
Chapter 16
Integrating Information Flow Tracking
into High-Level Synthesis Design Flow

Wei Hu, Armaiti Ardeshiricham, Lingjuan Wu, and Ryan Kastner

16.1 Introduction

High-level synthesis (HLS) enables hardware designers to write an untimed circuit
description allowing them to focus on architectural design optimizations like
pipelining, task level parallelism, and array partitioning [1]. By removing the
burden of describing cycle accurate behaviors, HLS designers can perform a more
comprehensive design space exploration to better find an architecture that meets the
desired power, performance, and area (PPA) constraints.

While HLS tools are effective at exploring tradeoffs and optimizations related to
PPA, security has largely been an after-thought. The emergence of hardware security
flaws and threats [2–5] has brought a demand for hardware security verification
tools. Due to the high cost (or even technical impossibility) to patch hardware
security vulnerabilities after chip fabrication, identifying and eliminating security
flaws in the early design phase is crucial.

Information flow tracking (IFT) is a fundamental technique for hardware security
verification [6–8]. IFT allows the designer to verify security properties related
to confidentiality, integrity, and availability. An important first step is to create
security enhanced circuit models for accurate description of security-related design
behaviors and formal verification of security properties [9–12]. Some recent

W. Hu
Northwestern Polytechnical University, Xi’an, China
e-mail: weihu@nwpu.edu.cn

A. Ardeshiricham · R. Kastner (!)
UC San Diego, La Jolla, CA, USA
e-mail: aardeshi@ucsd.edu; kastner@ucsd.edu

L. Wu
Huazhong Agricultural University, Wuhan, China
e-mail: wulj@mail.hzau.edu.cn

© Springer Nature Switzerland AG 2022
S. Katkoori, S. A. Islam (eds.), Behavioral Synthesis for Hardware Security,
https://doi.org/10.1007/978-3-030-78841-4_16

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78841-4_16&domain=pdf
mailto:weihu@nwpu.edu.cn
mailto:aardeshi@ucsd.edu
mailto:kastner@ucsd.edu
mailto:wulj@mail.hzau.edu.cn
https://doi.org/10.1007/978-3-030-78841-4_16


366 W. Hu et al.

works [13–15] incorporate security models in HLS to allow automated synthesis
of secure hardware accelerators. Ideally, these security models can be seamlessly
integrated into the standard EDA flow in order to allow security to be verified
alongside traditional design constraints during design space exploration [16, 17]
without incurring additional design burdens (e.g., learning new design languages
and tools) on hardware designers. However, securing hardware accelerators is still a
significant challenge for HLS [18].

We aim to answer the question of “how do we best integrate security into
HLS hardware design flow?” To better understand this question, we describe a
security aware HLS flow that integrates into a property driven hardware security
verification flow [6]. We enhance the HLS design flow by integrating information
flow tracking to allow the verification of security properties. We discuss the value of
performing information flow security verification at the register transfer level (RTL);
we develop precise IFT methods; we present fine-granularity information flow
model formalizations, and we illustrate how hardware security properties related to
confidentiality, integrity, isolation, constant time, and malicious design modification
could be formally verified using standard EDA verification tools. Specifically, we
make the following contributions:

1. Proposing a method to enhance the backend of HLS by employing information
flow security verification using standard EDA tools;

2. Developing precise hardware IFT methods at the register transfer level and
deriving security enhanced circuit model formalizations in a standard HDL;

3. Presenting experimental results to demonstrate the effectiveness of our security
verification techniques in proving hardware security properties and identifying
security vulnerabilities.

The remainder of this chapter is organized as follows. Section 16.2 provides a
background discussion on how to integrate security into the HLS design flow. We
lay out a basic methodology for security enhanced HLS design flow. Section 16.3
illustrates how hardware security properties can be modeled and verified from
the perspective of information flow—a frequently used technique for enforcing
security in hardware designs. In Sect. 16.4, we elaborate on our efforts in devel-
oping standardized hardware security models for security verification at the RTL.
Section 16.5 presents experimental results to demonstrate the effectiveness of our
security verification solution in identifying security flaws. We conclude the book
chapter in Sect. 16.6.

16.2 Background

HLS allows designers to specify circuits in a more abstract manner. The key feature
is that HLS specifications are algorithmic or untimed—designers do not need to
describe circuit behaviors on a cycle-by-cycle basis. This allows them to more
efficiently build and verify their hardware designs.
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Fig. 16.1 Hardware IFT at different levels of abstraction

An HLS designer provides a specification in a high-level language (e.g., C,
C++, SystemC). The designer then goes through an optimization process to create
different architectures, and hopefully find one that suits their needs with respect
to the traditional circuit metrics of performance, power, and area. This process
involves adding HLS optimizations involving pipelining, data partitioning, and data
representation to find a final design that best fits their design goals. HLS tools
translate the high-level algorithmic specification into a register transfer level (RTL).
RTL provides more details about the functionality of the circuit. In particular, it
has cycle accurate behaviors. This RTL is then gradually translated down to lower
abstraction levels and eventually a physical layout (GDSII).

Figure 16.1 shows the hardware design flow using HLS as a design entry point.
At higher of abstraction, we use models of computation that describe hardware
design behaviors, e.g., algorithms and functions. While these high-level entities are
more concise, they abstract away a huge amount of information that is needed for the
final hardware implementation. As the synthesis process proceeds to RTL and gate
level, the hardware design is represented using more concrete circuit models such as
function units and standard macro cells. The timing behavior of hardware designs
also becomes more accurate as the design description is refined; RTL provides
cycle level accuracy while gate level and lower abstractions yield sub-cycle timing
information. Additionally, area models are better understood as more details about
gate sizes, their locations, and wire lengths become available.

In a similar sense, hardware security verification can be performed at different
abstraction levels. There are projects that perform verification on algorithmic
specifications [13–15]. Other hardware security techniques work at RTL [11, 12, 19–
21]. Some techniques perform verification at the gate level [9, 22] and even some
take into account analog characteristics [23].
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It is important to select the right abstraction when employing secure information
flow analysis for hardware design [24]. The key question that we aim to answer
is: “What is the best level of abstraction for information flow analysis for an HLS
design flow?” To try to better understand these tradeoffs, we perform a comparison
of hardware IFT techniques. We focus on the HLS, RTL, and gate levels which are
commonly considered in the hardware security verification flow.

At the algorithmic level, the hardware design is described using highly abstrac-
tive design models. As a result, we need to make very conservative assumptions
about design behaviors and employ conservative rules for security label propagation.
In addition, it is difficult to model timing flows (see Sect. 16.3) due to the lack
of accurate timing information. Additionally, distinguishing implicit flows from
explicit ones is a challenging task at this level. The effect of conditional operations
can spread across a wide range of operations, which are hard to track. The benefit of
modeling IFT at HLS is that the verification is typically faster than that at lower
levels due to the simplified circuit models and utilization of conservative label
propagation rules.

Performing information flow analysis at the RTL allows analysis that requires
timing accurate behaviors. This includes timing side channels, which would not be
exposed when considering IFT using an algorithmic (HLS) abstraction. Addition-
ally, interactions related to sharing resources are also apparent at the RTL but are not
visible at higher abstraction levels. This includes shared registers, shared functional
units, memories, and interfaces. Understanding the implications of resource sharing
is a particularly challenging aspect of hardware security and performing IFT at the
algorithmic level would abstract away some important aspects related to this.

Moving to the gate level for IFT analysis provides some additional benefits since
more details of the circuit are available. Sub-cycle timing and switching behaviors
are better understood which can provide better analysis of security concerns related
to timing or switching. Unfortunately, as the hardware design refines, it is translated
into a significantly larger number of gates. This poses big challenges in scalability
of IFT techniques and security verification performance. It is generally known to
the EDA community that RTL verification is much easier and faster than gate-level
verification methods [25]. That is an important reason why recent hardware IFT
techniques have gravitated towards the RTL for better performance and scalability.

Clearly there are tradeoffs for performing analysis at these different abstraction
levels. The lack of details about cycle level timing and resource sharing severely
limit the type of information flow analysis that can be done using an algorithmic
description. This requires the IFT logic to be very conservative which forces the
designer to be overly conservative in their security decisions. This points to the
need to perform the analysis at a lower level of abstraction.

Gate-level analysis has sub-cycle timing information and a clear notion of
resource sharing. Additionally, the information flow analysis is simplified in some
regards as the basic units are logical operations; analyzing flows of information is
a lot easier when computation is broken done at this level of granularity [22]. Yet,
some higher-level information about control is lost in the translation to gates. For
example, it is hard to differentiate between control and data flow since everything
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Fig. 16.2 Secure hardware design flow that employs information flow security verification for
secure vulnerability detection

is just Boolean gates. This means that timing flows cannot be separated from
functional flows [20, 26].

We argue that IFT analysis performed at the RTL provides the best tradeoff
between scalability and ability to differentiate different flows of information
including timing side channels, vulnerabilities related to resource sharing, and
those related to control and data path interactions. We make a case for this in
subsequent sections. But before we do that, we need to describe the hardware
security verification process and some background on information flow analysis.

Figure 16.2 describes a general framework for integrating information flow
analysis into an HLS security verification flow, which follows a property based
approach to hardware security [6]. The framework takes an algorithmic hardware
description and a set of security properties. The description is synthesized in a
typical fashion using HLS, logic, and physical synthesis. The key question that
we consider is when to generate the security models and perform the security
analysis. Our experiments and discussions attempt to understand value and tradeoffs
of performing this analysis at different levels.

We use an IFT analysis method that generates a security model for analysis.
The security model is derived from the original circuit; it is fully synthesizable,
but separate circuit, that can be analyzed using existing EDA verification tools.
The security model is used to verify information flow security properties specified
using standard property specification languages such as SystemVerilog Assertion
(SVA). Since both the formal circuit model and security properties are described
with standard HDLs, the verification process can be performed through simulation,
FPGA prototyping or emulation as well as formal proof. If the hardware design
adheres to all desired security properties, it is ready for design output. Otherwise,
the security verification fails, indicating potential existence of unintentional design
flaws or intended malicious design modifications. In such a case, the design process
should iterate until the design passes security verification. The security model is
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not required to be added to the final circuit though it can be if one desires run-time
security violation checking.

16.3 Hardware Information Flow Tracking

Information can flow through hardware designs in a variety of different ways.
This includes logical flows and physical flows. This book chapter primarily aims
to understand the flow of information in hardware designs during the early design
phase. Thus, we only account for the logical information flows.

Logical information flows can be further classified into explicit and implicit.
Explicit information flows happen when data is explicitly assigned to a destination
operand while implicit flows usually occur when some operands are conditionally
updated. The following code snippet illustrates the difference between these two
types of information flows.

1: key_hash := hash(key)
2: if(key_hash == CORRECT_HASH_RECORD)
3: unlock := 1
4: else
5: unlock := 0
6: end if

In this example, there is an explicit flow from key (or more accurately) hash(key)
to key_hash resulting from the first explicit assign statement (line 1). There is also a
piece of implicit information flow from key_hash to unlock even if key_hash is not
directly assigned to unlock (lines 2–5). This is due to the fact that by observing the
status of unlock, we can learn if the key_hash matches the record.

From the example, explicit flows are easy to capture while implicit flows are
more difficult to determine. An even more subtle case of implicit flow is timing flow,
which is caused by conditional updates of stateful elements [20]. The following code
snippet shows a case of timing flow caused by fast paths (lines 1–2 and lines 3–4) in
the exponentiation unit. An unauthorized process may be able to infer the exponent
by observing the amount of time take to calculate the exponentiation.

1: if(exponent == 0)
2: power := 1
3: else if(exponent == 1)
4: power := base
5: else
6: power := exp(base, exponent)
7: end if

From the above examples, information flows in hardware design can lead to
leakage of protected information and cause security violation. In order to understand
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and further prevent such leakage, we need to specify and enforce information flow
security properties, which will be discussed in the following subsection.

16.3.1 Information Flow Security Properties

Undesired flows of information could violate different security policies such as
confidentiality, integrity, and isolation. For instance, in the key verifier example
from the previous subsection, flow of secret information from the key_hash variable
to the unlock signal violates the confidentiality property if the adversary has access
to the value of unlock signal. To detect such violations, information flow security
properties are added to the design in forms of logical assertions. An assertion in the
form of assert (key !→ unlock) detects the confidentiality breach in the key verifier
example. Here, the “!→” operator indicates the absence of information flows from
the left-hand side variable to the right-hand side variable.

Information flow properties capture security relevant design behavior which
cannot be expressed by existing property specification languages for functional
verification. In the following we review the major security policies which are
specified using the model of information flow.

• Confidentiality: The confidentiality property analyzes the relation between
secret data and publicly observable ports. To preserve confidentiality, we need
to constrain the flow of information from data objects which contain secret
information. For instance, in a cryptographic core, confidentiality is stated as
assert (key !→ pub), where pub represents public ports that are not encrypted.

• Integrity: The Integrity property is the dual of confidentiality and refers to the
information flow from untrusted data to critical components in the design. For
instance, to preserve integrity of the program counter (PC) register in a processor,
there should be no flow of information from the public inputs such as the Ethernet
port to the PC. This property can be specified as Ethernet_port !→ PC.

• Isolation: The isolation property denotes eliminating information flow between
two entities. As an example, consider a SoC where the AES core and the IIR
filter should be isolated. This expectation is modeled by assert (AES_out !→
IIR_in && IIR_out !→ AES_in). Note that isolation is a two-way policy and
is enforced on both cores.

• Timing Side Channels: Information flow leakage through timing side channel
can be used to break confidentiality even in cases where the secret data is not
directly readable. Hence, to avoid timing side channel attacks, we need to elim-
inate timing leakage. For instance, to detect timing leakage in a cryptographic
core, we need to specify that the secret key does not flow to the cipher via timing
channels. This is stated as assert (key !→t ime cipher). Here, “ !→t ime” operator
represents absence of timing flows.

• Hardware Trojans: Information flow properties can detect certain class of
hardware Trojans where a malicious circuitry is inserted to generate unauthorized
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flow of information [27]. For example, in the Trust-Hub benchmarks [28],
hardware Trojans are added to cryptographic cores to transfer the secret key to
the output “Antena”. The information flow property to detect these Trojans can
be formulated as assert (key !→ Antena).

The information flow security policies can be translated to a set of SystemVerilog
assertions written over the instrumented design. More specifically, an IFT policy
modeled as assert (A !→ B) is translated to the following properties, where At and
Bt are the security labels of A and B, respectively.

assume (A_t == 1);
assume (B_t == 0);

In this example we assume both A and B have single bit labels. A timing side
channel policy modeled as assert (A !→t ime B) is verified using the following
properties, where B_t ime is the timing security label of B.

assume (A_t == 1);
assume (B_time == 0);

16.3.2 Fundamentals of Hardware IFT

Hardware IFT is a commonly used technique for measuring the flow of information
in circuit designs. The core idea behind hardware IFT is to associate data objects
in the hardware design with a label for encoding security attribute, e.g., sensitive
information can be labeled as secret while information from an open computing
environment should be marked as untrusted. These meta data will be processed
along with the data objects to determine the security attribute of the outputs. The
output label will be updated according to the flow of information. Specifically, an
input flows to the output if and only if the input has an influence on the value of the
output. In this case, the security label of the input will be involved in determining the
security label of the output. Thus, information flows can be measured by observing
the relation between the input and output security labels. Figure 16.3 uses streaming
cipher as an example to illustrate how hardware IFT is performed.

Apart from the original logic that XORs the plaintext (i.e., mi) and key (i.e., ki)
streams shown in Fig. 16.3a, we need to associate the inputs with security labels,
i.e., m_ti and k_ti , respectively. Additional IFT logic is then instantiated to process
these metadata and calculate the output security label as shown in Fig. 16.3b. The
way in which the IFT logic is implemented depends on the label propagation policy
employed. This example simply takes the logical OR (i.e., the upper bound) of input
security labels as the security label for the output. There are more complex but also
more precise label propagation policies as we will illustrate in Sect. 16.4. Before
that, we briefly cover the fundamental aspects of hardware IFT.

It is possible to succinctly describe the flow relationships on the Boolean
operations. IFT logic formalizations and generation algorithms lay the theoretic



16 Integrating Information Flow Tracking in HLS Design Flow 373

Key generator

mi
ci

ki

m_ti

k_ti

m_ti

cigol TFIcigol lanigirO

)b()a(

Fig. 16.3 Hardware information flow tracking uses IFT logic for label propagation. (a) The data
encryption logic for stream ciphers. (b) The IFT logic for the encryption operator

Table 16.1 IFT logic for Boolean operations

Gate Boolean function IFT logic

AND-2 f = g · h L(f ) = g · L(h)+ h · L(g)+ L(g) · L(h)
OR-2 f = g + h L(f ) = g · L(h)+ h · L(g)+ L(g) · L(h)
XOR-2 f = g ⊕ h L(f ) = L(g)+ L(h)
INV f = g L(f ) = L(g)
AND-N f = f1 · f2 · · · fn L(f ) = ∏n

i=1(fi + L(fi)) − f

OR-N f = f1 + f2 + · · · + fn L(f ) = ∏n
i=1(fi + L(fi)) − f

XOR-N f = f1 ⊕ f2 ⊕ · · · ⊕ fn L(f ) = ∑n
i=1 L(fi)

groundwork for hardware IFT [29]. Table 16.1 shows the flow tracking logic for
Boolean operations where L(·) denotes the function for calculating security label,
sum represents logical OR while product means logical AND. The minus operator
means excluding that term from the equation.

The IFT logic shown in Table 16.1 can be extended to Boolean operations of
variable widths, e.g., using the generate feature of HDL. In this way, we construct an
IFT library for deriving IFT methods as we will introduce in the following section.
The role of the IFT library in creating IFT logic for large circuits is similar to
technology library in technology mapping.

16.4 Register Transfer Level Information Flow Tracking

RTLIFT software accepts a hardware design implemented in the Verilog language
and generates functionally equivalent Verilog code which is instrumented with
information flow tracking logic. The outputted code is described at the same
abstraction level as the input design. This is achieved by defining label propagation
rules for RTL language constructs eliminating the need to synthesize the input
design to a netlist. The code generated by RTLIFT can be analyzed by standard EDA
verification tools and allows leveraging decades of research on functional testing to
assess security properties of hardware designs. If the instrumented design passes
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Fig. 16.4 Tracking explicit flows via RTLIFT. (a) Input Verilog code. (b) RTLIFT library for and
operation. (c) Instrumented Verilog code

the security verification, the original code can be used for fabrication. Otherwise,
the original code should be modified, instrumented, and verified again.

RTLIFT enables tracking both explicit and implicit flows. Flow tracking starts by
extending each design component (e.g., wires and registers in a given Verilog code)
with a label that carries out information regarding the security properties of the data.
After extending the variables with security labels, every HDL operation is replaced
with an IFT-enhanced operation. An IFT-enhanced operation is functionally equiva-
lent to the original operation, but it also includes the logic for tracking explicit flows
through that operation. The IFT-enhanced operations are defined in RTLIFT library
for all valid Verilog operations. Figure 16.4 shows an example of tracking explicit
flows at RTL.

Tracking only explicit flows might inaccurately report the absence of information
flow by ignoring existence of implicit flows through conditional statements. To
capture these flows, we need to obtain a list of variables which affect the execution of
each statement. The logic for tracking the implicit flows can be generated using this
list with different levels of precision. To implement a conservative IFT approach,
any usage of tainted conditions should yield a tainted output. To have more precise
flow tracking, we need to figure out if different outcomes are possible for the
right-hand side of an assignment, assuming the conditions were flipped. Using this
approach, we can track the implicit flow through each conditional statement by
modeling it as a multiplexer.

To illustrate the idea, we show implicit flow tracking for a simple example shown
in Fig. 16.5. Here, e1_t and e2_t represent the explicit flows from expressions
e1 and e2. The imprecise approach, as shown in Fig. 16.5b, marks the output of a
conditional statement as tainted whenever the condition is tainted. The precise IFT
logic specifies that information flows from the condition signal to the output only
in cases where the condition is tainted while both inputs are tainted or they have
different Boolean values.
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Fig. 16.5 Tracking implicit flows via RTLIFT. (a) Input Verilog code. (b) Verilog code instru-
mented with imprecise logic. (c) Verilog code instrumented with precise logic. Tracking logic for
implicit flows are highlighted

Fig. 16.6 AST based RTLIFT overview

Figure 16.6 gives an overview of an Abstract Syntax Tree (AST) Based RTLIFT
tool. The IFT instrumentation is done by analyzing the data flow graph of the input
design. The data flow graph is collected by using Yosys frontend compiler [30]
to transform the code to its AST representation. RTLIFT analyzes the node of
each assignment statement via in-order traversal. And for each operation, it adds
a module from the IFT library. RTLIFT considers a single bit label for each variable
bit. Here, a high value indicates either sensitive or untrusted value, depending on
the property to be verified.

The AST generated by high-level HDL frontends are further converted into the
RTLIL main internal data format for further design optimization in Yosys. After-
wards, the RTLIL representation can be converted into various formats including
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Verilog and ILANG. We provide another RTL hardware IFT method that targets
RTLIL to leverage the synthesis optimizations in Yosys.

The RTLIL defines design objects such as module, cell, wire, process, and
memory. For themodule and wire objects, we only need to extend the original design
variable list with security labels. We also assign one-bit security label for each data
bit. Similarly, the IFT logic for cell design objects can also be created by mapping
these cells into a standard IFT logic library. The process design objects represent
the if–then–else and case statements. These are the most challenging steps in RTL
tracking logic generation. We take an approach similar to AST based RTLIFT to
create IFT logic for processes.

16.5 Experimental Results

This section presents experimental results to better understand the tradeoffs of
when to perform IFT analysis. We start with some concrete design examples to
demonstrate the effectiveness of our information flow security verification method
in detecting design flaw, timing channel and malicious design modification in
Sect. 16.5.1. Section 16.5.2 performs an information flow security verification
performance analysis. Section 16.5.3 performs an analysis of hardware IFT logic
generated from different RTL intermediate representations and gate-level netlist
in terms of complexity and precision. In Sect. 16.5.4, we demonstrate our design
methodology that integrates IFT into HLS flow for hardware security verification
using a RSA example.

16.5.1 Security Verification Results

16.5.1.1 Design Flaw

We use a Present encryption core from Opencores [31] to demonstrate how our
security verification method can be used to detect design flaws that can cause
security issues. Figure 16.7 shows the architecture of the core.

We create RTL IFT logic for the core using the IFT logic generation method
introduced in Sect. 16.4 and label the lowest plaintext bit (i.e., message[0]) as
secret. We then formally verify the diffusion security property stating that each
plaintext bit should affect (or flow to) multiple bits in the ciphertext. The property
can be formalized as follows:

assume message_t = 64’h01
assume key_t = 80’h00
assert cipher_t[0] == cipher_t[1]
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Fig. 16.7 A Present cipher core from Opencores [31]

The security property requires that when the lowest plaintext bit flows to the
lowest ciphertext bit (i.e., cipher[0]), it should also flow to the second bit of the
ciphertext (i.e., cipher[1]). Or the lowest plaintext bit should have not yet flowed to
either of these two ciphertext bits, e.g., after core reset.

We translate the security property into security constraints and formally verify if
the Present core adheres to such a property using Mentor Graphics Questa Formal.
Formal proof result indicates that the security property can be violated under certain
conditions. The counter example returned by the formal verification tool shows that
the security property fails to hold right after the message is loaded into the state
register. This is because the state and key registers are shared and updated during
different rounds of encryption. The key ⊕ state is assigned directly to cipher at all
times. Loading the state register will allow message to flow to cipher, rendering the
security labels of cipher[0] and cipher[1] logical 1 and 0, respectively.

In this example, our security verification method has successfully identified the
design flaw that feeds intermediate encryption results to the observable ciphertext
port.

16.5.1.2 Timing Channel

Timing variations in hardware designs have been repeatedly exploited by attackers
to break software implementations of ciphers such as RSA and AES. Many of
these timing side channel attacks target timing variations through caches and cipher
implementations that use pre-computed values that are indexed based on the value
of the secret key [32, 33]. In such scenarios, the attacker can collect information
regarding the secret key by extracting the cache access pattern of the process running
the encryption. To mitigate such attacks, several cache architectures have been
developed to eliminate the correlation between the index value of sensitive cache
accesses and the time that it takes for the cache to retrieve data in later cycles.

We use hardware IFT to show existence of timing flows in a traditional cache
implementation (i.e., with no mitigation technique in place) and the random
permutation cache (RPcahce) introduced in [34]. To write the security properties,
we consider two processes with isolated address spaces that share the cache. We
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mark indexes of accesses made by one process (with pid i) as tainted and check if
the data read by the other process (with pid j ) contains timing variation. The IFT
properties for detecting timing flows in an instrumented cache are written as follows.

if (pid == i)
assume(index_t == 16’hFFFF);

if (pid == j)
assert(data_rd_proc_time == 32’b0);

The IFT verification fails for the conventional cache as expected. This is due to
the fact that the address which is used to access the cache (i.e., index_t) influences
the data which is being evicted from the cache. Once process j accesses the evicted
data, this access takes longer and is distinguishable through repeated measurements.

We next test the RPcache that eliminates any relation between the cache
collisions by randomly permuting the mapping of memory to cache addresses,
and randomly choosing a cache line for eviction. This randomization disables the
attacker from observing the victim’s cache patterns. The IFT verification passes for
the RPcache assuming that the random number generator is untainted.

16.5.1.3 Stealthy Hardware Trojan

We use a satisfiability Trojan example proposed by Hu et al. [35] to demonstrate
how our security verification method can be used to detect malicious design
modifications. The Trojan uses a signal pair that cannot be logical 1 at the same
time from AES S-Box as Trojan trigger and adds two multiplexers to multiplex the
AES key to the ciphertext output port, as shown in Fig. 16.8. This Trojan design
will be activated when both signals are logical 1 and thus the Trojan will never be
activated under normal operation. As a consequence, the Trojan cannot be detected
using functional testing or even formal equivalence checking.

We also use the method introduced in Sect. 16.4 to create RTL IFT logic for
the AES design and label the key as secret. We declassify at the last add round
key operation (i.e., cipher) and manually set cipher to unclassified. This
declassification operation is generally regarded as safe and thus allowed. We then

Fig. 16.8 A satisfiability hardware Trojan that leaks the AES key [35]
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formally prove that the public output port of the AES core should not take a secret
label after the declassification operation. We specify the following security property
for this proof:

assume key_t = {128{1’b1}}
assume cipher_t = 128’h00
assert cipher_tj == 128’h00

We then formally prove the above security property under the open source Yosys
proof tool. Proof result indicates that the security property does not hold under
certain conditions. The counter example returned by Yosys shows that the cipher_tj
can be non-zero when dc1 and dc2 are both logical 1. Thus, the formal security
verification has precisely captured the trigger condition of the Trojan.

16.5.2 Verification Performance Analysis

We use several design examples and benchmarks for verification performance
analysis. We use the IFT logic generated by our RTLIFT tool as the security
verification model and verify information flow security properties on these security
models. In our test, we use the SAT solver in Yosys to prove security properties.
Table 16.2 shows the security properties proved and verification performance
results.

As an example, it takes 384.55 s to run formal verification and detect the Trojan
for the example discussed in Sect. 16.5.1.3. From Table 16.2, RTLIFT provides
an approach for constructing security models that allow security properties to be
verified within acceptable amount of time.

16.5.3 Complexity and Precision Analysis

We use several IWLS benchmarks [37] for IFT complexity and precision analysis.
We use the number of cells in synthesized IFT circuits as a measure for complexity
while the number of simulated information flows as a measure of precision. We use
combinational benchmarks in complexity and precision analysis to more accurately
measure input-output flow relations, eliminating the complex flow relations over
multiple clock cycles. Figure 16.9 shows our test flow as well as tools used to create
different IFT logic circuits.

We use five different test flows for IFT logic generation. The ABC-resyn2 flow
first uses the resyn2 script in ABC [38] to synthesize the benchmarks to gate-
level netlists and then uses our GLIFT script to create GLIFT logic. The ABC-dc
test flow uses the resyn2rs, compress2rs, dc2, dch and mfs3 scripts to synthesize
the design, which yields higher optimization effort and also enables don’t care
based optimization. The AST2-conservative and AST2-precise test flows first dump
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Fig. 16.9 Different test flows for IFT logic generation

simplified AST (i.e., -dump_ast2) using the Verilog frontend in Yosys and then
create IFT logic from the AST extracted. The difference lies in that the AST2-
conservative test flow employs a conservative policy to measure data and control
flows while AST2-precise uses a precise one. The RTLIL-prep flow first constructs
the RTLIL intermediate presentation for the benchmark and then invokes the prep
synthesis script in Yosys to optimize the RTLIL representation. The IFT logic is
generated from the optimized RTLIL.

After generating different versions of IFT circuits at the gate level and RTL for
each benchmark, we use the synth script in Yosys [30] to synthesize these IFT logic
circuits and report the number of cells in the synthesized IFT circuits. We also use
ModelSim to test the IFT logic circuits under 220 random test vectors and observe
the total number of information flows. Table 16.3 shows the test results.

From Table 16.3, the AST2-precise and RTLIL-prep test flows perform iden-
tical optimizations and produce identical IFT logic. This is formally verified by
equivalence checking of IFT logic circuits created by these two test flows. The
AST2-conservative flow employs conservative policy to track data and control flows.
It significantly reduces the complexity of IFT logic circuits at the side effect of a
larger number of false positives in information flow measurement. These additional
information will not actually happen. The ABC-dc test flow that performs don’t care
based logic optimization on the original design leads to smaller number of cells and
information flows. By comparison of the ABC-resyn and AST2-precise/RTLIL-prep
test flows, AST and RTLIL based optimizations tend to lead to larger number of
cells while close number of information flows. The test results reveal the tradeoff
between complexity and precision of hardware IFT.

For a better understanding, we visualize the number of cells and flows normalized
to those for the GLIFT-resy2 test flow. The normalized results are shown in
Figs. 16.10 and 16.11, respectively.
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Fig. 16.10 The number of cells normalized to GLIFT-resyn2

Fig. 16.11 The number of flows normalized to GLIFT-resyn2

16.5.4 An HLS Design and Verification Example

We use a RSA example to demonstrate our design methodology that integrates IFT
into HLS flow for hardware security verification. Figure 16.12 shows our test flow.
We implement a 32-bit instance of the right-to-left repeated squaring algorithm for
calculating modular exponentiation (i.e., the basic operation of RSA) in HLS C. We
use Xilinx Vivado to synthesize the C code into Verilog design. The resulting RSA
design is then converted into IFT model using our RTLIFT tool.

The IFT model is combined with the following security property, which labels
the secret exponent d as high while all other inputs as low and asserts that
the encryption result ready output ap_ready should be low, to perform formal
verification of the security property under Mentor Graphics Questa Formal. In our
proof, we constrain the secret exponent d and modulus n to allow constant values
so that the prover only needs to search on the message c, which minimizes the
search state space and in turn accelerates the proof process. Such constraint should
be applied since the RSA has its key generation rules and only allowed values can
be used as legal RSA key pairs.
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Fig. 16.12 An HLS design and verification example

Fig. 16.13 Replay waveform of the counter example from RSA security verification

assume ap_clk_t == 0
assume ap_rst_t == 0
assume ap_start_t == 0
assume c_t == 0
assume d_t = {w{1’b1}}
assume n_t = 0

assert ap_ready_t == 0

Formal verification result shows that the specified security property can be
violated and Questa Formal provides a counter example to show when such
violation can happen. We replay the counter example under Mentor Graphics
Questa Sim and the replay waveform is shown in Fig. 16.13.

From Fig. 16.13, the ap_ready output can be high (i.e., ap_ready_t = 1),
indicating that it can contain information about the secret exponent d since we only
labeled d as high. This is because the right-to-left repeated squaring RSA imple-
mentation contains a timing channel that leaks the secret exponent to ap_ready
in that the exponent d is used to control a timing-unbalanced conditional branch,
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i.e., the if-else branch statement shown in the high-level C code in Fig. 16.12. This
creates timing information flows from d to ap_ready since the secret exponent
dominates the encryption time. Our design methodology has detected the timing
channel in this RSA implementation using standard verification tools.

16.6 Conclusion

We introduce a methodology to integrate information flow analysis into the HLS
design flow. We argue that the RTL provides an optimal place to perform infor-
mation flow analysis. We describe RTLIFT—a precise information flow tracking
method at the RTL for secure hardware design. We provide IFT logic formalization,
information flow security property specification, and verification methodology. We
demonstrate how our security verification method can be employed to enhance the
EDA flow and identify hardware security vulnerabilities in the early design phase.

Acknowledgments This work was supported in part by the Natural Science Foundation of
Shaanxi Province under Grant 2019JM-244, NSF award 1718586, and the Semiconductor Research
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