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ARTICLE
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Summary
Familial, sequencing, and genome-wide association studies (GWASs) and genetic correlation analyses have progressively unraveled

the shared or pleiotropic germline genetics of breast and ovarian cancer. In this study, we aimed to leverage this shared germline

genetics to improve the power of transcriptome-wide association studies (TWASs) to identify candidate breast cancer and ovarian

cancer susceptibility genes. We built gene expression prediction models using the PrediXcan method in 681 breast and 295 ovarian

tumors from The Cancer Genome Atlas and 211 breast and 99 ovarian normal tissue samples from the Genotype-Tissue Expression

project and integrated these with GWAS meta-analysis data from the Breast Cancer Association Consortium (122,977 cases/105,974

controls) and the Ovarian Cancer Association Consortium (22,406 cases/40,941 controls). The integration was achieved through

application of a pleiotropy-guided conditional/conjunction false discovery rate (FDR) approach in the setting of a TWASs. This iden-

tified 14 candidate breast cancer susceptibility genes spanning 11 genomic regions and 8 candidate ovarian cancer susceptibility

genes spanning 5 genomic regions at conjunction FDR < 0.05 that were >1 Mb away from known breast and/or ovarian cancer sus-

ceptibility loci. We also identified 38 candidate breast cancer susceptibility genes and 17 candidate ovarian cancer susceptibility

genes at conjunction FDR < 0.05 at known breast and/or ovarian susceptibility loci. The 22 genes identified by our cross-cancer anal-

ysis represent promising candidates that further elucidate the role of the transcriptome in mediating germline breast and ovarian

cancer risk.
Introduction

The last three decades have witnessed major advances in

our understanding of the shared inherited genetic basis

of breast and ovarian cancer. The identification of rare
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inherited mutations in BRCA1 (MIM: 113705)1 and

BRCA2 (MIM: 600185)2 that confer high risks of devel-

oping both breast and ovarian cancer has directly opened

up the identification of oncogenic mechanisms leading

to the development of poly ADP ribose polymerase
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inhibitor therapy.3 The findings from genome-wide asso-

ciation studies (GWASs) have demonstrated that there is a

strong genetic correlation between breast and ovarian

cancer4 and have identified several genomic regions con-

taining common (minor allele frequency > 1%) variants

that confer risk of developing both breast and ovarian

cancer.5,6

Transcriptome-wide association studies (TWASs) repre-

sent the latest study design for the identification of dis-

ease-associated susceptibility genes. TWASs involve estab-

lishing robust multi-variant models for the component

of somatic (normal or tumor) gene expression that is regu-

lated by germline genetic variation in a smaller dataset

where both germline genotype and somatic transcrip-

tomic data are available. These models are then used to

impute the germline genetically regulated component of

gene expression into a larger GWAS dataset where

measured gene expression is unavailable but that offers

significantly improved power to identify genes associated

with disease risk where such risk may be mediated by

expression. Moving from single variants (GWASs) to genes

(TWASs) as the unit of association reduces the multiple

testing burden. The use of gene expression provides a

readily accessible readout of the functional basis of the
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identified association in contrast to GWAS-identified risk

variants that predominantly reside in non-coding regions

of the genome.7

PrediXcan is a method developed recently for con-

ducting TWASs.8 TWAS methods have been applied to sin-

gle cancer types before, including breast cancer9,10 and

ovarian cancer.11,12 Here we present an application of Pre-

diXcan, and indeed broadly of TWASs, in the pleiotropic

cross-cancer setting.We used the normal and tumor breast-

and ovary-specific gene expression and matched germline

genotype datasets to generate tissue-specific PrediXcan

models and first imputed these models into GWAS data

for the corresponding cancers (i.e., from breast-tissue-

derived models into breast cancer GWASs and likewise

for the ovarian models). We then imputed models across

cancer types (i.e., from breast-tissue-derived models into

ovarian cancer GWASs and vice versa). Finally, we imple-

mented a powerful conjunction false discovery rate (FDR)

approach13,14 that has been applied previously to

GWASs,15–18 but not to TWASs, to leverage the combined

GWAS sample of over 145,000 breast and ovarian cancer

cases. We identify candidate breast and ovarian cancer sus-

ceptibility genes in regions not previously implicated by

GWAS or TWAS analyses of these cancers.
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Material and methods

Matched germline genotype: normal/tumor gene

expression datasets
We used data for 211 normal breast tissue samples and 99 normal

ovarian tissue samples from the Genotype-Tissue Expression

(GTEx) project (version 7 release).19 Germline genotypes in the

GTEx data had been called from whole-genome sequencing (Illu-

mina HiSeq X), and gene expression was profiled using RNA-

sequencing (Illumina TruSeq). We also used data from 681 breast

cancer20 and 295 high-grade serous ovarian cancer (HGSOC)21

cases from The Cancer Genome Atlas (TCGA) network. Germline

genotypes in the TCGA data had been called from genotyping ar-

rays (Affymetrix SNP 6.0), and gene expression was profiled using

RNA-sequencing (Illumina HiSeq 2000). Imputation of TCGA

germline genotypes using the 1000 Genomes version 5 reference

panel was performed as described previously.22,23 TCGA sample

sizes reported here refer to only those samples that had >95% Eu-

ropean ancestry. Ancestry was estimated using the Local Ancestry

in adMixed Populations tool (LAMP version 2.5).24 Downstream

PrediXcan modeling (described below) used variants imputed

with quality > 0.8 that had a minor allele frequency > 5% in

TCGA datasets.

Genome-wide association datasets
Summary statistics from genome-wide association meta-analyses

were obtained from the Breast Cancer Association Consortium

(BCAC)22 and the Ovarian Cancer Association Consortium

(OCAC).23 The breast cancer susceptibility data were based on

122,977 cases and 105,974 controls, including 21,468 estrogen re-

ceptor (ER)-negative cases. The ovarian cancer susceptibility data

were based on 22,406 epithelial ovarian cancer cases and 40,941

controls, including 13,037 HGSOC cases. We harmonized the

signs of the effect size estimates and aligned them to the same ef-

fect allele in the breast and ovarian cancer GWAS datasets. We re-

tained 9,530,997 variants with minor allele frequency > 1% and

imputation quality > 0.4 in both datasets for S-PrediXcan ana-

lyses. All individuals in these studies were of genetically inferred

European ancestry.

PrediXcan model development and S-PrediXcan

analyses
We built genetically regulated gene expression prediction models

using the elastic net regularization approach implemented in Pre-

diXcan and validated these models using tenfold cross-valida-

tion.8 Essentially, this generates a list of variants for each gene

where model construction is successful and each variant in the

list is assigned a weight reflecting its influence on its target gene

expression. Genes with models where the nested tenfold cross-

validated correlation between predicted and actual levels of

expression was >10% (predictive performance r2 > 0.01) and p

value of the correlation test was <0.05 were retained. These

models were adjusted for the latent determinants of gene expres-

sion variation (referred to hereafter as PEER factors), which were

identified using the Probabilistic Estimation of Expression Resid-

uals (PEER; version 1.3) method.25 We adjusted for 60 and 45

PEER factors for TCGA breast and ovarian cancer data, respec-

tively. The choice of these numbers is a function of sample size

and consistent with recommendations.8,25 ESR1 expression was

also included as a covariate in the construction of breast cancer

models to account for ER status and its influence on the expression
H

of individual genes. For the GTEx version 7 datasets, we down-

loaded pre-computed PrediXcan models from predictdb.org. Our

pipeline for processing the TCGA datasets, including the applica-

tion of PEER factors, was designed to be consistent with the pipe-

line used to generate the pre-computed GTEx PrediXcan models.

S-PrediXcan refers to the application of the PrediXcan gene expres-

sion models, specifically the variant weights from elastic net

combined into multi-variant gene-level instruments, to summary

statistics GWAS datasets and has been described in detail before.8

The variance of a gene’s expression that was explained by the

SNPs in its model was calculated as W0 3 G 3 W (where W is

the vector of SNP weights in a gene’s model, W0 is its transpose,

and G is the covariance matrix).
Conditional and conjunction FDR analyses
We obtained p values for association of predicted expression of

each gene with breast cancer risk and with ovarian cancer risk.

We then computed the FDR for gene-breast cancer risk association

conditional on gene-ovarian cancer risk association (as condi-

tional FDRBreast CancerjOvarian Cancer). This is the probability that a

gene is not associated with breast cancer risk given the p values

for association with both breast cancer risk and ovarian cancer

risk. The analogous conditional FDR for gene-ovarian cancer risk

association was also calculated (FDROvarian CancerjBreast Cancer).

Finally, the conjunctional FDR estimate, which is conservatively

defined as the maximum of the two conditional FDR values, was

computed. This processminimizes the effect of a single phenotype

(in this case, breast or ovarian cancer) driving the shared associa-

tion signal. It allows the power of pleiotropic associations to be

tapped for genetic discovery, unlike a traditional FDR approach

that is informed solely by the distribution of p values for a single

phenotype. We used the R implementation of the conditional

FDR method. The conditional and conjunctional FDR method

has been described extensively elsewhere13–18 but not applied

before to the TWAS setting. The overall study design is summa-

rized in Figure 1.
Fine-mapped candidate causal risk variant datasets
We examined the overlap between variants in the breast gene

expression prediction models and a published list of fine-mapped

candidate causal risk variants for breast cancer.26 This was done to

follow up genes that we identified in genomic regions that are

known to be associated with breast cancer risk under the intuition

that gene-level association signals identified by S-PrediXcan that

demonstrate such overlap with fine-mapped variants are likely be-

ing driven by the GWAS association signal in the same region.

Fine-mapped candidate causal risk variants lists for breast cancer

were obtained from Fachal et al.26 Briefly, Fachal et al. fine-mapped

150 known breast cancer susceptibility regions using dense geno-

type data on women participating in the BCAC and in the

Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).

Stepwise multinomial logistic regression was used to identify inde-

pendent association signals in each region. Credible causal vari-

ants within each signal were defined as being within a 100-fold

likelihood of the top conditional variant to delineate the variants

driving the GWAS associations in each region.

We adopted a similar analytic strategy for the ovarian cancer da-

taset fromOCAC. Each genomic regionwith a genome-wide signif-

icant (p < 5 3 10�8) variant was explored to identify additional

independent association signals. All variants within a given

genomic regionwere jointly analyzed to evaluate the simultaneous
uman Genetics and Genomics Advances 2, 100042, July 8, 2021 3
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Figure 1. Overview of datasets and analyses in this study
Flowchart providing an overview of the datasets used and the various steps in the analysis. GTEx, Genotype-Tissue Expression project;
TCGA, The Cancer Genome Atlas; GWAS, genome-wide association study; FDR, false discovery rate.
effects of multiple variants, using a 1 Mb window centered on the

most significant variant, in stepwise conditional models. Given

the presence of a genome-wide significant variant in the region,

the prior probability of an additional risk variant in the same region

is higher than in a region without a genome-wide significant lead

variant; therefore, we used a threshold of p < 1 3 10�5 to identify

additional independent association signals. All variants in each re-

gionwere ranked by the likelihood of associationwith ovarian can-

cer based on p values. The likelihood of each variant was then

comparedwith the likelihoodof the leadvariant in the regionbased

on theprimary association analysis for primary signals and the con-

ditional association analysis for conditional signals. Variants with

odds > 1:100 compared with the lead variant (corresponding to a

p value 100 times larger than the most significant p value27) were

selected as credible causal variants.
Results

Development of tissue/tumor-specific gene expression

prediction models

We built genetically regulated gene expression predictor

models using matched germline genotype and tumor

gene expression data from TCGA by applying elastic net

regularization as implemented in the PrediXcan software.

Genes with models where the nested tenfold cross-vali-

dated correlation between predicted and actual levels of

expression was >10% (predictive performance r2 > 0.01)

and p value of the correlation test was <0.05 were retained

in line with best practice quality control recommendations

by the developers of PrediXcan.8 We constructed and eval-
4 Human Genetics and Genomics Advances 2, 100042, July 8, 2021
uated predictor models that met these criteria for 4,457

genes based on 681 TCGA breast tumor samples and for

2,705 genes based on 295 TCGA ovarian tumor samples.

We obtained pre-computed genetically regulated gene

expression predictor models that met the same criteria

(predictive performance r2 > 0.01; correlation test p <

0.05) in matched germline genotype and normal tissue

gene expression data from the GTEx Project. Specifically,

the pre-computed data included 5,274 genes modeled

based on 211 GTEx breast tissue samples and 3,034 genes

modeled based on 99 GTEx ovarian tissue samples. The

variance of a gene’s expression explained by SNPs in its

model was, on average, lower in tumors and higher in

normal tissues (mean [standard deviation] for TCGA breast

cancer: 0.04 [0.07]; TCGA ovarian cancer: 0.05 [0.06)];

GTEx breast: 0.09 [0.09]; and GTEx ovary: 0.15 [0.13]),

likely reflecting the relatively smaller influence of germline

genetic variation on tumor gene expression compared to

its impact on normal tissue gene expression. Prediction

performance as measured by the cross-validated correla-

tion of the tissue model’s correlation to the gene’s

measured transcriptome was, in general, substantially bet-

ter for the normal tissue models than the tumor tissue

models (Figure S1).

Imputation of gene expression into GWAS and

pleiotropy-guided FDR control

We used the GTEx normal breast-tissue-derived prediction

models to impute genetically regulated gene expression in



a genome-wide association meta-analysis involving

122,977 breast cancer cases and 105,974 controls using

S-PrediXcan. We tested for association between imputed

gene expression and breast cancer risk. We also used the

same GTEx breast-tissue-based models to impute gene

expression in a genome-wide association meta-analysis

of 22,406 ovarian cancer cases and 40,941 controls and

test for association between imputed expression and

ovarian cancer risk. For these two steps, we applied the

conditional FDR method to the S-PrediXcan gene-level as-

sociation p values to correct for testing 5,274 genes in

each analysis. This yielded two conditional FDR values:

one for association with breast cancer risk given associa-

tion with ovarian cancer risk and the other for association

with ovarian cancer risk given association with breast can-

cer risk. Finally, we took the larger of the two values for

each gene as a conservative estimate of its conjunction

FDR to identify candidate breast cancer susceptibility

genes at conjunction FDR < 0.05. We refer to these genes

as candidate breast cancer susceptibility genes because

they were identified on the basis of gene expression pre-

dictor models derived from breast tissue. However, the

conditional-conjunction FDR analysis effectively bor-

rowed information from pleiotropic associations with in-

herited susceptibility to a second cancer type (in this

case ovarian cancer) in addition to the primary cancer

type (breast cancer), and these genes may be considered

as risk genes for the second cancer as well. These steps

were repeated for three other ordered combinations of da-

tasets: TCGA breast tumor tissue-breast cancer GWAS-

ovarian cancer GWAS to identify candidate breast cancer

susceptibility genes; GTEx normal ovarian tissue-ovarian

cancer GWAS-breast cancer GWAS and TCGA ovarian tu-

mor tissue-ovarian cancer GWAS-breast cancer GWAS to

identify candidate ovarian cancer susceptibility genes.

We also replaced the overall breast cancer GWASs and all

invasive ovarian cancer GWASs used in the four dataset

combinations described above with ER-negative breast

cancer GWASs (21,468 cases/105,974 controls) and

HGSOC GWASs (13,037 cases/22,406 controls), respec-

tively. This helped identify additional candidate breast

and ovarian cancer susceptibility genes driven by sub-

type-specific associations at conjunction FDR < 0.05.

For each gene, coverage was defined as the percentage of

the number of variants included in its expression predic-

tion model that were also captured in the genome-wide as-

sociation meta-analysis. The coverage was R80% for at

least 93% of the genes in each of the four matched germ-

line genotype and normal or tumor gene expression data-

sets used to build the predictor models, indicating that for

most genes, most of the corresponding model variants

available were used. In each ordered analytic combination

of datasets (e.g., GTEx normal breast tissue-breast cancer

GWAS-ovarian cancer GWAS) we observed that, in general,

for progressively smaller S-PrediXcan p values of the sec-

ond cancer type, the true discovery rate for association

with the primary cancer type approached 100% at progres-
H

sively larger S-PrediXcan p values for the primary cancer

type (Figure 2; Figure S2). This was consistent with substan-

tial shared gene-level associations for breast and ovarian

cancer risk and these shared signals being tapped by the

conditional-conjunction FDR method to power candidate

susceptibility gene discovery.

Identification of candidate breast cancer and ovarian

cancer susceptibility genes

We identified 14 candidate breast cancer susceptibility

genes at the conjunction FDR< 0.05 threshold (Table 1; Ta-

ble S1). The 14 genes were distributed between 11 genomic

regions>1Mb apart from each other (Table 1). These genes

have not been reported as susceptibility genes in any prior

TWAS of breast cancer risk and are >1 Mb away from pub-

lished genome-wide significant lead variants for breast can-

cer susceptibility.28 For ovarian cancer, we identified 8

candidate susceptibility genes at conjunction FDR < 0.05

(Table 2; Table S2). The 8 genes were located across 5

genomic regions >1 Mb apart from each other (Table 2).

These genes have not been reported as candidate risk genes

in anypreviously reportedTWASsof ovarian cancer risk and

are >1 Mb away from published genome-wide significant

lead variants for ovarian cancer susceptibility.23

Candidate breast cancer and ovarian cancer

susceptibility genes at known GWAS loci

We identified 38 candidate breast cancer susceptibility

genes that were located within 1 Mb of a published lead

variant associated at genome-wide significance with breast

cancer risk (Table S3).28 Four of the 38 genes have also been

reported in previously published TWASs (Table S3).9,10 The

38 genes were spread across 12 genomic regions >1 Mb

apart from each other. Overlaying fine-mapped candidate

causal breast cancer risk variants on breast gene expression

predictor model variants showed that for 21/38 (55%)

genes, the prediction model variants included at least

one fine-mapped candidate causal variant (Tables S3 and

S4). This suggested that, for these genes, the GWAS associ-

ation signal was driving the S-PrediXcan signal. We also

identified three additional genes that were >1 Mb away

from knownGWAS loci that have previously been reported

as TWAS loci for breast cancer risk (Table S3).9,10

For ovarian cancer, we identified 17 candidate suscepti-

bility genes that were located within 1 Mb of a published

lead variant associated at genome-wide significance with

ovarian cancer risk (Table S5).23 Six of these genes have

also been reported in a previously published TWAS for

ovarian cancer (Table S5).11,12 The 17 genes span 5

different genomic regions >1 Mb apart. Overlaying fine-

mapped candidate causal ovarian cancer risk variants

onto the ovarian gene expression predictor model variants

showed that for 12/17 (71%) genes, the prediction model

variants included at least one fine-mapped candidate

causal variant (Tables S5 and S6), suggesting that for these

genes the GWAS association signal underpinned the S-Pre-

diXcan signal.
uman Genetics and Genomics Advances 2, 100042, July 8, 2021 5



Figure 2. True discovery rate of S-PrediXcan associations for each cancer stratified by associations with the other cancer
True discovery rate against the negative logarithm (base 10) of the p value for each cancer for subsets of genes based on strength of as-
sociation with the other cancer. The y axis of each plot is the true discovery rate, which is defined as 1 � conditional FDR (cFDR). For a
given ordered analytic combination of datasets (e.g., GTEx normal breast tissue as transcriptome reference panel-breast cancer GWAS-
ovarian cancer GWAS, plotted in the upper left corner) we observed that, in general, for progressively smaller S-PrediXcan p values of the
second cancer type (indicated by the key ‘‘Threshold p’’ next to each plot), the true discovery rate (y axis) for associationwith the primary
cancer type approached 100% at progressively larger S-PrediXcan p values for the primary cancer type (x axis; negative logarithm [base
10] of the p values). Only p values > 10�6 are plotted on the x axis. BC, overall breast cancer risk; OC, all invasive ovarian cancer risk.
Discussion

In this study, we used the conditional and conjunctional

FDR as a tool to systematically improve the power of breast

cancer and ovarian cancer candidate susceptibility gene

discovery in a PrediXcan-based TWAS. While gene expres-

sion predictionmodels based onmultiple tissue types have

been the more common approach to improving TWAS po-

wer,11,29 the conditional/conjunction FDR approach gains

power through the incorporation of multiple related

GWAS datasets into a TWAS analysis. We investigated the

shared inherited genetic basis of these two cancer types

by integrating normal and tumor-tissue-specific transcrip-

tomic datasets with large-scale genome-wide association

meta-analysis findings for susceptibility to breast cancer

and ovarian cancer. We identified 11 genomic regions asso-

ciated with breast cancer risk and five regions linked to

ovarian cancer risk.

We identified 14 candidate breast cancer susceptibility

genes (Table 1). Many of these genes have a strong biolog-

ical rationale for involvement in breast carcinogenesis and

are in or near genomic regions associated with other cancer
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types or potential cancer risk factors. For example, the

ZNF276 (MIM: 608460) intronic variant rs12925026 is

associated at genome-wide significance with non-mela-

noma skin cancer.30 ZNF276 overlaps FANCA (MIM:

607139) in a tail-to-tail manner.31 The genetically regu-

lated predictor model for ZNF276 expression was fit using

gene expression measured in GTEx breast tissues, but

neither this dataset nor any of the other datasets could cap-

ture a predictor model for FANCA expression. FANCA en-

codes one of eight subunits that together form the core

Fanconi Anemia (FA) complex that repairs blockages in

DNA replication due to cross-linking.32 Several members

of the FA family of proteins have been implicated in breast

and ovarian cancer predisposition, including BRCA1

(FANCS), BRCA2 (FANCD1), BRIP1 (MIM: 605882) (FANCJ),

PALB2 (MIM: 610355) (FANCN), RAD51C (MIM: 602774)

(FANCO), and FANCM (MIM: 609644), and it is possible

that FANCA may represent another or possibly the true

target breast cancer susceptibility gene in this region, given

this biological function and its overlap with ZNF276.32,33

ZNF276 in its own right has also been implicated as a

candidate tumor suppressor gene in breast cancer,31 and



Table 1. Candidate breast cancer susceptibility genes identified by pleiotropy-guided S-PrediXcan analysis

Gene Genomic region p value BC p value OC Conditional FDR BCjOC Conditional FDR OCjBC Conjunction FDR

Transcriptome reference panel: GTEx breast (normal)jprimary GWAS: overall BC risk (second GWAS: all invasive OC risk)

ZSCAN29 15q15.3 1.8E�04 9.1E�04 4.1E�04 6.0E�03 6.0E�03

STRCP1 15q15.3 1.6E�03 1.8E�03 4.1E�03 1.9E�02 1.9E�02

AC011330.5 15q15.3 5.4E�04 2.5E�03 1.8E�03 2.2E�02 2.2E�02

STRC 15q15.3 1.4E�04 3.8E�03 6.1E�04 2.2E�02 2.2E�02

ZNF276 16q24.3 3.7E�06 4.7E�03 2.4E�05 2.2E�02 2.2E�02

RGS19 20q13.33 1.1E�03 5.4E�03 4.3E�03 4.3E�02 4.3E�02

RNFT1 17q23.1 2.4E�04 8.7E�03 1.3E�03 4.7E�02 4.7E�02

C15orf65 15q21.3 2.2E�03 5.9E�03 8.2E�03 4.7E�02 4.7E�02

Transcriptome reference panel: TCGA breast (tumor)jprimary GWAS: overall BC risk (second GWAS: all invasive OC risk)

GMNC 3q28 2.6E�03 1.2E�03 6.1E�03 2.0E�02 2.0E�02

ESRP2 16q22.1 1.9E�02 9.6E�04 4.3E�02 3.3E�02 4.3E�02

BHLHA15 7q21.3 8.5E�05 7.0E�03 5.5E�04 4.9E�02 4.9E�02

SCGB1D2 11q12.3 3.5E�04 5.5E�03 2.0E�03 4.9E�02 4.9E�02

Transcriptome reference panel: TCGA breast (tumor)jprimary GWAS: ER-negative BC risk (second GWAS: HGSOC risk)

ETAA1 2p14 3.0E�03 1.5E�03 2.0E�02 2.0E�02 2.0E�02

ATP8B4 15q21.2 1.6E�03 2.2E�03 1.5E�02 2.4E�02 2.4E�02

Abbreviations: BC, breast cancer; OC, ovarian cancer; FDR, false discovery rate; ER, estrogen receptor; HGSOC, high-grade serous ovarian cancer.
consistent with this potential tumor suppressor function

we observed that lower ZNF276 expression was associated

with increased breast cancer risk.

Other candidate breast cancer susceptibility genes we

identified include ESRP2 (MIM: 612960), which encodes

an epithelial cell-specific regulator of splicing of the breast

cancer susceptibility gene FGFR2 (MIM: 176943)34,35 and

SCGB1D2 (MIM: 615061), which encodes lipophilin B,

which is known to be expressed in both breast and ovarian

tumors.36 Lipophilin B is tightly co-expressed with and

forms a covalent complex with Mammaglobin A encoded

by SCGB2A2, the gene next to SCGB1D2.36 Mammaglobin

A may be used to detect disseminated or circulating tumor

cells and is under investigation as a potential immunother-

apeutic target in breast cancer.37 However, we were unable

to develop gene expression prediction models for

SCGB2A2 in breast normal or tumor tissues. BHLHA15

(MIM: 608606) encodes an estrogen-regulated transcrip-

tion factor that is required to maintain mammary gland

differentiation in mice,38 and we found that decreased

BHLHA15 expression was associated with greater suscepti-

bility to breast cancer. ETAA1 (MIM: 613196) harbors lead

variants associated at genome-wide significance with

pancreatic cancer39 and the hormone-related traits of age

at menopause40 and male-pattern baldness.41 It encodes

an activator of ATR kinase that accumulates at DNA dam-

age sites and promotes replication fork progression and

integrity.42 Breast cancer is closely linked to DNA damage

repair defects, and, in the presence of DNA damage, further

loss of ETAA1 has been shown to be synthetically lethal for
H

the cell, suggesting that ETAA1 expressionmay be essential

for tumorigenesis on a background of DNA damage.43 In

keeping with this observation, we noted that elevated

ETAA1 expression was associated with increased breast

cancer risk. While our pleiotropy-guided transcriptome

imputation study was ongoing, a genome-wide association

meta-analysis for breast cancer risk that was performed in

parallel identified lead variants rs79518236 (184 kb from

BHLHA15) and rs9712235 (244 kb from ETAA1) at

genome-wide significance only on addition of 10,407

breast cancer cases and 7,815 controls to the Michailidou

et al.44 dataset used here. There were no known GWAS as-

sociations for breast cancer risk in these regions until the

larger GWAS meta-analysis, and our concomitant identifi-

cation of the same regions using gene expression imputa-

tion into a smaller GWAS underscores the power of

leveraging expression data to bolster genetic discovery.

We identified 11 candidate ovarian cancer susceptibility

genes (Table 2). As with breast cancer, there is strong sup-

port for a role of several genes in ovarian cancer pathogen-

esis, and many of these genes are in regions of the genome

that harbor pleiotropic associations with other cancer

types. Variants immediately upstream of CCNE1 (MIM:

123837) are associated at genome-wide significance with

bladder cancer risk.45 CCNE1 amplification is believed to

be an early event in the development of ovarian cancer46

and is a frequent somatic event in HGSOCs that do not

carry homologous recombination DNA repair pathway de-

fects.47 CCNE1 amplification is also associated with poor

prognosis in triple-negative breast tumors,48 and it is
uman Genetics and Genomics Advances 2, 100042, July 8, 2021 7



Table 2. Candidate ovarian cancer susceptibility genes identified by pleiotropy-guided S-PrediXcan analysis.

Gene Genomic region p value OC p value BC Conditional FDR OCjBC Conditional FDR BCjOC Conjunction FDR

Transcriptome reference panel: GTEx ovary (normal)jprimary GWAS: all invasive OC risk (second GWAS: overall BC risk)

STRCP1 15q15.3 7.2E�04 6.4E�05 3.1E�03 8.5E�05 3.1E�03

CPNE1 20q11.22 1.2E�03 7.2E�05 5.0E�03 9.9E�05 5.0E�03

AC011330.5 15q15.3 1.7E�03 2.6E�05 5.8E�03 4.5E�05 5.8E�03

CCNE1 19q12 1.9E�03 3.2E�03 1.4E�02 4.4E�03 1.4E�02

CATSPER2P1 15q15.3 4.8E�03 1.9E�04 1.8E�02 4.1E�04 1.8E�02

UQCC1 20q11.22 3.8E�03 2.5E�03 2.8E�02 4.7E�03 2.8E�02

Transcriptome reference panel: TCGA ovary (tumor)jprimary GWAS: all invasive OC risk (second GWAS: overall BC risk)

CPNE1 20q11.22 2.0E�03 9.0E�05 2.0E�02 4.9E�04 2.0E�02

Transcriptome reference panel: GTEx ovary (normal)jprimary GWAS: HGSOC risk (second GWAS: ER-negative BC risk)

CCNE1 19q12 1.7E�03 2.0E�04 5.9E�03 1.5E�03 5.9E�03

STRCP1 15q15.3 9.2E�03 3.2E�04 3.1E�02 3.9E�03 3.1E�02

HEATR3 16q12.1 4.3E�03 3.1E�02 4.6E�02 4.4E�02 4.6E�02

Transcriptome reference panel: TCGA ovary (tumor)jprimary GWAS: HGSOC risk (second GWAS: ER-negative BC risk)

THSD7A 7p21.3 1.5E�03 1.2E�02 2.8E�02 4.3E�02 4.3E�02

Abbreviations: BC, breast cancer; OC, ovarian cancer; FDR, false discovery rate; ER, estrogen receptor.
worth noting that we observed the stronger conjunction

FDR association signal for CCNE1 in the pleiotropy-

informed analysis that was based on the HGSOC and ER-

negative breast cancer susceptibility GWAS datasets (Table

2). However, we noted that increased CCNE1 expression

was associated with decreased HGSOC (and ER-negative

breast cancer) risk. This paradoxical direction of risk effect

may be explained by the fact that CCNE1 amplification is

less common and the loss of homologous recombination

(HR) pathway function is far more common in ovarian

cancer, and, in the absence of a functional HR pathway,

CCNE1 is known to be essential for the developing tumor

cell to survive.49 This study suggests a role for CCNE1 in

conferring ovarian cancer risk. Intronic variants inHEATR3

(MIM: 614951) are associated at genome-wide significance

with glioma in European ancestry individuals50 and with

squamous cell esophageal carcinoma in East Asian ancestry

individuals.51 HEATR3was also identified by a TWAS of gli-

oma susceptibility.52 Intronic variants in THSD7A (MIM:

612249) are associated with epithelial ovarian cancer risk

in East Asians,53 albeit not at genome-wide significance

(lead variant rs10260419 p ¼ 1 3 10�7). Gene expression

prediction models derived from breast and ovarian tissues

both implicated the 15q15.3 region as a breast and ovarian

cancer susceptibility region on imputation with these

models into the breast and ovarian cancer GWAS data.

Our analysis suggested several genes in this region (Tables

1 and 2), with the pseudogene STRCP1 as the only com-

mon gene across breast and ovarian tissues. STRCP1 over-

laps the protein coding gene STRC (MIM: 606440), also

identified in the breast-tissue-based analysis (Table 1),

and variants in STRC have previously been associated
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with lung cancer risk (lung cancer lead variant

rs35028925 p ¼ 2 3 10�6).54

In this analysis, we chose to label the identified genes as

candidate breast cancer susceptibility genes if they were

identified on integrating the GTEx or TCGA breast expres-

sion prediction models with the breast cancer GWASs and

incorporating pleiotropic information from the ovarian

cancer GWASs and vice versa for candidate ovarian cancer

susceptibility genes. However, application of the conjunc-

tion FDR over and above the conditional FDR in principle

identified genes associated with both cancer types by tap-

ping into GWAS data from both cancers. Therefore, in a

sense, all these genes may well be regarded as candidate

breast and ovarian cancer susceptibility genes. Moreover,

in our pleiotropy-guided study design, the ovarian cancer

dataset, in a sense, served as a replication dataset for the

breast cancer findings and vice versa, which was particu-

larly important given the lack of adequately powered and

truly independent breast and ovarian cancer datasets

outside of the datasets used in this study.55

We identified 38 candidate breast cancer susceptibility

genes and 17 candidate ovarian cancer susceptibility genes

in regionspreviously implicatedbyGWASs for breast cancer

and ovarian cancer, respectively (Tables S3 and S5). The

identification of a large number of genes in these regions

is unsurprising, given that GWAS associations are the key

determinant of the S-PrediXcan signal. However, we were

able to take advantage of fine-scalemapping data generated

by the Breast and Ovarian Cancer Association Consortia to

separatelypinpoint thosegeneswhereafine-mappedcandi-

date causal GWAS risk variant was incorporated in the Pre-

diXcan model, suggesting that it drives the gene-based



association. Overall, we found this to be the case for 60% of

the candidate susceptibility genes identified by PrediXcan

in the breast and ovarian cancer susceptibility regions iden-

tified by GWASs. Comprehensive functional follow-up of

the 19p13.11 breast and ovarian cancer GWAS region sug-

gests that ABHD8 and ANKLE1 are the most likely targets

in this region.5 While there was no overlap between S-Pre-

diXcan model variants for ABHD8 and ANKLE1 and fine-

mapped risk variants in this region, S-PrediXcan did detect

both genes as candidate causal susceptibility genes, with

ANKLE1 being the only gene that made the cut in both

breast and ovarian tissues, suggesting that S-PrediXcan

applied to pleiotropic gene-dense regions such as

19p13.11 does help short-list the key targets even in the

absence of overlap with fine-mapped variants. A total of

21/38 breast and 13/17 ovarian cancer candidate suscepti-

bility genes in the published GWAS regions were clustered

at 17q21.31, reflecting the unique long-distance linkage

disequilibriumstructure of this region.56 This phenomenon

has also led to clustering of associations at 17q21.31 in pre-

vious TWASs of breast or ovarian cancer risk.9,11

Gene expression prediction models in this study were

built using genomic data from women with genetically

inferred European ancestry. The predictive performance

of these models in a non-European ancestry cohort

was not evaluated. Thus, a key limitation of this study

is the potential lack of generalizability of these models

to non-European ancestry cohorts. Recent analyses

suggest that default TWAS models trained in large

datasets such as GTEx suffer from a significant reduction

in prediction accuracy, particularly in individuals of Afri-

can ancestry, when compared to those of European

ancestry.57 There is an urgent and compelling need for

trans-ancestry datasets that drive TWAS in diverse ances-

tral cohorts.

In conclusion, the powerful combination of pleiotropic

breast and ovarian cancer GWAS datasets with transcrip-

tome imputation from normal and tumor breast and

ovarian tissues identified a total of 16 genomic loci (22

genes) associated with breast and ovarian cancer risks.

Fine-mapping in larger GWAS datasets and deeper labora-

tory-based functional follow-up studies of these loci and

candidate genes have the potential to provide fresh in-

sights into the common biological underpinnings of breast

and ovarian cancer.
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