
Measuring and predicting variation in the interestingness of physical structures
Cameron Holdaway*

Department of Psychology
UC San Diego

choldawa@ucsd.edu

Daniel M. Bear*

Department of Psychology
Stanford University

dbear@stanford.edu

Samaher F. Radwan
Department of Psychology

Stanford University
sradwan@stanford.edu

Michael C. Frank
Department of Psychology

Stanford University
mcfrank@stanford.edu

Daniel L. K. Yamins
Department of Psychology

Stanford University
yamins@stanford.edu

Judith E. Fan
Department of Psychology

UC San Diego
jefan@ucsd.edu

Abstract

Curiosity drives much of human behavior, but its open-ended
nature makes it hard to study in the laboratory. Moreover, com-
putational theories of curiosity – models of how intrinsic mo-
tivation promotes complex behaviors – have been challenging
to test because of technical limits. To circumvent this problem,
we develop a new way to assess intrinsic motivation for build-
ing: we assume people build what they find interesting, so we
asked them to rate the “interestingness” of visual stimuli – in
this case, simple block towers. Adults gave a range of ratings
to towers built by children, with taller towers rated higher. To
probe interestingness further, we developed controlled tower
stimuli in a simulated 3D environment. While tower height
predicted much of the variation in ratings, people also favored
more precarious towers, as inferred from geometric features
and simulated dynamics. These ratings and features therefore
give a clear target for computational accounts of curiosity to
explain.

Keywords: curiosity; play; intrinsic motivation; intuitive
physics; visual abstraction

Introduction

Given a set of blocks, toddlers within the first 17-32
months of life readily stack them to produce block towers and
other stable physical configurations (Bullock & Lütkenhaus,
1988). By 4-8 years of age children are capable of reason-
ing about how existing towers are built (Dietz, Landay, &
Gweon, 2019; Dietz et al., 2019), an ability that continues
to be refined into adulthood (McCarthy, Kirsh, & Fan, 2020).
Building towers from blocks is perhaps the most basic ver-
sion of our more general capacity to create new structures,
from tall buildings to novel molecules and complex software
programs.

While we often undertake a building project to achieve an
instrumental goal (e.g. creating shelter or medicine), building
things can also be fun. Following one’s curiosity to imagine
and construct alternative configurations of the world has long
been recognized as a critical component of human learning
(James, 1983) and cognitive development (Gopnik, Meltzoff,
& Kuhl, 1999; Piaget & Cook, 1952). However, there are
few theories that explain what intrinsically drives people to
explore and play with their environment (Kidd & Hayden,
2015). A satisfying theory should account for why, in a sim-
ple setting like a room full of blocks, people build structures
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instead of flinging objects randomly, and why they choose to
build some structures over others.

Computational models of behavior can be used to artic-
ulate quantitatively precise theories of intrinsic motivation.
For example, when artificial agents are “motivated” to cre-
ate scenarios whose dynamics the agents cannot easily pre-
dict, they both begin to perform nonrandom behaviors (e.g.,
preferentially attending to movable objects, object gathering,
and smashing objects together) and to better recognize ob-
jects in their environment (Haber, Mrowca, Wang, Fei-Fei, &
Yamins, 2018). Other forms of artificial curiosity (AC) have
been proposed, in various domains, to account for the emer-
gence of more complex behaviors and to drive learning about
the world (Schmidhuber, 1991, 2010; Aubret, Matignon, &
Hassas, 2019). These include recent methods for formaliz-
ing learning progress (Oudeyer & Kaplan, 2009; Oudeyer,
Baranes, & Kaplan, 2013; Kim, Sano, De Freitas, Haber,
& Yamins, 2020), for creating scenarios that violate expec-
tations (Pathak, Agrawal, Efros, & Darrell, 2017), and for
novelty-seeking (Burda, Edwards, Storkey, & Klimov, 2018).

To date, though, none of these types of AC has induced
artificial agents to perform more elaborate object stacking or
physical assembly behaviors in a physically realistic setting.
One reason this could be is due to technical difficulties getting
artificial agents to perform any complex behaviors using lead-
ing methods; state-of-the-art reinforcement learning agents
require millions of trials just to learn short sequences of a few
possible actions in simulated 2D environments (Burda, Ed-
wards, Pathak, et al., 2018). Moreover, it has been technically
infeasible to simulate interactions between many objects in a
physically realistic 3D environment, although the ability to do
so would enable much stronger comparisons between natural
human behavior and that of artificial agents. An alternative
reason that existing AC proposals may have failed so far is
because they are wrong. For example, the drive to seek out
physical scenarios that are hard to predict may not be suffi-
cient to explain the emergence of complex physical assembly
behavior, given that the dynamics of physical structures are
in some ways easy to predict, especially if they remain static
over time. Thus, there is a strong need to test theories of AC
without the confounding influence of current technical short-
comings in artificial agent behavior.

The present project has two goals: The first is to develop
an alternative approach for testing ideas about artificial cu-
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Figure 1: Left: Example structures built by children in Experiment 1. Each child was given 9 different blocks and one minute
to construct a “cool tower”. Right: Mean interesting ratings for each tower by tower height. Taller towers were consistently
judged as more interesting by adult raters.

riosity against human behavior. Instead of trying to mea-
sure complex artificial construction behaviors and comparing
them with what people do, we characterize what people find
interesting about pre-built structures. If we assume people
choose to imagine and build what they find interesting, then
the same visual stimuli that are interesting to people should
also be interesting to AC models – that is, they should elicit a
strong feedback signal to construct these over “boring” stim-
uli. Thus, judgments of “interestingness” provide an observ-
able that current and hypothetical forms of AC should quan-
titatively account for.

The second goal is to propose quantitative features of block
towers that can predict interestingness judgments of these
stimuli – and thereby indicate what makes a tower desirable to
build. While such features may not immediately generalize to
theories of AC in other physical domains, any satisfactory and
general form of AC should at least explain why these particu-
lar features are interesting in the tower domain. Furthermore,
simple heuristic models of tower interestingness may suggest
what features a successful AC model should be sensitive to
– for instance, the number of discrete objects arranged in a
stable configuration.

We performed two experiments to probe judgments about
interesting block towers. In the first, children were instructed
to “build a cool tower” with a set of variably shaped blocks.
This was conducted at the end of a larger experiment which
explored how children selectively drop and collide these same
objects. This exploratory study allowed us to observe the
types of structures that children were inherently motivated to
build and to measure which of these towers adults found inter-
esting, testing our core assumption that interestingness judg-
ments can provide us with clues about assembly behaviors.
The results of this first study suggested that interestingness
was related to tower height; however, they did not indicate

whether tall towers were interesting per se or whether they
were interesting because they contained a more diverse set
of blocks, were more precarious (and therefore represented
harder feats of construction), or simply more visually pleas-
ing.

To distinguish these possibilities, our second experiment
asked for both interestingness and stability ratings on a set
of parametrically controlled tower images, which were gen-
erated in the physically realistic, Unity-based simulation en-
vironment ThreeDWorld (Gan et al., 2020). This study di-
rectly manipulated the height and stability of towers, and re-
vealed that both of these factors led to more interesting struc-
tures. By contrast, differences in color and viewpoint did
not impact ratings of interestingness, suggesting that these
judgments were primarily about towers’ physical properties,
rather than incidental aspects of their visual appearance. Fi-
nally, we found that we could predict perceptual judgments
with simple heuristic models of tower precariousness, com-
puted from the ground truth states of the simulated towers and
counterfactual physical dynamics (i.e., stochastically shifting
blocks horizontally.) Thus, people may base their judgments
of towers on particular inferences about their static geome-
try and possible dynamics, with the most interesting towers
being taller and on the verge of falling over.

The fact that judgments of towers are both reliable and pre-
dictable suggests that current and future AC models should
register more interesting towers as more worthy of building.
Our results also hint that successful AC models will need to
represent physical, not just visual, features of their environ-
ment, and general forms of intrinsic motivation should “re-
duce to” the particular physical feature combinations iden-
tified here when placed in a block tower-building environ-
ment.

980



Experiment 1: What kind of block towers are
children motivated to build?

Our preliminary study explores the properties of towers chil-
dren find intrinsically motivating to build, which could fur-
ther lend insight to a common origin of physical ”interesting-
ness” judgements among adults. We collected images of tow-
ers built by children using plastic blocks in an open-ended,
semi-controlled assembly task. Then we elicited adult ratings
of how interesting these tower structures were.

Methods

Participants We recruited 53 children from the Children’s
Discovery Museum of San Jose and Bing Nursery School.
Participant exclusions were made based on cases where i)
child received help from researcher during tower assembly
task or ii) the parent did not consent for video recording of
study. After exclusions, results from 50 children were an-
alyzed, including 6 2-year-olds, 17 3-year-olds, 15 4-year-
olds, 10 5-year-olds, and 2 6-year-olds.

Stimuli Stimuli were 3D-printed plastic objects produced
using Blender 3D-modeling software. The nine objects were:
bowl, cone, dumbbell, octahedron, pentagonal prism, pipe,
pyramid, torus, and triangular prism. The printed objects
were all yellow, rigid plastic material and designed to fit com-
fortably in a child’s hand (dimension range: 3.8-10.1 cm).
Examples of these blocks can be seen in the sample towers
shown on the left of Figure 1.

Procedure We asked the child to “make a cool tower” with
any of the nine toy blocks for about one minute. A video
camera was used to record the play session from an angle
above the tower assembly space. Once the child completed
the task, a researcher took a photo of the final tower to be
saved for annotation.

Results

The average height of the constructed towers was 3.43 blocks,
95% CI [3.10, 3.76]. We examined tower height as a function
of age, and found that older children tend to build taller tow-
ers (r(44) = .32, p = .028).

To investigate what made these towers “interesting” to
adult viewers, we recruited 25 adults on Prolific to provide in-
terestingness judgments ranging from 1 (not interesting at all)
to 5 (extremely interesting). We estimated the effect tower
height had on the rated interestingness using linear mixed ef-
fects models (LME) with a single fixed effect for tower height
and random effects for each rater and tower. We found that
the height of the tower was indeed a strong predictor of the
rated interestingess; (b= 0.377, t = 6.823, p< 0.001). While
it is possible that tall towers are interesting by virtue of being
tall, we hypothesized that the height and stability interact to
predict what adults find interesting to look at. To test this, we
designed a tower rating experiment based on computer gen-
erated towers inspired by the child-built structures.

Experiment 2: What kind of block towers do
adults find most interesting?

From the results of Experiment 1, we were motivated to more
systematically investigate the relationship between tower
height and stability in humans’ perceptions of interestingness.

Methods

Participants We recruited 180 US adults via the online
platform Prolific who were randomly assigned to either a sta-
bility or interestingess conditions. Prior to data collection, we
determined to exclude any participants who did not complete
the entire study, or who failed to pass two attention checks
presented during the experiment. In total 17 were excluded,
resulting in 74 participants in the interesting condition, and
93 in the stability condition.

Stimuli The towers were generated using the ThreeDWorld
physics environment (Gan et al., 2020). Each tower was com-
prised of cube blocks that were stacked vertically, and sys-
temmatically generated to vary along the horizontal and ver-
tical axes. Variation along the horizontal axis was determined
according to a jitter in the x–position of each block, and vari-
ation in the vertical direction was determined by the num-
ber of blocks in the tower. We used a 3x3 design with three
levels of x–jitter (“low”, “medium”, and “high”) and three
possible numbers of blocks (2, 4, or 8 blocks). Jitter was de-
fined by the variance of x–positions of each of the blocks.
The x–coordinate of each block in the “low”, “med”, and
“high” condition towers were sampled from a uniform dis-
tribution ranging from 0, 1/3, and 1/2 block widths from cen-
ter, respectively. This sampling method yielded towers whose
variance along the x–axis subtly increased across conditions.
Within each condition we generated 8 towers from two dif-
ferent viewpoints yielding 144 target towers. The left side
of Figure 2 shows example stimuli in each of the block num-
ber/jitter conditions, rendered from the upper right viewpoint.

Procedure Participants were randomly assigned to provide
ratings on either tower interestingness or stability for 144
tower images. The order of the towers was randomized and
each tower was shown individually. Participants rated the
tower on a 1-5 scale ranging from “not interesting (stable)
at all” to “extremely interesting (stable).”

Results

Our goal was to characterize which features of pre-built struc-
tures people find interesting. Because interestingness has not
previously been studied in this domain, we first measured its
reliability and compared it to that of stability ratings, which
have been more widely studied. We then conducted a series
of model comparisons to test how much these interestingness
judgments rely on purely visual properties (i.e., color or view-
ing angle), geometric properties (i.e., height), or more com-
plex physical properties (i.e., precariousness, as revealed by
counterfactual simulations of physical dynamics).
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Figure 2: Left: Example stimuli generated in the ThreeDWorld physics environment. We utilized a 3x3 stimulus design where
we systemmatically varied height (2,4,8 blocks) and x–jitter (low, med, and high jitter). Each tower was also rendered from
two viewpoints, from the lower left and upper right. Right: Mean interesting and stability ratings for each tower. Towers with
more blocks and greater jitter were rated as more interesting, and there was a significant interaction between the two variables.
Viewpoint did not significantly predict either measure.

Interestingness judgments are as reliable as stability judg-
ments. We first compared how reliable ratings across par-
ticipants were for the stability versus interestingness judg-
ments. Both conditions had very high reliability in average
tower rating across participants; mean Spearman-Brown cor-
rected correlation coefficient for split-halves of participants
in the “stable” condition (0.997±0.001) and the “interesting”
condition (0.996±0.001). We also calculated the proportion
of responses for each tower that matched the mode response
for that tower. Again, there was strong agreement across in-
dividuals in both conditions; proportion of modal agreement
51.7±2.7 and 54.2±3.1 for stable and interesting judgments,
respectively. Finally, the average standard deviation of re-
sponses within each tower was similar across conditions; 0.79
and 0.77 for stable and interesting, respectively. These results
suggest that interestingness ratings are highly reliable across
participants and comparable in reliability to stability ratings.

Physical tower parameters account for interestingness
judgments. Assessing stability calls for physical inferences
about a structure and its components, rather than mere judg-
ments of low-level visual properties like viewing angle, color,
texture, and apparent (versus actual) size. Insofar as sta-
bility and interestingness are related, we hypothesized that
a tower’s generative physical parameters, (1) number of
blocks/height (“height” in Figure 4) and (2) amount of jit-
ter in the block positions (“jitter” in Figure 4), would predict
interestingness ratings better than the purely visual parame-
ter, (3) viewpoint (“viewpoint” in Figure 4). The first three
rows of Figure 4 shows the R2 values for LME models with
random effects for participant and tower, and fixed effects

for viewpoint (R2 = 0.000), jitter (R2 = 0.017), and height
(R2 = 0.515). Consistent with Experiment 1, height supplied
the majority of predictive power in interesting ratings. To test
whether (2) and (3) further improved performance above (1)
alone, we conducted likelihood ratio tests on a sequence of
LME models. We found that, as predicted, a model with an
interaction between (1) and (2) performs significantly better
than a simpler model with (1) and (2) as additive fixed ef-
fects (χ2(2) = 32.699, p < 0.001). The right side of Figure
2 shows the interaction of (1) and (2) in interestingness and
stability ratings. Adding (3) as a fixed effect to the interac-
tion model did not significantly improve model performance
(χ2(1) = 1.726, p = 0.189), consistent with our hypothesis
that both types of judgment would be insensitive to physically
irrelevant properties of the tower stimuli.

Judgments are based on visual inference of physically rel-
evant tower properties. The interaction of height and jit-
ter strongly suggested that people make interestingness judg-
ments by inferring physical features of the scene they are
viewing and performing some (possibly complex) compu-
tation on those features. To test this idea, we created new
models for predicting ratings from various components of the
tower’s visible silhouette and its “ground truth” physical state
in the simulator (rather than from the discrete stimulus cate-
gories above, which participants did not know about.) Specif-
ically, we calculated the height of each tower and the vari-
ance in the horizontal positions of its blocks (“variance” in
Figure 4), properties that can be visually estimated to some
degree; this approach circumvents the question of how ac-
curately people can actually estimate the physical state of
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a set of objects from visual input, so the predictive power
of our models should be considered an upper bound. We
again found that, even with image-computable features, an
interaction between height and x-variance (b = 1.906, t =
6.451, p < 0.001) – accounted for a significant portion of
variance in interestingness ratings. Likewise, adding a non-
physical visual property, the mean RGB color intensity across
blocks (“color” in Figure 4), did not improve this model
(χ2(1) = 1.122, p = 0.289).
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Figure 3: A counterfactual analysis of tower stability. Orig-
inal towers were generatively resampled with noisy pertur-
bations to block placement. The x-axis shows the “counter-
factual sensitivity” – the percent of counterfactual towers that
fell; and y-axis shows the mean interestingness rating for each
tower.

A counterfactual model of surprisal predicts interesting-
ness. The models explored so far appeal directly to proper-
ties specific to our tower stimuli, namely their height, their
arrangement of blocks, and their colors. While these models
explain a substantial proportion of the variance in interesting-
ness judgments, they are heuristics that do not apply to more
general physical stimuli and therefore could not act directly
as intrinsic motivation signals. A more general model of in-
terestingess would need to explain why taller and more pre-
carious towers are more interesting without direct reference
to their being towers or to tower-specific properties. Inspired
by work on dynamical simulation as a model of judging phys-
ical stimuli (Battaglia, Hamrick, & Tenenbaum, 2013) and by
the fact that towers judged less stable were also judged more
interesting (Figure 2), we developed a “counterfactual sensi-
tivity” model of interestingness (“counterfactual sensitivity”
in Figure 4). For each of the original towers, we created
25 counterfactual versions in which each block had a 50%
chance of being shifted from its original location in a random
horizontal direction and with a random magnitude (sampled
from a normal distribution with mean 0 and standard devi-
ation equal to 1/4 of the block width.) The counterfactual
sensitivity of each tower was then computed as the propor-
tion of these alternative towers that, after forward simulation,

reached a different static equilibrium from the original – that
is, fell over.

Remarkably, this single feature explained most of the
variance in mean tower interestingness ratings (Figure 3).
Consistent with our hypothesis, as counterfactual sensitiv-
ity increased (high proportion of counterfactual towers fell
over), mean interestingness ratings increased (b = 2.846, t =
18.716, p < 0.001). We also found that a LME model that
adds this counterfactual measure outperformed the height/x-
variance interaction only model (χ2(1) = 13.298, p < 0.001).
Crucially, constructing this model does not depend on the
stimuli being towers: any arrangement of physical objects
could be counterfactually perturbed and simulated in this
way, then assessed for whether the outcome was the same or
different from what was observed. Thus, capturing a proba-
bilistic notion of “how the scene might have been” (Battaglia
et al., 2013) could provide a more general principle underly-
ing interestingness judgments. This formulation also closely
mirrors some accounts of artificial curiosity, in which agents
find it intrinsically rewarding to see outcomes that violate
their expectations of how a scene will unfold (Achiam & Sas-
try, 2017; Haber et al., 2018). In the present domain, this
measure of surprisal captures a notion of tower precarious-
ness, but it could be extended to explain the interestingness
of other entity types (e.g. nonrigid bodies, fluids) and physi-
cal scenarios (e.g. collisions, drops). In future work we will
explore the extent to which dynamical simulation and infer-
ence can capture what makes other domains interesting.

Discussion
Studying intrinsic motivation in the laboratory or in simu-
lated environments has been challenging because curiosity
most naturally arises in complex, open-ended contexts where
current computational models struggle. In this work we be-
gan to address this issue by proposing “interestingness” as a
measure of intrinsic motivation that can be assessed through
perceptual judgments.

The particular stimulus features that people found interest-
ing here suggest clear ways to extend the set of judgments.
Tower height was the dominant predictor of tower interesting-
ness; properties related to “precariousness” – but not physi-
cally irrelevant visual properties – played a second-order role.
These simple features however do not explain all explainable
variance, and indeed even including the mean stability rat-
ings for each tower left much variance to be explained. We
also showed that models inspired by counterfactual simula-
tion can capture much of the variance in mean interestingness
ratings, suggesting there may be domain general relationships
between expectation violation (what might have been) and
what people find interesting.

Further work will be required to find out what else deter-
mines interestingess. In our experiments, tower height was
confounded with the number of blocks (since these were of
uniform size), so future work should test whether equally tall
towers made of variable numbers of blocks are more or less
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Figure 4: Linear mixed effects model comparisons; columns denote fixed effects and rows with a circle denote that effect was
included in the model; all models included random effects for participant and tower. Interactions between fixed effects are
denoted with a “:”. Blue columns are experimental conditions; yellow columns are visually computable features (tower height
is both an experimental and image computable feature); red columns are features that require physical inference. Marginal R2

and AIC are computed for each model.

interesting. The “cool towers” built by children in Experi-
ment 1 also hint that including non-cubic blocks may produce
even more interesting towers, as they allow for both new pre-
carious shape combinations and non-rectilinear geometries.
By expanding the set of stimulus variables and range of per-
ceptual judgments, these further experiments will give an in-
creasingly precise target for artificially curious models to hit.

Our results indicate that interestingness judgments could
be used to compare people and computational accounts of cu-
riosity. Because judgments spanned a range of interestingness
values and people generally agreed about which tower stimuli
were interesting, these data are rich targets for such accounts
to explain: if a given model of artificial curiosity observed
or imagined a highly rated tower and found it boring (i.e.,
the tower did not elicit a strong construction-motivating sig-
nal), then the model would not be a satisfactory explanation
of human curiosity and exploratory behavior. Testing exist-
ing forms of artificial curiosity on the data collected here is
therefore a critical next step in this line of work.

Already, though, our results raise several possible reasons
that current artificial agents do not build elaborate structures.
Taller towers are dramatically more interesting than two-
block “towers” here, but artificial agents struggle to learn
even to stack one object on top of another when placed in
a physically realistic environment and given a realistically
large set of plans to choose from (Haber et al., 2018). Thus,
whether or not they would perceptually judge a tall tower as
worth building, the current generation of reinforcement learn-
ing algorithms is likely hampered more directly by technical
failure to get off the ground (Curtis, Xin, Arumugam, Feige-
lis, & Yamins, 2020). Models most interested in situations
that violate their model of the world (Schmidhuber, 1991;

Pathak et al., 2017; Haber et al., 2018) may never encounter
tall towers, let alone acquire expectations about them; mod-
els of artificial curiosity focused on novelty (Burda, Edwards,
Storkey, & Klimov, 2018) likewise will not come across tall
towers by chance. Intuitively, methods that involve setting
“interesting” goals for oneself (Campero et al., 2020) and
tracking learning progress (Kim et al., 2020) might nudge
agents toward building tall towers, but to be useful models
they will have to explain why these structures are interesting
– in other words, why general curiosity “reduces to” build-
ing tall towers in this simple environment. All of these con-
siderations further stress the need to test theories of artificial
curiosity as independently as possible from models of motor
behavior and planning.

Finally, our findings suggest a few ingredients that may be
important for an artificially curious agent. People appear to
ignore physically irrelevant properties of stimuli (viewpoint,
color) and apply physical intuition about stability in judging
towers. As such, computational models that abstract visual
inputs into physical objects (Bear et al., 2020) and simulate
their dynamical behavior (Battaglia et al., 2013; Li et al.,
2020) may be necessary, though not sufficient (Curtis et al.,
2020), for getting artificial agents to make human-like judg-
ments and building decisions. Directly comparing models
with these ingredients to human judgments will test whether
they give a quantitatively better account of “interestingness”
than simpler models of visual processing. In developing a
new approach to measuring intrinsic motivation, our broader
aim is to better understand what common principles underlie
the rich and complex behaviors that both adults and children
exhibit in realistic physical environments.

984



Acknowledgements
C.H. is supported by a DoD NDSEG Fellowship. D.M.B.
is supported by the Wu Tsai Neurosciences Institute and a
Biogen Fellowship from the Life Sciences Research Founda-
tion. This work was also supported by NSF CAREER Award
#2047191 to J.E.F.

All code and materials available at:
https://github.com/cogtoolslab/

curiotower

References
Achiam, J., & Sastry, S. (2017). Surprise-based intrinsic

motivation for deep reinforcement learning. arXiv preprint
arXiv:1703.01732.

Aubret, A., Matignon, L., & Hassas, S. (2019). A survey on
intrinsic motivation in reinforcement learning.

Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013).
Simulation as an engine of physical scene understanding.
Proceedings of the National Academy of Sciences, 110(45),
18327–18332.

Bear, D. M., Fan, C., Mrowca, D., Li, Y., Alter, S.,
Nayebi, A., . . . others (2020). Learning physical
graph representations from visual scenes. arXiv preprint
arXiv:2006.12373.

Bullock, M., & Lütkenhaus, P. (1988). The development
of volitional behavior in the toddler years. Child Develop-
ment, 664–674.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., &
Efros, A. A. (2018). Large-scale study of curiosity-driven
learning. arXiv preprint arXiv:1808.04355.

Burda, Y., Edwards, H., Storkey, A., & Klimov, O. (2018).
Exploration by random network distillation. arXiv preprint
arXiv:1810.12894.

Campero, A., Raileanu, R., Küttler, H., Tenenbaum, J. B.,
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