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Abstract

Neuropathic (NP) pain is a debilitating chronic pain disorder considered by some to be inherently resistant to therapy with tra-
ditional analgesics. Indeed, p opioid receptor (OR) agonists show reduced therapeutic benefit and their long term use is hindered by
the high incidence of adverse effects. However, pharmacological and physiological evidence increasingly suggests a role for SOR ago-
nists in modulating NP pain symptoms. In this study, we examined the antihyperalgesic and antiallodynic effects of the spinally
administered SOR agonist, -[Ala®, Glu*]deltorphin II (deltorphin II), as well as the changes in SOR expression, in rats following
chronic constriction injury (CCI) of the sciatic nerve. Rats with CCI exhibited cold hyperalgesia and mechanical allodynia over a
14-day testing period. Intrathecal administration of deltorphin II reversed cold hyperalgesia on day 14 and dose-dependently atten-
uated mechanical allodynia. The effects of deltorphin IT were mediated via activation of the SOR as the effect was antagonized by co-
treatment with the §-selective antagonist, naltrindole. Western blotting experiments revealed no changes in SOR protein in the dorsal
spinal cord following CCI. Taken together, these data demonstrate the antihyperalgesic and antiallodynic effectiveness of a spinally
administered SOR agonist following peripheral nerve injury and support further investigation of 3ORs as potential therapeutic tar-
gets in the treatment of NP pain.
© 2006 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All
rights reserved.
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1. Introduction

Neuropathic (NP) pain is a debilitating chronic pain
disorder involving a peripheral and/or central nervous
system lesion. Characterized by the occurrence of allo-
dynia (pain evoked by a normally innocuous stimulus),
and hyperalgesia (increased sensitivity to noxious stim-
uli), NP pain is estimated to affect more than 2-3% of
North Americans (Gilron et al., 2005). Yet despite its
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prevalence and adverse impact on functionality and
quality of life, it remains a challenge for physicians to
treat. The clinically available opioids, such as morphine,
are agonists at the p opioid receptor (OR), and although
partially effective in alleviating symptoms of NP pain
(Gilron et al., 2005), they elicit several adverse effects
such as gastro-intestinal disturbances and sedation
(Shook et al., 1987). In contrast, pre-clinical studies sug-
gest that SOR agonists are capable of producing analge-
sia with a lower incidence of adverse effects (Porreca
et al., 1984; Mika et al., 2001). Indeed, administration
of SOR agonists produces minimal induction of depen-
dence (Cowan et al., 1988) with lower abuse potential
(Mika et al., 2001). Together with a lower propensity
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for respiratory (Kiritsy-Roy et al., 1989; May et al.,
1989; Szeto et al., 1999), cognitive (Sharif and Hughes,
1989), and gastro-intestinal (Shook et al., 1987) impair-
ments than their p counterparts, agents which selectively
activate the SOR represent a promising class of drugs
for the treatment of chronic pain.

The analgesic effectiveness of selective SOR agonists
has been demonstrated in numerous pharmacological
studies of acute and persistent pain (Stewart and Ham-
mond, 1994; Glaum et al., 1994; Fraser et al., 2000);
however studies examining the role of 60ORs in NP
pain states encouragingly support further determina-
tion of the effectiveness of selective SOR agonists in
animal models of NP pain. Hence, administration of
selective dOR agonists was shown to alleviate allo-
dynia and/or hyperalgesia in various rat models of
neuropathic pain induced by nerve injury following
spinal administration (Nichols et al.,, 1995; Mika
et al., 2001). Furthermore, SOR agonists elicited anti-
hyperalgesic effects in rats with experimental diabetic
neuropathy (Kamei et al., 1997; Chen and Pan,
2003). Nevertheless, there exist other studies that
report the lack of effect of SOR agonists in attenuating
neuropathic pain symptoms, wherein mechanical allo-
dynia induced by spinal nerve ligation was unaltered
by selective DOR agonists (Lee et al., 1995). Similarly,
there are inconsistent reports on changes in dOR
expression following nerve injury. While autoradio-
graphic binding (Stevens et al., 1991; Besse et al.,
1992) and immunohistochemical (Zhang et al., 1998;
Stone et al., 2004) studies report no change or
decreased 60OR expression following nerve injury, Zar-
atin et al. (1998) observed an increase in SOR mRNA.
However, a recent study utilizing genetically modified
mice reported enhanced neuropathy-induced hypersen-
sitivity in 8OR knock-out mice compared to wild-type
littermates (Nadal et al., 2006), suggesting a role of
00Rs in modulating neuropathic pain.

The antinociceptive potential of JSOR agonists,
together with a lower incidence of adverse effects than
LOR agonists, makes the SOR an attractive target in
the pharmacological treatment of chronic pain syn-
dromes. However, little is known about the efficacy of
SOR agonists in alleviating NP pain symptoms, nor
about the functional changes in receptor expression, tar-
geting, and pharmacology that may occur in NP pain
states. It is therefore important to explore the functional
role of the SOR following nerve injury. In the present
study, we aimed to investigate the anti-hyperalgesic
and anti-allodynic effectiveness of a spinally adminis-
tered SOR agonist following sciatic nerve injury. Quan-
titative experiments aimed to determine protein
expression were performed to assess nerve injury-
induced changes in 60OR in the dorsal spinal cord. Some
of the data have already been published in abstract form
(Holdridge and Cahill, 2005).

2. Methods
2.1. Animals

Experiments were performed on adult male Sprague
Dawley rats (225-250 g; Charles River, Que., Canada)
housed in groups of two. Rats were maintained on a
12/12 h light/dark cycle and were given ad libitum access
to food and water. Experiments were carried out during
the light cycle according to protocols approved by the
Queen’s University Animal Care Committee and in
accordance with guidelines set forth by the Canadian
Council on Animal Care and the International Associa-
tion for the Study of Pain Committee for Research and
Ethical Issues.

2.2. Surgical procedures

2.2.1. Induction of chronic neuropathic pain

Chronic constriction injury (CCI) was accomplished
by a slight modification of methods previously described
by Mosconi and Kruger (1996). Rats were anaesthe-
tized by isofluorane inhalation (induced at 5 1/min,
maintained at 2 1/min) and their left hind legs and hips
shaved clean of hair. A small incision was made in the
left hind leg, distal to the hip, along its longitudinal axis.
The underlying muscle was bluntly dissected to expose
the sciatic nerve. The nerve was freed of connective tis-
sue and a fixed diameter (2 mm) cuff assembled from
polyethylene 90 tubing was placed around the nerve
proximal to its bifurcation. The muscle and dermal
wounds were closed with single non-continuous stitches
using Monocryl 3-0 suture thread. The rats were given
Tribrissen injectable (0.02 ml/kg) antibiotic and 5ml
lactated ringer sub-cutaneously. Furacin antibiotic was
applied topically to the incision site. Rats were moni-
tored until awakening from the anesthetic and then
returned to their home cages. This model is a modified
version of that described by Bennett and Xie (1988) in
which 4 chromic gut ligatures are tied loosely around
the sciatic nerve. The modified version has been
employed in the current study as it produces nociceptive
behaviours reminiscent of those reported clinically, such
as thermal hyperalgesia and mechanical allodynia, with
reportedly less variability as compared to its predeces-
sor. Indeed, the use of a cuff of fixed diameter ensures
a consistent constriction of the nerve and negates the
possibility of variation in tightness of chromic gut liga-
tures between individual ligatures and between opera-
tors. Furthermore, the Mosconi & Kruger model has
been used extensively in the mechanistic and pharmaco-
logical characterization of neuropathic pain (Fisher
et al., 1998; Cahill and Coderre, 2002; Cahill et al.,
2003; Coull et al., 2003; Coull et al., 2005). Sham-oper-
ated rats received identical surgeries without manipula-
tion of the nerve and were used, along with naive rats,
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as behavioural controls. Post-surgical behavioural test-
ing revealed no differences between sham-operated and
naive rats (p = 0.2262 for cold hyperalgesia; p = 0.1669
for mechanical allodynia) and as such, data from the
two groups were pooled to form the control group.

2.3. Behavioural testing

Separate groups of rats were used in each behavioural
testing paradigm. All rats underwent pre-surgical behav-
ioural testing in their respective paradigms, to establish
baseline values to which post-surgical and post-drug val-
ues could be compared. Rats were then divided into
three groups, those that underwent sciatic nerve con-
striction, those undergoing sham surgery, and naive
rats. Intrathecal (i.t.) administration of all drugs (30 pl
volume) was accomplished by way of lumbar puncture
between the L4 and L5 vertebrae under brief halothane
anesthesia. Successful drug placement was confirmed by
a vigorous tail flick upon injection. Anti-allodynic and
anti-hyperalgesic effects of the selective SOR agonist D-
[Ala®, Glu*ldeltorphin II (deltorphin II; Sigma, St.
Louis, MO, USA) were assessed at 20 min following
injection, as preliminary experiments in our laboratory
have revealed this time point to correspond with peak
analgesic effect. To assess the antinociceptive stress
response following the lumbar puncture procedure, sal-
ine vehicle was administered and the effects observed at
20 min post-injection. Moreover, the receptor selectivity
of deltorphin II-mediated antinociceptive effects was
assessed by co-administration of deltorphin II with the
O00OR-selective antagonist, naltrindole (Sigma) in a 1:2
molar ratio (10 pg DELT: 11.52 pg NALT).

2.3.1. Noxious cold testing

Withdrawal latencies from noxious cold were
assessed in CCI and age-matched control rats as previ-
ously described (Cahill and Coderre, 2002). An open-
ended clear plexi-glass cylinder was placed end-up into
a cold water bath, maintained at 1 °C, with a depth of
1 cm. Rats were placed into the bath and the latency
to respond was measured. Neuropathic rats responded
by elevating their injured paw out of contact with the
water. A cut-off latency of 180 s was imposed to prevent
tissue damage in the event that the rats did not respond.
Rats were removed from the cold stimulus upon
responding or reaching the cut-off latency.

2.3.2. Innocuous mechanical testing

Mechanical withdrawal responses to von Frey fila-
ment stimulation were assessed in CCI and control rats
as previously described by Chaplan et al. (1994). Rats
were placed under opaque Plexiglas® boxes positioned
on a wire grid platform (5 mm X 5 mm mesh), through
which von Frey filaments were applied to the plantar
surface of the hind paw in an up-down fashion. In brief,

filaments were applied in either ascending or descending
force as necessary in order to most accurately determine
the threshold of response. The intensity of stimuli ran-
ged from 0.25 g to 15 g. From the resulting response pat-
terns, the 50% response thresholds (g) were calculated.
Paw withdrawal thresholds are expressed as 50% with-
drawal thresholds or converted to % maximum possible
effect (MPE) according to the following formula:

%MPE = (post-drug latency — baseline)
+ (cut-off latency — baseline) x 100

2.4. Molecular studies

2.4.1. Western blotting

Neuropathic and naive rats were sacrificed by decap-
itation under light halothane anesthesia and their spinal
cords were quickly removed by spinal ejection. The lum-
bar spinal cord was isolated and cut longitudinally into
dorsal and ventral segments. The dorsal segment was
then hemisected into ipsi- and contralateral segments
and homogenized with a Polytron in buffer A containing
50 mM Trisma base, pH 7.4 and 4 mM ethylenediam-
mine-tetraacetic acid (EDTA) with protease inhibitors
(Complete™ Protease Inhibitor Tablets, Roche Molecu-
lar Biochemicals, Laval, Quebec, Canada; Phenylmeth-
ylsulfonyl Fluoride, Sigma-Aldrich, St. Louis, MO,
USA). The samples were centrifuged at 4°C for
10 min at 1000 rpm (Beckmann). The supernatant was
collected and centrifuged at 4°C for 30min at
50,000 rpm. The pellets were resuspended in buffer B
containing 50 mM Trisma base, pH 7.4 and 0.2 mM
EDTA with protease inhibitors by vortexing and sonica-
tion for 5s.

Protein content was determined (Bradford, 1976) and
samples were denatured using 6x Laemmli sample buffer
(0.375 mM Trisma base, pH 6.8, 30% v/v glycerol, 12%
v/v 2-B-mercaptoethanol, 12% w/v sodium dodecyl sul-
fate (SDS), 0.2% w/v bromophenol blue) and then vor-
texed for 30 min at room temperature. Denatured
samples were stored at —20 °C. Unused tissue samples
were stored at —80 °C for denaturing at a later date.

Samples were loaded (45 pg protein) and resolved
using 8% Tris—Glycine pre-cast gels (Novex, San Diego,
CA, USA) and the proteins were electroblotted onto
nitrocellulose membranes (BioRad Laboratories, Rich-
mond, CA, USA). A Biotinylated Protein Ladder (Cell
Signalling Technology) and Kaleidoscope Prestained
Standards (BioRad Laboratories, Richmond, CA,
USA) were used to calibrate gel migration.

Nitrocellulose membranes were incubated for 1h at
room temperature (RT) with blocking solution (1%
bovine albumin serum, 1% chicken ovalbumin in
26 mM Trisma buffered saline (TBS) containing
0.075% Tween 20) and then overnight with SOR
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antibody (Chemicon, Temecular, CA, USA; lots
23040417, 24040710) at 0.13 pg/ml in blocking solution.
An HRP-conjugated goat anti-rabbit secondary anti-
body (Amersham Pharmacia Biotech) diluted 1:4000
and an HRP-conjugated anti-biotin antibody (New
England Biolabs) diluted 1:10,000 in 26 mM TBS con-
taining 0.075% Tween 20 and 5% powdered milk, were
used to visualize the bound primary antibodies and the
biotinylated protein ladder, respectively. Secondary
antibody incubation was carried out for 1 h at RT.
The membranes were subsequently exposed to chemilu-
minescent reagents (Amersham Pharmacia Biotech) and
developed onto hyperfilm. All membranes were rou-
tinely stripped and re-probed for B-actin to normalize
the immunoreactive band density for minor differences
in protein loading. Blots were digitized with a Hewlett-
Packard 4570c Scanjet Scanner and formatted using
Adobe Photoshop version 7.0 (Adobe Systems Inc.,
San Jose, CA, USA). Scion Image software (NIH) was
used to measure integrated densities of immunoreactive
bands. A calibration curve was calculated using the dis-
tance traveled by the biotinylated protein ladder and the
molecular weights of immunoreactive bands were then
estimated by extrapolation. The specificity of the Chem-
icon 6OR antisera was confirmed by pre-adsorption of
the antisera with an appropriate antigenic peptide
(20 pg/ml of peptide for 0.1 pg/ml antibody).

2.5. Statistical analysis

All behavioural data are expressed as means + stan-
dard error of mean (s.e.m.) and molecular data as
means + standard deviation (s.d.). Statistical analyses
for were performed using one way analysis of variance
(ANOVA) followed by the Tukey’s multiple comparison
test for post-hoc, or by unpaired ¢-test, as applicable. All
graphs were generated and statistical analyses per-
formed using GraphPad Prism software 3.01 (San
Diego, CA, USA).

For gel electrophoresis experiments, immunoblots are
representative of experiments performed on N =3 per
condition obtained from separate groups of animals.
Additionally, each set of samples was run in duplicate
and averaged to represent an N value of one. All behav-
ioural data were performed on N = 6-7 per group.

3. Results
3.1. Behavioural observations

Neuropathic rats developed characteristic postural
manifestations which were evident in the ipsilateral hind
leg only. These rats displayed cupped hind paws, which
they held in what appeared to be a protective manner,
bearing more of their body weight on the contralateral

side. Following surgery, CCI rats were not hindered in
their ability to retrieve food and water or in their social
interaction with cage mates. Sham-operated rats recov-
ered quickly from surgery and displayed no postural
manifestations. Furthermore, surgery rats displayed no
obvious changes in weight gain or grooming behaviour
compared to naive rats.

3.1.1. Anti-hyperalgesic effects of 0OR agonist in cold
testing

Fig. 1A illustrates the time course of cold-induced
nociceptive responses in control and CCI rats. On days
7 and 14 following surgery, CCI rats displayed a signif-
icant decrease in the latency to withdraw the ipsilateral
hind paw from a noxious cold stimulus, as compared
with  pre-surgical Dbaseline values (F3;5=9.128,
p =10.0011). This decrease in cold thermal latency was
interpreted as hyperalgesia and was exhibited in the ipsi-
lateral hind paw, but not the contralateral side. Control
animals showed no change in withdrawal thresholds
throughout the 2-week testing period. Acute i.t. admin-
istration of deltorphin II (10 pg) on day 14 following
surgery produced significant increases in withdrawal
latencies in both control (F3;5=11.28, p <0.05) and
CCI (F5,15=9.128, p <0.01) rats as compared to pre-
drug values on the same day. Deltorphin II reversed
cold hyperalgesia in CCI rats, producing latencies that
were not significantly different from baseline values.
Furthermore, CCI post-drug latencies were not signifi-
cantly different from pre-drug values of control rats on
day 14, indicating a return to normal nociceptive levels
in CCI rats. When post-drug latency was converted to
a % value of the pre-drug latency, Deltorphin II was
shown to have a significantly greater effect in CCI rats
compared to controls (unpaired ¢-test, p = 0.0089;
Fig. 1B).

3.1.2. Anti-allodynic effects of 0OR agonist in mechanical
testing

Prior to surgery, all rats were unresponsive up to the
maximum tactile force of 15.0 g, indicating the innocu-
ous nature of the stimulus. Following surgery, CCI rats
displayed a significant decrease in mechanical with-
drawal thresholds in the ipsilateral hind paw interpreted
as the development of mechanical allodynia, with no
change in withdrawal thresholds on the contralateral
hind paw over time (Fj35, = 6.117; Fig. 2A). Control
animals remained unresponsive to the von Frey fila-
ment-stimulation throughout the 2-week testing period
(data not shown). Acute i.t. administration of vehicle
had no effect on withdrawal thresholds in CCI rats
(Fig. 2C). In contrast, acute i.t. administration of deltor-
phin II (3-30 pg) on day 14 post-CCI surgery produced
a dose-dependent increase in mechanical withdrawal
thresholds in CCI rats (Fig. 2B). Post-drug 50% with-
drawal thresholds were significantly higher than pre-
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Fig. 1. (A) Cold withdrawal latencies using the noxious cold water test
were assessed in control and CCI rats. (B) Anti-hyperalgesic effects of
i.t. administration of deltorphin II (10 pg) were assessed at 20 min
following injection on day 14 post-surgery in control and CCI rats.
Mean cold withdrawal latencies following drug administration were
converted to % values of respective pre-drug day 14 latencies. All data
represent means +s.e.m. for N = 6-7 per group. Data in panel A were
analyzed by a one-way ANOVA, followed by Tukey’s post hoc
multiple comparison test. Data in panel B were analyzed by a two-
tailed, unpaired s-test. The asterisk denotes significant difference from
respective baseline value (in A) or from control value (in B); *P < 0.05,
P <0.0l. The number sign denotes significant difference from
respective pre-drug value on day 14; # P <0.05. DELT: deltorphin
II; B: baseline.

drug values at doses of 10 pg or more (Fs3; = 15.21,
p<0.05 for 10pg, p<0.01 for 15, p<0.001 for
30 pg). Co-administration of deltorphin II with the
SOR-selective antagonist, naltrindole, produced no sig-
nificant effect on withdrawal thresholds, demonstrating
that deltorphin II was mediating its anti-allodynic effects
via activation of the SOR (Fig. 2C).

3.2. Effect of chronic constriction injury on dOR protein
levels

To assess changes in 6OR expression in the dorsal
spinal cord, western blotting techniques were used to
quantify total protein in membranes prepared from lum-
bar spinal cord segments of naive and day 14 CCI rats.
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Fig. 2. (A) Mechanical withdrawal responses were assessed using
calibrated von Frey filaments in CCI rats (N = 7). (B) Effects of i.t.
deltorphin II were assessed on day 14 post-surgery in CCI rats (3, 10,
15, 30 pg; N =4-9 per dose). Data were transformed to % maximum
possible effect (MPE). (C) The effects of vehicle (saline) and co-
administration of deltorphin II and the selective JOR antagonist
naltrindole (in a 1:2 DELT:NALT molar ratio; 10 pg DELT, 11.52 pg
NALT) on mechanical withdrawal thresholds are presented. Mean
50% withdrawal thresholds were converted to % MPEs and compared
to that of i.t. deltorphin II (30 pg) alone. Data represent means =+
s.e.m. Statistical analyses were performed by a one-way ANOVA,
followed by Tukey’s post-hoc multiple comparison test. The asterisk
denotes significant difference from baseline value at day 0 (in A) or
from deltorphin II (10 pg; in C); *P < 0.05, **P < 0.01. Ipsi: ipsilateral;
contra: contralateral; B: baseline; Pre: pre-drug; DELT: deltorphin II;
NALT: naltrindole.

Immunoreactive bands were observed at estimated
molecular weights of 52 and 75 kDa, consistent with ear-
lier reports using the same antisera (Cahill et al., 2001).
Immunospecificity was confirmed by the absence of
immunoreactive bands when the membrane was pre-
incubated with antigenic peptide prior to antibody (data
not shown). Following quantification of OR-immuno-
reactive bands, membranes were stripped and re-probed
for B-actin, a housekeeping protein. To normalize differ-
ences in protein-loading, all data were expressed as
SOR/B-actin ratios. No significant change in the
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Fig. 3. (A) Identification of the SOR protein by western blotting.
Membranes from dorsal spinal cord tissues of control and CCI rats
were isolated and proteins resolved using 8% Tris—Glycine gels
followed by electroblotting onto nitrocellulose membranes. Immuno-
blot analysis reveals two specific immunoreactive bands with estimated
molecular weights of approximately 52 and 75 kDa. Membranes were
subsequently stripped and reprobed for B-actin housekeeping protein.
(B) Integrated density values of immunoreactive bands were converted
to ratios of SOR to B-actin and are expressed as means + s.d. for N =3
per condition. One-way ANOVA analyses revealed no significant
difference in SOR immunoreactive band densities between CCI
ipsilateral, CCI contralateral, and control. C: control; CCli: ipsilateral;
CClc: contralateral.

integrated density ratios of either molecular weight band
was observed at day 14 following nerve injury in the ipsi-
lateral or contralateral spinal cord when compared to
control (Fr6=2.497 for 52kDa; F,¢=2.340 for
75 kDa; Fig. 3B).

4. Discussion

The present study reveals promising evidence for the
use of dOR-selective agonists in alleviating pain symp-
toms associated with peripheral nerve injury. The cur-
rent behavioural experiments involving a noxious cold
stimulus revealed that acute spinal administration of
deltorphin IT produced marked anti-hyperalgesic actions
in CCI rats. Indeed, following surgery, CCI rats dis-
played significant reductions in withdrawal latencies in
response to noxious cold water on days 7 and 14 while
control rats showed no changes in latencies throughout
the testing period. Intrathecal administration of the
selective 6OR agonist deltorphin II returned withdrawal
latencies in CCI rats to presurgical levels. These results
complement previous observations that i.t. deltorphin
IT dose-dependently prolonged response latencies in
the cold-water allodynia and the cold-water tail flick
tests in rats following sciatic nerve crush (Mika et al.,

2001). Delta OR agonist-mediated anti-hyperalgesic
effects have also been observed supraspinally where
microinjection of [D-Pen?, p-Pen’}-enkephalin (DPDPE)
into the periaqueductal grey matter reversed cold allo-
dynia following tight ligation of the tibial and sural
nerves (Sohn et al., 2000). These findings contrast stud-
ies reporting that nerve injury resulted in a loss in
potency of morphine (Kamei et al., 1992; Ossipov
et al., 1995) and fentanyl (Zurek et al., 2001) following
either systemic or spinal administration. Moreover,
our data reveal a significantly enhanced effect of deltor-
phin II in CCI rats compared to controls. Granted, our
experiments assessed the antinociceptive effects at only
one dose, however the observation is not unique to
our study. Kamei and colleagues (1995, 1997) reported
enhanced dOR-mediated analgesia in rats with experi-
mental diabetic neuropathy as compared to control rats.
While no changes in SOR protein were observed in the
spinal cord following CCI, a recent study from our lab-
oratory reported a bilateral increase in SOR protein in
the DRGs of CCI rats compared to controls (Kabli
and Cabhill, in press). Deltorphin delivered intrathecally
may diffuse toward and act at the DRG, which may in
part explain the enhanced effects of spinally adminis-
tered deltorphin following CCI. Furthermore, enhanced
OOR agonist effects have also been observed in other
chronic pain models such as inflammation induced by
complete Freund’s adjuvant (CFA; Fraser et al., 2000;
Hurley and Hammond, 2000; Cabhill et al., 2003; Morin-
ville et al., 2004) or by carrageenan (Hylden et al., 1991).
Despite different induction methods, similar mecha-
nisms may underlie the chronicity of both neuropathic
and inflammatory pains including nociceptor activa-
tion-dependent changes (Dubner and Ruda, 1992;
Woolf and Mannion, 1999; Woolf and Salter, 2000;
Bridges et al., 2001), a mechanism also proposed to
induce dOR membrane-targeting and subsequently
enhance 0OR agonist function (Gendron et al., 2006).
The anti-allodynic effects of deltorphin II were simi-
larly assessed following nerve injury. Following surgery,
CCI rats displayed significant decreases in mechanical
withdrawal thresholds, indicating a hypersensitivity to
innocuous light touch. The allodynic behaviour was
observed in the ipsilateral hind paw only, and was
absent in control animals. Spinal administration of del-
torphin II dose-dependently reversed allodynia in a nal-
trindole-sensitive manner. Others similarly report a
reversal of nerve injury-induced tactile allodynia follow-
ing spinal (Nichols et al., 1995) and supraspinal (Sohn
et al., 2000) administration of deltorphin II and
DPDPE, respectively. Furthermore, Desmeules et al.
(1993) observed a significant antinociceptive effect of
the OOR-selective agonist Tyr-p-Ser(O-z-butyl)-Gly-
Phe-Leu-Thr (BUBU) in the paw pressure test in CCI
rats. Intravenously administered BUBU produced anti-
allodynic and analgesic effects, as exhibited by a return
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to and increase from presurgical baseline vocalization
thresholds. An additional interesting study employed
the i.t. transplantation of immortalized rat astrocytic
cells genetically modified by human preproenkephalin
gene (An et al., 2005). Spinal injection of these cells on
day 7 following spared nerve injury alleviated tactile
allodynia as compared with control rats that received
unmodified cells, and these effects persisted for 5 weeks.
Moreover, several lines of evidence suggest a role for
endogenous 6 opioid peptides in modulating NP pain
symptoms. Following ischemic spinal cord injury, most
rats displayed tactile allodynia that was reversed with
i.t. DPDPE (Hao et al., 1998a). Interesting, those rats
that did not display allodynia spontaneously, exhibited
such behaviour upon administration of naltrindole,
while this antagonist had no effect in naive animals
(Hao et al., 1998b). This suggests that following nerve
injury, nociceptive levels may be under tonic inhibition
via dOR activation by endogenous peptides. Further-
more, SOR knock-out mice displayed enhanced allo-
dynic behaviour following partial sciatic nerve ligation,
compared to wild type littermates (Nadal et al., 2006).
Contrarily, Lee et al. (1995) reported no alleviation of
neuropathic allodynia following i.t. or intracerebroven-
tricular administration of DPDPE. The basis for these
conflicting data is unclear at present. Nevertheless,
O0OR agonists have also been shown to reverse allodynia
induced by spinal administration of dynorphinA where
(+)-4-[(«R)-a-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperai-
nyl)-3-metholxybenzyl]-NV,N-diethylbenzamide (SNC80)
dose-dependently alleviated tactile allodynia (Kawarag-
uchi et al., 2004).

Numerous studies suggest that pOR agonists, like
morphine, show decreased analgesic potency in NP states
(Bian et al., 1999; Ossipov et al., 1995; Iddnpdédn-Heikk-
ila and Guilbaud, 1999; Kim et al., 2003; Rashid et al.,
2004). One proposed mechanism for the loss of opioid
analgesia is the nerve injury-induced reduction in pOR
expression in the dorsal spinal cord (Stevens et al.,
1991; Porreca et al., 1998; Kohno et al., 2005). Since
the current behavioural experiments revealed no such
loss in dOR-mediated effects, we aimed to investigate
changes in 6OR expression that may occur in response
to nerve injury. Previous studies on the topic are incon-
clusive. While some groups report a decrease in 6OR-
immunoreactivity (Stone et al., 2004) or binding (Stevens
et al., 1991) following nerve injury, others report no
change (Besse et al., 1992) or increased SOR protein
(Kabli and Cabhill, in press) and mRNA (Zaratin et al.,
1998). In the current study, spinal SOR protein levels in
naive and CCI rats were assessed by western blotting
techniques. The antisera utilized for SOR immunodetec-
tion recognized an N-terminal sequence of the protein
and revealed two specific immunoreactive bands at esti-
mated molecular weights of 52 and 75 kDa. This was
consistent with earlier reports using the same antibody

(Cahill et al., 2001), the specificity of which was con-
firmed as preadsorption of the antisera with an antigenic
peptide abolished both immunoreactive bands. Different
post-translational modifications of the SOR such as
homo- and heterodimerization (Cvejic and Devi, 1997;
Jordan and Devi, 1999; George et al., 2000) and glycosy-
lations (Belcheva et al., 1996; Miller, 1998) may account
for 60OR variants detected at the protein level. The cur-
rent protein analyses revealed no changes in SOR protein
expression in the dorsal spinal cord following CCI. Not-
withstanding the minimal effects on dOR expression,
nerve injury may induce changes in receptor function
and future studies will investigate this possibility.

In conclusion, we have demonstrated that spinal
administration of deltorphin II effectively attenuates
nerve injury-induced cold hyperalgesia and mechanical
allodynia in the chronic constriction injury model while
western blotting experiments revealed no alterations in
dOR protein biosynthesis. These data reveal a clinically
relevant capacity of SOR agonists to suppress hyper-
excitable nociceptive transmission to normal physiolog-
ical levels and suggest an important role of SORs in
modulating pain symptoms associated with nerve injury,
supporting further exploration of ORs as novel thera-
peutic targets in the treatment of NP pain.
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