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ABSTRACT 

A constrained SOS model is used to describe the edge of a simple­

cubic crystal. Low and high temperature results are derived as well as the 

detailed behavior near the crystal facet. 
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1. Introduction 
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It is well known that the large scale equilibrium shape of crystal 

surfaces is best characterized by facets. A realistic facet, however, is never 

infinite in extent and must meet other facets at finite intersection angles 

to form edges. Consequently, edges are a generic feature of the crystal 

surface the properties of which we would like to know. 

For the simple-cubic crystal structure, a statistical mechanical 

model of the edge is provided by the partition function 

ZN(n,m;/3) = L exp(-f3E.,,ziYu- Yu+ll) (la) 
{Yzz} 

where the sum is over all then X N sets of integervariables {Yzz} that 

satisfy the constraint: . 

0 :S Ylz :S Y2z :S · · · :S Ynz :S m z=l, ... ,N. (:lb) 

The Boltzmann factor of (la) is precisely that of the usual SOS model 

for the special case that the height variables Y:cz are monotonic in the 

x-direction as implied by (lb). Another way of describing the interface 

as it is cut by a plane of constant z is in ter.ms of a lattice path taking 

n steps in the +x-direction and m steps in the +y-direction. Using this 

interpretation the Boltzmann weight of (la) is just the sum of positive 

areas between consecutive lattice paths. Moreover, it obviously follows 

that ZN(n,m;/3) = ZN(m,n;j3). 

The free energy appropriate to (1) is given by (L = n + m): 

lim (NL)- 1 IogZN(pL,(l-p)L;f3)=-F(p,j3). . (2) 
N-+oo 
L-+oo 

Here pis the density of steps in the +x-direction. Asp ...... 0(1) we approach 

the facet having x = const (y = const) . 
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The equilibrium shape of the crystal edge is obtained by the 

Wulff construction 1 • In order to proceed we have to be able to count 

the number of atoms in the crystal phase. We do this separately for each 

layer of constant z and begin by choosing a completely filled quadrant of 

atoms as a reference configuration. As pointed out above, such an edge 

can be represented as a semi-infinite sequence of +y-steps followed by 

a semi-infinite sequence of +x-steps. For convenience, we consider each 

x-step as a particle and each y-step as the absence of a particle on a linear 

lattice. The reference configuration has all the sites to the right of the 

origin occupied and the remaining ones empty. Other configurations can 

be generated by moving a finite number of the already existing particles. 

The statement of particle conservation can be expressed as 

0= I)ne-1)+ L ne (3) 
e>o eso 

where e is the coordinate along the linear lattice and ne is the occupation 

number (0 or 1) of site e (see figure 1 ). 

To understand the general situation it is enough to follow the 

consequences of moving a single particle by one lattice unit. One discovers 

that a motion in the positive(negative) e-direction corresponds to the 

creation(annihilation) of a crystal atom at the interface. The number of 

atoms removed from the filled quadrant can thus be written as 

Jl = - L e<ne- 1)- L ene . {4) 
e>o eso 

When Jl is large and the configuration is more appropriately described by 

a density of particles p(e), we use the continuum forms of (3) and (4): 

o = fo'XJ (P< e> - 1 )de + /~00 p( e)de (3') 

Jl = -100 

e(p(e)- 1)de -/~00 eP<e)de. (4') 

- s-
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We can now apply the Wulff construction and obtain the functional 

W[ pI = /_: (~( e- eo )p( e)- F(p, /3) )de 

where the Lagrange multipliers ~eo and ~ apply to constraints {31) and 

{41
) respectively. The equilibrium shape can now be found by maximizing 

W[p I subject to the conditions: 

0 ~ p(€) ~ 1 

lim p(€) = 0 
e--oo lim p(€) = 1. 

e-+oo 

The functional W[ p J is extremized for the choice 

{} 
fJpF(p,/3) = ~(€- eo)= t 

which can be inverted {locally) to yield pas a function of e. However, we 

will see in subsequent calculations that for j3 > 0 

.!!_F(O, /3) = -to 
{Jp 

{) 
-to< fJpF(p,/3) <to 

.!!_F(1, /3) = to 
{Jp 

(0 < p < 1) 

where to > 0 is finite. This means that in general, 

p(t) ~ Ea,F)-1(<) 
t <-to 

-to < t <to 
to < t. 

{5) 

(6) 

The parameters €0 and ~ are related to the position and scale 

of the edge respectively; their values are determined by equations (3') 
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and (41
). The coordinate € bas the geometrical interpretation of bei~g 

measured along an axis rotated 45° with respect to the original x and 

y axes of the crystal (see figure I). If in some range from € to € + ~€ 
the lattice path makes n steps in the +x-direction and m steps in the 

+y-direction, the change in position ~TJ, perpendicular to the €-axis is 
just m- n. Consequently, 

~TJ - m- n = I - 2p . . ~e- n+m 

Finally, upon substituting the rescaled variables t = X:€ and s = A'f/, the 

edge profile is given by the expression 

s(t) . 1' (I- 2p(u))du + const. (7) 

In the following sections the free energy (2) will be calculated in 

the limits {3 -+ oo, {3 -+ 0, and p -+ 0. These results can then be used to 

obtain the low and high temperature limits of the edge profile as well as 

the behavior in the region where the surface joins a facet. 

2. Low Temperature Expansion 

The partition function (I) can in principle be expressed in terms 

of a transfer matrix Mas 

ZN(n,m;{3)=trMN. 

The elements of M are simple, however, only in the limit {3 -+ oo when 

they can be expanded in powers of e-P. If we let L = n + m then the 

'states' appropriate toM, as discussed in section I; are the configurations 

- 5-
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of n particles on a linear lattice of L sites. The matrix element between 
two such states is unity when the states are the same and e-P if the states 

differ by the displacement of one particle by one unit. If we neglect the 
other matrix elements which are O(e-2~'), then M is naturally written in 

the form 

L-1 

M =I+ e-P L (a!+t ai + a!ai+d + O(e-2~'). (8) 
i=l 

The operators at and a are the usual bosonic creation and annihilation 

operators with the additional properties 

(a!)2 = (ai)2 = 0. 

This is necessary since we require that M acting on a state never produce 

a state with two particles occupying the same site. 

When M is written as the exponential of a hamiltonian the 
free energy (2) can be expressed in terms of the lowest n-particle energy 

eigenvalue E(L, n): 

M = exp( -H1 + O(e-2~')) 

L-1 

H 1 = -e-P L(a!+ 1ai+a!ai+d 
i=l 

F(p, {3) = lim L -t E(L, pL}. 
L-+oo 

By use of the Jordan-Wigner transformation2 the operators intro­

duced above can be written in terms of fermionic operators with the result 

that the operators in H1 are now interpreted as fermionic. Since we have 

effectively hard-wall boundary conditions, the hamiltonian is diagonalized 
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by the canonical transformation 

L 

a~t) = Jf L sin(ffl) b~t) 
k=1 

L 

H1 = -e-P L t:(k)blbk t:(k) = 2cos(#f) 
k=1 

with ground state eigenvector and energy given by: 

.n 

'ito = II bllO) 
k=1 

n 

E(L, n) = -cP}: ~:(k) + O(e-2P) 
k=1 

2 
F(p,fj) = -- sin(rrp)cP + O(e-2P). 

11" 

, We see that the form of the free energy as a function of p agrees with the 

claims made in section 1. Using equations (5) and (6) we have 

to= 2e-P 

p(t)- -cos -1 -1(-t) 
rr to · 

(-to < t <to) 

with the edge profile given by (7): 

{

t . 

s(t) = t- Htcos-1 (=Fa)+ Jt~- t2) 
-t 

t <-to 
-to < t <to 

to< t. 

(9) 

It is apparent from (9) that the density p(t) has square-root 

singularities at t = ±to (see figure 2 ). Since s( t) is essentially the integral 

(~· 
'-- ~ 
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of p(t) this implies that the edge profile joins the facet with a t312 behavior. 

. _The square-root singularities of p can be traced to the fact that the present 

form of the free energy satisfies 

{)2 
ap2 F(O, fj) = 0 

()2 
ap2 F(l, fj) = o. (10) 

As will be shown later, the above holds for all finite temperatures so that 

the t312 behavior of the surface near the facet follows in general. 

To illustrate the nature of the expansion we will also calculate 

the O(e-2P) term of the free energy. It is first necessary to extend 

the transfer matrix (8) to include operators that generate two units of 

particle displacement. Most of these operators appear in the product·~ Hf 
where H 1 is the O(e-P) pi_ece of the hamiltonian. Being the product of 

two 'hopping' operators (a!±1 ai)(a}±1 ai), these terms are correct except 

possibly when their subscripts overlap. To correct for these possible 

mistakes, we subtract out all the overlapping products and add in the 

correct terms. The latter are 

a!ai-1a!+1ai + h.c. 

a!+ 1a,a!ai- 1 + h.c. 

(ll) 

(12) 

where (11) moves two particles each by one unit while (12) moves a single 

particle through two units. Following the above strategy, the transfer 

matrix can by written as 

-8-
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1 2 M=1-H1+-H1 2 

<;. 

- e-2 /J ~ L [(a!ai_t)(a!+1ai)+(a!+1ai)(a!ai-d+h.c.] 
{ 

L-1 

2 
i=2 

+- L [(a!+1ai)(a!ai+d+(a!ai+d(a!+ 1ai)] 
. 1 L-1 } 

2 
i=1 

L-1 

. + e-2
/J L [a!ai-1a!+1ai + a!+1aia!ai-1 + h.c.] 

i=2 

+ O(e-3P). 

The Jordan-Wigner transformation replaces the pairs a!± 1 ai by correspond­

ing fermionic operators so that once again we may interpret all the operators 

as fermionic. Taking the logarithm of M we obtain the hamiltonian 

H =Ht + H 2 + O(e-311) 

{

L-1 

H2 =C2P ~ [a!+1(a!ai- ~)ai-l+ h.c.] 

L-1 } 
~ a!+ 1a!aa+tai + n . 

In one of the simplifications the number operator was replaced by n, the 

number of particles. It is now a straightforward problem to evaluate the 

correction to the ground state energy by taking the expectation value 

of H2 in the zeroth order ground state. This part of the calculation is 

relatively unenlightening so we merely give the final result: 

- 9-
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F(p, [3) =- ~ sin(1rp)e-11 
. 11" 

+ [p(1- p) + 
2
p
2

11" 
1 

sin(21Tp)- : 2 sin2 (1rp)]e-211 

+ o(e-311) .· (13) 

As a simple check we note that the correction is symmetric about p = ~· 

It can also be verified that this term satisfies equation (10). 

3. Jligh Temperature Limit 

We will concentrate again on the e and TJ coordinate system 

introduced earlier. The set of lattice paths or cross-sections of the interface 

may be thought of as random walks T/1 (e), ... , TJ N( e) with e as a common 

'time' parameter. For each step in time the particle positions 7li(e) change 

by ± 1 with the Boltzmann weight acting as an attractive force between 

consecutive particles. In the limit f3 _,. 0 the particles can drift very far 

apart so that over short periods of time the fluctuations in the positive 

area between two consecutive paths are unimportant. In other words, for 

periods of time that are in some sense small compared to the separation 

between consecutive particles, the random walks are free. 

We have to be careful however, to remember the global constraint 

that during a time ~e the random walk makes on the average exactly pll. e 
steps in the +x-direction. This is evident from the boundary conditions 

(1a) of the partition function. However, for our present purposes it will be 

more convenient to let the boundaries be free while introducing activities 

p and 1 - p respectively for motion in the +x and +Y directions. To 
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recover the original partition function (1) we must then divide by 

(pn(l- p)m]N 

which merely adds the constant 

p log p + ( 1 - p) log( 1 - p) (14) 

to the free energy. 

Now suppose that the particle positions are 111, ... , 71N at some 

initial time eo and 71~, ... , 11'N at some later time eo +~e. For ~e ::.::l> 1 
but fixed as f3 -+ 0 we will be able to sum over the configurations at 

intermediate times and thereby obtain a transfer matrix. In this limit it 

will almost always be true that 

l17i- 71~1 < l11i- 71i±11 ~ 171~- 17~±11 

so that the Boltzmann factor is relatively constant and can be taken 
. outside the summation. In terms of the e and 71 coordinates we see from 

· figure 1 that this factor ·is given by · 

{ 
N-1 } 

exp - ~P~e E 111· - 71i+11 . 
l=1 

(15) 

What remains is just the sum over N independent random walks 

having specified endpoints and the activity factors discussed above (~1'/i = 

71~ - 71i): 

fr ( ~e ) pt(~~-~11,) (1 _ p)!(~~+~fi,J . 
i= 1 ~<~e- ~71•) 

(16) 

Since ~e > 1, it can be shown that each term in the product is strongly 

peaked at ~71i = (1- 2p)~e. If we change from the 71-coordinates to the 

-11-
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new set Zi = 71i- (1- 2p)e, then (16) takes the asymptotic form: 

N 

II~···~· =1 ===exp {- (z~- zi)2 } 
i=t·v'81Tp(1- p)~e sp(1- p)~~ · 

l17) 

From the Gaussian factor in (17) it is clear that the Zi are effectively 
continuum variables .. Changing to the z1 variables in (15) and taking the 

product with (17) we end up with the transfer matrix: 

1 )N/2 { N (z~- Zif K(z,z';~e) = (81Tp(l- p)~e exp --:- E 8p(1- p)Lie 

-~f3~e E lzi- zi+tl · 
N-1 '} 

2 i=1 

This result is indistinguishable from the short-time kernel 

K(z,z';t) =lim {z'lexp(-tHN)Iz) 
t-o 

with continuum hamiltonian 

N N-1 · 
HN = 2p(1- p) L P~ + ~{3 L lzi- Zi+tl 

i=l. i=1 

where t =~e. 

The validity of this derivation depended on having the mean 
separation between consecutive particles be large. This is a statement 

about the ground state wavefunction that we can now test. Suppose the 
mean separation is of order I, then p~ is of order r-2 • Since the kinetic 
and potential parts of the hamiltonian have the same order of magnitude 
in the ground state we have that 

- 12 -
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or 

1"' (p(1- p))1/3 
f3 > 1. 

Since this breaks down for p -+ 0 and p-+ 1, the present approximation 

cannot give the behavior of the surface near the crystal facets. 

Recalling that the free energy (2) was defined per unit of €, we 

see that this is just EN f N where EN is the ground state energy of HN. 

The /J and p dependence of EN can be made explicit by the rescaling 

z = 
2

(p(1-'p))1/3 
(3· X 

HN = (p(1- p)f32
/

13 H N 

N N-1 
- 1"'2"" . 
H N = -~Pi + ~ lxi- Xi'+11 · 

2 
i=1 i=1 

If the ground state energy of H N is EN and 

eo= lim N- 1EN, 
N-+oo 

then, remembering to include (14), our final result is: 

F(p, (3) = plog p + (1,- p) log(1- p) 

+ eo(p(1- p)f32)1/3 f3 <. p(1- p). 

The exact value of e0 is not known but it is easy to obtain the variational 

bound 

eo < 1.0188 

- 13 -
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using the trial wavefunction 

N-1 

"IJ!0 = II cf>(xi- Xi+d · 
i=1 

4. Low Density Expansion 

We will consider once again the transfer matrix M introduced 

in section 2. However, rather than derive an approximate hamiltonian as 

was done for the low temperature expansion, we will try to compute the 

largest eigenvalue of M directly. In terms of the original Yxz variables, 

the eigenvalue equati~n takes the form 

Anm V(Y1, · · ·, Yn) = L exp (- f3I::=1lYi- 1;1 )\lf(yi, · · ·, Y~) (18) 
'y'ER. 

where by y' E R. we mean that the sum is over the region 

R.: 0~1/1 ~ .. ·~Y~~m. 

The free energy is now given by 

lim L-1 logApL (1-p)L = -F(p,(3) · 
L-+oo 

(19) 

We can view (18) as a kernel for n particles moving on a linear 

lattice of m + 1 sites. At low particle density the separations IYi - ~I 

are of the order (3-1 so that there is little interaction among the particles 

when (3- 1 <: mfn or p <. (3. In this limit (18) approaches the diffusion 

kernel for n particles that are prevented from moving through each other. 

-14-



The eigenvalue equation (18) defines the eigenfunction lll(y) also 

when the point y = (y1 , ••. , Yn) lies outside the region R. It is therefore 

valid to write equations for lll(y) that sample points outside this region. 

One such equation involves the second order difference operator 

'V f(x) = cosh/3 f(x)- ~[f(x + 1) + f(x- 1)] 

with the property: 

'V exp( -J31x- x'i) = sinh/3 Ozx• . 

If we apply this operator n times on (18) we obtain the equation 

where 

Anm 'V 1· · ·'V n lll(y) = (sinhj3)n8(y)lll(y) 

8(y) = { ~ YE R 
otherwise. 

(20) 

A different sort of equation using the first order difference operator 

af(x) = f(x + 1)- f(x) 

follows from the identity: 

(a1 + 1- e-P)(a2 + 1- eP)exp(-J3Ixt- x'd- J3ix2- x~i )lx
1 

= x
2 

=0 for x1
1 ~ x~. 

Since the above inequality is satisfied by each pair of consecutive variables 

~ ~ y~+t in the summation region R, we can derive from (18) the 

boundary conditions (i = 1, ... , n- 1): 

(ai + 1 ~ e-P)(ai+t + 1- e11 )w(y)l = 0 
Yi = Yi+t 

(21) 

- 15 -
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Equation (20) together with the set of boundary conditions (21) 

are reminiscent of some one-dimensional many-body problems that can 

be solved exactly using the Bet he- ansatz method3 . In particular, if we 

take the limit J3 -+ 0 while still maintaining p < {3, the product of the 

operators 'V in (21) exponentiates to give 

( . n a2 ) 1 ( 2 )n 
exp -J3-2L a ~ lll(y) =A r.i 8(y)lll(y) 

•=l Y, nm f/ 

since the momentum components of lll(y) are of the order p < J3. In the 

same limit the boundary conditions (21) become 

( a a ) I --- -- J3 lll(y) = 0 
ayi+t ayi Yi = Yi+t 

i = 1, ... ,n- 1 

giving us the full set of equations that define the problem of the 'delta-

function gas' 4 . 

The exact equations (20) and (21) can in fact also be solved 

using the Bethe-ansatz . . .Unfortunately, however, this solution :does ~ot 
. .· 

satisfy the original eigenvalue equation ( 18) except in the limit of vanishing 

density. In order to understand this rather remarkable failure it is perhaps 

instructive to consider in detail the two-body problem first. 

When the two particles are free to mo,-e on an infinite line of 

lattice sites we have to solve the equation 

Alll(yt,Y2) = L exp(-f31Yt- ?J'tl- PIY2- Y~i )lll(y'lly~) · 
y~:S;y~ 

The center of mass motion can be eliminated using 

lli(Yt, Y2) = exp(ikyt)R(y2- yt) 

where now, in terms of the relative coordinate r = Y2 - Yt ~ 0, the 

eigenvalue equation becomes: 

00 

AR(r) = L K(r- r1)R(r1
) (22) 

r1=0 

- 16 -
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00 

K(u) = K(-u)• = L exp(-,Bivl- .Biu +vi- ikv). 
v=-oo 

Equation (22) is of the kind that can be solved using the Wiener­

Hopf method. Since this method is explained at length elsewhere (see for 

example ref. 5) we will ·only give the final answer. Although the form of our 

wavefunction is exact, the constants that appear have been approximated 

for the case that A is in the vicinity of the maximum eigenvalue. These 

wavefunctions are best characterized in terms of two small momentum 

values Pt ·and P2: 

'lll(yt, Y2) = exp(ip1Y1 + ip2y2)- expU¢>)expUP2Yl + ip1y2) 

where, 

and, 

.. +A exp_(i~(Pl + P2)(Yt + Y2)- b(y2- yl)) (23) 

1> = c(pl - P2) + O(p2
) 

. (i-b- e-P)2 2 
A=z. ... ___ (pt-P2)+0(p) 

b =-log( I- 4v( y'1 + .Jv- l))+.O(p) 

c = 1 + y'1 + i-- ;fv(\.h + .Jv- 1)-1 

v = (sinh~)2 . 

(24) 

We see that the first two terms of the wavefunction (23) have 

exactly the Bet he- ansatz form with the phase shift given by ¢>. However, 

there is also an exponentially decaying term that describes a 'bound-state' 

-17-
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piece of the wavefunction. It is this term that spoils the Bethe- ansatz. One 

would also expect analogues of this term to arise in tJhe general n-body 

problem. We can nevertheless make some progress by taking advantage of 

the fact that relative to the plane-wave terms, the bound-state amplitude 

is small: 

.A,.,:, O(p)"' O(p). 

The first term in a low density expansion would thus proceed along the 

Bethe-ansatz lines while pretending A = 0. The question is then the 

following: to .what order in momentum may we keep terms in the phase 

shift 1>? We conjecture that it is valid to retain the terms up to O(p) but 

cannot provide a simple proof of this claim. Some evidence in favor will 

appear at the end of this section. 

Theboundary conditions implicit in (18) due to the endpoints of 

the lattice are not ideally suited to the present discussion. We therefore 

modify the original problem by wrapping the lattice into a circle of m 
points. This sho_uld not affect the thermodynamic limit and allows us to 

impose the periodic boundary conditions 

'lll(yl, · · ., Yn) = 'lll(i/2, · · ·, Yn, m + yt). (2_5) 

One of the terms appearing in the wavefunction 'Ill is the product 

of n plane waves: 

exp(iPlYl + · · · + iPnYn) · (26) 

By suitably normalizing 'Ill the coefficient of this term can be set equal to 

unity. Other terms in 'Ill obtained from (26) by permuting the momenta 

will have coefficients given by appropriate phases. For the permutatioil 

that shifts the momenta. in an n-cyde the phase can be deduced trivially 

since by (25) the term (26) becomes 

exp(ipnm)exp(iPnYt + iPtY2 + · · · + iPn-lYn) · (27) 

- 18 -



In the usual Bethe-ansatz problem one generates the same per­

mutation by the sequence of transpositions 

T2 · · · Tn-tTn 

Ti: exp(iPi-tYi-1 + £p,.y;)-+ 

- exp(i¢(Pi-t,p,.))exp(£p,.y;-t + £Pi-tYi) (28) 

where the phase shifts ¢ are obtained directly from an equation of the type 

(21). In the present situation, however, we use the result (24) of the two­

body problem. Equating the phase in (27) with the accumulated phase 

from (28) we end up with the set of equations (N; =integer, n =odd): 

p;m = L ¢(pj,Pi) + 21l"N; 
j,t:i 

= -cnp; + c LPi + 21rN;. 
j 

(29) 

A nontrivial ground state wavefunction is found by choosing a 

distinct set of momenta that satisfy (29) and maximize the eigenvalue 

Anm· Recalling the action of the difference operator 

'V exp(£py) = (cosh,B- cosp)exp(ipy), 

the eigenvalue, according to (20), is just 

n ( sinh,B ) 
Anm = IT cosh,B - cos Pi · 

i=l 

From (29) we see that (to this approximation) the momenta are equally 

spaced. The maximum eigenvalue results when these are chosen sym­

metrically about p = 0: 

- 21l"N;(1- c!:. + O(p2)) Pi- m m 

- 19-. 

~ (. 

- ~(n- 1) $ N; $ Mn- 1). 

Using (19) we arrive at our final result: 

. · ( sinh,B ) 1r2( 1 ) 
F(p,,B)=-plog cosh,B-1 +6 cosh,B-1 (l+ 2(1 -c)p

4
) 

+O(l). (30) 

The first term above is simply related to the free energy of a 

single particle on an infinite lattice, w bile the O(p3 ) term reflects the 

impenetrability of the two adjacent particles. These terms are insensitive 

to the precise nature of the interaction among the particles except that 

these are short range and hard-core. The O(p) dependence of the phase 

shift first appears in the O(p4 ) term of (30) and required the solution of the 
two-body problem. Presumably the O(p5 ) term will involve the inclusion 

of three-body effects. 

A useful check on our result (in particular the O(p4 ) term) follows 

from the observation that (30) and the low teJ;Ilperature result (13) have 

a common region of validity. Indeed, it can be verified that an expansion 

of the coefficients of (30) in powers of e-fi agrees with the expansion of 

{13) in powers of p. 

Finally, we observe that the O(p2 ) term vanishes for all values of 

the temperature, thus confirming (10) and our claims about the behavior 
of the surface near a facet. 

After the completion of this work it was pointed out to the 

author that the t312 behavior near the crystal facet has been discussed 

previously6 . 
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Figure Captions 

Fig. 1: Two lattice paths and their particle representations. 

Fig. 2: The particle density in the low temperature limit. 

- 21-

,...,..... ;,., __ ~ 



N 
N 

TJ 

Figure 1 

p(t) 

-
I 

Figure 2 

; y 

' X 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. · 



-.J- .-. ·•' 

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

.. ... 




