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Executive Summary 

E-commerce has the potential to make urban freight sustainable with economically viable, 

environmentally efficient, and socially equitable goods flow. In particular, considering the current 

retail landscape, the study finds that with consolidated and optimized delivery tours, e-

commerce can render urban goods flow a 12% reduction in vehicle-miles traveled and a 10% 

reduction in greenhouse gas emissions. Additionally, the study establishes a further 80% 

reduction in vehicle-miles traveled and an additional 64% reduction in associated greenhouse gas 

emissions from urban goods distribution for a potential future landscape with e-retail dominating 

traditional retail. 

However, with the increasing consumer-focused trends in e-commerce, urban freight 

witnesses a significant increase in associated distribution costs and negative externalities 

including greenhouse gas emissions advancing global climate change, as well as criteria pollutant 

emissions worsening local air quality and thus affecting those living close to logistics clusters. To 

address these concerns, the study suggests the use of alternate system-level strategies that offer 

improved logistics management.  

In particular, the author recommends the e-retailer to establish a hybrid distribution 

structure with a dedicated fleet of medium-duty trucks for last-mile delivery coupled with a 

crowdsourced fleet that caters to customers arriving dynamically through the day. With this, the 

e-retailer can establish a cost-effective distribution structure that is resistant to demand 

uncertainty. However, considering the use of independent contractors for last-mile delivery, the 

e-retailer must carefully deliberate the relation between sustainability and reliability of last-mile 

distribution. 
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Alternatively, the e-retailer can deploy a fleet of electric delivery vehicles to reduce total 

costs of goods distribution as well as associated negative externalities. However, use of electric 

delivery fleet can worsen the viability of last-mile distribution, particularly when the e-retailer 

needs to outsource additional delivery vehicle to cater to the customer demand arriving 

dynamically through the day. 

On the other hand, the e-retailer can establish a multi-echelon last-mile distribution 

structure with micro-hubs located in dense commercial and residential neighborhoods, and 

collection-points co-located near major traffic generators. With this, the e-retailer can mitigate 

some of the additional distribution costs of last-mile delivery via micro-hubs with use of 

collection-points outsourcing a segment of last-mile to the customer, as well as mitigate some of 

the negative externalities from the customer-travel for collection-point pickup with use of cargo-

bikes for last-mile delivery from micro-hubs. Thus, with strategic use of micro-hubs and 

collection-points, the e-retailer can provide an economically viable, environmentally efficient, 

and socially equitable last-mile service that is fairly resistant to demand uncertainty. 

With this, the author highlights the need to manage the urban freight system in general, 

and delivery operations and services in particular, to foster a more sustainable urban 

environment, in light of the growing consumer-focused trends in e-commerce distribution. 
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Abstract 

The growth of e-commerce, spurred by the internet, has transformed urban goods flow. What 

would previously have been a trip to a store is now a hassle-free delivery to the home. With 

consolidated and optimized delivery tours, e-commerce has the potential to make urban goods 

flow economically viable, environmentally efficient, and socially equitable. However, as e-

retailers compete with increasingly consumer-focused service, urban freight witnesses a 

significant increase in associated distribution costs and negative externalities including 

greenhouse gas emissions advancing global climate change, as well as criteria pollutant emissions 

worsening local air quality and thus affecting those living close to logistics clusters. Thus, 

considering the potential of e-commerce to render economically viable, environmentally 

efficient, and socially equitable urban goods flow, it is pertinent to understand the opportunities 

and challenges associated with urban freight in light of the increasingly consumer-focused e-

commerce distribution. To this end, the author develops A) the impact of e-commerce on urban 

goods distribution, with a simulation framework founded on consumer shopping behavior 

simulating urban goods flow, B) the impact of key delivery environment parameters on e-

commerce goods distribution, with a continuous approximation (CA) framework modeling last-

mile distribution operation for an e-retailer, and C) the impact of demand uncertainty on e-

commerce goods distribution, with a discrete optimization framework formulating a last-mile 

network design (LMND) problem as a dynamic-stochastic two-echelon capacitated location 

routing problem with time-windows (DS-2E-C-LRP-TW), addressed using an adaptive large 

neighborhood search (ALNS) metaheuristic algorithm.  
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1. Introduction 

1.1. Motivation 

“Attention Shoppers: Internet Is Open” headlined the New York Times article in 1994, declaring 

the advent of e-commerce (Lewis, 1994). Almost three decades since, online shopping has grown 

to become a fundamental part of consumer shopping experience. What previously would have 

been a shopping trip to a store is now a hassle-free delivery to the home. Yet, the first decade of 

e-commerce was subject to skepticism with e-retail only amounting to only 1.7% of the total 

retail sales in 2003 (U.S. Census Bureau, 2022). However, in the decade thereafter, the increased 

internet-use provided opportunities for the retailers to expand market horizon with digital 

enterprise, and thus, e-commerce sales grew rapidly, contributing to 5.8% of the total retail sales 

by 2013. And despite internet penetration reaching saturation levels since, e-commerce 

continues to expand with e-retail expected to account for 15% of the total retail sales by 2023.  

The rise of e-commerce has brought prosperity for the consumer and the retailer, thereby 

fostering economic growth through urban goods flow – 1st pillar of sustainability (Macharis et al., 

2014). It has also expanded consumer access to daily essential commodities for otherwise 

disadvantaged communities which proved to be critical during the COVID-19 pandemic, thus 

improving social equity in urban goods flow – 3rd pillar of sustainability (Singh et al., 2021). 

Further, owing to demand consolidation and optimized delivery tours, e-commerce has 

enhanced goods distribution efficacy, thereby reducing transportation-related negative 

externalities from urban goods flow – 2nd pillar of sustainability (Edwards et al., 2010). However, 

the recent trends in e-retail have a significant impact on the economic viability, environmental 

efficiency, and social equity of e-commerce last-mile distribution. 
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Despite the ease of shopping online, in-store shopping is still the preferred channel for 

daily purchases with online shopping only amounting to 4% of the daily shopping activities 

(Hofferth et al., 2020). Thus, to compete with traditional retailers for market share, e-retailers 

establish consumer-focused services. For instance, to compensate for the lack of instant 

gratification, e-retailers offer expedited shipping with rush-delivery. Further, e-retailers offer 

lenient return policy to compensate for the information mismatch, particularly common in the e-

apparel industry. However, such consumer-focused trends in e-commerce result in frequent less-

than-truckload last-mile deliveries. To this end, urban environments witness a substantial 

increase in freight distribution costs and associated negative externalities including greenhouse 

gas emissions advancing global climate change, as well as criteria pollutant emissions worsening 

local air quality and thus affecting those living close to logistics clusters. This therefore renders 

urban goods distribution economically unviable, environmentally inefficient, and socially 

inequitable (Van Loon et al., 2015). Hence, to remain competitive, e-retailers innovate with 

alternate last-mile distribution strategies. These alternate strategies, such as those that include 

use of electric delivery trucks for last-mile operations, or a fleet of crowdsourced drivers for last-

mile delivery, or consolidation facilities coupled with light-duty delivery vehicles for a multi-

echelon distribution, or collection-points for customer pickup, can potentially restore sustainable 

urban goods flow. 

 

1.2. Objectives 

Considering the potential of e-commerce to make urban goods flow economically viable, 

environmentally efficient, and socially equitable, it is pertinent to understand the opportunities 
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and challenges associated with urban goods distribution in light of the increasing consumer-

focused trends in e-commerce. To this end, this work investigates sustainability of e-commerce, 

establishing, 

A. the impact of e-commerce on urban goods distribution with a simulation framework 

founded on consumer shopping behavior simulating urban goods flow, 

B. the impact of key delivery environment parameters on e-commerce goods distribution 

with a continuous approximation (CA) framework modeling last-mile distribution 

operations for an e-retailer, and 

C. the impact of demand uncertainty on e-commerce goods distribution with a discrete 

optimization framework formulating a last-mile network design (LMND) problem for the 

e-retailer as a dynamic-stochastic two-echelon capacitated location routing problem with 

time-windows (DS-2E-C-LRP-TW), addressed using an adaptive large neighborhood search 

(ALNS) metaheuristic algorithm. 

This study is a consolidation of the author’s work undertaken in pursuit of the doctoral 

degree at University of California, Davis including Jaller and Pahwa (2020), Pahwa and Jaller 

(2022), and Jaller and Pahwa (In Review). 

 

1.3. Research Significance 

Internet is the cornerstone of e-commerce; And with the prevalence of internet access, online 

shopping has become an integral part of consumer shopping experience, influencing product 

search, trial, and final purchase. The increasing consumer-focused trends in e-commerce render 

increased urban goods flow resulting in increase in transportation-related negative externalities 
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worsening air quality, noise levels, and congestion in the cities. Thus, it is imperative to 

investigate sustainability of urban goods flow. This entails understanding opportunities and 

challenges pertaining to urban goods distribution and the associated system operations, vehicle 

technologies, logistics, and land-use planning. To do so, the study quantifies freight activity in 

terms of logistics cost, greenhouse gas emissions, and criteria pollutant exposure. And in this 

context, the study explores the potential for alternate distribution strategies to reduce costs and 

externalities from e-commerce last-mile distribution. 

A number of previous studies have investigated the sustainability of e-commerce last-

mile distribution. However, several of these studies develop poor estimates of the potential 

impacts of e-commerce owing to use of crude frameworks modeling the delivery environment. 

To this end, this study models the delivery environment with a robust multinomial logit model 

establishing the demand-side, and sophisticated continuous approximation and discrete 

optimization frameworks establishing the supply-side. And with this, the author explores 

potential opportunities and challenges associated with urban freight in light of the increasingly 

consumer-focused e-commerce goods distribution. 

Without loss of generality, the author develops analyses for the city of Los Angeles, and 

with this, the study further advances the efforts to improve goods mobility in California, aligning 

with the objectives of the California Department of Transportation (Caltrans) for an urban freight 

system that is competitive yet safe and secure with focus on infrastructure preservation, 

environmentally stewardship, congestion relief, and innovative technologies and practices, as 

stated in the California Freight Mobility Plan (CFMP). 
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1.4. Structure 

In the following section, the author discusses relevant literature pertaining to the sustainability 

of e-commerce, followed by a literature review of the various studies investigating alternate last-

mile distribution strategies, and the associated assessment methods. In Methodology section, 

the author then presents the urban goods flow simulation framework, the last-mile distribution 

CA framework, and the LMND multi-level decision-making framework. In Section 4, the author 

develops the case study before presenting the empirical results assessing sustainability of e-

commerce last-mile distribution in Section 5. Based on these empirical results, in the penultimate 

section, the author discusses the key managerial insights and policy implications for the 

stakeholders involved in urban freight management. This study concludes with a section 

highlighting the limitations of this work along with future scope in the context of this work.  
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2. Literature Review 

2.1. Sustainability of e-commerce 

The increasing prevalence of internet marketplaces, the subsequent consumer-focused service 

trends, and the consequent transformation of individual shopping behaviors have raised 

significant concerns pertaining to sustainability of urban goods flow. To this end, the literature 

has explored paradigms of economic viability, environmental efficiency, and social equity for 

urban freight distribution.  

In this context, some of the earlier works highlighted the potential for online shopping to 

substitute for individuals traveling for in-store shopping and thereby consolidate goods flow to 

render efficient distribution from point-of-sale to point-of-consumption (Cairns, 2005; Edwards 

et al., 2010; Siikavirta et al., 2002). Nonetheless, some of the other contemporary studies of the 

time cautioned, emphasizing the possibility of increased urban goods flow owing to the 

complementarity effect whereby online shopping induces in-store shopping (Farag et al., 2006; 

Ferrell, 2004; Mokhtarian, 2004). Yet, as e-retailers compete with increasingly consumer-focused 

service, urban environments witness not only online shopping induced personal travel to brick-

and-mortar stores but also a substantial increase in less-than-truckload freight traffic on its road 

network. This consequently renders a significant increase in freight distribution costs as well as 

negative externalities from urban goods flow, including greenhouse gas emissions advancing 

global climate change, criteria pollutant emissions worsening local air quality, and congestion 

resulting in noise pollution and traffic accidents (Figliozzi, 2007; Van Loon et al., 2015; Wygonik 

and Goodchild, 2011). Thus, to cope with the increasing consumer-focused trends in e-

commerce, these e-retailers must make strategic, tactical, and operational improvements to 
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enable sustainable last-mile distribution. 

 

2.2. Alternate last-mile distribution strategies 

Conventional last-mile distribution entails door-to-door deliveries using a diesel truck fleet 

operating from a distant warehouse. Owing to a sizeable payload capacity, these diesel trucks 

enable the e-retailer to consolidate demand and carry out last-mile distribution operations at low 

costs. However, to cater to an increasingly consumer-focused market, distribution operations 

with a fleet of diesel truck necessitates frequent less-than-truckload last-mile deliveries which 

significantly affect sustainability of goods distribution. To this end, the e-retailer can deploy 

alternate last-mile distribution strategies to restore sustainability of goods flow.  

 One such alternate distribution strategy includes use of urban consolidation facilities 

coupled with use of light-duty delivery vehicles such as electric vans, cargo-bikes, autonomous 

delivery robots (ADRs), or unmanned aerial vehicles (UAVs) for last-mile delivery, thereby moving 

medium-duty delivery trucks away from core commercial and residential parts of the city. The 

literature has showcased the potential for such consolidation strategies to lower the operational 

costs for the e-retailer as well as reduce the negative effects of freight traffic in the city (Estrada 

and Roca-Riu, 2017; Isa et al., 2021; Quak and Tavasszy, 2011). However, delivery using such light-

duty delivery vehicles has logistical limitations and is therefore specifically feasible for expedited 

delivery in dense urban environments where service with conventional medium-duty trucks may 

be difficult (Browne et al., 2011; Lemardelé et al., 2021; Tipagornwong and Figliozzi, 2014a). 

 Thus, Jaller et al. (2020), Hofer et al. (2020), van Duin et al. (2020), and others alike have 

explored opportunities and challenges associated with yet another multi-echelon distribution 
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that instead includes use of collection-points to in fact outsource the last-mile travel to the 

customer, thereby enabling expedited delivery at low costs. In addition, these studies have 

highlighted the potential for collection-point pickups to reduce the negative externalities 

associated with urban goods flow if the e-retailer could establish a dense network of lockers 

located near customers’ home or workplace and thereby limit customer-travel to collect 

packages. Nonetheless, Pahwa and Jaller (In Review) underscored the susceptibility of 

distribution via collection-points to disruption in last-mile considering the uncertainty pertaining 

to customers’ willingness to collect packages. 

 Yet, the e-retailer may still outsource the entire last-mile employing a fleet of 

crowdsourced driver for a low-cost door-to-door expedited delivery service (Arslan et al., 2019; 

Guo et al., 2019; Pourrahmani and Jaller, 2021). In fact, the literature has emphasized upon the 

potential for crowdsourced deliveries to reduce negative externalities from last-mile deliveries 

assuming it does not induce vehicle-use for the purpose of crowdshipping alone. However, De 

Ruyter et al. (2018) raised equity and welfare concerns associated with the gig-work considering 

the independent contractor status of crowdsourced drivers. Moreover, much like with 

distribution via collection-points, Pahwa and Jaller (In Review) highlighted that crowdsourced 

deliveries may also be susceptible to disruptions in last-mile owing to the uncertainty pertaining 

to driver availability. 

 Nonetheless, the COVID-19 pandemic has prompted e-retailers to further innovate and 

develop not only sustainable delivery methods with an economically viable, environmentally 

efficient, and socially equitable distribution structure that is capable of handling high-probability 

low-severity fluctuations in the last-mile, but also resilient delivery methods with robust, 
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redundant, resourceful, and rapid distribution structure that is capable of handling low-

probability high-severity last-mile disruptions (Pahwa and Jaller, In Review). One such new 

distribution strategies include use of ADRs and UAVs from a delivery truck functioning as a mobile 

warehouse carrying high-demand products in anticipation of customer request (anticipatory 

shipping) to limit product shortages and further reduce customer lead time (Lee, 2017; Singh et 

al., 2021; Srinivas and Marathe, 2021) 

 

2.3. Assessment Methods 

Several studies have investigated sustainability of e-commerce last-mile distribution (Brown and 

Guiffrida, 2014; Durand and Gonzalez-Feliu, 2012; Shang et al., 2017; Thirumalai and Sinha, 2005; 

Weise, 2020; Wygonik and Goodchild, 2018). While some of these studies have highlighted the 

potential opportunities with online shopping to consolidate urban goods flow, equally as many 

studies have emphasized the potential challenges for e-commerce from increased urban 

commercial vehicle traffic. However, this literature has largely exaggerated the impact of e-

commerce as only a few studies have previously undertaken a sophisticated modeling effort to 

accurately replicate the delivery environment. 

To this end, Continuous Approximation (CA) method estimates delivery environment 

parameters as continuous density functions thus enabling decision-making when operational 

parameters may be needed but a precise plan cannot be established. In the context of last-mile 

operations, Daganzo (1984a) and Daganzo (1984b) pioneered the use of CA method. In particular, 

Daganzo (1984b) introduced the CA technique to establish the route of a traveling salesman 

visiting stops located randomly and uniformly in a service region, as in the Traveling Salesman 



10 
 

Problem (TSP), and thus estimated the length of the tour to be proportional to the number of 

stops and inversely proportional to square root of stop density. Further, Daganzo (1984a) 

expanded the CA model to establish distance traveled by a fleet of vehicles embarking on last-

mile operations in a service region from a distant warehouse with stops located randomly and 

uniformly in the service region, as in a typical Vehicle Routing Problem (VRP).   

Thus, the CA method renders a sound compromise between modeling accuracy and 

feasibility thereby prompting further use in operations research literature. For instance, Figliozzi 

(2008) modeled last-mile delivery operations for a service region with non-randomly located 

stops, while Çavdar and Sokol (2015) modeled these delivery operations for a service region with 

stops located non-uniformly. In the context of e-commerce last-mile delivery, the CA method has 

been deployed to model the impact of time-windows on last-mile operations (Figliozzi, 2009), 

assess the viability of consolidation strategies (Estrada and Roca-Riu, 2017), establish the efficacy 

of delivery using cargo-bikes (Tipagornwong and Figliozzi, 2014a), evaluate the competitiveness 

of electric delivery vehicles (Davis and Figliozzi, 2013), develop the use-case for last-mile delivery 

with ADRs and UAVs (Lemardelé et al., 2021), assess the potential for multi-echelon distribution 

(Jahangiriesmaili et al., 2017), and much more.  

Yet, more sophisticated discrete mathematical models formulating the Location Routing 

Problem (LRP) enable a more comprehensive decision-making to configure and optimize the 

distribution structure and determine the distribution facilities to operate (type, number, and 

location), the fleet choice (size and composition), the customer allocation, and consequently the 

order of customer visits (Janjevic et al., 2021; Merchán and Winkenbach, 2018; Rautela et al., 

2021; Snoeck et al., 2018; Zhou et al., 2019). To this end, some of the earlier works modeled 
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simplistic distribution structures (Jamil et al., 1994; Laporte et al., 1988; Salhi and Nagy, 1999), 

however, improvements in computational power have instigated research to incorporate more 

complex features to the problem including resource constraints (Barreto et al., 2007; Pirkwieser 

and Raidl, 2010; Schwengerer et al., 2012), customer time-windows (Aksen and Altinkemer, 

2008; Crainic et al., 2011; Li and Keskin, 2014), multi-echelon distribution (Contardo et al., 2012; 

Govindan et al., 2014; Wang et al., 2018), stochastic elements (Ahmadi Javid and Azad, 2010; 

Nadizadeh and Nasab, 2014; Schiffer and Walther, 2018), dynamic elements (Albareda-Sambola 

et al., 2012; Koç et al., 2016; Rabbani et al., 2019), etc.  

Considering the NP-hard nature of the problem, the literature has developed solution 

algorithms using metaheuristic frameworks including local search methods such as simulated 

annealing (Ahmadi-Javid and Seddighi, 2013; Ferreira and de Queiroz, 2018; Lin et al., 2011), tabu 

search (Caballero et al., 2007; Klibi et al., 2010; Lin and Kwok, 2006), variable neighborhood 

search (Melechovský et al., 2005; Veenstra et al., 2018; Zhang et al., 2019), adaptive large 

neighborhood search (Hemmelmayr et al., 2017; Koç, 2019; Tunalıoğlu et al., 2016); evolutionary 

computation techniques such as genetic algorithm (Derbel et al., 2012; Fazayeli et al., 2018; Hu 

et al., 2018), and evolutionary algorithm (Prins et al., 2006; Prodhon, 2011; Sun, 2015); and 

swarm intelligence algorithms such as ant-colony optimization (Gao et al., 2016; Herazo-Padilla 

et al., 2015; Ting and Chen, 2013), particle swarm optimization (Marinakis, 2015; Peng et al., 

2017; Rabbani et al., 2018), etc.   

For a comprehensive review of transportation studies employing the CA method, 

interested reader may refer to Ansari et al. (2018). Further, for a comprehensive overview of 

recent developments in the field of LRPs, interested reader may refer to Prodhon and Prins 
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(2014), Drexl and Schneider (2015), and Mara et al. (2021). 

Considering the objective of this work is to investigate economic viability, environmental 

efficiency, and social equity of urban goods flow in light of the increasingly consumer-focused 

service in e-commerce, the author develops  

A. a simulation framework founded on consumer shopping behavior simulating urban goods 

flow – to first establish the impact of e-commerce on urban goods distribution, 

B. a CA framework modeling last-mile distribution operations for an e-retailer – to then 

establish the impact of key delivery environment parameters on e-commerce goods 

distribution, and, 

C. a discrete optimization framework formulating the LMND problem for an e-retailer as DS-

2E-C-LRP-TW, addressed using the ALNS metaheuristic algorithm – to establish the impact 

of demand uncertainty on e-commerce goods distribution. 
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3. Methodology 

3.1. Simulation framework 

To estimate the impact of e-commerce on urban goods flow, the author here develops a 

simulation framework simulating shopping-related travel for a synthetic population with 

individuals reconstructed using appropriate Categorical distributions (Bernoulli/Multinoulli 

distribution) consistent with the demographics of the region under study. In particular, this work 

models consumer shopping behavior as a multinomial logit (MNL) model (equation 3.1.1) using 

the American Time-Use Survey (ATUS), focusing on the choice of shopping channel, including – 

to shop exclusively in-store, to shop exclusively online, to shop both in-store as well as online, 

and no-shopping (Figure 1). Using this consumers’ shopping-channel choice model, this study 

identifies the in-store and online consumers in the synthetic population. And finally, for these 

individuals, the author estimates the shopping-related travel assuming individuals travel in their 

personal vehicles to make in-store purchases while a diesel truck performs door-to-door delivery 

to fulfill purchases made online.   

 
Figure 1. Alternatives for shopping 

𝑙𝑙𝑙𝑙𝑙𝑙 �𝑝𝑝𝑟𝑟𝑖𝑖 �1 −� 𝑝𝑝𝑟𝑟𝑖𝑖
𝑖𝑖

�� � = 𝜷𝜷𝒊𝒊𝑿𝑿                                     ∀ 𝑖𝑖 ∈ [𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑏𝑏𝑏𝑏𝑏𝑏ℎ]            (3.1. 1) 

Both Online In-store No shopping 

Shopping decisions 
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To this end, this work considers shopping travel statistics depicting a typical in-store and 

online shopping activity (Figure 2). And thus, for in-store shopping travel, this study first considers 

the distribution for the number of tours per person per day involving some in-store shopping 

activity, regardless of whether shopping was the primary purpose or not (Figure 2a). Then, 

contingent on the number of stops in the tour, the author estimates the length of these tours 

(Figure 2b and 2c). Finally, to estimate the amount of travel accountable to in-store shopping, 

this work assumes a share amounting to the fraction of in-store shopping activities in the 

personal tour consistent with Figure 2d. In doing so, the author establishes the distance traveled 

by an individual in for a typical in-store shopping activity. On the hand, for online shopping travel, 

this work considers a typical parcel delivery tour with delivery tour length following Weibull 

distribution (Figure 2e) and number of stops in this delivery tour following Triangular distribution 

(Figure 2f). And thus, to account for the travel associated with online shopping, the author 

assumes a share amounting to distance traveled by a delivery vehicle per delivery stop. In doing 

so, this work establishes the distance attributable to an online-shopping activity.  

Note, the author here develops urban goods flow for the current retail landscape with 

consumers shopping in-store as well as online (omni-channel), the traditional retail scenario with 

consumers making all purchases at brick-and-mortar stores (single-channel in-store), and a 

potential future retail scenario with consumers making only online purchases (single-channel 

online). To ensure robust estimates, this work develops the simulation framework using Monte-

Carlo technique, generating 100 replicates in every simulation. With this, the author establishes 

the current and potential future impact of e-commerce on urban goods flow in terms of 

shopping-travel related externalities. 
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Figure 2. Shopping travel statistics 
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3.2. Continuous Approximation framework 

To establish the impact of key delivery environment parameters on e-commerce goods 

distribution, the author here employs Continuous Approximation (CA) techniques to model the 

last-mile distribution operations for an e-retailer with a two-echelon distribution structure 

(Figure 3) serving 𝑛𝑛 customers in a compact and convex shaped service region, just fitting within 

𝑎𝑎 × 𝑎𝑎 square, in distinct time-periods of length 𝑡𝑡𝑇𝑇𝑇𝑇. This distribution structure includes a regional 

distribution facility that fulfills a primary distribution facility which in turn serves customers and 

fulfills secondary distribution facilities including  𝑛𝑛𝑀𝑀𝑀𝑀 micro-hub facilities that deliver a 𝑝𝑝𝑀𝑀𝑀𝑀 share 

of packages, and 𝑛𝑛𝐶𝐶𝐶𝐶 collection-point facilities that cater to a 𝑝𝑝𝐶𝐶𝐶𝐶 share of customers. Note, the 

e-retailer positions the regional distribution facility away from the service region at 𝜌𝜌𝑥𝑥′ ,𝜌𝜌𝑦𝑦′  and 

locates the primary distribution facility closer at 𝜌𝜌𝑥𝑥, 𝜌𝜌𝑦𝑦 relative to the center of the service region. 

As for the secondary distribution facilities, the e-retailer locates micro-hubs and collection-points 

randomly and uniformly in the service region. 

 
Figure 3. A typical e-retail two-echelon last-mile distribution structure 
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Thus, distribution operations in this distribution structure include fulfillment trips from 

the regional facility to the primary facility (tour-type 1), delivery tour from the primary facility 

serving 𝑛𝑛(1 − 𝑝𝑝𝑀𝑀𝑀𝑀 − 𝑝𝑝𝐶𝐶𝐶𝐶) customers and fulfilling 𝑛𝑛𝑀𝑀𝑀𝑀 micro-hubs as well as 𝑛𝑛𝐶𝐶𝐶𝐶 collection-

points (tour-type 2), delivery tour from each micro-hub serving a total of 𝑛𝑛𝑝𝑝𝑀𝑀𝑀𝑀 customers (tour-

type 3), and 𝑛𝑛𝑝𝑝𝐶𝐶𝐶𝐶 customers traveling to the nearest collection-point (tour-type 4).  

Below is a list of notations of parameters and variables employed in this CA framework.  

Sets 
𝐸𝐸  : Set of pollutants 
𝐼𝐼  : Set of time-periods 
𝐽𝐽  : Set of tour-types 

Indices 
𝑒𝑒  : Pollutant index 
𝑖𝑖  : Time-period index 
𝑗𝑗  : Tour-type index 

Distribution parameters 
𝑎𝑎  : Dimension of the smallest square fitting the service region 
𝜌𝜌𝑥𝑥′   : Location of regional distribution facility along x-axis 
𝜌𝜌𝑦𝑦′   : Location of regional distribution facility along y-axis  
𝑡𝑡𝑇𝑇𝑇𝑇 : Length of time-window 
𝑛𝑛  :  Total demand 
𝑛𝑛𝑖𝑖   : Customer demand in time-period 𝑖𝑖 
𝑛𝑛𝑀𝑀𝑀𝑀 : Number of micro-hubs 
𝑛𝑛𝐶𝐶𝐶𝐶  : Number of collection-points  
𝑝𝑝𝑀𝑀𝑀𝑀 : Share of packages served via micro-hubs 
𝑝𝑝𝐶𝐶𝐶𝐶  : Share of packages picked up at collection-points 
𝑛𝑛𝑖𝑖  : Total demand in time-period 𝑖𝑖 
𝛿𝛿𝑖𝑖𝐶𝐶  : Customer density in time-period 𝑖𝑖 
𝛿𝛿𝐹𝐹  : Density of re-fueling station 
𝜙𝜙𝑖𝑖  : Congestion factor in time-period 𝑖𝑖 
𝑤𝑤  : Driver working hours 
𝜂𝜂  : Amortization factor 
𝜋𝜋𝐷𝐷
𝑓𝑓   : Fixed cost of distribution facility operating tour-type 𝑗𝑗 
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Vehicle parameters 
𝑙𝑙𝑗𝑗  : Range of vehicle operating tour-type 𝑗𝑗 
𝑞𝑞𝑗𝑗   : Capacity of vehicle operating tour-type 𝑗𝑗 
𝑣𝑣𝑗𝑗𝑟𝑟  : Speed on a rural road of vehicle operating tour-type 𝑗𝑗 
𝑣𝑣𝑗𝑗𝑢𝑢  : Speed on an urban road of vehicle operating tour-type 𝑗𝑗 
𝜏𝜏𝑗𝑗𝐶𝐶  : Service time at customer stop of vehicle operating tour-type 𝑗𝑗 
𝜏𝜏𝑗𝑗𝐷𝐷  : Service time at distribution facility of vehicle operating tour-type 𝑗𝑗 
𝜁𝜁𝑗𝑗𝐷𝐷  : Re-fueling time at distribution facility of vehicle operating tour-type 𝑗𝑗 
𝜁𝜁𝑗𝑗𝐹𝐹  : Re-fueling time at re-fueling station of vehicle operating tour-type 𝑗𝑗 
𝜋𝜋𝑉𝑉
𝑓𝑓  : Fixed cost of vehicle operating tour-type 𝑗𝑗 

𝜋𝜋𝑉𝑉𝑜𝑜𝑜𝑜  : Distance-based operational cost of vehicle operating tour-type 𝑗𝑗 
𝜋𝜋𝑉𝑉𝑜𝑜𝑜𝑜  : Time-based operational cost of vehicle operating tour-type 𝑗𝑗 

Distribution operation variables 
𝜌𝜌𝑖𝑖𝑖𝑖  : Long-haul length for time-period 𝑖𝑖 tour-type 𝑗𝑗 
𝜆𝜆𝑖𝑖𝑖𝑖  : Long-haul duration for time-period 𝑖𝑖 tour-type 𝑗𝑗 
𝛾𝛾𝑖𝑖𝑖𝑖
𝐷𝐷   : Re-fueling time at distribution facility for time-period 𝑖𝑖 tour-type 𝑗𝑗 
𝛾𝛾𝑖𝑖𝑖𝑖
𝐹𝐹   : Re-fueling time at re-fueling station for time-period 𝑖𝑖 tour-type 𝑗𝑗 
Ω𝑖𝑖𝑖𝑖  : Frequency of visits to the re-fueling station for time-period 𝑖𝑖 tour-type 𝑗𝑗 
𝑙𝑙𝑖𝑖𝑖𝑖  : Delivery tour length for time-period 𝑖𝑖 tour-type 𝑗𝑗 
𝑡𝑡𝑖𝑖𝑖𝑖  : Delivery tour duration for time-period 𝑖𝑖 tour-type 𝑗𝑗 
𝜑𝜑𝑖𝑖𝑖𝑖
𝐿𝐿   : Binary variable  

𝜑𝜑𝑖𝑖𝑇𝑇  : Binary variable 
 
Decision variables 

𝜌𝜌𝑥𝑥  : Location of e-commerce fulfillment facility along x-axis 
𝜌𝜌𝑦𝑦  : Location of e-commerce fulfillment facility along y-axis 
𝑓𝑓𝑖𝑖𝑖𝑖  : Fleet size in time-period 𝑖𝑖 tour-type 𝑗𝑗 
𝑚𝑚𝑖𝑖𝑖𝑖  : Number of delivery tours per vehicle in time-period 𝑖𝑖 tour-type 𝑗𝑗 
𝑐𝑐𝑖𝑖𝑖𝑖  : Total stops in a delivery tour in time-period 𝑖𝑖 tour-type 𝑗𝑗 
𝑐𝑐𝑖𝑖𝑖𝑖𝐶𝐶   : Customer stops in a delivery tour in time-period 𝑖𝑖 tour-type 𝑗𝑗 
𝑐𝑐𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀 : Micro-hub stops in a delivery tour in time-period 𝑖𝑖 tour-type 𝑗𝑗 
𝑐𝑐𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶  :  Collection-point stops in a delivery tour in time-period 𝑖𝑖 tour-type 𝑗𝑗 

 This work assumes the e-retailer to minimize the total cost of distribution monetizing 

economic viability, environmental efficiency, and social equity for the associated last-mile 
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delivery operations as fixed and operational cost of distribution (equation 3.2.1) subject to 

customer service constraints (equations 3.2.2 - 3.2.7), vehicle capacity constraints (equation 3.2.8 

- 3.2.10), time-window constraints (equation 3.2.11 - 3.2.12), and driver working hours constraints 

(equation 3.2.13 - 3.2.15). 

minΠ = ��𝜋𝜋𝐷𝐷
𝑓𝑓 + 𝜋𝜋𝑉𝑉

𝑓𝑓 max
𝑖𝑖
𝑓𝑓𝑖𝑖𝑖𝑖 + ��𝜋𝜋𝑉𝑉𝑜𝑜𝑜𝑜𝑙𝑙𝑖𝑖𝑖𝑖 + 𝜋𝜋𝑉𝑉𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝑖𝑖�

𝑖𝑖∈𝐼𝐼

𝑚𝑚𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖�
𝑗𝑗∈𝐽𝐽    

                                                               (3.2. 1) 

Subject to,  

𝑐𝑐𝑖𝑖1𝑚𝑚𝑖𝑖1𝑓𝑓𝑖𝑖1 = 𝑛𝑛𝑖𝑖                                                                                                                                 ∀ 𝑖𝑖 ∈ 𝐼𝐼           (3.2. 2) 

𝑐𝑐𝑖𝑖2𝐶𝐶𝑚𝑚𝑖𝑖2𝑓𝑓𝑖𝑖2 = 𝑛𝑛𝑖𝑖(1 − 𝑝𝑝𝑀𝑀𝑀𝑀 − 𝑝𝑝𝐶𝐶𝐶𝐶)                                                                                                  ∀ 𝑖𝑖 ∈ 𝐼𝐼           (3.2. 3) 

𝑐𝑐𝑖𝑖2𝑀𝑀𝑀𝑀𝑚𝑚𝑖𝑖2𝑓𝑓𝑖𝑖2 = 𝑛𝑛𝑀𝑀𝑀𝑀                                                                                                                           ∀ 𝑖𝑖 ∈ 𝐼𝐼           (3.2. 4) 

𝑐𝑐𝑖𝑖2𝐶𝐶𝐶𝐶𝑚𝑚𝑖𝑖2𝑓𝑓𝑖𝑖2 = 𝑛𝑛𝐶𝐶𝐶𝐶                                                                                                                              ∀ 𝑖𝑖 ∈ 𝐼𝐼           (3.2. 5) 

𝑐𝑐𝑖𝑖3𝐶𝐶𝑚𝑚𝑖𝑖3𝑓𝑓𝑖𝑖3 = 𝑛𝑛𝑖𝑖𝑝𝑝𝑀𝑀𝑀𝑀                                                                                                                           ∀ 𝑖𝑖 ∈ 𝐼𝐼           (3.2. 6) 

𝑚𝑚𝑖𝑖4𝑓𝑓𝑖𝑖4 = 𝑛𝑛𝑖𝑖𝑝𝑝𝐶𝐶𝐶𝐶                                                                                                                                ∀ 𝑖𝑖 ∈ 𝐼𝐼           (3.2. 7) 

𝑐𝑐𝑖𝑖1 ≤ 𝑞𝑞1                                                                                                                                             ∀ 𝑖𝑖 ∈ 𝐼𝐼           (3.2. 8) 

𝑐𝑐𝑖𝑖2𝐶𝐶 + 𝑐𝑐𝑖𝑖2𝑀𝑀𝑀𝑀 𝑛𝑛𝑖𝑖𝑝𝑝
𝑀𝑀𝑀𝑀

𝑛𝑛𝑀𝑀𝑀𝑀 +  𝑐𝑐𝑖𝑖2𝐶𝐶𝐶𝐶
𝑛𝑛𝑖𝑖𝑝𝑝𝐶𝐶𝐶𝐶

𝑛𝑛𝐶𝐶𝐶𝐶
≤ 𝑞𝑞2                                                                                           ∀ 𝑖𝑖 ∈ 𝐼𝐼           (3.2. 9) 

𝑐𝑐𝑖𝑖3 ≤ 𝑞𝑞3                                                                                                                                              ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 10) 

𝑡𝑡𝑖𝑖2𝑚𝑚𝑖𝑖2 ≤ 𝑡𝑡𝑇𝑇𝑇𝑇                                                                                                                                   ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 11) 

𝑡𝑡𝑖𝑖3𝑚𝑚𝑖𝑖3 ≤ 𝑡𝑡𝑇𝑇𝑇𝑇                                                                                                                                   ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 12) 

�𝑡𝑡𝑖𝑖1𝑚𝑚𝑖𝑖1

𝑖𝑖∈𝐼𝐼

≤ 𝑤𝑤                                                                                                                                ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 13) 

�𝑡𝑡𝑖𝑖2𝑚𝑚𝑖𝑖2

𝑖𝑖∈𝐼𝐼

≤ 𝑤𝑤                                                                                                                                ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 14) 

�𝑡𝑡𝑖𝑖3𝑚𝑚𝑖𝑖3

𝑖𝑖∈𝐼𝐼

≤ 𝑤𝑤                                                                                                                                ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 15) 

where,  
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To begin with, delivery vehicles from the regional distribution facility fulfill the primary 

distribution facility with direct fulfillment trips, stopping at re-fueling stations enroute if needed 

(tour-type 1). The author thus models the length of this trip in equation 3.2.16 as the distance 

traveled from the regional to the primary facility including any distance traveled for re-fueling. 

Further, the model estimates the duration of this fulfillment trip in equation 3.2.17 as the sum of 

service time loading packages at the regional facility, re-fueling time at the regional facility, travel 

time, service time unloading packages at the primary distribution facility, and re-fueling time at 

a re-fueling station, represented by each term in the equation, respectively.  

Considering that large part of this fulfillment trip includes travel on highways, this work 

estimates distances in L1 metric (equation 3.2.18). Further, owing to the proximity of re-fueling 

stations to such highways, the author assumes any detours for re-fueling to be small, modeled 

as constant 𝛽𝛽. Moreover, the formulation here assumes the delivery vehicle traveling between 

the regional and primary distribution facility to traverse the fastest path (equation 3.2.19) 

Note, the re-fueling time is contingent on the length of the fulfillment trip, number of 

fulfillment trips per delivery vehicle, and the vehicle range (equation 3.2.20 and 3.2.21). In 

particular, if the distance traveled by a delivery vehicle on a fulfillment trip exceeds the vehicle 

range (equation 3.2.22), then the driver must re-fuel the vehicle to a full tank at the regional 

facility before departing for the primary facility, and enroute, the driver must then re-fuel for the 

deficit at the nearest re-fueling station. However, if the delivery vehicle can execute a fulfillment 

trip without having to re-fuel but the total distance traveled on all fulfillment trips exceeds the 

vehicle range (equation 3.2.23), then the driver must re-fuel the vehicle at the regional facility 

such that by the end of the day the fuel tank of the delivery vehicle is just about empty. 
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𝑙𝑙𝑖𝑖1 = 2𝜌𝜌𝑖𝑖1 + 𝜑𝜑𝑖𝑖1
𝐿𝐿 𝛽𝛽                                                                                                                              ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 16) 

𝑡𝑡𝑖𝑖1 = 𝜏𝜏1𝐷𝐷𝑐𝑐𝑖𝑖1 + 𝛾𝛾𝑖𝑖1𝐷𝐷 +  2𝜆𝜆𝑖𝑖1 + 𝜏𝜏1𝐷𝐷𝑐𝑐𝑖𝑖1 + 𝜑𝜑𝑖𝑖1
𝐿𝐿 𝛾𝛾𝑖𝑖1 

𝐹𝐹                                                                               ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 17) 

𝜌𝜌𝑖𝑖1 = |𝜌𝜌𝑥𝑥′ − 𝜌𝜌𝑥𝑥| + |𝜌𝜌𝑦𝑦′ − 𝜌𝜌𝑦𝑦|                                                                                                         ∀ 𝑖𝑖 ∈ 𝐼𝐼          (3.2. 18) 

𝜆𝜆𝑖𝑖1 =
𝜌𝜌𝑖𝑖1
𝜙𝜙𝑖𝑖𝑣𝑣1𝑟𝑟

+ 2
1
𝜙𝜙𝑖𝑖
�

1
𝑣𝑣1𝑢𝑢

−
1
𝑣𝑣1𝑟𝑟
� × 

         

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 0                                                                                         , if 𝜌𝜌𝑥𝑥 > 𝑎𝑎

2
or 𝜌𝜌𝑦𝑦 > 𝑎𝑎

2

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑎𝑎

2
− 𝜌𝜌𝑥𝑥                      ,    if 𝜌𝜌𝑥𝑥′ > 𝑎𝑎

2
 and 𝜌𝜌𝑦𝑦′ ∈ �

−𝑎𝑎
2

, 𝑎𝑎
2

 �
𝑎𝑎
2

+ min�−𝜌𝜌𝑥𝑥,𝜌𝜌𝑦𝑦� ,    if 𝜌𝜌𝑥𝑥′ > 𝑎𝑎
2

 and 𝜌𝜌𝑦𝑦′ < −𝑎𝑎
2

𝑎𝑎
2

+ 𝜌𝜌𝑦𝑦                      ,    if 𝜌𝜌𝑥𝑥′ ∈ �
−𝑎𝑎
2

, 𝑎𝑎
2

 �  and 𝜌𝜌𝑦𝑦′ < −𝑎𝑎
2

𝑎𝑎
2

+ min�𝜌𝜌𝑥𝑥, 𝜌𝜌𝑦𝑦�     ,    if 𝜌𝜌𝑥𝑥′ < −𝑎𝑎
2

 and 𝜌𝜌𝑦𝑦′ < −𝑎𝑎
2

𝑎𝑎
2

+ 𝜌𝜌𝑥𝑥                      ,    if 𝜌𝜌𝑥𝑥′ < −𝑎𝑎
2

 and 𝜌𝜌𝑦𝑦′ ∈ �
−𝑎𝑎
2

, 𝑎𝑎
2

 �
𝑎𝑎
2

+ min�𝜌𝜌𝑥𝑥,−𝜌𝜌𝑦𝑦� ,    if 𝜌𝜌𝑥𝑥′ < −𝑎𝑎
2

 and 𝜌𝜌𝑦𝑦′ > 𝑎𝑎
2

𝑎𝑎
2
− 𝜌𝜌𝑦𝑦                      ,    if 𝜌𝜌𝑥𝑥′ ∈ �

−𝑎𝑎
2

, 𝑎𝑎
2

 �  and 𝜌𝜌𝑦𝑦′ > 𝑎𝑎
2

𝑎𝑎
2

+ min�𝜌𝜌𝑥𝑥, 𝜌𝜌𝑦𝑦�     ,    if 𝜌𝜌𝑥𝑥′ > 𝑎𝑎
2

 and 𝜌𝜌𝑦𝑦′ > 𝑎𝑎
2   

, if 𝜌𝜌𝑥𝑥 ≤
𝑎𝑎
2

and 𝜌𝜌𝑦𝑦 ≤
𝑎𝑎
2

     

  ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 19)  

𝛾𝛾𝑖𝑖1𝐷𝐷 = 𝜑𝜑𝑖𝑖1
𝐿𝐿 𝜁𝜁1𝐷𝐷 + (1 − 𝜑𝜑𝑖𝑖1

𝐿𝐿 )𝜑𝜑𝑖𝑖1
𝑇𝑇

(∑ 𝑙𝑙𝑖𝑖1𝑚𝑚𝑖𝑖1𝑖𝑖∈𝐼𝐼 𝑙𝑙1⁄ − 1)
∑ 𝑚𝑚𝑖𝑖1𝑖𝑖∈𝐼𝐼

𝜁𝜁1𝐷𝐷                                                             ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 20) 

𝛾𝛾𝑖𝑖1𝐹𝐹 = (𝑙𝑙𝑖𝑖1 𝑙𝑙1⁄ − 1)𝜁𝜁1𝐷𝐷                                                                                                                       ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 21) 

𝜑𝜑𝑖𝑖1
𝐿𝐿 = � 1, if 𝑙𝑙𝑖𝑖1 > 𝑙𝑙1

 0, otherwise   
                                                                                                         ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 22) 

𝜑𝜑𝑖𝑖1
𝑇𝑇 = � 1, if ∑ 𝑙𝑙𝑖𝑖1𝑚𝑚𝑖𝑖1𝑖𝑖∈𝐼𝐼 > 𝑙𝑙1 

 0, otherwise                                                                                                     ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 23)  

 Upon fulfillment from the regional distribution facility, delivery vehicles from the primary 

distribution facility depart stopping at �𝑐𝑐𝑖𝑖2𝐶𝐶 𝜃𝜃⁄ �+customer stops each with 𝜃𝜃 customers, [𝑐𝑐𝑖𝑖2𝑀𝑀𝑀𝑀]+ 

micro-hubs, [𝑐𝑐𝑖𝑖2𝐶𝐶𝐶𝐶]+ collection-points, and at Ω𝑖𝑖2 re-fueling station(s) if needed, before returning 

back to the primary distribution facility (tour-type 2). The author estimates the length of this 

delivery tour in equation 3.2.24, as the sum of the long-haul distance and last-mile distance, 

represented by each of the two terms in the equation, respectively. While the tour time, given 
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by equation 3.2.25, is the sum of service time loading packages at the primary facility, re-fueling 

time at the primary facility, long-haul travel time, last-mile travel time, service time delivering 

packages at customer-stops, service time unloading packages at the secondary distribution 

facilities, and the re-fueling time, represented by each term in the equation, respectively.  

Here, the model estimates the long-haul (travel distance - equation 3.2.26, travel time - 

equation 3.2.27) by the average distance traveled by a delivery vehicle from the primary 

distribution facility located at 𝜌𝜌𝑥𝑥,𝜌𝜌𝑦𝑦 to the customers located randomly and uniformly in the 

service region (refer to Appendix A for more details). On the other hand, the author continuously 

approximates last-mile proportional to the stops and inversely proportional to the density of 

stops in the delivery tour. As discussed, the stops on a tour-type 2 delivery tour include customer-

stops, micro-hub stops, collection-point stops, and visits to the re-fueling station(s) (established 

in equation 3.2.28).  

Again, the re-fueling time is contingent on the length of the delivery tour, number of 

delivery tour per delivery vehicle, and the vehicle range (equation 3.2.29 and 3.2.30). In particular, 

if the length of a delivery tour exceeds the vehicle range (equation 3.2.31), then the driver must 

re-fuel the vehicle to a full tank at the primary facility before departing for last-mile delivery, and 

enroute, the driver must then re-fuel for the deficit making visits to the nearest re-fueling 

station(s). However, if the delivery vehicle can execute a delivery tour without having to re-fuel 

but the total distance traveled during the day exceeds the vehicle range (equation 3.2.32), then 

the driver must re-fuel the vehicle at the primary facility such that by the end of the day the fuel 

tank of the delivery vehicle is just about empty. 
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𝑙𝑙𝑖𝑖2 = 2𝜌𝜌𝑖𝑖2 +
𝑘𝑘��

𝑐𝑐𝑖𝑖2
𝐶𝐶

𝜃𝜃 �
+

+�𝑐𝑐𝑖𝑖2
𝑀𝑀𝑀𝑀�

+
+�𝑐𝑐𝑖𝑖2

𝐶𝐶𝐶𝐶�
+
+𝜑𝜑𝑖𝑖2

𝐿𝐿 Ω𝑖𝑖𝑖𝑖�

�𝛿𝛿𝑖𝑖
𝐶𝐶

𝜃𝜃 �1−𝑝𝑝
𝑀𝑀𝑀𝑀−𝑝𝑝𝐶𝐶𝐶𝐶�+𝛿𝛿𝑀𝑀𝑀𝑀+𝛿𝛿𝐶𝐶𝐶𝐶+𝜑𝜑𝑖𝑖2

𝐿𝐿 𝛿𝛿𝐹𝐹

                                                                        ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 24)  

𝑡𝑡𝑖𝑖2 = 𝑐𝑐𝑖𝑖2𝜏𝜏2𝐷𝐷 + 𝛾𝛾𝑖𝑖2𝐷𝐷 + 2𝜆𝜆𝑖𝑖2 +
𝑘𝑘��

𝑐𝑐𝑖𝑖2
𝐶𝐶

𝜃𝜃 �
+

+�𝑐𝑐𝑖𝑖2
𝑀𝑀𝑀𝑀�

+
+�𝑐𝑐𝑖𝑖2

𝐶𝐶𝐶𝐶�
+
+𝜑𝜑𝑖𝑖2

𝐿𝐿 Ω𝑖𝑖𝑖𝑖�

𝜙𝜙𝑖𝑖𝑣𝑣2𝑢𝑢�
𝛿𝛿𝑖𝑖
𝐶𝐶

𝜃𝜃 �1−𝑝𝑝
𝑀𝑀𝑀𝑀−𝑝𝑝𝐶𝐶𝐶𝐶�+𝛿𝛿𝑀𝑀𝑀𝑀+𝛿𝛿𝐶𝐶𝐶𝐶+𝜑𝜑𝑖𝑖2

𝐿𝐿 𝛿𝛿𝐹𝐹

+ 𝑐𝑐𝑖𝑖2𝐶𝐶 𝜏𝜏2𝐶𝐶 + 𝑐𝑐𝑖𝑖2𝑀𝑀𝑀𝑀 𝑛𝑛𝑖𝑖𝑝𝑝𝑀𝑀𝑀𝑀

𝑛𝑛𝑀𝑀𝑀𝑀 𝜏𝜏2𝐷𝐷 +  𝑐𝑐𝑖𝑖2𝐶𝐶𝐶𝐶
𝑛𝑛𝑖𝑖𝑝𝑝𝐶𝐶𝐶𝐶

𝑛𝑛𝐶𝐶𝐶𝐶
𝜏𝜏2𝐷𝐷 +

           𝜑𝜑𝑖𝑖2
𝐿𝐿 𝛾𝛾𝑖𝑖2 

𝐹𝐹                                                                                                                                     ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 25)  

𝜌𝜌𝑖𝑖2 =

⎩
⎪⎪
⎨

⎪⎪
⎧

 |𝜌𝜌𝑥𝑥| + |𝜌𝜌𝑦𝑦|      , if |𝜌𝜌𝑥𝑥| ≥ 𝑎𝑎 2⁄ and |𝜌𝜌𝑦𝑦| ≥ 𝑎𝑎/2

|𝜌𝜌𝑥𝑥| +
𝜌𝜌𝑦𝑦2

𝑎𝑎
+
𝑎𝑎
4

, if |𝜌𝜌𝑥𝑥| ≥ 𝑎𝑎 2⁄ and |𝜌𝜌𝑦𝑦| < 𝑎𝑎/2

𝜌𝜌𝑥𝑥2

𝑎𝑎
+ |𝜌𝜌𝑦𝑦| +

𝑎𝑎
4

, if |𝜌𝜌𝑥𝑥| < 𝑎𝑎 2⁄ and |𝜌𝜌𝑦𝑦| ≥ 𝑎𝑎/2

𝜌𝜌𝑥𝑥2 + 𝜌𝜌𝑦𝑦2

𝑎𝑎
+
𝑎𝑎
2

  , if |𝜌𝜌𝑥𝑥| < 𝑎𝑎 2⁄ and |𝜌𝜌𝑦𝑦| < 𝑎𝑎/2
   

                                              ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 26) 

𝜆𝜆𝑖𝑖2 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

|𝜌𝜌𝑥𝑥| + |𝜌𝜌𝑦𝑦|
𝑣𝑣𝑟𝑟

+ 𝑎𝑎 �
1
𝑣𝑣𝑢𝑢

−
1
𝑣𝑣𝑟𝑟
�          , if |𝜌𝜌𝑥𝑥| ≥ 𝑎𝑎 2⁄ and |𝜌𝜌𝑦𝑦| ≥ 𝑎𝑎/2

|𝜌𝜌𝑥𝑥|
𝑣𝑣𝑟𝑟

+
�
𝜌𝜌𝑦𝑦2
𝑎𝑎 + 𝑎𝑎

4�

𝑣𝑣𝑢𝑢
+
𝑎𝑎
2
�

1
𝑣𝑣𝑢𝑢

−
1
𝑣𝑣𝑟𝑟
� , if |𝜌𝜌𝑥𝑥| ≥ 𝑎𝑎 2⁄ and |𝜌𝜌𝑦𝑦| < 𝑎𝑎/2

�𝜌𝜌𝑥𝑥
2

𝑎𝑎 + 𝑎𝑎
4�

𝑣𝑣𝑢𝑢
+

|𝜌𝜌𝑦𝑦|
𝑣𝑣𝑟𝑟

+
𝑎𝑎
2
�

1
𝑣𝑣𝑢𝑢

−
1
𝑣𝑣𝑟𝑟
� , if |𝜌𝜌𝑥𝑥| < 𝑎𝑎 2⁄ and |𝜌𝜌𝑦𝑦| ≥ 𝑎𝑎/2

�
𝜌𝜌𝑥𝑥2 + 𝜌𝜌𝑦𝑦2

𝑎𝑎 + 𝑎𝑎
2�

𝑣𝑣𝑢𝑢
                               , if |𝜌𝜌𝑥𝑥| < 𝑎𝑎 2⁄ and |𝜌𝜌𝑦𝑦| < 𝑎𝑎/2

  

               ∀ 𝑖𝑖 ∈ 𝐼𝐼          (3.2. 27) 

Ω𝑖𝑖2 = [𝑙𝑙𝑖𝑖2 𝑙𝑙2⁄ − 1]+                                                                                                                       ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 28) 

𝛾𝛾𝑖𝑖2𝐷𝐷 = 𝜑𝜑𝑖𝑖2
𝐿𝐿 𝜁𝜁2𝐷𝐷 + (1 − 𝜑𝜑𝑖𝑖2

𝐿𝐿 )𝜑𝜑𝑖𝑖2
𝑇𝑇

(∑ 𝑙𝑙𝑖𝑖2𝑚𝑚𝑖𝑖2𝑖𝑖∈𝐼𝐼 𝑙𝑙2⁄ − 1)
∑ 𝑚𝑚𝑖𝑖2𝑖𝑖∈𝐼𝐼

𝜁𝜁2𝐷𝐷                                                             ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 29) 

𝛾𝛾𝑖𝑖2𝐹𝐹 = (𝑙𝑙𝑖𝑖2 𝑙𝑙2⁄ − 1)𝜁𝜁2𝐷𝐷                                                                                                                       ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 30) 

𝜑𝜑𝑖𝑖2
𝐿𝐿 = � 1, if 𝑙𝑙𝑖𝑖2 > 𝑙𝑙2

 0, otherwise   
                                                                                                         ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 31) 

𝜑𝜑𝑖𝑖2
𝑇𝑇 = � 1, if ∑ 𝑙𝑙𝑖𝑖2𝑚𝑚𝑖𝑖2𝑖𝑖∈𝐼𝐼 > 𝑙𝑙2 

 0, otherwise                                                                                                     ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 32)  
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Upon fulfillment from the primary distribution facility, delivery vehicles from the micro-

hubs (secondary distribution facility) depart stopping at �𝑐𝑐𝑖𝑖3𝐶𝐶 𝜃𝜃⁄ �+customer stops each with 𝜃𝜃 

customers, and at Ω𝑖𝑖3 re-fueling station(s) if needed, before returning back to the micro-hub 

(tour-type 3). This work estimates the length of this delivery tour in equation 3.2.33 as the sum 

of long-haul distance and last-mile distance, represented by each of the two terms in the 

equation, respectively. On the other hand, the tour time, established in equation 3.2.34, is the 

sum of the service time loading packages onto the delivery vehicle at the micro-hub, delivery 

vehicle re-fueling time at the micro-hub, long-haul travel time to the first customer-stop and from 

the last customer-stop on the delivery tour, last-mile travel time traveling to customer-stops, 

service time delivering packages at the customer-stop, and re-fueling time, represented by each 

term in the equation, respectively.  

The author estimates the long-haul (travel distance - equation 3.2.35, travel time - 

equation 3.2.36) by the average distance between a micro-hub and customer-stops using 

equation 3.2.27 (see Appendix B for more details), while the model continuously approximates 

the last-mile as a function of number of stops and stop density. Note, the stops on a tour-type 3 

delivery tour include customer-stops and visits to the re-fueling station(s) (established in 

equation 3.2.37).  

Further, the model develops re-fueling time for a delivery vehicle operating tour-type 3 

(equations 3.2.40 - 3.2.41) analogous to the re-fueling time for a delivery vehicle operation tour-

type 2. 
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𝑙𝑙𝑖𝑖3 = 2𝜌𝜌𝑖𝑖3 +
𝑘𝑘��

𝑐𝑐𝑖𝑖3
𝐶𝐶

𝜃𝜃 �
+

+𝜑𝜑𝑖𝑖3
𝐿𝐿 Ω𝑖𝑖3

𝐿𝐿 �

�𝛿𝛿𝑖𝑖
𝐶𝐶

𝜃𝜃
(1−𝑝𝑝𝑀𝑀𝑀𝑀)+𝜑𝜑𝑖𝑖3

𝐿𝐿 𝛿𝛿𝐹𝐹 

                                                                                                  ∀ 𝑖𝑖 ∈ 𝐼𝐼          (3.2. 33)  

𝑡𝑡𝑖𝑖3 = 𝑐𝑐𝑖𝑖3𝐶𝐶 𝜏𝜏3𝐷𝐷 + 𝛾𝛾𝑖𝑖3𝐷𝐷 + 2𝜆𝜆𝑖𝑖3 +
𝑘𝑘��

𝑐𝑐𝑖𝑖3
𝐶𝐶

𝜃𝜃 �
+

+𝜑𝜑𝑖𝑖3
𝐿𝐿 Ω𝑖𝑖3

𝐿𝐿 �

𝜙𝜙𝑖𝑖𝑣𝑣3𝑢𝑢�
𝛿𝛿𝑖𝑖
𝐶𝐶

𝜃𝜃
(1−𝑝𝑝𝑀𝑀𝑀𝑀)+𝜑𝜑𝑖𝑖3

𝐿𝐿 𝛿𝛿𝐹𝐹

+ 𝑐𝑐𝑖𝑖3𝐶𝐶 𝜏𝜏𝑖𝑖3𝐶𝐶 + 𝜑𝜑𝑖𝑖3
𝐿𝐿 𝛾𝛾𝑖𝑖3   

𝐹𝐹                                  ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 34)  

𝜌𝜌𝑖𝑖3 =
2𝑎𝑎

3√𝑛𝑛𝑀𝑀𝑀𝑀 
                                                                                                                                 ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 35) 

𝜆𝜆𝑖𝑖3 =
𝜌𝜌𝑖𝑖3
𝑣𝑣3𝑢𝑢                                                                                                                                           ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 36) 

Ω𝑖𝑖3 = [𝑙𝑙𝑖𝑖3 𝑙𝑙3⁄ − 1]+                                                                                                                        ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 37) 

𝛾𝛾𝑖𝑖3𝐷𝐷 = 𝜑𝜑𝑖𝑖3
𝐿𝐿 𝜁𝜁3𝐷𝐷 + (1 − 𝜑𝜑𝑖𝑖3

𝐿𝐿 )𝜑𝜑𝑖𝑖3
𝑇𝑇

(∑ 𝑙𝑙𝑖𝑖3𝑚𝑚𝑖𝑖3𝑖𝑖∈𝐼𝐼 𝑙𝑙3⁄ − 1)
∑ 𝑚𝑚𝑖𝑖3𝑖𝑖∈𝐼𝐼

𝜁𝜁3𝐷𝐷                                                             ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 38) 

𝛾𝛾𝑖𝑖3𝐹𝐹 = (𝑙𝑙𝑖𝑖3 𝑙𝑙3⁄ − 1)𝜁𝜁3𝐷𝐷                                                                                                                       ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 39) 

𝜑𝜑𝑖𝑖3
𝐿𝐿 = � 1, if 𝑙𝑙𝑖𝑖3 > 𝑙𝑙3

 0, otherwise   
                                                                                                         ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 40) 

𝜑𝜑𝑖𝑖3
𝑇𝑇 = � 1, if ∑ 𝑙𝑙𝑖𝑖3𝑚𝑚𝑖𝑖3𝑖𝑖∈𝐼𝐼 > 𝑙𝑙3 

 0, otherwise                                                                                                     ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 41)  

 Similarly, upon fulfillment from the primary distribution facility, customers travel to the 

nearest collection-point (secondary distribution facility) to collect packages (tour-type 4). The 

author estimates this trip as the average distance from a customer’s location to the nearest 

collection-point (equations 3.2.42 - 3.2.45). 

𝑙𝑙𝑖𝑖4 = 2𝜌𝜌𝑖𝑖4                                                                                                                                          ∀ 𝑖𝑖 ∈ 𝐼𝐼          (3.2. 42)  

𝑡𝑡𝑖𝑖4 = 2𝜆𝜆𝑖𝑖4                                                                                                                                         ∀ 𝑖𝑖 ∈ 𝐼𝐼           (3.2. 43) 

𝜌𝜌𝑖𝑖4 =
2𝑎𝑎

3√𝑛𝑛𝐶𝐶𝐶𝐶   
                                                                                                                                 ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 44) 

𝜆𝜆𝑖𝑖4 =
𝜌𝜌𝑖𝑖4

𝜙𝜙𝑖𝑖𝑣𝑣4𝑢𝑢                                                                                                                                       ∀ 𝑖𝑖 ∈ 𝐼𝐼         (3.2. 45) 
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3.3. Discrete optimization framework 

To establish the impact of demand uncertainty on e-commerce goods distribution, the author 

here develops a discrete optimization framework modeling a last-mile network design (LMND) 

problem for an e-retailer with a two-echelon distribution structure (Figure 4) catering to a market 

with dynamic-stochastic customer demand.  

The LMND problem for this e-retailer encompasses distinct strategic, tactical, and 

operation decision-making processes. In particular, the strategic decisions undertake long-term 

planning to develop a distribution structure with appropriate distribution facilities and a suitable 

delivery fleet to service the expected customer demand in the planning horizon. The tactical 

decisions pertain to medium-term day-to-day planning of last-mile delivery operations to 

establish efficient goods flow to service the daily stochastic customer demand. And finally, 

operational decisions involve immediate short-term planning to fine-tune this last-mile delivery 

to service the requests arriving dynamically through the day. 

 
Figure 4. A typical e-retail two-echelon last-mile distribution structure 
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3.3.1. Formulating the location routing problem (LRP) 

All things considered, the author here formulates the LMND problem for this e-retailer as a 

dynamic-stochastic two-echelon capacitated location routing problem with time-windows (DS-

2E-C-LRP-TW). Below is a list of notations employed in this LRP formulation. 

Sets  
𝑁𝑁 : Set of nodes 
𝐶𝐶 : Set of customer nodes 
𝐷𝐷 : Set of distribution facility nodes 
𝑃𝑃 : Set of primary distribution facility nodes 
𝑆𝑆 : Set of secondary distribution facility nodes 
𝐴𝐴 : Set of arcs 
𝑉𝑉 : Set of delivery vehicles 
𝑅𝑅 : Set of vehicle routes 
𝑇𝑇𝑗𝑗 : Set of tail nodes (predecessors) to node 𝑗𝑗 ∈ 𝑁𝑁; {𝑘𝑘; (𝑘𝑘, 𝑗𝑗) ∈ 𝐴𝐴} 
𝐻𝐻𝑗𝑗 : Set of head nodes (successors) to node 𝑗𝑗 ∈ 𝑁𝑁; {𝑘𝑘; (𝑗𝑗,𝑘𝑘) ∈ 𝐴𝐴} 

Indices 
𝑖𝑖 : Node index 
𝑐𝑐 : Customer node index 
𝑑𝑑 : Distribution facility index 
𝑝𝑝 : Primary distribution facility index 
𝑠𝑠 : Secondary distribution facility index 
𝑖𝑖𝑖𝑖 : Arc index for arc connecting nodes 𝑖𝑖 and 𝑗𝑗 
𝑣𝑣 : Vehicle index 
𝑟𝑟 :  Route index 

Customer parameters 
𝑥𝑥𝑐𝑐 : Location of customer node 𝑐𝑐 along the x-axis 
𝑦𝑦𝑐𝑐 : Location of customer node 𝑐𝑐 along the y-axis 
𝑞𝑞𝑐𝑐 : Commodity demand for customer node 𝑐𝑐 
𝜏𝜏𝑐𝑐𝑉𝑉 : Service time delivering package at customer node 𝑐𝑐 
𝑡𝑡𝑐𝑐𝑒𝑒 : Earliest service start time at customer node 𝑐𝑐 
𝑡𝑡𝑐𝑐𝑙𝑙 : Latest service start tome at customer node 𝑐𝑐 

Distribution facility parameters 
𝑥𝑥𝑑𝑑 : Location of distribution facility 𝑑𝑑 along the x-axis 
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𝑦𝑦𝑑𝑑 : Location of distribution facility 𝑑𝑑 along the y-axis 
𝑞𝑞𝑑𝑑 : Capacity of distribution facility 𝑑𝑑 
𝑡𝑡𝑑𝑑𝑠𝑠  : Service start time at distribution facility 𝑑𝑑 
𝑡𝑡𝑑𝑑𝑒𝑒 : Service end time at distribution facility 𝑑𝑑 
𝜋𝜋𝑑𝑑
𝑓𝑓 : Fixed cost for distribution facility 𝑑𝑑 

𝜋𝜋𝑑𝑑𝑜𝑜 : Operational cost for distribution facility 𝑑𝑑 
𝑉𝑉𝑑𝑑 : Set of delivery vehicles at distribution facility 𝑑𝑑 

Vehicle parameters 
𝑙𝑙𝑣𝑣 : Range of vehicle 𝑣𝑣 
𝑞𝑞𝑣𝑣 : Capacity of vehicle 𝑣𝑣 
𝑠𝑠𝑣𝑣 : Speed of vehicle 𝑣𝑣 
𝜏𝜏𝑣𝑣𝐷𝐷 : Service time loading packages for vehicle 𝑣𝑣 at a distribution facility 
𝜁𝜁𝑣𝑣𝐷𝐷 : Re-fueling time for vehicle 𝑣𝑣 at a distribution facility 
𝑤𝑤𝑣𝑣 : Driver working hours for vehicle 𝑣𝑣 
𝜋𝜋𝑣𝑣𝑓𝑓 : Fixed cost of vehicle 𝑣𝑣 
𝜋𝜋𝑣𝑣𝑜𝑜𝑜𝑜 : Distance-based operational cost of vehicle 𝑣𝑣 
𝜋𝜋𝑣𝑣𝑜𝑜𝑜𝑜 : Time-based operational cost of vehicle 𝑣𝑣 
𝑘𝑘�𝑣𝑣  : Maximum number of delivery routes allowed for vehicle 𝑣𝑣 ∈ 𝑉𝑉 
𝑟𝑟𝑣𝑣𝑘𝑘 : 𝑘𝑘𝑡𝑡ℎ route for vehicle 𝑣𝑣 ∈ 𝑉𝑉 
𝑅𝑅𝑣𝑣 : Set of routes of vehicle 𝑣𝑣 

Distribution operation variables 
𝑙𝑙𝑟𝑟 : Length of route 𝑟𝑟 
𝑡𝑡𝑐𝑐𝑎𝑎 : Vehicle arrival time at customer node 𝑐𝑐 
𝑡𝑡𝑐𝑐𝑑𝑑 : Vehicle departure time at customer node 𝑐𝑐 
𝑡𝑡𝑟𝑟𝑠𝑠 : Start time of route 𝑟𝑟 
𝑡𝑡𝑟𝑟𝑒𝑒 : End time of route 𝑟𝑟 
𝑡𝑡𝑣𝑣𝑠𝑠 : Start time for vehicle 𝑣𝑣 
𝑡𝑡𝑣𝑣𝑒𝑒 : End time for vehicle 𝑣𝑣 

Decision variables 
𝑓𝑓𝑝𝑝𝑝𝑝 : Commodity flow from primary 𝑝𝑝 to the secondary distribution facility node 𝑠𝑠 
𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟  : Vehicle flow on arc 𝑖𝑖𝑖𝑖 in route 𝑟𝑟 
𝑦𝑦𝑝𝑝 : Facility use of primary distribution facility 𝑝𝑝 
𝑦𝑦𝑠𝑠 : Facility use of secondary distribution facility 𝑠𝑠 
𝑦𝑦𝑣𝑣 : Use of vehicle 𝑣𝑣 
𝑧𝑧𝑐𝑐𝑐𝑐 : Allocation of customer node 𝑐𝑐 to route 𝑟𝑟 
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To begin with, the author here defines the LMND problem on a directed graph 𝐺𝐺 = (𝑁𝑁,𝐴𝐴) 

with node set 𝑁𝑁 encompassing customer nodes 𝐶𝐶 and potential distribution facility nodes 𝐷𝐷 =

{𝑃𝑃 ∪ 𝑆𝑆}, where 𝑃𝑃 and 𝑆𝑆 represent the set of primary and secondary distribution facility nodes; 

while 𝐴𝐴 represents the set of arcs connecting these nodes, with a vehicle traversing the arc 

connecting nodes 𝑖𝑖 and 𝑗𝑗 spanning a length 𝑙𝑙𝑖𝑖𝑖𝑖. Further, each distribution facility node 𝑑𝑑 ∈ 𝐷𝐷 has 

an associated set of delivery vehicles 𝑉𝑉𝑑𝑑, capacity 𝑞𝑞𝑑𝑑, service start time 𝑡𝑡𝑑𝑑𝑠𝑠  and end time 𝑡𝑡𝑑𝑑𝑒𝑒, fixed 

cost 𝜋𝜋𝑑𝑑
𝑓𝑓, and operational cost 𝜋𝜋𝑑𝑑𝑜𝑜 per package. Each customer node 𝑐𝑐 ∈ 𝐶𝐶 has an associated 

service time 𝜏𝜏𝑐𝑐𝑑𝑑 and demand 𝑞𝑞𝑐𝑐 which the e-retailer must cater to within the specified time-

window [𝑡𝑡𝑐𝑐𝑒𝑒, 𝑡𝑡𝑐𝑐𝑙𝑙] with a delivery vehicle either directly from one of the primary distribution 

facilities or via one of the secondary distribution facilities. These delivery vehicles have an 

associated set of delivery routes 𝑅𝑅𝑣𝑣, capacity 𝑞𝑞𝑣𝑣, range 𝑙𝑙𝑣𝑣, refueling time 𝜏𝜏𝑣𝑣𝑓𝑓, loading time per 

package 𝜏𝜏𝑣𝑣𝑑𝑑, driver working hours 𝑤𝑤𝑣𝑣, fixed cost 𝜋𝜋𝑣𝑣𝑓𝑓, and operation cost 𝜋𝜋𝑣𝑣𝑜𝑜𝑜𝑜 per unit distance and 

𝜋𝜋𝑣𝑣𝑜𝑜𝑜𝑜 per unit time, respectively. 

minΠ = ��𝜋𝜋𝑝𝑝
𝑓𝑓 + �𝜋𝜋𝑝𝑝𝑜𝑜𝑓𝑓𝑝𝑝𝑝𝑝

𝑠𝑠∈𝑆𝑆

+ � �𝜋𝜋𝑣𝑣
𝑓𝑓 + � � 𝜋𝜋𝑣𝑣𝑜𝑜𝑜𝑜𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟 𝑙𝑙𝑖𝑖𝑖𝑖

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟∈𝑅𝑅𝑣𝑣

+ 𝜋𝜋𝑣𝑣𝑜𝑜𝑜𝑜(𝑡𝑡𝑣𝑣𝑒𝑒 − 𝑡𝑡𝑣𝑣𝑠𝑠)�𝑦𝑦𝑣𝑣
𝑣𝑣∈𝑉𝑉𝑝𝑝

�𝑦𝑦𝑝𝑝
𝑝𝑝∈𝑃𝑃

+ 

                 ��𝜋𝜋𝑠𝑠
𝑓𝑓 + �𝜋𝜋𝑠𝑠𝑜𝑜𝑓𝑓𝑝𝑝𝑝𝑝

𝑝𝑝∈𝑃𝑃

+ ��𝜋𝜋𝑣𝑣
𝑓𝑓 + � � 𝜋𝜋𝑣𝑣𝑜𝑜𝑜𝑜𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟 𝑙𝑙𝑖𝑖𝑖𝑖

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑟𝑟∈𝑅𝑅𝑣𝑣

+ 𝜋𝜋𝑣𝑣𝑜𝑜𝑜𝑜(𝑡𝑡𝑣𝑣𝑒𝑒 − 𝑡𝑡𝑣𝑣𝑠𝑠)�𝑦𝑦𝑣𝑣
𝑣𝑣∈𝑉𝑉𝑠𝑠

� 𝑦𝑦𝑠𝑠 

𝑠𝑠∈𝑆𝑆

                 (3.3. 1) 

Subject to, 

�𝑧𝑧𝑐𝑐𝑐𝑐
𝑟𝑟∈𝑅𝑅

= 1                                                                                                                                     ∀ 𝑐𝑐 ∈ 𝐶𝐶            (3.3. 2) 

� 𝑥𝑥𝑐𝑐𝑐𝑐𝑟𝑟
𝑗𝑗∈𝐻𝐻𝑐𝑐

= 𝑧𝑧𝑐𝑐𝑐𝑐                                                                                                                    ∀ 𝑐𝑐 ∈ 𝐶𝐶; 𝑟𝑟 ∈ 𝑅𝑅           (3.3. 3) 

�𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟
𝑖𝑖∈𝑇𝑇𝑗𝑗

= � 𝑥𝑥𝑗𝑗𝑗𝑗  
𝑟𝑟

𝑘𝑘∈𝐻𝐻𝑗𝑗

                                                                                                          ∀ 𝑗𝑗 ∈ 𝑁𝑁; 𝑟𝑟 ∈ 𝑅𝑅           (3.3. 4) 
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�𝑓𝑓𝑝𝑝𝑝𝑝
𝑝𝑝∈𝑃𝑃

= � � �𝑧𝑧𝑐𝑐𝑐𝑐𝑞𝑞𝑐𝑐  

𝑐𝑐∈𝐶𝐶𝑟𝑟∈𝑅𝑅𝑣𝑣𝑣𝑣∈𝑉𝑉𝑠𝑠

                                                                                                     ∀ 𝑠𝑠 ∈ 𝑆𝑆            (3.3. 5) 

�𝑧𝑧𝑐𝑐𝑐𝑐𝑞𝑞𝑐𝑐
𝑐𝑐∈𝐶𝐶

≤ 𝑞𝑞𝑣𝑣𝑦𝑦𝑣𝑣                                                                                                             ∀ 𝑟𝑟 ∈ 𝑅𝑅𝑣𝑣;𝑣𝑣 ∈ 𝑉𝑉           (3.3. 6) 

� � �𝑧𝑧𝑐𝑐𝑐𝑐𝑞𝑞𝑐𝑐
𝑐𝑐∈𝐶𝐶𝑟𝑟∈𝑅𝑅𝑣𝑣𝑣𝑣∈𝑉𝑉𝑠𝑠

≤ 𝑞𝑞𝑠𝑠𝑦𝑦𝑠𝑠                                                                                                            ∀ 𝑠𝑠 ∈ 𝑆𝑆            (3.3. 7) 

�𝑓𝑓𝑝𝑝𝑝𝑝
𝑠𝑠∈𝑆𝑆

+ � � �𝑧𝑧𝑐𝑐𝑐𝑐𝑞𝑞𝑐𝑐
𝑐𝑐∈𝐶𝐶𝑟𝑟∈𝑅𝑅𝑣𝑣𝑣𝑣∈𝑉𝑉𝑝𝑝

≤ 𝑞𝑞𝑝𝑝𝑦𝑦𝑝𝑝                                                                                        ∀ 𝑝𝑝 ∈ 𝑃𝑃             (3.3. 8) 

𝑡𝑡𝑐𝑐𝑎𝑎 + 𝑀𝑀(1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟 ) ≥ �
𝑡𝑡𝑟𝑟𝑠𝑠;    𝑖𝑖 ∈ 𝐷𝐷
𝑡𝑡𝑖𝑖𝑑𝑑;   𝑖𝑖 ∈ 𝐶𝐶 + 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟 𝑙𝑙𝑖𝑖𝑖𝑖 𝑠𝑠𝑣𝑣⁄                                    ∀ 𝑖𝑖 ∈ 𝑇𝑇𝑐𝑐; 𝑐𝑐 ∈ 𝐶𝐶; 𝑟𝑟 ∈ 𝑅𝑅𝑣𝑣; 𝑣𝑣 ∈ 𝑉𝑉             (3.3. 9) 

𝑡𝑡𝑐𝑐𝑑𝑑 ≥ 𝑡𝑡𝑐𝑐𝑎𝑎 + 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑡𝑡𝑐𝑐𝑒𝑒 − 𝑡𝑡𝑐𝑐𝑎𝑎) + 𝜏𝜏𝑐𝑐𝑉𝑉                                                                                               ∀ 𝑐𝑐 ∈ 𝐶𝐶         (3.3. 10) 

𝑡𝑡𝑐𝑐𝑎𝑎 ≤ 𝑡𝑡𝑐𝑐𝑙𝑙                                                                                                                                             ∀ 𝑐𝑐 ∈ 𝐶𝐶         (3.3. 11) 

𝑡𝑡𝑟𝑟𝑣𝑣1
𝑠𝑠 = 𝑡𝑡𝑑𝑑 

𝑠𝑠                                                                                                                          ∀ 𝑟𝑟𝑣𝑣 ∈ 𝑅𝑅𝑣𝑣; 𝑣𝑣 ∈ 𝑉𝑉𝑑𝑑          (3.3. 12) 

𝑡𝑡𝑟𝑟𝑣𝑣𝑘𝑘
𝑠𝑠 = 𝑡𝑡𝑟𝑟𝑣𝑣𝑘𝑘−1

𝑒𝑒 + 𝜁𝜁𝑣𝑣
𝐷𝐷 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑟𝑟𝑣𝑣𝑘𝑘𝑙𝑙𝑖𝑖𝑖𝑖 𝑙𝑙𝑣𝑣�(𝑖𝑖,𝑗𝑗)∈𝐴𝐴 + 𝜏𝜏𝑣𝑣𝑑𝑑 ∑ 𝑧𝑧𝑐𝑐𝑟𝑟𝑣𝑣𝑘𝑘𝑐𝑐∈𝐶𝐶 𝑞𝑞𝑐𝑐                                ∀ 𝑟𝑟𝑣𝑣𝑘𝑘−1; 𝑟𝑟𝑣𝑣𝑘𝑘 ∈ 𝑅𝑅𝑣𝑣;𝑣𝑣 ∈ 𝑉𝑉         (3.3. 13) 

𝑡𝑡𝑣𝑣𝑠𝑠 = 𝑡𝑡𝑟𝑟𝑣𝑣1
𝑠𝑠                                                                                                                                          ∀ 𝑣𝑣 ∈ 𝑉𝑉            (3.3. 14) 

𝑡𝑡𝑣𝑣𝑒𝑒 = 𝑡𝑡
𝑟𝑟𝑣𝑣
𝑘𝑘�𝑣𝑣  
𝑒𝑒                                                                                                                                       ∀ 𝑣𝑣 ∈ 𝑉𝑉            (3.3. 15)  

𝑡𝑡𝑣𝑣𝑒𝑒 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑣𝑣𝑠𝑠 + 𝑤𝑤𝑣𝑣, 𝑡𝑡𝑑𝑑𝑒𝑒)                                                                                                 ∀ 𝑣𝑣 ∈ 𝑉𝑉𝑑𝑑;𝑑𝑑 ∈ 𝐷𝐷             (3.3. 16) 

� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

𝑙𝑙𝑖𝑖𝑖𝑖
𝑟𝑟∈𝑅𝑅𝑣𝑣

≤ 𝑙𝑙𝑣𝑣                                                                                                                  ∀ 𝑣𝑣 ∈ 𝑉𝑉         (3.3. 17) 

𝑓𝑓𝑝𝑝𝑝𝑝  ∈ 𝛪𝛪+                                                                                                                              ∀ 𝑝𝑝 ∈ 𝑃𝑃; 𝑠𝑠 ∈ 𝑆𝑆         (3.3. 18) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟  ∈ {0,1}                                                                                                                  ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴; 𝑟𝑟 ∈ 𝑅𝑅         (3.3. 19) 

𝑦𝑦𝑣𝑣   ∈ {0,1}                                                                                                                                    ∀ 𝑣𝑣 ∈ 𝑉𝑉         (3.3. 20) 

𝑦𝑦𝑠𝑠    ∈ {0,1}                                                                                                                                     ∀  𝑠𝑠 ∈ 𝑆𝑆         (3.3. 21) 

𝑦𝑦𝑝𝑝   ∈ {0,1}                                                                                                                                    ∀ 𝑝𝑝 ∈ 𝑃𝑃         (3.3. 22) 

𝑧𝑧𝑐𝑐𝑐𝑐 ∈ {0,1}                                                                                                                         ∀ 𝑐𝑐 ∈ 𝐶𝐶; 𝑟𝑟 ∈ 𝑅𝑅         (3.3. 23) 
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Considering that the goal of a LMND problem is to establish a distribution structure for a 

sustainable last-mile delivery, this study formulates the LRP with an objective function minimizing 

the total distribution cost (equation 3.3.1) with economic viability, environmental efficiency, and 

social equity monetized as fixed and operational cost of distribution, while accounting for 

customer service constraint (equation 3.3.2), flow constraints (vehicle flow – equations 3.3.3 and 

3.3.4, commodity flow – equation 3.3.5), capacity constraints (vehicle capacity – equation 3.3.6, 

secondary facility capacity – equation 3.3.7, primary facility capacity – equation 3.3.8), customer 

time-window constraint (equation 3.3.11) with equations 3.3.9 and 3.3.10 establishing arrival 

and departure time3.3.1 respectively, start and end time constraints (route - equations 3.3.12 

and 3.3.13, vehicle – equations 3.3.14 and 3.3.15), driver working hours constraint (equation 

3.3.16), and vehicle range constraint (equation 3.3.17). This formulation additionally imposes 

integer constraint on commodity flow variable in equation 3.3.18, while equation 3.3.19 

constraints arc flow variable to be binary. Further, equations 3.3.20 - 3.3.22 enforce binary value 

on resource-use variables (vehicle-use, secondary facility-use, and primary facility-use), and 

equation 3.3.23 imposes binary constraint on customer-route allocation variable.  

With this LRP formulation, the author replicates the distinct strategic, tactical, and 

operational decisions encompassing the LMND problem for the e-retailer. In particular, the 

strategic decisions establish the type, number, and location for the primary and secondary 

distribution facilities, as well as the size and composition of the associated delivery fleet, to serve 

the expected customer demand for the e-retailer in the planning horizon. To this end, at the 

strategic level, the decision variables of the LRP pertain to primary distribution facility use 𝑦𝑦𝑝𝑝, 

secondary distribution facility use 𝑦𝑦𝑠𝑠, the amount of commodity flow between each primary and 
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secondary distribution facility 𝑓𝑓𝑝𝑝𝑝𝑝 , vehicle use 𝑦𝑦𝑣𝑣, vehicle flow on arc on a given route 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟 , and 

customer-route allocation 𝑧𝑧𝑐𝑐𝑐𝑐. The tactical decisions then define the order of customer visits for 

each day of the planning horizon to meet the daily stochastic customer demand observed by this 

e-retailer, given the primary and secondary distribution facilities and the associate delivery 

vehicle fleet. Thus, at the tactical level, the decision variables for the LRP include commodity flow 

between each primary and secondary distribution facility, vehicle use, vehicle flow on arc on a 

given route, and customer-route allocation, with primary distribution facility- and secondary 

distribution facility- use variables taking values from the strategic stage. And finally, the 

operational decisions then fine-tune the last-mile delivery considering the dynamic arrival of 

customer requests through the day. Note, this work assumes a day divided into smaller time slots 

accepting customer requests for service by the end of the day. The author here assumes the e-

retailer to delay route commitments until the last-feasible time-slot to accumulate customer 

requests and consequently assign them to an uncommitted delivery route. Note, a delivery route 

is committed once the e-retailer starts loading packages assigned to this delivery route onto the 

delivery vehicle assigned for this delivery route. At the end of every time-slot then, the author 

assumes the e-retailer to integrate the new customer requests by inserting these customer nodes 

into such uncommitted delivery routes in a manner that results in least increase in distribution 

cost keeping the customer-distribution facility allocation fixed. Thus, the simulation iterates 

through the time-slots with the e-retailer processing route commitments, accumulating 

customer requests, and subsequently integrating them into the delivery operations for the day. 

Hence, the decision variables at the operational level are same as that at the tactical level but 

only limited to customers yet to be served at any point during the day. 
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3.3.2. Developing the adaptive large neighborhood search (ALNS) metaheuristic 

The above developed DS-2E-C-LRP-TW constitutes three subproblems, namely, the facility 

location problem, customer allocation problem, and vehicle routing problem. Each of the three 

subproblems is a non-polynomial deterministic hard (NP-hard) combinatorial optimization 

problem necessitating a heuristic approach. To this end, the author develops an adaptive large 

neighborhood search (ALNS) metaheuristic algorithm that searches through the neighborhood by 

destroying and consequently repairing the solution thereby reconfiguring large portions of the 

solution using specific operators that are chosen adaptively in each iteration of the algorithm 

based on the performance of operators in the previous iterations, hence the name adaptive large 

neighborhood search (Ropke and Pisinger, 2006). Interested reader may refer to the work of 

Hendel (2022) for a discussion on recent developments in ALNS. The author here details the 

specifics of the ALNS metaheuristic algorithm developed in this work. 

ALNS parameters 
𝑛𝑛 : Number of ALNS iterations in an ALNS segment 
𝑘𝑘 : Number of ALNS segments 
𝑚𝑚 : Number of local search iterations 
𝑗𝑗 : Number of ALNS segments triggering local search  
𝛹𝛹𝑟𝑟 : Set of removal operators (destroy) 
𝛹𝛹𝑖𝑖 : Set of insertion operators (repair) 
𝛹𝛹𝑙𝑙 : Set of local search operators 
𝜎𝜎1 : Score if the new solution is unique and better than the best solution 
𝜎𝜎2 : Score if the new solution is unique and better than the current solution 
𝜎𝜎3  : Score if the new solution is unique but worse, yet accepted as the current solution 
𝜔𝜔 : Start temperature control threshold 
𝜏𝜏 : Start temperature control probability 
𝜃𝜃 : Temperature cooling rate 
𝐶𝐶 : Minimum customer nodes to remove 

𝐶𝐶 : Maximum customer nodes to remove 
𝜇𝜇 : Minimum removal fraction 
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𝜇𝜇 : Maximum removal fraction 
𝜌𝜌 : Reaction factor 

Objective function. The various supply and demand constraints of the LRP significantly 

restricts the feasible search space, hence, to enable the ALNS metaheuristic algorithm to 

comprehensively explore through the search space, the author develops the algorithm to iterate 

through infeasible solutions. To this end, the algorithm considers a modified objective function 

𝑓𝑓, taking the total cost of distribution and adding up a penalty for constraint violation equivalent 

to the magnitude of violation in the order of distribution cost. 

Initial solution. In this work, the ALNS metaheuristic algorithm initiates the search with 

an initial solution built selecting a random distribution facility node, a random delivery vehicle 

operating from this distribution facility, a random delivery route for this delivery vehicle, and 

thereafter inserting a randomly selected customer node between this distribution facility node 

and the first node on this route until all customers are inserted into the route. 

Framework. Starting from this initial solution, the ALNS metaheuristic algorithm performs 

𝑛𝑛 iterations in batch of 𝑘𝑘 segments. In each such iteration, the algorithm searches through the 

neighborhood by removing and subsequently re-inserting customer nodes into the solution 

thereby reconfiguring large portions of the solution using a removal and an insertion operator 

that are chosen adaptively from a given set of removal operators 𝛹𝛹𝑟𝑟 and insertion operators 𝛹𝛹𝑖𝑖, 

respectively, based on the performance of the operators in the previous iterations. Further, after 

every 𝑗𝑗 segments, the algorithm employs local search operators from the set 𝛹𝛹𝑙𝑙, each for at most 

𝑚𝑚 iterations, stopping at the first improvement. Finally, after a total of 𝑛𝑛 × 𝑘𝑘 iterations, the 

algorithm terminates returning the best-found solution. 
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Algorithm: Adaptive Large Neighborhood Search (ALNS) 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜒𝜒, 𝑠𝑠) 
Input: 𝜒𝜒 – ALNS parameters, 𝑠𝑠 – Initial solution 
Output: 𝑠𝑠 – Final solution 
Step 1. Initialize 
𝑠𝑠∗  ← 𝑠𝑠  
𝑆𝑆   ← {𝑠𝑠}  
for 𝑟𝑟 ∈ 𝛹𝛹𝑟𝑟  do 𝑤𝑤𝑟𝑟 ← 1 end for 
for 𝑖𝑖 ∈ 𝛹𝛹𝑖𝑖 do 𝑤𝑤𝑖𝑖 ← 1 end for 
𝑇𝑇  ← 𝜔𝜔𝜔𝜔(𝑠𝑠)/ln (1/𝜏𝜏)  
Step 2. Loop over segments 
ℎ  ← 1  
while ℎ ≤ 𝑘𝑘 do 

Step 2.1. Reset count and score for every removal and insertion operator 
for 𝑟𝑟 ∈ 𝛹𝛹𝑟𝑟 do 𝑐𝑐𝑟𝑟,𝜋𝜋𝑟𝑟 ← 0, 0 end for 
for 𝑖𝑖 ∈ 𝛹𝛹𝑖𝑖 do 𝑐𝑐𝑖𝑖,𝜋𝜋𝑖𝑖  ← 0, 0 end for  
Step 2.2. Update selection probability for every removal and insertion operator 
for 𝑟𝑟 ∈ 𝛹𝛹𝑟𝑟 do 𝑝𝑝𝑟𝑟 ← 𝑤𝑤𝑟𝑟/∑ 𝑤𝑤𝑟𝑟𝑟𝑟∈𝛹𝛹𝑟𝑟  end for 
for 𝑖𝑖 ∈ 𝛹𝛹𝑖𝑖 do 𝑝𝑝𝑖𝑖  ← 𝑤𝑤𝑖𝑖/∑ 𝑤𝑤𝑖𝑖𝑖𝑖 ∈𝛹𝛹𝑖𝑖  end for 
Step 2.3. Loop over iterations within the segment 
repeat 𝑛𝑛 times 

Step 2.3.1. Randomly select a removal and an insertion operator based on operator selection 
probabilities, and consequently update count for the selected operators 
𝑅𝑅 ~ 𝑝𝑝(𝑅𝑅 = 𝑟𝑟) = 𝑝𝑝𝑟𝑟  
𝐼𝐼  ~ 𝑝𝑝(𝐼𝐼 =  𝑖𝑖) = 𝑝𝑝𝑖𝑖  

𝑟𝑟
𝑅𝑅
← 𝑅𝑅  

𝑖𝑖 
𝑅𝑅
← 𝐼𝐼  

𝑐𝑐𝑟𝑟 ← 𝑐𝑐𝑟𝑟 + 1  
𝑐𝑐𝑖𝑖 ← 𝑐𝑐𝑖𝑖 + 1  
Step 2.3.2. Using the selected removal and insertion operators destroy and repair the current 
solution to develop a new solution 
Λ   ~ 𝑈𝑈(0,1)  

𝜆𝜆  
𝑅𝑅
←Λ  

𝑞𝑞 ← �(1 − 𝜆𝜆) ∗ min �𝐶𝐶, 𝜇𝜇|𝐶𝐶|� + 𝜆𝜆 ∗ min�𝐶𝐶, 𝜇𝜇|𝐶𝐶|� �
−

  

𝑠𝑠′ ← 𝑖𝑖�𝑟𝑟(𝑞𝑞, 𝑠𝑠)�  
Step 2.3.3. If this new solution is better than the best solution, then set the best solution and the 
current solution to the new solution, and accordingly update scores of the selected removal and 
insertion operators by 𝜎𝜎1 
if 𝑓𝑓(𝑠𝑠′) < 𝑓𝑓(𝑠𝑠∗) then 

𝑠𝑠∗ ← 𝑠𝑠′  
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𝑠𝑠   ← 𝑠𝑠′  
𝜋𝜋𝑟𝑟 ← 𝜋𝜋𝑟𝑟 + 𝜎𝜎1  
𝜋𝜋𝑖𝑖  ← 𝜋𝜋𝑖𝑖 + 𝜎𝜎1  
𝑆𝑆   ← 𝑆𝑆 ∪ {𝑠𝑠}  

Step 2.3.4. Else if this new solution is only better than the current solution, then set the current 
solution to the new solution and accordingly update scores of the selected removal and insertion 
operators by 𝜎𝜎2 
else if 𝑓𝑓(𝑠𝑠′) < 𝑓𝑓(𝑠𝑠) then 

𝑠𝑠  ← 𝑠𝑠′  
if 𝑠𝑠 ∉ 𝑆𝑆 then  

𝜋𝜋𝑟𝑟 ← 𝜋𝜋𝑟𝑟 + 𝜎𝜎2  
𝜋𝜋𝑖𝑖  ← 𝜋𝜋𝑖𝑖 + 𝜎𝜎2  

end if 
𝑆𝑆 ← 𝑆𝑆 ∪ {𝑠𝑠}  

Step 2.3.5. Else set the current solution to the new solution conditional upon the acceptance 
criterion and accordingly update the scores of the selected removal and insertion operators by 𝜎𝜎3 
else 

Λ ~ 𝑈𝑈(0,1)  

𝜆𝜆
𝑅𝑅
←Λ  

if 𝜆𝜆 < exp�− �𝑓𝑓(𝑠𝑠′) − 𝑓𝑓(𝑠𝑠)� 𝑇𝑇⁄ � do 
𝑠𝑠  ← 𝑠𝑠′  
if 𝑠𝑠 ∉ 𝑆𝑆 then 

𝜋𝜋𝑟𝑟 ← 𝜋𝜋𝑟𝑟 + 𝜎𝜎3  
𝜋𝜋𝑖𝑖  ← 𝜋𝜋𝑖𝑖 + 𝜎𝜎3  

end if 
𝑆𝑆 ← 𝑆𝑆 ∪ {𝑠𝑠}  

end if 
end if 
𝑇𝑇 ← 𝜑𝜑𝜑𝜑  

end repeat 
Step 2.4. Update weights for every removal and insertion operator 
for 𝑟𝑟 ∈ 𝛹𝛹𝑟𝑟 do if 𝑐𝑐𝑟𝑟 ≠ 0 then 𝑤𝑤𝑟𝑟 ← 𝜌𝜌𝜋𝜋𝑟𝑟/𝑐𝑐𝑟𝑟  + (1 − 𝜌𝜌)𝑤𝑤𝑟𝑟 end if end for 
for 𝑖𝑖 ∈ 𝛹𝛹𝑖𝑖 do if 𝑐𝑐𝑖𝑖 ≠ 0 then 𝑤𝑤𝑖𝑖 ← 𝜌𝜌𝜋𝜋𝑖𝑖/𝑐𝑐𝑖𝑖  + (1 − 𝜌𝜌)𝑤𝑤𝑖𝑖  end if end for 
Step 2.5. Perform local search 
if 𝑗𝑗 mod ℎ for 𝑙𝑙 ∈ 𝛹𝛹𝑙𝑙 𝑠𝑠 ← 𝑙𝑙(𝑠𝑠,𝑚𝑚) end for end if 
if 𝑓𝑓(𝑠𝑠) < 𝑓𝑓(𝑠𝑠∗) then 𝑠𝑠∗ ← 𝑠𝑠 end if 
ℎ ← ℎ + 1  

end while 
Step 3. Return the best solution 
return 𝑠𝑠∗ 
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Operator selection. In every iteration, the ALNS metaheuristic algorithm selects a 

removal and an insertion operator using the roulette wheel selection method considering the 

operator selection probabilities 𝑝𝑝𝑟𝑟 and 𝑝𝑝𝑖𝑖, respectively, evaluated using operator weights 𝑤𝑤𝑟𝑟 and 

𝑤𝑤𝑖𝑖 each. With these operator weights, set to one for every operator at the initialization, the 

algorithm quantifies the performance of the operators in improving the quality of the solution.  

Operator scoring. In every iteration of the ALNS metaheuristic algorithm, the selected 

removal operator removes certain customer nodes from the current solution rendering a partial 

solution and subsequently the selected insertion operator re-inserts these customer nodes into 

the partial solution to thus develop a new solution. Tantamount to the uniqueness and quality of 

this new solution in comparison to the current and the best solution, these operators accumulate 

score 𝜋𝜋𝑟𝑟 and 𝜋𝜋𝑖𝑖 each, set to zero for every operator at the start of a segment of the algorithm. In 

particular, the algorithm updates these scores for the selected removal and insertion operators 

by, 𝜎𝜎1 - if the new solution is unique and better than the best solution; 𝜎𝜎2 - if the new solution is 

still unique but only better than the current solution; and 𝜎𝜎3 - if the new unique solution is worse 

than the current solution yet accepted as the current solution. 

Adaptive mechanism. At the end of the segment, the ALNS metaheuristic algorithm 

updates the operator weights using the operator scores accumulated in the segment normalized 

by operator count and additionally adjusted by a reaction factor 𝜌𝜌, while also accounting for 

scores accumulated through the previous segments of the algorithm, adjusted by a factor of 

(1 − 𝜌𝜌). Note, operator count 𝑐𝑐𝑟𝑟 and 𝑐𝑐𝑖𝑖 is the number of times the algorithm chose a removal 

and an insertion operator, respectively, in the just terminated segment. With these updated 

operator weights, the algorithm updates operator selection probabilities evaluated as the ratio 
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of operator weight to the sum of weights of all removal/insertion operators. 

Acceptance criteria. In every iteration, the ALNS metaheuristic algorithm sets the current 

solution 𝑠𝑠, to the new solution 𝑠𝑠′, if this new solution is better than the current solution. 

However, to enable a comprehensive exploration of the search space, the algorithm also accepts 

a worse new solution as the current solution with a probability exp�− �𝑓𝑓(𝑠𝑠′) − 𝑓𝑓(𝑠𝑠)� 𝑇𝑇⁄ �, 

reducing through every iteration of the algorithm by a factor of exp(1 𝜃𝜃⁄ ). This simulated 

annealing acceptance criteria gradually narrows down the solution space analogous to the 

physical annealing process wherein a material is heated to a liquid state and then slowly cooled 

down to re-crystalize. Note, the ALNS algorithm developed in this work assumes an initial 

temperature, 𝑇𝑇 = 𝜔𝜔𝜔𝜔(𝑠𝑠)/ln (1/𝜏𝜏), such that the algorithm could accept a solution 𝜔𝜔 times 

worse than the initial solution with a probability of 𝜏𝜏, cooled off by a factor of 𝜃𝜃 every iteration 

of the algorithm. 

Removal operators. The goal of a removal operator is to remove a certain 𝑞𝑞 number of 

customer nodes from the solution, thereby rendering a partial solution. In this work, the ALNS 

metaheuristic algorithm employs a total of twelve removal operators with three distinct 

principles of removal, namely, random removal, related removal, and worst removal, each 

working on four distinct parts of the solution.  

To begin with, random removal operators operate by removing customer nodes in a 

random manner. In particular, the random-customer removal operator selects 𝑞𝑞 random 

customer nodes and removes them from the solution. However, the random-route removal 

operator iteratively selects a random delivery route and subsequently removes exactly 𝑞𝑞 

customer nodes from such routes. Likewise, the random-vehicle removal operator iteratively 
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selects a random delivery vehicle and consequently iterates through its delivery routes until at 

least 𝑞𝑞 customer nodes are removed from the solution. And similarly, the random-facility 

removal operator iteratively selects a random distribution facility and consequently iterates 

through its delivery vehicles until the solution has at least 𝑞𝑞 customer nodes removed. 

However, unlike random removal operators, related removal operators remove the most 

“related” customer nodes. Here, relatedness estimates the potential for improving the solution 

quality by removing and thereafter re-inserting such “related” customer nodes together into the 

solution. Thus, related-customer removal operator selects a random pivot customer node and 

subsequently removes 𝑞𝑞 customer nodes most related to this pivot customer (equation 3.3.24). 

Further, related-route removal operator randomly selects a pivot delivery route and iterates 

through the most related delivery routes removing exactly 𝑞𝑞 customer nodes from the solution 

(equation 3.3.27). Similarly, related-vehicle removal operator selects a pivot delivery vehicle and 

iterates through the delivery routes of the most related delivery vehicles until at least 𝑞𝑞 customer 

nodes are removed (equation 3.3.30). However, related-facility removal operator selects a pivot 

distribution facility node and subsequently removes exactly 𝑞𝑞 customer nodes most related to 

the pivot customer (equation 3.3.33). Note, the author develops these measures of relatedness 

heuristically considering the previous use of related removal in the literature. 

𝜙𝜙(𝑐𝑐1, 𝑐𝑐2) =
�𝑞𝑞𝑐𝑐1 − 𝑞𝑞𝑐𝑐2� + 𝜑𝜑(𝑐𝑐1, 𝑐𝑐2)

𝑙𝑙𝑐𝑐1𝑐𝑐2 + �𝑡𝑡𝑐𝑐1
𝑠𝑠 − 𝑡𝑡𝑐𝑐2

𝑠𝑠 � + �𝑡𝑡𝑐𝑐1
𝑒𝑒 − 𝑡𝑡𝑐𝑐2

𝑒𝑒 �
                                                                  ∀ 𝑐𝑐1, 𝑐𝑐2 ∈ 𝐶𝐶         (3.3. 24) 

where, 

𝜑𝜑(𝑐𝑐1, 𝑐𝑐2) = �

4,      if 𝑟𝑟1 = 𝑟𝑟2
3,      else if 𝑣𝑣1 = 𝑣𝑣2
2,      else if 𝑑𝑑1 = 𝑑𝑑2
1,      otherwise

                                                                                    ∀ 𝑐𝑐1, 𝑐𝑐2 ∈ 𝐶𝐶         (3.3. 25)  
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𝑙𝑙𝑐𝑐1𝑐𝑐2 = ��𝑥𝑥𝑐𝑐1 − 𝑥𝑥𝑐𝑐2�
2 + �𝑦𝑦𝑐𝑐1 − 𝑦𝑦𝑐𝑐2�

2                                                                             ∀ 𝑐𝑐1, 𝑐𝑐2 ∈ 𝐶𝐶         (3.3. 26) 

with, 𝑧𝑧𝑐𝑐1𝑟𝑟1 = 1, 𝑟𝑟1 ∈ 𝑅𝑅𝑣𝑣1 , 𝑣𝑣1 ∈ 𝑉𝑉𝑑𝑑1;  𝑧𝑧𝑐𝑐2𝑟𝑟2 = 1, 𝑟𝑟2 ∈ 𝑅𝑅𝑣𝑣2 ,𝑣𝑣2 ∈ 𝑉𝑉𝑑𝑑2  

𝜙𝜙(𝑟𝑟1, 𝑟𝑟2)  =
�∑ �𝑞𝑞𝑐𝑐𝑧𝑧𝑐𝑐𝑟𝑟1 − 𝑞𝑞𝑐𝑐𝑧𝑧𝑐𝑐𝑟𝑟2�𝑐𝑐∈𝐶𝐶 � + 𝜑𝜑(𝑟𝑟1, 𝑟𝑟2)
𝑙𝑙𝑟𝑟1𝑟𝑟2 + �𝑡𝑡𝑟𝑟1

𝑠𝑠 − 𝑡𝑡𝑟𝑟2
𝑠𝑠 � + �𝑡𝑡𝑟𝑟1

𝑒𝑒 − 𝑡𝑡𝑟𝑟1
𝑒𝑒 �

                                                           ∀ 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑅𝑅         (3.3. 27) 

where, 

𝜑𝜑(𝑟𝑟1, 𝑟𝑟2) = �
3,        else if 𝑣𝑣1 = 𝑣𝑣2
2,        else if 𝑑𝑑1 = 𝑑𝑑2
1,        otherwise

                                                                                     ∀ 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑅𝑅          (3.3. 28) 

𝑙𝑙𝑟𝑟1𝑟𝑟2 = ��
∑ 𝑥𝑥𝑐𝑐𝑧𝑧𝑐𝑐𝑟𝑟1𝑐𝑐∈𝐶𝐶

∑ 𝑧𝑧𝑐𝑐𝑟𝑟1𝑐𝑐∈𝐶𝐶
−

∑ 𝑥𝑥𝑐𝑐𝑧𝑧𝑐𝑐𝑟𝑟2𝑐𝑐∈𝐶𝐶

∑ 𝑧𝑧𝑐𝑐𝑟𝑟2𝑐𝑐∈𝐶𝐶
�
2

+ �
∑ 𝑦𝑦𝑐𝑐𝑧𝑧𝑐𝑐𝑟𝑟1𝑐𝑐∈𝐶𝐶

∑ 𝑧𝑧𝑐𝑐𝑟𝑟1𝑐𝑐∈𝐶𝐶
−

∑ 𝑦𝑦𝑐𝑐𝑧𝑧𝑐𝑐𝑟𝑟2𝑐𝑐∈𝐶𝐶

∑ 𝑧𝑧𝑐𝑐𝑟𝑟2𝑐𝑐∈𝐶𝐶
�
2

                             ∀ 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑅𝑅         (3.3. 29)  

with, 𝑟𝑟1 ∈ 𝑅𝑅𝑣𝑣1 , 𝑣𝑣1 ∈ 𝑉𝑉𝑑𝑑1;  𝑟𝑟2 ∈ 𝑅𝑅𝑣𝑣2 , 𝑣𝑣2 ∈ 𝑉𝑉𝑑𝑑2  

𝜙𝜙(𝑣𝑣1, 𝑣𝑣2) =
�∑ �∑ 𝑞𝑞𝑐𝑐𝑧𝑧𝑐𝑐𝑐𝑐𝑟𝑟∈𝑅𝑅𝑣𝑣1

− ∑ 𝑞𝑞𝑐𝑐𝑧𝑧𝑐𝑐𝑐𝑐𝑟𝑟∈𝑅𝑅𝑣𝑣2
�𝑐𝑐∈𝐶𝐶 � + 𝜑𝜑(𝑣𝑣1, 𝑣𝑣2)

𝑙𝑙𝑣𝑣1𝑣𝑣2 + �𝑡𝑡𝑣𝑣1
𝑠𝑠 − 𝑡𝑡𝑣𝑣2

𝑠𝑠 � + �𝑡𝑡𝑣𝑣1
𝑒𝑒 − 𝑡𝑡𝑣𝑣2

𝑒𝑒 �
  

                               ∀ 𝑣𝑣1, 𝑣𝑣2 ∈ 𝑉𝑉         (3.3. 30) 

where, 

𝜑𝜑(𝑣𝑣1, 𝑣𝑣2) = �2,       else if 𝑑𝑑1 = 𝑑𝑑2
1,       otherwise                                                                                    ∀ 𝑣𝑣1, 𝑣𝑣2 ∈ 𝑉𝑉           (3.3. 31) 

𝑙𝑙𝑣𝑣1𝑣𝑣2 = ��
∑ ∑ 𝑥𝑥𝑐𝑐𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐∈𝐶𝐶𝑟𝑟∈𝑅𝑅𝑣𝑣1
∑ ∑ 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐∈𝐶𝐶𝑟𝑟∈𝑅𝑅𝑣𝑣1

−
∑ ∑ 𝑥𝑥𝑐𝑐𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐∈𝐶𝐶𝑟𝑟∈𝑅𝑅𝑣𝑣2
∑ ∑ 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐∈𝐶𝐶𝑟𝑟∈𝑅𝑅𝑣𝑣2

�
2

+ �
∑ ∑ 𝑦𝑦𝑐𝑐𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐∈𝐶𝐶𝑟𝑟∈𝑅𝑅𝑣𝑣1
∑ ∑ 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐∈𝐶𝐶𝑟𝑟∈𝑅𝑅𝑣𝑣1

−
∑ ∑ 𝑦𝑦𝑐𝑐𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐∈𝐶𝐶𝑟𝑟∈𝑅𝑅𝑣𝑣2
∑ ∑ 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐∈𝐶𝐶𝑟𝑟∈𝑅𝑅𝑣𝑣2

�
2

  

                                                                                                                                                  ∀ 𝑣𝑣1, 𝑣𝑣2 ∈ 𝑉𝑉         (3.3. 32)  

with, 𝑣𝑣1 ∈ 𝑉𝑉𝑑𝑑1;  𝑣𝑣2 ∈ 𝑉𝑉𝑑𝑑2  

𝜙𝜙(𝑐𝑐𝑜𝑜,𝑑𝑑𝑜𝑜) =
𝜑𝜑(𝑐𝑐𝑜𝑜,𝑑𝑑𝑜𝑜)
𝑙𝑙𝑐𝑐𝑜𝑜𝑑𝑑𝑜𝑜  

                                                                                               ∀ 𝑐𝑐𝑜𝑜 ∈ 𝐶𝐶;𝑑𝑑𝑜𝑜 ∈ 𝐷𝐷         (3.3. 33) 

where, 

𝜑𝜑(𝑐𝑐𝑜𝑜,𝑑𝑑𝑜𝑜) = �
2,       if 𝑧𝑧𝑐𝑐𝑜𝑜𝑟𝑟𝑜𝑜 = 1; 𝑟𝑟𝑜𝑜 ∈ 𝑅𝑅𝑣𝑣𝑜𝑜 , 𝑣𝑣𝑜𝑜 ∈ 𝑉𝑉𝑑𝑑𝑜𝑜
1,       otherwise

                                             ∀ 𝑐𝑐𝑜𝑜 ∈ 𝐶𝐶;𝑑𝑑𝑜𝑜 ∈ 𝐷𝐷         (3.3. 34)  
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𝑙𝑙𝑐𝑐𝑜𝑜𝑑𝑑𝑜𝑜 = ��𝑥𝑥𝑐𝑐𝑜𝑜 − 𝑥𝑥𝑑𝑑𝑜𝑜�
2 + �𝑦𝑦𝑐𝑐𝑜𝑜 − 𝑦𝑦𝑑𝑑𝑜𝑜�

2

   
                                                                        ∀ 𝑐𝑐1, 𝑐𝑐2 ∈ 𝐶𝐶         (3.3. 35) 

And finally, the worst removal operators operate by removing customer nodes from 

poorly optimized parts of the solution. To be specific, the worst-customer removal operator 

iteratively removes exactly 𝑞𝑞 customer nodes that render the most increase in the objective 

function value when included in the solution. However, the worst-route removal operator 

iteratively selects the route with least vehicle capacity utilization and subsequently removes 

exactly 𝑞𝑞 customer nodes from such routes. Similarly, the worst-vehicle removal operator 

iteratively selects the delivery vehicle with least capacity utilization and consequently iterates 

through its delivery routes until the solution has at least 𝑞𝑞 customer nodes removed. And 

likewise, worst-facility removal operator iteratively removes the facility with least capacity 

utilization and consequently iterates through its delivery vehicles until at least 𝑞𝑞 customer nodes 

are removed from the solution. 

Insertion operators. The goal of an insertion operator is to re-insert the customer nodes 

back into the solution considering the change in objective function value of the solution from 

inserting a customer node into the solution, defined as the insertion cost of the customer node. 

In this work, the ALNS metaheuristic algorithm employs a total of six insertion operators with 

three distinct principles of insertion, namely, best insertion, greedy insertion, and regret 

insertion, each with two different measures of insertion.  

In particular, the best insertion operators iteratively re-insert a randomly selected 

customer node at its best position in the solution until all customer nodes are re-inserted into 

the solution. In this work, the author develops a precise and a perturb version of this insertion 
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method, namely, best-precise and best-perturb, with the former employing precise values of 

insertion cost, while the latter perturbs insertion cost by ±20% thus preventing the same 

solution to recycle through the iterations. 

However, unlike the best insertion operators, the greedy insertion operators iteratively 

re-insert the customer node with the least insertion cost at its best position in the solution until 

all customer nodes are re-inserted into the solution. Here again, the author develops a precise 

and a perturb version of this insertion method, wherein greedy-precise uses the precise values 

of insertion cost while greedy-perturb perturbs the insertion cost. 

Nonetheless, both best and greedy insertion operators are myopic in nature, and thus to 

cope with this issue, the author employs regret insertion operators which iteratively re-insert the 

customer node with the highest regret cost at its best position in the solution until all customer 

nodes are re-inserted into the solution. This regret cost is the opportunity cost of inserting the 

customer node at a position other than its best position. More precisely, regret-k cost is the sum 

of opportunity cost of inserting the customer node at 1st, 2nd, 3rd, …, kth best position instead of 

its best position. To this end, the algorithm employs regret-2 and regret-3 insertion operators. 

Local search. After every 𝑛𝑛 × 𝑗𝑗 iterations, the ALNS metaheuristic algorithm initiates a 

local search. In doing so, the algorithm further exploits the solution space making small 

modifications to fine-tune the solution. In this work, the algorithm employs a total of six such 

local search operators with three distinct principles of local search, namely, move local search, 

2-opt local search, and swap local search, each working on two distinct parts of the solution. 

Specifically, the move local search operators iteratively select a node and moves it to its 

best position in the solution. This could be a customer node as with the move-customer local 
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search operator, or a distribution facility node as is the case with the move-facility local search 

operator. This distinction is necessary since the move-facility operator moves the distribution 

facility node in every route initiating at this distribution facility. 

On the other hand, the 2-opt local search operators iteratively take two random arcs and 

reconfigure them if it improves the quality of the solution. While the intra-opt local search 

operator must choose the two arcs from the same route, the inter-opt local search operator must 

select these two arcs from two different routes. 

And finally, the swap local search operators iteratively select two random nodes and 

swaps them into each other’s position. In particular, the swap-customer local search operator 

swaps customer nodes, while the swap-facility local search operator swaps distribution facility 

nodes, and the associated delivery vehicles, delivery routes of these delivery vehicles, and 

customer nodes visited on these delivery routes. 

Stopping criteria. Finally, after a total of 𝑛𝑛 × 𝑘𝑘 iterations, the ALNS algorithm terminate 

returning the best-found solution. 

This study employs Julia v1.7.2 (Bezanson et al., 2017) on an Intel Core i7-11800H @ 

2.30GHz CPU with 64GB RAM to model the LMND problem and develop the associated Monte-

Carlo simulation framework encompassing the ALNS metaheuristic for LRP. For a comprehensive 

description of the algorithms and the corresponding Julia code, refer to the GitHub release LML 

v1.0 (Pahwa, 2022). 
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4. Case Study 

Without loss of generality, this work focuses on the region of southern California, particularly the 

city of Los Angeles, with a population of 3.3 million. To begin with, this work develops a broad 

understanding of the impacts of e-commerce on urban goods distribution for the city of LA using 

the simulation framework. Further, for an e-retailer operating in the city of LA, this study then 

investigates the impact of key delivery environment parameters on e-commerce goods 

distribution using the CA framework modeling last-mile distribution operations assuming a 

distribution structure encompassing a regional distribution facility located in San Bernardino, 50 

miles east of downtown LA, along with primary and secondary distribution facilities located 

strategically. And finally, considering the dynamic and stochastic nature of customer demand, 

the author establishes the impact of demand uncertainty on e-commerce goods distribution for 

this e-retailer using the discrete optimization framework with the LMND problem formulated as 

DS-2E-C-LRP-TW, addressed with the ALNS metaheuristic algorithm. 

This study considers a typical delivery process to begin at the regional distribution facility, 

wherein, the e-retailer sorts packages for an overnight (off-hours) delivery to specific primary 

distribution facilities using fleet of heavy-duty delivery vehicles. At these primary distribution 

facilities, each equipped with a fleet of medium-duty delivery vehicles, the e-retailer further sorts 

packages, some for a direct delivery to the customer, and others for a delivery via one of the 

secondary distribution facilities. These secondary facilities include micro- hubs, each with a fleet 

of light-duty delivery vehicles for last-mile delivery, and/or collection- points, wherein customers 

traverse the last-mile to collect packages. Additionally, this work assumes the e-retailer to 

sufficiently stock both primary and secondary distribution facilities to then cater to the requests  
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Table 1. Vehicle characteristics for certain delivery vehicles in last-mile distribution 
Vehicle characteristics Vehicle type 
Heavy-duty vehicles 
      Class-8 DT 

Purchase cost a ($)      120k 
Capacity (customers per tour)      1800 
Range (mi)      1000 
Speed on rural network (mph)      50 
Speed on urban network (mph)      15 
Delivery time at customer (hour)      - 
Loading time at facility (hour)      1 
Re-fueling time at station (hour)      0.208 
Re-fueling time at facility (hour)      0.06 
Driver cost b ($/hour)      35 
Maintenance cost a ($/mi)      0.19 
Fuel cost c ($/gal, $/kWh)      3.86 
Fuel con. rate a (gal/mi, kWh/mi)      0.125 
CO2 emission rate d (g/mi)      1592 
CO emission rate d (g/mi)      0.81 
NOx emission rate d (g/mi)      5.55 
PM emission rate d (g/mi)      0.09 

Vehicle characteristics Vehicle type 

Medium-duty vehicles 
 Class-5 ET Class-5 DT Class-4 DT Class-3 DT Class-2 DT Class-1 DT 

Purchase cost a ($) 150k* 80k 66.67k 53.34k 35.56k 26.67k 
Capacity (customers per tour) 360 360 300 240 160 120 
Range (mi) 150 500 500 500 500 500 
Speed on rural network (mph) 55 55 55 55 55 55 
Speed on urban network (mph) 20 20 20 20 20 20 
Delivery time at customer (hour) 0.017 0.017 0.017 0.017 0.017 0.017 

Loading time at facility (hour) 1.8 1.8 1.5 1.2 0.8 0.6 
Re-fueling time at station (hour) 0.800 0.083 0.067 0.056 0.048 0.042 
Re-fueling time at facility (hour) 0.800 0.025 0.020 0.016 0.014 0.012 
Driver cost b ($/hour) 35 35 35 35 35 35 
Maintenance cost a ($/mi) 0.150 0.200 0.225 0.250 0.275 0.300 
Fuel cost c ($/gal, $/kWh) 0.12 3.86 3.86 3.86 3.86 3.86 
Fuel con. rate a (gal/mi, kWh/mi) 0.800 0.100 0.080 0.067 0.057 0.050 
CO2 emission rate d (g/mi) 0 1049 799 549 496 335 
CO emission rate d (g/mi) 0 0.77 0.63 0.50 0.53 0.24 
NOx emission rate d (g/mi) 0 4.10 3.28 2.42 2.60 0.12 
PM emission rate d (g/mi) 0 0.130 0.076 0.021 0.020 0.018 
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Vehicle characteristics Vehicle type 

Light-duty vehicles 
   LT PC MD CB 

Purchase cost a ($)   - - - 6.5k 
Capacity (customers per tour)   30 20 10 30 
Range (mi)   500 500 150 30 
Speed on rural network (mph)   60 60 60 10 
Speed on urban network (mph)   25 25 25 10 
Delivery time at customer (hour)   0.008 0.008 0.008 0.008 
Loading time at facility (hour)   0.250 0.167 0.050 0.150 
Re-fueling time at station (hour)   0.050 0.020 0.002 0.121 
Re-fueling time at facility (hour)   0.050 0.020 0.002 0.604 
Driver cost b ($/hour)   20 20 20 30 
Maintenance cost a ($/mi)   - - - 0.02 
Fuel cost c ($/gal, $/kWh)   - - - 0.12 
Fuel con. rate a (gal/mi, kWh/mi)   - - - 0.029 
CO2 emission rate d (g/mi)   386 303 224 0 
CO emission rate d (g/mi)   1.77 1.09 20.9 0 
NOx emission rate d (g/mi)   0.17 0.08 1.14 0 
PM emission rate d (g/mi)   0.003 0.002 0.002 0 
DT: Diesel Truck, ET: Electric Truck, CB: Cargo Bike, LT: Light-duty Truck, PC: Passenger Car, MD: moped 
DT re-fueling rate - 10gal/min at re-fueling station, 35gal/min at facility (Environmental Protection Agency, 1993).  
Battery recharging infrastructure - Level 3 DC for electric trucks and Level 1 charger for cargo-bikes (Nicholas, 2019). 
a Burke and Miller (2020)  b Caltrans (2016)    c AAA (2019)   d California Air Resource Board (2018) 
*Charging infrastructure cost excluded 
This table includes all vehicle types employed in empirical analysis in this work. 

that arrive dynamically during the day for service by the end of the day. 

 Considering the configuration of the distribution structure, the distribution strategy could 

encompass a single-echelon distribution structure with door-to-door deliveries directly from 

primary distribution facilities to the customers’ doorstep with a fleet of medium-duty delivery 

vehicles such as class-X diesel trucks (DD-CXDT), class-X electric trucks (DD-CXET), or a 

crowdsourced fleet of light-duty delivery vehicles (DD-CSXX) including light-duty trucks (DD-

CSLT), passenger cars (DD-CSPC), or mopeds (DD-CSMD). Further, the distribution strategy could 

include a two-echelon distribution structure wherein the e-retailer delivers some packages 

directly as described above, while others are delivered via secondary distribution facilities such 
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as micro-hubs coupled with cargo-bikes (MH-CB), or collection-points with customers traveling 

in their personal cars to collect packages (CP-PC). Refer to Table 1 for a review of a vehicle 

characteristics of the heavy-, medium-, and light-duty vehicles employed in the distribution 

structures modeled in this work. 

Note, this work amortizes fixed costs considering last-mile operations for a planning 

horizon of 10 years, each with 330 working days, with 9 working hours every day. To establish 

fixed cost of distribution facilities, the author employs CoStar (2020) sales and lease data for 

industrial facilities in southern California, thus estimating facility fixed cost as $356.37(𝑥𝑥2 +

𝑦𝑦2)−0.115 per sq. ft. for a distribution facility located at 𝑥𝑥, 𝑦𝑦 relative to downtown LA. Note, here 

the author estimates the floor space requirement of a distribution facility assuming a 

consolidation of 0.2 customers per sq. ft. based on interviews and field study experience.  

Further, for last-mile operations with electric delivery vehicles, this work accounts for 

fixed costs of installing private charging infrastructure at the distribution facilities, additionally, 

in vehicle purchase cost. In particular, the author assumes the e-retailer to re-fuel the electric 

truck fleet with Level-3 chargers ($20k per charger) while Level-1 chargers collocated at 

loading/unloading areas re-fuel the cargo-bikes. If needed, electric trucks can also re-fuel at any 

of the 100 uniformly located public charging stations equipped with Level-3 chargers. Moreover, 

the analyses accounts for emission costs from last-mile distribution for CO2, CO, NOx, and PM 

emissions in vehicle operational cost, in addition to driver and maintenance cost, valued at 

$0.066, $0.193, $76.97, and $630.3 per kilogram of emissions, respectively (Caltrans, 2017; 

Marten and Newbold, 2012). And finally, the model assumes a consolidation of 3 deliveries per 

stop (𝜃𝜃 = 3).  
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5. Empirical Results 

In this section, the author presents empirical results exploring the potential of e-commerce to 

render an economically viable, environmentally efficient, and socially equitable urban goods 

flow. 

 

5.1. Impact of e-commerce on urban goods distribution 

To begin with, in this subsection, the author investigates the impact of e-commerce on urban 

goods distribution in the city of Los Angeles with a simulation framework founded on consumer 

shopping behavior thus simulating urban goods flow as discussed previously in the Methodology 

section. 

 

5.1.1. Description of 2016 ATUS data 

Here, the author employs the American Time Use Survey (ATUS), a time use study funded by the 

US Bureau of Labor Statistics, that logs the place and time of all daily activities for participating 

individuals, providing information on time spent on more than 400 detailed activities. Although 

the ATUS includes shopping as one of those daily activities, it does not differentiate between in-

store and online shopping. In particular, the “shopping” category in ATUS includes “grocery 

shopping”, “purchasing gas”, “purchasing food (not groceries)”, “shopping except groceries, 

food, and gas”, “comparison shopping”, “shopping, not elsewhere classified (N.E.C.)”, 

“researching purchases, N.E.C.”, and “consumer purchases, N.E.C.” Thus, to distinguish between 

in-store and online shopping, the author here defines a shopping activity as all of the 

aforementioned shopping activities except “purchasing gas”, and “purchasing food (not 
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groceries)” at any place other than in-store including “grocery store,” “other store/mall,” “post 

office,” “restaurant or bar,” and “other place.” Thus, in-store shopping activity pertains to 

shopping activities performed in-store, while online shopping activity refers to shopping activities 

performed at any place other than in-store. Table 2 further clarifies these descriptions and 

definitions. 

Table 2. Definitions for in-store and online shopping activity for ATUS data 
 Activity Location 
Shopping activity Grocery shopping Anywhere 

Except purchasing food (not groceries) 
at any place other than grocery store, 
other store/mall, post office, 
restaurant or bar, and other place 

Purchasing food (not groceries) 
Shopping except groceries, food, and gas 
Comparison shopping 
Shopping, N.E.C. 
Researching purchases, N.E.C. 
Consumer purchases, N.E.C. 

In-store shopping activity Grocery shopping Grocery store 
Other store/mall 
Post office 
Restaurant or bar 
Other place 

Purchasing food (not groceries) 
Shopping except groceries, food and gas 
Comparison shopping 
Shopping, N.E.C. 
Researching purchases, N.E.C. 
Consumer purchases, N.E.C. 

Online shopping activity Grocery shopping Anywhere other than: 
Grocery store 
Other store/mall 
Post office 
Restaurant or bar 
Other place 

Shopping except groceries, food, and gas 
Comparison shopping 
Shopping, N.E.C. 
Researching purchases, N.E.C. 
Consumer purchases, N.E.C. 

 

Note, for each participating individual, the ATUS data contains associated demographic 

information and weights correcting for under- or over- representation. Thus, with appropriate 

use of data one help discern the underlying individual behaviors. To this end, the author grouped 

individuals across different age groups, namely, the Silent Generation (born from 1925 – 45), 

Baby-Boomers (born from 1946 – 64), Generation-X (born from 1965 – 79), Millennials (born from 

1980 – 94), and Generation-Z (born from 1995 – 2012). Further, this study categorized individuals 

for education levels, including graduate-level education, secondary level education, primary-level 
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education, and no-education. This work then grouped individuals for family income into Poverty 

Level, Low, Lower-Middle, Median, Middle-Middle, Upper-Middle, and High (Amadeo, 2018). 

Moreover, the author constructed a binary variable MSA > 1mill to indicate if an individual lives 

in a Metropolitan Statistical Area (MSA) with a population greater than 1 million. And finally, this 

study developed a household variable, Family Structure, to represent the ratio of kids to adults 

in the household of the individual. Table 3 presents a descriptive analysis of the individuals who 

participated in the 2016 survey along with a summary of consumer demographics by shopping-

channel. This table highlights some salient differences between the different shopping-channels, 

later tested in this work.  

However, the author here acknowledges the limitations of such a dataset to 

comprehensively understand consumer shopping behavior including the associated 

complementary, substitution, and induced demand effect. In particular, to develop a robust 

estimate of these effects it is important to consider each shopping category separately. 

Generalizing substitution or complementary effects over the entire shopping behavior leads to 

aggregation impacts. For instance, an individual substituting all of his/her shopping activities in 

all but one category will still exhibit a complementary effect on aggregate. Since the ATUS data 

does not categorize different shopping activities in detail, it limits our analyses to general 

substitution and complementary effects. Further, the ATUS data provides a one-day data 

window, but it does not include what an individual does the next day or beyond. Nevertheless, 

this study is a step towards understanding the influence of e-commerce on individual shopping 

behaviors and consequently urban goods flow. For the purpose of this study, the author considers 

this individual as the unit of analysis. 
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Table 3. Descriptive statistics for the 2016 ATUS data 
 

 

2016 ATUS Data 
(10493) 

No Shopping 
(6227) 

In-Store 
(4038) 

Online 
(121) 

Both 
(107) 

Gender Male 45% 47% 41% 35% 34% 
Female 55% 53% 59% 65% 66% 

Age Silent Generation [77,97] * 15% 15% 14% 9% 8% 
Baby-Boomer [58,76] * 31% 31% 31% 36% 37% 
Generation-X [43,57] * 27% 25% 29% 26% 35% 
Millennials [28,42] * 21% 21% 21% 23% 17% 
Generation-Z [10,27] * 6% 7% 5% 6% 3% 

Education level No education 0% 0% 0% 0% 0% 
Primary 2% 2% 1% 1% 0% 
Secondary 38% 41% 34% 39% 30% 
Graduate 60% 57% 64% 60% 70% 

Employment 
status 

Employed 61% 59% 63% 68% 70% 
Unemployed 3% 3% 4% 1% 3% 
Not in labor force 36% 38% 34% 31% 27% 

Family income Poverty Level 23% 25% 20% 21% 20% 
Low 12% 12% 11% 9% 9% 
Lower-Middle 13% 13% 13% 13% 11% 
Median 18% 17% 19% 24% 17% 
Middle-Middle 12% 11% 13% 10% 14% 
Upper-Middle 12% 11% 13% 10% 12% 
High 10% 10% 10% 13% 17% 

Mobility related 
difficulty 

Has no difficulty in mobility 96% 95% 98% 97% 99% 
Has difficulty in mobility 4% 5% 2% 3% 1% 

Region Northeast 16% 16% 17% 14% 18% 
Midwest 23% 24% 22% 20% 21% 
South 39% 39% 39% 44% 32% 
West 22% 22% 22% 22% 29% 

MSA size MSA > 1million 53% 52% 53% 56% 64% 
Season Winter 27% 27% 27% 21% 23% 

Spring 25% 25% 25% 21% 28% 
Summer 24% 25% 24% 21% 21% 
Fall 23% 23% 23% 37% 28% 

* Age as of 2022 
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5.1.2. Multinomial Logit model for consumers’ shopping-channel choice 

The author models consumer’s choice of channel for shopping with a weighted multinomial logit 

model wherein the alternatives include no-shopping (base choice), shopping exclusively in-store, 

shopping exclusively online, and shopping both in-store as well as online (Table 4). Note, the 

coefficient estimates in such a multinomial logit model represent the statistically significant 

effect of the variables on the log of probability of choosing an alternative relative to the 

probability of the base alternative, however, the model here retains some statistically non-

significant variables that form a significant interaction variable. With this, the author draws some 

salient insights into consumer shopping behavior discussed below. 

For in-store shopping, the MNL model indicates that in the high-income group, females 

have a higher propensity of shopping compared to males. Such an observation is consistent with 

previous studies, such as Srinivasan and Bhat (2005) and Farag et al. (2005). Similarly, for online 

shopping, the MNL model again finds females to have a higher propensity for shopping online 

compared to males, in contrast to Farag et al. (2007). However, this gender gap in the context of 

online shopping diminishes for those individuals living in large metropolitan regions (MSA > 

1million). Further, the model shows females to exhibit a stronger complementarity behavior 

compared to males, shopping in-store as well as online. And unlike with online shopping, this 

gender gap for complementarity behavior tends to widen for individuals living a metropolitan 

region. Yet, this gap tends to lessen with income, as males exhibit a stronger complementarity 

behavior, engaging more in in-store as well as online shopping with more income at disposal. 
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Nonetheless, with more kids in the household, the proclivity to shop in-store increases 

for females, while it decreases for males. On the other hand, the propensity to shop online 

increases equally for both females and males with more kids in the household, particularly for 

individuals living in a large metropolitan region. This also highlights the trend towards 

complementarity behavior with kids in the household as individuals engage in both in-store and 

online shopping. 

Consistent with previous work (Cao et al., 2012; Lee et al., 2017), the MNL model shows 

education level to positively influence the likelihood of shopping in-store with individuals having 

a graduate degree exhibit a higher propensity for shopping in-store. Living in a metropolitan 

region further amplifies the likelihood of shopping, in-store or online, for such individuals.  

The results also show seasonal variations in shopping behaviors. Reflecting upon the 

holiday shopping trends, the model indicates a moderate increase in in-store shopping activity 

but a more significant increase in online shopping activity in the Fall.  

As for the regional variations, the model finds Northeasterners and Southerners living in 

towns (MSA < 1million) to be more likely to shop in-store compared to their fellow Americans, 

while Westerns in metropolitan regions have a higher propensity to shop online. Black (2007) 

discussed such differences in shopping behaviors across the regions in the US. 

Finally, considering a higher degree of consumer familiarity for conventional in-store 

shopping, the model shows elder individuals to exhibit a greater proclivity to shop in-store.  

The model also understandably indicates mobility issues to hamper the propensity of 

shopping in-store. 
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Table 4. Summary of the multinomial logit model modeling consumers’ choice of channel for shopping 

  Multinomial Logit model: consumer shopping-channel choice 

Alternatives Frequency Adjusted Mc Fadden R2 
No shopping 0.593 Equally likely based 0.459 

Exclusively in-store 0.385 Market share based 0.010 

Exclusively online 0.012 Chi-square test w.r.t. market share model 
Both 0.010 Chi square value 325.5 (p-value = 0) 

 

 Estimate, t-values and Significance (respectively) 
Variable In-store (4038) Online (121) Both (107) 
(intercept) -0.94 (-9.29) *** -4.93 (-9.52) *** -6.35 (-9.49) *** 
MSA > 1mill 0.07 (0.61)   -0.70 (-1.10)   -0.27 (-0.46)   
Female 0.04 (0.50)   1.09 (2.52) * 1.40 (2.37) * 
Diff. in Mobility -0.64 (-5.30) *** -0.87† (-1.33)   -2.20† (-1.75) . 
Family Structure -0.33 (-1.89) . -0.43 (-0.44)   2.54 (3.01) ** 
Graduate 0.16 (2.66) ** -0.39 (-1.33)   -0.31 (-0.96)   
Generation-X 0.17 (3.06) ** -0.06 (-0.21)   0.70 (2.23) * 
Baby-Boomer 0.20 (3.25) ** 0.44 (1.57)   1.32 (4.04) *** 
Silent 0.27 (3.58) *** 0.16 (0.43)   0.82‡   (1.92) . 
Low -0.18 (-1.54)   0.65 (1.43)   0.92 (1.33)   
Lower-Middle 0.01 (0.08)   0.23 (0.47)   1.05 (1.65) . 
Median -0.07 (-0.78)   -0.35 (-0.68)   0.34 (0.51)   
Middle-Middle -0.03 (-0.31)   -1.13 (-1.37)   1.46 (2.58) ** 
High -0.20 (-1.80) . -0.37 (-0.66)   1.56 (2.69) ** 
Northeast 0.24 (2.32) * 0.46 (1.02)   -1.58 (-1.56)   
South 0.20 (2.62) ** 0.26 (0.74)   -0.24 (-0.62)   
West 0.10 (1.13)   -0.49 (-0.92)   0.46 (1.14)   
Fall 0.10 (2.06) * 0.78 (3.93) *** 0.29 (1.31)   
MSA>1mill * Female 0.01 (0.10)   -0.84 (-1.94) . 0.84 (1.88) . 
MSA>1mill * Fam. Str. -0.11 (-0.64)   1.77 (2.09) * -1.46 (-1.76) . 
MSA>1mill * Graduate 0.20 (2.31) * 0.84 (2.05) * 0.57 (1.34)   
MSA>1mill * Northeast -0.31 (-2.28) * -1.06‡ (-1.30)   1.66 (1.53)   
MSA>1mill * South -0.23 (-2.14) * 0.69 (1.20)   0.13 (0.24)   
MSA>1mill * West 0.02 (0.14)   1.57 (2.22) * -0.33 (-0.59)   
Female * Family Str. 0.69 (3.90) *** -0.31 (-0.35)   -1.24 (-1.44)   
Female * Low 0.18 (1.24)   -1.67† (-2.33) * -1.1‡ (-1.41)   
Female * Lower-Middle 0.05 (0.38)   -0.58‡ (-0.91)   -2.07‡   (-2.50) * 
Female * Median 0.24 (2.03) * 0.54 (0.89)   -0.44 (-0.59)   
Female * Middle-Middle 0.18 (1.31)   1.04‡ (1.13)   -1.52‡ (-2.21) * 
Female * High 0.27 (1.81) . 0.39 (0.54)   -2.04‡ (-2.73) ** 
Significant levels:      0% ‘***’      0.1% ‘**’     1% ‘*’     5% ‘.’    10% ‘ ’     100% 
† Less than 5 observations     ‡ Less than 10 observations     
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5.1.3. Monte-Carlo simulation of shopping-related travel 

In this subsection, the author employs the simulation framework to simulate the urban goods 

flow in the city of LA and establish the impact of e-commerce on urban goods distribution. The 

simulation framework begins by developing a synthetic population for the city of LA, consistent 

with the demographics of the region, and consequently deploys the multinomial logit model to 

identify in-store and online consumers in this synthetic population. For these individuals, the 

author estimates the shopping-related travel assuming individuals travel in their personal cars to 

make in-store purchases, while a class-5 diesel truck performs door-to-door delivery to fulfill 

online purchases. To this end, this work develops typical distance traveled per in-store and online 

shopping activity (Figure 5) using shopping-travel statistics (Figure 2). With this, the author 

develops and compares urban goods flow for the traditional retail scenario with only single-

channel in-store shopping against the current retail landscape encompassing omni-channel 

consumer shopping and a potential future retail scenario with only single-channel online 

shopping. To ensure robust estimates, this work generates 100 replicates for each retail scenario.  

 
 

Figure 5. Distance traveled per in-store and online shopping activity 
                          a) In-store shopping travel                                        b) Online shopping travel 
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Table 5 tabulates the results for this Monte-Carlo simulation, while Figure 6 and Figure 7 develop 

box plots for the same. 

Table 5. Impact of e-commerce on externalities in urban goods flow 
Externalities single-channel in-store      omni-channel single-channel online 
VMT 2.804E+07 2.469E+07 (-11.9%) 2.111E+06 (-92.5%) 
CO2 8.495E+09 7.684E+09 (-9.55%) 2.214E+09 (-73.9%) 
CO 3.056E+07 2.682E+07 (-12.2%) 1.625E+06 (-94.7%) 
NOx 2.243E+06 3.070E+06 (+36.9%) 8.654E+06 (+286%) 
PM 5.607E+04 8.425E+04 (+50.3%) 2.744E+05 (+389%) 

 

To begin with, these results show a substantial decrease in certain externalities in urban 

goods flow due to e-commerce. In particular, the vehicle-miles traveled in urban goods 

distribution from point-of-sale to points-of-consumption decrease by about 12% as consolidated 

delivery trucks fulfilling online purchases replace individual passenger car-travel for in-store 

purchases. As a consequence, e-commerce also renders a reduction in global greenhouse impact 

of urban goods flow with a 9.6% reduction in CO2 emissions. Moreover, with a retail landscape 

dominated by e-retailers, the vehicle-miles traveled can further reduce by another 80%, thus 

reducing greenhouse gas emissions by as much as 74%. However, since the trucks are relatively 

heavy emitters of criteria pollutants, NOx and PM emissions from urban goods flow increase by 

37% and 50% respectively. In fact, such criteria pollutant emissions may undergo a three-fold 

increase in the future unless tailpipe emissions or truck technologies improve significantly.   

While these results showcase potential benefits of e-commerce goods distribution, rush 

deliveries, an increasingly common service in e-commerce, wipe out any such benefits. As 

discussed earlier, e-retailers compete with traditional retailers for market share offering lucrative 

deals to consumers. One of these consumer-focused services includes expedite delivery (e.g., 
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Figure 6. Current impact of e-commerce: omni-channel vs. single-channel in-store 
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Figure 7. Potential impact of e-commerce: single-channel online vs. single-channel in-store 
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same day, two-hour, one-hour delivery). Although very complex logistically, some e-retailers 

have indeed successfully implemented such expedited deliveries for certain products and specific 

market-segments, with other companies poised to follow. However, expedited delivery services 

render lower consolidation levels, and therefore increase urban freight flow. Figure 8 presents 

this increase in freight flow with an exponential increase in freight vehicle-miles traveled as the 

e-retailer consolidates fewer packages on a delivery truck.  However, Lin et al. (2018) test the 

feasibility of same-day deliveries under different delivery paradigms and suggest that a rise in 

demand volume could potentially bring down the externalities. Further, the introduction of 

electric trucks (Bandeira et al., 2019), cargo bikes (Tipagornwong and Figliozzi, 2014b), drones 

(Goodchild and Toy, 2018) and other zero tailpipe emission vehicles, some of this negative impact 

from increased last-mile delivery can be mitigated, though other impacts, such as curb-space 

access requirements, may continue to pose a problem  (Allen et al., 2018). 

 
Figure 8. Impact of demand consolidation on delivery tour length  
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5.2. Impact of key delivery environment parameters on e-commerce goods 

distribution 

In this subsection, the author investigates the impact of key delivery environment parameters on 

e-commerce goods distribution using the CA framework developed above in the Methodology 

section. 

Without loss of generality, the author here develops analysis for an e-retailer operating 

in the city of Los Angeles, catering to a market share of 47% of the total 147,849 average daily e-

commerce demand from customers located randomly and uniformly across a 475 sq. mi. fairly 

compact and convex (square) shaped service region, just fitting LA. For this e-retailer, the author 

considers a variety of distribution strategies including single-echelon distribution structures with 

door-to-door delivery with a fleet of class-5 diesel trucks (DD-C5DT), class-5 electric trucks (DD-

C5ET), and crowdsourced light-duty trucks (DD-CSLT), as well as two-echelon distribution 

structures employing 15 such micro-hubs located uniformly in the service region coupled with 

cargo-bikes catering to all the customers (MH-CB), 15 such collection-points located uniformly in 

the service region with every customer traveling to such collection-points in their personal cars 

to collect package (CP-PC), and a combination of all with e-retailer delivering 35% of the packages 

directly from the primary distribution facility to customers’ doorstep using a class-5 diesel truck, 

another 35% using a cargo-bike from 15 such micro-hubs, while the remaining 30% customers 

collect packages at 15 such collection-points (DDMHCP). Note, in each of these last-mile 

distribution structures, the author assumes the e-retailer to deploy class-8 diesel trucks to deliver 

packages from the regional distribution facility to the primary distribution facility.   

To begin, the author here presents a subset of optimization results to contextualize the 
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overall discussion in this section. In particular, this section analyzes the sustainability of different 

last-mile distribution strategies in diverse delivery environments with varying temporal and 

spatial characteristics of demand. Furthermore, this study develops a detailed sensitivity analysis 

to establish key factors that affect the efficacy of last-mile delivery for each distribution strategy, 

including: the impact of service efficiency and vehicle type for a door-to-door last-mile delivery 

with diesel trucks (DD-CXDT), the impact of battery characteristics on last-mile operations with 

electric trucks (DD-CXET), the impact of vehicle type and driver wage for crowdsourced delivery 

(DD-CSXX), and the impact of distribution structure configuration for two-echelon distribution 

with micro-hubs and/or cargo-bikes (MH-CB, CP-PC, and DDMHCP). In doing so, the author 

establishes the most suitable delivery environment for each last-mile distribution strategy.  

Table 6. Temporal variations through the day 
Hour of the day Market share a  Congestion factor b 
9AM – 10AM 0.0633 0.86 
10AM - 11AM 0.0633 0.86 
11AM - Noon 0.0633 0.86 
Noon - 1PM 0.12 1 
1PM - 2PM 0.12 1 
2PM - 3PM 0.12 1 
3PM - 4PM 0.15 0.82 
4PM - 5PM 0.15 0.82 
5PM - 6PM 0.15 0.82 
Congestion factor reflects speed relative to free flow speed. 
 a UPS (2018)  b HERE (2019) 

For the purpose of analysis, this work considers the 9-hour long working day split into 

either one 9-hour long time-window, three 3-hour long time-windows, or six 1.5-hour long time-

windows. Further, this work assumes temporal variations in the delivery environment through 

each hour the day (Table 6). Note, the analysis here focuses on per package distribution metrics. 
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5.2.1. Illustrative results 

To contextualize results presented in this section, the author presents here a small subset of 

optimization results developed in this work.  Recall that this work assumes that e-retailers seek 

to minimize their total distribution cost considering the location of the e-commerce fulfillment 

facility, delivery vehicle fleet size, number of delivery tours per delivery vehicle, and number of 

deliveries per delivery tour. Table 7 presents the empirical results with optimal decision variable 

values for the different last-mile strategies each with delivery within 3-hour long time-windows. 

Table 8 enlists corresponding outcome values for fixed cost, operational costs, emission cost, and 

total distribution cost. Similarly, Table 9 shows select externalities, namely, vehicle-miles 

traveled, CO2 and NOx emissions for each distribution strategy with delivery within 3-hour long 

time-windows. In the following section, the author develops a detailed discussion on each 

distribution strategy - performance, key factors, and necessary market conditions. 

 

5.2.2. Temporal sensitivity analysis 

The analysis here establishes sustainability of the different last-mile distribution strategies for 

varying length of time-window, delivering a total of 69,489 packages in a square shaped-region 

spanning 475 sq. mi. Figure 9 presents the total distribution cost for each distribution strategy 

and the corresponding order of best-to-worst distribution strategy across the different delivery 

time-windows. With emissions monetized, the author develops a similar analysis with emissions 

cost in Figure 10. Note, these figures showcase single-echelon strategies in shades of blue, with 

DD-C5DT, DD- C5ET, and DD-CSLT sketched in dark-, normal-, and light- blue respectively; and 

strategies with a 2nd echelon are in shades of orange, with MH-CB, CP-PC, and DDMHCP sketched  
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Table 7. Empirical results for decision variables for different last-mile strategies (3-hr time-window) 

Last-mile strategy Location Fleet size Tours per vehicle Load efficiency   
Tour Type Tour Type Tour Type   

1 2 3 4 1 2 3 4 1 2 3 4 
DD-C5DT (2.4, 0.0) 22 476 - - 2 1 - - 0.87 0.21 - - 
DD-C5ET (2.8, 0.0) 22 480 - - 2 1 - - 0.88 0.21 - - 
DD-CSLT (4.6, 0.0) 21 1043 - - 2 1 - - 0.92 0.99 - - 
MH-CB (3.2, 0.0) 22 195 522 - 2 1 2 - 0.87 0.51 1 - 
CP-PC (4.2, 0.0) 21 200 - 69489 2 1 - 1 0.91 0.51 - 1 
DDMHCP (2.1, 0.0) 22 311 292 20847 2 1 2 1 0.88 0.32 1 1 
Location: primary distribution facility location relative to the center of the service region (coordinates in miles) 
Load efficiency: number of customers served in a tour relative to capacity of the vehicle 

Table 8. Empirical results for distribution costs for different last-mile strategies (3-hr time-window) 
Last-mile strategy DC FC TC EC  

 Tour Type Tour Type Tour Type  
 1 2 3 4 1 2 3 4 1 2 3 4 

DD-C5DT 2.82 0.01 0.71 - - 0.13 1.75 - - 0.03 0.18 - - 
DD-C5ET 2.73 0.01 0.92 - - 0.13 1.63 - - 0.03 0.00 - - 
DD-CSLT 1.81 0.01 0.50 - - 0.13 1.11 - - 0.03 0.03 - - 
MH-CB 3.29 0.01 0.56 0.45 - 0.13 0.70 1.35 - 0.03 0.06 0 - 
CP-PC 2.10 0.01 0.54 - 0.42 0.13 0.71 - - 0.03 0.07 - 0.20 
DDMHCP 3.00 0.01 0.66 0.18 0.14 0.13 1.15 0.52 - 0.03 0.12 0 0.06 
DC: Distribution Cost, FC: Fixed Cost, TC: Transportation Cost, EC: Emission Cost 
Costs in per package terms. Total packages served: 69,489 

 Table 9. Empirical results for externalities for different last-mile strategies (3-hr time-window) 
Last-mile strategy  VMT CO2 (g) NOx (g)  

 Tour Type Tour Type Tour Type  
 1 2 3 4 1 2 3 4 1 2 3 4 

DD-C5DT  0.05 0.38 - - 84 404 - - 0.29 1.59 - - 
DD-C5ET  0.05 0.39 - - 84 0 - - 0.29 0 - - 
DD-CSLT  0.05 0.85 - - 80 329 - - 0.28 0.14 - - 
MH-CB  0.05 0.13 0.31 - 83 140 0 - 0.29 0.55 0 - 
CP-PC  0.05 0.14 - 7.14 81 148 - 2166 0.28 0.58 - 0.53 
DDMHCP  0.05 0.25 0.35 7.14 85 265 0 2166 0.30 1.04 0 0.53 
VMT: Vehicle-miles Traveled 
Values in per package terms. Total packages served: 69,489 
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Figure 9. Impact of time-window length on distribution cost  

 
 
 
 

 
Figure 10. Impact of time-window length on emission cost 
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in dark-, normal-, and light- orange respectively. 

In general, as time-windows get smaller, vehicle consolidation levels drop, leading to an 

increase in the fleet size and the number of delivery tours required to cater to the demand, and 

thus the distribution costs per package increase (Figure 9). However, this temporal sensitivity 

varies significantly across the different last-mile strategies. In particular, crowdsourced delivery 

with light-duty trucks (DD-CSLT) is least affected as time-windows get shorter, whereas two-

echelon distribution strategies (MH-CB and CP-PC) observe a moderate impact, but door-to-door 

delivery with an e-retailer-owned medium-duty truck fleet (DD-C5DT and DD-C5ET) experience a 

substantial increase in distribution cost per package. This is because outsourcing last-mile 

operations either to a crowdsourced fleet with elastic driver availability (DD-CSLT) or to micro-

hubs using a low-cost asset like a cargo-bike (MH-CB) or to the customers for collection-point 

pickup with lenient delivery constraints (CP-PC), adds flexibility to the distribution structure 

enabling the e-retailer to easily scale up the operations when time-windows get shorter. Finally, 

DDMHCP consistently performs poorly, however, as this work shows later in the sensitivity 

analysis, its performance is critical to the configuration of the distribution structure and the share 

of packages served via micro-hubs and collection-points. 

 As far as emissions are concerned, since shorter time-windows lead to lower vehicle 

consolidation, they also render higher delivery emissions per package (Figure 10). This also 

implies that individuals traveling to a collection-point using their personal vehicles to pick up their 

packages make for an environmentally inefficient distribution strategy, particularly if the sole 

purpose of traveling is to collect package. To this end, co-locating these collection-points near 

major traffic generators, such as customer’s home or workplace can mitigate the need to travel 
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specifically to collect a package. However, some of the more environmentally efficient 

distribution strategies include those that deploy alternate fuel delivery vehicles to replace 

conventional diesel truck for last-mile delivery in the service region (MH-CB and DD-C5ET). 

 Refer to Appendix D for the impact of time-window length on fixed and operational costs. 

 

5.2.3. Spatial sensitivity analysis 

The analysis here establishes sustainability of the different last-mile distribution strategies for 

varying customer density, delivering packages within 3-hour time-windows. Here again, Figure 

11 presents the total distribution cost for each distribution strategy and the corresponding order 

of best-to-worst distribution strategy across the different delivery time-windows. Figure 12, on 

the other hand, showcases a similar analysis with emissions cost. Again, these figures showcase 

single-echelon strategies in shades of blue, with DD-C5DT, DD-C5ET, and DD-CSLT sketched in 

dark-, normal-, and light- blue respectively; and strategies with a 2nd echelon are in shades of 

orange, with MH-CB, CP-PC, and DDMHCP sketched in dark-, normal-, and light- orange 

respectively. 

In general, as customer density reduces, customer-to-customer distances increase, 

leading to an increase in the operational costs, and thus the distribution costs per package 

increase (Figure 11). However, this spatial sensitivity varies significantly across the different last-

mile strategies. Contrary to temporal sensitivity, door-to-door delivery strategies with e-retailer-

owned medium-duty truck fleet (DD-C5DT and DD-C5ET) are amongst the least affected as the 

customer density reduces, while micro-hub-based strategies, namely, DDMHCP and MH-CB, are 

the most affected. This poor performance of micro-hub-based strategies is due to slow vehicle  
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Figure 11. Impact of customer density on distribution cost 

 
 
 
 

 
 Figure 12. Impact of customer density in emission cost 
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speed for cargo-bikes. Thus, as customers locate sparsely, cargo-bike delivery tour travel time 

increases more significantly, resulting in a much more significant increase in costs compared to 

other distribution strategies. 

As for the delivery emissions, since a reduction in customer density increases customer-

to-customer distances, the per package delivery emissions for delivery vehicles with non-

zero/significant tailpipe emissions increase (Figure 12). Comparison across different last-mile 

strategies for emissions per package however is largely consistent with observations made in the 

previous sub-sections. 

These results from temporal and spatial sensitivity analysis have significant implication 

for e-retailers, particularly for those with small market size, or for traditional retailers planning 

for omni-channel distribution. Considering the results, the author suggests such e-retailers to 

rather not set up a traditional last-mile distribution strategy, but to instead crowdsource 

deliveries initially, reacting to the demand as it appears. Of course, as demand increases, the fleet 

requirements would grow as well, and it could be difficult to find enough drivers willing to 

crowdship packages. Thus, once the e-retailer can ensure a sizeable and stable demand, the 

author recommends the e-retailer to then own a dedicated fleet for last-mile delivery. With 

further growth, the e-retailer could also offer higher levels of service including expedited delivery 

and product return by operating through collection-point or micro-hubs. 

Refer to Appendix E for the impact of customer density on fixed and operational costs. 

 

5.2.4. General sensitivity and breakeven analysis 

In this subsection, the study further explores key factors affecting efficacy of last-mile delivery 
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for the different distribution strategies. To this end, the author here A) develop cost sensitivity 

for each last-mile distribution strategy to certain strategy-specific distribution parameters, and 

B) develop breakeven costs and in doing so, compares alternate last-mile distribution strategies 

with the conventional door-to-door delivery using diesel trucks (DD-C5DT). In particular, the 

analysis here explores A) the impact of service efficiency and vehicle type for a door-to-door last-

mile delivery with diesel trucks (DD-CXDT), B) the impact of battery characteristics on last-mile 

operations with electric trucks (DD-CXET), C) the impact of vehicle type and driver wage for 

crowdsourced delivery (DD-CSXX), and D) the impact of distribution structure configuration for 

two-echelon distribution with micro-hubs and/or cargo-bikes (MH-CB, CP-PC, and DDMHCP). 

Note, the sensitivity analysis examines the last-mile performance for delivery with 9-hr and 3-hr 

time-windows. 

DD-CXDT. In terms of service efficiency, vehicle speed inside the service region and 

service time at the customer can have a substantial impact on distribution costs, particularly if 

the customers demand the e-retailer to make deliveries within short time-windows (Figure 13). 

For instance, threefold increase in service time per customer, from 1 min to 3 mins, nearly 

doubles the distribution costs for the e-retailer. On the other hand, congested urban network 

rendering a 50% reduction in average vehicle speed, from 30mph to 15mph, results in about 60% 

higher distribution costs for the e-retailer. These results thus reinforce the general arguments 

made earlier, that temporal restrictions have significant impacts on last-mile delivery efficacy. In 

addition, these results bode well for light-duty delivery vehicles such as electric vans, cargo-bikes, 

UAVs, and ADRs. In particular, last-mile deliveries into dense urban areas such as downtowns can 

be susceptible to congestion (affecting vehicle speed) and access unavailability (affecting service  
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Figure 13. Impact of service efficiency door-to-door delivery with diesel trucks 

 
 
 
 
 

 
Figure 14. Temporal sensitivity of door-to-door delivery with diesel trucks of different classes 

 
 
 
 
 
  

(b) 3-hr time-window (a) 9-hr time-window 

Distribution cost per package ($) – DD-C5DT 

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

To
ta

l c
os

t p
er

 p
ac

ka
ge

 ($
)

Time-window length (hrs)

Class 5

Class 4

Class 3

Class 2

Class 1

0

1

2

3

4

5

6

0 2 4 6 8 10

R
an

k

Time-window length (hrs)

Class 3

Class 4

Class 5

Class 2

Class 1



71 
 

time). Thus, light-duty delivery vehicles, with appropriate infrastructure enabling ease of access, 

can flourish under such delivery conditions. 

Beyond service efficiency impacts, this work also evaluates the impact of vehicle type on 

last-mile delivery using different class of diesel trucks, ranging from smaller and cheaper class-1 

diesel  trucks (DD-C1DT) to larger and more expensive class-5 diesel trucks (DD-C5DT) (U.S. 

Department of Energy, 2020). While the analysis here (Figure 14) finds only minor differences 

between different truck class operations, yet it sheds light onto the optimal selection of diesel 

trucks for different time-window lengths. For instance, the e-retailer must deploy a small fleet of 

medium-duty diesel trucks to consolidate as much demand for delivery within longer time-

window, and in doing so, keep distribution costs low. Conversely, the e-retailer must deploy a 

large fleet of light-duty diesel trucks to have as many delivery vehicles at disposal for delivery 

within shorter time-window allows, and in doing so, keep distribution costs low. Thus, depending 

on the delivery lead-time and the length of the time-window, different truck sizes may suit for 

optimal last-mile delivery operations. However, it is important to note that a large light-duty 

diesel truck fleet renders higher vehicle-miles traveled and potentially higher tailpipe emissions 

than a small medium-duty truck fleet. These results and inferences hold true not only for DD-CX-

DT, but also across other last-mile distribution strategies. 

DD-CXET. The analysis here evaluates short-term and long-term implications for an e-

retailer switching to an electric truck fleet in terms of its ability to carry out day-to-day last-mile 

operations, considering the battery characteristics of the electric truck and available charging 

infrastructure. In particular, in the short term, the analysis assumes the e-retailer to locate the 

primary distribution facility furthest from downtown LA, while in the long-term, the analysis 



72 
 

assumes the e-retailer to re-optimize and relocate to a location that results in least distribution 

cost. The author first evaluates the impact of vehicle range and charging station density on 

efficacy of last-mile delivery with electric fleet (Figure 15). To this end, the author varies electric 

truck range and consequently its purchase cost by varying the battery size given the battery 

efficiency. With a 150-mile range electric truck priced at $150k, for every mile of reduction in 

vehicle range, the analysis assumes the purchase cost of the vehicle to drop by $500 (equivalent 

to battery retail price of $400/kWh and 0.8mile/kWh battery efficiency) (Burke and Miller, 2020). 

Thereafter, the author evaluates the impact of battery characteristics on efficacy of last-mile 

delivery with electric fleet. In particular the author tests the impact of battery efficiency and re-

charging rate, keeping vehicle range, and therefore vehicle purchase cost fixed (Figure 16). 

To begin with, it is evident that the density of chargers does not have a significant impact 

on last-mile operations in the long-term, as the facility can re-locate closer to the customers and 

thus the vehicle range would suffice for a typical delivery tour. However, in the short-term, i.e., 

if the facility cannot relocate at all or sufficiently close to customers, insufficient vehicle range 

(less than 125 miles) can cause disruptions in last-mile operations, as delivery vehicles need to 

de-tour and re-charge at a charging station. And while electric trucks have been consistently 

improving in the past few years in terms of battery capacity, vehicle range, and re-charging rates, 

such issues may still create a deterrence for the successful transformation from fossil fuel to 

electric truck-based last-mile delivery, especially in the short run. These results highlight the need 

for improvement in battery efficiency and electric truck range at the cost of a minimal increase 

in purchase price for low-cost zero-emission last-mile distribution. Note, the analysis here finds 

a fast-charging economical battery to reduce total costs by as much as 25%. However, it is worth  
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Figure 15. Impact of vehicle range on last-mile delivery with electric fleet (9-hr time-window) 

 
 
 
 
 

 
Figure 16. Impact of battery characteristics on last-mile delivery with electric truck (3-hr time window) 
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noting that even with the current battery technology and market prices, this work finds last-mile 

delivery with electric fleet to render lower distribution costs per package compared to 

conventional door-to-door delivery with diesel trucks. In fact, even with smaller electric vehicles 

such as the Mercedes electric Sprinter ($50k purchase price, 90mile range, 55kWh battery, and 

a capacity of 160 customers), commonly deployed for last-mile deliveries, the distribution costs 

fall to $2.2 per package in contrast to $2.73 with class-5 electric trucks, and $2.83 with class-5 

diesel trucks, for delivery within 3-hr time-windows. 

DD-CSXX. In the general case, the analysis assumes the crowdsourced vehicle to be a 

medium-sized light-duty vehicle (pickup truck or sport utility vehicle) with a driver wage of 

$20/hour. In this section, the analysis expands crowdsourced delivery operations, deploying 

alternate delivery vehicles, such as a car or moped. While cars and pickup trucks are more 

common delivery vehicles in the US, mopeds are typical delivery vehicles in metropolitan 

European and Asian cities, especially in the e-grocery and food delivery segment of e-commerce. 

In addition, the sensitivity analysis varies driver wages from a minimum wage of $15/hour to a 

typical truck driver wage of $35/hour.  

Considering the results of this sensitivity analysis (Figure 17), it is evident that pickup 

trucks have an advantage due to their larger capacity, so much so that offering high driver wages 

($35/hour) to a pickup truck driver renders an equivalent distribution costs per package as 

offering minimum wage ($15/hour) to a moped driver. In fact, crowdsourcing pickup trucks for 

delivery, particularly at low driver wages, can render a lower distribution cost than the 

conventional door-to-door delivery with diesel trucks (DD-C5DT). Whereas a moped-based 

crowdsourced delivery at low driver wages and under shorter time-windows can just about 
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compete with DD-C5DT.  

As far as externalities are concerned, pickup trucks render a lower vehicle-miles traveled, 

but owing to the differences in emission rates across the different delivery vehicles, last-mile 

delivery with crowdsourced fleet of drivers using personal cars produce the fewest distribution 

emissions in crowdsourced operations. On the other hand, a crowdsourced fleet of mopeds 

renders the most vehicle-miles traveled as well as the highest emissions but amount the least to 

congestion individually. 

MH-CB. To further develop a comprehensive understanding of micro-hub-based last-mile 

deliveries, this study carries out a sensitivity analysis varying the number of micro-hub facilities 

and the share of packages delivered via such facilities (Figure 18). Note, the packages that do not 

go through micro-hubs go directly from the primary distribution facility to the customer’s 

doorstep on e-retailer’s fleet of class-5 diesel trucks.  

To begin with, the analysis shows the distribution costs to increase more significantly as 

the e-retailer delivers an increasing share of packages from fewer micro-hubs. However, as the 

e-retailer sets up more micro-hubs in the service region it requires fewer cargo-bikes each with 

shorter delivery tours to cater to its customers. And thus, for every additional micro-hub set up 

for service, the distribution costs for the e-retailer reduce by 0.8% on average. Nonetheless, 

increasing the number of micro-hubs also increases the fixed costs, thus it is important to note 

that the benefit of adding another micro-hub is diminishing. Further, consistent with the previous 

discussion in the subsection developing temporal sensitivity for last-mile distribution strategies, 

conventional door-to-door delivery with diesel trucks (DD-C5DT) renders lower distribution costs 

than micro-hub-based last-mile delivery (MH-CB). Figure 18 offers this direct cost comparison  
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Figure 17. Impact of crowdshipping agent on DD-CS-XX 

 
 
 
 
 

 
Figure 18. Impact of distribution structure on MH-CB 
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between MH-CB and DD-C5DT, with the $1.8 and the $2.8 contour line representing the DD-C5DT 

distribution cost per package for delivery within the 9-hr and 3-hr time-windows, respectively. 

However, reiterating previous discussions, it is important to note that cargo-bikes can flourish in 

dense urban environments, where deliveries are susceptible to access unavailability, congestion, 

and stringent time-windows. Moreover, replacing diesel trucks with cargo-bikes for last-mile 

deliveries can reduce emissions by 0.62%, vehicle-miles traveled by 0.63%, as well as traffic 

accidents by 0.72%, on average for every additional % of packages delivered using a cargo-bike. 

CP-PC. Here again, the study develops sensitivity analysis varying the number of 

collection-points and the share of customers collecting packages at collection-points (Figure 19). 

Note, the packages that do not go through collection-points go directly from the primary 

distribution facility to the customer’s doorstep on e-retailer’s class-5 diesel trucks.  

The analysis here again shows the distribution costs to vary more significantly as an 

increasing share of customers collect packages from fewer collection-points. Thus, adding more 

collection-points in the service region improves the coverage of the service region, reducing the 

distance traveled by the customer and related emissions by 1.75% on average. However, 

increasing the number of collection-points also increases the fixed cost, and hence the marginal 

benefit of adding another collection-point is diminishing.  

Again, consistent with the results from temporal sensitivity analysis, conventional door-

to-door delivery with diesel trucks (DD-C5DT) is an economically viable strategy for delivery 

within the longer 9-hr time-window, while having customers collect packages at collection-points 

renders a lower distribution cost if service is constrained by shorter 3-hr time-windows. Figure 

19 offers this direct cost comparison between CP-PC and DD-C5DT, with the $1.76 and the $2.8 
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contour line representing the DD-C5DT cost per package for delivery within the 9-hr and 3-hr 

time-windows, respectively. Nonetheless, it is important to note that for every additional % of 

packages self-collected, the vehicle-miles traveled and emissions increase by 1.73% and 8.37%, 

on average, respectively. 

DDMHCP. The author develops sensitivity analysis for a distribution structure with 

multiple delivery options including door-to-door delivery, delivery via micro-hubs, and self-

collection at collection-points. In particular, the analysis varies the share of packages the e-

retailer delivers through micro-hubs and collection-points (Figure 20). Note, the packages that 

do not go through either micro-hubs or collection-points go directly from the primary distribution 

facility to the customer’s doorstep on one of the e-retailer’s class-5 diesel trucks.  

The discussion here specifically focuses on the collaboration between micro-hubs and 

collection- points. For delivery within the longer 9-hr time-window, it is best for the e-retailer to 

deliver directly to the customer without routing packages from a 2nd echelon. Yet, for delivery 

within the shorter 3-hr time-window, having a 2nd echelon with both collection-points and micro-

hubs can result in a lower distribution cost per package than conventional door-to-door delivery 

with diesel trucks (DD-C5DT). This is evident from the $2.8 contour line representing DD-C5DT 

distribution cost per package in the corresponding figure. In fact, the e-retailer would prefer to 

operate solely through collection-points as it renders an even lower distribution cost. This though 

would come at the cost of high emissions from individuals traveling to the collection-point. At 

this point, routing some deliveries via micro-hubs using cargo-bikes while having some customers 

collect packages at collection-points may render both - a lower distribution costs as well as lower 

emissions in comparison to conventional last-mile delivery. 
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Figure 19. Impact of distribution structure on CP-PC 

 
 
 
 

 
Figure 20. Impact of distribution structure on DDMHCP 
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5.3. Impact of demand uncertainty on e-commerce goods distribution 

In this subsection, the author develops the impact of demand uncertainty on e-commerce goods 

distribution using the discrete optimization framework developed in this work, wherein the 

author formulates the LMND problem for the e-retailer as a DS-2E-C-LRP-TW, addressed using 

the ALNS metaheuristic algorithm, as discussed above in the Methodology section. 

Without loss of generality, the author presents the empirical results for an e-retailer with 

a 1% market share, operating in the city of Los Angeles, catering to the dynamic-stochastic 

customer demand in the region (Figure 22) with a last-mile distribution structure encompassing 

a regional distribution facility located 50 miles east of downtown LA, potential primary 

distribution facility locations, and potential secondary distribution facilities including micro-hubs 

and collection-points (Figure 21). Thus, a day’s work for this e-retailer includes last-mile 

operations catering to the static customer demand accrued since the previous working day 

(Figure 22a) and additionally service of dynamic customer demand arriving through the day 

(Figure 22b).  

For this e-retailer, the author investigates the opportunities and challenges associated 

with the different last-mile distribution strategies to cope with daily dynamic-stochastic total 

customer demand (Figure 22c and 22d). To this end, the author models this e-retailer’s strategic, 

tactical, and operational decision-making process encompassing the LMND problem with the DS-

2E-C-LRP-TW formulation.  

In particular, the author begins with the strategic decision-making process wherein the e-

retailer establishes the type, number, and location for the primary and secondary distribution  
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Figure 21. Last-mile distribution structure of the e-retailer 
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Figure 22. Daily customer demand 
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facilities, as well as the size and composition of the associated delivery fleet, to serve the 

expected customer demand over a planning horizon spanning a period of 10 years.  

This study then replicates the tactical decisions with the e-retailer defining the order of 

customer visits for each day of a month sampled from the planning horizon to meet the daily 

stochastic customer demand, given the primary and secondary distribution facilities and the 

associated delivery vehicle fleet.  

And finally, this work replicates the operational decision-making process wherein the e-

retailer fine-tunes the last-mile delivery in every hourlong time-slot in the day considering the 

dynamic arrival of certain customer requests requiring service by the end of this day. Here, the 

author assumes the e-retailer to delay route commitments until the last-feasible time-slot to 

accumulate customer requests and consequently assign them to an uncommitted delivery route. 

At the end of every time-slot then, the e-retailer integrates the new customer requests by 

inserting these customer nodes into such uncommitted delivery routes in a manner that results 

in least increase in distribution cost keeping the customer-distribution facility allocation fixed. 

With this, the author develops the impact of demand uncertainty on last-mile distribution 

for this e-retailer (Table 10). In particular, for each distribution structure, the analysis here 

establishes expected distribution cost with a counterfactual scenario assuming the e-retailer has 

complete knowledge of the delivery environment. Further, this work develops operational 

variance metric, estimating coefficient of variance of total cost, to assess the impact of stochastic 

customer demand. And to investigate the impact of dynamic customer demand, this study 

develops value of information metric, comparing counterfactual scenario with the actual 

scenario wherein customers arrive dynamically through the day.  
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DD-C5DT. Here, the e-retailer establishes a single-echelon distribution structure with 

direct delivery using a fleet of class-5 diesel trucks operating from a primary distribution facility 

fulfilled by the regional distribution facility located in San Bernardino with a fleet of class-8 diesel 

trucks (Figure 23). To cater to the expected demand over the planning horizon, the strategic 

decision-making process guides the e-retailer to deploy a fleet of 5 class-5 diesel trucks operating 

from a primary distribution facility close to downtown LA. With this, the e-retailer can cater to 

the daily total customer demand at a total cost of $2.09 per package with fixed and operational 

costs amounting to $0.78 and $1.31 per package, respectively. However, owing to the stochastic 

nature of this customer demand, the e-retailer observes a 1.58% operational variance in 

distribution costs. Moreover, the dynamic nature of the customer demand further exacerbates 

viability of last-mile operations, increasing distribution costs by $0.14 per package. Note, in such 

a distribution structure, goods flow from the regional distribution facility to the customers’ 

doorstep renders on average 0.35 miles of distance traveled per package, resulting in 409g of 

CO2, 0.3g of CO, 1.6g of NOx, and 0.05g of PM emissions, thus accruing $0.17 in emissions cost 

per package. 

DD-C5ET. Unlike with the DD-C5DT, here the e-retailer establishes direct delivery using a 

fleet of class-5 electric trucks instead, each with an operating range of 150 miles, operating from 

a primary distribution facility fulfilled by the regional distribution facility with a fleet of class-8 

diesel trucks (Figure 24). Yet much like with DD-C5DT, the e-retailer establishes the primary 

distribution facility next to downtown LA, deploying 5 class-5 electric trucks to cater to the 

expected customer demand. With this alternate fuel delivery vehicle fleet, the e-retailer can 

serve the daily total customer demand at a total cost of $1.95 per package with fixed costs as  
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Figure 23. Direct delivery with class-5 diesel trucks (DD-C5DT) 
 
 
 
 
 

  
 

Figure 24. Direct delivery with class-5 electric trucks (DD-C5ET) 
 

 

0

2

4

6

8

10

12

14

16

2.00 2.04 2.07 2.10 2.14 2.17 2.19

Fr
eq

ue
nc

y

Total cost ($/package)

0

2

4

6

8

10

12

14

16

0.00 0.04 0.11 0.18 0.25 0.31 0.35

Fr
eq

ue
nc

y
Impact of dynamic demand ($/package )

0

2

4

6

8

10

12

14

16

1.90 1.92 1.94 1.97 1.99 2.01 2.02

Fr
eq

ue
nc

y

Total cost ($/package)

0

2

4

6

8

10

12

14

16

0.00 0.04 0.09 0.14 0.19 0.25 0.27

Fr
eq

ue
nc

y

Impact of dynamic demand ($/package )

                            a) Total cost per package                                                b) Value of Information 

                            a) Total cost per package                                                b) Value of Information 



86 
 

high as $0.88 per package while operational costs only amounting to $1.07 per package including 

$0.03 in tailpipe emissions. These results therefore highlight the potential of electric trucks in 

rendering operational improvements in last-mile delivery despite their higher fixed cost. Owing 

to these operational improvements, the stochastic and dynamic uncertainties in daily customer 

demand renders only as much as 1.13% in daily operational variance and $0.11 in additional 

distribution cost, respectively. Nonetheless, outsourcing additional electric trucks to cater to this 

dynamic-stochastic customer demand can significantly affect viability of last-mile distribution 

owing to the high rental fee associated with electric trucks. 

DD-CSLT. Here, the e-retailer establishes door-to-door delivery with a fleet of 

crowdsourced drivers using light-duty trucks to perform last-mile operations operating from a 

primary distribution facility (Figure 25). Like with DD-C5DT and DD-C5ET, the e-retailer fulfills this 

primary distribution facility using a fleet of class-8 diesel trucks from the regional distribution 

facility located 50 miles east of downtown LA. However, unlike in DD-C5DT and DD-C5ET, the e-

retailer here does not own the fleet of delivery vehicles (at the primary distribution facility) and 

therefore the e-retailer remunerates these crowdsourced drivers only for their labor at $20/hour 

while saving upon costs pertaining to vehicle maintenance and fuel. Considering this incentive 

structure, the authors here assume the crowdsourced drivers to only perform at most two 

delivery tours per day for the e-retailer. And thus, to cater to the daily total customer demand, 

the e-retailer needs a fleet of 63 crowdsourced drivers operating from the primary distribution 

facility located a mile away from downtown LA. This results in a total cost of $1.87 per package, 

with fixed costs accounting for $0.69 per package and operational costs amounting to $1.18 per 

package, lower than that for last-mile delivery with e-retailer owned fleet. Further, owing to the 
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flexible nature of crowdsourced delivery, the stochastic and dynamic uncertainties in daily 

customer demand renders only as much as 0.7% in daily operational variance and $0.12 in 

additional distribution cost, respectively. Nonetheless, owing to the limitations of this light-duty 

truck fleet, crowdsourcing last-mile delivery renders inefficient flow of goods with every package 

necessitating 1.1miles of vehicle-travel resulting in 477g of CO2, 1.8g of CO, 0.5g of NOx, 0.008g 

of PM tailpipe emissions. 

MH-CB. Unlike in the above discussed last-mile distribution strategies, here the e-retailer 

establishes a two-echelon distribution structure with the additional layer encompassing micro-

hubs each with a fleet of cargo-bikes (Figure 26). Note, the regional distribution facility fulfills the 

primary distribution facility using class-8 diesel trucks and the primary distribution facility in-turn 

fulfills the micro-hub facilities with class-5 diesel trucks. Here, the e-retailer groups the expected 

customer demand and appropriately locates 5 micro-hub facilities. Thus, with this distribution 

structure, the e-retailer can cater to daily total customer demand with some customers receiving 

packages via one of the 3 class-5 diesel trucks directly from the primary distribution facility 

located a mile east of downtown LA, while other customers receive packages from micro-hubs 

via one of the 51 cargo-bikes. These last-mile delivery operations result in a distribution cost of 

$2.80 per package with $1.20 in fixed costs and $1.70 in operational costs, both significantly 

higher than that rendered by the conventional distribution strategy (DD-C5DT), owing to the 

additional costs of the additional echelon. In fact, fine-tuning last-mile operations to serve the 

customers arriving dynamically through the day results in additional distribution cost of $0.21 

per package for the e-retailer, with stochastic customer demand rendering as much as 3.2% 

operational variance in distribution costs. Further, owing to the multi-echelon nature of the  
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Figure 25. Direct delivery with crowdsourced fleet of light-duty trucks (DD-CSLT) 

 
 
 
 
 

  
 

Figure 26. Delivery via micro-hubs using cargo-bikes (MH-CB) 
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distribution structure, each package generates 0.55 vehicle-miles traveled, substantially higher 

in comparison to a single-echelon distribution structure. Nonetheless, owing to use of cargo-

bikes for last-mile delivery, the tailpipe emissions in such a distribution structure amount to $0.14 

per package. 

CP-PC. Here again, the e-retailer establishes a two-echelon distribution structure with the 

additional layer including collection-points fulfilled by the regional distribution facility via the 

primary distribution facility (Figure 27). To this end, the e-retailer groups the expected customer 

demand and appropriately operates 15 of the potential 20 collection-point facilities. Note, the 

author here assumes the customers to travel at most 5 miles to self-collect packages. Thus, with 

this distribution structure, the e-retailer can cater to the daily total customer demand such that 

some packages travel directly via one of the 3 class-5 diesel trucks operating from the primary 

distribution facility located near downtown LA, while other customers self-collect package driving 

to collection-points. With this, the e-retailer can effectively outsource a segment of the last-mile 

to the customer and can thus cater to its customers at just $1.85 per package with fixed costs 

amounting to $1.05 per package and operational costs accounting for $0.80 per package. This 

lower operational cost for last-mile distribution therefore reduces the impact of demand 

uncertainty (in contrast to DD-C5DT), with stochastic customer demand rendering 1.5% 

operational variance in distribution cost, while dynamic customer demand resulting in additional 

$0.13 per package. Nonetheless, considering that individuals travel in their personal cars to 

collect packages, collection-point pickup renders inefficient flow of goods with each package 

traveling 2.18miles and consequently generating 1029g of CO2, 2.2g of CO, 2.1g of NOx, and 0.06g 

of PM tailpipe emissions that amount to a cost of $0.27 per package.  
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Figure 27. Delivery via collection-points with customer pickup (CP-PC) 
 
 
 
 
 

 

 
Figure 28. Direct delivery with class-5 diesel trucks in addition to delivery via micro-hubs and collection-

points (DDMHCP) 
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DDMHCP. And finally, the e-retailer establishes a two-echelon distribution structure with 

the additional layer including all 5 micro-hub facilities and 16 of the potential 20 collection-point 

facilities (Figure 28). Thus, with this distribution structure, some customers receive packages 

directly from the primary distribution facility on a class-5 diesel truck, some receive packages via 

micro-hubs on a cargo-bike, while the remaining customers travel to a collection-point to self-

collect. Note, the e-retailer fulfills the second echelon facilities from the regional distribution 

facility via the primary distribution facility. Such a diverse distribution structure encapsulates the 

opportunities and challenges associated with each individual distribution structure, and thus 

renders a distribution cost of $2.37 per package to cater to the daily total customer demand. 

Owing to the stochastic nature of this customer demand, the e-retailer may observe an 

operational variance of 1.23% in distribution costs, while the dynamic arrival of customers further 

increase this distribution cost by $0.1 per package. 
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6. Discussion 

E-commerce has the potential to provide an economically viable, environmentally efficient, and 

socially equitable flow of goods. However, as e-retailers compete with traditional retailers for 

market share employing consumer-focused service models with expedited and reverse logistics, 

urban environments witness frequent less-than-truckload last-mile deliveries. This therefore 

results in a substantial increase in freight distribution costs and associated negative externalities 

including greenhouse gas emissions advancing global climate change, as well as criteria pollutant 

emissions worsening local air quality thus affecting those living close to logistics clusters. Hence, 

such consumer-focused trends in e-commerce render economically unviable, environmentally 

inefficient, and socially inequitable urban goods flow. In this context, a number of studies have 

investigated the sustainability of e-commerce last-mile distribution. However, several of these 

studies develop poor estimates of the potential impacts of e-commerce owing to use of crude 

frameworks modeling the delivery environment. To this end, this study modeled the delivery 

environment with a robust multinomial logit model establishing the demand-side, and 

sophisticated continuous approximation and discrete optimization frameworks establishing the 

supply-side. And with this, the author explored potential opportunities and challenges associated 

with urban freight in light of the increasingly consumer-focused e-commerce goods distribution. 

 In particular, considering the current retail landscape, the author found that with 

consolidated and optimized deliveries, e-commerce can render urban goods flow a 12% 

reduction in vehicle-miles traveled and a 10% reduction in greenhouse gas emissions. Moreover, 

this study established a further 80% reduction in vehicle-miles traveled and additional 64% 

reduction in associated greenhouse gas emissions from urban goods distribution for a potential 
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future landscape with e-retail dominating the traditional retail. However, this work found criteria 

pollutant emissions to increase substantially as a consequence of increased truck flow from e-

commerce goods distribution. Nonetheless, with appropriate improvements in fuel and engine 

technology, the author believes that e-commerce has the potential to render efficient flow of 

goods from point-of-sale to point-of-consumption.  

Yet, the author here raises relevant concerns pertaining to sustainability of urban goods 

flow owing to the increasingly consumer-focused services offered by e-retailers competing for a 

larger market share. In particular, the study found the recent consumer-focused trends in e-

commerce to reduce demand consolidation and consequently render frequent less-than-

truckload deliveries, thus resulting in increased cost, distances driven, and tailpipe emissions 

from urban goods distribution. To address these concerns, the study suggests the use of alternate 

system-level strategies with use of electric delivery vehicles for last-mile operations, or a fleet of 

crowdsourced drivers for last-mile delivery, or consolidation facilities coupled with light-duty 

delivery vehicles for a multi-echelon distribution, or collection-points for customer pickup. To this 

end, this study provides relevant insights for large size e-retailers planning to offer higher levels 

of service and to diversify their operations, as well as for small size e-retailers and traditional 

retailers planning for omni-channel distribution.  

Yet, in general, the author suggests e-retailers to develop a conventional distribution 

strategy with a dedicated fleet to ensure reliable last-mile service. However, certain delivery 

environments necessitate use of alternate distribution strategies to ensure sustainable last-mile 

service. For instance, for a small size e-retailer with sparsely spread customers, deploying a fleet 

of crowdsourced drivers for last-mile delivery could render a more viable option. Yet, for large 
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size e-retailers, the author suggests establishing a hybrid distribution structure with a dedicated 

fleet of medium-duty trucks making last-mile delivery coupled with a crowdsourced fleet that 

caters to customers arriving dynamically through the day. In doing so, the e-retailer can establish 

a cost-effective and flexible last-mile distribution structure resistant to demand uncertainty. 

Nonetheless, it is important to note that the use on independent contractors may result in less 

reliable performance compared to e-retailer-owned delivery vehicles. To this end, the e-retailer 

may need to offer higher incentives to drivers to improve reliability. And thus, the e-retailer must 

carefully consider the relation between viability and reliability of last-mile distribution when 

crowdshipping. Moreover, the e-retailer must also consider the potential impact of 

crowdshipping on environmental efficiency and social equity associated with urban goods flow. 

To mitigate these negative impacts of urban goods flow, this large size e-retailer can 

deploy a dedicated fleet of medium-duty electric trucks instead of conventional diesel trucks. In 

fact, it is worth noting that this work found delivery with an electric fleet to be equally 

competitive if not better than delivery with diesel fleet (total cost per package $2.2 with electric 

van, $2.73 with electric truck, and $2.83 with diesel truck fleet, for the 3-hr time-window case). 

However, it is worth considering the potential barriers to the adoption of electric trucks for last-

mile delivery. One of the main challenges is the higher upfront cost of electric delivery vehicles, 

which can be a deterrent for e-retailer, especially when the e-retailer may need to rent out 

additional delivery vehicles to cope with demand uncertainty. Further, the author here raises 

concerns pertaining to the short-term implications of adopting an all-electric fleet which are 

subject to battery characteristics, vehicle range, and the availability as well as the quality of public 

charging infrastructure. Nonetheless, since electric trucks have consistently been improving in 
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the past few years, the author believes that it is possible that in coming years the opportunity 

cost of owning an electric fleet will diminish.  

Alternatively, the e-retailer can deploy a fleet of light-duty delivery vehicles to make the 

last-mile deliveries from micro-hubs located within the service region. In fact, this study found 

cargo-bikes to flourish in the dense residential/commercial parts of the city owing to their ease 

of access and parking which otherwise could be a limitation with a delivery truck, thereby 

improving service efficiency and in turn reducing distribution costs for the e-retailer, as well as 

reducing delivery emissions, congestion, and traffic accidents. However, this work found such 

multi-echelon distribution strategies to be less cost-effective and less resistant to demand 

uncertainty than other single-echelon distribution strategies due to the additional handling and 

transportation required to move packages between the micro-hubs and the final delivery 

location. Nonetheless, to cope with additional handling and transportation cost, the e-retailer 

can outsource a segment of last-mile and have customers collect packages at collection-points, 

albeit at the expense of additional vehicle-travel and negative externalities from individual 

customers traveling to these collection-points. 

 Thus, a last-mile distribution structure with collection-points co-located near major 

traffic generators and micro-hubs located in dense neighborhood presents a viable middle 

ground for the e-retailer, rendering an economically viable, environmentally efficient, and 

socially equitable multi-echelon distribution structure that is resistant to demand uncertainty.  

Overall, the conclusions developed in this work are in general consistent with the 

literature, with this study providing further insight on the: importance of service efficiency, short-

term/long-term implications of electric truck use, range of crowdsourcing options, design of 
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micro-hubs and/or collection-point based distribution structures, and more. Importantly this 

work allows for consistent comparison across different last-mile strategies in terms of total costs 

per package, vehicle miles traveled, and emissions, thereby enabling consistent decision-making 

for the e-retailer as well as other stakeholders Hence, this work highlights the need to manage 

the urban freight system in general, and delivery operations and services in particular, to foster 

a more sustainable urban environment, in light of the growing consumer-focused trends in e-

commerce distribution.  
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7. Conclusions 

Considering the potential of e-commerce to render economically viable, environmentally 

efficient, and socially equitable urban goods flow, it is pertinent to understand the opportunities 

and challenges associated with urban freight in light of the increasingly consumer-focused e-

commerce distribution. To this end, the author developed the impact of e-commerce on urban 

goods distribution, with a simulation framework founded on consumer shopping behavior 

simulating urban goods flow; the impact of key delivery environment parameters on e-commerce 

goods distribution, with a continuous approximation (CA) framework modeling last-mile 

distribution operation for an e-retailer; the impact of demand uncertainty on e-commerce goods 

distribution, with a discrete optimization framework formulating a last-mile network design 

(LMND) problem as a dynamic-stochastic two-echelon capacitated location routing problem with 

time-windows (DS-2E-C-LRP-TW), addressed using an adaptive large neighborhood search (ALNS) 

metaheuristic algorithm. 

In doing so, the author established a comprehensive analysis investigating the 

sustainability of e-commerce goods distribution, considering the recent turn towards consumer-

focused trends in e-commerce. This analysis accounted for economic viability, environmental 

efficiency, and social equity of last-mile distribution with fixed and operational costs of 

distribution. The parameter values employed in this analysis is reflective of the industry 

structures, regulations, geographies, urban forms, and consumer behaviors in the Los Angeles 

region.  

However, future work must address the limitations of this work to further develop a 

robust understanding of the sustainability of last-mile distribution. In particular, future work 
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must consider intra-route re-fueling for delivery vehicles to comprehensively model last-mile 

operations. Further, future work must model willingness of crowdsourced drivers to engage in 

last-mile delivery and in doing so account for any supply constraints in crowdshipping. Similarly, 

future work can model willingness of customers to collect package accounting for customers’ 

value-of-time. Importantly, any future work must consider synchronization between the 

different echelons to thoroughly model the last-mile operations in a multi-echelon distribution 

structure. Further, considering that this work assessed sustainability of last-mile distribution 

accounting for high-probability low-severity fluctuations in the delivery environment, future 

work can extend this analysis to additionally assess reliability of last-mile distribution accounting 

for low-probability high-severity disruptions in the delivery environment. 

Yet, despite such limitations, this work develops significant insight highlighting the 

opportunities and challenges in urban freight in light of the recent consumer-focused trends in 

e-commerce. 
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Appendix A. 

Estimating long-haul for a delivery vehicle operating from a primary distribution 

facility 

A. I Long-haul travel distance 

For the continuous approximation framework, the author estimates long-haul for a delivery 

vehicle operating from a primary distribution facility as the average distance from this primary 

facility located at 𝜌𝜌𝑥𝑥,𝜌𝜌𝑦𝑦 relative to the center of the service region, to the customers located 

randomly and uniformly in the service region. Thus, 

𝜌𝜌 =
1
𝑎𝑎
� |𝜌𝜌𝑥𝑥 − 𝑥𝑥| 𝑑𝑑𝑑𝑑
𝑎𝑎
2

−𝑎𝑎2

+
1
𝑎𝑎
� �𝜌𝜌𝑦𝑦 − 𝑦𝑦� 𝑑𝑑𝑑𝑑
𝑎𝑎
2

−𝑎𝑎2

                                                                                                       (𝐴𝐴. 1) 

To this end, the author computes, 
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Hence, if 𝜌𝜌𝑡𝑡 ≥ 𝑎𝑎/2, 
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𝑧𝑧 = 𝜌𝜌𝑡𝑡                                                                                                                                                          (A. 4) 
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Thus, 
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And therefore, the long-haul distance traveled by a delivery vehicle operating from a primary 

distribution facility is, 
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A. II Long-haul travel time 

Considering the long-haul distance traveled by a delivery vehicle operating at the primary 

distribution facility, the long-haul travel time for this delivery vehicle with speed 𝑣𝑣𝑟𝑟 and 𝑣𝑣𝑢𝑢 on a 

rural and urban network respectively is, 
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                                          (A. 13)  

Wherein, 

if the primary distribution facility is located inside the service region, i.e., if |𝜌𝜌𝑥𝑥| < 𝑎𝑎 2⁄  and 

|𝜌𝜌𝑦𝑦| < 𝑎𝑎/2, the delivery vehicle travels the entire length of the long-haul within the service 

region, and hence the long-haul travel time is, 
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� /𝑣𝑣𝑢𝑢                                                                                                                       (A. 14)  

else if the primary distribution facility is located such that |𝜌𝜌𝑥𝑥| < 𝑎𝑎 2⁄  and |𝜌𝜌𝑦𝑦| < 𝑎𝑎/2, then the 

delivery vehicle traverses �|𝜌𝜌𝑥𝑥| − 𝑎𝑎 2⁄ + |𝜌𝜌𝑦𝑦| − 𝑎𝑎 2⁄ � outside the service region, traveling 

towards the boundary of the service region, and (𝑎𝑎 2⁄ + 𝑎𝑎 2⁄ ) within the service region, thus 

resulting in a long-haul trave time that is, 
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else if the primary facility is located such that |𝜌𝜌𝑥𝑥| ≥ 𝑎𝑎 2⁄  and |𝜌𝜌𝑦𝑦| < 𝑎𝑎/2, then the vehicle travels 

(|𝜌𝜌𝑥𝑥| − 𝑎𝑎 2⁄ ) segment of the long-haul outside the service region, and travels ��𝜌𝜌𝑦𝑦
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And likewise, if the facility is located such that |𝜌𝜌𝑥𝑥| < 𝑎𝑎 2⁄  and |𝜌𝜌𝑦𝑦| ≥ 𝑎𝑎/2, then the vehicle 

traverses a distance of �|𝜌𝜌𝑦𝑦| − 𝑎𝑎 2⁄ � outside the service region, and completes ��𝜌𝜌𝑥𝑥
2 𝑎𝑎⁄ + 𝑎𝑎 4⁄ � +

𝑎𝑎 2⁄ � inside 
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Appendix B. 
 

Estimating long-haul for a delivery vehicle operating from a secondary distribution 

facility 

For the continuous approximation framework, the author estimates long-haul for a delivery 

vehicle operating from a secondary distribution facility as the average distance from this 

secondary facility to the customers located randomly and uniformly in the service region. Thus, 

for a secondary facility located at 𝜌𝜌𝑥𝑥,𝜌𝜌𝑦𝑦 relative to the center of the service region, this distance 

is, 

𝜌𝜌

=
𝜌𝜌𝑥𝑥2 + 𝜌𝜌𝑦𝑦2

𝑎𝑎
+
𝑎𝑎
2

                                                                                                                                                                                        (𝐵𝐵. 1) 

Considering randomly and uniformly located secondary distribution facilities, the average long-

haul distance is, 

𝜌̅𝜌 =
1
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                                                                                                                                         (B. 3) 

𝜌̅𝜌 =
2𝑎𝑎
3

                                                                                                                                                                       (B. 4) 

This work further assumes each micro-hub to only serve a smaller sub-region of size 𝑎𝑎2/𝑛𝑛𝑀𝑀𝑀𝑀, 

thus the author modifies the average long-haul distance to, 𝜌̅𝜌 = 2𝑎𝑎 3√𝑛𝑛𝑀𝑀𝑀𝑀⁄ . Considering that 

the delivery vehicle traverses this distance inside the service region, the long-haul travel time is  

𝜌̅𝜌/𝑣𝑣𝑢𝑢.  
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Appendix C. 

Validating delivery tour length estimation for the model developed in this work 

The author here validates the delivery tour length estimation of the continuous approximation 

framework developed in this work. In this validation process (Table 11), the author not only 

develops a general understanding of the estimation error of the proposed model, but also carries 

out analysis to evaluate the impact of certain parameters on model estimation error, much like 

Winkenbach et al. (2016). These parameters include, 𝑛𝑛 - number of customers to serve, 𝑎𝑎2 - size 

of the service region, (𝜌𝜌𝑥𝑥, 𝜌𝜌𝑦𝑦) - primary distribution facility location (in miles) relative to the 

center of the service region, and 𝑞𝑞𝑐𝑐 - capacity of the delivery vehicle. Note, 𝑙𝑙𝑜𝑜, 𝑙𝑙𝑒𝑒, and 𝜖𝜖 represent 

the optimal delivery tour length, model estimation of the delivery tour length, and the estimation 

error, respectively.  

Table 11. Continuous Approximation model validation 
VRP instance 𝒏𝒏 𝒂𝒂𝟐𝟐 𝝆𝝆𝒙𝒙 𝝆𝝆𝒚𝒚 𝒒𝒒𝒄𝒄      𝒍𝒍𝒐𝒐      𝒍𝒍𝒆𝒆    𝝐𝝐 
Set I instances         
A-n33-k5 32 7125 37.5 47.5 100 841.6 822.8 -2.23% 
A-n32-k5 31 9215 48.5 47.5 100 998.2 1071.7 7.36% 
A-n33-k6 32 8455 44.5 47.5 100 944.7 981.3 3.87% 
A-n34-k5 33 8832 48.0 46.0 100 990.6 935.7 -5.54% 
A-n36-k5 35 8648 46.0 47.0 100 1017.3 1054.2 3.63% 
A-n37-k5 36 8460 45.0 47.0 100 851.8 868.2 1.92% 
A-n37-k6 36 9108 49.5 46.0 100 1208.3 1230.6 1.84% 
A-n38-k5 37 8256 48.0 43.0 100 929.5 950.3 2.25% 
A-n39-k5 38 9216 48.0 48.0 100 1046.6 1088.0 3.96% 
A-n39-k6 38 8832 46.0 48.0 100 1058.1 1100.4 4.00% 
A-n44-k6 43 9409 48.5 48.5 100 1193.0 1240.6 3.99% 
A-n45-k6 44 9215 48.5 47.5 100 1201.9 1160.4 -3.46% 
A-n45-k7 44 8272 44.0 47.0 100 1459.1 1531.2 4.94% 
A-n46-k7 45 9024 47.0 48.0 100 1163.7 1252.9 7.66% 
A-n48-k7 47 9408 48.0 49.0 100 1366.2 1444.0 5.69% 
A-n53-k7 52 9215 48.5 47.5 100 1286.0 1299.9 1.08% 
A-n54-k7 53 8648 47.0 46.0 100 1485.9 1427.8 -3.91% 
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VRP instance 𝒏𝒏 𝒂𝒂𝟐𝟐 𝝆𝝆𝒙𝒙 𝝆𝝆𝒚𝒚 𝒒𝒒𝒄𝒄      𝒍𝒍𝒐𝒐      𝒍𝒍𝒆𝒆    𝝐𝝐 
A-n55-k9 54 9312 48.0 48.5 100 1366.2 1457.8 6.71% 
A-n60-k9 59 8648 47.0 46.0 100 1724.0 1863.3 8.08% 
A-n61-k9 60 9216 48.0 48.0 100 1316.5 1461.2 10.99% 
A-n62-k8 61 9408 48.0 49.0 100 1639.9 1678.2 2.33% 
A-n63-k9 62 9604 49.0 49.0 100 2057.6 2124.9 3.27% 
A-n63-k10 62 9900 49.5 50.0 100 1673.0 1833.7 9.60% 
A-n64-k9 63 8648 46.0 47.0 100 1783.8 1913.2 7.26% 
A-n65-k9 64 9216 48.0 48.0 100 1494.8 1525.5 2.06% 
A-n69-k9 68 9408 48.0 49.0 100 1475.7 1483.9 0.56% 
A-n80-k10 79 9800 50.0 49.0 100 2244.7 2362.2 5.23% 
         
Set II instances         
P-n16-k8 15 1470 17.5 21.0 35 573.0 631.0 10.13% 
P-n19-k2 18 1512 18.0 21.0 160 269.9 250.1 -7.33% 
P-n20-k2 19 1512 18.0 21.0 160 275.0 253.4 -7.84% 
P-n21-k2 20 1512 18.0 21.0 160 268.7 256.7 -4.46% 
P-n22-k2 21 1512 18.0 21.0 160 275.0 259.8 -5.54% 
P-n23-k8 22 1512 18.0 21.0 40 673.5 652.0 -3.20% 
P-n40-k5 39 3422 29.0 29.5 140 583.1 578.2 -0.85% 
P-n45-k5 44 3654 29.0 31.5 150 649.4 607.1 -6.51% 
P-n50-k7 49 3894 29.5 33.0 150 705.4 791.4 12.20% 
P-n50-k8 49 3894 29.5 33.0 120 803.4 858.9 6.91% 
P-n50-k10 49 3894 29.5 33.0 100 886.2 993.9 12.16% 
P-n51-k10 50 3654 29.0 31.5 80 943.5 940.7 -0.29% 
P-n55-k7 54 3960 30.0 33.0 170 723.2 811.2 12.17% 
P-n55-k8 54 3960 30.0 33.0 160 748.7 811.2 8.36% 
P-n55-k10 54 3960 30.0 33.0 115 883.6 1014.2 14.78% 
P-n55-k15 54 3960 30.0 33.0 70 1259.2 1352.5 7.41% 
P-n60-k10 59 4392 30.5 36.0 120 947.3 1066.4 12.57% 
P-n60-k15 59 4224 32.0 33.0 80 1232.5 1391.5 12.90% 
P-n65-k10 64 4608 32.0 36.0 130 1008.4 1098.8 8.97% 
P-n70-k10 69 4608 32.0 36.0 135 1053.0 1114.0 5.80% 
P-n76-k4 75 4608 32.0 36.0 350 755.0 710.1 -5.95% 
P-n76-k5 75 4608 32.0 36.0 280 798.3 780.3 -2.25% 
P-n101-k4 100 4810 32.5 37.0 400 867.1 784.9 -9.48% 
         
Set III instances         
Christofides_1 50 3654 29.0 31.5 160 668.0 626.4 -6.22% 
Christofides_2 75 4608 32.0 36.0 140 1063.5 1131.5 6.40% 
Christofides_3 100 4810 32.5 37.0 200 1051.9 1063.5 1.10% 
Christofides_4 150 4810 32.5 37.0 200 1309.4 1455.9 11.18% 
Christofides_5 199 4810 32.5 37.0 200 1644.1 1828.6 11.22% 
Christofides_6 50 3654 29.0 31.5 160 707.2 626.4 -11.43% 
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VRP instance 𝒏𝒏 𝒂𝒂𝟐𝟐 𝝆𝝆𝒙𝒙 𝝆𝝆𝒚𝒚 𝒒𝒒𝒄𝒄      𝒍𝒍𝒐𝒐      𝒍𝒍𝒆𝒆    𝝐𝝐 
Christofides_7 75 4608 32.0 36.0 140 1158.2 1131.5 -2.30% 
Christofides_8 100 4810 32.5 37.0 200 1102.5 1063.5 -3.54% 
Christofides_9 150 4810 32.5 37.0 200 1480.2 1455.9 -1.64% 
Christofides_10 199 4810 32.5 37.0 200 1777.3 1828.6 2.89% 
         
Set IV instances         
E-n51-k5 50 3654 29 31.5 160 663.4 626.4 -5.57% 
E-n76-k7 75 4608 32 36 220 868.3 920.8 6.04% 
E-n76-k8 75 4608 32 36 180 935.8 991.1 5.90% 
E-n76-k10 75 4608 32 36 140 1056.8 1131.5 7.07% 
E-n76-k14 75 4608 32 36 100 1300.0 1412.5 8.66% 
E-n101-k8 100 4810 32.5 37 200 1040.2 1063.5 2.23% 
E-n101-k14 100 4810 32.5 37 112 1363.6 1481.4 8.63% 
         
Set V instances         
M-n151-k12 150 4810 32.5 37 200 1340.7 1455.9 8.59% 
M-n200-k17 199 4810 32.5 37 200 1748.2 1828.6 4.60% 

Table 12. Continuous Approximation model error descriptive statistics 
Statistic Value 
Min -11.43% 
1st Quartile -2.23% 
Mean 3.15% 
Median 3.96% 
3rd Quartile 7.66% 
Maximum 14.78% 

Table 13. Impact of certain relevant parameters on Continuous Approximation model estimation error 
 Parameter Coefficient Std. error t Stat P-value Lower 95% Upper 95% 

𝑛𝑛 0.07% 0.02% 3.426 0.001 0.03% 0.11% 
𝑎𝑎2 0.00% 0.00% -0.057 0.955 0.00% 0.00% 
𝜌𝜌𝑥𝑥 0.06% 0.08% 0.743 0.460 -0.09% 0.20% 
𝜌𝜌𝑦𝑦 -0.07% 0.07% -1.058 0.294 -0.20% 0.06% 
𝑞𝑞𝑐𝑐 -0.06% 0.01% -4.306 0.000 -0.08% -0.03% 

Results developed using regression analysis. Adjusted R2: 23.8%, Intercept coefficient: 6.81%, p-value: 0.018. 

This validation process renders model estimation error averaging at 3.15% with a maximum error 

of 14.77%, and the three quartiles at -2.23%, 3.96%, and 7.66%, respectively, shown in Table 12 

and depicted in Figure 29. And finally, assessing the impact of the relevant parameters on 

estimation error, the author found only number of customers and vehicle capacity to have 
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statistically significant influence on model error albeit negligible (Table 13). 

 

Figure 29. Continuous Approximation model error histogram and box plot 

It is important to note that the instances tested here belong to single-echelon capacitated vehicle 

routing problem. These instances do not account for a multi-echelon distribution structure, 

temporal constraints, vehicle recharging, and the other operational details modeled in this work. 

Nonetheless, the validation process carried out here assesses the underlying capacitated vehicle 

routing problem in the multi-echelon distribution structure developed in this work. Moreover, 

with the mathematical proofs established wherever needed, the author believes that model 

developed in this study is robust and sound.  
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Appendix D. 

Temporal sensitivity of last-mile distribution strategies 

 

 

Figure 30. Impact if time-window length on fixed cost 
 
 

 

Figure 31. Impact of time-window length on transportation cost 
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Appendix E. 

Spatial sensitivity of last-mile distribution strategies 

 

 

Figure 32. Impact if customer density on fixed cost 
 
 
 

 

Figure 33. Impact of time-window length on transportation cost 
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