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Abstract

We study the topological A-twist of 3d N' = 4 Yang-Mills gauge theories, with an eye to-
wards geometric representation theory and knot theory. We present an explicit, geometric
category describing %—BPS vortex line operators in these theories, as well as collisions of
local operators bound to them in terms of convolution techniques generalizing the work of
Braverman-Finkelberg-Nakajima on Coulomb branches of vacua. Given a suitable Dirichlet
boundary, we show that local operators bound to these vortex line operators can be repre-
sented as linear operators between the Borel-Moore homologies of generalized affine Springer
fibers, vastly generalizing classical work on affine Springer representations of Hecke algebras
and affine Weyl groups. We end with an application to knot theory. We apply 3d mirror
symmetry to a recent construction in B-twisted 3d N = 4 gauge theory of HOMFLY-PT
knot homology due to Oblomkov-Rozansky to obtain a mirror construction in the A-twist.
The mirror construction exactly reproduces a different realization of HOMFLY-PT homology
for positive algebraic links due to Oblomkov-Rasmussen-Shende, providing a robust check of

our proposed mirror construction.
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Introduction

Since their initial discovery [1-5], symmetries that exchange bosons and fermions have been
fundamental to our understanding of quantum field theory. Of particular importance is super-
Poincaré symmetry, or simply “supersymmetry,” which extends the ordinary, bosonic Poincaré
symmetry of spacetime to include fermionic symmetry generators ), that anti-commute to
ordinary translations and transform as spinors under rotations. Supersymmetry can be viewed
as an mild exception to the Coleman-Mandula theorem [0, 7] and has been seen to imply a
myriad of physically desirable consequences ranging from non-renormalization theorems [3—13]
and exactly calculable quantities [14-21], to remedying phenomenological problems in the
Standard Model [22-26] and string theory [27-29]. Moreover, supersymmetric quantum field
theories make contact with far-reaching subjects in mathematics, including, e.g., enumerative
geometry [30-32], geometric representation theory [33—40], and low dimensional topology
[41-46].

This thesis will focus on 3d quantum field theories with N' = 4 supersymmetry. This
class of field theories sits at the remarkably fertile interface between 2d and 4d supersym-
metric quantum field theories. For example, these theories admit two distinguished classes of
supersymmetric boundary conditions [17] that preserve half of the full supersymmetry alge-
bra, often called %—BPS due to its relation to the Bogomol'nyi-Prasad-Sommerfield (BPS)
bound [48, 49]: one class of boundary conditions is topological in nature, furnishing 2d
N = (2,2) supersymmetry, and can be used to understand the physics of symplectic du-

ality [10] and aspects of geometric representation [50,51]; a second class is holomorphic,



furnishing 2d N = (0,4) supersymmetry, and boundary local operators admit the structure
of a vertex operator algebra (VOA) [52,53], playing a role completely analogous to Wess-
Zumino-Witten (WZW) models in the classical Chern-Simons/WZW correspondence [11].

On the other hand, 3d N = 4 degrees of freedom can be used to dress %—BPS interfaces
between 4d N/ = 4 super Yang-Mills theories. The action of S-duality, an N' = 4 analog of
electric-magnetic duality [54], extends to such %—BPS interfaces and those with 3d N' = 4
degrees of freedom play a fundamental role [55-57]. Moreover, line operators in the bulk 4d
theory can be sent towards an interface, thereby realizing an ‘action’ of 4d line operators on
line operators in the boundary 3d theory, analogous to the action of BPS ‘t Hooft and Wilson
lines on categories of boundary conditions for 2d sigma models to Hitchin moduli spaces
Mpu(E,G) [33]; see, e.g., [58] for a discussion of this action in the context of geometric
Langlands and number theory, as well as the upcoming paper [59] for a discussion of how
they relate to the corner VOAs of [60,61].

Perhaps the most important feature of 3d N = 4 theories, at least from the perspective
of this thesis, is that they can be topologically twisted to obtain 3d topological quantum field
theories (TQFTs). The notion of twisting a theory was first introduced by Witten in the
study of Donaldson theory [62]. Roughly speaking, to be able to twist a theory requires that
it has a (scalar) fermionic symmetry @ such that Q? = 0; the “Q-twist” then corresponds to
restricting ones attention to (local and extended) operators O that are invariant under @ or
“Q-closed,” i.e. QO =0.

Any operator O of the form @ = QO’ for some other operator (0’ is called “Q-exact” and

is trivial in correlation functions with any Q-closed operators Oy, ..., O, because
(001...0,) = ((QONO;...0,) = (Q(O'01...0,)) =0, (0.0.1)

and so it suffices to consider Q-closed operators modulo Q-exact operators, i.e. (Q-cohomology.
The @Q-twist is called a topological twist when the stress tensor T}, of the underlying theory

is Q-exact; this implies that insertions of all operators are independent of insertion points



and that the theory can be put on an arbitrary background manifold compatible with Q.

This thesis will focus on 3d N' = 4 super Yang-Mills theories of vector multiplets for
a compact gauge group G and hypermultiplets transforming in a representation 7% R, with
R a unitary representation of G and T*R = R @ R for R the conjugate representation.
These theories admit essentially two distinct topological supercharges of three-dimensional
N = 4 supersymmetry algebra Q 4, leading to the topological “A-twist,” and @Qpg, leading
to the topological “B-twist.” The A-twist is a dimensional reduction of the Donaldson twist
of [62] (at least for pure gauge theory) and is used to define Seiberg-Witten invariants of
3-manifolds [65]. Aspects of the corresponding 3d TQFT were studied in [66] and @ 4-closed
local operators are identified with holomorphic functions on the Coulomb branch of vacua M¢
[67], where the hypermultiplet fields are required to have vanishing expectation value while
the vector multiplet fields are unconstrained. The B-twist is intrinsically three-dimensional
and leads to Rozansky-Witten theory [43] for N' = 4 o-models; the full 3d TQFT structure
of Rozansky-Witten theory was studied in depth by Kapustin-Rozansky-Saulina [68]. Local
operators in the B-twist are identified with holomorphic functions on the Higgs branch of
vacua My, where the hypermultiplets have unconstrained expectation values and the vector
multiplets must vanish.

For the 3d N/ = 4 theories studied in this thesis, the Higgs and Coulomb branches
My, M¢ are hyperkdhler manifolds and are key ingredients of understanding the theory’s
full moduli space of vacua, which itself is a (possibly singular) union of submanifolds of the
form Sy x S¢, where S C My, Sc € M are hyperkdhler submanifolds of the Higgs and
Coulomb branches. While the metrics on My, M depend on the (dimensionful) 3d gauge
couplings, their holomorphic structures are entirely independent of the gauge couplings due

to one of the aforementioned non-renormalization theorems [13].

In contexts where the fermionic symmetry Q is a nilpotent supercharge of a supersymmetric quantum
field theory, the theory must have enough unbroken R-symmetry so that a background R-symmetry bundle
can be introduced so that @ is a scalar under a combined Lorentz and R-symmetry transformation. For many
local computations, e.g. collisions of local operators, it is possible to work with a strictly weaker notions of
a topological twist where anti-commutators with @ include all translation generators without regard for the
background R-symmetry bundle, ¢f. [40,63,064].



For N/ = 4 super Yang-Mills theory with gauge group G and hypermultiplets transforming

in a representation T* R, the classical Higgs branch is simply a hyperkéahler quotient:

My =T*R)JG = {i=0}/G, (0.0.2)

where ji : T*R — (g*)3 is the triplet of hyperkihler moment maps for the action of G on
T*R. Famously, the Higgs branch is protected from quantum corrections and the classical
result is exact [18]. The Coulomb branch, however, is unprotected and generally receives both
perturbative and non-perturbative corrections. Nonetheless, holomorphic functions on these
Coulomb branches can be counted using the “monopole formula” of [69]. Recently, an explicit
physical description of Coulomb branches in this class of gauge theories was realized using
an “abelianization” procedure [67,70]. Several mathematically precise realizations of these
Coulomb branches have been proposed [39,71-73], and all agree with physical expectations
where comparisons are possible.

The landscape of 3d N' = 4 theories admits a duality called “3d mirror symmetry”
[74-706] that exchanges two (potentially different) theories and acts non-trivially on the 3d
N = 4 R-symmetry group. In fact, 3d mirror symmetry of abelian gauge theories can be
interpreted as a field-space Fourier transform [77]. If two theories 7 and 7" are exchanged by
3d mirror symmetry, then the A-twist of 7 is equivalent to the B-twist of 7’ and vise versa,
thus identifying M¢[T| ~ Mg[T'] and My[T] ~ Mc[T'], much like the more familiar
mirror symmetry of 2d N' = (2,2) theories [78]. A large class of 3d N' = 4 theories, and
supersymmetric defects admitted by them, can be described via brane constructions in Type
IIB superstring theory [79,80]. In this context, 3d mirror symmetry is realized geometrically
as S-duality of the corresponding brane configuration.

The 3d TQFT structure admitted by the A-twist (or B-twist) implies that correlation
functions of loop operators (compatible with the twist) only depends on the 1-dimensional
support of the operator up to smooth deformations. Given a knot K in R3, the expectation

value of a line operator £ with support K is a topological invariant of K “colored by L.” In



fact, the TQFT gives us topological invariants of (framed) knots and links, with a choice of
coloring by line operators £; for each connected component, in general (framed) 3-manifolds,
much like the more familiar case of Chern-Simons theory and Witten-Reshetikhin-Turaev
(WRT) invariants [11,81,82]. Line operators play a central role in Chern-Simons theory
and interpreting WRT-invariants, and much of their essential physics can be encapsulated
using the notion of a category, cf. categories of boundary conditions in 2d TQFTs [33].2 In
particular, BPS line operators compatible with the A- and B-twists will realize categories Ca
and Cp that control the WRT-like invariants for the corresponding 3d TQFTs. One crucial
difference between the 3d TQFTs arising from A- and B-twists of 3d N/ = 4 theories and
Chern-Simons theories (with compact, semisimple gauge group) is that the tensor categories
arising in the former are not necessarily semisimple® and result in “non-semisimple TQFTs”
[87]. See, e.g., [38] for a recent discussion on Rozansky-Witten theory and the upcoming
paper [59] for a class of 3d N = 4 theories realizing a mathematical construction of non-
semisimple TQFTs based on unrolled quantum groups [39,90].

In this thesis, we approach the problem of identifying homological link invariants, i.e.
invariants valued in graded vector spaces realized as the (co)homology of some chain com-
plex, in 3d N' = 4 gauge theory from a somewhat different perspective, described in detail in

the upcoming paper [91]. Of particular interest is the polynomial invariant developed inde-

2 A category is a collection of “objects” {X,Y, ...} together with the data of “morphisms” (or “l-morphisms”)
{f : X = Y} between any two objects X, Y and a rule for composing morphisms f: X =Y, g:Y — Z to get
other morphisms gf : X — Z. More generally, a higher category is the data of a category together with the
data of “2-morphisms” between any two morphisms f : X — Y, f' : X — Y as well as composition thereof,
and “3-morphisms” between any two 2-morphisms, and so on; it is called a k-category of this process stops at
k-morphisms, so a 1-category is simply a category.

Local and extended operators in a general TQFT admit a concise description using higher categories. k-
dimensional extended operators in a d-dimensional TQFT furnish a k-category whose 1-morphisms are k — 1-
dimensional interfaces between k-dimensional extended operators. The composition of 1-morphisms is induced
by colliding k—1-dimensional interfaces. Similarly, the 2-morphisms are the possible k—2-dimensional interfaces
between the k — 1-dimensional interfaces, and so on. Concretely, dimension 1 extended operators, i.e. line
operators, furnish a 1l-category (an honest category) where a choice of object corresponds to a choice of line
operator and a morphism between two line operators corresponds to a local operator that can interpolate
between them. The higher categories of extended operators often possess additional structures, such as the
collision and braiding of line operators, see, e.g., [34,85] for more details.

3As mentioned above, the categories C4 and Cp admit a description in terms of modules for the boundary
VOAs of [52], in complete analogy with the Chern-Simons/WZW correspondence introduced in [11]. When the
Chern-Simons gauge group is a compact, semisimple Lie group, the corresponding WZW model is a rational
conformal field theory (CFT) [86]. On the other hand, the VOAs appearing in [52] are logarithmic CFTs.



pendently by Hoste, Lickorish-Millett-Ocneanu, Freyd-Yetter, and Przytycki-Traczyk [92,93],
often called the HOMFLY-PT polynomial, and categorifications thereof. Recent work of
Oblomkov-Rozansky [94, 95] constructed such a categorification and their construction can
be interpreted in terms of 3d TQFT [96,97] as a certain supersymmetric Hilbert space in the
B-twist of a 3d N = 4 gauge theory: if the link K arises as the closure of an n strand braid
K = B, € Br,, one must consider the B-twist of the 3d N/ = 4 rank n Atiyah-Drinfeld-
Hitchen-Manin (ADHM) quiver gauge theory [98]. This theory is famously self-mirror [74,75]
with both the Higgs and Coulomb branches identified with the moduli space of n abelian

instantons on C?, mathematically realized as the Hilbert scheme Hilb"(C?).

Figure 1: The rank n ADHM quiver. The corresponding 3d N' = 4 gauge theory has gauge
group U(n) coupled to a single fundamental hypermultiplet and a single adjoint hypermulti-
plet.

By passing the various ingredients used in the physical realization of the Oblomkov-
Rozansky construction through 3d mirror, we arrive at yet another physical realization of
HOMFLY-PT homology in the same 3d N/ = 4 gauge theory, but now in the A-twist. For a
special class of links, called positive algebraic links, the proposed A-twist construction admits
an explicit algebraic realization in terms of generalized affine Springer theory [50,51] and,
in particular, realizes another (conjectural) description of HOMFLY-PT homology for the
same class of links due to Oblomkov-Rasmussen-Shende [99] using the algebraic geometry of
plane curve singularities. The work of Gorsky-Oblomkov-Rasmussen-Shende [100] shows that
positive torus knots admit a compatible description in terms of the representation theory of

rational Cherednik algebras; this latter description is nicely captured by the A-twisted gauge



theory.

We now outline the structure of this thesis.

In Chapter 1, we review aspects of 3d N = 4 super Yang-Mills theories coupled to
hypermultiplets, focusing on their Coulomb branches and the topological A-twist. In Section
1.1 we describe the two types of supermultiplets appearing in these theories, namely, vector
multiplets and hypermultiplets, and their variations under supersymmetry. In Section 1.2 we
cover general expectations of the Coulomb branches of these theories as well as the description
of the Coulomb-branch chiral ring via abelianization [67]. Section 1.3 discusses the various
twists admitted by 3d N' = 4 and how an analysis of the A-twist naturally leads to the
mathematical construction of the Coulomb-branch chiral ring due to [71,72]. Finally, in
Section 1.4, we consider two related examples.

The first is an example of a quiver gauge theory based off of the (2,3) star quiver,
¢f. [101]. This theory is 3d mirror to a circle reduction of the 4d N' = 2 theory of class S
of type A; for the 3-punctured sphere X3, also called the trinion theory T5 [102-109]. In
particular, the Coulomb branch of the (2,3) star quiver should reproduce the Higgs branch
of the corresponding theory of class §. The theory 75 is a theory of 8 half-hypermultiplets
with a Higgs branch C8; this remarkably simple Higgs branch appears in a highly non-trivial
way from the perspective of the (2,3) star quiver.

The second example is the rank n = 2 ADHM quiver gauge theory. This example serves
to familiarize the reader with the (quantized) Coulomb-branch chiral rings that appear later
in this thesis, in particular the higher rank ADHM quivers, and moreover realizes the 3d
mirror of a circle reduction of the Class S theory of type A; associated to the 1-punctured
torus X 1. The latter description implies that the (quantized) Coulomb branch of the rank
2 ADHM quiver theory can be obtained from the (quantized) Coulomb branch of the (2,3)

star quiver by means of a (quantum) symplectic reduction,* which we check explicitly.

4Theories of class S behave topologically with respect to cutting /gluing the underlying surface. For example,
consider gluing the surface ¥,k and X,/ x/ at a puncture to obtain the surface ¥,/ kix—2. Each puncture
on the surface ¥ i corresponds to a factor in the flavor symmetry group of the corresponding theory of class S
and the gluing of surfaces at punctures corresponds to gauging the corresponding flavor symmetry. At the level
of Higgs branches, this implies that the Higgs branch associated to the surface 3,14/ x4k —2 can be obtained



Chapter 2 considers %—BPS line operators admitted by the above A/ = 4 super Yang-Mills
theories that are compatible with the topological A-twist. In Section 2.1, we describe several
abstract manipulations with line operators in a 3d TQFT, paying particular attention to the
role played by boundary conditions in understanding the category of line operators. Then, in
Section 2.2, we introduce a large collection of %—BPS vortex-line operators compatible with the
A-twist and propose a concrete, geometric category that models the corresponding category
of line operators C4. Section 2.3 develops explicit tools for performing computations in the
proposed category of line operators C4 and shows how certain Dirichlet boundary conditions
naturally lead to constructions in generalized affine Springer theory. Finally, Section 2.4
discusses a series of specific examples of %—BPS vortex-line operators.

The first examples describe a general phenomenon where %—BPS vortex-line operators
that are defined only in terms of breaking gauge symmetry (and not allowing singular behavior
of the hypermultiplets) are somewhat trivial. We show this in a concrete example for the
rank 2 ADHM quiver theory, and illustrate how the category of line operators is represented
for a specific choice of Dirichlet boundary condition.

The last example considers a different vortex-line operator in the rank 2 ADHM quiver
gauge theory with the same pattern of gauge symmetry breaking, but allows the hypermulti-
plets to have a controlled singular behavior. We represent this line operator using the same
Dirichlet boundary condition and compare the algebra of local operators to known results.

Chapter 3 is dedicated to describing two incarnations of HOMFLY-PT homology from
the perspective of 3d AN/ = 4 gauge theory. Section 3.1 introduces the HOMFLY-PT invari-
ant as well as the Oblomkov-Rozansky construction [94,95] of a categorification thereof. We
also describe the (conjectural) descriptions of HOMFLY-PT homology for (positive) algebraic
links due to Oblomkov-Rasmussen-Shende [99] and for (positive) torus knots due to Gorsky-

Oblomkov-Rasmussen-Shende [100]. In Section 3.2, we translate the Oblomkov-Rozansky

construction through 3d mirror symmetry and show how the corresponding mirror construc-

by symplectic reduction of the product of Higgs branches for ¥, x and ¥,/ x/. The compatibility between Higgs
branches of theories of class S, which are themselves holomorphic-symplectic variety, and the cutting/gluing
of the surface realizes a “2d TQFT valued in holomorphic symplectic varieties” of [110].



tion reproduces the Oblomkov-Rasmussen-Shende construction for (positive) algebraic links,
and speculate on how more general links can be realized. Finally, in Section 3.3 we turn our
focus to (positive) torus knots and describe the physics of the Gorsky-Oblomkov-Rasmussen-
Shende construction of their HOMFLY-PT homology.

Much of the content of this thesis is adapted from the papers [51,101,111] and from the
upcoming works [91,112]. Section 1.1 and Section 1.3 are adapted from [111]. Section 1.2
is adapted from [101], as is the example provided in Section 1.4.1. The example appearing
in Section 1.4.2 did not appear in [101], but has a well known Coulomb branch realizing
the Hilbert scheme of 2 points on C? and is quantized by the rational Cherednik algebra for
gl(2,C) [113]. Its realization as the (quantum) symplectic reduction the (quantized) Coulomb
branch of the (2,3) star quiver theory is expected from their relations to theories of class
S [105,110] and is described mathematically in [114, 115].

Section 2.1 is adapted from the upcoming work [112]. Section 2.2 and Section 2.3 are
adapted from [111]. The discussion of Dirichlet boundary conditions and their connections to
generalized affine Springer theory in Section 2.3.4 are new and based off of the mathematical
works [50,51] and the earlier physical work [10]. The examples in Sections 2.4.1 and 2.4.2 are
conceptually similar to the examples provided in [111] but consider different theories and use
Dirichlet boundary conditions, as opposed to the vacuum boundary conditions used in [111].

Section 3.1, Section 3.2.1, Section 3.2.3, and Section 3.3.2 are adapted from the upcoming

work [91]. Section 3.2.2 and Section 3.3.1 are adapted from [51].



Chapter 1

Coulomb Branches and the

Topological A-twist

Three-dimensional quantum field theories with N’ = 4 supersymmetry, in particular those
built from gauging flavor symmetries of hypermultiplets with A/ = 4 vector multiplets, often
possess extremely rich moduli spaces of vacua. The full moduli space of vacua is a (possibly
singular) union of “branches” where gauge symmetry is partially broken and scalars from both
types of multiplets gain non-trivial vacuum expectation values. N’ = 4 supersymmetry places
strict requirements on these branches and, in particular, ensures that each is a hyperkahler
manifold [116]. There are two distinguished branches My and M¢ of the full moduli space
of vacua M, called the “Higgs” and “Coulomb” branches, respectively. In the absence of
mass and FI deformations, each branch of the full moduli space takes the form Sy x S¢,
where Sy is a hyperkéhler submanifold of My, and similarly for Sc.

The Higgs branch M is the subspace of vacua where the vector multiplet scalars vanish
and is parameterized by the expectation values of the hypermultiplet scalars (up to gauge
transformations). Classically, the Higgs branch of super Yang-Mills with gauge group G and

hypermultiplet scalars transforming in a quaternionic representation R of G is the hyperkéhler

10



quotient

My = RJJG = {ji = 0}/G, (1.0.1)

where I = (u1,u2,p13) is the triplet of hyperkdhler moment maps. The Higgs branch is
protected from both perturbative and non-perturbative quantum corrections [18], so this is
also the quantum moduli space.

The Coulomb branch M is the subspace of vacua where the hypermultiplet scalars
vanish, and is not protected from quantum corrections. Classically, at a generic point of the
Coulomb branch, the vector multiplet scalars take values in a Cartan subalgebra t C g of the
gauge Lie algebra and break the gauge group to the corresponding maximal torus 7' C G. In
R3, the 2-form field strength F' = dA of an abelian gauge field A can equivalently be thought
of as a 1-form field strength f with 0-form (scalar) gauge field 7 called the “dual photon.”
The fact that F' is the field strength of a gauge field for a compact group 7', the scalar v must
be periodic. Put together, the classical Coulomb branch is parameterized by the expectation

values of the triplet of vector multiplet scalars 5 and the dual photon ~:

generically
~

Mgassical R3 x Sl)raﬂk(G)/Weyl(G) , (1.0.2)

where Weyl(G) is the Weyl group of G.

The quantum-corrected Coulomb branch M receives both perturbative and
non-perturbative corrections. Upon choosing a complex structure, M can be described as a
complex integrable system over the vector space t¢/Weyl(G) parameterizing the expectation
values of (gauge-invariant) polynomials in the complex scalar ¢ (determined by the choice
of complex structure), c¢f. the Seiberg-Witten integrable system from 4d N = 2 theories
[L17-119]. The fibers of this map over a generic point on the base tc/Weyl(G) are dual
complex tori T parameterized by expectation values of BPS monopole operators, which
are inherently non-perturbative objects. Initial studies of the quantum moduli space was
restricted to abelian theories or simple non-abelian theories, where these Coulomb branches

were related to Higgs branches of a (potentially) different theory via the phenomenon of “3d
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mirror symmetry” [74-77] and in some instances moduli spaces of monopoles and instantons
[79,120].

Even though the full hyperkdhler geometry can be quite intricate and depends on the
(dimensionful) gauge couplings of the theory, the complex-symplectic geometry is independent
of these parameters due to a holomorphy argument similar to [13]; a 3d gauge coupling has
no natural complexification and hence can never appear in an effective superpotential or
chiral ring. As a result, it is possible to explicitly enumerate the holomorphic functions on
these Coulomb branches [69], i.e. the Coulomb-branch chiral ring, which inspired an explicit
description of Coulomb branches for a wide range of non-abelian gauge theories [67,70] using
an “abelianization” procedure. Several mathematical incarnations of these Coulomb branches
have been proposed [39,71-73], and all agree with physical expectations where comparisons
are possible.

Higgs and Coulomb branches also admit interpretations in terms of 3d TQFT by means of
topologically twisting [62] the underlying physical theory. As mentioned in the introduction,
the 3d N/ = 4 supersymmetry algebra admits two (families of) distinct topological super
charges Q4 and Qp [121,122]; we call the corresponding topological twists the “A-twist” and
the “B-twist,” respectively. Moreover, the algebra of local operators in the A-twist (resp. B-
twist) can be identified with the Coulomb-branch (resp. Higgs-branch) chiral ring, i.e. with
holomorphic functions on the Coulomb branch (resp. Higgs branch). This TQFT perspective
explains many features of these moduli spaces, e.g. the independence of the chiral rings on
the gauge couplings, and will serve as an organizing principle for later chapters.

The organization of the present chapter is as follows. First, Section 1.1 reviews the basic
ingredients present in 3d AV = 4 supersymmetric Yang-Mills gauge theories, including the el-
ementary supersymmetry multiplets mentioned above and how the 3d N’ = 4 supersymmetry
algebra is realized on them. Then, Section 1.2 reviews the physical aspects of the Coulomb
branches of these supersymmetric Yang-Mills theories in more detail and their explicit real-
ization in terms of the abelianization procedure of [67,70]. Section 1.3 reviews the notion of

topological twists and connects the physical analysis of Coulomb branches described in Sec-
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tion 1.2 to the topological A-twist and to recent the mathematical construction of Coulomb
branches due to Braverman-Finkelberg-Nakajima (BFN) [71,72]. Finally, Section 1.4 is dedi-
cated to two examples of quiver gauge theories that appear as 3d mirrors of (circle reductions
of) theories of class S for A; [102,123,124]: in Section 1.4.1 we consider the 3-legged rank 2
star quiver, cf. [L01], corresponding to the 3-punctured sphere ¥ 3, and in Section 1.4.2 we
consider the rank 2 ADHM quiver, corresponding to the 1-punctured torus ¥ ;.

Section 1.1 and Section 1.3 are adapted from [I11]. Section 1.2 is adapted from [101],
as is the example provided in Section 1.4.1. The example appearing in Section 1.4.2 did
not appear in [101], but has a well known Coulomb branch realizing the Hilbert scheme of
2 points on C? and is quantized by the rational Cherednik algebra for gl(2,C) [113]. Its
realization as the quantum symplectic reduction the Coulomb branch of the 3-legged rank
2 star quiver theory is expected from their relations to theories of class S [105,110] and is

described mathematically in [114,115].

1.1 Review of 3d N =14

In this section we review various structural aspects of 3d N' = 4 supersymmetry. We start
with a review of the N' = 4 supersymmetry algebra in Section 1.1.1. In Section 1.1.2 and
Section 1.1.3 we introduce two basic multiplets called vector multiplets and hypermultiplets,
respectively, and the action of N = 4 supersymmetry on them. There are two other basic
types of multiplets called twisted vector multiplets and twisted hypermultiplets, as well as
theories with A/ > 4 supersymmetry that include Chern-Simons fields, e.g. [57,125-127], but
we will not consider them in the following.

Actions that are invariant under these transformations can be quite unwieldy, but can be
obtained, e.g., by dimensional reduction of 4d N' = 2 theories [128]. In much of the following
it is sufficient to know the supersymmetry transformations themselves without mention of
the action. Strictly speaking, however, the supersymmetry transformations necessarily act
on-shell, so one needs the action to check that the putative supersymmetry transformations

satisfy the necessary relations.
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1.1.1 Supersymmetry algebra

The 3d N = 4 supersymmetry algebra is generated by 8 supercharges Q%% and is of the form
{Q(Oz[d’ Q%b} — eabedi)Paﬂ _ 7;601,8 (Eabmdb + edi)tab> ) (111)

Here a € {+, —} are spinor indices for the Euclidean spin group SU(2)g. Upper indices trans-
form in the fundamental (] representation of SU(2) g and lower indices in the anti-fundamental
0. The isomorphism between the fundamental and anti-fundamental representations of SU(2)

is implemented by the epsilon tensor and its inverse
X =e"PXg, Xo = €apX?, (1.1.2)
with
et =e =1 (1.1.3)

Lower-case Latin indices a,a transform under the SU(2)y and SU(2)¢c R-symmetries,
respectively, and have the same conventions as Euclidean spinor indices. The mass and FI

parameters m? and ¢

are central charges in the symmetric tensor representation Sym?(0)

of SU(2)¢ and SU(2)n, respectively,

m = m(db), b — ¢lab), (1.1.4)
In the transformation laws for fundamental fields presented below they will be realized by
the action of some m® € f, t% € §;, where f is a Cartan subalgebra of the group of global

symmetries acting on hypermultiplets and f; is the algebra of topological symmetries.

The isomorphism between the symmetric tensor representation of SU(2) g and the adjoint
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representation (a spacetime vector) is implemented by the sigma matrices

o = , : . (1.1.5)
0 -1 0 —i -1 0

Here p € 1,2,3 indexes a basis for the adjoint representation. For SU(2)c and SU(2)y,

the isomorphism is implemented by identical sigma matrices that we denote a‘}b and a‘}b,

respectively. Lowering indices, we also have

01 0 —1 10

(0")%p = ; : ;
10 i 0 0 -1
§ -10 i 0 01
oty = : : . (1.1.6)
01 0 —i 10

The traceless Hermitian matrices (0#)®g are the usual Pauli matrices. In this form they will

often simply be denoted ‘c#’ in matrix notation, and they satisfy the algebra
oto¥ = M1 4 iAoy, . (1.1.7)

Adjoint SU(2) indices are lowered and raised with the metric ., (similarly: 077, d;;); and

the totally antisymmetric tensor is denoted by e*** where
€2 = ¢35 =1. (1.1.8)

Some useful identities for manipulating sigma matrices in these conventions are

[#, 0¥] = 2ie" oy, Tr(cto") = 20", Tr(c*o" o) = 2ie"

(U'u)ag(alu)'y(g = 2(5%5(557 — 50[5(575, (Uﬂ)aﬁ(glt)vé = 265(765)04. (1.1.9)

We will often use the isomorphism o implicitly, writing vectors as bi-spinors and vice
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versa. Given any (co)vector v, we set

1
Vag 1= Ugﬁvu, or vy = —502‘51)&/3. (1.1.10)
For instance, the momentum operator P, = —i0,, as a bi-spinor is
—2P; P, —207 0
Pap = =t O = S (1.1.11)
P, 2P, O 20,

Similarly, letting m! ,t! denote the mass/FI parameters in the adjoint representations of

SU(2)¢c and SU(2)y, respectively, and defining real and complex combinations as

me = %(ml —ims), mRr = —ms,
te = 3(t1 —ita), tr = —t3, (1.1.12)
we find that
. 2me  mp 2tc  tr
m = , 12 = . (1.1.13)
mr —2mc tr —2tc

In terms of P, P,, Ps, the SUSY algebra takes the form

{Qi[z’ QT} — —QEabedi)Pg, {Q(ida Qb_b} — 2€ab6dbPZ ,

{4, ij)} = eabedi’Pt _ jebmab _ jeabgab (1.1.14)

1.1.2 Vector multiplets

An off-shell 3d N = 4 vector multiplet consists of the fields

Ay, ¢t xa@ pab (1.1.15)
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Here A, is a connection 1-form; (;5(‘“") is a scalar field in the adjoint representation of the

SU(2)c R-symmetry, with real component o and complex component ¢

pib = : (1.1.16)

A% is a complex gaugino in the bi-fundamental of SU(2)y x U(2)¢; and D) is an auxil-
iary field in the adjoint of SU(2)y. For gauge group G, all the fields in (1.1.15) transform
additionally in the Lie algebra g (or the complexified lie algebra gc, in the case of ¢ and the
gauginos ).

We will work with “physics conventions,” in which the real Lie algebra g is generated by
Hermitian matrices. This has the advantage that “real” masses mgr and FI parameters tg
will actually take real values. It has a familiar disadvantage that an extra factor of ¢ appears
in Lie algebra structure constants: [T%, 7% = if%.T° and in covariant derivatives. The

G-covariant derivative takes the form

da=d—1iA, (1.1.17)
and the field strength is
F =ilds,da] =dA—iANA. (1.1.18)
In three dimensions the field strength may be dualized to a vector (*F), = %ew,\F YA or
a traceless Hermitian bispinor
F%g =2(c")*g(xF),, = —i(c")*gF v , (1.1.19)
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where, in matrix notation, o*” := %[a“, o¥] = ie"* oy . Explicitly,

—F.: F Fe —F.
Fra=ai| T o Fg=4| 7). (1.1.20)
_FEt FZE _FzE th

Note that Fy, 3 is symmetric. The Bianchi identity d4F' = 0 then reads
(dA)'y[aF’ym =0, or dzﬂFa,B =0. (1121)

Finally, we can state the transformation rules for the 3d N' = 4 vector multiplet:

Qe Agy = Xi5ea Qale" = ixghe,
. 1 -7 o . ab na 1 abr a éb
QNG = §6abe“bFa5 — €(da)apd®™ —icase’® D + 5 €aBe "¢ 671,
QU DY = —(da)ale® Ag)a — %, "] (1.1.22)

One may check that the algebra of supersymmetries acting on the fields satisfies
{ ga) Q%b — GabEabPaﬁ . iﬁaﬁ <6ab¢ab + gzeabDab> ) (1123)

Here ¢ab acts on fields as an infinitesimal g-gauge transformation. Similarly, the D-term acts
as an infinitesimal topological symmetry; explicitly, it “acts” as zero on ¢ and A, but acts as

a translation of the dual photon ~, which satisfies

1
Q—gQTr(Fa ) = Oag - (1.1.24)

Note that upon using the equation of motion

1
— D — ¢ab (in the absence of matter), (1.1.25)

92

and restricting to gauge-invariant combinations of vector multiplet fields (on which ¢ acts as
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zero), the algebra (1.1.23) reduces to the general form 1.1.1. Mass parameters could also be
introduced, as scalars in background vector multiplets associated to a flavor symmetry; in

(1.1.23) this amounts to replacing ¢ ~~ m.

1.1.3 Hypermultiplets

A hypermultiplet contains an SU(2) g doublet of complex scalar fields and an SU(2)¢ doublet
of complex fermions. It’s convenient to introduce an additional SU(2)" spinor index A €

{1,2}, writing the scalars as X a4 subject to a reality condition
(XN = Xoa . (1.1.26)

This makes manifest the full SO(4) ~ SU(2)g x SU(2)" symmetry of the four real scalars
in the hypermultiplet. With respect to a 3d A/ = 2 subalgebra, the fields X+ = X and

X*2 =Y are chiral, whereas X2 = X and X! = —Y are anti-chiral. Altogether, we have

N XY
XA = . (1.1.27)

-Y X
Similarly, we write the fermions as ng. In Lorentzian signature they would obey a reality
constraint (wﬁ)T ~ 1haaA; but in Euclidean signature the components of 124 are independent,
and 1 does not appear in the action or integration measure. The supersymmetry transfor-

mations for a single free hypermultiplet are simply
QXA = jetbyih, QUi = i x A (1.1.28)

The SU(2)" indices are raised and lowered by antisymmetric tensors Q42 and Q5. We'll
use the convention Q'2 = Q9 = 1. The tensor Q45 (resp. Q4p) has a geometric interpreta-
tion as the holomorphic Poisson structure (resp. symplectic structure) on the “target space”

T*C of the theory of a free hypermultiplet.
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For a collection of N hypermultiplets, the extra symmetry SU(2)’ is extended to USp(N),
and the index A takes values A =1,...,2N. It is raised and lowered by the tensors
0 1xn 0 —1y

= ; Qap = (1.1.29)
~1y 0 Iy 0

QAB

(where 1y denotes the N x N identity matrix), which now play the role of holomorphic
Poisson /symplectic tensors on T*C. The reality constraint on scalars continues to take the

form (1.1.26). We will typically split the scalars into chiral halves, generalizing (1.1.27),

S N
X=X, Y, =Xt

ot

X; = XN+ Y =X

i=1,...N, (1.1.30)

with X?, v transforming in the fundamental representation of U(N), and Y;, X; in the dual.
We may couple a collection of N hypermultiplets to a G gauge symmetry by identifying G
with a subgroup of USp(N). (Equivalently, we specify how the hypermultiplets transform in

a unitary symplectic representation of G.) The on-shell SUSY transformations then become

QuiXM = eyt QuE = (¥ (da)as + €ape™) - X°P (1.1.31)
where d 4 is the G-covariant derivative and ¢ - X denotes an infinitesimal gauge transformation
generated by ¢ in the appropriate unitary symplectic representation of G.

1.1.4 Moment maps

In a gauge theory with hypermultiplet matter, the equations of motion set the auxiliary field
D in the vector multiplet to

D = 1% 4 ¢ab (1.1.32)
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where
b 2 pr
u® = (1.1.33)
pr —2[
is the triplet of hyperkahler moment maps. Recall that the moment maps take values in the
dual of the Lie algebra, ur € g* and p € gi. We can describe them explicitly as follows.
Let {(7)4p};k ¢ denote a basis of generators of g, as elements of usp(N). Then for each

generator Ty,

(T, 1) = = X4 (1) BX"P . (1.1.34)

In this thesis we will always assume that hypermultiplets transform in a representation
of the form R & R*, where R is a unitary representation of G with dim¢ R = N, and R* its
dual. In this case, G acts as a subgroup of U(N), and the moment maps may similarly be
interpreted as elements of u(N)* or u(N)Z%. Letting {(7T})%;}52°¢ denote the generators of g,

as elements of u(N), we have

T. O
P € usp(N). (1.1.35)
0 —T

The general expression (1.1.34) for the moment maps simplifies to

— (T, p) = Ya(T)'5 X7, —(Th,pr) = Xi(T)' ;X7 = Vi(Tp)'; Y7 . (1.1.36)
For instance, if G = U(1) acts on a single hypermultiplet, with charge generator

10
T=1€cu(l), T = € usp(l), (1.1.37)

0-1

so that X,Y have charges +1, then the moment maps are familiar expressions

p=XY, pur=I|X?*-|Y]?. (1.1.38)
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1.2 Coulomb branches

We now move to Coulomb branches of the 3d N/ = 4 gauge theories discussed in Section
1.1. The Coulomb branches of these 3d N' = 4 gauge theories have long been an object of
physical and mathematical interest. Early physical studies [129, 130] led to the discovery of
3d mirror symmetry [74-76], and related the Coulomb branch of ADE quiver gauge theories
to moduli spaces of monopoles and instantons [79,120]. Unfortunately, non-perturbative
corrections make the Coulomb branch difficult to analyze directly in non-abelian gauge theory.
(Calculations of instanton corrections in simple non-abelian theories were carried out in e.g.
[131,132], but quickly became impractical.) This difficulty was recently circumvented in a
surprising confluence of physical [67,69,70,124] and mathematical [39,71-73,133] work, based
on ideas from algebra, representation theory, and topological quantum field theory.

General properties of any Coulomb branch are discussed in Section 1.2.1. In Section 1.2.2
we introduce the abelianized Coulomb branch of [67]. This abelianized Coulomb branch is
then related to the honest Coulomb branch M¢ using recent ideas of Webster [39] in Section
1.2.3. Finally, in Section 1.2.4 we mention how flavor symmetries and R-symmetries are

realized on Coulomb branches.

1.2.1 Generalities

Recall that the Coulomb branch of a 3d N’ = 4 gauge theory is a component of the moduli
space of vacua on which all hypermultiplet VEVs vanish, and on which vector multiplet scalars
generically acquire diagonal VEVs, breaking the gauge symmetry G to its maximal torus 7.
The Coulomb branch is a noncompact hyperkéhler manifold [116, 130], possibly singular, of
dimension

dimeMc = 2rank(G) . (1.2.1)

In a 3d gauge theory, the Coulomb branch has an exact SU(2)¢ metric isometry that rotates
its CP! of complex structures. Thus it essentially looks the same in every complex structure.

This SU(2)¢ shows up classically as a rotation of the triplet of g-valued scalar fields in the
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vector multiplet.

In any fixed complex structure, the Coulomb branch is a holomorphic symplectic man-
ifold, i.e. a Kéhler manifold, possibly singular, whose smooth part is endowed with a non-
degenerate holomorphic two-form €2. For every choice of complex structure, there is a chiral
ring of %-BPS local operators whose VEVs are holomorphic functions on the Coulomb branch.
We simply denote this ring

CiMc], (1.2.2)

suppressing the dependence on complex structure. The holomorphic symplectic form €2 en-
dows the chiral ring with a Poisson bracket, thus turning C[M¢] into a Poisson algebra.

Physically, the Poisson bracket of operators may be computed by topological descent [35].

Fibration: scalars and monopoles

In a fixed complex structure, the Coulomb branch moreover has the structure a complex

integrable system.! Specifically, the Coulomb branch is a singular fibration

T --» Mg
s (1.2.3)

tc/W,

where t¢ denotes the complexified Cartan subalgebra of G, W the Weyl group, and Ty the
complexified dual of the maximal torus. Roughly speaking, the base tc/W ~ Crank(G) g

parameterized by the ‘diagonal’ expectation value of a complex vector multiplet scalar

petcCgc- (1.2.4)

The complex scalar ¢ combines two of the three real vector multiplet scalars, as dictated by

the choice of complex structure. (In Eq. (1.1.16), we implicitly chose a complex structure

!This integrable system is a degeneration of the Seiberg-Witten integrable system familiar from 4d N = 2
gauge theory [117-119].
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with ¢ = ¢(++) = $(¢1 — igo) and o = —¢3.) Classically, it is forced to take a diagonal
VEV due to vacuum equations [¢, ¢!] = 0. Global coordinates on the base come from G-
invariant polynomials (Casimir operators) in ¢, which are the true gauge-invariant operators
in a non-abelian theory.

We call a point ¢ on the base generic if 1) it breaks gauge symmetry down to a maximal
abelian subgroup T' = U(1)'***¢ (making all W-bosons massive) and 2) gives a nonzero
effective mass to every hypermultiplet. Algebraically, these criteria mean that, respectively

M,y = {a,p) #0 My :=(\ @) #0
and . (1.2.5)

V a € roots(G) V X € weights(R)

Mathematically, one would say that a generic point of tc/W is in the complement of all weight
and root hyperplanes.

The fiber of the integrable system (1.2.3) above any generic point of the base is a complex
dual torus T ~ (C*)rank(G) It is a holomorphic Lagrangian torus with respect to the
holomorphic symplectic structure. The coordinates on the fibers are VEVs of chiral monopole
operators. Locally, near a generic point on the base where G is broken to 7', one may define
1 2

5-BPS abelian monopole operators as (cf. [130, 134, 135])

va ~ g AT+ (1.2.6)
where ¢ is the gauge coupling, A € t is a cocharacter (satisfying ™4 = I), o € t is the
third real vector multiplet scalar, v € t are the dual photons (with periodicity 27g?), and
(, ) is the Cartan-Killing form. The OPE of monopole operators satisfies vqvp ~ va4p,
for any cocharacters A and B, so their VEVs are just right to produce global functions on
TY o (C*)rank(©),

The way that the Ty fibers vary over the base of the Coulomb branch depends qualita-

tively on locations of the root and weight hyperplanes. Roughly speaking,

e The fibers blow up (their volume diverges) above root hyperplanes, where W-bosons
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become massless and gauge symmetry is enhanced.
e The fibers collapse above weight hyperplanes, where hypermultiplets become massless.

The precise hyperkédhler metric on the fibration acquires non-perturbative quantum correc-

tions that are extremely difficult to compute directly.

TQFT and non-renormalization

Nevertheless, if one ignores the hyperkéhler metric and focuses on M as a complex sym-
plectic manifold, many computations become tractable. In particular, the computation of the
chiral ring C[M] and its Poisson structure (as well as its deformation quantization) reduces
to a relatively simple algebra problem.

There are two ways to think about this simplification. In [67] it was argued that the
chiral ring of a 3d N = 4 gauge theory is independent of the gauge coupling, and thus cannot
receive non-perturbative quantum corrections, or perturbative corrections beyond one loop.

Alternatively, one may recognize that the chiral ring C[M] belongs to a topological
subsector of the 3d gauge theory. Specifically, the chiral-ring operators are in the cohomology
of a topological supercharge @), which was discussed long ago in [136], and may equivalently

be characterized as (cf. [70,71,85])
- the 3d reduction of the 4d N/ = 2 Donaldson supercharge
- one of the scalars under a diagonal subgroup of SU(2)rorentz X SU(2) g (where SU(2) g
is the R-symmetry that rotates hypermultiplet scalars)
- the “twisted Rozansky-Witten” supercharge, as it plays the same role on the Coulomb

branch that the Rozansky-Witten twist plays for the Higgs branch .

Then the product of chiral-ring operators is topologically protected, and may be computed
using standard topological quantum field theory (TQFT) methods. Perhaps surprisingly,
the Poisson bracket and deformation quantization (via Omega background) of chiral-ring

operators are also topological in nature [35].
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The TQFT perspective motivated the initial mathematical work [71,72] on Coulomb
branches. In Section 1.3, we explain how this mathematical characterization of Coulomb-
branch operators relates to the physics of 3d NV = 4 theories. The TQFT perspective has

some important computational consequences, which we draw on in what follows.

1.2.2 The abelianized algebra A

The TQFT derivation of the ring C[M¢] (in Section 1.3) proceeds via reduction to 1d quan-
tum mechanics, where C[M] is identified as the equivariant cohomology (or more technically,
Borel-Moore homology) of a certain moduli space. Fixed-point localization embeds the chiral

ring into a much simpler “abelianized” algebra A,

CiMc] = A. (1.2.7)

Physically speaking, one may think of A as a local algebra of operators near generic points on
the Coulomb branch, where the gauge theory is effectively abelian; this is how the abelian alge-
bra A arose in [67].? Similarly, in an Omega background both C[M¢] and A are deformation-

quantized, and one finds an embedding of associative algebras

C.Mc] — A.. (1.2.8)

All the computations in this chapter will take place in A or A.. We review their structure
here. Since A can be recovered from A, by sending € — 0, it would be sufficient to describe
A.. However, some relations are simpler and more intuitive for A, so we shall start with the
commutative case.

The algebra A can be defined as the local chiral ring, in the neighborhood of a generic
point ¢ on the base of the Coulomb branch, in the sense of (1.2.5). To make this precise,

we denote the loci on the base of the Coulomb branch were W-bosons and hypermultiplets

2This perspective is directly analogous to abelianization/non-abelianization in 4d N = 2 theories [137,138],
and to localization computations of algebras of line/loop operators therein, cf. [20, 139, 140].
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become massless as

A= |J {Mulp)=0} Cte, Ar= |J {Mip)=0} Ctc. (1.2.9)

roots « weights A of R

Then we define
M = 771 ((tc\A U AR) /W) € Mc (1.2.10)

as the open subset of the Coulomb branch sitting above the complement of A and Apg in the
fibration (1.2.3); and define //\/lv*}Jbe1 to be the trivial W-cover of M2P¢! (undoing the quotient

by the Weyl group on the base). Then
A= C[MP]. (1.2.11)

This definition of A makes it obvious that there is an embedding (1.2.7), since any global
function on M defines a W-invariant local function on //\/lv%bel.

The algebra A has two types of generators:

1. Rational functions in the components of the abelian complex scalar ¢ € {¢, whose denom-

inators vanish only on A and Ag.

In other words, there are polynomials in ¢ and in the inverted generators (M) !, (My) 1.

2. Abelian monopole operators v4 as in (1.2.6), for every cocharacter

A € Hom(U(1),T) ~ Z+k&) (1.2.12)

These operators satisfy relations that are essentially the expected product relations vavpg ~
vA4+p among monopole operators, with one-loop corrections from hypermultiplets and W-
bosons.

To write down the relations, we first recall that there is a natural integer-valued product

(\A) e (1.2.13)
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between weights A and cocharacters. Then the classical relation vqv_4 = 1 among abelian

monopole operators is corrected by hypermultiplets and W-bosons to

H (M)\) [(A,A)]

weights A of R

VAV_A = ; (1.2.14)
H (Ma)l(ayAH
roots a of G
and more generally
H (M)\)miﬂ(K/\,A)\J()\»B)I)
weights A of R
st. (A, A\, B) <0
VAUB = VA4B T - . (1.2.15)
(Ma) ([{ee, )], (e, B)])

roots o of G
st (A, AY(\, B) <0
The abelianized algebra A simply contains polynomials in ¢, 1/M,, and v4, modulo these

relations:?

A=C [907 {Mojl}aelrootSa {M)\_l}kewts(R)a {UA}AECOChaI“S] /(relations (1,2.15)) . (1'2'16)

Quantization

The A-twist of 3d N' = 4 gauge theories is compatible with an Omega deformation. Ab-
stractly, the Omega background (or “Omega deformation”) [19] of a 3d cohomological theory
in Euclidean spacetime R? ~ C x R is a deformation of the entire theory, depending on a

complex parameter €, such that the supercharge Q). obeys

Q=¢eV, (1.2.17)

where V' is the generator of U(1) rotations on C. Roughly speaking, Q-cohomology is replaced
by equivariant ().-cohomology, with respect to spacetime rotations about an axis.

It is known from many different perspectives (cf. [141-144]) that the Omega deformation

3Technically, there are also the obvious relations {, ) - Myt = 1, (A, @) - M;l = 1 that follow from the
definitions of M., M.
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induces a deformation quantization of the algebra of local operators. Local operators in the
Omega background must lie on the fixed axis of the above U(1) rotations. Since they can no
longer move past each other, their collision need not be commutative. It was recently argued
in [85] on general topological grounds that the commutator is determined to first order by

the E3 bracket {, }.—o in the undeformed operator algebra,

(0,0'] = {0, 0 }e—o + O(c?). (1.2.18)

The quantized algebra A, is can be described just as above. It is generated by
1. The components of ¢, and €.

2. The inverted masses (M, + ne)~! and (M) + ne)~! for all n € Z.

(The shifted quantities M, + ne may be understood physically as complex masses of all
the various modes of W-bosons in the presence of an Omega background, noting that the
Omega background couples to angular momentum. Similarly, M) + ne are masses of the

modes of hypermultiplets.)
3. The abelian monopole operators v 4.

The parameter ¢ is central; and the components of ¢ (and the (M, » + ne)~!) all commute
with each other. Otherwise, the generators satisfy two basic sets of relations:

First, note that the components of ¢ can all be picked out by contraction with weights,
e.g. (A, ). All linear functions in ¢ arise this way. The commutator of any such linear

function and a monopole operator is

(A ), va] = e(A, A)va. (1.2.19)

For example, if G = U(N), one would customarily write ¢ = diag(¢1, ..., on). Both weights

A= (A1, ..., Ax) and cocharacters A = (A, ..., Ay) are elements of a lattice Z". The entries
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of ¢ are picked out by contractions ((0, ..., i, 5, 0), ) = ¢;, so (1.2.19) says
[pi,va] = eAiva . (1.2.20)

It follows from (1.2.19) that the inverted masses also satisfy (e.g.)

1 1
A My +ne My + (n—{a,A))e va

(1.2.21)

Second, the product of two abelianized monopole operators is given by an appropriately

ordered and shifted version of (1.2.15):

[[ o+ II  Bo+g»?
Aeweights(R) s.t. A€weights(R) s.t.
e e
) ) < 5 5 <
VAVB = VA+B , 1.2.22
T | A 222)
a€roots(G) s.t. a€roots(G) s.t.
[{o, A)|<[{a, B)| e, A)|>{c, B)|
(a,A){a, B)<0 (o, A){a, BY<0
where
b—1
[Ia+ke) b>0
k|f|0
[a]” == [[(a—ke) b<0 (1.2.23)
k=1
1 b=0

\

is a quantum-corrected power. These relations were derived using abelian mirror symmetry
in [67], but also follow from an equivariant cohomology (TQFT) computation [70,71].

Altogether, the quantized algebra is

A = Clo, {(Ma +ne) ™'} {(Mx +ne) '} {val]/ (rel’s (1.2.19),(1.2.22)) |, (1.2.24)

where « € roots(G), A € weights(R), n € Z, and A € cochars(T).
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1.2.3 The image of C[M(] and the algebra W,

Once the Coulomb-branch chiral ring C[M¢] (resp C.[M(]) is mapped to the abelianized
algebra A (resp. A.), many computations become straightforward. In particular, expected
relations among elements of C.[M] can be checked using the simple relations (1.2.15) in A..
Nevertheless, the precise image of C.[M] in A. can be tricky to identify.

A few structural properties of the embedding map were discussed in [67]. For example:

e The image of C.[M¢]| must sit in the Weyl-invariant subalgebra AZV C Ag, since local

operators in the full non-abelian gauge theory are gauge invariant.

e In A, one finds arbitrarily large negative powers of the masses M, \ + ne. In the case
of W-boson masses, this is unavoidable, due to denominators in the products vv_ 4.

1
Mq z+ne

In contrast, the image of C.[M¢] in A. cannot contain any of the elements
themselves, since operators in C.[M¢] must define (as ¢ — 0) global functions on the

Coulomb branch that extend smoothly across the discriminant locus.

It is also known how a basis for C[M¢] as an infinite-dimensional vector space should
be indexed [69]. Physically, one expects that the elements of C[M¢] are monopole operators
V4 p(p) labeled by dominant cocharacters A (equivalently, by Weyl orbits in the cocharacter
lattice) and dressed by polynomials p(¢) of ¢ € t¢ that are invariant under the stabilizer
W4 of A in the Weyl group. For example, if A = 0, the “dressing factors” are just standard

Weyl-invariant polynomials C[go]w. Formally, we might write

dressing factors

as a vector space Way
CiMe] te @ Cl] (V4). (1.2.25)

dominant A

It is unclear whether these structural properties alone can determine how elements of
C[M¢] (or C.[M¢]) embed in A (or A.). However, much stronger constraints on the embed-
ding come from the mathematical/TQFT perspective. In fact, the TQFT construction of the

chiral ring gives — in principle — a complete answer to the embedding problem. Namely,
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elements of C.[M(]| are identified with equivariant cohomology classes on a certain moduli
space; and the embedding C.[M¢] < A. just expresses these classes in terms of equivariant
fixed points.

It can still be very difficult to explicitly analyze equivariant cohomology classes in prac-
tice. Fortunately, Webster [39] recently outlined a combinatorial calculus that accomplishes
this task for Coulomb branches. We will discuss the physical meaning of Webster’s calculus
in [112]. In the current chapter, we take a pragmatic approach and use one simple con-
sequence of Webster’s combinatorics: the image of C.[M¢] in A. must always contain a

particular subalgebra W, (defined momentarily),

W. C Cc[Mc] C A.. (1.2.26)

The algebra W; is defined as follows. One begins with a subalgebra of A, generated by

polynomials in ¢ and by rescaled monopole operators

ua =[] Mo oa = J[  valMa). (1.2.27)
acroots(G) a€roots(G)
s.t. (o, A)<0 s.t. (a,A)<0

These u4 monopole operators, carrying additional factors associated to the W-boson masses,

have the nice property that their products never generate denominators: we simply have

waup = [T DO+ s [T B+ g™, (228)
Aeweights(R) s.t. Aeweights(R) s.t.
KA A) <K B)| KA A) >\, B)|
(A AYA,B)<0 (\AY(A,B)<0

with one-loop corrections from the hypermultiplets alone. Otherwise, the usual relations

(A, @), ua] = e(X, A)ua (1.2.29)

continue to hold for any weight A and cocharacter A.

In addition, for each root «, let s, € W denote the corresponding simple reflection.
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Recall that the Weyl group is generated by the s,’s. We may adjoin the s, to the algebra of
@’s and u4’s, in such a way that the s,’s satisfy the standard Weyl-group relations among

themselves, and natural commutation relations

SalA =Uae Sa, 5o f(0) = f(¥7) sa, (1.2.30)

where A% is the reflected cocharacter, and ¢ is the reflected element of t¢. Finally, for each

«, introduce the BGG-Demazure operator?

o = — (54 —1). (1.2.31)

The algebra W is defined as the Weyl-invariant part of an algebra generated by 1) polynomials

in ; 2) the u4 monopole operators; and 3) the BGG-Demazure operators:

w

We =C [‘707 {UA}AECochars’ {ea}aeroots] - As . (1232)

The relations, which we leave implicit, are of the form (1.2.28), (1.2.29), (1.2.30). Notice that
once Weyl-invariance is imposed, all the s,’s are all projected out, so W, does become an
actual subalgebra of A..
Practically speaking, the role of the Demazure operators 6, is to introduce a few de-
1

nominators 37—, in a controlled way, so that the structural properties of the Coulomb branch

discussed above are actually satisfied.

1.2.4 Flavor symmetry and R-symmetry

We finally comment briefly on symmetries of 3d N' = 4 theories.
Flavor symmetries act either on the Higgs branch or on the Coulomb branch, as tri-

Hamiltonian isometries. The symmetry group F' acting on the Higgs branch is easy to identify

1The “BGG” stands for Bernstein, Gelfand, and Gelfand. The operators 6, generate the G-equivariant
cohomology of the flag variety (known as the nil-Hecke algebra in representation theory), which is a large clue
to their physical meaning. Another, related, clue is the appearance of the 6, in the work of Gukov and Witten
on surface operators in 4d [145]. We will tie these clues together in [112].
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in a gauge theory, as the normalizer of G in USp(R)
F = Nysyr)(G)/G, (1.2.33)

i.e. the group that acts on hypermultiplets independently of G. In general, complex mass
parameters associated to the Higgs flavor symmetry (scalars in the F' vector multiplet) can
deform the Coulomb-branch chiral ring.

In the UV, the Coulomb-branch flavor group K is the Pontryagin dual of 71 (G)
K = Hom(m(G),U(1)) ~ U(1)r2»ZG) (1.2.34)

which is an abelian group with the same rank as the center of G. In the IR the group
K may undergo a non-abelian enhancement, controlled by the “balanced” nodes in a given
quiver [55,56,135], i.e. nodes @ that are coupled to exactly Ny = 2N, hypermultiplets.®

Since the chiral ring C[M] is insensitive to RG flow, the fully enhanced IR symmetry
group K will act on it. More so, since C[M] is a holomorphic object, the complexification
K¢ will actually act. This action is generated by the complex moment map operators p =
puc € CiMc| ® Lie(K)*, which are related to the K currents by supersymmetry.

The K¢ action extends to the quantized chiral ring C.[M¢], where it is generated by
taking commutators (rather than Poisson brackets) with moment maps. Explicitly, if T €
LieK¢ is a generator of the (complexified) Lie algebra, and we denote by ur = (T, u) €

C.[M ] the contraction of T and pu, there must be commutation relations

lur, prr] = € (1.2.35)

°Tt is worth noting that there can be yet further enhancement beyond the naive consideration of balanced
nodes. For example, in the theory 753 discussed below there is an obvious SU(2)® Coulomb-branch flavor
symmetry. However, this theory is 3d mirror to a theory of 8 free half-hypermultiplets with Higgs-branch
flavor symmetry USp(4), which should be equal to the Coulomb-branch flavor symmetry of 7z 3. Indeed, the
Coulomb branch of 753 is T*C* ~ C® which has a full USp(4) worth of hyperkihler isometries.
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and the infinitesimal 7" action on any other operator O is
_1
T-0=lur,0]. (1.2.36)

In addition to flavor symmetries, 3d N/ = 4 gauge theories with linear matter also have
an SU(2)c x SU(2)g R-symmetry. The two factors act on the Coulomb and Higgs branches,
respectively, but in a way that rotates the hyperkihler CPYs of complex structures rather
than as tri-holomorphic isometries. The SU(2)¢c acting on the Coulomb branch is important
to us. Any fixed complex structure on the Coulomb branch is preserved by a U(1)r subgroup
of SU(2)¢, which induces into a complexified C* action on the chiral ring C[M¢]. The C*
action extends to the quantized C.[Mc¢], in such a way that the quantization parameter

and all moment maps canonically have charge®
] =1[e]=1. (1.2.37)

In the abelianized chiral ring A., the complex ¢ scalars also necessarily have [p] = 1. Tt

then follows from monopole products (1.2.22) (or in fact the simpler commutative (1.2.14))

that
1
pad=5( X A= Y e A)). (1.2:38)
weights A or R roots o of G
This is consistent with physical expectations for monopole charges [55,56, 135].

If a 3d N = 4 gauge theory flows to a CFT, the C* charges of chiral-ring operators

coincide with their conformal dimensions, and must therefore be strictly positive.

1.3 Twists of 3d N =4 and the BFN construction

We now turn to the subject of topological twists the 3d N' = 4 theories discussed in Section 1.1.
In Section 1.3.1 we review the notion of twisting a supersymmetric gauge theory and in Section

1.3.1 we review the possible twists admitted by 3d theories with N' = 4 supersymmetry. There

SWe are working in conventions where the minimal charge of a C* representation is %
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are two distinct topological twists of 3d N = 4 gauge theories, which we will refer to as the
A- and B-twists. The supercharges that define these respective twists in flat space — in the
usual sense that topologically twisting the theory amounts to working in the cohomology of

a particular supercharge — are
Qa=QI " +Q=", Qp=QI"+QI". (1.3.1)

The A-twist is a dimensional reduction of the 4d Donaldson-Witten twist [146], and is involved
in the definition of Seiberg-Witten invariants of 3-manifolds [65]. Some families of A-twisted
3d sigma-models were studied in [66, 147]. The B-twist is intrinsically three-dimensional. It
was first identified by Blau and Thompson [136] in pure 3d N' = 4 gauge theories, and then
studied by Rozansky and Witten [43] in 3d A/ = 4 sigma-models (which could be thought of as
3d NV = 4 gauge theories on their Higgs branches). The extended TQFT defined by the B-twist
of a sigma-model was described by Kapustin-Rozansky-Saulina [68]. The fact that the A- and
B-twists are the only topological twists in 3d N = 4 theories follows from a basic algebraic
classification of nilpotent supercharges whose commutators contain all translation [121, 122].

For the purpose of this thesis, we will be particularly interested in the topological A-twist
of the gauge theories described in Section 1.1. Bulk local operators in this topological twist

can be preserved by as many as four independent supercharges, namely the supercharges

{Qg—i_}a,a::t . (1.3.2)

The corresponding spaces of %—BPS local operators is nothing other than the Coulomb-branch
chiral ring [13,67,69, 148=150]. In reanalyzing the Coulomb branches of these theories, and
in preparation for the discussion of A-type line operators in the Chapter 2, we find it useful
to rewrite the theory as an effective 1d theory of maps into the solutions to certain BPS
equations, from which it is easy to identify the algebra of local operators. In Section 1.3.2 we

discuss the relevant BPS equations and in Section 1.3.3 we relate this construction to that of
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Braverman-Finkelberg-Nakajima construction [71,72].

1.3.1 Twisting

We work almost exclusively in flat, Euclidean R™. Suppose we have a QFT on R" with a

Z-valued fermion number” and a fermionic symmetry generated by a charge @8, such that
e ( has fermion number 1: we write |Q| =1
e () is nilpotent: Q%> =0

e translations are Q-exact: P, = {Q, Q,} for some other symmetries @, with |Q,| = —1,

and this extends to the corresponding currents, 7, = {Q, S, } for some S, .

We will call such a @ is a “topological” supercharge. More generally, one could ask for only
a portion of translations to be exact; the exact translations can be organized so that some
directions are topological (the translations are exact) while others are holomorphic (the anti-
holomorphic translations are exact). We call such a supercharge “mixed” or “holomorphic-
topological.”

Since Q2 = 0, it makes sense to consider the Q-cohomology of various local and extended
operators in the QFT. From a physical perspective, it is more natural to simply restrict
attention to Q-closed (i.e. Q-invariant) objects. This is actually equivalent to working in
cohomology. Namely, once one decides to consider only @)-closed local operators, line opera-
tors, boundary conditions, vacua, etc., the insertion of any (Q-exact operator in a correlation

function automatically evaluates to zero; schematically,

(QIO)O"--+) =(Q(OO"--+)) =0. (1.3.3)

"The discussion in this section would work perfectly well with a Zg-valued fermion number. However, in
our 3d N' = 4 applications we will always have a Z enhancement of the fermion number, coming from an
R-symmetry, so we work in this context.

8More precisely, we also need Q to transform as a scalar under a suitable Lorentz group. In the contexts
where @ arises from a supersymmetry, the suitable Lorentz group is defined as a subgroup of the product of
the (usual) Lorentz group and the R-symmetry group.
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(The first equality holds if @’ --- are all Q-closed, and the second equality holds because @
is a symmetry.) Since two operators are physically distinguishable only insofar as they are
measured by correlation functions, we find that, in the sector of the theory containing only
(Q-closed operators, the QQ-exact operators are automatically equivalent to zero. Thus, only
(Q-cohomology classes are measured.

We will refer to the Q-cohomology of a theory as its “Q-twist.” We note that the
requirements above for a topological supercharge are weaker than the standard notion of
a topological twist [62, 116]. Namely, a standard topological twist requires @ to be defined
on arbitrary curved spacetimes, and leads to metric-independent correlation functions due to
Q-exactness of T),,; whereas the above only requires ) to exist on flat R3. When @ can be
defined on arbitrary spacetimes (and T}, is always Q-exact), we will say that the Q-twist has

the structure of a full TQFT.

Nilpotence varieties

A natural source of theories that admit the above nilpotent fermionic symmetries (Q are those
with supersymmetry. In particular, given an algebra of supersymmetries one can consider the
moduli space of (non-zero) nilpotent elements, called the “nilpotence variety” [122]. Based
on the discussion above, this moduli can equivalently be thought of as the moduli space of
possible twists admitted by the theory [121].

The nilpotence variety is naturally a complex projective variety and admits a stratification
by type of supercharge, e.g. by the dimension of the image of {Q, —}. Consider the case of
N = 4 supersymmetry in 3d (without central charges); the supersymmetry algebra of interest
takes the form of Eq. (1.1.1) (with m,t set to zero). A general point of the nilpotence variety
can be written as @ = ¢, a4 where q5, are naturally projective coordinates on P” subject
to the three quadratic relations

eabed"’qgﬁ‘dqu —0. (1.3.4)

These equations cut out two copies of P? x P! in P7 that intersect along a P! x P! x P! [122].
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Up to (discrete and continuous) symmetries, we can always choose

n 10 B 0c
Qoo = Qoo = (1.3.5)
00 d 0

where ¢’ = 0. If both ¢ and ¢’ vanish, the resulting @ is a mixed supercharge:
Qur = QT+ (c=0,d =0) (1.3.6)

and we call the corresponding twist the “holomorphic-topological twist” or simply the “HT-
twist.” On the other hand, if either ¢ or ¢’ is non-zero we can use a (complexified) R-symmetry

rotation to scale it to 1, thus we obtain two distinct topological supercharges:

Qu=00Qu =T +Q=" (c=0.d=1)

. . (1.3.7)
Qe=03Q% =QT"+Q" (c=1,d=0)

We call the corresponding topological twists the “A-twist” and “B-twist.”*

The A-twist is a dimensional reduction of the 4d Donaldson-Witten twist [146], and is
involved in the definition of Seiberg-Witten invariants of 3-manifolds [65]. Some families
of A-twisted 3d sigma-models were studied in [66, 117]. The B-twist is intrinsically three-
dimensional. It was first identified by Blau and Thompson [136] in pure 3d N = 4 gauge
theories, and then studied by Rozansky and Witten [413] in 3d N' = 4 sigma-models (which
could be thought of as 3d A/ = 4 gauge theories on their Higgs branches). The extended TQFT
defined by the B-twist of a sigma-model was described by Kapustin-Rozansky-Saulina [68].

The HT-twist is more general than the A- and B-twists and is also enjoyed by 3d N = 2
theories, recently studied in [151,152], and can be defined on 3 manifolds that admit a

“transverse holomorphic foliation,” i.e. a local splitting of the 3d manifold as the product of

9These topological twists often appear under the names “H-twist” and the “C-twist,” respectively, cor-
responding the SU(2) subgroup of the SU(2)n x SU(2)c R-symmetry group used to make the supercharge
a scalar. We use the name A-twist and B-twist as they reduce to these twists for a certain 2d N = (2,2)
subalgebra of the 3d N' = 4 algebra.
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a Riemann surface and a line. The algebra of local operators in the HT-twist has the structure
of a commutative chiral algebra (i.e. correlation functions of @ gp-closed operators depend
holomorphically on the locations of operator insertions and are non-singular as insertions

collide) and admits an odd Poisson bracket.

1.3.2 The topological A-twist and SQM 4

A useful perspective for understanding the topological A-twist of 3d N' = 4 gauge theories is
to write the full 3d A/ = 4 theory as an effective 1d super quantum mechanical theory whose
target space is the solution space to a suitable set of BPS equations.

This rewriting of the theory will preserve 1d N' = 4 supersymmetry, and there are
essentially two inequivalent choices of 1d N = 4 subalgebras, which we will call SQM 4 and
SQMpg. These 1d superalgebras are simply the largest 1d supersymmetry algebras containing
the corresponding topological supercharges Q4 and @Qp, respectively, and are compatible
with the choice of splitting R3 ~ C.z x Ry with z = 21 + iz, t = x3. In this thesis, we
are only interested in the topological A-twist and SQM 4, but mention the algebra SQMpg for
completeness.

The 1d N = 4 algebra SQM , is generated by the four supercharges
Qh=0%Qa", Q4= (0")%Qd", (1.3.8)
which satisfy
{Q4.Qh) = 2"(P —itr),  {Q4,Q4