 days. Tumour development and growth were monitored twice
per week in mice anaesthetised by nasal isoflurane using the
Xenogen Lumina system (Caliper Life Sciences, Hopkinton, MA) 10
min after intraperitoneal injections of 150mg/kg D-luciferin
(Caliper Life Sciences), and tumour volume was estimated using
signal intensity (in p/s/cm2/sr). Three weeks after surgery at the
estimated time of onset of tumour growth,28,29,34 mice were
randomly separated into two groups. Mice in group 1 were
gavage-fed once daily with vehicle alone, while the other group of
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mice was fed once daily with regorafenib at 30 mg/kg. Both
groups of mice were treated for 14 days and then euthanised by
CO2 followed by cervical dislocation. Tumours were harvested,
weighed and photographed. Student’s t tests on log values of
tumour volumes as measured by Lumina signal intensity and on
final tumour weights were used to calculate p values for tumour
growth. All mice were housed and treated according to protocols
approved by the Institutional Animal Care and Use Committee
at UCSD.

RESULTS
Regorafenib reduces neuroblastoma cell viability and confluence
and xenograft tumour growth
To determine the efficacy of regorafenib against neuroblastoma
cells, a panel of established human neuroblastoma cell lines
representing a range of biological phenotypes (Supplemental
Table 1) was tested for sensitivity in vitro to regorafenib using MTT
assays and continuous live- cell imaging. IC50 values from the cell
viability assays were calculated and ranged from 2.3 μM to 14.9
μM (Fig. 1a, b), suggesting that neuroblastoma cell lines
demonstrate similar sensitivity to regorafenib. Regorafenib treat-
ment also resulted in reduced neuroblastoma cell confluence as
determined by continuous live-cell imaging, with IC50 values
similar to those calculated from cell viability assays (Fig. 1c,
Supplemental Fig. 1a, b). There were no significant differences in
responses after 24, 48 or 72 h of exposure to regorafenib
(Supplemental Fig. 2), and no apparent associations were
observed between response to the drug and biologic or genetic
features of individual cell lines.
To evaluate the efficacy of regorafenib against neuroblastoma

tumours in vivo, neuroblastoma cells were injected into the
adrenal glands of immunocompromised mice, and mice that
subsequently developed tumours were treated with either vehicle
alone or regorafenib. Regorafenib treatment was well tolerated
with no weight loss or other apparent symptoms, and regorafenib-
treated mice demonstrated reduced xenograft tumour growth
rates compared to vehicle-treated controls (Fig. 1d). Final tumour
size and weight were also significantly reduced in tumours from
mice treated with regorafenib compared with vehicle-treated
control tumours (Fig. 1e, f), with vehicle-treated tumours reaching
an average final tumour weight of 2.16 g, and tumours from mice
treated with regorafenib limited to an average final tumour
weight of 0.35 g (p < 0.05).

Regorafenib induces neuroblastoma cell apoptosis and cell cycle
arrest
To determine the mechanisms underlying the observed reduction
in cell viability, cell confluence and tumour growth induced by
regorafenib treatment, we performed caspase activity assays in
neuroblastoma cells treated with regorafenib and in vehicle-
treated control cells. Regorafenib treatment resulted in increased
caspase activity in all tested cell lines in a dose-dependent fashion
(Fig. 2a, b). We further evaluated cells treated with regorafenib for
cleavage of poly-ADP ribose polymerase (PARP) by western blot,
and found that PARP cleavage also increased in neuroblastoma
cells after regorafenib treatment (Fig. 2c), further suggesting that
regorafenib treatment leads to the induction of neuroblastoma
cell apoptosis.
To determine whether regorafenib also induced changes in cell

cycle progression, neuroblastoma cells were treated with increas-
ing concentrations of regorafenib and analysed by flow cytometry
for DNA content. Regorafenib treatment for 24 h resulted in an
increase in the percentage of cells in the G0/G1 phase from 65.1%
to 84.7% in SK-N-SH cells and from 44.5% to 62.9% in IMR-32 cells
(Supplemental Fig. 3), demonstrating that regorafenib is effective
against neuroblastoma cells via a combination of both induction
of apoptosis and of cell cycle arrest.

Regorafenib inhibits target kinases and intracellular signalling
pathways
Regorafenib has been demonstrated to inhibit multiple kinases,
including the RET, VEGFR1–3, c-Kit, TIE-2, PDGFRβ, FGFR1, RAF1,
BRAF and p38 MAPK kinases.21 To determine whether the efficacy
of regorafenib was a result of inhibition of cell surface receptor
kinases, we evaluated neuroblastoma cells after regorafenib
treatment for inhibition of known receptor tyrosine kinase targets.
Regorafenib treatment of neuroblastoma cells resulted in reduced
phosphorylation of RET within 4 h of regorafenib exposure in a
dose-dependent manner (Fig. 3a), with reduced total RET levels
also observed in SK-N-SH and SK-N-BE(2) cells after 24 h of
exposure (Fig. 3a, b). Regorafenib treatment also inhibited 13-cis-
retinoic acid-induced RET phosphorylation, and led to reduced
expression of FGFR1 and PDGFRβ, with incomplete inhibition of
FGFR1 and PDGFRβ phosphorylation also noted in tested
neuroblastoma cell lines (Fig. 3b, Supplemental Fig. 4).
To evaluate the effects of regorafenib on intracellular signalling

downstream of RAF, we also evaluated neuroblastoma cells after
regorafenib treatment for RAS-MAPK pathway signalling activity.
Regorafenib treatment of neuroblastoma cells resulted in inhibi-
tion of signalling through the RAS-MAPK pathway, with reduced
MEK and ERK phosphorylation in dose- and time-dependent
fashion and minimal effects on total MEK and ERK levels after 24 h
of exposure in most tested cell lines (Fig. 3a). However, no
differences in the inhibition of known regorafenib targets were
noted in tested cell lines that were more or less sensitive to
regorafenib, suggesting that alternative pathways may mediate
specific neuroblastoma cell sensitivity to regorafenib.

Regorafenib induces changes in intracellular signalling pathway
activity in neuroblastoma cells
To identify additional signalling proteins and pathways altered by
regorafenib treatment, we evaluated neuroblastoma cell lines with
reverse-phase protein arrays (RPPA). RPPA analysis of lysates of
untreated neuroblastoma cells and of cells treated with 5 μM
regorafenib for 24 h identified 22 proteins with significant changes
in expression and/or phosphorylation (p < 0.05 for each). Phos-
phorylation of Akt, mTOR, ERK, c-Fos, p38 MAPK and S6, among
others, was decreased upon exposure to regorafenib (Fig. 4a, b),
suggesting inhibition of multiple critical intracellular signalling
pathways in a dose-dependent manner. Moreover, protein
expression of ALK, MEK6 and GATA3 was increased after
regorafenib treatment, suggesting potential mechanisms for
neuroblastoma cell resistance to regorafenib. Protein expression
changes observed by RPPA were validated independently by
western blot analyses (Fig. 4c). Within these 22 identified proteins,
5 were found to have significant interaction between MYCN
amplification and response to regorafenib, with levels of
phosphorylated c-Fos, phosphorylated Bad and total levels of c-
Jun having more significant decreases after regorafenib treatment
in non-MYCN-amplified cells compared with those with MYCN
amplification (Supplemental Fig. 5).

Regorafenib combined with 13-cis-retinoic acid is effective against
neuroblastoma cells and induces changes in intracellular
signalling pathway expression and activity
We have previously shown that the combination of RET inhibition
with 13-cis-retinoic acid, a vitamin A analogue currently used for
maintenance therapy in children with neuroblastoma,35 demon-
strated synergistic efficacy against neuroblastoma in preclinical
models.29,36 To determine whether 13-cis-retinoic acid also
enhanced the efficacy of regorafenib, neuroblastoma cell lines
were treated with regorafenib alone and in combination with 13-
cis-retinoic acid. In tested cell lines, the combination of
regorafenib with 13-cis-retinoic acid was more effective than
regorafenib alone over a range of regorafenib concentrations
(Fig. 5a–c), and the combination was more effective in both
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Fig. 1 Regorafenib reduces neuroblastoma cell viability and xenograft tumour growth. a Neuroblastoma cell lines (SK-N-AS, SK-N-SH, SK-N-
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were calculated using curve-fit equations for each tested neuroblastoma cell line. c Images of untreated and treated neuroblastoma cells were
taken at regular intervals, and representative images of untreated and treated neuroblastoma cells after 72 h are shown. d Mice with
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retinoic acid-sensitive (SK-N-SH, SK-N-BE(2)) and retinoic acid-
resistant (IMR-32, SK-N-AS) cell lines.
To determine whether 13-cis-retinoic acid induced changes in

the expression or activity of novel signalling pathways, we further
analysed neuroblastoma cells treated with 13-cis-retinoic acid by
RPPA as above. Seventeen proteins were found to have significant
changes in expression or phosphorylation (p < 0.05) after 13-cis-
retinoic acid treatment. Phosphorylation of RET, PDGFRβ, STAT6
and c-Fos, among others, was increased upon exposure to 13-cis-
retinoic acid, while expression levels of GATA3 and phosphoryla-
tion of c-Myc were both reduced (Fig. 6a). Increased phosphoryla-
tion of RET has been demonstrated in response to 13-cis-retinoic
acid in prior studies,36 establishing the validity of the RPPA results.
Within these 17 proteins, four were found to have significant
interaction between MYCN amplification and response to 13-cis-
retinoic acid (ALK, p-Src, p–c-Fos and p-RET), with increased ALK
expression but reduced RET and Src phosphorylation in MYCN-
amplified cells compared with non-amplified cells. Three proteins
(c-Fos, p-PDGFRβ and p-MAPK8) were found to have a significant
interaction between known retinoic acid sensitivity and response
to 13-cis-retinoic acid, with increased c-Fos expression and
increased phosphorylation of PDGFRβ and MAPK8 (SAPK1/JNK1)
in retinoic acid-sensitive cells compared with -resistant cells.
To determine whether the combination of regorafenib with 13-

cis-retinoic acid induced additional changes in protein expression
or activity, we further analysed neuroblastoma cells treated with
regorafenib in combination with 13-cis-retinoic acid by RPPA as
above. RPPA analysis of untreated neuroblastoma cells and of
neuroblastoma cells treated with 5 μM regorafenib combined with
5 μM 13-cis-retinoic acid for 24 h identified 36 proteins with
significant changes in expression (p < 0.05). Phosphorylation of

p38 MAPK, Rb, ERK1/2, mTOR, c-Myc and c-Fos, among many
others, was significantly reduced after treatment with regorafenib
in combination with 13-cis-retinoic acid (Fig. 6b). Within these 36
proteins, 10 were found to have significant interaction between
MYCN amplification and response to regorafenib combined with
13-cis-retinoic acid, with a larger decrease in c-Jun expression and
c-Fos and Bad phosphorylation in response to the combination in
MYCN non-amplified cells, and with reduced integrin α4 subunit
expression and increased reduction in p70S6K and mTOR
phosphorylation in MYCN-amplified cells compared with non-
amplified cells (Supplemental Fig. 6). Two proteins (PDGFRβ and c-
Myc) were found to have a significant interaction between known
retinoic acid sensitivity and response to the combination of
regorafenib with 13-cis-retinoic acid, with reduced expression of
PDGFRβ and phosphorylation of c-Myc in retinoic acid-
sensitive cells.

DISCUSSION
New treatment strategies are needed for children with high-risk
and recurrent neuroblastoma, and therapies directed against a
combination of relevant kinases and signalling pathways are likely
to be effective against neuroblastoma. We have shown that the
novel multikinase inhibitor regorafenib is effective against both
neuroblastoma cell lines and tumours via induction of both
apoptosis and cell cycle arrest, and we have further demonstrated
that regorafenib inhibits both cell surface receptor kinases and a
number of key intracellular signalling pathways. Our results also
demonstrate the efficacy of the combination of regorafenib and
13-cis-retinoic acid. Lastly, our results identify critical intracellular
signalling pathways in neuroblastoma cells that are inhibited or
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activated by regorafenib, 13-cis-retinoic acid and the combination
of regorafenib with 13-cis-retinoic acid, and identify
additional targets that may represent mechanisms of treatment
resistance.
Neuroblastoma cells and primary tumours express a wide range

of growth factors and receptor kinases that represent potential
therapeutic targets,6–20 and regorafenib is a novel kinase inhibitor
shown to inhibit a number of kinases relevant for neuroblastoma
pathogenesis, including VEGFR1–3, c-Kit, TIE-2, PDGFRβ, FGFR1,
RET, RAF1, BRAF and p38 MAPK.21 Both neuroblastoma cell lines
and patient tumours have been shown to express the RET
receptor tyrosine kinase,37,38 and RET expression and activity both
induce neuroblastoma tumorigenesis in transgenic mice and
enhance metastasis,39,40 suggesting that RET inhibition likely
contributes to the efficacy of regorafenib against neuroblastoma.
Other receptor kinases, including the vascular endothelial growth
factor receptor (VEGFR) family and the platelet-derived growth
factor-β receptor (PDGFRβ), have also been linked to neuroblas-
toma pathogenesis,7,11,15,41,42 suggesting that kinase inhibitors
such as regorafenib that are able to target multiple critical kinases
are likely to be effective against neuroblastoma, and further
studies are needed to clarify the relative roles of these kinases in
the responses of neuroblastoma tumours to regorafenib.
Ligand binding to cognate receptor tyrosine kinases leads to

receptor activation and increased downstream intracellular
signalling activity of the PI3K/mTOR/Akt, JAK/STAT and RAS/MAPK
pathways, among many others. RAS/MAPK pathway signalling has
been implicated in a variety of adult and paediatric malignan-
cies,43 but the relevance of RAS/MAPK pathway activity in the
development and progression of neuroblastoma tumours is not
well understood. Neuroblastoma tumours have a paucity of
oncogenic mutations, and activating RAS-MAPK pathway muta-
tions are found in less than 5% of neuroblastoma patient tumours
prior to the onset of treatment.44,45 However, mutations leading to

increased RAS-MAPK pathway signalling are more common in
tumours from patients with relapsed neuroblastoma,46 suggesting
that RAS-MAPK pathway inhibitors are likely to be most effective
in the setting of relapsed disease, and our data demonstrating
that regorafenib is capable of inhibiting RAS-MAPK pathway
signalling suggest a potential therapeutic role in children with
relapsed neuroblastoma.
Our results further demonstrate alterations in the activity of

numerous other signalling pathways in neuroblastoma cells after
treatment with regorafenib, including the PI3K/mTOR/Akt and
Fos/Jun pathways. The role of the PI3K/mTOR/Akt pathway in
neuroblastoma pathogenesis has been well established,47 and
early-phase clinical trials evaluating the efficacy of inhibitors of
PI3K/mTOR/Akt signalling have demonstrated efficacy in children
with neuroblastoma.48–52 The role of signalling through the Fos/
Jun pathway in neuroblastoma pathogenesis is less well under-
stood, although recent studies have identified a role for Jun kinase
(JNK) signalling in neuroblastoma differentiation,53 and computa-
tional models of neuroblastoma demonstrated an association
between JNK signalling and patient survival.54 The efficacy of
inhibition of these pathways in other adult and paediatric cancer
models has not previously been reported, and the specific roles of
these pathways in the responses of neuroblastoma cells to
regorafenib are unknown. Our results show the effects of
prolonged, continuous regorafenib exposure on intracellular
signalling in neuroblastoma cells, which may be more relevant
in patients with neuroblastoma that are exposed to steady-state
drug levels, and which suggests that the observed changes in the
activity of signalling pathways may represent mechanisms of drug
resistance as well. In addition, regorafenib may also inhibit other
intracellular targets that were not evaluated in our screening
studies, and additional studies are ongoing to delineate the
specific mechanisms of regorafenib efficacy against neuroblas-
toma and other solid tumours.
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Our results show that all tested neuroblastoma cell lines
demonstrated responses to regorafenib within a relatively narrow
range of doses, suggesting a potential common mechanism of
drug response, or possibly multiple overlapping mechanisms.
Regorafenib has demonstrated efficacy against both adult and
paediatric solid tumours,21,25,26,55–58 and our results demonstrat-
ing regorafenib efficacy against neuroblastoma are similar to
those previously observed for regorafenib in cell lines from many
adult and paediatric tumours. In adults with advanced solid
tumours, regorafenib therapy was well tolerated, and regorafenib
has been FDA approved for the treatment of metastatic colorectal
cancer, advanced gastrointestinal stromal tumours (GIST) and
progressive hepatocellular carcinoma after prior sorafenib ther-
apy.21–24 The safety and efficacy of regorafenib in children are
currently being evaluated in an ongoing phase I clinical trial
(NCT02085148), but commonly reported toxicities in adult patients
at the approved dose of 160mg daily for 3 consecutive weeks
included hand–foot syndrome, nausea, diarrhoea, weight loss,

fatigue and hypertension, with rare cases of severe liver
toxicity.59,60 Peak regorafenib levels in the serum of adult patients
taking the approved regorafenib dose exceeded 9 μM,61,62 which
was within the range of our in vitro IC50 values. Therefore, effective
levels of regorafenib are likely achievable in children with
neuroblastoma, and regorafenib therefore represents a good
candidate for further therapeutic investigation.
Retinoids are vitamin A analogues that induce tumour cell

differentiation,63 and 13-cis-retinoic acid treatment of neuroblas-
toma cells in vitro both induces neuroblastoma cell differentiation
and reduces neuroblastoma cell proliferation.64–66 13-cis-retinoic
acid is also currently a component of standard maintenance therapy
in the most common protocols utilised for the treatment of children
with high-risk neuroblastoma.35 Morphologic neuroblastoma cell
differentiation induced by retinoids in vitro occurs over the course of
7–10 days, but the pathways activated prior to the morphologic
differentiation are poorly understood. We have shown that
activation of multiple kinases and signalling molecules, including
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Fig. 6 Regorafenib combined with 13-cis-retinoic acid alters protein expression and phosphorylation in neuroblastoma cells.
Neuroblastoma cells were treated with vehicle alone, 5 μM 13-cis-retinoic acid alone or 5 µM regorafenib combined with 5 μM 13-cis-retinoic
acid for 24 h. Lysates were collected and analysed by reverse-phase protein array (RPPA). a The results were analysed, and proteins whose
levels or phosphorylation were significantly increased or decreased after treatment with 13-cis-retinoic acid when compared with vehicle
alone are shown (left, p < 0.05 for each using ANOVA). Relative protein levels of phospho-RET and phospho-PDGFRβ were calculated as
described, and are shown from cells treated with 13-cis-retinoic acid (CRA) and with vehicle alone (veh), with the results displayed separately
for independent cell lines (right). b Proteins whose levels or phosphorylation were significantly increased or decreased after treatment with
5 µM regorafenib combined with 5 μM 13-cis-retinoic acid when compared with vehicle alone are shown (left, p < 0.05 for each using ANOVA).
Relative protein levels of phospho-ERK1/2 and phospho-Rb were calculated as described, and are shown from cells treated with regorafenib
combined with 13-cis-retinoic acid (combine) and with vehicle alone (veh), with the results displayed separately for independent cell lines
(right).
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RET, PDGFRβ, STAT6 and c-Fos, among others, precedes the
morphologic differentiation induced by 13-cis-retinoic acid, and
these signalling pathways may contribute to or regulate the
subsequent morphologic changes. Furthermore, inhibition of these
initially activated pathways may contribute to the efficacy of the
combination of regorafenib and 13-cis-retinoic acid.
Recent studies have demonstrated a potential role for RET in

the process of neuroblastoma differentiation, as 13-cis-retinoic
acid treatment leads to increased RET expression, and RET
inhibition has been shown to interfere with neuroblastoma
differentiation induced by retinoic acid treatment.37,67–69 Neuro-
blastoma cell differentiation induced by retinoic acid treatment
has also been shown to create a dependence on neurotrophin
and glial-derived neurotrophic factor signalling, suggesting that
retinoic acid treatment may sensitise neuroblastoma cells to
inhibition of these pathways.70,71 We have previously identified
synergistic efficacy of the combination of RET inhibition with 13-
cis-retinoic acid.29,36 However, our results show that the combina-
tion of regorafenib with 13-cis-retinoic acid is additive, but did not
reach statistical significance for synergy, possibly due to the
effects of regorafenib on other kinase targets, such as the PI3K/
mTOR/Akt and Fos/Jun pathways.
Our results demonstrate that regorafenib is effective against

both neuroblastoma cell lines and xenograft tumours, and suggest
that regorafenib may be an effective treatment for children with
neuroblastoma, and the inhibition of multiple intracellular
signalling pathways likely underlies the efficacy of regorafenib
against neuroblastoma. With the established roles of RET and RAS/
MAPK signalling in neuroblastoma pathogenesis and with the
efficacy of regorafenib established in these and other studies,
additional preclinical and clinical testing of regorafenib in children
with neuroblastoma is clearly warranted. Furthermore, the
combination of regorafenib and 13-cis-retinoic acid is likely to
be effective and could be employed either for maintenance
therapy of newly diagnosed high-risk neuroblastoma or for
treatment of relapsed disease.
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