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Abstract 

Despite intensive and organized efforts to track species of high importance to humans, 

population censuses are often unable to detect small extant populations. For threatened or 

endangered species, this may result in conservative estimates of populations that bolster 

conservation efforts. However, for pests or non-native and potentially invasive species, failing to 

properly consider small, early-stage invasion populations can result in foregoing intervention 

strategies until populations are already established. Research on difficult-to-detect insect pests is 

critical to understanding the population dynamics of potentially harmful species before the 

negative effects of their full impact are realized. To address this latter issue, in this dissertation I 

utilize a highly unique dataset that has tracked non-native fruit fly (Diptera: Tephritidae) 

populations in California for over one hundred years to explore spatial statistical techniques that 

aid in detecting populations that are typically sub-detectable. In Chapter 1, I use spatial point 

pattern analysis with a variety of temporal treatments to confirm potential establishment signals 

of Bactrocera dorsalis (the oriental fruit fly) in the Los Angeles region of California. Building 

on this, Chapter 2 uses point pattern clustering metrics to determine which non-native tephritid 

species are likely already established in California and therefore pose a higher risk of invasion or 

outbreak. Finally, in Chapter 3, I explore which human and environmental factors drive B. 

dorsalis detections in California. Combined, these analyses reveal deeper dynamics of difficult-

to-detect populations of non-native tephritid fruit flies and provide an approach for monitoring 

early-stage invasive species. Looking forward, these findings may inform best management 

practices as global climate change and globalization increase the likelihood of further 

problematic insect introductions worldwide. 
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Introduction 

Invasive species research is critical to understanding the population dynamics of potentially 

harmful species before the negative effects of their full impact are realized. The word “harmful” 

is subjective: invasive species, regardless of origin, have been associated with numerous negative 

ecological effects (e.g., biodiversity loss, changes in ecosystems services) and negative economic 

effects (e.g., forestry, fisheries, and agriculture).1–4 Invasive and potentially-invasive species 

posing economic risk are often the subjects of large economic investment for research, 

monitoring, and management. A prime example of this are non-native tephritid fruit flies. Heavy 

monitoring efforts for more than a century have generated a large spatiotemporal dataset of non-

native tephritid detections in California, but there has been little analysis of this dataset for 

deeper ecological understanding or predictive applications. In the following three chapters, I 

reveal deeper dynamics of non-native tephritid populations in California and provide 

methodological approaches for analyzing limited population data over time. 

Background and Motivation 

Tephritid fruit flies (Diptera: Tephritidae), also called peacock flies or true fruit flies, are a 

diverse group encompassing over 4,600+ currently-described species globally.5,6 The majority of 

tephritid species, especially non fruit-eating species, exist peacefully in their native ranges. 

However, about 70 frugivorous species are considered serious threats to agriculture worldwide 

outside of their home ranges. In fruit-eating species, females oviposit under the skin of fruit and 

the larvae consume the fruit flesh until pupation, thus ruining the plant for human consumption. 

These species are heavily monitored, managed, and regulated throughout trading channels.5 
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In a worst-case scenario, each of the high-risk tephritid species not only has the potential to 

destroy entire sections of the agricultural industry but can prevent salvageable portions of crops 

from being exportable due to strict international trade regulations, especially with countries that 

do not yet have those potentially troublesome species. The strict policy surrounding tephritids 

means that the mere presence of some of these species would be enough to cause massive 

quarantines and to close some export markets entirely.5,7 As of 2020, California’s economy is 

ranked approximately 5th largest in the world. The state’s agricultural sector is a major 

component: California is the world’s 5th largest supplier of “food and agricultural commodities.”8 

Though California is also home to many benign native tephritid species, the CDFA considers 

non-native tephritids the “most important agricultural pest in the world.”5,9  

 

Despite the somewhat ominous nature of insect invasions, every ecological change is an 

opportunity for unplanned study of the dynamics of species in novel environments. The spread of 

non-native tephritids in California is no exception. The necessary monitoring of these species has 

resulted in a long-term dataset that can be used for ecological analysis with broad implications 

for better understanding invasion dynamics. Over time, invasive has become a loaded term that 

carries the deterministic assumption that once colonizers of particular species arrive in a suitable 

area, a full-force invasion is imminent, leaving only eradication or a doomed ecosystem as 

potential outcomes.2,10 The inclusion of small, early-invasion populations in the invasion ecology 

paradigm is important because it implies that many if not most non-native species exist 

undetected for long periods of time. Little is known about small populations in the context of 

invasion ecology. By virtue of being frequently sub-detectable, they are difficult to study using 

traditional methods. Further, research that does exist is heavily skewed towards species of 
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conservation interest. Very few non-native species explode in numbers immediately after their 

introduction.2,11–13 This lag gives non-native species time to naturalize and form positive as well 

as negative community interactions.12,14,15 This also has major implications for how we view 

eradication. Eradication is generally an immediate response to detection of an undesirable 

species. However, if species can exist unseen for long period of time before detection (and they 

often do) it is likely that a population would have spread beyond the treatment boundary by the 

time treatment is deemed necessary. Thus, from a management perspective, true eradication is 

extremely difficult and rare despite common declaration that insect pests have been eradicated 

locally and regionally.2,16,17 In reality, many species categorized as highly invasive may lurk 

below the detection threshold for a long period of time, similar to what we believe is the case 

with non-native tephritid species in California. 

 

Finally, studying the long-term dynamics of tephritid populations can provide insights into how urban and 

suburban development impact invasion. Tephritids are an agricultural pest, but California agriculture is 

kept tephritid-free through intensive preventative management. The populations of concern in this 

dissertation are persisting in developed areas of the state where human-supported backyard fruit trees and 

vegetable gardens increase the potential niche of the species. By the year 2050, more than 70% of the 

global population is expected to live in urban zones.
18

 In the United States, 80% of people already live in 

urban and suburban areas.
19

 Development is detrimental to some species, though many may be able to 

adapt. Increasing human populations and the suburban sprawl consuming the state is a benefit to non-

native tephritids. The larger the matrix, the more able pests are to find survival reservoirs, more 

opportunities for refuge from post-detection control measures. This in turn increases the likelihood of 

outbreaks in close proximity to agricultural areas.  
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Approach 

The dataset. The tephritid detection dataset that serves as the backbone of this dissertation is 

unusually rare in its biological, temporal, and spatial depth. Due to California’s agro-economic 

importance, the U.S. Department of Agriculture (USDA) and California Department of Food & 

Agriculture (CDFA) spend more than $20M per year on non-native tephritid monitoring and 

detection.9,20 The product is a network of 100,000+ traps across California checked weekly for 

the last 75 years. This enormous sampling effort (over $1B in total) is generating a high-

resolution dataset containing the date, exact coordinates, and sex of each individual non-native 

tephritid captured across the state (n=11,000+).21–24 Previous analysis suggests as many as nine 

of the 17 monitored non-native tephritid species are established and slowly spreading across 

California, yet are persisting at densities so low they are usually sub-detectable outside of 

occasional small-scale outbreaks that are immediately suppressed,25–27 though not without 

debate.28,29 These studies proved that although each individually detected fly is a rare event, it 

may nevertheless represent a diffuse, but established, population. One can imagine each 

detection or outbreak as an island breaching the ocean surface. The challenge becomes how to 

infer the topography of the rest of the submerged mountain range far below those few peaks, i.e., 

hidden below detectable densities. 

 

A dataset so fine-scale and long-term such as this one is a rare and powerful tool in ecology that 

has several unique attributes. First, the number of species in the dataset is exceptional. To date, 

17 species across only three genera of tephritid fruit flies have been found in the state. 

Exhaustive lists of invasive insects show that species are often the sole invasive representatives 

of their genus or even families. The coincidence of so many non-native tephritid species in 
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California alone, across four genera, is therefore highly intriguing. The dataset includes the 

species, sex, and life stage of each individual fly, providing opportunity to compare detection 

patterns across multiple species and genera. 

 

Second, the data spans a century in time. Long term ecological datasets are hard to come by, 

especially for introduced species. Whereas most historical occurrence data must be pieced 

together from sources such as museum collections and citizen science reporting, the first-hand 

tephritid data stretches back decades, predating the arrival of many tephritid species. This 

temporal depth is unusual in its coverage of the entire invasion timeline and thereby provides an 

opportunity to study early invasion stages. In contrast, the invasion literature focuses 

predominately on the later phases of invasion (rapid growth, spread, and negative impact). 

 

Finally, the spatial depth and breadth of the data is astounding. The baited traps making up the 

trapping network are placed at densities of approximately 5 traps per square mile of developed, 

non-agricultural regions of the state. This amounts to roughly 100,000+ traps across the state 

checked weekly from spring to fall. The location of each individual adult or larvae is 

documented with precise coordinates. For context, imagine finding a single fly in a football field. 

Now, imagine finding a single fly in a state the size of nearly 80 million football fields across, 

each year for a century. Even given the power of baited or pheromonal lures, the statistical power 

of each individual detection is staggering.  
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Despite its many advantages, there are also characteristics of the dataset that make analysis 

difficult. The presence-only data, the variable sampling effort, the effects of post-detection 

control, and the small sample size warrant careful consideration in data analysis. First, the data is 

presence-only: there is no information about traps that did not receive a detection, only those that 

did. This presented unique challenges for analysis and interpretation that are discussed in each 

chapter. Second, trapping procedures have been constant since the 1980s, but earlier information 

is difficult to find. In most cases, I assume that trapping effort, in terms of trap density and 

collection frequency, has remained stable over time, but I discuss where this assumption is not 

made or otherwise impacted analyses. Third, post-detection control measures may have partially 

eradicated or dampened populations, but explicitly measuring or modeling this effect was 

beyond the scope of this work. Instead, I consider this effect one of many possible external 

factors influencing tephritid populations by modeling the detections themselves, which are a 

sample of the underlying population. Finally, though the dataset is generated from a trapping 

array that is large and high-resolution, and the full dataset constitutes over 11,000 individual 

flies, the annual abundance for each individual species is quite small. Small sample sizes are a 

ubiquitous statistical problem as they are problematic for many tests and may not cover enough 

variation to fully represent the underlying population.30–32 Most approaches for modelling rare 

species emerged from species of conservation concern. Conversely, invasion models are often 

designed for rapid population growth or spread.33–37 The tephritid data represents a small sample 

of a slow-spreading, difficult-to-detect population. We have modeled the data in each chapter to 

account for the small sample size by binning data, using moving windows, or using statistical 

methods that do not rely on large samples sizes.  
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Three Studies. Model-based approaches are increasingly relied upon in applied ecology, and I 

aim to add to the body of knowledge surrounding non-native tephritids in California using a 

variety of models that complement the unique characteristics of the dataset.  

 

Chapters 1 and 2 rely on the principles of point pattern analysis. Point pattern analysis broadly 

concerns relationships among a set of events (here, detections) in a defined study area (broadly, 

California).38–41 In general, point patterns can be statistically abstract, but in spatial point pattern 

analysis these events consist of geographic locations with or without associated information 

(marks). A frequent goal of point pattern analysis is to determine the degree of clustering 

(aggregation) in an observed point pattern. By incorporating a temporal dimension, we use these 

techniques to explore difficult-to-detect populations of a non-native tropical fruit fly species. 

 

In Chapter 1, we examine the Bactrocera dorsalis detection data for space-time clustering, an 

indication of potential establishment. We take a simple approach by using nearest neighbor 

analysis (NNA), which considers the distance from each event to its closest neighboring 

event.38,39  Small observed distances represent clustering, while larger or more even distributions 

of distances suggest randomness or regularity in the observed pattern. We test the importance of 

temporal grouping in determining the degree of space-time clustering, an indication of early-

stage establishment. We further examine whether early-stage clustering signals differ 

significantly from random distributions. 
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In Chapter 2, we hypothesize that despite having limited detection data, occasionally-detected 

species can be still be monitored for spatiotemporal aggregation, an early sign of establishment, 

over time. We posit that these occasionally-detected species will exhibit clustering characteristics 

intermediate to both rarely- and frequently- detected species. We use spatial statistics to 

differentiate which, if any, species merit being considered higher risk of establishment based on 

clustering metrics. Spatial ecology suggests that different kinds of spatial statistics are best used 

in concert due to their varying strengths, sensitivities, and limitations.42,39,43 We use two separate 

spatial statistics, the L function and the O-ring statistic, to analyze the spatiotemporal patterns of 

six non-native tephritid species: frequently-detected Bactrocera dorsalis and Ceratitis capitata 

and occasionally-detected Anastrepha ludens, Bactrocera correcta, Bactrocera zonata, and 

Bactrocera cucurbitae.  

 

Chapter 3 moves away from point pattern analysis into more traditional linear modeling with the 

goal of statistical inference. We examine the distribution of Bactrocera dorsalis fruit flies in the 

Los Angeles, CA area. Using a combination of natural, human, and B. dorsalis population 

variables, we identified the strongest explanatory variables of detections using random forest and 

logistic regression. These variables lend support to our belief that B. dorsalis is established in the 

Los Angeles region over alternative hypotheses of new introductions. 

 

In this research, I aim to understand the underlying spatiotemporal dynamics of non-native 

tephritids using limited occurrence data from detection trapping grids. Examining both the large- 

and small-scale spread patterns of various species will provide insight into invasion dynamics 
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but will also explore how we can infer deeper dynamics from limited, secondary data. Though 

many elements of the tephritid data in California are unique, there are also ubiquitous principles 

that represent an overlap between invasion ecology, agricultural ecology, urban ecology, 

modeling rare species. This work would not be possible without an interdisciplinary approach, 

and I encourage this to extend into the management realm of these species. 
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How time flies: Point pattern analysis reveals 
temporal persistence of Bactrocera dorsalis 
populations in California 
 

Caroline C. Larsen-Bircher, Robert J. Hijmans, James R. Carey 

 

Abstract 

Oriental fruit flies (Tephritidae: Bactrocera dorsalis) are a global pest and major focal species in 

invasion biology research. In this study, we add to previous research demonstrating the 

establishment of this agricultural pest species in California using point pattern analysis. We test 

the impact of various temporal groupings on clustering metrics of B. dorsalis detection patterns. 

By adapting classic point pattern analysis tools to incorporate a temporal dimension, we (1) 

confirm the importance of comparing detection patterns at multiple time scales to determine 

presence of difficult-to-detect populations and (2) provide further evidence of oriental fruit fly 

establishment in the state.  

Introduction 

As biological invasions increase in frequency and severity in step with global climate change, 1–5 

invasion research will become more critical to understand the dynamics of potentially damaging 

species. California accounts for over two thirds of the fruit and nuts and over one third of the 

vegetables produced in the US. The state has consequently invested heavily in the prevention, 

monitoring, and management of invasive agricultural pests.6 Non-native tephritid fruit flies 
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account for a large proportion of those invaders, and Bactrocera dorsalis has proven to be one of 

the most dominant tephritid species.7–10 Bactrocera dorsalis, commonly known as the oriental 

fruit fly, has expanded from its native range in Asia to become one of the most globally wide-

spread pest species.8,11,12 B. dorsalis owes its growing geographic range, and therefore its 

extensive economic impact, to its highly polyphagous behavior (130+ known host crops), 

climatic adaptability, and impressive dispersal ability.11–15 The first B. dorsalis detection in 

California occurred in 1960 in the city of Anaheim over half a century ago, and the species has 

been detected annually in the state since 1969. Cumulative annual detections vary significantly, 

yet 75% of years from 1970 to 2014 experienced at least five detections. According to the 

California Department of Food and Agriculture (CDFA), the combined value of potential 

agricultural hosts at risk to B. dorsalis would be over $16.4 billion (as of 2015).12 

 

Extensive state and federal resources are devoted to prevention, monitoring, and management of 

agricultural pests.16,17 However, mounting evidence suggests that many non-native tephritid 

species, including B. dorsalis, are established in small pockets in the state of California. 

Papadopolous et al. (2013) compared tephritid interception rates at international and domestic 

ports of entry as a measure of propagule pressure to locations of past outbreaks and detections of 

various tephritid species. The authors generated a county- and local-scale recapture model to test 

the hypothesis of establishment. They determined that between five and nine non-native tephritid 

species may be established in California. Zhao et al. (2019) examined tephritid populations in 

California using life table invasion models and found the number of infested cities to be steadily 

increasing. They further determined that invasion outcomes depend on which species is first 

detected in a given area. These studies proved that although each individually detected fly is a 
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rare event, it may nevertheless represent a diffuse, but established, population. This means that 

each data point holds great statistical power. Our research further considered the statistical power 

of each individual detection in the context of point pattern analysis.  

 

Spatial and spatiotemporal analysis are critical tools in invasion biology: determining the risk of 

a problematic species necessarily involves examining biogeographic elements of the population 

over time.18–21 Myriad techniques have been developed to best understand historical, current, and 

forecasted population dynamics, ranging from simple distance-based-measures to complex 

forecasting. However, many methods are not well-suited for analysis of long-term datasets. Most 

point pattern statistics are designed for events within a single time period or between events in 

two distinct time periods. Species with relatively infrequent detections over long time periods 

require a different approach. In this paper, we will explore difficult-to-detect populations of a 

non-native tropical fruit fly species using simple-but-effective nearest neighbor analysis, an 

underused tool for consideration of early-stage and difficult-to-detect invasions. We ask whether 

increasing the temporal window of analysis improves our ability to detect signals of clustering, 

and therefore possible establishment. We further examine whether early-stage clustering signals 

differ significantly from random distributions. 

Methods 

Database & Study Species 

Tephritid fruit fly populations have been heavily monitored in California since their first 

detection in Hawaii over a century ago (Bactrocera cucurbitae in 1895; Ceratitis capitata in 

1907).8,11 Since then, a trapping network of both pheromone and baited traps has formed a fine-
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scale detection grid across most of the state.16,17 We used the corresponding historical dataset 

provided by the CDFA and supplemented by public records and reports from the Plant Health & 

Pest Prevention Services branch. Each detection record in the database represents an individual 

fly found in California over the past century and includes the species, capture date (day, month, 

year), and geographic coordinates (latitude, longitude). This date ranges from 1960 through 

2014. Though this version of the dataset ends in 2014, tephritids have been found in California 

annually since then as well. We focused on B. dorsalis due to its detection frequency over the 

last 60 years. The following analysis, modeling, and mapping procedures were implemented in R 

programming language.22,23 

 

In this paper, we use three variations of this database. The first is the raw spatial data, including 

every individual detection event, which we refer to as the full dataset. We also use an outbreak-

collapsed dataset, where any detection events with identical coordinates within the same year are 

collapsed into a single event. Since the CDFA moves the pest traps multiple times throughout the 

active season, same-trap detections indicate an outbreak in a short time period. Collapsing these 

outbreaks into single events minimizes skewing in distance-based measures due to over-

representation of specific locations in the dataset. Finally, we also generated a random 

coordinates dataset by randomly drawing coordinate pairs from within the local-scale study area 

(defined below) using the R package sp.24,25 We matched the number of random events per year 

to the number of observed events in the outbreak-collapsed dataset per year (within the study 

region) to minimize the effect of variable yearly abundance on distance metrics.  
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Study Area 

We define two study areas in this research. We refer to the full range of every B. dorsalis 

detection in the database, the entire state of California, as the regional-scale study.26 This area 

has defined (political) boundaries, but analyses conducted at this larger scale are not sensitive to 

edge effects since the entire dataset is represented.20 The local-scale study area is a smaller 

polygon in Los Angeles. We selected this area for two reasons. First, in order to test observed 

data patterns against a null hypothesis of random introductions, a carefully defined study area is 

necessary.20,27,28 Second, since the regional boundaries of cumulative B. dorsalis presence is 

extremely irregular, largely due to topography, we chose a small study area within a region of 

Los Angeles. General trapping densities are stable within human-dominated areas of the state – 

fewer traps exist in less populated regions.16 Defining a study area within the large, continuous 

sprawl of Los Angeles helps ensure the detections are the result of a similar trapping effort. 

Further, Los Angeles has both many of the oldest and most recent detections, creating a large 

temporal range.14 

Point Pattern Analysis  

Point pattern analysis broadly concerns relationships among a set of events in a defined study 

area. While general point patterns can be statistically abstract, in spatial point pattern analysis 

these events consist of geographic locations with or without associated information (marks). A 

frequent goal of point pattern analysis is to determine the degree of clustering (aggregation) in an 

observed point pattern. This is done by comparing a given point pattern to a null model, often 

complete spatial randomness (CSR). Statistically, a point pattern is the observed realization of an 

underlying stochastic process that can be defined by its first order and second order properties. 

First order properties refer to the variable intensity of the underlying process across space. 
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Second order properties, on the other hand, reflect the relationships among the events 

themselves, once first order variation is accounted for.   

Regional-Scale Nearest Neighbor Analysis 

One pillar of point pattern analysis is nearest neighbor analysis (NNA). NNA evaluates the 

spatial distance between a focal event and the event closest to it, its eponymous nearest 

neighbor.19,20 Small observed distances represent clustering, while larger or more even 

distributions of distances suggest randomness or regularity in the observed pattern. While basic 

in concept, we find nearest neighbor analysis to be an intuitive and adaptable tool for exploring 

rare event spatial clustering. Further, while nearest neighbor analyses (and point pattern analyses 

more broadly) are most frequently conducted within a small temporal period, we demonstrate its 

potential as a tool for detecting space-time clustering in long-term datasets in the context of non-

native B. dorsalis in the state of California. 

 

In this research, we use the term focal year (FY) to define the primary set of events (individual 

tephritid detections) being analyzed. In same-year comparisons, this FY is compared to itself: 

i.e., an NND is found for each detection in the given year to any other detection occurring within 

that same year. In inter-year comparisons, a FY is compared to a defined set of prior years (PY), 

which range between the one year and the five years prior to the FY.  

 

We first explored the influence of temporal groupings in NNA of the entire outbreak-collapsed 

dataset for the regional-scale study area. Same-year comparisons were calculated using a 

symmetric distance matrix of the detection pattern from each FY against itself using the R 
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package raster.29 We then conducted a series of inter-year comparisons using an asymmetric 

distance matrix to compare the detection pattern of a given FY to the detection pattern of a 

cumulative PY range. For all same- and inter-year comparisons, the NND was calculated for 

every detection event in the full dataset. 

 

We evaluated these results in two ways. First, we calculated the minimum NND and the median 

NND for each year and each comparison type to determine how these values changed over time. 

For example, in the same-year comparison, spatial coordinates of all detections in focal year 

1990 were compared to all non-self detections in that same year. In the 3 years prior comparison, 

the distribution in 1990 was compared to the distribution of all detections from years 1987 to 

1989. The focal year ticked forward to 1991 and the process repeated. Second, we considered the 

effect of temporal distance on NNDs. We took a full distance matrix of all detection events and 

determined the smallest nearest neighbor distance event in each year to every other individual 

year. We plotted these minimum NNDs as a function of temporal distance between each year 

being compared. 

Local-Scale Nearest Neighbor Analysis 

A benefit of nearest neighbor analysis is that it can avoid the necessity of a defined study area: 

focusing on smallest point-to-point distances in an entire observed point pattern minimizes the 

underestimation of neighbor density or skewing of inter-point distances due to first order process 

variation across a larger area.19–21 However, this makes testing against a null distribution 

difficult. To provide an example of a more localized, hypothesis-based spatial test, we used our 

local-scale study area boundary, the outbreak-condensed dataset (subset to study area), and the 

random coordinate dataset. We repeated the same- and inter-year comparison framework as in 
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the regional-scale analysis with the subset observed data, and again with the random data. For 

example, in the same-year comparison, spatial coordinates of all detections in focal year 1990 

were compared to a randomly generated distribution with the identical number of detections. In 

the three years prior to comparison, the distribution in 1990 was compared to random 

distributions with the same number of detections as observed from 1987 to 1989. The focal year 

ticked forward to 1991 and the process repeated. We calculated the minimum NND and the 

median NND per year for each and plotted the results in the same figure windows. 

Chi-Squared Analysis 

We tested whether past distributions influence future distributions, and whether detections with 

near neighbors in prior years were more likely to have near neighbors in future years, compared 

to a new detection (i.e., detection with no prior near neighbors). For each individual detection in 

the full dataset, we calculated the spatial distance from that detection to all other detections in the 

preceding five years and then for the following five years within two “spatial thresholds” 

(S=5km and S=15km). Detections falling within the same year as the focal detection were not 

included. We binned counts of the number of neighboring detections in the temporal range and 

spatial thresholds into categories of 0 (none), 1-5 (some), and 6+ (many) neighbors. We then 

compared these previous and future near neighbor counts using a Chi-Squared test. 

Results 

The raw detection data were mapped in R using WGS 84 coordinates.29–31 The first set of maps 

(Figure 1.1a) divides all detections in California by decade. The second set depicts cumulative 

detection distribution in the greater San Francisco Bay and Sacramento areas (Figure 1.1b) and 

in the greater Los Angeles and San Diego areas (Figure 1.1c). The maps show first two decades 
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of detections only in southern California, slowly increasing in range. B. dorsalis spreads to 

northern CA in the 1980s and remains there.  

 

We plotted cumulative B. dorsalis detections over time in both the complete dataset and the 

outbreak collapsed dataset (Figure 1.2). We found a total of 1319 individual detections in the 

complete dataset from 1960 to 2014. The outbreak-collapsed dataset constituted 976 separate 

detection events. Apart from a large outbreak in 1974, annual cumulative detections increase 

from the 1960s to 1980s, then remain fairly stable with occasional outbreaks. Differences 

between the two datasets are minimal but indicate outbreaks occurring at some scale every few 

years. The majority of the detections are captured from individual traps.   

Regional-Scale Nearest Neighbor Analysis 

Nearest neighbor distributions of B. dorsalis in California vary over time and depend on both the 

number of detections in a given year (high detection years are statistically more likely to have a 

close neighbor) and the specific distributions being compared. Detection patterns cluster more 

strongly (i.e., have smaller NNDs) within that same year than they do with the prior year (Figure 

3a). However, when we compare a given year to a longer prior range, we see the range of NNDs 

decrease substantially, indicating substantial clustering in space and time. This signals that a 

detection in a given year may be more likely to have a closer neighbor from two to five years 

before than the year immediately prior. Localized populations likely grow to a detectable level 

with some evenness at very small scales, followed by a depressed detection year due to post-

detection control.  Figure 4 demonstrates that while the very smallest minimum NNDs 

(minimum NND < 0.1 km) occur from same-year comparisons (temporal distance=0), there is 
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little other effect of temporal distance on minimum NND: detections can have close neighbors 

regardless of temporal distance between detection patterns. 

Local-Scale Nearest Neighbor Analysis 

In this analysis, we used events from the outbreak-condensed dataset within the defined study 

area (Figure 1.5), as well as randomly generated data as described above. For each of the four 

comparison categories (same-year, PY=1, PY=3, and PY=5), minimum (Figure 1.6) and median 

(Figure 1.7) NNDs observed-to-random comparisons were larger (i.e., less tightly clustered) than 

those in observed-to-observed comparisons. This demonstrates that observed detection patterns 

of B. dorsalis within the study area are more highly clustered both within and between years that 

would be expected under the null hypothesis of random detection. As the random dataset was 

generated using the same number of detections per year as the spatially-subset outbreak-

collapsed dataset, the major spikes due to abnormally high or low detection years are similar. 

Chi-Squared Analysis 

The results of the smaller 5km spatial threshold indicate that new detections (detections with no 

neighbors in the preceding five years) were equally likely to continue to have no neighbors 

(48%) as they were to have some neighbors (1-5 = 49%; 6+ =3%) in the future (Table 1.1a). 

Detections with some (1-5) prior neighbors are more than twice as likely to continue to have at 

least one neighbor in the future (68%) than they are to have none (32%). Detections with a high 

number of previous neighbors are most likely to have some neighbors (56%) in the future but are 

equally likely to have either no neighbors (24%) or many neighbors (19%) in the future. 

 

At the larger 15km spatial threshold, we find that new detections are similarly likely to have no 

future neighbors as with the 5km threshold (42%; Table 1.1b). However, out of new detections 
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which have future neighbors, there is a far higher proportion of new detections having many 

future neighbors as opposed to some (1-5 = 35%; 6+ = 23%) compared to the 5km threshold. 

94% of detections that had many (6+) future neighbors at this threshold had a minimum of one 

near neighbor in the past.  

 

At the 5km threshold, only 25% of detections have both zero previous and zero future neighbors. 

The percent in this category decreases substantially, to 7%, at the 15km scale. In contrast, the 

proportion of detections with many past neighbors and many future neighbors is only 2% of the 

total in the 5km threshold, this increases to 31% at the 15km threshold. At either scale, 

detections are far more likely to have a similar number of, or more, future neighbors (80% at 

5km; 87% at 15km) than they are to have fewer future neighbors (19% at 5km; 13% at 15km). 

 

Discussion 

This study reveals the importance of how time factors into analysis of invasion dynamics. From a 

management perspective, the success of control measures is determined by whether there are 

repeat occurrences in the year following individual detections or outbreaks. However, this study 

indicates that comparing patterns in adjoining years may be misleading for management. Weak 

clustering signals between two adjoining years, especially following an outbreak, may reflect a 

temporary effect of localized control measures rather than the eradication of the entire population 

(Figure 1.3; Figure 1.7).8,10,16 This is reflected in our results: patterns in adjoining years show 

little clustering, while cumulative patterns of the three or five years preceding a given year 

generate very strong clustering signals. Having very close spatial neighbors separated by two to 
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five years in time has multiple implications. First, it suggests that post-detection control may not 

be effective long-term, despite short-term efficacy at depressing small surging populations. 

Second, consideration of multiple years after a detection or outbreak can reveal space-time 

clustering and potential establishment signals that may be unseen with short-term post-detection 

monitoring. These points combined highlight the danger of considering detections and small 

outbreaks “eradicated” after only a year or two of monitoring.  

 

The above analyses further confirm signals of likely establishment of B. dorsalis in the state of 

California through the following three lines of evidence: (1) regional-scale clustering, (2) local-

scale clustering, and (3) Chi-squared analysis. Detection patterns within a given year generally 

show high levels of clustering. This follows naturally as individual flies resulting from the same 

low-abundance population would likely be found in close proximity to each other, as opposed to 

being more randomly distributed within the range as would be expected under the null 

hypothesis of independent introductions (Figure 1.3). We see further signals of establishment 

from our local-scale analysis. B. dorsalis detection patterns are continually more tightly clustered 

both within and between years than would be expected under a null random distribution, another 

strong indication of subtle but ever-present establishment signal (Figure 1.6; Figure 1.7). 

 

New detections at a small spatial scale seem to have a relatively equal chance of non-recurrence 

(48% at 5km; 42% at 15km) and having future neighbors (52% at 5km; 58% at 15km), which 

particularly at the 5km scale could indicate an established population (Table 1.1). This ratio 

presumably increases as the spatial threshold is widened. Detections that have many neighbors 
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within 5km are likely experiencing an outbreak in the focal year. These outbreaks events would 

experience subsequent outbreak mitigation and eradication efforts, which in turn influences the 

chance of future neighbors in the short term. At either scale, it is far more likely for any given 

detection to have the same amount of or more neighbors in the future than it is for a detection to 

have fewer neighbors in the future. Some of these patterns increase naturally as the spatial 

threshold widens: detections are more likely to have more neighbors in a wider range than in a 

smaller range. However, since this applies to both prior and future detections, the percentages in 

each category are still worth exploring. An individual B. dorsalis can easily fly 10km and they 

have been known to travel as far as 30km.12,32 

 

The high stakes of B. dorsalis invasion in California from its (a) economic risk due to broad host 

range (230+ crops known)11,12 and (b) short, rapid life cycle means/implies/suggests that  a 

comprehensive understanding of B. dorsalis populations is critical. Interpretation of data many 

times over has suggested that B. dorsalis is established in California: though the analytical 

approaches vary, results of each study clearly indicate levels of establishment in urban and 

suburban areas.8,10 This research has shown that (a) in most areas, once they arrive, they then 

stay; (b) while annual detection counts on average aren’t dramatically increasing, the spatial area 

both in terms of spread and in-fill continues to increase; and (c) there appear to be some 

predictive trends. Our research adds to this by confirming signals of establishment based on fine-

scale inter-point distance analysis. Future research will aim to further quantify specifics of where 

these pockets of establishment are in space and time, and predictive covariates of established and 

non-established space. 
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Yet there remains considerable disagreement on tephritid establishment in California – one 

reason among many why this research is critical.33–36 Detections per year are not increasing 

rapidly (Figure 1.1)8,10 and are stable at levels far below peak annual abundance. Studies indicate 

the efficacy of preventative measures in import and exports.8,37,38  This is an indication that 

despite B. dorsalis’s patchy establishment, populations remain successfully suppressed. 

Nevertheless, acknowledgement of tephritid establishment in California could result in 

catastrophic embargo on agricultural exports. This friction between ecology and politics 

highlights the inefficiency of all-or-nothing pest status. Ecologically, the best management 

approach with such a high-risk species would err on the side of caution and consider the worst-

case scenario (in this case, establishment). Holistic consideration of these populations will 

strengthen our long-term management, and therefore economic, success. In future studies, we 

will expand this point pattern methodology to other tephritid species in order to determine 

comparative risk. 
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Figure 1.1. 

 
Summary of B. dorsalis detections in California, with data color-coded by decade. Maps depicting all B. 

dorsalis detections in (a) all California by decade; (b) the greater San Francisco Bay and Sacramento areas 

cumulatively; and (c) the greater Los Angeles and San Diego areas cumulatively. 
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Figure 1.2. 

 
  

Oriental fruit fly detections in California by year from 1960 through 2014. Light grey bars 

represent detections in the complete dataset. Dark grey bars represent detections in the outbreak-

collapsed version of the dataset.  
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Figure 1.3. 

 

 

(a) Minimum and (b) median nearest neighbor distances of Bactrocera dorsalis fruit flies in 

California by year. Line colors correspond with the nearest neighbor analysis comparison 

category. Red lines indicate distances from same-year comparisons; orange lines represent 

distances from focal year to 1 year prior to comparisons; green lines represent distances from 

focal year to 3 years prior to comparisons; and blue lines represent distances from focal year to 5 

years prior.  
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Figure 1.4. 

 
 

Minimum nearest neighbor distances of B. dorsalis fruit flies in California as a product of 

temporal distance. Each point represents the smallest nearest neighbor distance found between 

detections in a focal year and a single other comparison year. The temporal distance in years 

between the two patterns considered is plotted on the x-axis. The spatial distance in kilometers is 

plotted on a log10 scale on the y-axis. NNDs are smallest, or most tightly clustered, when 

detections are temporally close. However, clustering at small distances persists regardless of 

temporal distance.  
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Figure 1.5. 
 

 
 

Map depicting the location of the Los Angeles area study region, the observed outbreak-

collapsed data (black), the randomly generated data (red), and selected city markers.  
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Figure 1.6. 
 

 
 

Annual minimum nearest neighbor distances of B. dorsalis fruit flies in the southern California 

study area compared to randomized data. Solid lines represent observed data; dotted lines 

represent random data. Figure panels reflect the following comparisons: (a) Same-year; (b) focal 

year to the year prior; (c) focal year to three years prior; (d) and focal year to five years prior. 

The overall position of the solid line below the dotted line in each comparison indicates that the 

observed B. dorsalis data are more clustered in space and time (i.e., generates smaller nearest 

neighbor distances) than would be expected under random distributions. 
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Figure 1.7. 

 
 

Annual median nearest neighbor distances of B. dorsalis fruit flies in the southern California 

study area compared to randomized data. Solid lines represent observed data; dotted lines 

represent random data. Figure panels reflect the following comparisons: (a) same year; (b) focal 

year to the year prior; (c) focal year to three years prior; (d) and focal year to five years prior. 

The overall position of the solid line below the dotted line in each comparison indicates that the 

observed B. dorsalis data are more clustered in space and time (i.e., generates smaller nearest 

neighbor distances) than would be expected under random distributions. 
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Table 1.1.  

 

X2 = 95.308; df = 4; p < 2.2e-16 

 

 
X2 = 280.52; df = 4; p < 2.2e-16 
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Chi-squared analysis comparing the number of previous detections within (A) 5km or (B) 15km 

of a focal detection to the number of future detections within (A) 5km or (B) 15km of the focal 

detection. Focal points with any previous neighbors are more likely to have neighbors in the 

future.  
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Spatiotemporal aggregation analysis reveals 

which non-native fruit fly populations are likely 

established in California 
 

Caroline C. Larsen-Bircher, Robert J. Hijmans, James R. Carey 

 

Abstract 

Tephritid fruit fly species are some of the most damaging insect agricultural pests. In California, 

where non-native tephritid species are heavily monitored, annual detections range from 

frequently-found to rarely-found depending on species. We hypothesize that despite having 

limited detection data, occasionally-detected species can be still be monitored for spatiotemporal 

aggregation, an early sign of establishment and will exhibit clustering characteristics 

intermediate to both rarely- and frequently- detected species. We use two separate spatial 

aggregation statistics, the L function and the O-ring statistic, to determine risk of establishment 

of six non-native tephritid species: frequently-detected Bactrocera dorsalis and Ceratitis 

capitata, and occasionally-detected Anastrepha ludens, Bactrocera correcta, Bactrocera zonata, 

and Bactrocera cucurbitae. In line with previous studies, we find B. dorsalis and C. capitata to 

show strong signs of spatiotemporal aggregation. A. ludens and B. correcta show signs of 

spatiotemporal aggregation indicating higher establishment risk overall. Spatiotemporal patterns 

of B. zonata, and B. cucurbitae generally did not differ strongly from random distributions, 

thereby posing a lower invasion risk. 
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Introduction 

Non-native tephritid fruit fly species have long been some of the most threatening insect pests to 

global agriculture. This is especially true in California. California produces more than one third 

of the country’s vegetables and two thirds of the country’s fruits and nuts,1 many of which are 

potential hosts to tephritid fruit flies.2 

 

Since 1900, 17 species of non-native tephritid fruit flies have been detected in California. Of 

these, most have been found infrequently and in small numbers. 52% of species have had two or 

fewer individuals detected in California between 2000 and 2014. This lower detection frequency 

is likely due to low habitat suitability (tropical species in a Mediterranean climate),3,4 successful 

post detection control measures by the California Department of Food & Agriculture (CDFA),5,6 

or decreased propagule pressure.7,8 Such infrequently detected species cannot be analyzed using 

spatial statistics to estimate establishment. Many of these species have not been detected in the 

last decade and therefore pose a low risk of establishment. Some non-native tephritids, however, 

have been detected with great frequency and in great abundance. Bactrocera dorsalis (oriental 

fruit fly), for example, has been detected annually since 1969 and is likely established in 

population pockets around the state.9–11 Ceratitis capitata (Mediterranean fruit fly), while 

perhaps the most notorious non-native tephritid species, has been detected in great numbers but 

with more erratic frequency.12–14 These frequently detected species have enough spatial data to 

be analyzed rigorously and have been the subject of many studies.  
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There are multiple species between these two extremes of frequently and rarely found: species 

that are detected occasionally, with too many occurrences to be considered eradicated but too 

few data points for more rigorous statistical analysis necessary to demonstrate establishment. 

Occasionally-detected species may pose an equally high risk if they have been detected recently 

or have exhibited a period of repeated detections in a given area, potentially indicating a sub-

detectable population. Most of these species have not yet been studied in an ecological context. It 

is critical to determine which statistical tools will improve our understanding of these species to 

further understand their establishment risk. 

 

There are many ecological ways to define the risk of any non-native or potentially invasive 

species3,1516,17 and of tephritid species in particular.8,12,18 In this study, we refer to “risk” as the 

likelihood of a give species to be or become established in a particular area. We know 

populations can remain sub-detectable for years, so it is critical to take a deep look into the 

spatial distributions of all detections over time. When spatial analyses include (a) explicit 

temporal information, (b) a defined study area, and (c) a consideration of recent detection, they 

can provide a more complete picture of risk than recent detection history alone.  

 

We hypothesize that despite having limited detection data, occasionally-detected species can still 

be monitored for spatiotemporal aggregation, an early sign of establishment, over time. We posit 

that these occasionally-detected species will exhibit clustering characteristics intermediate to 

both rarely- and frequently- detected species. We use spatial statistics to differentiate which, if 

any, species merit being considered higher risk of establishment based on clustering metrics. 
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Spatial ecology suggests that spatial statistics are best used in concert due to their varying 

strengths, sensitivities, and limitations.19,20,21 We use two separate spatial statistics, the L 

function and the O-ring statistic, to analyze the spatiotemporal patterns of six non-native 

tephritid species: frequently-detected Bactrocera dorsalis and Ceratitis capitata, and 

occasionally-detected Anastrepha ludens, Bactrocera correcta, Bactrocera zonata, and 

Bactrocera cucurbitae. Each of these spatial statistics analyzes degree of clustering among 

points in a dataset: higher values indicate clustering while lower values indicate no difference 

from a random distribution. By considering the dataset in 3-year moving window, we can 

determine aggregation levels in both space and time simultaneously – a greater indication of 

potential establishment. 

Methods 

Dataset and Data Selection 

The tephritid detection dataset utilized for this study is comprised of 3489 individual detections, 

their coordinates (longitude, latitude), collection dates (day, month, year), species, sex, life stage, 

and number of individuals. Over the last century, 17 non-native tephritid species have been 

detected in California. Detections are made by the CDFA and USDA using approximately five 

baited traps per square mile across most urban and suburban regions of the state. James Carey 

and colleagues digitized and curated the detection dataset through 2014.5,6,8 

 

We ranked the 17 tephritid species by total detections and selected species with enough 

cumulative detections, using a minimum threshold of 20 cumulative detections in the greater Los 

Angeles area. We then divided the species into three tiers: frequently detected, occasionally 
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detected, and rarely detected. We generated a study area from the cumulative detections of all   

study species using common methods in geospatial analysis.4,21,22 

 

Analysis 

All analyses were conducted in R version 3.6.2.23 Spatiotemporal statistical analyses were 

primarily performed with the spatstat,24 onpoint25 and raster26 packages. Results were visualized 

using ggplot2 package.27 The dataset is maintained in Microsoft Excel.28  

 

Ripley’s K(d) and the L function: Like much of point pattern analysis, Ripley’s K is a distance-based 

measure: it is calculated based on the distances between events, or in this case points of 

detection, in a data set.20,21,29 The K function models the distribution of distances between all 

events, in this case detections, in a given dataset. Unlike other common spatial statistics such as 

the F and G functions, which are nearest-neighbor-based, the K function provides a glimpse at 

the overall spatial structure of a given pattern. This statistic considers one event (detection) at a 

time by taking a ring around that event (detection) at a given radius (r) and counting the number 

of other events (detections) falling inside of that circle. The process is repeated with a slightly 

larger radius and again until the entirety of the study space has been considered. The next event 

(detection) is then focused upon and the process repeats. The K function is a cumulative 

function: as the radius increases, it includes all events (detections) inside of the radius. The L 

function includes the same base calculation as Ripley’s K(r) with a linear transformation to make 

graphical interpretation slightly easier. We used Ripley’s isotropic edge correction for all 

models.30,31 
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The O-Ring Statistic: The O-ring statistic, also referred to as the pair correlation function or 

neighborhood density function, is another derivative of Ripley’s K. Similarly, to the K and L 

functions, it provides a statistical estimation of the spatial structure of a given point pattern. 

Unlike the K and L functions, the O-ring statistic is a probability density function: it separates the 

distances between event pairs into spatial bins, rather than considering them cumulatively.20,21,29 

 

Monte Carlo Testing: Tests of significance for spatial point patterns most commonly use Monte 

Carlo procedures. Monte Carlo simulation of a spatial pattern involves using the same statistical 

parameters with a simulated data set representing the null hypothesis, which here is a random 

distribution.21 Monte Carlo procedures can be used to test hypotheses other than complete spatial 

randomness (CSR); however, we have chosen a null of random distributions for this analysis. 

Future studies will explore the variable impact of more complex temporally explicit null 

distributions. Statistical rejection limits are based on simulation envelopes, generated by each of 

the 99 iterations of the null test. Each of the 99 simulations includes a distinct randomly 

generated spatial pattern within the same study area polygon as the observed data sets and 

containing the same number of events (detections) as each comparable cumulative or annual time 

slice as the observed data set. In both versions of both statistical tests, if the observed data is 

higher than the simulation envelope, the pattern is clustered, or aggregated.20,21 If the observed 

data falls inside the simulation envelope, the pattern is random. If the observed data falls below 

the simulation envelope, it is regular, or over-dispersed. 
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Time: For each statistical test, we incorporated time using two approaches: cumulative years and 

3-year windows. We first considered time cumulatively, with all years of detections combined 

into a single pattern. In the 3-year window analyses, data was considered in moving windows of 

time. For example, the combined detection patterns for 1990-1992 would be analyzed as a unit, 

followed by the combined patterns for 1991-1993. Using a moving window framework can help 

illuminate patterns in sparser data sets by smoothing the data over time. Detections in close 

spatial and temporal proximity are highlighted in the analysis, which follows ecologically as 

detections close together in both space and time are more likely to be the result of a small 

population. Each window results in a similar output to the cumulative time tests. To display the 

statistical information in a consolidated and more easily digestible form, we have used quantum 

plots.25,32 

Results 

We ranked the 17 tephritid species and divided them into categories (Table 2.1). B. dorsalis 

(1421 total detections; 953 study area detections) and C. capitata (1396 total; 783 study area) 

comprise the frequently detected species. A. ludens (437 total; 124 study area), B. correcta (139 

total; 89 study area), B. zonata (68 total; 37 study area), and B. cucurbitae (28 total; 23 study 

area) make up the occasionally detected tier. The remaining 14 species did not pass the 20-

detection minimum threshold and fell into the rarely detected category. These species did not 

have enough spatial data to be considered in the analyses. 

 

The selected species broadly overlap in range, most noticeably in the greater Los Angeles Area. 

We therefore confined our analyses to data in this study region, utilizing detections inside a 
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single polygon boundary nested within the detection ranges of all six species. The study area 

polygon was generated using a combination of buffer functions on the observed detected points 

(Figure 2.2).  

Cumulative years analysis 

L function: When considered cumulatively, each of the six tephritid species shows significantly 

higher levels of aggregation than the simulation envelope at 100% of distances r (Figure 2.3). 

This difference is most pronounced with the two frequently-detected species, B. dorsalis and C. 

capitata. A. ludens, B. correcta, and B. zonata also show statistical differentiation from the 

simulation envelope, though the separation is narrower. B. cucurbitae, the least abundant of the 

six species, hovers most closely to the simulation envelope at higher distances r, though still 

shows higher aggregation than random at small distances. The simulation envelopes of the less-

frequently detected species are much more variable due to the limited number of detections in 

each dataset, and thereby in each Monte Carlo null simulation. 

O-ring statistic: Similar to the cumulative year tests for the L function, observed spatial patterns 

from frequently detected species using the O-ring statistic show substantial difference from the 

Monte Carlo simulation envelope, especially at small distances r (Figure 2.4). B. dorsalis, C. 

capitata, and A. ludens show the greatest levels of aggregation and difference from the 

simulation envelope. The observed O(r) values for B. zonata and B. cucurbitae, however, fall 

generally within the simulation, indicating no difference from a random distribution at most 

distances r. 
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3-year annual window analysis 

L function: The results of the 3-year window L function tests were far more variable. Frequently-

detected species show solid spatiotemporal aggregation at all distances r (Figure 2.5). B. dorsalis 

shows the strongest aggregation over time, in line with previous studies. Other species show 

more temporal variation. For example, B. correcta shows little aggregation at small distances r 

across time but has extremely variable aggregation at larger scales. In recent years, B. correcta 

shows only some aggregation and few neighbors. The lack of detection data for B. zonata and B. 

cucurbitae is evident in the sparsely filled bars. 

O-ring statistic: The annual analysis of the O-ring statistic again shows the most frequently-

detected species presenting strong signals of aggregation at small distances r across time (Figure 

2.6). B. correcta shows some spatiotemporal aggregation, but most recently patterns were no 

different from random. B. dorsalis, C. capitata, A. ludens, and B. zonata all show evidence of 

overdistribution, or regularity at medium and large distances.  

Discussion 

Ecological implications 

Spatial statistics are critical tools for revealing underlying dynamics of ecological populations. The results 

of our study support our hypotheses that even with limited amounts of data, occasionally detected 

tephritid species can be shown to have spatiotemporal clustering. Analyses of frequently-detected species 

confirm the result of other studies: these species are a continued high risk and most likely established in 

the study area. Occasionally-detected species vary in their risk assessment: of the four, B. correcta poses 

the highest risk of establishment. Further, when used correctly, these results can be used to track species 

risk in a particular area.  
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Frequently-detected species: Overall, B. dorsalis is the most abundantly detected non-native 

tephritid species in California. The species is found annually and has been demonstrated to be 

likely established in prior studies. On this information alone, B. dorsalis is a high-risk species. 

This is confirmed through all four statistical tests. The cumulative years L function and O-ring 

statistic both indicate that B. dorsalis detections aggregate in space: new detections are likely to 

be near-by to older detections and aggregated in patterns that are statistically distinct from 

random distributions within the study area (Figure 2.3; Figure 2.4). The 3-year window L 

function shows that B. dorsalis detections are aggregated up through most all distances r (0-0.20) 

across the study area (Figure 2.5). The 3-year O-ring analysis provides a bit more structural 

detail with the same overall result: solid clustering signals at small distances of r (Figure 6). 

Considered together, these results align with those of previous studies suggesting population 

persistence, and likely establishment, of B. dorsalis in the Los Angeles area. 

 

Perhaps the most recognized of the California non-native tephritid species, C. capitata has been a 

primary focus of the CDFA for decades. It is comparable to B. dorsalis in overall detections, but 

the annual frequency is more variable, showing up 75% of the last 15 years as opposed to 100% 

for B. dorsalis (Table 2.1; Figure 2.1). This is reflected in multiple spatial analyses. For example, 

the cumulative years O-ring analysis, the observed output for C. capitata is far more variable in 

terms of amplitude than B. dorsalis (Figure 2.4). Whereas B. dorsalis patterns show overall 

clustering at mostly small distances r, the observed curves for C. capitata approach the MC 

simulation envelope more erratically. This may be due to the fact that historically there have 

been multiple extreme outbreak years, which skew the cumulative years analyses. Both 3-year 

window models show that C. capitata populations within the study area variably show 
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aggregation and random distributions (Figure 2.5; Figure 2.6). The most recent year of data 

changes a three-year streak of largely random patterns to show aggregation at small distances r.  

 

Occasionally-detected species: Though A. ludens was detected in California before any of the other 

five species (1954), its total detections are merely a third of those for B. dorsalis and C. capitata 

(Table 2.1). While the prior two frequently-detected species have a signature of consistent 

aggregation at small distances r, the cumulative years analyses for A. ludens indicate more 

aggregation at mid-level distances (Figure 2.3; Figure 2.4). Three-year window analyses show 

that the most recent A. ludens detections have been clustered (Figure 2.5; Figure 2.6). As there 

have been no A. ludens detections in the study area since 2008, the possibility of an established 

population is progressively less likely.  

 

B. correcta was first found in the state in 1986 and since then 139 individuals have been detected 

(Table 2.1). This species has been found 14 out of the last 15 years, making it a higher risk 

species for future detections. In both cumulative years tests, the distributions of B. correcta most 

closely resembles those of B. dorsalis but with a lower abundance: high levels of clustering at 

small distances r with a relatively stable taper (Figure 2.3; Figure 2.4). The 3-year window 

analyses show that unlike most other species, the smallest distances r indicate a random 

distribution, likely driven by the lower overall abundance of detections (Figure 2.5; Figure 2.6). 

By r = 0.02, the pattern show aggregation. Most recent years indicate more random distributions 

than aggregated. However, due to the consistent detections within the study area and the 
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aggregation signals, though variable, future detections of B. correcta should be carefully 

considered to determine if these populations may already be established in the area. 

 

The last two species, B. zonata and B. cucurbitae, have the fewest overall detections and highly 

variable annual distributions (Table 2.1; Figure 2.1), only being found in 6 (B. zonata) or 4 (B. 

cucurbitae) of the last 15 years. The cumulative years analyses for both species show little 

overall differential from the null simulation windows (Figure 2.3; Figure 2.4). The 3-year 

window analyses similarly show that distributions are variable: generally random at middle and 

large distances r, but variably aggregated at small distances r (Figure 2.5; Figure 2.6). B. zonata 

had a large temporal gap with no detections within the study area. Individuals were most recently 

detected in 2013 (showing up as bars for 2013 and 2014 in the 3-year window analyses) but did 

show aggregation at small distances. With such few total detections, it is difficult to determine 

whether B. zonata is a high risk (established) species. The model results, limited detections, and 

annual variation do not indicate current establishment, though it is a possibility. B. cucurbitae, on 

the other hand, has not been detected in the study area since 2010. Both 3-year window L 

function and O-ring statistic for 2010 show no difference from the random distribution 

simulation envelope, and preceding years were similar. This suggests that B. cucurbitae is less 

likely to be established in the study area. Of course, any introduction of non-native tephritids can 

potentially lead to (or signal) population establishment or outbreak, so some amount of risk is 

associated with even a single fly detection.  
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Management implications 

Spatial statistics can be a useful tool in management if used correctly. Spatiotemporal analyses 

have strengths and weaknesses, and thus should be used collectively rather than alone. Both 

cumulative years models give important information about the structure of patterns overall, 

though are likely less useful for the rarer species. The L function seems to be less useful in a test 

against the null hypothesis as it may overestimate aggregated versus the random simulations. 

However, the initial shapes of the curve are important. Any rapid increase along the x-axis 

indicates scales of clustering. The O-ring statistic also produces structural information, seems 

less influenced by abundance, and perhaps is simpler to interpret. The downside of these two 

analyses is of course that they are temporally cumulative and have no information on change 

over time. This doesn’t mean it void of ecological significance: we’ve seen, especially in the 

early years of B. dorsalis and C. capitata, that detections close together in space but years apart 

in time can be a part of a sub-detectable population.  

 

We found the 3-year window to be the most useful tool for determining recent risk, for 

frequently and occasionally occurring species, especially when paired with individual O-ring 

diagrams. The O-ring statistic in particular is easy to interpret visually in terms of identifying 

spatiotemporal scale of aggregation. Though these tests do show temporal variation, they do not 

indicate how much each pattern differs from the simulation envelope, a benefit of the cumulative 

year tests. 
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Figures 

Table 2.1. 
 

Detection 

Tier 

Species Total 
Detections 

First Year 
Detected 

Most 
Recent 
Year 

Detected 

Total 
Detections 
since 2000 

Number of Years 
Detected 2000-

2014 
(Frequency) 

Frequent 
B. dorsalis 1421 1960 2014 474 15 (100%) 

C. capitata 1396 1975 2014 121 11 (73%) 

Occasional 

A. ludens 437 1954 2008 168 8 (53%) 

B. correcta 139 1986 2014 102 14 (94%) 

B. zonata 68 1984 2013 31 6 (40%) 

B. cucurbitae 28 1956 2010 8 4 (27%) 

Rarely 

B. scutellata 16 1987 2010 12 2 (13%) 

A. striata 11 1909 1998 0 0 

B. albistrigata 10 2008 2009 10 2 (13%) 

A. obligua 8 1967 2005 2 2 (13%) 

A. suspensa 7 1983 2007 1 1 (7%) 

B. tryoni 2 1985 1991 0 0 

D. bivittatus 1 1987 1987 0 0 

A. serpentina 1 1989 1989 0 0 

B. facialis 1 1998 1998 0 0 

B. latifrons 1 1998 1998 0 0 

A. obliqua 1 2000 2000 1 1 (7%) 

 

Detection history of 17 non-native tephritid species in California from 1900 through 2014. 

Species in bold are the six focal species of this study. Species in light grey are those that have not 

been detected in the last 15 years (2000-2014).   
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Figure 2.1. 
 

 
 

Annual detections of the top 6 most frequently detected non-native tephritid species in 

California. The x-axis is log10 scale of n, the total annual abundance, to account for the highly 

variable detection amounts.
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Figure 2.2.

 

Cumulative detections of the top 6 most frequently detected non-native tephritid species in the 

Los Angeles area of California. Individual detections are represented by black circles. The study 

area polygon is shown by the black line in each window.  
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Figure 2.3. 

 

L functions for the top 6 most frequently detected non-native tephritid species in the Los Angeles 

area of California. Distance r is the radius of the circle surrounding an event (detection). L(r) 

described the average number of events inside a circle of radius r, with a linear transformation. 

The black line in each panel represents L(r)for the observed cumulative detection data for each 

species. Higher values of L(r) denote higher levels of spatial aggregation. The grey lines in each 

panel represent L(r)for the simulated Monte Carlo simulations.  
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Figure 2.4. 

  
 
O-ring statistics for the top 6 most frequently detected non-native tephritid species in the Los 

Angeles area of California. Distance r is the radius of the annuli (ring) surrounding an event 

(detection). O(r) described the average number of events inside an annulus of radius r. The red 

line in each panel represents O(r) for the observed cumulative detection data for each species. 

Higher values of O(r) denote higher levels of spatial aggregation. The black lines in each panel 

represent O(r)for the simulated Monte Carlo simulations. 
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Figure 2.5. 

L functions for the top 6 most frequently detected non-native tephritid species in the Los Angeles 

area of California, separated by year. Distance r is the radius of the circle surrounding an event 

(detection). L(r) described the average number of events inside a circle of radius r, with a linear 

transformation. Each row represents detections from a three-year window of time, listed as the 

first of the three years (e.g., 1990 represents 1990-1992). Purple portions of each bar represent an 

aggregated distribution, i.e., the observed L(r) value is greater than the Monte Carlo simulation 

envelope. Green portions of each bar represent a random distribution, i.e., the observed L(r) value 

falls inside the Monte Carlo simulation envelope. If no bar is present for a given year or distance 

r, there were no neighbors in the temporal window in that spatial bin. Short bars that are present 
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at small distances but disappear at larger distances indicate that near neighbors were present, but 

no neighbors were found at higher distances.  
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Figure 2.6. 

O functions for the top 6 most frequently detected non-native tephritid species in the Los Angeles area of 

California, separated by year. Distance r is the radius of the annuli (ring) surrounding an event 

(detection). O(r) described the average number of events inside an annulus of radius r. Each row 

represents detections from a three-year window of time, listed as the first of the three years (e.g., 1990 

represents 1990-1992). Purple portions of each bar represent an aggregated distribution, i.e., the observed 

O(r) value is greater than the Monte Carlo simulation envelope. Green portions of each bar represent a 

random distribution, i.e., the observed O(r) value falls within the Monte Carlo simulation envelope. 

Yellow portions of each bar represent a regular distribution, i.e., the observed O(r) value falls below the 

Monte Carlo simulation envelope. If no bar is present for a given year or distance r, there were no 

neighbors in the temporal window in that spatial bin.  
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Abstract 

Non-native invasive species, including insect pests, can cause severe damage to human health, 

ecosystems, and agriculture. Invasive insect pest populations are influenced by many ecological 

variables, such as climate and host plant occurrence; however, human-related activities, such as 

land development, population density, and transportation are known to additionally modify 

habitat conditions. This suggests that the inclusion of human-related processes may improve our 

understanding of the spatial distributions of costly and elusive invasive pests. In this study, we 

examine the distribution of Bactrocera dorsalis fruit flies, damaging agricultural pests, in the 

Los Angeles, California area. Using a combination of ecological, human, and B. dorsalis 

population variables related to mechanisms of tephritid introduction and establishment, we 

identified the strongest explanatory variables of detections using random forest and logistic 

regression. Primarily, we find that proximity to prior detections was an important indicator of 

future detections, supporting the assertion that B. dorsalis is established in California. However, 

some anthropogenic variables related to transportation and demographics, such as the locations 

of bus stations, were strongly associated with B. dorsalis occurrence, indicating that human 
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modification of landscapes may shape of this invasive species’ distribution, beyond 

environmental variables alone. Together, these results may improve management and detection 

of B. dorsalis in its introduced range and increase our understanding of the deeper dynamics 

driving these populations.   

Introduction  

Understanding current distributions and predicting future distributions of non-native or pest 

species is a critical component of successful management.1,2 Tephritid fruit flies are one of the 

most heavily monitored agricultural pest species worldwide. In fruit-eating species, females 

oviposit under the skin of fruit and the larvae consume the fruit flesh until pupation, thus ruining 

the plant for human consumption. Though host plants are often citrus, stone fruit, and cucurbits; 

most fruits and many vegetables have a tephritid species that consider it a host.3–5 In California, 

an agricultural economy of global importance, non-native tephritids have been monitored and 

managed since the early 1900s, given the significant damage they can potentially cause.6–10 To 

date, 17 non-native tephritid species have been found in urban and suburban areas of throughout 

the state. Urban areas are important to this agricultural pest because California agriculture land is 

kept tephritid-free through intensive preventative management: the populations of concern are 

persisting in developed areas of the state where human-supported backyard fruit trees and 

vegetable gardens increase the potential niche of the species. 

 

Bactrocera dorsalis, the oriental fruit fly, is a tropical species native to Southeast Asia. Its range 

has now extended to at least 65 countries, and as an introduced species, it is a dominant global 

agricultural threat.11–14 Its larvae feeds on 400+ documented host plant (plants in the tomato, 
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squash, and citrus families are particularly vulnerable)5 and is an important pollinator in its 

native range. There have been detections of B. dorsalis in California every year since 1969. This 

species is especially abundant in the Los Angeles area despite vigilant monitoring and 

intervention methods by the California Department of Food and Agriculture.6,7,10 It appears that 

B. dorsalis has established in the state in small pockets that may shift spatially over time.15,16 

Management of B. dorsalis and other non-native tephritid species, found using on-the-ground 

monitoring, relies on a policy of ‘detect and eradicate’. Subsequent detections outside of a small 

spatiotemporal window are considered new introductions from importation of goods or travel. 

Populations rarely rapidly increase due to patchy host availability and these post-detection 

control measures; however, complete eradication, which relies on a 100% success rate, is quite 

difficult.15,17–19 

 

Many models, both inferential and predictive, focus on the impact of bioclimatic variables on 

tephritid populations, which can be critical for understanding species ranges.20,21 However, 

anthropogenic factors can modify existing habitat conditions by maintaining host plants outside 

of their natural bioclimatic ranges or promoting microclimates due to tree cover or urban heat 

island effects.22–27 For instance, populations of tephritids in California may be more likely to 

persist in backyard fruits trees and home gardens, as compared to the undeveloped landscapes of 

California that lack suitable hosts. Thus, variables such as degree of developed land cover and 

human population density may help us understand detection distributions. Evidence supports the 

hypothesis of B. dorsalis establishment in Los Angeles, though monitoring and intervention 

methods operate on the assumption of frequent repeat introductions. 
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International importing of goods or civilian or military travel from regions with well-established 

B. dorsalis populations have been cited as possible pathways of B. dorsalis introduction. It has 

been frequently suggested that Los Angeles residents traveling to and from countries with non-

native fruit flies are a primary source of new introductions. B. dorsalis is a wide ranging tephritid 

species, endemic to southeast Asia and established elsewhere, most notably in Hawaii. The first 

line of defense against introduction of new pest species from agricultural imports are heavily 

regulated inspections. If importation is the primary ongoing pathway for B. dorsalis detections 

via new introductions, detections may correlate with distance to transportation hubs such as 

airports, ports, and freight transfer facilities or with census tracts with a higher proportion of 

residents identifying as Asian or Hawaiian compared to other identities. If travel is a primary re-

introduction pathway for new detections, public or military airports may significantly predict 

detections.  

 

• In this study, we use a long-term dataset of B. dorsalis detections of to examine the 

biophysical and anthropogenic drivers of B. dorsalis detections, testing variables that 

may shape both tephritid reintroduction and populations persistence following invasion 

(Table 3.1). We specifically explore the following hypotheses: (1) B. dorsalis occurrence 

is correlated with proximity to historical detections and not with transportation pathways, 

indicating that within the urban matrix of the greater Los Angeles area, B. dorsalis is 

established in small, difficult-to-detect populations, rather than through repeated 

introductions; (2) Anthropogenic factors are significantly correlated with B. dorsalis 

detection and improve model performance, indicating that human modification of 

landscapes may dictate habitat suitability, beyond biophysical factors alone.  
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We used two statistical inference methods, the random forest algorithm and logistic regression, 

to identify important factors of B. dorsalis occurrence. Random forest is a regression and 

classification algorithm frequently used with environmental and biological data that lends well to 

exploring complex interactions among variables, especially with small sample sizes.28–30 Logistic 

regression provides easily-interpretable quantitative estimates of effect size and direction. 

Together, these statistical approaches will inform our understanding of drivers behind B. dorsalis 

detections in the Los Angeles area and increase our ability to predict and prevent major future 

outbreaks. 

Methods 

Study Area & Species Data 

The study uses a historical dataset of all non-native tephritid fruit fly detections in the state of 

California since their first detection in Hawaii over a century ago (Bactrocera cucurbitae in 

1895; Ceratitis capitata in 1907).12,14 Since the first non-native tephritid was detected in Hawaii 

in 1946, The CDFA has monitored a fine-scale trapping grid of roughly five baited traps per 

square mile of developed areas across the state. The tephritid data set includes coordinates, date 

of capture, life stage, sex, and species of each individual captured.12,31,32 We conducted all 

analyses in R, Version 1.4.1717.33 

 

The study area is generated from detection locations in the full tephritid data set for all species in 

all years monitored. We chose the greater Los Angeles area as our focal region for two reasons. 
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First, Los Angeles plays a significant role in nonnative tephritid populations at it has both many 

of the oldest and most recent detections. Second, trapping densities are stable within human-

dominated areas – fewer traps exist in less populated regions.7 The large, continuous sprawl of 

Los Angeles helps ensure the detections are the result of a similar trapping effort. We buffered 

all southern California detections by 4,800 meters, then selected the largest contiguous polygon, 

and smoothed the resulting polygon using Chaikin’s corner cutting algorithm (Figure 3.1).34–37 

 

We used the tephritid occurrence data for Bactrocera dorsalis within the study region. We 

applied a low level of spatial aggregation by rounding detection coordinates to three significant 

digits and eliminated coordinate-year duplicates. This mitigates the effect of densely 

spatiotemporally clustered outbreaks which can bias statistical results without providing added 

biological information. We selected a 10-year temporal subset of detections as our observed 

dataset (years 2000-2009; n=218; Figure 3.1). In future studies, we will compare the 2010-2019 

occurrence data, which is currently being compiled. 

 

The tephritid data set is presence-only: it does not provide spatiotemporal information regarding 

trapping locations with zero detections. Selection of pseudo-absence data for a presence-only 

dataset can have significant impacts on model outputs: background points with environmental 

data too dissimilar from those of the observations may positively bias variable parameter 

estimates.38,39 Background points too similar to the observed data will fail to generate enough 

variation for useful inference. Numerous studies have investigated trade-offs among pseudo-

absence approaches.40,41 We used two methods to produce pseudo-absences, or background 
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points. First, we generated a set of spatially random points within the study area using the sp 

package (n=109).37 Second, we used locations of all detections of non-B. dorsalis species 

(n=109). We combined these two sets of points into a single background dataset matching the 

abundance of the observed dataset (n=218; Figure 3.1).  

Explanatory Variables 

To assess the relative contributions of establishment or re-introduction in determining B. dorsalis 

occurrence, we selected explanatory variables from four categories: B. dorsalis population 

metrics, bioclimatic variables, human development and transportation metrics, and human 

population characteristics (Table 3.1). All variable layers were imported into R,33 converted to 

the same geographic coordinate system (WGS84), and rasterized across the study area. The cells 

of each raster grid are approximately 1.3 km2 in area.  

 

To test the importance of previous B. dorsalis detections on future distributions, we created two 

distance layers of detections prior to the observed data range. The “recent” neighbors layer 

covered detections in the study area from year 1990 to 1999 (n=372). The “older” neighbors 

distance layer included year 1980 to 1989 (n=313). These layers represent the distance at any 

point within the study area to the nearest previous tephritid neighbor. We converted each point 

pattern to a distance raster where each grid cell represents the distance to a point in the dataset: a 

grid cell containing a detection would be zero, with the value increasing with distance from any 

given point.  
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To understand the effect of biophysical variables on B. dorsalis occurrences, we included tree 

canopy cover, elevation, and climatic layers (Table 3.1). The 2011 tree canopy data is a percent 

cover estimates from the U.S. Geological survey.24,42 We obtained aggregated elevation data and 

the full set of 19 bioclimatic variables from WorldClim.36,43 

 

To understand the effect of human development and transportation hubs, we selected candidate 

variables that may be important to establishment or re-introduction hypotheses (Table 3.1). 

Developed land cover is a pseudo-quantitative derived variable based on National Land Cover 

Data categories.42,44,45 The rasterized grid cells range in value from zero to four, representing a 

pseudo-continuous variable where four is “developed: high density,” three is “developed: 

medium density,” two is “developed: low density,” one is “developed: open space,” and zero is 

“undeveloped”, representing all other land use categories, which are primarily natural biomes. 

Data on airports includes the distance to any public or military airports currently permitted by the 

California Department of Transportation (Caltrans) Division of Aeronautics.46,47 Bus station data 

represents the distance to stations in the Amtrak Thruway bus system.48 Freight intermodal 

facilities are the distance to any transfer points along the California freight network for freight 

moving from ship to rail or truck or vice versa.49 Port data represents distance from private or 

public major commercial ports as per the California Department of Commerce, Office of 

Economic Research.50 Rail station data indicated distance to the nearest California passenger rail 

station (Table 3.1).51 
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We used multiple variables from the 2000 United States Decennial Census to explore the 

possible influence of human populations on the likelihood of B. dorsalis detections.52 Each 

variable was downloaded at the census tract scale, converted to density or proportion, and 

rasterized.53 The population density variable is scaled to census tract area. The remainder of the 

variables represent proportion of the population identifying as a single race in the following 

categories: white; American Indian or Alaskan Native; Black of African American; Asian; or 

Hawaiian or other Pacific Islander (Table 3.1). 

Data analysis and modeling 

We compared multiple models to identify the variables that had the strongest associations with 

B. dorsalis presences and background points. All models are global regarding the defined study 

area and occurrences. Multicollinearity analysis of our full variable set eliminated 20 of the 36 

variables using Pearson’s correlation coefficient and a cut-off of 0.6 (see Appendix).33,54 The 

square root of the VIF for all final variables was between 1.00 and 2.00 (VIF cutoff values range 

from 3.0 to 10.0), indicating low collinearity between the remaining variables. We used boxplots 

paired with non-parametric Mann-Whitney U tests to analyze differences in variable distribution 

between presences and background points.54  

 

We used random forest classification and multiple logistic regression models for the occurrence 

data and their corresponding explanatory variables. We implemented models in R. Random 

forest is a machine-learning algorithm utilizing an ensemble of classification or regression trees 

(CART).30,55 In a classification setting, the output of a random forest model is the class selected 

by the most trees. By combining the results of many random, independently bootstrapped trees, 
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overall variance is decreased and overfitting is avoided.30,56 We ran all random forest models 

using the randomForest package with 500 trees (ntree).57 Each model was individually tuned for 

the number of variables per tree (mtry). Variable importance was considered using the mean 

decrease in the Gini coefficient, the average total decrease of a given variable on tree node 

impurity, or how well the trees split the data. Models were evaluated using out-of-bag (OOB) 

error estimates and area under the curve (AUC) of a receiver operating characteristic (ROC) 

plots58 using the ROCR package.59 We ran logistic regressions with binomial distributions on 

standardized variables (x – mean / standard deviation).33 We analyzed individual variables for 

importance using absolute value of the z statistic. We verified model assumptions using QQ 

plots, a Chi-Square test of residual deviance, and Pearson’s residuals for the explanatory 

variables.60 

Results 

Descriptive Statistics 

We summarized the 16 final explanatory variables by detection and background points (Table 

3.2; Figure 3.2). Overall, we found little difference in the summary statistics of detections and 

background points for most biophysical variables. However, B. dorsalis occurred in areas that 

were significantly closer to past detections (that occurred from 1980-1989 or from 1990-1999), 

compared to background points (Table 3.2; Figure 3.2). Detections tended to be closer to public 

airports, bus stations, and rail stations, but were slightly farther from freight terminals than 

background points (Figure 3.1).  Tree canopy cover was unexpectedly low in both categories 

(detection mean: 2.56%; background mean: 2.75%) compared to the maximum values (detection 
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max.: 35.00%; background max.: 32.00%; Table 3.2). Proportions of the population who identify 

as American Indian or Hawaiian represented the smallest values of all census data categories. 

Importance of explanatory variables 

Both B. dorsalis neighbor variables were included in the final model (Table 3.2). Only tree 

cover, annual mean temperature, minimum temperature of the coldest month, and precipitation 

of the wettest month met model criteria for inclusion as most bioclimatic variables are highly 

correlated. We found distance to public airports, bus station, freight intermodal facilities, and rail 

stations to be suitable variables in the development and transportation category based on 

collinearity. All human population metrics were included in the final model. 

 

Overall, we found recent neighbor distance and bus station distance to be the most important 

explanatory variables in both models (Figure 3.3). Annual mean temperature also was highly 

ranked in importance in both models (3rd for random forest; 5th for logistic regression). The 

relative importance of all other variables was different depending on model type.  

Random Forest  

The random forest had an out-of-bag (OOB) error rate of 29.21% and an AUC of 0.78 (see 

Appendix), suggesting that the model has an acceptable rate of accuracy. Distance from a bus 

station was the by far the most important explanatory variable (mean decrease Gini = 28.92), 

followed by distance from recent, previous detections (mean decrease Gini = 18.65; Figure 3.3). 

Most other variables ranged in importance from 8 to 14 mean decrease Gini. Developed land 

cover and tree canopy were the least important variables in determining B. dorsalis occurrences. 
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Logistic Regression  

As in the random forest model, distance to a recent B. dorsalis detection and distance to a bus 

terminal were the most important variables in the logistic regression model, followed by the 

proportion of the populations that identified as white, the minimum temperature in the coldest 

month, the annual mean temperature, and the proportion of the population that identified as 

Hawaiian (Figure 3.3; Table 3.3). As distance from a recent, previous detection point increased 

from the minimum observed distance (0.00 km) to the maximum (9.54 km), the probability of 

detecting B. dorsalis increased by a factor of 19.08 (Table 3.2; Table 3.3); the variable for older 

previous detections had a similar, albeit weaker, effect on B. dorsalis occurrence. B. dorsalis 

detection increased by 126.13 times at points adjacent to bus terminals, compared to points that 

were more than 20 km away. Detection of B. dorsalis increased in areas where a greater 

proportion of the population identified as white or as Hawaiian (Table 3.3; Figure 3.5). In 

addition to these anthropogenic and population-related variables, the probability of B. dorsalis 

detection significantly increased with lower minimum temperatures in the coldest months and 

with warmer mean temperatures (Table 3.3; Figure 3.5). The residual deviance of the logistic 

regression was low and not statistically significant (Chi-square, p = 0.090). The QQ plot and 

quantile regression plot showed no deviance from uniformity.  

Discussion 

We examined a long-term dataset of tephritid detections for evidence that repeated 

anthropogenic introductions are important drivers of the occurrence of a damaging, costly, and 

difficult-to-detect invasive pest, B. dorsalis fruit flies. Instead, we found evidence that B. 

dorsalis detections may be primarily driven by established populations in the Los Angeles area. 



 74 

Of the 16 variables included in the final model, distance to a recent neighbor was one of the two 

most important variables in both models. The significance of the distance to a recent neighbor 

metric compared to repeated introduction variables is a strong indication of established B. 

dorsalis populations – as distance from a recent neighbor increases the probability of a future 

detection decreases. Older previous detections had a similar, but slightly weaker, effect on 

probability of B. dorsalis occurrence (Table 3.3; Figure 3.5), suggesting that populations may 

have been established for many decades. 

 

Interestingly, tephritid detections were negatively correlated with distance to a bus station in the 

Amtrak throughway system, but this finding lacks a straightforward explanation (Table 3.3). The 

bus station data is specifically Amtrak bus stations, which connect with airports but overall are 

more likely to be associated with intra-state travel than international or trans-Pacific travel. 

Although distance to bus stations does not clearly represent an introduction pathway, it is likely 

correlated another variable not included in the model or the full variable list. One possibility is 

income, which could influence care and maintenance of neighborhood fruit trees or 

microclimate.26,44,61 

 

Bioclimatic variables are often essential predictors of species distributions and are often a central 

factor in predicting invasion dynamics.20,62,63 Though the bioclimatic variables included in the 

models differed in their importance between random forest and logistic regression (Figure 3.3), 

temperatures seem to be an important driver of B. dorsalis detections (Table 3.3; Figure 3.5), 

despite the small study area and low variation (Table 3.2). Like most other non-native tephritid 
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species found in California, B. dorsalis is a tropical species and thrives in warmer climates.12,14 

The relationships suggested by the minimum temperature of the coldest month and the 

precipitation of the wettest month are both counterintuitive to our knowledge of the species: as a 

tropical species, B. dorsalis thrives in humid climates and tephritids generally are thought to be 

sensitive to low minimum temperatures during their overwintering periods (Figure 3.4; Figure 

3.5). Tree canopy cover was the least important variable in the models (Figure 3.3), though this 

variable did not differentiate between fruit trees and non-fruiting trees. B. dorsalis is a generalist 

species with many hosts, but fruit trees are likely a significant factor in maintaining low level 

populations. While neighborhoods with more tree canopy cover generally may have more fruit 

trees, fruit trees tend to have smaller fruit prints than larger, older ornamental species found in 

the greater Los Angeles area. In future analyses we hope to obtain more specific information on 

fruit tree density within the area. 

 

There is little evidence from the logistic regression model that transportation metrics influence B. 

dorsalis detections, suggesting minimal importance of tephritid re-introductions through import 

of goods. Transportation metrics (specifically, distance to freight facilities, public airports, or rail 

stations) are more important variables in the random forest model than the in logistic regression 

model (Figure 3.3). These two statistical methods work in very different ways. Logistic 

regression considers how the variables work together and determines their relative effect size. In 

random forest, variable importance is not a measure of effect size, rather of how each variable 

splits the response data on its own or when interacting with another variable. Distance to a recent 

neighbor and distance to a bus station are the most important variables in both models, 

suggesting they are as important considered together as separately. Variables that are important 
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in the random forest model but not in the logistic regression model may be influencing the model 

in combination with another metric, so their overall influence is more difficult to understand 

(Figure 3.4). The coefficient estimate for distance to freight facilities was positive, so if the effect 

had been significant, further distance from freight intermodal facilities would increase the 

probability of detecting B. dorsalis.  

 

Our results show little support for the hypotheses of re-introduction by travel. Neither distance to 

public airports nor all human population metrics were consistently important between the two 

model types (Figure 3.3). Proportion of the population identifying as Hawaiian was a significant 

explanatory variable in the logistic regression model, but white and Black were as well (Table 

3.3; Figure 3.5). However, we hypothesize that these demographic variables may be correlated 

with other underlying anthropogenic drivers of B. dorsalis occurrence. Census-related variables 

may be picking up on signals from other variables such as income, host plant distribution, or a 

yet unidentified variable. It is possible that the census data, or other variables, does not capture 

the scale relevant to micro populations. The study area was designed to minimize certain 

variables, such as land cover type and climate. However, gradients biologically significant to an 

individual fly might be the those captures by census tracts or even a ~2km raster grid cell. Some 

metrics, like census data, may change block to block, even house to house, while flies have 

potential dispersal distances of miles.64  

 

There are several anthropogenic variables not included in this study that may improve future 

models. City metrics such as neighborhood age or income could be important in understanding 
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neighborhoods that are more likely to have fruit trees that perhaps are less carefully managed. 

Another avenue is a deeper look into historical data and the corresponding explanatory variables. 

For example, early investigations indicated high correlation (Pearson’s correlation coefficient 

<0.8) between distance to military airports and detections before 1975. It has been suggested that 

early tephritid introductions were made as far back as World War II and the Vietnam war when 

soldiers were traveling back from areas with Bactrocera spp. tephritids.65 Though difficult, 

retrieving historical population and urbanization data could prove a fruitful avenue of 

investigation.  

 

As the proportion of developed land increases, invasion research must consider human-

dominated landscapes.18,66–68 Effective modeling species in human-dominated landscapes may 

include many of the same predictors as species in natural areas, but many neglect to incorporate 

some human-related variables.61 Inclusions of metrics such as human population density, 

income, and neighborhood age may be critical components to understanding species dynamics in 

human-dominated landscapes. We encourage the use of this vast trove of spatial information in 

combination with more traditional environmental metrics when relevant. Understanding these 

links will only prove more important in understanding future species invasions. 
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Figures 
Table 3.1. 

          

Category Variable Description Years Sources 

          

Tephritid 
neighbor 
metrics 

Recent neighbor 
distance 

Distance to nearest recent prior B. dorsalis detection. 1990-1999 CDFA 

        

Old neighbor 
distance 

Distance to nearest B. dorsalis detection prior to 1975. 1980-1989 CDFA 

        

          

Biogeo-
climatic 

Tree canopy 30-meter raster geospatial dataset containing percent tree canopy estimates for 
each pixel across all land covers and types.  

2011 USFS24 

        

Elevation Data were aggregated from SRTM 90-meter resolution data    WorldClim43 

        

Climatic variables 0.5 minute resolution  
 
     ・Annual mean temperature 
     ・Mean diurnal range (max temp - min temp) 
     ・Isothermality (annual mean temp / annual range) (×100) 
     ・Temperature annual range 
     ・Temperature seasonality  (standard deviation ×100) 
     ・Max temperature of warmest month 
     ・Min temperature of coldest month 
     ・Temperature annual range 
     ・Mean temperature of wettest quarter 
     ・Mean temperature of driest quarter 
     ・Mean temperature of warmest quarter 

2020 WorldClim43 
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     ・Mean temperature of coldest quarter 
     ・Annual precipitation 
     ・Precipitation of wettest month 
     ・Precipitation of driest month 
     ・Precipitation seasonality (coefficient of variation) 
     ・Precipitation of wettest quarter 
     ・Precipitation of driest quarter 
     ・Precipitation of warmest quarter 
     ・Precipitation of coldest quarter 

          

Human 
transportation 
and 
development 

Developed land 
cover 

National Land Cover Data. 20 original classifications. 4 classifications in the 
"developed" category converted to pseudo-continuous values. "Developed, open 
space" = 1; "Developed, low intensity" = 2; "Developed, medium intensity" = 3; 
"Developed, high intensity" = 4. All other categories = 0.  

2001 USGS44 

        

Public airports 
distance 

Distance to the nearest public airports currently permitted by Caltrans Division 
of Aeronautics. Original point layer assembled by Caltrans, Division of 
Research, Innovation and System Information, GIS Branch. 

Updated 
2020 

CA State 
Geoportal46 

        

Military airports 
distance 

Distance to military airports currently permitted by the State of California, 
Department of Transportation (Caltrans), Division of Aeronautics.  

Updated 
2020 

CA State 
Geoportal47 

        

Bus station 
distance 

Distance to the nearest bus station in the Amtrak Thruway Bus system. Updated 
2020 

CA State 
Geoportal48 

        

Freight intermodal 
facilities distance 

Distance to intermodal freight facility terminals (transfer points to move freight 
from ship to rail or truck) on the California freight network. 

Updated 
2020 

CA State 
Geoportal49 

        

Port distance Distance to the nearest public or private ports as defined by California's Major 
Commercial Ports -1986, by the California Department of Commerce, Office of 
Economic Research.  

Updated 
2020 

CA State 
Geoportal50 
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Rail station 
distance 

Distance to the nearest California passenger rail station compiled from Amtrak 
Operating Timetable 45 and commuter rail websites for Metrolink, ACE, 
Caltrain, and Coaster" 

Updated 
2020 

CA State 
Geoportal51 

        

          

US census Population density Total population size per census tract area. 2000 U.S. 
Census52  

        

Proportion of the 
population white 

Proportion of the population of one race identifying as one race, white alone. 2000 U.S. 
Census52  

        

Proportion of the 
population 
American Indian or 
Alaskan Native 

Proportion of the population of one race identifying as one race, American Indian 
or Alaskan Native alone. 

2000 U.S. 
Census52  

        

Proportion of the 
population Black 

Proportion of the population of one race identifying as one race, Black of African 
American alone. 

2000 U.S. 
Census52  

        

Proportion of the 
population Asian 

Proportion of the population of one race identifying as one race, Asian alone. 2000 U.S. 
Census52  

        

Proportion 
Hawaiian or other 
Pacific Islander 

Proportion of the population of one race identifying as one race, Native Hawaiian 
and other Pacific Islander alone. 

2000 U.S. 
Census52  

 

List of all explanatory variables considered pre-multicollinearity analysis. 

85 



 86 

Table 3.2. 
Variable Detections Background 

Name Units Min Max Mean SD Min Max Mean SD 

Recent neighbor distance kilometer 0 9.54 2.09 1.79 0 15.65 3.76 2.80 

Older neighbor distance kilometer 0 13.56 2.85 2.16 0 22.53 3.94 3.68 

Tree canopy percent cover 0 35.00 2.56 5.38 0 32.00 2.75 6.19 

Annual mean temp. °C 16.54 18.30 17.81 0.29 14.74 18.30 17.72 0.58 

Min temp. coldest month °C 3.64 9.00 6.57 1.32 2.45 8.98 6.40 1.40 
Precip. of wettest month millimeter 43.97 118.63 77.85 11.66 37.30 117.89 81.72 14.38 

Developed land cover ordered 
category 0 4.00     0 4.00     

Public airport distance kilometer 0 21.00 7.83 4.97 0 23.03 8.91 4.52 

Bus station distance kilometer 0.95 16.96 6.09 3.74 0 21.49 9.68 4.87 

Freight distance kilometer 0 55.21 20.31 10.70 1.68 65.04 17.56 13.66 

Rail station distance kilometer 0.95 13.44 4.64 2.74 0.00 16.25 5.70 2.97 

Population density people per km2 134.24 13485.53 3676.65 2431.07 0.11 14785.51 3220.04 2849.10 

Prop. White proportion of 
total  0.05 0.90 0.56 0.20 0.04 1.00 0.55 0.21 

Prop. American Indian proportion of 
total  0 0.02 0.01 0 0 0.02 0.01 0.01 

Prop. Black proportion of 
total  0 0.88 0.08 0.14 0 0.88 0.07 0.12 

Prop. Asian proportion of 
total  0 0.63 0.12 0.14 0 0.65 0.14 0.16 

Prop. Hawaiian proportion of 
total  0 0.06 0 0.01 0 0.03 0.00 0 
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Summary statistics (the minimum, maximum, mean, and standard deviation) for final model variables for B. dorsalis detections and 

background points. The developed land cover variable contains empty cells due to being a pseudo-continuous, but still categorical, 

variable.  Black horizontal lines in the table denote the four categories of variables: B. dorsalis population metrics, bioclimatic 

variables, human development and transportation metrics, and human population characteristics. 
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Figure 3.1. 

 

 

 

Map of the study area in Los Angeles, California. Light grey polygon represents the study area 

boundary. Black points represent detections of B. dorsalis between 2000 and 2009. Empty circles 

represent the pseudo-absence background points. 
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Figure 3.2. 

 

 

Boxplots summarize the distribution of each explanatory variable by background point, 0, or 

presence, 1. Red stars represent statistical differences between variables values for presences and 

pseudo-absences at the 5% significance level using a Mann-Whitney U test.54,69 
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Figure 3.3. 

 

 

Variable importance for random forest (A) and logistic regression (B) models. 
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Figure 3.4. 

  

Partial dependence plots of top eight most important explanatory variables from the Random 

Forest model. The sharp negative spikes are the result of skew from a single dense 

spatiotemporal outbreak.57 
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Logistic regression coefficient estimates. Asterisks represent significance: ‘.’ = < 0.1; ‘*’ = < 

0.05; ‘**’ = < 0.001; ‘***’ = 0.001-0. Positive coefficient estimates represent a positive 

relationship with occurrence likelihood; negative coefficient estimates indicate a negative 

relationship with occurrence likelihood. All variables are standardized (x – mean/standard 

deviation). 

  

Table 3.3.   
          

Variable Estimate z value Pr(>|z|)  Odds ratio (95% 
CI) 

(Intercept) 0.15263 1.26 0.20769   1.16  (0.92, 1.48) 

Recent neighbor distance -0.75869 -4.672 2.99E-06 *** 0.47  (0.34, 0.64) 

Bus station distance -0.69469 -3.779 0.000158 *** 0.50  (0.34, 0.71) 

Prop. White 0.71699 2.869 0.004122 ** 2.05  (1.27, 3.38) 

Min temp. coldest month -0.66644 -2.786 0.00534 ** 0.51  (0.32, 0.82) 

Annual mean temp. 0.45456 2.391 0.016813 * 1.58  (1.09, 2.31) 

Prop. Hawaiian 0.38821 2.332 0.01972 * 1.47  (1.11, 2.13) 

Older neighbor distance -0.41739 -2.248 0.024581 * 0.66  (0.45, 0.94) 

Prop. Black 0.42695 2.118 0.034178 * 1.53  (1.04, 2.30) 

Precip. wet month -0.31732 -1.716 0.086085 . 0.73  (0.51, 1.05) 

Developed land cover 0.2274 1.503 0.132797   1.26  (0.93, 1.69) 

Population density 0.18904 1.117 0.263906   1.21  (0.87, 1.70) 

Freight distance 0.22557 1.016 0.309506   1.25  (0.81, 1.94) 

Prop. American Indian -0.12146 -0.633 0.526978   0.89  (0.61, 1.29) 

Prop. Asian 0.10595 0.555 0.579126   1.11  (0.77, 1.62) 

Public airport distance -0.07173 -0.521 0.602522   0.93  (0.71, 1.22) 

Rail station distance 0.05025 0.311 0.756068   1.05  (0.77, 1.45) 

Tree canopy -0.03149 -0.239 0.811402   0.97  (0.75, 1.26) 
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Figure 3.5. 
 

 

 

Marginal effects of select variables from binomial generalized linear mixed model of B. dorsalis 

occurrence in the Los Angeles area. Effects shown were calculated while holding all other 

variables in the model at their mean value and include: A) the distance from previous, recent 

(1990-1999) detections; B) Distance from an Amtrak bus station; C) Proportion of the population 
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that identifies as white; D) Minimum temperature in the coldest month; E) Annual mean 

temperature; F) The proportion of population that identifies as Hawaiian; G) Distance from 

older, previous (1980-1989) detections; and H) The proportion of population that identifies as 

Black. Black lines indicate the mean predicted trend, with 95% confidence intervals displayed in 

grey.  



 95 

Appendix 

Table 3.1. 
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Recent neighbor distance -                                 

Older neighbor distance 0.49 -                               

Developed land cover -0.3 -0.29 -                             

Tree canopy -0.06 -0.03 -0.26 -                           

Annual mean temp. -0.36 -0.33 0.31 -0.04 -                         

Min temp. coldest month -0.34 -0.47 0.44 -0.08 0.33 -                       

Precip. wettest month 0.05 0.04 -0.17 0.27 -0.2 -0.33 -                     

Public airport distance 0.12 -0.09 -0.11 0 -0.27 -0.07 0.08 -                   

Bus station distance 0.34 0.29 -0.07 -0.06 0.06 -0.1 0.02 0.04 -                 

Freight distance 0.27 0.37 -0.33 -0.1 -0.43 -0.56 -0.22 0.09 -0.23 -               

Rail station distance 0.19 0.12 -0.06 -0.03 -0.22 0.19 -0.1 0.09 0.46 -0.07 -             

Population density -0.24 -0.37 0.38 -0.1 0.24 0.44 -0.14 0.21 -0.21 -0.28 -0.11 -           

Prop. White 0.23 0.36 -0.2 0.13 -0.43 -0.25 0.09 0.06 0.03 0.3 0.08 -0.38 -         

Prop. American Indian -0.08 -0.17 0.08 -0.27 0.34 -0.06 -0.27 0.03 -0.04 0.11 -0.25 0.23 -0.29 -       

Prop. Black -0.07 -0.04 0.04 -0.1 0.12 0.28 -0.08 -0.21 0 -0.1 0.22 0.05 -0.48 -0.1 -     

Prop. Asian -0.01 -0.07 -0.02 0.15 -0.02 -0.01 0.18 0.05 0.09 -0.24 0.04 -0.12 -0.25 -0.41 -0.17 -   

Prop. Hawaiian -0.02 -0.09 0.14 -0.09 0.03 0.23 -0.25 -0.14 -0.11 -0.13 0.03 0.11 -0.21 0 0.13 0.09 - 

Pearson’s correlation coefficient matrix among all explanatory variables of the final models.
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Figure 3.1. 

 

 

Receiver operating characteristic (ROC) plots for each model. Area under the ROC curve (AUC) 

values are included in the legend. The closer a given ROC curve is to the upper left corner, the 

better the model performance with zero false positives (100% specificity) and only true positives 

(100% sensitivity). The dashed grey line represents the “line of no discrimination”: the 

performance of a random guess classifier (AUC=0.5).59 




