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Metagenomic features 
of bioburden serve as outcome 
indicators in combat extremity 
wounds
Aram Avila‑Herrera1,8, James B. Thissen2,8, Nisha Mulakken1, Seth A. Schobel3,4, 
Michael D. Morrison2, Xiner Zhou1,5, Scott F. Grey3,4, Felipe A. Lisboa3,4, Desiree Unselt3,4,6, 
Shalini Mabery2, Meenu M. Upadhyay3,4, Crystal J. Jaing2, Eric A. Elster3,7 & Nicholas A. Be2*

Battlefield injury management requires specialized care, and wound infection is a frequent 
complication. Challenges related to characterizing relevant pathogens further complicates treatment. 
Applying metagenomics to wounds offers a comprehensive path toward assessing microbial genomic 
fingerprints and could indicate prognostic variables for future decision support tools. Wound 
specimens from combat‑injured U.S. service members, obtained during surgical debridements before 
delayed wound closure, were subjected to whole metagenome analysis and targeted enrichment of 
antimicrobial resistance genes. Results did not indicate a singular, common microbial metagenomic 
profile for wound failure, instead reflecting a complex microenvironment with varying bioburden 
diversity across outcomes. Genus‑level Pseudomonas detection was associated with wound failure 
at all surgeries. A logistic regression model was fit to the presence and absence of antimicrobial 
resistance classes to assess associations with nosocomial pathogens. A. baumannii detection was 
associated with detection of genomic signatures for resistance to trimethoprim, aminoglycosides, 
bacitracin, and polymyxin. Machine learning classifiers were applied to identify wound and microbial 
variables associated with outcome. Feature importance rankings averaged across models indicated 
the variables with the largest effects on predicting wound outcome, including an increase in P. 
putida sequence reads. These results describe the microbial genomic determinants in combat wound 
bioburden and demonstrate metagenomic investigation as a comprehensive tool for providing 
information toward aiding treatment of combat‑related injuries.

Combat trauma patients from U.S. military conflicts of the past several decades have shown increasingly severe 
injuries. In 2005–2009, the Joint Theater Trauma Registry recorded 17,177 wounds associated with musculo-
skeletal injuries in service members deployed to Iraq and  Afghanistan1. These injuries are often devastating, and 
their characteristics are fundamentally distinct from those observed in  civilians2. The nature of trauma from 
blast injuries and high-energy ballistics is extensive and pushes the limit of patient physiology, survivability, and 
treatment technology.

Injury mechanisms and the extent of trauma facilitate wound microbial contamination. Up to 52% of patients 
with amputations from combat trauma may be diagnosed with some form of extremity wound infections; this 
may increase to approximately 68% in above knee  amputations3. Large wound surface area and the exposure to 
environmental contaminants may increase the likelihood of microbial complications.

In extremity wound treatment, bioburden microbial identification is typically performed using standard 
bacteriology culture; however, culture-based analyses underestimate microbial diversity and  burden4. Studies 

OPEN

1Computing and Global Security Directorates, Lawrence Livermore National Laboratory, Livermore, CA, 
USA. 2Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 
USA. 3Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), 
Bethesda, MD, USA. 4The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, 
MD, USA. 5Present address: Department of Statistics, University of California, Davis, CA, USA. 6Present address: 
Translational Genomics, Q2 Solutions, Durham, NC, USA. 7Walter Reed National Military Medical Center, 
Bethesda, MD, USA. 8These authors contributed equally: Aram Avila-Herrera and James B. Thissen. *email: be1@
llnl.gov

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-16170-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13816  | https://doi.org/10.1038/s41598-022-16170-x

www.nature.com/scientificreports/

in chronic wounds show that a comprehensive understanding of bioburden is critical to interpreting healing 
 responses5,6. Culture-independent methods identify microbial species not indicated via standard bacteriology 
and suggest that distinct microbial signatures may associate with specific  outcomes7, particularly with nosoco-
mial  pathogens8. A frequent complication with such pathogens is the incidence of multidrug resistant organisms 
(MDRO), which remained a concern in the treatment of wounded warriors during Operation Iraqi Freedom 
(OIF) and Operation Enduring Freedom (OEF)9. MDRO infection represents a substantial challenge for antibi-
otic treatment, and in some cases, despite best efforts, leads to outgrowth of resistant subpopulations. Addition-
ally, emerging unknown resistant bacteria may be undetected by traditional culture, as only a fraction of viable 
microorganisms in a sample may be accurately cultivated for testing. Improved metrics of antibiotic resistance 
in wound infection could guide treatment in these cases.

Metagenomic sequencing can provide a comprehensive analysis of microbial composition. Some such efforts 
employ a targeted amplicon-based approach via amplification of bacterial 16S rRNA gene regions, followed by 
sequencing. This method is well-validated, but limits resolution, does not capture data from non-bacterial (fungal, 
viral, protozoan)  entities10, and only captures taxonomic information, as opposed to gene level detail. By contrast, 
an approach employing shotgun whole metagenome sequencing is  untargeted7,11–13. Whole metagenome data 
is also more sensitive, revealing lower abundant microbes that can be critical to distinguishing experimental 
 states14, and facilitates higher taxonomic resolution with a larger number of detected  taxa15. Assessing individual 
microbial genes, however, requires more detailed (i.e., deeper) sequencing of samples. Targeted sequencing can 
be employed for enrichment of defined genomic regions. One such method performs highly multiplexed pre-
amplification prior to sequencing and could detect microbial genomic resistance determinants.

These approaches hold promise for informing care in situations where the relevant pathogen is difficult to 
culture or the gene of interest is present in low abundance or low copy number, for instance detection of anti-
microbial resistance loci in low biomass  samples16 or detection of low-abundant anaerobic  species17. A further 
challenge is the interpretation of microbial metagenomic data and assessment of its predictive value. Previous 
studies have demonstrated the promise of employing machine learning and other biostatistical techniques for 
predicting the outcome of trauma from biomolecular  features18–20. Machine learning methods have been used 
to process multi-omic datasets for identification of features predictive of  trauma21 and have associated viral 
micro-RNA detection with injury  outcome22.

We applied whole metagenome sequencing for microbial identification and a targeted amplification panel 
for the identification of antimicrobial resistance (AMR)-associated genes in combat-related extremity wounds. 
We assessed taxonomic composition of whole metagenome data and genomic AMR signature profiles in the 
context of clinical observations, treatment, and patient outcomes, revealing metagenomic features that could 
guide future clinical practice.

Results
Taxonomic characteristics of microbial bioburden in combat wounds. Bioburden was assessed 
via whole metagenome sequencing and read-based taxonomic assignment, examining DNA sequence relative 
abundance for wound tissue and effluent specimens collected at initial, intermediate, and final time points. Dis-
tinct clusters of failed wounds were observed, as defined by profiling higher abundant microbial species in efflu-
ent (Fig. 1). At the initial time point, larger clusters of samples were observed, while the final time point yielded 
smaller, more distributed clusters of samples. The absence of a single cluster of failed wounds indicates that one 
microbial profile does not associate exclusively with wound failure, either at initial (Fig. 1a) or final (Fig. 1b) 
specimen collections. A complete taxonomic profile is provided in Supplementary Figure S1, with associated 
sequence read counts provided as a tabular Supplementary File.

Dimensionality reduction based on microbial profile was performed to visualize whether wound specimens 
clustered in salient patterns or according to labels such as outcome or specimen type (Supplementary Figure S2). 
Specimens derived from tissue samples of wounds that failed to heal appear to have smaller within-group varia-
tion (i.e., lower beta-diversity) than their successfully healed counterparts, suggesting a common signature that 
may be exploited by machine learning methods. However, this is not apparent in samples derived from effluent. 
In fact, in effluent samples, the between sample distances increase at intermediate time points compared to 
the initial time point and remain so at the final. It is likely that the multifactorial nature of wound healing and 
sample collection will be challenging to represent in two dimensions and requires more complex analyses and 
modeling. These observations further motivated subsequent variable selection and modeling assessments in 
the current study.

Co-occurrence of microbial genus detection was examined in wound effluent (Supplementary Table S1). 
Several genus pairs correlated significantly (Fisher’s exact test P < 0.01) when examining intermediate wound 
effluent specimens, including Escherichia with both Acinetobacter and Serratia, Streptococcus with both Enterococ-
cus and Staphylococcus, Staphylococcus with Enterococcus, and Achromobacter with Bacillus. A total of 45 out of 
59 wounds examined in this correlation analysis had specimens collected at intermediate time points produced 
during the series of debridement surgeries. These were obtained between the initial debridement surgery and 
the day of wound closure. Of those 45, the majority had one intermediate specimen. For the remainder, sample 
quantity differed due to varying treatment plans, and thus differing time-to-closure between patients (samples 
available for wounds with intermediate time points: min = 1, max = 10, median = 1, mean = 2.2). When examin-
ing final pre-closure specimens only (N = 36 wounds), the significant associations observed included Achromo-
bacter with Bordetella and Acinetobacter with Pseudomonas. Odds ratio estimates and significance levels for all 
detected genera and statistical treatments are given in Supplementary Figure S3. These results indicate that certain 
microbial genera co-occur in combat wounds, but that wound microbial profile does not exclusively segregate 
according to wound outcome.
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Comparative analysis of metagenomic and quantitative bacteriology results. Quantitative bac-
teriology has for several decades been considered a relevant tool within the armament of clinical microbiology 
laboratories, particularly for assessing bacterial burden toward informing wound  care23. A comparative analysis 
was performed to determine the degree of consistency and data concordance between metagenomic and culture-
based bacteriology. The positive, negative, and overall percent agreement (PA) were calculated using 66 tissue 
specimens with data available from both methods. At genus-level resolution, quantitative bacteriology identified 
nine genera across 65/66 samples (98.5%) (Table 1). Metagenomic sequencing matched quantitative bacteriol-
ogy at 83.1% and identified a genus in one specimen where quantitative bacteriology did not. The overall agree-
ment rate of metagenomic sequencing with quantitative bacteriology was 81.8%. The most prevalent genus iden-
tified via bacteriology was Acinetobacter (57.6% of samples). Metagenomic analysis identified this genus in 100% 
of bacteriology-positive samples. Enterococcus occurred in 21.2% of samples; metagenomic analysis positively 
identified this genus in 50% of these cases. Achromobacter was identified in 7.6% of the samples; metagenomic 
analysis positively identified this genus in 40% of these cases. Six additional genera were identified by quantita-
tive bacteriology in two or fewer samples. Metagenomic sequencing exhibited a 100% positive PA in these cases.

Figure 1.  Microbial profile as determined by whole metagenome sequencing and read-based taxonomic 
analysis. Shotgun metagenomic sequencing and taxonomic classification of sequence was performed to 
assess the microbial wound bioburden for (a) initial and (b) final (day of delayed wound closure) wound 
effluent specimens. Read abundance relative to total sequence content, including human-derived background 
sequence data, is binned and shown as follows: Only microbial genera for which at least one analyzed specimen 
demonstrated a relative abundance for that genus of > 1E−5 are shown. Abundance values were binned on a log 
scale. dark blue: < 1E−7, light blue: ≥ 1E−7 & < 1E−6, yellow: ≥ 1E−6 & < 1E−5, red: ≥ 1E−5. Wound outcome 
is annotated along the top of the heatmap, with green indicating successful healing; red indicating failed; white 
indicating outcome not available.
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Similar results were observed at species-level resolution, where quantitative bacteriology identified eight 
species across 57/66 samples (86.4%). Metagenomic sequencing positively matched quantitative bacteriology 
in 78.9% of samples, identifying at least one species in 66.7% (6/9) samples where quantitative bacteriology 
yielded negative species-level results. The overall species agreement rate was 77.3% (Supplementary Table S2). 
Overall, comparison of bacteriology and metagenomic sequencing show high positive PA (72–90% for genus 
and 67–88% for species).

Bioburden taxonomic diversity in wounds. Microbial diversity metrics were examined in the context 
of wound outcome (healing success vs. failure) and number of days post-injury for tissue and effluent specimens 
(Fig. 2). Alpha diversity was quantified at the genus level using the Hill numbers  N0,  N1, and  N2 (effective num-
ber of genera). Alpha diversity was lower in specimens from failed wounds at final (pre-closure) timepoints, 
relative to those from healed wounds, in both tissue (healed [43 samples]:  N2 = 4.6 ± 0.5; failed [12 samples]: 
 N2 = 2.7 ± 0.4 [mean ± SEM]) and effluent (healed [26 samples]:  N2 = 4.6 ± 1.0; failed [10 samples]:  N2 = 2.3 ± 0.5 
[mean ± SEM]) specimens. This distinction was not, however, statistically significant (tissue: P = 0.08; effluent: 
P = 0.40 [Wilcoxon rank sum test]), as low sample quantities were available from this unique cohort (Fig. 2a). No 
differences in richness were observed across sample categories (Supplementary Figure S4).

Hill’s  N2 was examined using the number of days post-injury for each specimen time point (Fig. 2b). Sam-
ples with elevated diversity were observed more frequently at timepoints proximal to injury. Due to the severe 
nature of combat polytrauma, injured patients receive a wide range of potential interventions and treatments. 
Although impacts of each of these interventions on microbial diversity are of interest, they were not examined in 
the current study due to limited sample availability across intervention groups, restricting the capacity to make 
statistically robust observations. A summary of the distribution of genus level richness across wound and sample 
types is given in Supplementary Table S3. The impact of further interventions will be the subject of future study.

Prevalence of bioburden constituents across distinct wound outcomes. Prevalence of microbial 
taxa (presence defined as relative abundance > 1 ×  10−5, top 20 genera selected) was examined across initial, 
intermediate, and final specimen time points (Fig. 3). Each wound is represented by a single initial and single 
final assessment. In this analysis of intermediate specimens, a total of 100 effluent samples (across 46 wounds) 
and 94 tissue samples (across 49 wounds) were employed.

At all time points, Pseudomonas were detected in wound effluent at a higher prevalence in samples from failed 
wounds relative to healed wounds (4/9 Pseudomonas positive from failed wounds versus 3/27 Pseudomonas 
positive from healed wounds, odds ratio [OR] = 5.98 [0.76–55.28], P = 0.05) (Fig. 3a–c). Prevalence of Rhizo-
phagus was significantly higher in intermediate samples from failed wounds compared to healed wounds (2/16 
failed, 0/84 healed, P = 0.02). Acinetobacter prevalence was higher in effluent from failed wounds, relative to 
healed wounds, at the final timepoint (detection in 4/10 failed specimens and 7/26 healed specimens, OR = 1.78 
[0.28–10.53]). Sample numbers were not, however, sufficient to assign statistical significance (P = 0.45). No statis-
tically significant distinctions in prevalence were observed in tissue samples (Fig. 3d–f). The observation of dif-
ferential prevalence of microbial taxa between distinct wound outcomes, as revealed by metagenomic techniques, 
suggests that metagenomic features could be predictive of clinical outcomes, dependent on the taxa of interest.

AMR genomic signature detection and nosocomial pathogen detection. A targeted amplifica-
tion panel was applied to evaluate AMR genomic signatures. To calibrate the sequence read levels assigned 
to “presence” or “absence” of a given AMR gene, this panel was applied to negative (human reference gDNA 
only) and positive (Acinetobacter baumannii and Pseudomonas aeruginosa) controls. Thresholds were chosen 
to achieve zero gene detection events in two human reference gDNA-only samples. (Supplementary Figure S5). 
Specificity was assessed by comparing detected genes to ground truth in reference sequences for positive con-
trols. All anticipated genes in the P. aeruginosa reference strain and 5/7 in the A. baumannii reference strain were 

Table 1.  Concordance between microbial genus-level detection by quantitative bacteriology and metagenomic 
sequencing. Concordance was assessed according to prevalence, with positive percent agreement estimates 
used to compare genus detection from metagenomic sequencing to quantitative bacteriology, applied here as a 
non-reference standard. Note: except for one case, these tests did not have a Negative result to tabulate.

Genus QuantBAC Prevalence Metagenomic sequencing percent positive agreement

Overall 65/66 (98.5%) 54/65 (83.1%) [72.2–90.3%]

Acinetobacter 38/66 (57.6%) 38/38 (100%) [90.8–100%]

Enterococcus 14/66 (21.2%) 7/14 (50%) [26.8–73.2%]

Achromobacter 5/66 (7.6%) 2/5 (40%) [11.8–76.9%]

Pseudomonas 2/66 (3%) 2/2 (100%) [34.2–100%]

Staphylococcus 2/66 (3%) 2/2 (100%) [34.2–100%]

Bacillus 1/66 (1.5%) 1/1 (100%) [20.7–100%]

Citrobacter 1/66 (1.5%) 1/1 (100%) [20.7–100%]

Enterobacter 1/66 (1.5%) 1/1 (100%) [20.7–100%]

Escherichia 1/66 (1.5%) 1/1 (100%) [20.7–100%]
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Figure 2.  Alpha diversity of bioburden according to wound status. Metagenomic sequence data from wound 
specimens was used to calculate bioburden diversity through assessment of richness. (a) Microbial taxonomic 
diversity as represented by Hill’s  N2 (reciprocal Simpson index) at the genus level, per sample, in distinct 
samplings from wounds. Diversity trends are shown in comparison to wound outcome. (b) Effective number 
of genera (Hill’s  N2) shown according to increasing number of days post injury. Specimen timepoint category 
is indicated via color of the corresponding point. Shaded area surrounding loess trendlines indicates 95% 
confidence interval about the average  N2 genera.
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detected (Supplementary Figure S6). It is possible that the two undetected A. baumannii genes were not identi-
fied due to similarity with genes from the same family, resulting in detection of another gene in that family. The 
beta-lactamase gene blaADC-15 was anticipated to be present based on the A. baumannii reference sequence 
but was not detected by the targeted sequencing method. Several other beta-lactamases similar to blaADC-15 
were, however, detected, including blaADC-10 (89% identical) and blaADC-25 (90% identical). It is possible 
that amplicons corresponding to blaADC-15 were either not assigned to this reference gene due to SNPs and 
insertions in the strain employed for experimental testing, or were assigned to the noted, similar beta-lactamase 
genes.

In samples from both effluent and tissue, many wounds had no detectable AMR genes following threshold 
application. The first four timepoints (A–D) spanned the first 18 days of treatment. In this timeframe, we detected 
genomic AMR signatures for an average of two resistance classes per effluent sample. To determine whether 
detection of resistance to specific antibiotic classes associated significantly with detection of specific wound-
relevant nosocomial pathogens, models were constructed to predict the presence or absence of signatures for 
resistance to each antimicrobial class, using abundance of nosocomial pathogen sequence as predictive features. 
Eighteen logistic regressions were independently fit to the presence or absence of AMR gene signatures, one for 
each antimicrobial resistance class. Each class was indicated as present if at least one associated AMR gene sig-
nature from that class was present. The analysis accounted for sample type (tissue versus effluent) and employed, 
as a proxy for nosocomial pathogen abundance as predictors, the  log2 read counts for taxonomically assigned 
sequence reads. Each model predicts the detection of resistance to one of the given antimicrobial categories based 
on the number of reads mapped to each nosocomial pathogen. The model coefficients represent the increase 
in log odds of resistance per each  log2 increase in reads (i.e., twofold increase or doubling). Models for 12/18 
AMR class models fit sufficiently to allow coefficient interpretation according to a Likelihood Ratio Test of null 
deviance versus fitted deviance (Supplementary Table S4). Each association was examined for both polarity and 
effect size (Supplementary Figure S7).

Out of the 12 interpretable models for AMR classes, 9 had at least one large positive effect from a nosocomial 
pathogen, such that the odds ratio estimate of detecting resistance genes of the given class is greater than 1.5 
(50% increase) for each doubling of pathogen read counts. Out of the 7 nosocomial pathogens, 5 had a large posi-
tive effect on at least one AMR class. Out of the 84 associations tested, 14 had large positive effects (Table 2). A. 
baumannii metagenomic sequence abundance associated with the most AMR classes (associated in 5 models). It 
associated significantly with trimethoprim, aminoglycoside, bacitracin, polymyxin, and uncategorized resistance 
classes (all  PFDR <  < 0.001) (Fig. 4). Enterobacter positively associated with Fosfomycin resistance  (PFDR = 0.014). 
Klebsiella pneumoniae positively associated with bacitracin resistance  (PFDR = 0.009). Two models (for Bacitracin 

Figure 3.  Prevalence of microbial genera in samples derived from healed or failed wounds. Prevalence of 
detection of microbial genera at defined thresholds was calculated for wounds that either healed successfully 
or failed to heal. Prevalence is shown as a proportion of total healed or failed samples for each given sample 
category, where effluent samples are shown in panels (a-c), and tissue samples are shown in panels (d–f). 
Samples are shown for initial (a,d), intermediate (b,e), and final (c,f) collection timepoints. Individually 
significant (P < 0.05) distinctions are shown with a bolded edge. Depending on time-to-closure for each wound, 
a variable number of samples were available for intermediate samplings. A total of 100 effluent samples (across 
46 wounds) and 94 tissue samples (across 49 wounds) were examined.
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and Aminoglycoside resistance) had significant effects from specimen type, potentially due to the difference in 
DNA content affecting the ability to detect resistance genes.

Association of AMR genomic signature detection with treatment regimen and patient sta‑
tus. AMR gene/class detection was also examined in the context of antimicrobial treatment regimen. Mutual 
information (MI) was used to quantify the association between AMR signature detection and categorical treat-
ment variables. Analysis was restricted to effluent samples due to few AMR genes observed in tissue samples. 
MI was calculated for effluent samples derived from either healed or failed wounds to determine if associations 
differed between outcomes. In both healed and failed wounds, significant associations were observed between 
AMR genes and administration of polymyxins, macrolide/lincosamide/streptogramin (MLS), and disinfectants 

Table 2.  Association of AMR signature classes with nosocomial pathogen detection in wound samples. 
Logistic regression models were constructed for classes of antimicrobial resistance genes detected via targeted 
sequencing in wound samples. The observed effects for resistance are shown, odds ratio > 1.5.

Resistance category Nosocomial pathogen Odds ratio [± SE]

Bacitracin Klebsiella pneumoniae 3.45 [2.35, 5.06]

Streptogramin Klebsiella pneumoniae 2.80 [1.87, 4.19]

Fosfomycin Enterobacter 2.25 [1.62, 3.11]

Chloramphenicol Pseudomonas aeruginosa 1.95 [1.65, 2.32]

Bacitracin Acinetobacter baumannii 1.94 [1.76, 2.14]

Aminoglycoside Staphylococcus aureus 1.85 [1.53, 2.23]

Aminoglycoside Acinetobacter baumannii 1.75 [1.62, 1.89]

Unassigned genes Staphylococcus aureus 1.68 [1.45, 1.94]

Trimethoprim Acinetobacter baumannii 1.64 [1.54, 1.75]

Unassigned genes Acinetobacter baumannii 1.63 [1.53, 1.73]

Trimethoprim Staphylococcus aureus 1.61 [1.38, 1.87]

Polymyxin Acinetobacter baumannii 1.60 [1.49, 1.71]

Chloramphenicol Klebsiella pneumoniae 1.60 [1.28, 2.00]

Streptothricin Staphylococcus aureus 1.50 [1.28, 1.76]
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Figure 4.  Association of AMR signature classes with detection of nosocomial pathogens. Logistic regression 
models were built to determine whether detection of defined genomic resistance signatures associates with 
metagenomic read abundance of specific genera corresponding to nosocomial pathogens. Resistance to 
drug classes are rows and nosocomial pathogens are columns. The sample collection type is included as an 
independent variable in each model with the type = tissue as compared to type = effluent shown as a separate 
column for reference. Significance (false discovery rate adjusted P-value) is indicated through color fill on a − 
log10 scale.
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(Fig. 5). In healed wounds only, significant associations were observed between AMR genes and administra-
tion of aminoglycosides, antifungals, bacitracin, oxazolidinones, and nitroimidazoles. Aminoglycoside resist-
ance genes detected included aminoglycoside phosphotransferase aphA-3. In failed wounds only, significant 
associations were observed between AMR genes and administration of beta-lactams, quinolones, and sulfona-
mides. Several of the strongest associations in failed wounds were observed with administration of beta-lactams, 
including the beta-lactamase blaOXA-50.

It is expected that antimicrobial exposure will exert selective pressure with respect to the prevalence of 
antimicrobial resistance genes within a microbial population. This study examined this dynamic in the context 
of a unique set of injuries and a microbial population restricted to the local environment of the wound, extend-
ing the association of such genes with the outcome of the injury as a whole. These results allow that injury 
outcomes could depend on interactions between AMR gene classes and treatment. To evaluate, prevalence of 
AMR class detection was examined in healed vs. failed wounds (Supplementary Figure S8A). Few significant 
differences were observed in the prevalence of resistance class signatures between healed and failed wounds, 
apart from intermediate effluent samples, where tetracycline and polymyxin resistance classes were significantly 
more prevalent in healed wounds. In final effluent samples, aminoglycoside and beta-lactam resistance classes 
were observed more frequently in failed wounds (difference in prevalence > 25%); however, this difference was 
not statistically significant. Thus, while distinctions exist between healed and failed wounds in the associations 
between antimicrobial administration and AMR gene detection, the prevalence of various AMR gene classes did 
not differ significantly between wound outcomes.

Given the potential of microbes to exert systemic effects, AMR class prevalence was compared with incidence 
of multiple organ dysfunction syndrome (MODS) (Supplementary Figure S8B), in which homeostasis is no longer 
maintained following acute injury. The prevalence of resistance was significantly higher in samples from patients 
with MODS, including aminoglycoside resistance in effluent at initial time points and four resistance categories 
in effluent at intermediate time points. Analysis was also performed according to injury type (amputation, open 
fracture, soft tissue injury [STI]) (Supplementary Figure S8C). Significant differences in AMR class prevalence 
were observed in specimens collected at intermediate and final time points, where in each significant case, AMR 
class prevalence (tetracyclines, polymyxins) was higher in STIs. In the case of tetracycline, prevalence of resist-
ance genes for this class was ≥ 50% higher in STIs relative to open fractures.

Construction of predictive wound healing models using metagenomic features. Our observa-
tions point toward possible predictive utility of metagenomic variables. Initial efforts at clustering (Fig. 1) did 
not reveal a clear, unambiguous microbial profile associated with wound healing failure. To examine relevant 
metagenomic features in more detail and assess clinical utility, machine learning classification was performed 
to identify whether microbial variables are predictive in combination with clinical variables and compare the 
relative performance of models for portending outcome. Feature categories included clinical covariates (e.g., 
APACHE II score, wound size) and the following microbial features: targeted sequencing-derived AMR pres-
ence-absence (e.g., tetracycline resistance gene present/absent) and shotgun metagenomic sequencing derived 
features (log read counts assigned to nosocomial pathogens, genus diversity metrics). Full- and sans-microbial 
feature sets were evaluated in separate training analyses.

Samples from this study were obtained from separate timepoints, as patients underwent a series of debride-
ment surgeries before delayed wound closure. The outcome variable of interest (i.e., healing success vs. failure), 
however, is only measured after the final time point. Due to a focus on wound outcome, data from the final pre-
closure specimen (tissue and effluent) were employed. Hierarchical clustering showed that samples with failed 
outcomes had a nearest neighbor with a failed outcome less than half the time. Additionally, many features were 
absent between samples and clustered together by observation type (e.g., physical wound attributes, taxonomy 
from whole genome sequencing, and antibiotic-related variables) (Supplementary Figure S9), implying that 
either (1) most measured variables are combining via physiologically complex processes opaque to this analysis 
or (2) variables will have individually weak effects.

Multiple classes of predictive models were trained for prediction of wound outcome, including penalized 
logistic regression (glmnet), support vector machine (SVM), neural network (NN), and random forest (RF). The 
flexibility of RF, NN, and SVM (radial kernel) models is expected to handle complex interactions. The penalized 
logistic regression is expected to find a balance between a small subset of features that have the strongest impact 
on outcome and features with individually large effects. Each model was trained using the  boot63224 method to 
estimate performance for tuning.

Feature importance values were examined for each model class (Supplementary Figure S10). Feature impor-
tance rankings are model-dependent in each case, except for SVM, where feature importance is calculated from 
the data in a model independent way. Detection of Pseudomonas putida by whole metagenome sequencing was 
identified by all models as the most important nosocomial species feature for predicting wound failure (rank # 5, 
4, 12 in glmnet, NN, and RF respectively; #6 model independent importance). Microbial diversity (as measured 
via genus Hill’s  N1) was also identified as a top feature by all models (rank # 13, 14, 10; #15). Detection of A. 
baumannii by whole metagenome sequencing was predictive of outcome via model independent assessment (rank 
#17), but was not in the top 20 important features in glmnet, NN, or RF. Conversely, E. faecium was important 
only in RF (rank #13). Detection of genes conferring beta-lactam resistance by targeted sequencing was the top 
ranked AMR-associated feature prior to modeling and in glmnet and NN models (trimethoprim resistance was 
highest ranked in RF). AMR features were not, however, observed in the top 20 feature importance list in any 
model.
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Figure 5.  Association between antimicrobial treatment regimen and detection of antimicrobial resistance gene 
signatures in wound effluent samples. Mutual information analysis was applied to compare detection of genomic 
signatures for antimicrobial resistance with drug classes administered. Detection of resistance gene signatures is 
shown in samples obtained from both (a) healed and (b) failed wounds, to examine distinctions in associations 
across these patient subgroups.
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Classification models trained with microbial features. The presence of metagenomic-derived micro-
bial features in variable importance analyses indicate their predictive value. The features employed in these 
analyses also included clinical wound characteristics that associate with wound outcome. To assess the impact 
of adding metagenomic variables to a feature set containing only clinical variables, two feature sets were used 
for performance comparison, (1) a set containing only medical covariates and (2) a set including both medical 
covariates and targeted/whole metagenome sequencing-derived microbial variables. Performance for the four 
model classes trained with all clinical and microbial variables is given in Table 3. These metrics were directly 
compared to models trained with clinical covariates only (no microbial features). No statistically significant 
differences between model pairs trained with the two distinct feature sets were observed (Supplementary Fig-
ure S11).

Discussion
An improved understanding of combat wound bioburden features would aid treatment planning and intervention 
strategies. Microbial culture underestimates true  bioburden7,25,26, and even when molecular methods are applied, 
measuring only a subset of microbes may not be sufficient. Comprehensive metagenomic analysis of microbial 
populations could inform health-relevant  parameters27,28. Our study begins to address this issue through whole 
metagenome and targeted assessment of samples from a cohort of combat-injured patients.

Concordance analyses demonstrated agreement between quantitative bacteriology (QBAC) and metagenomic 
results, especially for high prevalence microbes, and metagenomics identified microbes not detected by bacteriol-
ogy, indicating that metagenomic variables accurately and sensitively describe bioburden composition. Metagen-
omic detection depends on a range of factors, including genome size, relative abundance, reference database 
depth, and chosen thresholds. QBAC will inherently bias toward culturable microorganisms. The discordance 
observed could be due to variance in genomic parameters between genera and the presence of culturable genera 
below the metagenomic limit of detection.

The observed metagenomic features provide a portrait of combat wound bioburden and suggest that there is 
not a single microbial profile representative of wound outcome. Many categories of microbial and non-microbial 
observations exist, and many molecular and clinical factors, which may or may not operate coupled to microbial 
involvement, play roles in trauma  outcome29–32. Detection of Pseudomonas via metagenomic sequencing did 
associate with wound failure. Colonization with Pseudomonas was documented in combat casualties evacuated 
to the U.S. during 2005–200933, was prevalent in international studies of both military and civilian  wounds34, and 
associates with wound failure via microarray-based  detection7. These results add to an existing body of evidence 
that Pseudomonas exert detrimental effects on wound healing.

Our results identified correlated pairs of microbial genera, which may reflect that: (1) mutually beneficial 
interactions exist between microorganisms, (2) wound conditions are amenable to members of both genera, or 
(3) these genera are prevalent across subsets of wounds (e.g., group by geography, body site, patient). Further 
studies may clarify whether co-infection events are more virulent than single infections, as in chronic wounds 
with S. aureus and P. aeruginosa35. Assessment of multiple intermediate specimens for a single wound (though 

Table 3.  Training set performance of machine learning classifiers for prediction of wound outcome using all 
clinical and microbial metagenomic variables. Four distinct machine learning classifiers (rf = random forest; 
nnet = neural network; glmnet = penalized logistic regression; svmRadial = support vector machine) were 
applied to the training data set after training on identical features. These features were composed of wound 
characteristics, antimicrobial resistance detection variables, and nosocomial pathogen sequence detection. 
Summary statistics for held-out boot632 estimates of performance metrics for model performance are shown 
for each classifier at their optimal threshold for distinguishing wound outcomes (i.e., classification at the 
threshold which maximizes Youden’s J).

Model Probability threshold (%) Median (%) Mean (%) q1 (%) q3 (%)

Precision

rf 35.00 66.67 65.27 55.60 75.00

nnet 40.00 57.14 57.84 50.00 66.70

glmnet 45.00 60.00 59.85 50.00 66.70

svmRadial 20.00 66.67 64.45 50.00 75.00

Sensitivity

rf 35.00 83.33 80.15 71.40 90.00

nnet 40.00 75.00 73.82 62.50 85.70

glmnet 45.00 71.43 71.94 62.50 83.30

svmRadial 20.00 66.67 66.76 50.00 83.30

Specificity

rf 35.00 85.71 85.42 80.00 91.30

nnet 40.00 82.97 82.16 76.40 87.50

glmnet 45.00 84.62 83.93 78.90 90.00

svmRadial 20.00 88.24 86.58 81.20 95.00
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occurring in a minority of cases) does raise the possibility of co-linearity within a wound, i.e., patients with 
higher sample numbers may be more heavily weighted. All intermediate specimens were included in the analysis 
to avoid excluding any data available from these unique cohorts and irreplaceable specimen sources; however, 
conclusions should be interpreted in this context.

Past studies suggest that both increases and decreases in microbiome diversity associate with poor  outcomes36. 
The relationship of microbial diversity with disease is complex and varies according to individual and  condition37. 
It is therefore not unexpected that significant associations between diversity metrics and wound outcome were 
not observed. The reduced diversity in samples from failed wounds may suggest an increasing risk of single 
taxon outgrowth under a dysregulated physiological response. More studies are necessary to clarify this finding. 
Reduced diversity at later time points may reflect a smaller number of taxa amenable to survival under selective 
hospital conditions.

Non-targeted metagenomic techniques allow increased resolution and broader  scope36, but reduced coverage. 
We therefore applied a previously  developed16 panel for targeted amplification of genomic AMR factors. AMR 
detection in this study references genome level detection of sequence associated with resistance and does not 
reflect phenotypic or transcriptomic susceptibility assessment. Confirmation of susceptibility phenotype would 
require further evaluation; however, this study aimed to assess a broad range of microbial metagenomic variables 
that have not previously been examined in the context of traumatic injury, and to integrate such observations in 
statistical models. Genome level evaluation allowed for comprehensive measurement of many AMR variables 
in parallel.

Logistic regression models revealed substantial associations (odds ratios > 1.5) between genomic resistance 
signatures and four ESKAPE pathogens (A. baumannii, K. pneumoniae, P. aeruginosa, S. aureus), suggesting 
these signatures are coincident with the indicated species. Five out of the top 12 predictors with odds ratios > 1.5 
included A. baumannii, highlighting its potential for multidrug resistance in combat wounds. A. baumannii, a 
colonizer of traumatic injuries from combat environments that is persistent and difficult to  treat3,30,33, associated 
significantly with resistance to antimicrobial classes including trimethoprim and aminoglycosides in this study’s 
data. Though further sequencing and analysis would be required to ascertain whether A. baumannii bacteria are 
carrying these resistance genes in these samples, the A. baumannii reference genome is known to harbor many 
classes of drug resistance genes including to diaminopyrimidines (trimethoprim class) and aminoglycosides. 
MDR isolates of Acinetobacter have shown > 70% resistance to trimethoprim/sulfamethoxazole (TMP-SMX), 
with extensively drug resistant (XDR) isolates exhibiting near complete  resistance38. Aminoglycoside resistance 
is observed in approximately 50% of clinical  isolates39, conferred by a range of microbial acetyl- and phospho-
transferase genes. Despite its AMR profile, neither A. baumannii’s abundance nor presence of resistance gene 
classes were top predictive features in subsequent machine learning analyses. Treatment with drugs to which 
it may be resistant were among the top predictive features, however, highlighting the importance of managing 
AMR. Employing these data as guidance could reduce MDRO outgrowth, particularly when aminoglycosides 
are administered.

Elevated prevalence of AMR signatures was observed for wound outcome, MODS, and wound type. Dys-
regulated conditions may create an environment less likely to effectively contain colonization, thereby allowing 
expansion of resistant subpopulations. Deployed patients with MDR gram-negative bacilli infections do display 
a higher prevalence of traumatic amputation and higher injury severity  scores40. This is also supported by organ 
failure observations, including  cirrhosis41 and  pancreatitis42, in which MDR infections associate with poor out-
come. Association of AMR signatures with wound type (primarily STIs) supports observations that traumatic 
wound microbiomes reflect injury  mechanism43.

Several of the strongest associations between AMR genes and antibiotic administration in failed wounds 
were within the class of beta-lactam resistance. The emergence and increasing prevalence of beta-lactam resist-
ant microorganisms has been documented in many trauma applications including surgical site  infections44 and 
burn  injuries45,46. One of the gene factors identified in this study, blaOXA-50, was recently identified as one of 
the primary epidemiological characteristics of hospital-derived P. aeruginosa  isolates47. Potential association of 
such genes with wound failure in this study could inform future selection of genomic determinants indicative 
of clinical outcomes.

Machine learning classifiers have been applied to combat injuries for prediction of  pneumonia19,  infection48, 
closure  timing29, venous  thromboembolism18, and heterotopic  ossification49. The utility of clinical variables for 
predicting outcomes was demonstrated in these studies, thus the current study employed a microbe-centric 
focus. Our classification analysis aimed to determine (1) which individual metagenomic features exhibit relative 
predictive importance and (2) whether a more predictive model can be learned through addition of metagenomic 
features to medical covariates.

The most consistently predictive microbial variable across models was P. putida. P. putida infection in civilians 
is generally associated with immunocompromised  patients50; however, it has been documented in wounds from 
combat injuries, which are known to exhibit uncommon infectious  profiles51. These results reinforce the impor-
tance of examining service member populations when developing prognostic approaches for wounded warfight-
ers. Microbial diversity was identified as an important predictor of wound outcome, suggesting that samples 
from wounds with lower microbial diversity have an increasing likelihood of being derived from failed wounds.

The injury patterns associated with wounds examined in this study are from counter-insurgency, asymmetric 
warfare. In future conflicts reflecting similar conditions, these results show the potential to identify up to 80% 
of wound failures from all given variables in the models from this study. Given the presumption that a wound 
predicted to fail would be redirected toward an alternative intervention, the false discovery rate (FDR) should 
also be considered, i.e., the proportion of wounds that would receive alternative treatment based on the predic-
tive indicator (denominator), but that would have healed with the current standard of care (numerator). For the 
decision threshold presented (maximizes sensitivity over a random classifier), a precision of 58–65% (dependent 
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on model) implies that approximately 35–42% (where FDR = 1 – precision) of wounds receiving modified or 
personalized care would be expected to otherwise heal with the current diagnostic standard, i.e., serial debride-
ment followed by primary closure in the absence of sequence-based microbial data. These estimates are made 
using the dataset available in this study; however, in practice, further adjustment could achieve more equitable 
distribution of resources and care.

The depth of sequence data was generally higher for effluent relative to tissue specimens, and sample type 
separation to account for differences further reduced the number of observations permissibly included. Despite 
sample quantity limitations, our results indicate that similar models trained on wound specimen data from a 
larger number of patients could play a critical role in calling out adverse outcomes, facilitating precision care 
without substantially increasing the burden of personalized treatment.

Our data did not indicate a statistical difference between the predictive performance of a model trained with 
or without metagenomic microbial variables. Although two microbial features were among the most important 
features (in the models trained with microbial features), it is possible that the flexibility of the classifiers allowed 
a different equally performant model to be learned from the non-microbial features alone. Larger training sets 
may also increase the power to detect subtle differences in predictive performance and feature importances. The 
utility of microbial data will also vary by patient. The inflammatory response of each individual to injury will 
vary based on both environmental and host-specific factors, including medical interventions that may mask 
cases where microbial metagenomic information would otherwise be predictive. As such, for individuals with 
minimal contamination, value of microbial metagenomic features may be limited. However, for patients with 
extensive pathogen-mediated inflammatory events, such information may be critically predictive, especially if 
not ascertainable by other methods. Further studies employing explicitly defined or explainable machine learning 
models will be required to assess the complex interplay between microbial metagenomic variables and variables 
representing the host immune response.

To avoid overrepresenting microbial variable impact, models did not employ metagenomic variables exclu-
sively. The current analysis explicitly examined variation explained by metagenomic variables after accounting 
for wound variables (e.g., type, size, severity), anticipating that these metrics would be clinically available and 
can be expected to exert substantial effects. Although the latter analysis could provide additional information, 
our study aimed to assess enhancement of predictive capacity relative to the standard of care (currently available 
clinical features). Omission of clinical features would result in misleadingly high effects for microbial variables. 
For instance, in a scenario where the dominating wound feature is nearly exclusively size or severity, associa-
tions with genera or combinations of genera and resistance genes, while insightful, could be spurious. Therefore, 
additional studies are necessary to clarify the prognostic value of isolated metagenomic data.

In summary, our study demonstrates the application of statistical and machine learning methods to a rich set 
of metagenomic features and suggests that metagenomic data may supplement culture methods by monitoring 
wound bioburden and evaluating the association of microbial constituents with genomic signatures of antimi-
crobial resistance. These metagenomic features provide a detailed array of information with potential utility for 
informing future treatment of combat extremity wounds.

Methods
Sample collection and processing. Samples were previously collected from U.S. service member patients 
injured in Iraq and Afghanistan in compliance with all federal regulations governing the protection of human 
subjects and informed consent (Walter Reed National Military Medical Center Institutional Review Board pro-
tocol #352334).

Sample handling procedures were carried out as previously  described7,30,52. Briefly, surgical debridements 
were performed every 48–72 h up until delayed wound closure. Tissue samples were obtained from the center 
of the wound. Wound effluent samples were composed of fluid from the wound site, obtained from the canisters 
of a negative-pressure wound therapy device. All samples were stored at −80 °C until analysis.

Samples were obtained at timepoints (washouts) corresponding to one of three categories: initial debridement 
(first assessment upon arrival at WRNMMC), intermediate (variable number of specimens collected between 
initial and final), and final debridement (last specimen collection prior to closure). Wound tissue biopsy and 
effluent samples from 78 wounds in 56 combat-injured patients were available for analysis. Of 78 total wounds, 
tissue biopsies were available for 73 wounds, and effluent available for 60 wounds. Both effluent and tissue sam-
ples were available for 55 wounds.

Samples represent wounds that either healed and resolved successfully or failed to heal. For the purposes of 
this study, wound failure was defined as one or more of the following incidents: frank dehiscence post-closure, 
necessity of reoperation for persistent drainage, progressive erythema, or < 90% engraftment of an applied split-
thickness skin graft. Where outcome was not available, the corresponding wounds are indicated as such. Data 
from these wounds was not included in analyses of indicators for wound outcome.

Sample extraction and purification. The current study was reviewed and approved by the Lawrence 
Livermore National Laboratory Institutional Review Board. All methods were performed according to relevant 
regulations, and experimental protocols were carried out in accordance with guidelines from relevant institu-
tional committees.

Genomic DNA was extracted from samples using the cador pathogen kit (Qiagen). Tissue (10–30 mg) was 
digested with proteinase K and incubated at 56 °C. Resultant tissue lysate, or liquid effluent (200 µL), were 
mechanically lysed with buffer ATL and lysing matrix A using the Fast-Prep-24 (MP Biomedicals). Nucleic 
acid was purified from lysates using QIAamp mini columns according to the manufacturer’s standard protocol. 
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Genomic DNA was quantified and quality assessed using the Qubit dsDNA HS kit and NanoDrop OneC (Thermo 
Fisher).

Whole metagenome sequencing. Genomic DNA samples were prepared for whole metagenome 
sequencing using the Nextera DNA Flex library preparation kit (Illumina). Library quality was confirmed using 
the TapeStation 4200 (Agilent). Any gDNA samples generating low quality libraries were re-purified via etha-
nol extraction. Resultant libraries were sequenced on the NextSeq 500 using the 300-cycle high output kit (V2, 
Illumina).

Metagenomic analysis and taxonomic classification. Sequence data were assigned to taxonomy using 
the Livermore Metagenomics Analysis Toolkit (LMAT), which is a metagenomic analysis pipeline that searches 
for taxonomic identifiers associated with k-mers found in a corresponding reference genome  database53,54. In 
recent comparative studies, the LMAT platform demonstrated good limits of detection (~ 80% sensitivity for 
genomes with 0.04X coverage), and precision (20–100%)55,56. These parameters are tunable via thresholding 
on abundance. Per sample relative abundance corresponding to each taxonomic level was estimated from the 
proportion of total reads assigned on a per sample basis. Though a useful indicator of taxonomic abundance, 
these representations are biased according to genome lengths and copy numbers of the corresponding reference 
sequences.

Reads mapping to taxonomic identifiers at the genus and species level were binned according to genus and 
species, respectively, and counted. Downstream analyses treat counts as is or as relative abundances (i.e., as a 
ratio of reads assigned to a given taxa relative to another quantity, such as the total number of reads for a given 
sample, the average number of reads across taxa in a sample, or a predetermined taxon’s read count). Microbial-
mapped content represented a low proportion of total sequence data due to human genomic background. While 
enrichment techniques have the potential to increase microbial sequence proportion, a non-targeted approach 
was maintained in this study to provide enhanced taxonomic resolution, interkingdom detection, and reduced 
bias from amplification and experimental manipulation.

Comparative analysis of metagenomic sequencing with quantitative bacteriology. Quantita-
tive bacteriology was previously performed as  described30. The technique used to assess agreement between 
sequencing and microbiological techniques was drawn from U.S. Food and Drug Administration (FDA) guid-
ance on reporting results from the evaluation of diagnostic tests when there is no gold  standard57. In this cir-
cumstance, one test/method is designated as “new” and the other the “non-reference standard,” which serves as 
the comparator. While other methods of agreement, such as Cohen’s kappa and Scott’s pi have been employed 
in the past, recent research has found that these methods have limitations, including overcorrection for chance 
agreement and bias toward the underlying prevalence of the  infection58. As such, current FDA guidance recom-
mends calculating more straightforward measures of agreement: the positive percent agreement (PPA), negative 
percent agreement (NPA) and overall percent agreement (OPA).

Three measures of agreement were calculated using a 2 × 2 table format indicating prevalence of positive/
negative results for both the “new test” (metagenomic sequencing) and “non-reference standard” (quantita-
tive bacteriology). From these data, the positive, negative, and overall percent agreement were calculated. All 
measures used the non-reference standard as the denominator in calculations. For example, the positive percent 
agreement is the proportion of “non-reference standard” positives that are also “new test” positives (analogous 
to a sensitivity calculation). Two-sided 95% confidence intervals conditional on the observed non-reference 
standard results (ignoring the variability in a non-reference standard) were calculated using Wilson’s Score 
method with the binom R  package59.

Targeted amplification and sequencing of genomic resistance signatures. Targeted amplifica-
tion of resistance-associated genomic signatures was performed using an Ion AmpliSeq panel (AmpliSeq MDR 
v.1, Thermo Fisher). This panel includes primer pools designed for generation of 1358 amplicons targeting 518 
non-SNP mediated resistance-associated genes, and has been previously applied for detection of resistance sig-
natures associated with the International Space  Station16. A subset of 478 validated genes (815 amplicons) was 
analyzed for the purposes of this study. Libraries were prepared using the AmpliSeq protocol according to the 
manufacturer’s recommendations. Templating and sequencing were performed using the Ion Chef and Ion S5 
(Thermo Fisher).

Titrated copy numbers of reference gDNA from Acinetobacter baumannii and Pseudomonas aeruginosa, spiked 
into human reference gDNA background, were employed as positive controls for calibration. An amplicon detec-
tion threshold of 100 reads was empirically selected for detection of a given amplicon, and a gene was declared 
present if any corresponding amplicon was detected. No AMR genes were detected in two human-only reference 
samples when using amplicon thresholds of 53 and 76 reads (Mean + 2SD = 97). Certain genes were “tiled” by 
primers/amplicons spanning the full breadth of the gene, to support non-ambiguous detection in cases where 
genes conserved sequence with non-AMR associated genes. For these genes, a stricter threshold of 50% positive 
amplicon detection events was selected. These thresholds were empirically assigned to minimize false positive 
detection events in background while achieving acceptable sensitivity.

Statistical processing and analyses. Heatmap visualization. Heatmaps were constructed and hier-
archical clustering performed with Euclidean distance via the complete linkage method, using the pheatmap 
R  package60.
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Sample ordination. Samples, which are high-dimensional compositional vectors of genus counts, were rep-
resented in a lower dimensional space by performing Principal Coordinates Analysis (PCoA). No genera were 
removed, i.e., the sample-sample distances account for non-microbial and unknown genera. Because PCoA 
assumes Euclidean distances, and the samples exist in the simplex, the fraction of reads for each genus in each 
sample were transformed from the simplex to Euclidean space with the isometric log transform (ILR). A pseudo-
count of 1 read was added to each genus to avoid taking the log of zero. Transformation, ordination and visuali-
zation was carried out with the  Compositional61,  phyloseq62,  vegan63, and  ggplot264 R packages.

Genus association analyses. Association tests were performed to examine the co-incidence of all pairs of micro-
bial genera detected above a relative abundance threshold of 1 ×  10−4, using Fisher’s exact test (R function `fisher.
test`), and asymptotic Chi-squared (R function `chisq.test`) and G-tests (in-house script). 2 × 2 contingency 
tables were constructed for each time point (initial, intermediate, final) and for each pair of genera, where cell 
counts are the number of samples with either, none, or both genera present. Each given genus was indicated as 
present if its corresponding sequence read relative abundance was > 1 ×  10−4. Pseudocounts were employed to 
avoid inconvenient parsing of cases with zero counts. This also has the effect of incorporating a prior belief that 
there are no associations. Furthermore, the G-test was performed with cell frequency estimates shrunk towards 
uniformity to account for biases and small sample sizes (`entropy::mi.shrink`)65. Results were reported for Fish-
er’s exact test P < 0.01. Fisher P values were adjusted to control the false discovery rate within each timepoint.

Alpha diversity quantification. Diversity was quantified at the genus level using the Hill numbers  N0,  N1, and 
 N2, which represent the effective number of genera  present66, weighted by proportion of metagenomic DNA 
sequences corresponding to each given taxon per sample.

Sample prevalence calculation. We call sample prevalence the proportion of samples in which a genus was 
assigned reads at a relative abundance exceeding 1 ×  10−5. Sample prevalence was calculated out of samples for 
each time point (initial, intermediate, final), for each sample type (tissue, effluent), and for each final outcome of 
the wound (healed, failed). The R function `fisher.test` (Fisher’s exact test) was used to test whether the sample 
prevalence was significantly different between healed and failed wounds. For 2 × 2 tables, the odds ratio (preva-
lence in failed vs. healed) and 95% confidence interval are estimated.

Drug resistance gene class association analyses. Association tests were performed to identify drug resistance 
gene classes associated with different types of wounds (e.g., healed/failed, amputation/open fracture/STI). The R 
functions `prop.test` and `chisq.test` were used to test for each type of wound, type of sample, and time point. 
As previously noted, pseudocounts were added to all contingency tables to avoid inconvenient parsing of cases 
with zero counts and to encode a prior belief that there are no associations.

Nosocomial pathogen assessment. The `bayesglm` function of the `arm` package was used to fit logistic regres-
sion models for each antimicrobial resistance gene class. The model terms were a) the sample type (tissue, efflu-
ent) and b)  log2 transformed read counts for each species (genus for Enterobacter). A pseudocount was added to 
all counts prior to performing the  log2 transformation to avoid inclusion of zeroes. For purposes of this analysis 
both P. aeruginosa and P. putida were included.

Correlation assessment in antimicrobial gene and treatment class. Hierarchical All-against-All association 
(HAllA) was used for testing associations between high-dimensional heterogeneous  datasets67. HAllA testing 
was applied to antimicrobial resistance gene detection and antimicrobial treatment regimen features. Samples 
were sorted into two groups according to the overall wound outcome (i.e., healed versus failed). To prevent the 
pre-analysis removal of highly prescribed antimicrobial treatment classes, such as beta-lactams, the entropy cut-
off threshold for genes and treatment classes was reduced to 0.15 (--entropy 0.15). Normalized mutual informa-
tion (NMI) was used to generate a similarity matrix (--metric nmi) among the AMR gene detection and treat-
ment regimen features, and the resultant similarity matrices were used to create hierarchical clusters of features. 
Correlations (NMI) between the AMR gene detection and treatment regimen feature clusters were calculated 
between the cluster medoids. Statistical significance was determined by permutation testing, and P values were 
adjusted using the Benjamini–Hochberg method. Cluster correlations with Q < 0.05 were considered significant.

Machine learning classification. Sample exclusion: Only final specimens were employed for model train-
ing. Specimens with “NA” response label were excluded, resulting in 92 specimens. Feature selection: Feature 
categories included clinical covariates (e.g., APACHE II score, wound size) and microbial features: targeted 
sequencing-derived AMR presence-absence (e.g., tetracycline resistance gene present/absent) and shotgun 
metagenomic sequencing derived features (log read counts assigned to nosocomial pathogens, genus diversity 
metrics). Non-relevant features (antibiotic resistance categories with indeterminate drug assignments), features 
that encode the response label, features with high pairwise and average correlation, and zero-variance features 
were dropped. Linear polynomial effects of ordinal variables were kept while quadratic and cubic effects were 
discarded. Categorical variables were dummy encoded. Machine learning was performed with the  ̀ caret`68 
package in  R69–73. The models (random forests  [rf]74, penalized logistic regression  [glmnet]75, support vector 
machine  [svmRadial]76, neural network  [nnet]77) were automatically tuned to area under ROC curve (auROC) 
using the boot632  method24, i.e., averaging auROC calculated in resampled and unsampled samples, weighted 
by the probability of sampling an observation. Final bootstrap distributions of performance metrics for the best 
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tuned models at optimal thresholds were calculated from only the “held out” (i.e., unsampled) samples from 
resampling iterations. Because models were trained at the sample level, predictions at the optimal sample-wise 
threshold for each model class (maximum Youden’s J) were summarized by wound to calculate performance 
at the wound level as follows: “failed” if any sample is predicted as “failed”, and “healed” if both samples are 
predicted as “healed”. This may hide false negatives resulting from tissue specimens with lower DNA yields, and 
likewise increase false positives from effluent specimens, which generated higher DNA yields. This was mitigated 
by including specimen type as a feature.

Model performance estimation. For comparison of models trained on two feature sets, estimates of perfor-
mance were calculated on the unsampled samples from the bootstrap, which provided quantiles for the boot-
strap distribution of performance metrics. Models were trained on sample-level observations; however, samples 
from the same wound are assigned the same outcome by definition. Sensitivity, specificity, and precision in 
predicting outcome were thus evaluated at the wound level.

Data availability
The raw datasets generated during and analyzed in the current study are not publicly available due to sensitivities 
regarding their generation from injured military service member cohorts, but are available from the authors on 
reasonable request and in accordance with applicable regulations and data usage agreements.

Received: 9 November 2021; Accepted: 5 July 2022

References
 1. Belmont, P. J. Jr. et al. The nature and incidence of musculoskeletal combat wounds in Iraq and Afghanistan (2005–2009). J Orthop 

Trauma 27, e107–e113. https:// doi. org/ 10. 1097/ BOT. 0b013 e3182 703188 (2013).
 2. Owens, B. D., Kragh, J. F. Jr., Macaitis, J., Svoboda, S. J. & Wenke, J. C. Characterization of extremity wounds in Operation Iraqi 

Freedom and Operation Enduring Freedom. J Orthop Trauma 21, 254–257. https:// doi. org/ 10. 1097/ BOT. 0b013 e3180 2f78fb (2007).
 3. Stewart, L. et al. Combat-related extremity wounds: injury factors predicting early onset infections. Mil Med 184, 83–91. https:// 

doi. org/ 10. 1093/ milmed/ usy336 (2019).
 4. Hannigan, G. D. et al. Culture-independent pilot study of microbiota colonizing open fractures and association with severity, 

mechanism, location, and complication from presentation to early outpatient follow-up. J Orthop Res 32, 597–605. https:// doi. 
org/ 10. 1002/ jor. 22578 (2014).

 5. Kalan, L. et al. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with 
delayed healing. MBio 7, doi:https:// doi. org/ 10. 1128/ mBio. 01058- 16 (2016).

 6. Misic, A. M., Gardner, S. E. & Grice, E. A. The wound microbiome: modern approaches to examining the role of microorganisms 
in impaired chronic wound healing. Adv Wound Care (New Rochelle) 3, 502–510. https:// doi. org/ 10. 1089/ wound. 2012. 0397 (2014).

 7. Be, N. A. et al. Molecular profiling of combat wound infection through microbial detection microarray and next-generation 
sequencing. J. Clin. Microbiol. 52, 2583–2594 (2014).

 8. Pendleton, J. N., Gorman, S. P. & Gilmore, B. F. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11, 
297–308 (2013).

 9. Hospenthal, D. R. et al. Multidrug-resistant bacterial colonization of combat-injured personnel at admission to medical centers 
after evacuation from Afghanistan and Iraq. J Trauma 71, S52-57. https:// doi. org/ 10. 1097/ TA. 0b013 e3182 2118fb (2011).

 10. Kuczynski, J. et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 13, 47–58 (2012).
 11. Be, N. A. et al. Whole metagenome profiles of particulates collected from the International Space Station. Microbiome 5, 81. https:// 

doi. org/ 10. 1186/ s40168- 017- 0292-4 (2017).
 12. Be, N. A. et al. Metagenomic analysis of the airborne environment in urban spaces. Microb Ecol 69, 346–355 (2015).
 13. Be, N. A. et al. Detection of Bacillus anthracis DNA in complex soil and air samples using next-generation sequencing. PLoS ONE 

8, e73455 (2013).
 14. Durazzi, F. et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut 

microbiota. Sci Rep-Uk 11, doi:https:// doi. org/ 10. 1038/ s41598- 021- 82726-y (2021).
 15. Laudadio, I. et al. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human 

gut microbiome. OMICS 22, 248–254. https:// doi. org/ 10. 1089/ omi. 2018. 0013 (2018).
 16. Urbaniak, C. et al. Detection of antimicrobial resistance genes associated with the International Space Station environmental 

surfaces. Sci Rep 8, 814. https:// doi. org/ 10. 1038/ s41598- 017- 18506-4 (2018).
 17. Lugli, G. A. et al. Uncovering Bifidobacteria via Targeted Sequencing of the Mammalian Gut Microbiota. Microorganisms 7, 

doi:https:// doi. org/ 10. 3390/ micro organ isms7 110535 (2019).
 18. Bradley, M. et al. Prediction of venous thromboembolism using clinical and serum biomarker data from a military cohort of trauma 

patients. BMJ Mil Health https:// doi. org/ 10. 1136/ bmjmi litary- 2019- 001393 (2020).
 19. Bradley, M. et al. Advanced modeling to predict pneumonia in combat trauma patients. World J Surg https:// doi. org/ 10. 1007/ 

s00268- 019- 05294-3 (2019).
 20. Munoz, B. et al. Clinical risk factors and inflammatory biomarkers of post-traumatic acute kidney injury in combat patients. 

Surgery https:// doi. org/ 10. 1016/j. surg. 2020. 04. 064 (2020).
 21. Wu, J. et al. Multi-omic analysis in injured humans: Patterns align with outcomes and treatment responses. Cell Rep Med 2, 100478. 

https:// doi. org/ 10. 1016/j. xcrm. 2021. 100478 (2021).
 22. Vicente, D. et al. Viral micro-RNAs are detected in the early systemic response to injury and are associated with outcomes in 

polytrauma patients. Crit Care Med 50, 296–306. https:// doi. org/ 10. 1097/ CCM. 00000 00000 005181 (2022).
 23. Kallstrom, G. Are quantitative bacterial wound cultures useful?. J Clin Microbiol 52, 2753–2756. https:// doi. org/ 10. 1128/ JCM. 

00522- 14 (2014).
 24. Efron, B. Estimating the error rate of a prediction rule - improvement on cross-validation. J Am Stat Assoc 78, 316–331. https:// 

doi. org/ 10. 2307/ 22886 36 (1983).
 25. Davies, C. E. et al. Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of 

healing and nonhealing chronic venous leg ulcers. J Clin Microbiol 42, 3549–3557 (2004).
 26. Sprockett, D. D., Ammons, C. G. & Tuttle, M. S. Use of 16S rRNA sequencing and quantitative PCR to correlate venous leg ulcer 

bacterial bioburden dynamics with wound expansion, antibiotic therapy, and healing. Wound Repair Regen 23, 765–771. https:// 
doi. org/ 10. 1111/ wrr. 12309 (2015).

https://doi.org/10.1097/BOT.0b013e3182703188
https://doi.org/10.1097/BOT.0b013e31802f78fb
https://doi.org/10.1093/milmed/usy336
https://doi.org/10.1093/milmed/usy336
https://doi.org/10.1002/jor.22578
https://doi.org/10.1002/jor.22578
https://doi.org/10.1128/mBio.01058-16
https://doi.org/10.1089/wound.2012.0397
https://doi.org/10.1097/TA.0b013e31822118fb
https://doi.org/10.1186/s40168-017-0292-4
https://doi.org/10.1186/s40168-017-0292-4
https://doi.org/10.1038/s41598-021-82726-y
https://doi.org/10.1089/omi.2018.0013
https://doi.org/10.1038/s41598-017-18506-4
https://doi.org/10.3390/microorganisms7110535
https://doi.org/10.1136/bmjmilitary-2019-001393
https://doi.org/10.1007/s00268-019-05294-3
https://doi.org/10.1007/s00268-019-05294-3
https://doi.org/10.1016/j.surg.2020.04.064
https://doi.org/10.1016/j.xcrm.2021.100478
https://doi.org/10.1097/CCM.0000000000005181
https://doi.org/10.1128/JCM.00522-14
https://doi.org/10.1128/JCM.00522-14
https://doi.org/10.2307/2288636
https://doi.org/10.2307/2288636
https://doi.org/10.1111/wrr.12309
https://doi.org/10.1111/wrr.12309


16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13816  | https://doi.org/10.1038/s41598-022-16170-x

www.nature.com/scientificreports/

 27. Mac Aogain, M. et al. Metagenomics reveals a core macrolide resistome related to microbiota in chronic respiratory disease. Am 
J Respir Crit Care Med https:// doi. org/ 10. 1164/ rccm. 201911- 2202OC (2020).

 28. Alexa Oniciuc, E. A. et al. Dairy products and dairy-processing environments as a reservoir of antibiotic resistance and quorum-
quenching determinants as revealed through functional metagenomics. mSystems 5, doi:https:// doi. org/ 10. 1128/ mSyst ems. 00723- 
19 (2020).

 29. Lisboa, F. A. et al. Utilizing precision medicine to estimate timing for surgical closure of traumatic extremity wounds. Ann Surg 
270, 535–543. https:// doi. org/ 10. 1097/ SLA. 00000 00000 003470 (2019).

 30. Brown, T. S., Hawksworth, J. S., Sheppard, F. R., Tadaki, D. K. & Elster, E. Inflammatory response is associated with critical colo-
nization in combat wounds. Surg Infect (Larchmt) 12, 351–357 (2011).

 31. Chromy, B. A. et al. Wound outcome in combat injuries is associated with a unique set of protein biomarkers. J Transl Med 11, 281 
(2013).

 32. Evans, K. N. et al. Inflammatory cytokine and chemokine expression is associated with heterotopic ossification in high-energy 
penetrating war injuries. J Orthop Trauma 26, e204-213 (2012).

 33. Weintrob, A. C. et al. Early Infections Complicating the Care of Combat Casualties from Iraq and Afghanistan. Surg Infect (Larchmt) 
19, 286–297. https:// doi. org/ 10. 1089/ sur. 2017. 240 (2018).

 34. Velasco, J. M. et al. Comparison of carbapenem-resistant microbial pathogens in combat and non-combat wounds of military and 
civilian patients seen at a Tertiary Military Hospital, Philippines (2013–2017). Mil Med 185, e197–e202. https:// doi. org/ 10. 1093/ 
milmed/ usz148 (2020).

 35. Serra, R. et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect 
Ther 13, 605–613. https:// doi. org/ 10. 1586/ 14787 210. 2015. 10232 91 (2015).

 36. Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat Rev Microbiol 16, 143–155. https:// doi. org/ 10. 1038/ nrmic 
ro. 2017. 157 (2018).

 37. Ma, Z. S., Li, L. & Gotelli, N. J. Diversity-disease relationships and shared species analyses for human microbiome-associated 
diseases. ISME J 13, 1911–1919. https:// doi. org/ 10. 1038/ s41396- 019- 0395-y (2019).

 38. Falagas, M. E., Vardakas, K. Z. & Roussos, N. S. Trimethoprim/sulfamethoxazole for Acinetobacter spp.: A review of current 
microbiological and clinical evidence. Int J Antimicrob Agents 46, 231–241, doi:https:// doi. org/ 10. 1016/j. ijant imicag. 2015. 04. 002 
(2015).

 39. Rizk, M. A. & Abou El-Khier, N. T. Aminoglycoside resistance genes in acinetobacter baumannii clinical isolates. Clin Lab 65, 
doi:https:// doi. org/ 10. 7754/ Clin. Lab. 2019. 190103 (2019).

 40. Campbell, W. R. et al. Multi-drug-resistant gram-negative infections in deployment-related trauma patients. Surg Infect (Larchmt) 
18, 357–367. https:// doi. org/ 10. 1089/ sur. 2017. 002 (2017).

 41. Ekpanyapong, S. & Reddy, K. R. Infections in cirrhosis. Curr Treat Options Gastroenterol 17, 254–270. https:// doi. org/ 10. 1007/ 
s11938- 019- 00229-2 (2019).

 42. Jain, S., Mahapatra, S. J., Gupta, S., Shalimar & Garg, P. K. Infected pancreatic necrosis due to multidrug-resistant organisms 
and persistent organ failure predict mortality in acute pancreatitis. Clin Transl Gastroenterol 9, 190, doi:https:// doi. org/ 10. 1038/ 
s41424- 018- 0056-x (2018).

 43. Bartow-McKenney, C. et al. The microbiota of traumatic, open fracture wounds is associated with mechanism of injury. Wound 
Repair Regen 26, 127–135. https:// doi. org/ 10. 1111/ wrr. 12642 (2018).

 44. Eisner, R., Lippmann, N., Josten, C., Rodloff, A. C. & Behrendt, D. Development of the bacterial spectrum and antimicrobial 
resistance in surgical site infections of trauma patients. Surg Infect (Larchmt) 21, 684–693. https:// doi. org/ 10. 1089/ sur. 2019. 158 
(2020).

 45. Huang, G., Peng, Y., Yang, Y., Tang, C. & Fu, Y. Multilocus sequence typing and molecular characterization of beta-lactamase 
genes among Acinetobacter baumannii isolates in a burn center. Burns 43, 1473–1478. https:// doi. org/ 10. 1016/j. burns. 2017. 03. 
020 (2017).

 46. de Almeida Silva, K. C. F. et al. Molecular characterization of multidrug-resistant (MDR) Pseudomonas aeruginosa isolated in a 
burn center. Burns 43, 137–143, doi:https:// doi. org/ 10. 1016/j. burns. 2016. 07. 002 (2017).

 47. Zhu, J. M., Jiang, R. J., Wu, J. L., Weng, X. B. & Ling, L. P. Antibiotic resistance determinants and virulence factors of hypervirulent 
and carbapenem non-susceptible pseudomonas aeruginosa. Clin Lab 68, doi:https:// doi. org/ 10. 7754/ Clin. Lab. 2021. 210801 (2022).

 48. Dente, C. J. et al. Towards precision medicine: accurate predictive modeling of infectious complications in combat casualties. J 
Trauma Acute Care Surg 83, 609–616. https:// doi. org/ 10. 1097/ TA. 00000 00000 001596 (2017).

 49. Alfieri, K. A. et al. Preventing heterotopic ossification in combat casualties-which models are best suited for clinical use?. Clin 
Orthop Relat Res 473, 2807–2813. https:// doi. org/ 10. 1007/ s11999- 015- 4302-1 (2015).

 50. Yoshino, Y. et al. Pseudomonas putida bacteremia in adult patients: five case reports and a review of the literature. J Infect Chemother 
17, 278–282. https:// doi. org/ 10. 1007/ s10156- 010- 0114-0 (2011).

 51. Carpenter, R. J., Hartzell, J. D., Forsberg, J. A., Babel, B. S. & Ganesan, A. Pseudomonas putida war wound infection in a US Marine: 
a case report and review of the literature. J Infect 56, 234–240. https:// doi. org/ 10. 1016/j. jinf. 2008. 01. 004 (2008).

 52. Hawksworth, J. S. et al. Inflammatory biomarkers in combat wound healing. Ann Surg 250, 1002–1007 (2009).
 53. Ames, S. K. et al. Scalable metagenomic taxonomy classification using a reference genome database. Bioinformatics 29, 2253–2260 

(2013).
 54. Ames, S. K. et al. Using populations of human and microbial genomes for organism detection in metagenomes. Genome Res 25, 

1056–1067. https:// doi. org/ 10. 1101/ gr. 184879. 114 (2015).
 55. Lindgreen, S., Adair, K. L. & Gardner, P. P. An evaluation of the accuracy and speed of metagenome analysis tools. Sci Rep 6, 19233. 

https:// doi. org/ 10. 1038/ srep1 9233 (2016).
 56. McIntyre, A. B. R. et al. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biol 18, 

182. https:// doi. org/ 10. 1186/ s13059- 017- 1299-7 (2017).
 57. Biswas, B. Clinical performance evaluation of molecular diagnostic tests. J Mol Diagn 18, 803–812. https:// doi. org/ 10. 1016/j. 

jmoldx. 2016. 06. 008 (2016).
 58. Hripcsak, G. & Heitjan, D. F. Measuring agreement in medical informatics reliability studies. J Biomed Inform 35, 99–110. https:// 

doi. org/ 10. 1016/ s1532- 0464(02) 00500-2 (2002).
 59. Newcombe, R. G. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17, 857–872. 

https:// doi. org/ 10. 1002/ (sici) 1097- 0258(19980 430) 17:8% 3c857:: aid- sim777% 3e3.0. co;2-e (1998).
 60. Pheatmap: Pretty Heatmaps (R package version 1.0.12, https:// CRAN.R- proje ct. org/ packa ge= pheat map, 2019).
 61. Tsagris, M. & Athineou, G. Compositional: Compositional Data Analysis. R package version 5.6 (2022).
 62. McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census 

data. PLoS ONE 8, e61217 (2013).
 63. J., O. et al. vegan: Community Ecology Package. R package version 2.4–3. https:// CRAN.R- proje ct. org/ packa ge= vegan (2017).
 64. Wickham, H. Elegant Graphics for Data Analysis. Springer-Verlag New York (2016).
 65. Hausser, J. & Strimmer, K. Entropy inference and the James-Stein estimator, with application to nonlinear gene association net-

works. J Mach Learn Res 10, 1469–1484 (2009).
 66. Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432. https:// doi. org/ 10. 2307/ 19343 

52 (1973).

https://doi.org/10.1164/rccm.201911-2202OC
https://doi.org/10.1128/mSystems.00723-19
https://doi.org/10.1128/mSystems.00723-19
https://doi.org/10.1097/SLA.0000000000003470
https://doi.org/10.1089/sur.2017.240
https://doi.org/10.1093/milmed/usz148
https://doi.org/10.1093/milmed/usz148
https://doi.org/10.1586/14787210.2015.1023291
https://doi.org/10.1038/nrmicro.2017.157
https://doi.org/10.1038/nrmicro.2017.157
https://doi.org/10.1038/s41396-019-0395-y
https://doi.org/10.1016/j.ijantimicag.2015.04.002
https://doi.org/10.7754/Clin.Lab.2019.190103
https://doi.org/10.1089/sur.2017.002
https://doi.org/10.1007/s11938-019-00229-2
https://doi.org/10.1007/s11938-019-00229-2
https://doi.org/10.1038/s41424-018-0056-x
https://doi.org/10.1038/s41424-018-0056-x
https://doi.org/10.1111/wrr.12642
https://doi.org/10.1089/sur.2019.158
https://doi.org/10.1016/j.burns.2017.03.020
https://doi.org/10.1016/j.burns.2017.03.020
https://doi.org/10.1016/j.burns.2016.07.002
https://doi.org/10.7754/Clin.Lab.2021.210801
https://doi.org/10.1097/TA.0000000000001596
https://doi.org/10.1007/s11999-015-4302-1
https://doi.org/10.1007/s10156-010-0114-0
https://doi.org/10.1016/j.jinf.2008.01.004
https://doi.org/10.1101/gr.184879.114
https://doi.org/10.1038/srep19233
https://doi.org/10.1186/s13059-017-1299-7
https://doi.org/10.1016/j.jmoldx.2016.06.008
https://doi.org/10.1016/j.jmoldx.2016.06.008
https://doi.org/10.1016/s1532-0464(02)00500-2
https://doi.org/10.1016/s1532-0464(02)00500-2
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8%3c857::aid-sim777%3e3.0.co;2-e
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=vegan
https://doi.org/10.2307/1934352
https://doi.org/10.2307/1934352


17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13816  | https://doi.org/10.1038/s41598-022-16170-x

www.nature.com/scientificreports/

 67. Gholamali, R. et al. High-sensitivity pattern discovery in large multi’omic datasets. https:// hutte nhower. sph. harva rd. edu/ halla.
 68. caret: Classification and Regression Training. (R package version 6.0–86, https:// CRAN.R- proje ct. org/ packa ge= caret, 2020).
 69. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, https:// www.R- 

proje ct. org/, 2020).
 70. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
 71. rmarkdown: Dynamic Documents for R (R package version 2.6, https:// rmark down. rstud io. com/, 2020).
 72. Xie, Y., Allaire, J. J. & Grolemund, G. R Markdown: The Definitive Guide. (Chapman and Hall/CRC, 2018).
 73. Xie, Y., Dervieux, C. & Riederer, E. R Markdown Cookbook. (Chapman and Hall/CRC, 2020).
 74. Liaw, A. & Wiener, M. Classification and Regression by randomForest. R News 2, 18–22 (2002).
 75. Friedman, J., Hastie, T. & R., T. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 

(2010).
 76. Karatzoglou, A., Smola, A., Hornik, K. & Zeileis, A. Kernlab: an S4 package for Kernel methods in R. J. Stat. Softw. 11, 1–20 (2004).
 77. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. 4th edn, (Springer, 2002).

Acknowledgements
The authors wish to thank Dr. Gary Vora, Ph.D. for intellectual contributions to the design of the antimicrobial 
resistance panel v.1. This study was supported by the Lawrence Livermore National Laboratory’s Laboratory 
Directed Research and Development Program. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL: 
This document was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employ-
ees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its 
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, 
or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National 
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or 
product endorsement purposes. USU-WRNMMC Surgery and HJF: The contents of this manuscript are the sole 
responsibility of the author(s) and do not necessarily reflect the views, opinions or policies of Uniformed Services 
University of the Health Sciences (USUHS), The Henry M. Jackson Foundation for the Advancement of Military 
Medicine, Inc., the Department of Defense (DoD) or the Departments of the Army, Navy, or Air Force. Mention 
of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.

Author contributions
N.A.B., J.B.T., and S.A.S. planned and designed sequencing experiments. S.M. processed and prepared samples. 
J.B.T. performed sequencing and pre-processed data. A.A.H., N.M., M.D.M., S.F.G., D.U., and N.A.B. performed 
statistical analyses. S.F.G. performed concordance analysis. A.A.H. evaluated correlation/prevalence and built 
logistic regression models. A.A.H, X.Z., N.M., and S.F.G. contributed to machine learning analysis. S.A.S., F.A.L., 
M.M.U., and E.A.E. provided clinical informatics and regulatory support and supported access to military popu-
lation samples. C.J.J. provided sequencing and laboratory resource support and guidance. A.A.H. and N.A.B. 
wrote the manuscript. S.A.S., N.M., M.D.M., D.U., S.F.G., and F.A.L. contributed to and edited the manuscript. 
All authors reviewed and approved the final version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 16170-x.

Correspondence and requests for materials should be addressed to N.A.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://huttenhower.sph.harvard.edu/halla
https://CRAN.R-project.org/package=caret
https://www.R-project.org/
https://www.R-project.org/
https://rmarkdown.rstudio.com/
https://doi.org/10.1038/s41598-022-16170-x
https://doi.org/10.1038/s41598-022-16170-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Metagenomic features of bioburden serve as outcome indicators in combat extremity wounds
	Results
	Taxonomic characteristics of microbial bioburden in combat wounds. 
	Comparative analysis of metagenomic and quantitative bacteriology results. 
	Bioburden taxonomic diversity in wounds. 
	Prevalence of bioburden constituents across distinct wound outcomes. 
	AMR genomic signature detection and nosocomial pathogen detection. 
	Association of AMR genomic signature detection with treatment regimen and patient status. 
	Construction of predictive wound healing models using metagenomic features. 
	Classification models trained with microbial features. 

	Discussion
	Methods
	Sample collection and processing. 
	Sample extraction and purification. 
	Whole metagenome sequencing. 
	Metagenomic analysis and taxonomic classification. 
	Comparative analysis of metagenomic sequencing with quantitative bacteriology. 
	Targeted amplification and sequencing of genomic resistance signatures. 
	Statistical processing and analyses. 
	Heatmap visualization. 
	Sample ordination. 
	Genus association analyses. 
	Alpha diversity quantification. 
	Sample prevalence calculation. 
	Drug resistance gene class association analyses. 
	Nosocomial pathogen assessment. 
	Correlation assessment in antimicrobial gene and treatment class. 
	Machine learning classification. 
	Model performance estimation. 


	References
	Acknowledgements




