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Driven by the necessity to meet changing public expectations in the wake of natural 

disasters, such as earthquakes, the structural engineering community has been moving towards 

rational, risk-informed, and transparent approaches to structural design, amidst which probabilistic 

performance-based seismic design (PBSD) has emerged as the most scientific and promising one. 
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The main objective of this research is to formulate a simplified yet rigorous framework for risk-

targeted PBSD of Ordinary Standard Bridges (OSBs), which, despite being simple bridges, 

constitute an integral part of lifeline infrastructure systems, especially in earthquake-prone regions 

such as California. A seismic performance assessment methodology integrating site-specific 

seismic hazard analysis, structural demand analysis, and damage analysis in a comprehensive and 

consistent probabilistic framework is computationally implemented as a modular tool unifying 

several state-of-the-art advancements related to the field. This tool is used for a parametric 

probabilistic performance assessment of four different testbed OSBs over a primary design 

parameter space to investigate the effects of varying key structural design parameters on targeted 

structural performance measures. Erratic performance levels exhibited by these real-world 

traditionally designed bridges, compared to expert-opinion-based target performance levels, 

expose the inconsistency and opacity of current (prescriptive) design principles that do not 

explicitly state, analyze, and design for risk-targeted performance objectives but implicitly expect 

them to be satisfied. A comprehensive risk-targeted simplified yet rigorous PBSD method is 

distilled out and proposed, and its efficacy is validated using four real-world bridges as cases in 

point. The framework is then enhanced by the inclusion and consistent propagation of pertinent 

sources of uncertainty (typically ignored in practice) to obtain a more complete picture of seismic 

performance, thereby leading to a more comprehensive, transparent, and reliable design of OSBs, 

facilitating effective and risk-informed decision-making in the face of uncertainty. It is believed 

that the adoption of the proposed PBSD methodology, although non-traditional in its format, will 

be highly beneficial in the medium to long term. This initial venture will also prove crucial in 

supporting and fostering future research work and innovative technological developments in 

bridge infrastructure engineering.
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1 Introduction 

1.1 Background 

Traditional seismic design philosophy for earthquake resistant structures permits them to 

deform beyond elastic limits and thereby yield, incur damage, and dissipate energy, conditioned 

on the prevention of collapse. The main requirements of such a design philosophy can be 

summarized as: 

(i) No, or unnoticeable damage to structural and non-structural elements should be incurred 

in the event of small earthquakes, 

(ii) Minor and repairable damage to structural and non-structural elements is admissible in the 

event of an earthquake of moderate intensity, and 

(iii) Severe structural damage is allowed for strong earthquakes if collapse is prevented. 

With the above being the overarching requirement of seismic design codes till date, all 

design codes can be considered performance-based, although partially. The idea has always been 

to design structures such that a performance objective, usually that of collapse prevention, is 

achieved. Traditionally, this fulfilment of structural performance goals along with certain 

functional requirements has been carried out by means of prescriptive measures, primarily 

empirical. A deterministic approach to the design of structural systems, wherein loads and 

resistances are considered deterministically quantifiable without any uncertainty, has been in 

dominance until recently. According to this approach, structural members are designed so as to 

have their capacities exceed the demands expected to be imposed on them by a certain margin. 

The capacity-to-demand ratio, also known as safety factor, is considered to be a measure of 
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structural reliability. Experience and engineering judgment have dictated the prescription of values 

for structural loads/demands, capacities, and safety factors in codes of practice. 

The structural engineering profession’s realization of uncertainties inherent in structural 

loads and strengths has led to the advent of structural reliability and risk analysis in structural 

design. A reflection of this can be seen in the form of Load and Resistance Factor Design (LRFD) 

in newer design codes wherein partial safety factors are applied to characteristic values of uncertain 

loads and resistances to ensure the safety of a structural member. LRFD aims to ensure that a 

factored load is less than or equal to the factored strength, where the partial safety factors are 

derived based on calibration to desired measures of reliability obtained by probabilistic methods. 

Due to the large uncertainty associated with seismic loads by virtue of random occurrence 

time, magnitude, source-to-site distance, seismic wave attenuation, etc., and hence the structural 

response under the same owing to uncertain structural capacity to withstand such loads, seismic 

design and evaluation of structures calls for the inclusion of methods of probability and statistics 

in order that these uncertainties be properly quantified, and their effects adequately considered. 

However, the handling of uncertain seismic loads to date has primarily been limited to the selection 

of design ground motion parameters based on a certain return period. Henceforth, the treatment 

becomes tacit by way of designing conservative structural systems to ensure that structural 

capacities are not exceeded by the demands. A lack of explicit consideration of the uncertainties 

prevalent in structural loads and resistances deem such a design to be one of questionable 

reliability. 

Also, from experiences of severe losses and damages incurred during recent earthquakes, 

such as 1994 Northridge, 1995 Kobe, and 1999 Turkey and Chi-Chi earthquakes, an urgent need 

to amend the seismic design framework has arisen (Wen 2004). An important observation from 
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these recent earthquake events is that structures complying with seismic codes based on traditional 

design philosophy, although having performed satisfactorily as per their design objectives, did not 

perform equally well in terms of resiliency and public expectation, and thereby failed to serve the 

community (Günay and Mosalam 2013). This realization highlighted the need for refining the 

definition of performance goals such that they hold reliably well for the stakeholders and the 

society as a whole. Societal expectations of structural performance can only be met by explicit 

statements of performance objectives in terms of the risk associated with well-defined performance 

levels, rather than ambiguous and misleading statements of “collapse prevention” that is assumed, 

and not directly checked, to be engendered upon satisfaction of prescriptive measures. 

Performance objectives stated in terms of the risk associated with performance levels (e.g., 

exceedance of damage limit-states (LSs) and/or specific values of monetary loss/deaths etc.) will 

not only allow an active participation of the public/stakeholders in the design/decision making 

process thereby making it more rational, scientific, and transparent, but also lead to greater societal 

awareness of earthquake risk and consequences (May 2001). Consistent incorporation, 

quantification, and propagation of the inherent uncertainties involved in various stages of the 

design process is therefore inevitably called for. The necessity of having quantitative methods 

ensuring adequate performance of structures, i.e., satisfaction of multiple risk-targeted 

performance objectives within a confidence level, laid the path towards the development of 

performance-based earthquake engineering and design. 

Identification and filling of knowledge gaps in earthquake engineering, accelerated through 

advancement in technology and the availability of tremendous computational power has made it 

possible for researchers to make substantial progress in the domain of performance-based 

earthquake engineering and design whereby prescriptive measures have become more and more 
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conceptual, rather than empirical. Fueled by the societal demands of improved life safety, economy 

and resiliency, the structural engineering community has made some considerable advancement in 

the realm of performance-based earthquake engineering over the last few decades, consistently 

improving over time and culminating in the fully probabilistic, rigorous and advanced assessment 

framework (Moehle and Deierlein 2004; Porter 2003) developed by the researchers at the Pacific 

Earthquake Engineering Research (PEER) Center. 

The PEER performance-based earthquake engineering (PBEE) methodology has been 

mainly developed for analysis and assessment and not directly for design, except for some initial 

efforts (Cornell et al. 2002; Mackie and Stojadinović 2007), but has recently been recommended 

as a future alternative for bridge seismic design (NCHRP 2013). The inherent theoretical 

complexity of the full-fledged PEER PBEE methodology also adds to its hampered 

implementation in engineering and design practice. This study focuses on bridging the gap that 

exists between the theoretical rigor PEER PBEE framework and its practical implementation in 

the design of bridges, which is also a less trodden area in terms of performance-based earthquake 

engineering applications as compared to buildings. 

1.2 Research Objectives and Scope 

This work is aimed to deliver performance-based seismic design (PBSD) guidance for 

Ordinary Standard Bridges (OSBs) in California. OSBs, i.e., conventional, multiple-span, skewed 

reinforced concrete bridges, are the most common bridges in California designed in-house by the 

California Department of Transportation (Caltrans) and are chosen as bridge testbeds in this study 

to determine the possible benefits of using a performance-based design approach over the current 

bridge design procedure. 
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Rooted in the formulation of the targeted PBSD framework is the four-step PEER PBEE 

assessment methodology integrating site-specific seismic hazard analysis, structural demand 

analysis, damage analysis, and loss analysis in a comprehensive and consistent probabilistic 

framework. This assessment methodology involves a sequential execution of the four analytical 

steps (as mentioned) pieced together (integrated) using the Total Probability Theorem of 

probability theory to arrive at an estimate of a performance measure, e.g., the mean annual rate 

(MAR) at which an LS is exceeded, and/or the MAR at which a decision variable (e.g., monetary 

loss, deaths, etc.) exceeds a value of interest. Performance measures considered in this study are 

the MARs or equivalently the mean return periods (MRPs) of LS exceedances for a selected set of 

LSs. The task of probabilistically predicting the future seismic performance of a bridge is, 

therefore, broken down into the following three steps: Probabilistic Seismic Hazard Analysis 

(PSHA) in terms of a ground motion intensity measure (IM), Probabilistic Seismic Demand Hazard 

Analysis (PSDemHA) in terms of engineering demand parameters (EDPs), and Probabilistic 

Seismic Damage Hazard Analysis (PSDamHA) for various LSs of interest. It is noted that the 

fourth and the final step of the PEER PBEE assessment methodology, i.e., probabilistic seismic 

loss hazard analysis, is kept outside the scope of this work. 

While moving towards accomplishing the central objective of a PBSD framework for 

OSBs, completion of the following tasks is achieved in course of this study: 

(i) Selection of testbed bridges for the study based on previous Caltrans funded research 

projects, revisiting inherited finite element (FE) models of these testbed bridges, and 

incorporation of improvements in the FE modeling approach employed for these bridges. 

(ii) Incorporation of improvements of several aspects in various stages of the state-of-the-art 

PEER PBEE assessment methodology. This includes: (1) introduction of an improved 
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earthquake IM to account for structural period elongation caused by damage during an 

earthquake, and the lack of certainty in identifying the time period of the predominant mode 

of vibration of a reinforced concrete OSB; (2) conditional mean spectrum-based hazard-

consistent site-specific ground motion selection for ensemble nonlinear time-history 

analyses involved in the PSDemHA stage; (3) introduction of material strain-based EDPs 

which are better correlated to damage (Priestley et al. 2007) than are traditionally used 

displacement based EDPs (e.g., column drift, plastic hinge rotation); (4) identification of 

material strain-based LSs of interest, viz., concrete cover spalling, precursor stage to 

longitudinal rebar buckling and onset of longitudinal bar fracture, which are pertinent to 

the seismic evaluation of bridge structures and meaningful to practicing bridge engineers, 

and finally (5) development of strain-based normalized fragility functions, required in the 

PSDamHA stage, for the considered LSs through proper identification of previous 

experimental/numerical research programs, experimental/numerical data, and appropriate 

capacity prediction equations for normalization. 

(iii) Documenting a comprehensive treatise on the first three steps, i.e., PSHA, PSDemHA, and 

PSDamHA, of the PEER PBEE assessment methodology. This exposition of the PEER 

PBEE assessment framework revisited and applied to a set of testbed OSBs is expected to 

serve in the interest of the structural engineering community and bridge any knowledge 

gap, whatsoever, that is holding back a full-fledged PBSD method from being implemented 

in bridge design practice. 

(iv) A fully-automated and portable (in terms of computational platform, i.e., easily scalable 

from desktop computing environments to cloud-based supercomputing environments) 
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implementation of the improved version of the PEER PBEE assessment methodology for 

probabilistic performance assessment of OSBs. 

(v) Numerical seismic performance-based assessment of the selected testbed bridges using the 

implemented improved PEER PBEE assessment methodology. 

(vi) Conceptualization of a generalized workflow for a full-fledged parametric probabilistic 

seismic performance assessment for OSBs (i.e., probabilistic performance-based 

assessment of parametrically redesigned versions of the testbed OSBs) and a fully-

automated and computationally portable implementation of the same making use of high-

throughput computing to solve an embarrassingly parallelizable problem. 

(vii) Development and formulation of a simplified, risk-targeted PBSD framework for OSBs 

accommodating multiple risk-based design objectives with target levels of risk to be 

specified based on risk tolerance of the engineering community and the society. 

(viii) Enhancement of this framework to account for the following additional sources of 

uncertainty (typically ignored in practice): (i) the aleatory uncertainty associated with FE 

model parameters, and (ii) the epistemic parameter estimation uncertainty associated with 

using finite datasets to estimate the parameters of the probability distributions 

characterizing FE model parameters and LS fragilities. 

Risk-targeted performance-based design is undoubtedly the most advanced design 

methodology that will shape the seismic design philosophy of future design codes (Cornell 2000; 

Ellingwood 2008; NCHRP 2013). PBSD also presents a novel way of approaching design and 

construction technologies, allowing the tailoring of structural design to meet changing public 

expectations in the wake of natural disasters such as earthquakes (Ellingwood 2008). The targeted 

PBSD framework will provide a more rational, scientific, consistent, and transparent design 
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process, thus resulting in more reliable estimates of bridge safety against various LSs of interest. 

It is believed that the adoption of the targeted PBSD framework will equip practicing bridge 

engineers with scientific and risk-informed approaches towards building economic and safe bridge 

structures, especially with regard to the seismic hazard. This will be extremely beneficial in the 

medium to long-term. This initial venture will also prove to be crucial in supporting and fostering 

future research work and innovative technological developments in bridge infrastructure 

engineering that might lead to significant financial savings in the long term. 

1.3 Organization of Dissertation 

Details of the current research work has been comprehensively documented in the form of 

this dissertation consisting of nine chapters, brief accounts of the contents of which are outlined 

below: 

Chapter 1 serves as an introduction by posing the need to revise the traditional seismic 

design philosophy and solve problems of structural design in a rigorously probabilistic, risk-

targeted, performance-based context. The research objectives of this work are also outlined in this 

chapter. 

A thorough literature review on the history and development of performance-based 

engineering, particularly applicable to structural, and especially bridge, engineering practice is 

presented in Chapter 2. This chapter also familiarizes the reader with the PEER PBEE assessment 

methodology by succinctly going over each analytical step of this methodology. 

Chapter 3 introduces four distinct ordinary standard bridge structures in California located 

in regions with disparate levels of seismicity. A brief description of these OSBs, selected as testbed 

structures for the remainder of the dissertation, is also presented in Chapter 3. 
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The multidisciplinary nature of the PEER PBEE framework allows various researchers to 

work on various aspects of the framework independently and come up with novelties and 

improvements that particularly relate to the individual steps (or modules) of the framework. The 

implementation of a modular computational framework that unifies (integrates) such state-of-the-

art advancements is outlined in Chapter 4. 

Chapter 5 presents the analytical and computational implementation of a parametric 

probabilistic seismic performance assessment framework for OSBs, thus laying the groundwork 

for solving a risk-targeted PBSD problem, an inverse assessment problem. A PBSD methodology 

involving the design of the bridge piers is proposed wherein a feasible design domain in the 

primary design parameter space of an OSB is identified which facilitates risk-informed 

design/decision making in the face of uncertainty. 

A full-fledged implementation of the all-inclusive design method formulated in the Chapter 

6 by retaining the inherent rigor of the underlying seismic performance assessment methodology 

might impose a seemingly prohibitive computational cost for the available resources in the current 

scenario of seismic bridge design practice. For reasons of practicability, the findings of the full-

fledged design framework are inventively utilized to distill out a computationally more economical 

and simplified PBSD procedure in Chapter 6. 

The PBSD framework proposed thus far explicitly considers: (1) the uncertainty in the 

seismic input, and (2) the uncertainty in the capacity of the various LSs. This framework is 

enhanced in Chapter 7 to account for the following additional sources of uncertainty: (i) the 

aleatory uncertainty associated with FE model parameters, and (ii) the epistemic parameter 

estimation uncertainty associated with using finite datasets to estimate the parameters of the 

probability distributions characterizing FE model parameters and LS fragilities. 
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Finally, a concluding chapter, i.e., Chapter 8, summarizes the work performed, provides 

a highlight of the results obtained, and throws light on several avenues for future research work in 

this area. 
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2 Literature Review of Performance-based Design with 

Application to Bridge Engineering 

2.1 Introduction 

The Pacific Earthquake Engineering Research (PEER) Center is not the only organization 

that has worked towards the development of performance-based engineering, in general. The 

PEER performance-based earthquake engineering (PBEE) methodology is the culmination of 

years of research, implementation and progress made in multi-disciplinary branches of engineering 

by various researchers and numerous organizations. Performance-based engineering lies in the 

heart of all fields of engineering that entail decision making under uncertainties, risk analysis, and 

structural reliability. Whenever a system is to be designed or assessed in an environment where 

there is an uncertain hazard leading to uncertain demands on the system, which in turn has an 

uncertain resistance, thereby leading to uncertain levels of damage, performance-based 

engineering provides the most scientific and rational way towards a design and assessment process. 

Being rooted in the broader area of structural reliability and quantitative risk assessment, 

performance-based engineering is not restricted to earthquake engineering only. It has been in 

practice in the nuclear industry (Cornell and Newmark 1978; Kennedy et al. 1980; Kennedy and 

Ravindra 1984; Shinozuka et al. 1984), and offshore/marine engineering (De 1990; Guenard 1984; 

Marshall 1969; Moan 1981, 1994) for quite some time now, where quantitative risk assessment 

plays a significant role. Earlier works in probabilistic risk assessment of civil engineering facilities 

(Ellingwood 2001; Ellingwood and Ang 1974) are also worth mentioning in this regard. 
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This Chapter provides a brief account of performance-based engineering, particularly as it 

relates to the history and current state-of-the-art of earthquake engineering assessment and design 

practice of structural systems, in general. The discussion in this Chapter is gradually narrowed 

down to the applicability of PBEE in the seismic design of the testbed structural systems to be 

considered in this research work, i.e., ordinary or conventional bridges in California. 

2.2 History and Development of Performance-based Earthquake 

Engineering 

Before being shaped by PEER in its most scientific and rigorous form, performance-based 

seismic engineering had evolved over a period of decades in the building industry. Advancement 

in seismic hazard analysis (Cornell 1968) started showing up in the evolution process of PBEE as 

the seismic input began to be rationally and probabilistically considered, although partially, by 

way of introducing the concept of a design earthquake associated with a certain return period (ATC 

3-06 1978). Over the next few years, the description of seismic input became more elaborate with 

the introduction of a more severe hazard level, viz. the Maximum Considered Earthquake (ASCE 

2005), however, the design and assessment of structures continued to be followed based on a 

deterministic structural behavior. The first generation PBEE, although implemented with the 

correct intention, thus fell short of a thorough and exhaustive quantitative implementation by 

disregarding the various uncertainties associated with the entire design and assessment process.  

A sudden and more recent (during early 90’s) spike in the advancement of PBEE occurred 

with the need to assess existing structures for safety. The Structural Engineering Association of 

California (SEAOC) came up with the Vision 2000 report (Poland et al. 1995) where structural 

performance objectives were defined in terms of performance levels (see Figure 2.1), viz. Fully 
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Operational, Operational, Life Safety, and Near Collapse at different levels of seismic hazard, for 

example, Frequent (43 yr. return period), Occasional (72 yr. return period), Rare (475 yr. return 

period) and Very Rare (970 yr. return period). Other documents like FEMA-273 (FEMA-273 

1997) and FEMA-356 (FEMA-356 2000) followed a similar approach to develop a performance-

based framework by associating discrete levels of performance with discrete hazard levels, the 

difference with Vision 2000 (Poland et al. 1995) lying in the definition of these levels. However, 

all throughout these stages of development of the framework, performance evaluation was 

primarily done deterministically by comparing element forces and deformation to prescriptive 

limits and acceptance criteria. These criteria were derived based on laboratory tests, simplified 

analytical models, or plain engineering judgment. Furthermore, element or component 

performance was assumed to be indicative of a global system performance which is not necessarily 

always true. Also, the performance measures, in terms of element forces and deformations, used 

in the 1st generation PBEE were not of direct interest to the stakeholders which led to a gap in the 

process of decision making between engineers and the public. 

 

Figure 2.1  Vision 2000 (Poland et al. 1995) performance matrix 
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These shortcomings of the 1st generation PBEE were attempted to be resolved through the 

development of a more robust, and technically sound framework at PEER. The performance-based 

framework developed at PEER provides a more transparent process in which performance 

objectives are explicitly stated as measures of monetary losses, downtime, and deaths, that make 

more sense to stakeholders, and all pertinent sources of uncertainty are included in the analysis 

procedure. As the structural engineering community aims to move toward more rational, risk-

informed approaches to structural design and assessment, the paradigm of performance-based 

engineering is expected to provide technical support for this move and a novel way to tailor 

structural design to meet the changing public expectation after disasters (public’s risk tolerance). 

The placement of structural performance classification based on acceptable risk is the key feature 

of this methodology developed at PEER. 

The PEER PBEE methodology has been used extensively by the United States Federal 

Emergency Management Agency (FEMA) and the Applied Technology Council (ATC) to develop 

a new generation of performance-based seismic design (PBSD) guidelines (FEMA-445 2006) for 

structural engineering practice. In recent years, PBEE has been followed in designing the seismic 

force resisting system of a number of tall buildings in the western U.S. (Ellingwood 2008). PBEE 

will continue to shape the core of future seismic design codes. Design methodologies for port 

structures are moving towards performance-based (PIANC 2001). This trend has also been 

followed by port owners and code developers who have issued design guidelines for seafront 

structures (Johnson et al. 2013; POLA 2010; POLB 2009) and has now reached a national level 

with the publication of the Seismic Design of Piers and Wharves Code (ASCE/COPRI 2014). This 

code incorporates elements of PBSD and, in prescriptive language, states performance objectives 

as well as damage limit-states (LSs). 
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The PEER PBEE formulation has also been extended to other engineering fields such as 

blast engineering (Whittaker et al. 2003), fire engineering (Rini and Lamont 2008), tsunami 

engineering (Keon et al. 2016; Riggs et al. 2008), wind engineering (Augusti and Ciampoli 2008; 

Ciampoli et al. 2011; Ciampoli and Petrini 2012; van de Lindt and Dao 2009), hurricane 

engineering (Barbato et al. 2013; Masters et al. 2010), offshore engineering (Nezamian and 

Morgan 2014), and aerospace engineering (Gobbato et al. 2012, 2014). 

2.3 PEER PBEE Assessment Framework 

This section aims to present the PEER PBEE framework in detail elucidating all the steps 

included therein (Moehle and Deierlein 2004; Porter 2003). The PEER PBEE methodology breaks 

down the task of predicting probabilistically the future seismic performance of a structure into four 

analytical steps pieced together (integrated) using the Total Probability Theorem (TPT) as shown 

in Figure 2.2. These steps are: (1) probabilistic seismic hazard analysis in terms of a ground motion 

intensity measure (IM), (2) probabilistic seismic demand analysis given IM, in terms of 

engineering demand parameters (EDPs), (3) probabilistic capacity analysis (or fragility analysis) 

and probabilistic damage analysis for various LSs associated with the critical potential failure 

modes of the structure in concern, and (4) probabilistic loss analysis for decision variables (DVs), 

that are of great interest to stakeholders. 
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Figure 2.2  PEER performance-based earthquake engineering methodology (Porter 2003) 

2.3.1 Probabilistic Seismic Hazard Analysis (PSHA) 

The objective of PSHA is to compute for the site of the considered structure, the mean 

annual rate (MAR) ( )IM x  (or annual probability) of exceeding any specified value x of a specified 

ground motion IM. The latter is usually taken as a structure-independent ground motion parameter 

(e.g., peak ground acceleration (PGA), peak ground velocity (PGV), Arias intensity, Housner’s 

spectrum intensity) or more often as a structure-dependent ground motion parameter such as the 

first-mode pseudo-spectral acceleration, 1( , )aS T  , or the spectral displacement 1( , )dS T   at the 

expected predominant period. For a given site, PSHA integrates the contribution of all possible 

seismic sources to calculate the MAR of random events { }IM x  according to the TPT as 

 ( )   ( ) ( )
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i i

i i
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IM i i i M R
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x P IM x M m R r f m f r dm dr 
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=  = =         (2.1) 

where fltN =  number of causative faults; i =  MAR of occurrence of earthquakes on fault (or 

seismic source) i . The functions ( )
iMf m  and ( )

iRf r  denote the probability density functions 

(PDFs) of the magnitude ( )iM  and source-to-site distance ( )iR , respectively, given the occurrence 
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of an earthquake on fault i. The conditional probability  | ,i iP IM x M m R r = =  in Eq. (2.1) is 

referred to as attenuation relationship (predictive relationship of IM given seismological variables 

M and R), is typically developed by applying statistical regression analyses to recorded earthquake 

ground motion data. The seismic hazard curve at a given site accounts for the uncertainty of IM 

due to the randomness of the time and spatial occurrences of future earthquakes affecting the site, 

as well as the uncertainties related to the seismic wave propagation path and the local site 

conditions. The random occurrence of earthquake in time is commonly modeled using the Poisson 

model. For small values of ( )IM x , typical of large earthquakes of interest to structural engineers, 

the value of the MAR and the corresponding annual probability of occurrence almost coincide. 

2.3.2 Probabilistic Seismic Demand Hazard Analysis (PSDemHA) 

The next step in the PEER PBEE methodology is to estimate in probabilistic terms the 

seismic demand that future possible earthquake ground motions will impose on the structure. The 

objective of PSDemHA is to compute the MAR, ( )EDP  , that a given structural response 

parameter (i.e., an EDP) exceeds any specified value   as (Zhang 2006) 

 ( ) ( ) ( ), , |EDP I IM

IM

P EDP IM IM x d x    =  =    y   (2.2) 

where ( , , )IEDP IM y  denotes the dependence of EDP on the best estimates (expected values) y  

of the system properties Y , the ground motion intensity measure IM, and the record-to-record 

variability I . Thus, according to Eq. (2.2), the demand hazard curve ( )EDP   is obtained as the 

convolution of the conditional complementary CDF (CCDF) of the EDP given IM, 

 |P EDP IM x = , with the seismic hazard curve ( )IM x . The conditional CCDF 
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 |P EDP IM x =  is obtained through subjecting the FE model of the considered structure 

through ensembles of scaled earthquake records. 

2.3.3 Probabilistic Seismic Damage Hazard Analysis (PSDamHA) 

The objective of the third step of the PEER PBEE methodology is to compute the MAR of 

exceedance of a specified LS, LS . Although in reality, there is a continuous progression of 

physical damage in a structure subjected to a damaging load, we typically focus on discretely 

observed (Veletzos et al. 2008) or prescribed (ASCE 2013) damage-states. For example, discrete 

damage-states for reinforced concrete bridge piers include the onset of concrete cracking, concrete 

spalling, bar buckling, fracture of transverse and longitudinal reinforcement. The MAR of 

exceedance of a specified LS can be obtained as (Conte and Zhang 2007; Zhang 2006): 

   ( )|LS EDP

EDP

P LS EDP d   = =    (2.3) 

where  |P LS EDP =  denotes the probability that the LS is reached or exceeded given that the 

associated EDP is equal to the specific value  . This probability quantity,  |P LS EDP = , 

viewed as a function of   is referred to as a fragility function or fragility curve in the literature. 

Thus, according to Eq. (2.3), the MAR of exceedance of a specified LS, LS , is obtained 

mathematically as the convolution of the corresponding fragility curve,  |P LS EDP = , and the 

seismic demand hazard curve ( )EDP   of the associated EDP. A fragility curve is typically 

developed based on the joint use of a simplified (design code type) analytical, semi-analytical or 

empirical predictive capacity model for this LS and experimental data collected from an ensemble 

of specimens for this LS (Berry and Eberhard 2004, 2005). In the absence of experimental data for 
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a given LS (e.g., structural system LSs), fragility curves are obtained through numerical simulation 

of the structural response behavior using reliable (e.g., validated at the component level) FE 

structural models (Mackie and Stojadinovic 2004; Nielson 2005). 

2.3.4 Probabilistic Seismic Loss Hazard Analysis (PSLHA) 

In the PEER PBEE methodology, the probabilistic performance assessment results 

reviewed above can be propagated further to decision variables (DVs) that relate to loss of life, 

cost (direct and indirect), and downtime and are of great interest to property owners. The objective 

of probabilistic seismic loss analysis is to assess DVs probabilistically (e.g., compute the MAR 

that the total repair/replacement cost due to seismic damage exceeds any specified dollar amount) 

for a given structure at a given location. The probabilistic assessment of these DVs, which are 

random variables, accounts for the uncertainties in the seismic hazard at the site or in IM, in the 

seismic demand (EDPs), in the structural capacity and damage LSs, and in the cost associated with 

the repair of individual structural components or replacement of the entire structure. The outcome 

of a probabilistic loss analysis is the seismic loss hazard curve ( )DV v , which expresses the MAR 

of the DV (e.g., total repair/replacement cost) exceeding any specified threshold value v . 

In the case of global failure of the structure, a new structure will be constructed, and the 

total repair cost is defined by the construction cost of the new structure. In the case of “no global 

collapse”, it is assumed that all damage occurs at the component level and the total repair cost TL  

of the structure (in a year) is equal to the summation of the repair costs of all components damaged 

during that year, i.e., 

 
1

n

T j

j

L L
=

=   (2.4) 
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where jL  is the repair cost of the 
thj  damaged component, and n is the number of damaged 

components in the structure. The repair cost of a damaged component is generally associated with 

a specified repair scheme, which is associated with the damage state of the component. Basic 

ingredients to probabilistic loss assessment are repair actions and probability distributions of their 

costs given the component damage state. A multi-layer Monte Carlo simulation approach can be 

used to compute very efficiently the seismic loss hazard curve related to TL  (Conte and Zhang 

2007; Zhang 2006). 

The loss hazard curve incorporates the effects of the uncertainties related to earthquake 

occurrences in space and time, ground motion intensity, ground motion time history (record-to-

record variability), structural capacity, damage LSs, and repair costs. The relative importance of 

these various sources of uncertainty in regard to the loss hazard results can be investigated through 

parametric studies. 

2.4 Current Bridge Design Practice 

Current practices of seismic design for ordinary or conventional bridges primarily includes 

two design methodologies. The first is a force-based approach incorporated into the AASHTO 

LRFD Bridge Design Specifications (AASHTO 2012), while the second one is a displacement-

based approach, originating partly from the Caltrans Seismic Design Criteria (SDC) version 1.4 

(Caltrans 1999), and on which the AASHTO Guide Specifications for Seismic Bridge Design 

(AASHTO 2011) is predicated. Ordinary or conventional bridges are subjects of concern in this 

proposed research because these are the most common bridges designed in-house by Caltrans and 

it is aimed to determine whether the reported benefits of using a design approach corresponding to 

the PEER PBEE framework over the current design procedure used by Caltrans are significant. 
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This section briefly discusses both methodologies with an aim to primarily highlight the weak 

points of the current seismic bridge design practice and how PBSD can serve to bolster it. 

2.4.1 Force-based Approach 

The force-based approach, with capacity design as its underlying philosophy, relies on 

providing adequate resistance to structural elements of the bridge that are selected to dissipate 

energy by way of yielding when subjected to an earthquake. This is done by selecting a design 

ground motion (with a probability of exceedance of 5% in 50 years or 1000-year return period) 

and subjecting a linear elastic model of the bridge to the same. The forces generated in the critical 

locations of the energy-dissipating (yielding) elements are obtained and these regions are designed 

to resist only a fraction (called design forces) of the originally calculated forces by multiplying 

response modification factors (called R-factors) to them. These R-factors are selected primarily 

based on structure geometry, and anticipated ductility. Adequate detailing is provided at the 

locations of yielding to get desired inelastic action through ductility. Having designed for ductility, 

all other members are then protected against overstrength forces so as to make sure that they remain 

linear elastic.  

Apart from the usual problem of incomplete incorporation of uncertainty by only 

considering it in determining the seismic hazard, that too for a single hazard level, this approach 

has the added disadvantage of assuming that prescriptive requirements of detailing will do their 

job of ensuring bridge performance without any firsthand scrutiny been made. 
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2.4.2 Displacement-based Approach 

The displacement-based approach differs from its force-based counterpart in that a direct 

check of the displacement capacity of the system is made. The Caltrans SDC v1.7 (Caltrans 2013) 

uses this approach for the design of bridge systems. Still rooted in capacity design philosophy, this 

approach involves the selection of a trial design that is detailed for suitable inelastic action and 

ductility, followed by checking for the displacement capacity directly. The system displacement 

capacity is controlled by prescribing material strain limit states which can be related to global 

system displacements through element curvature and rotations. The inelastic displacement 

capacity is then compared to the elastic displacement demand generated due to the action of the 

design earthquake (with a probability of exceedance of 5% in 50 years or 1000-year return period). 

This approach has the merit of a firsthand quantitative check of displacement capacity 

being made. Additionally, it is welcoming of the complete PBSD framework, because it already 

follows a partial 1st generation performance-based procedure by allowing prescriptive strain limits 

(related to various damage states and hence performance levels) to control the system displacement 

capacity. However, it has the drawbacks, similar to that of the 1st generation PBEE procedures 

mentioned earlier, of having inadequately accounted for uncertainty only in the seismic input, that 

too for a single hazard level. Element performance evaluation is considered to be void of 

uncertainties and prescriptive strain limits, based on laboratory tests, simplified analytical models, 

and engineering judgment are assumed to be representative of system behavior. Also, metrics of 

structural performance being based on element forces and deformation, does not allow the public 

and/or owners to participate in risk-informed decision making, unlike what is promised by the 

PEER PBEE framework. 
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Prescriptive design methodologies form the heart of current seismic bridge design practice 

in the US. With a latent objective of collapse prevention and life safety under a design earthquake 

event, these prescriptive measures do the job of evaluating the seismic performance of bridges 

only to a limited extent as there is no direct control over the seismic performance of bridges in the 

hands of the designer. Although this has proved to be a satisfactory design methodology for the 

bridge engineering profession to date (NCHRP 2013), the application of PBSD in bridge design, 

nonetheless, does not become less promising in this regard. With a significantly better 

comprehension and quantification of seismic demand and response of bridges due to the 

incorporation of all the sources of inherent uncertainties, PBSD will allow designers and the 

owners/public to make collective and risk-informed decisions regarding the performance of 

bridges during a seismic event, thereby leading to a more efficient and rational design practice. 

2.5 Recent Performance-based Design Developments in Bridge 

Engineering 

The fully probabilistic PBSD is the most advanced design methodology and is expected to 

provide the foundation for future design codes (Cornell 2000; Ellingwood 2008; NCHRP 2013). 

Although not in its all-inclusive form, PBSD has already started to be implemented in practice 

(ASCE 2010; Buckle et al. 2006; FEMA-445 2006; NCHRP 2013) by the structural engineering 

profession and several design and retrofit projects have also been undertaken by various 

organizations. Significant work has been done and progress is being made in both spheres of 

building and bridge engineering, albeit the latter has seen relatively less advancement as compared 

to the former (NCHRP 2013). 
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A recent investigation led by the Transportation Research Board of the National Academies 

under the National Cooperative Highway Research Program (NCHRP) (NCHRP 2013) regarding 

the current state of seismic design practice in the area of bridge engineering, made the necessity 

and significance of the implementation of PBSD in bridge design quite evident. This synthesis 

brings out the fact that the current bridge design practice considers safety and risk associated with 

seismic performance of bridges as mere ramifications of the fulfillment of prescriptive measures. 

May’s argument (May 2001) of explicit consideration of safety and risk, in order that public and 

engineers participate in the decision-making process in tandem, is emphasized. This process of 

collective decision-making, however, will require an unambiguous definition of performance 

objectives that will facilitate its smooth working and will also help to keep post-hazard, 

performance-related, political and/or legal issues at bay. 

The synthesis also covers the 4 analytical stages of PEER PBEE framework discussed 

before highlighting the areas where special attention is the need of the hour as per the current state 

of practice in the bridge engineering profession. With the current tools of seismic hazard analyses 

and nonlinear structural analyses, the implementation of the first two steps of the framework seems 

to be a little less demanding and more feasible than the last two steps, via a probabilistic treatment 

of the seismic hazard and structural response. A noteworthy highlight of the synthesis is that the 

field of damage and loss prediction, in a rigorous probabilistic manner, has yet to see significant 

advancement. The complexity of predicting the highly uncertain phenomenon of damage has so 

far been underestimated by its treatment based on deterministic strain-limits. A complete 

probabilistic treatment of damage requires extensive laboratory testing and analytical 

investigations (Berry and Eberhard 2004; Mackie and Stojadinovic 2004), thereby leading to 

development of fragility functions which relate an engineering demand parameter or a response 
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quantity to the probability of exceedance of a specific damage state.  The final and the most 

important step, novel to the PEER PBEE framework, is the explicit probabilistic consideration of 

loss metrics, which are of interest to owners and stakeholders. Loss prediction, till date, has largely 

been qualitative and has lacked objectivity. Thus, the need to explicitly consider this, in a 

probabilistic manner, whereby the risk of incurring losses pertaining to decision variables, viz., 

deaths, dollars, downtime, etc., can be accurately evaluated is expressed. For this purpose, loss 

models (Baker and Cornell 2003; Mander et al. 2012; Miranda et al. 2004; Moehle and Deierlein 

2004) relating damage to the probability of exceeding various levels of losses are required. Once 

equipped with all the tools required for a rigorous implementation of the framework, wherein all 

sources of uncertainty are accounted for, it can be applied to the design (inverse assessment 

problem) of new bridges. As mentioned earlier, the works of Cornell and coworkers (Cornell et al. 

2002) and Mackie and Stojadinović (Mackie and Stojadinović 2007) can be cited as premises to 

such an effort. 

More recently, research conducted at the University of Nevada, Reno, led to the 

development of the Probabilistic Damage Control Approach (PDCA) (Saini and Saiidi 2014) for 

seismic design of bridge columns. This research, funded by Caltrans, is a significant step forward 

toward the implementation of a probabilistic PBSD in the bridge engineering industry. In this 

approach, the uncertainties in seismic demand and structural response are taken into account 

explicitly. A displacement-based representative parameter of bridge-column response, called 

Damage Index (DI), defined as the ratio of plastic deformation demand to the plastic deformation 

capacity, is used to measure the seismic performance of columns. Fragility functions correlating 

Damage States (DSs) to DIs were used from a previous experimental study (Vosooghi and Saiidi 

2012) at University of Nevada, Reno to come up with a probabilistic resistance/capacity model. 
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The probabilistic load/demand model was developed using extensive analytical modeling of 

columns designed to have a desired probability of exceedance of a certain DS, and nonlinear time 

history analyses of the same subjected to a suite of ground motions conducted thereafter. In order 

to have a realistic load/demand model, uncertainties in seismic demand were incorporated through 

the inclusion of different site classes, ground motion parameters, bent properties and earthquake 

return period. Structural performance was evaluated based on the reliability indices ( s)  

associated with different DSs. Finally, a non-iterative, approximate, yet direct design method is 

forwarded so as to design a column bent for a target DI in order that a desired reliability index is 

achieved for a specific damage state. 

Research studies and implementations of PBSD, as such, have served to expose the 

difficulties and challenges it entails, thereby helping to fill the knowledge gaps and move forward 

towards the goal of a convenient implementation of the framework in its most rigorous form. 
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3 Testbed Bridges 

3.1 Introduction 

For this study, four as built bridges located in California were selected for analysis and are 

described in this chapter. The selected bridges conform to the definition of ordinary standard 

bridges as described in Caltrans SDC v1.7 (Caltrans 2013). Multiple testbed bridges are required 

to cover a spectrum of design characteristics of ordinary bridges in California to ensure the overall 

methodology utilized in this project can be reproduced for a variety of design scenarios. 

Each testbed bridge will be used to generate a corresponding design matrix where multiple 

key design parameters can be varied from the as-designed case. Practical combinations of design 

parameters encountered in the field and its effects on the performance of each bridge are analyzed 

using this design matrix. The utilization of these testbed bridges and subsequent findings are 

investigated and described more comprehensively later in this report. 

The testbed bridges selected for this study are based on bridges studied in recent research 

projects funded by Caltrans and PEER (Beckwith et al. 2015; Kaviani et al. 2012, 2014; Omrani 

et al. 2015). The selected set of testbed bridges comprises of representative modern Ordinary 

Standard Bridges (OSBs) in California constructed after year 2000, viz., Bridge A, Bridge B, 

Bridge C and Bridge MAOC. A comprehensive explanation behind the recommendation of these 

bridges are described in their respective reports. 

Bridge A is the Jack Tone Road Overcrossing in Ripon, California consisting of two spans 

with a single column bent. Bridge B is the La Veta Avenue Overcrossing in Tustin, California also 

consisting of two spans but supported on a two-column bent. Bridge C is the Jack Tone Road 

Overhead in Ripon, California (located adjacent to Bridge A) consisting of three spans on three-
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column bents. The last bridge is the Massachusetts Avenue Overcrossing, Bridge MAOC, located 

in San Bernardino, California consisting of five spans on four-column bents. Selected 

characteristics of each of these bridges obtained from the National Bridge Inventory (NBI) 

database are listed in Table 3.1. A detailed description of the geometrical characteristics and 

structural properties of each bridge can be found in Section 3.2. 
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Table 3.1  Selected characteristics of testbed bridges in accordance with the 2017 archived 

National Bridge Inventory (NBI) database 

NBI Item Name Bridge A Bridge B Bridge C Bridge MAOC 

Structure number 29 0320 55 0938 29 0318 54 1265 

Features intersected 
STATE 

ROUTE 99 

STATE ROUTE 

55 

UPRR, SB99 ONRP, 

KAMPS WY 

INTERSTATE 215 & 

BNSF RY 

Facility carried by 

structure 

Jack Tone 

Road 
La Veta Avenue Jack Tone Road Massachusetts Avenue 

Location 
10-SJ-099-

2.34-RIP 

12-ORA-055-

13.20-TUS 
10-SJ-099-2.32-RIP 08-SBD-215-9.03-SBD 

Latitude 37450851 33465032 37450217 34075676 

Longitude 121083108 117495371 121083077 117183123 

Year built 2001 2001 2001 2012 

Lanes on structure 1 4 4 2 

Lanes under 

structure 
7 14 3 10 

Average daily traffic 20000 10000 5000 9000 

Skew 33 0 36 8 

Type of service 

11 (highway 

on bridge, 

highway w/wo 

pedestrian) 

51 (highway-

pedestrian on 

bridge, highway 

w/wo pedestrian 

under bridge) 

18 (highway on bridge, 

highway-waterway-

railroad under bridge) 

54 (highway-pedestrian 

on bridge, highway-

railroad under bridge) 

Number of spans in 

main unit 
2 2 3 5 

Structure type, main 

606 

(prestressed 

concrete 

continuous, 

box beam or 

girders - single 

or spread) 

605 (prestressed 

concrete 

continuous, box 

beam or girders - 

multiple) 

606 (prestressed 

concrete continuous, box 

beam or girders - single 

or spread) 

205 (concrete 

continuous, box beam 

or girders - multiple) 

Deck (physical 

condition) 

5 (fair 

condition, 

minor section 

loss) 

8 (very good 

condition) 

5 (fair condition, minor 

section loss) 

7 (good condition, 

minor problems) 

Superstructure 

(physical condition) 

7 (good 

condition, 

minor 

problems) 

8 (very good 

condition) 

7 (good condition, minor 

problems) 

7 (good condition, 

minor problems) 

Substructure 

(physical condition) 

5 (fair 

condition, 

minor section 

loss) 

7 (good 

condition, minor 

problems) 

5 (fair condition, minor 

section loss) 

7 (good condition, 

minor problems) 

Inspection date 
1016 (October 

2016) 
0616 (June 2016) 1016 (October 2016) 1016 (October 2016) 
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3.2 Description of Selected Bridges 

Although specific requirements must be met for bridges to be classified as Ordinary 

Standard Bridges, as defined in Caltrans SDC v1.7 (Caltrans 2013), nevertheless considerable 

variations and combinations of designs are still possible. The selected testbed bridges, therefore, 

should attempt to cover a spectrum of design parameters commonly found in practice such that a 

range of possible designs can be accounted for to increase the robustness of the developed 

methodology. Such variations include the number of spans, columns per supporting bent, diameter 

of columns, height of columns, cap beam, skew, deck width and geometry, number of bearing pads 

shear key type etc. A detailed description of each bridge is given below focusing on the above-

mentioned properties as well as derived geometrical and structural parameters pertinent for the 

construction of finite element models of these bridges (discussed in the next chapter). 

3.2.1 Definition of an Ordinary Standard Bridge 

A structure meeting all the following requirements below, where applicable, is classified 

as an Ordinary Standard Bridge (taken directly from Caltrans SDC, Version 1.7, April 2013): 

(i) Each span length is less than 300 feet. 

(ii) Bridges with single superstructures on either a horizontally curved, vertically curved, or 

straight alignment. 

(iii) Constructed with precast or cast-in-place concrete girder, concrete slab superstructure on 

pile extensions, column or pier walls, and structural steel girders composite with concrete 

slab superstructure which are supported on reinforced concrete substructure elements. 

(iv) Horizontal members either rigidly connected, pin connected, or supported on conventional 

bearings. 
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(v) Bridges with dropped bent caps or integral bent caps. 

(vi) Columns and pier walls supported on spread footings, pile caps with piles or shafts.  

(vii) Bridges supported on soils which may or may not be susceptible to liquefaction and/or 

scour. 

(viii) Spliced precast concrete bridge system emulating a cast-in-place continuous structure • 

Fundamental period of the bridge system is greater than or equal to 0.7 seconds in the 

transverse and longitudinal directions of the bridge. 

3.2.2 Jack Tone Road Overcrossing (Bridge A) 

The Jack Tone Road Overcrossing is located in Ripon, California (south of Sacramento), 

spanning over California State Route 99. The bridge was constructed in 2001 and consists of a 

single lane serving as an onramp to the main Jack Tone Road. The bridge consists of two spans at 

108.58 ft and 111.82 ft for a total length of 220.4 ft and is supported on a single column bent. Each 

column is supported on 25 HP 305x79 steel piles. The column has a diameter of 5.51 ft and a 

longitudinal reinforcement ratio of 2.0%. The deck of the bridge is a three-cell continuous 

prestressed reinforced-concrete box girder with a total width of 27.13 ft. The bridge abutment is 

at a skew of 33° and supported vertically on elastomeric bearings and restrained horizontally by 

monolithic shear keys. A detailed description of the Jack Tone Road Overcrossing can be found 

in Table 3.2 
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Figure 3.1  Profile and aerial overview of Bridge A on left (adjacent to main Jack Tone Road) 
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Table 3.2  Geometrical and structural properties of Bridge A 

Parameter/Feature Value/Description 

Number of spans 2 

Length of spans 108.58 ft (33.10 m) and 111.82 ft (34.08 m) 

Total length of bridge ( )totL   220.4 ft (67.18 m) 

Total width of deck ( )dw   27.13 ft (8.27 m) 

Depth of deck ( )dd  4.64 ft (1.14 m) 

Deck cross-sectional properties (Area, 

Torsional constant, Second moments of 

area) 

A  = 97.55 ft2 (9.06 m2); J  = 341 ft4 (2.94 m4); 

yI  = 180.33 ft4 (1.56 m4); zI  = 3, 797.9 ft4 (32.78 m4) 

Height of each bent 28.0 ft (8.5 m) 

Number of columns in each bent 1 

Column cross-sectional properties 

(Diameter, Area, Torsional constant, 

Second moments of area) 

colD  = 5.51 ft (1.68 m); colA  = 23.84 ft2 (2.21 m2); 

colJ  = 90.49 ft4 (0.78 m4); ,y colI  = 45.24 ft4 (0.39 m4); 

,z colI  = 45.24 ft4 (0.39 m4) 

Column reinforcement details 
Longitudinal reinforcement (2.0%): 22×2#11 

Transverse reinforcement: Spiral, #6 @ 3.34 in c/c 

Column base hinge diameter No base hinge 

Concrete material properties of elastic 

superstructure (nominal) (Compressive 

strength, Elastic modulus) 

cf   = 5 ksi (34.5 MPa) 

cE  = 4, 030.5 ksi (27, 789.3 MPa) 

Concrete material properties of columns 

(nominal) (Compressive strength, 

Elastic modulus) 

cf   = 5 ksi (34.5 MPa) 

cE  = 4, 030.5 ksi (27, 789.3 MPa) 

Steel reinforcement material properties Grade 60, ASTM A706 

Bridge skew angle 33o 

Shear key type Non-isolated (monolithic) shear keys 

Number of bearing pads per abutment 4 elastomeric bearings 

Bearing pad dimensions (Height, Area) bph  = 2.56 in (.065 m); bpA  = 139.5 in2 (0.09 m2) 
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3.2.3 La Veta Avenue Overcrossing (Bridge B) 

The La Veta Avenue Overcrossing is located in Tustin, California (south of Los Angeles), 

spanning over California State Route 55. The bridge was constructed in 2001 and consists of two 

lanes in each direction running east-west. The bridge consists of two spans at 154.82 ft and 144.98 

ft for a total length of 299.8 ft and is supported on a two-column bent. Each column is supported 

by 20 23.6 in diameter cast-in-drilled hole (CIDH) piles. The columns have a diameter of 5.58 ft 

and a longitudinal reinforcement ratio of 1.95%. The deck of the bridge is a six-cell continuous 

reinforced-concrete box girder with a total width of 75.5 ft. The bridge abutment is supported 

vertically on elastomeric bearings and restrained horizontally by monolithic shear keys. There is 

no skew in the bridge abutment. A detailed description of the La Veta Avenue Overcrossing can 

be found in Table 3.3 
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Figure 3.2  Profile and aerial overview of Bridge B 
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Table 3.3  Geometrical and structural properties of Bridge B 

Parameter/Feature Value/Description 

Number of spans 2 

Length of spans 154.82 ft (47.19 m) and 144.98 ft (44.19 m) 

Total length of bridge ( )totL   299.8 ft (91.38 m) 

Total width of deck ( )dw   75.5 ft (23.01 m) 

Depth of deck ( )dd  6.23 ft (1.9 m) 

Deck cross-sectional properties (Area, 

Torsional constant, Second moments of 

area) 

A  = 129.13 ft2 (12.0 m2); J  = 2532 ft4 (21.85 m4); 

yI  = 791.76 ft4 (6.83 m4); zI  = 58, 352 ft4 (503.64 m4) 

Height of each bent 22 ft (6.71 m) 

Number of columns in each bent 2 

Column cross-sectional properties 

(Diameter, Area, Torsional constant, 

Second moments of area) 

colD  = 5.58 ft (1.70 m); colA  = 23.84 ft2 (2.21 m2); 

colJ  = 90.49 ft4 (0.78 m4); ,y colI  = 45.25 ft4 (0.39 m4); 

,z colI  = 45.25 ft4 (0.39 m4) 

Column reinforcement details 
Longitudinal reinforcement (1.95%): 22×2#11 

Transverse reinforcement: Spiral, #4 @ 6 in c/c 

Column base hinge diameter 3.94 ft (1.2 m) 

Concrete material properties of elastic 

superstructure (nominal) (Compressive 

strength, Elastic modulus) 

cf   = 5 ksi (34.5 MPa) 

cE  = 4, 030.5 ksi (27, 789.3 MPa) 

Concrete material properties of columns 

(nominal) (Compressive strength, 

Elastic modulus) 

cf   = 5 ksi (34.5 MPa) 

cE  = 4, 030.5 ksi (27, 789.3 MPa) 

Steel reinforcement material properties Grade 60, ASTM A706 

Bridge skew angle 0o 

Shear key type Non-isolated (monolithic) shear keys 

Number of bearing pads per abutment 7 elastomeric bearings 

Bearing pad dimensions (Height, Area) bph  = 3.74 in (.095 m); bpA  = 558.0 in2 (0.36 m2) 
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3.2.4 Jack Tone Road Overhead (Bridge C) 

The Jack Tone Road Overhead is located in Ripon, California (south of Sacramento), 

spanning over California State Route 99. The bridge was constructed in 2001 and consists of two 

lanes in each direction running north-south and is located adjacent to Bridge A. The bridge consists 

of three spans at 156.12 ft, 144 ft and 118.08 ft for a total length of 418.2 ft and is supported on 

three-column bents. The columns have a diameter of 5.51 ft and a longitudinal reinforcement ratio 

of 2.20%. Each column is supported on 24 HP 305x79 steel piles. The deck of the bridge is a 

seven-cell continuous reinforced-concrete box girder with a total width of 77 ft. The bridge 

abutment is at a skew of 36° and supported vertically on elastomeric bearings and restrained 

horizontally by monolithic shear keys. A detailed description of the Jack Tone Road Overhead can 

be found in Table 3.4 

 

  



58 

 

 

Figure 3.3  Profile and aerial overview of Bridge C (right) 
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Table 3.4  Geometrical and structural properties of Bridge C 

Parameter/Feature Value/Description 

Number of spans 3 

Length of spans 
156.12 ft (47.59 m), 144 ft (43.89 m), and 118.08 ft 

(36.0 m) 

Total length of bridge ( )totL   418.2 ft (127.47 m) 

Total width of deck ( )dw   77 ft (23.47 m) 

Depth of deck ( )dd  6.3 ft (1.92 m) 

Deck cross-sectional properties (Area, 

Torsional constant, Second moments of 

area) 

A  = 131.65 ft2 (12.0 m2); J  = 2563 ft4 (22.12 m4); 

yI  = 788.90 ft4 (6.81 m4); zI  = 59, 761 ft4 (515.80 m4) 

Height of each bent 24.6 ft (7.5 m) 

Number of columns in each bent 3 

Column cross-sectional properties 

(Diameter, Area, Torsional constant, 

Second moments of area) 

colD  = 5.51 ft (1.68 m); colA  = 23.84 ft2 (2.21 m2); 

colJ  = 90.49 ft4 (0.78 m4); ,y colI  = 45.25 ft4 (0.39 m4); 

,z colI  = 45.25 ft4 (0.39 m4) 

Column reinforcement details 
Longitudinal reinforcement (2.2%): 17×2#14 

Transverse reinforcement: Spiral, #6 @ 3.34 in c/c 

Column base hinge diameter 3.41 ft (1.04 m) 

Concrete material properties of elastic 

superstructure (nominal) (Compressive 

strength, Elastic modulus) 

cf   = 5 ksi (34.5 MPa) 

cE  = 4, 030.5 ksi (27, 789.3 MPa) 

Concrete material properties of columns 

(nominal) (Compressive strength, 

Elastic modulus) 

cf   = 5 ksi (34.5 MPa) 

cE  = 4, 030.5 ksi (27, 789.3 MPa) 

Steel reinforcement material properties Grade 60, ASTM A706 

Bridge skew angle 36o 

Shear key type Non-isolated (monolithic) shear keys 

Number of bearing pads per abutment 9 elastomeric bearings 

Bearing pad dimensions (Height, Area) bph  = 4.53 in (.115 m); bpA  = 327.98 in2 (0.212 m2) 
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3.2.5 Massachusetts Avenue Overcrossing (Bridge MAOC) 

The Massachusetts Avenue Overcrossing is located in San Bernandino, California (east of 

Los Angeles), spanning over Interstate 215. The bridge was constructed in 2012 and consists of 

two lanes running in the northeast-southwest direction. The bridge consists of five spans at 49.21 

ft, 94.49 ft, 91.86 ft, 99.74 and 78.08 ft for a total length of 413.39 ft and is supported on four-

column bents. Each bent is supported on either 8 or 4 HP 360×132 steel piles. The columns have 

a diameter of 4.00 ft and a longitudinal reinforcement ratio of 1.90%. The deck of the bridge is a 

five-cell continuous reinforced-concrete box girder with a total width of 48.72 ft. The bridge 

abutment is at a skew of 8.1° and supported vertically on elastomeric bearings and restrained 

horizontally by isolated shear keys. A detailed description of Massachusetts Avenue Overcrossing 

can be found in Table 3.5. 
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Figure 3.4  Profile and aerial overview of Bridge MAOC 
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Table 3.5  Geometric and structural properties of Bridge MAOC 

Parameter/Feature Value/Description 

Number of spans 5 

Length of spans 
49.21 ft (15.0 m), 94.49 ft (28.8 m), 91.86 ft (28.0 m), 

99.74 ft (30.4 m), and 78.08 ft (23.8 m) 

Total length of bridge ( )totL   413.39 ft (126.0 m) 

Total width of deck ( )dw   48.72 ft (14.8 m) 

Depth of deck ( )dd  4.49 ft (1.37 m) 

Deck cross-sectional properties (Area, 

Torsional constant, Second moments of 

area) 

A  = 72.44 ft2 (6.73 m2); J  = 724 ft4 (6.25 m4); 

yI  = 210.87 ft4 (1.82 m4); zI  = 12, 698 ft4 (109.60 m4) 

Height of each bent 
29.53 ft (9.0 m), 31.50 ft (9.6 m), 30.71 ft (9.4 m), and 

27.43 ft (8.4 m) 

Number of columns in each bent 4 

Column cross-sectional properties 

(Diameter, Area, Torsional constant, 

Second moments of area) 

colD  = 4.00 ft (1.22 m); colA  = 12.57 ft2 (1.17 m2); 

colJ  = 22.34 ft4 (0.19 m4); ,y colI  = 11.17 ft4 (0.096 m4); 

,z colI  = 11.17 ft4 (0.096 m4) 

Column reinforcement details 
Longitudinal reinforcement (1.9%): 22×#11 

Transverse reinforcement: Circular, #7 @ 5.91 in c/c 

Column base hinge diameter 2.13 ft (0.65 m) 

Concrete material properties of elastic 

superstructure (nominal) (Compressive 

strength, Elastic modulus) 

cf   = 5 ksi (34.5 MPa) 

cE  = 4, 030.5 ksi (27, 789.3 MPa) 

Concrete material properties of columns 

(nominal) (Compressive strength, 

Elastic modulus) 

cf   = 5 ksi (34.5 MPa) 

cE  = 4, 030.5 ksi (27, 789.3 MPa) 

Steel reinforcement material properties Grade 60, ASTM A706 

Bridge skew angle 8.1o 

Shear key type Isolated shear keys 

Number of bearing pads per abutment 6 elastomeric bearings 

Bearing pad dimensions (Height, Area) bph  = 3.54 in (.09 m); bpA  = 144.19 in2 (0.093 m2) 
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3.3 Preview to Chapter 4 

The multidisciplinary nature of the PEER PBEE framework allows various researchers to 

work on various aspects of the framework independently and come up with novelties and 

improvements that particularly relate to the individual steps (or modules) of the framework. The 

implementation of a modular computational framework that unifies (integrates) such state-of-the-

art advancements is outlined in the next chapter. 
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4 Updated Probabilistic Seismic Performance Assessment 

Framework for Ordinary Standard Bridges in California 

4.1 Abstract 

With the recent advent of performance-based earthquake engineering (PBEE) in seismic 

design practice of buildings serving as an impetus for this work, initial steps towards a fully 

probabilistic performance-based seismic design (PBSD) method for bridges, a less trodden area in 

terms of PBEE applications, are taken herein by assembling an updated probabilistic seismic 

performance assessment framework for Ordinary Standard Bridges (OSBs) in California. The 

framework stems from the comprehensive PBEE methodology developed under the auspices of 

the Pacific Earthquake Engineering Research (PEER) Center. With performance measures defined 

as the risk associated with the exceedance of a set of damage limit-states (LSs), improvements 

from the state-of-the-art literature on the PEER PBEE methodology are incorporated, including: 

(1) introduction of an improved intensity measure, i.e., average spectral acceleration over a period 

range, (2) conditional mean spectrum-based hazard-consistent and site-specific ground motion 

selection, (3) introduction of material strain-based engineering demand parameters, (4) use of 

practical LSs pertinent to seismic damage evaluation of bridges, and (5) development of strain-

based normalized fragility functions for the considered LSs. The updated framework, assembled 

herein using a specific testbed California OSB as a case in point, is general within its scope and is 

applicable to the gamut of design situations representative of the population of OSBs in California. 

With the PEER PBEE framework implemented for OSBs in an updated and rigorous form, the 

groundwork for utilizing this framework in the context of PBSD of such bridges is laid. 
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4.2    Introduction 

The performance-based earthquake engineering (PBEE) methodology (Porter 2003) 

developed under the auspices of the Pacific Earthquake Engineering Research (PEER) Center 

integrates site-specific seismic hazard analysis, structural demand analysis, damage analysis, and 

loss analysis, in a comprehensive and consistent probabilistic framework. The paradigm of PBEE 

provides technical support for moving towards more rational and risk-informed approaches to 

structural performance assessment and performance-based seismic design (PBSD). This 

methodology has recently been recommended as an innovative assessment tool to be used in bridge 

seismic design in a recent study under the National Cooperative Highway Research Program 

(NCHRP) (NCHRP 2013). The NCHRP study brings out the fact that the current bridge design 

practice considers safety and risk associated with the seismic performance of bridges as mere 

ramifications of the fulfillment of prescriptive measures and emphasizes the need for the explicit 

consideration of seismic risk, so that public and engineers participate in the decision-making 

process in tandem. The NCHRP investigation also highlights the areas where special attention is 

the need of the hour as per the current state of practice in the bridge engineering profession. With 

the current tools of seismic hazard analyses and nonlinear structural analyses, a practical 

implementation of the first two steps of the PBEE methodology, i.e., seismic hazard and demand 

analysis, is viable. However, the field of damage and loss prediction, in a rigorous probabilistic 

setting, has yet to see significant advancement. The complexity of predicting the highly uncertain 

phenomenon of damage, especially, has so far been underestimated by a subjective and 

rudimentary treatment primarily based on empirically derived prescriptive measures. It is only 

when fully equipped with all the tools required for a rigorous implementation of the PEER PBEE 
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framework, that this framework can be truly applied to the design (an inverse assessment problem) 

of new bridges.  

The multidisciplinary nature of the PEER PBEE framework allows various researchers to 

work on various aspects of the framework independently and come up with novelties and 

improvements that particularly relate to the individual steps (or modules) of the framework, e.g., 

advanced ground motion selection approaches (Marasco and Cimellaro 2018; Shi and Stafford 

2018), new probabilistic models for finite element (FE) model parameters (Xie et al. 2019), 

innovative interface variables (intensity measures (IMs), engineering demand parameters (EDPs), 

limit-states (LSs)) (Duck et al. 2018; Eads et al. 2015; Rezaei et al. 2020), novel methods for 

probabilistic loss assessment (Ghosh and Padgett 2011; Mander et al. 2012), etc. It is therefore 

essential to implement a modular computational framework that unifies (integrates) such state-of-

the-art advancements and is flexible enough (scalable) to incorporate readily future improvements 

made in the field. Such an analytical tool will facilitate comprehensive seismic performance 

assessment of bridges, parametric performance assessment studies, evaluation of the efficacy of 

current (prescriptive) design methods, and calibration and validation of simplified, yet rigorous, 

PBSD methods. With an overarching goal of addressing, without any compromise in rigor, the 

somewhat hindered implementation of the PEER PBEE framework in bridge engineering practice, 

the PEER PBEE framework is comprehensively revisited and several improvements related to its 

various stages are incorporated and presented in this paper particularly as these relate to bridge 

structures. Currently incorporated improvements are chosen to strike a balance between rigor and 

practicability of the proposed framework. The modular nature of this framework, however, allows 

practicing engineers to replace its different components as they see fit. 
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The type of bridge structures considered in this study are Ordinary Standard Bridges 

(OSBs), which are conventional, multiple-span, skewed reinforced concrete (RC) bridges, and are 

the most common bridges in California designed in-house by the California Department of 

Transportation (Caltrans). Structural performance measures considered in this study are defined as 

the mean annual rates (MARs), or equivalently the mean return periods (MRPs), of exceedances 

of a selected set of practical LSs, specifically spalling of cover concrete , the onset of longitudinal 

bar buckling, the precursor stage to bar fracture after buckling, and the failure of monolithic shear 

keys. The proposed PBEE framework is applied to a testbed California OSB, chosen as a case in 

point, up to the third step of the PEER PBEE methodology, namely probabilistic damage analysis, 

and keeping probabilistic loss analysis outside the scope of this study. 

4.3    Description of Testbed Bridge System and Site Conditions 

The updated PEER PBEE framework was applied to a set of four testbed OSBs in 

California (Deb et al. 2018). For the sake of succinctness, only one of them is used as application 

example in this paper, namely the La Veta Avenue Overcrossing (Figure 4.1) located at the 

intersection of California State Route 55 and La Veta Avenue in the city of Tustin in California. 

This bridge, constructed in 2001, conforms to the definition of OSBs as described in Caltrans 

Seismic Design Criteria (SDC) v1.7 (Caltrans 2013). The bridge has no skew and spans over a 

total length of 91.4 m with two individual span lengths of 47.2 m and 44.2 m. The 

deck/superstructure of the testbed OSB is a six-cell continuous RC box girder with a total width 

of 23.0 m. The bridge deck is centrally supported on a single two-column bent with the bent cap-

beam monolithically constructed with the deck. Each column in the bent is a circular RC column 

with a diameter of 1.70 m and a longitudinal reinforcement ratio of 1.95%. The columns of the 
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bent are supported by twenty (per column) 0.58 m diameter cast-in-drilled-hole piles. Each end of 

the bridge deck is supported by a seat-type abutment on pile foundation. Seven steel-reinforced 

elastomeric bearing pads evenly laid on top of an abutment stemwall are used to support each end 

of the bridge deck. The deck is restrained at each abutment in the transverse direction by two 

monolithic non-isolated shear keys, and in the longitudinal direction by a backwall. 

The soil stratum primarily consists of layers of sandy gravel and cobbles overlaid on a layer 

of dense gravel. According to the average shear wave velocity S30(V )  in the top 30 m of 307 m/s, 

this site is categorized as stiff soil (class D) based on the NEHRP site classification (FEMA-368 

2001). 

 

(a) 

 

(c) (dimensions in mm) 

 

(b) (dimensions in mm) 

 

(d) 

Figure 4.1  La Veta Avenue Overcrossing: (a) Site on fault map, (b) elevation (from design 

drawing) and (c) column bent section (from design drawing), and (d) perspective view (from 

Google maps) 
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4.4    Computational Model of Bridge System 

A three-dimensional nonlinear finite element (FE) model of the considered testbed OSB 

was constructed using OpenSees (McKenna 2011), the open-source software framework for 

creating finite element applications in structural and geotechnical engineering. OpenSees models 

of this bridge and corresponding Tcl input files inherited from previous Caltrans/PEER funded 

projects (Kaviani et al. 2014; Omrani et al. 2015) were revisited, parameterized, and improved 

(Deb et al. 2018) based on some experimental validation of the modeling of the bridge piers and 

literature review while adhering to the recommendations of the Caltrans SDC v1.7 (Caltrans 2013). 

A schematic representation of the computational model of the testbed OSB considered herein is 

shown in Figure 4.2. A brief account of the modeling techniques employed for the various 

components of OSBs is presented next. 

4.4.1    Superstructure Modeling 

Bridge decks are typically capacity-protected elements that are not meant to undergo 

inelastic behavior and dissipate energy under earthquake excitation. As such, the deck of the 

testbed OSB is modeled using elastic beam-column elements (10 per span). Section properties as 

per the original design drawings of the testbed OSB and expected material properties characteristic 

of normal-weight concrete are assigned to the deck elements. 

4.4.2    Column-bent Modeling 

Euler-Bernoulli fiber-section force-based beam-column elements with distributed 

plasticity and incorporating a numerically consistent regularized plastic hinge integration scheme 

(Scott and Hamutçuoğlu 2008) are used to model the clear length of RC columns of the considered 
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testbed OSB. These elements allow detailed fiber-section definitions for RC column sections with 

cover (unconfined) concrete, core (confined) concrete, and steel reinforcing bars modeled as 

individual fibers (Figure 4.3(a)). The Kent-Scott-Park (Kent and Park 1971; Scott et al. 1982) 

concrete material stress-strain law (Concrete01 in OpenSees) (Figure 4.3(b)) with degraded linear 

unloading/reloading stiffness and no tensile strength is used to model the hysteretic stress-strain 

response of the unconfined and confined (Mander et al. 1988) concrete fibers of a column section. 

The uniaxial stress-strain law first proposed by Menegotto and Pinto (Menegotto and Pinto 1973) 

and extended by Filippou and co-workers (Filippou et al. 1983) (SteelMPF in OpenSees) (Figure 

4.3(c)) is assigned to the reinforcing steel fibers of a column section. The column base hinge, 

which is a short reduced-diameter section between the base of a column and the top of the pile-cap 

is explicitly modeled using a single Euler-Bernoulli fiber-section displacement-based beam-

column element. Fixed connections emulating rigid foundations are used to model the boundary 

conditions at the base of the columns. 

In California, columns of OSBs are generally built monolithically with the deck. Hence, 

each column in the bent is attached to the deck using a rigid beam-column element to geometrically 

capture the vertical and horizontal offsets from the centroid of the deck cross-section to the top of 

each column (see Figure 4.2). 
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Figure 4.2  Schematic representation of the FE model of the testbed OSB considered herein 

 

(a) 

 

(b) 

 

(c) 

Figure 4.3  Bridge bent and column modeling details: (a) Fiber-section definition; Material 

hysteretic stress-strain laws for (b) unconfined (red) and confined (blue) concrete fibers, and (c) 

reinforcing steel (black) fibers 

4.4.3    Abutment Modeling 

Despite being constructed (as per design drawings) monolithically with the stemwall, the 

abutment backwall in the longitudinal direction is assumed, consistent with Caltrans’ design 

philosophy (Caltrans 2013), to transmit horizontal forces generated by small to moderate intensity 

earthquakes and service loads and easily break-off (i.e., the shear force required to induce a shear 

failure along the perimeter of the connection between the backwall and the stem wall is assumed 

to be small as compared to the force required to displace/mobilize the backfill soil wedge) during 
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a design-basis earthquake in order to protect the stem wall and the foundation of the abutment 

substructure from inelastic action. Soil-structure interaction between the bridge deck and the 

embankment backfill is modeled using five translational compressive gap springs placed along the 

width of the abutment at each end of the bridge. A nonlinear hysteretic force-deformation 

relationship with a hyperbolic backbone curve (Caltrans 2019) (HyperbolicGapMaterial in 

OpenSees) (Figure 4.4(a)) is used to model the passive resistance of each backfill spring activated 

upon closure of the expansion joint gap. The effect of the abutment skew angle (in case there is a 

non-zero skew angle) on the passive resistance of the abutment backfill is accounted for by varying 

the initial stiffness and the ultimate strength of the backfill springs over the skewed length of the 

backwall (Shamsabadi et al. 2020). This variation is hypothesized to phenomenologically account 

for the increase in the available volume of engineered backfill soil, from the acute to the obtuse 

corner of the skewed abutment, that can be mobilized per unit length of the skewed backwall. 

The longitudinal and transverse resistance of the bearing pads at the abutments are modeled 

using specialized zero-length 2D plasticity-based elements (elastomericBearingPlasticity in 

OpenSees) to represent the coupled bidirectional nonlinear (assumed bilinear) shear force-

deformation response (Figure 4.4(b)) of such pads. Each bearing pad is supported vertically on the 

essentially rigid stemwall represented by a fixed connection at the base of the bearing element. 

The transverse resistance of an exterior shear key (at the abutment) is modeled using a 

translational compressive spring. A semi-empirical mechanics-based force-deformation hysteretic 

macro-model (Megally et al. 2002) (Figure 4.4(c)) is used to model (using Concrete01 material in 

OpenSees) the response of the (non-isolated) shear keys of the considered testbed OSB. 
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(a) 

 

(b) 

 

(c) 

Figure 4.4  Bridge abutment modeling details; nonlinear hysteretic force-deformation 

relationship assigned to each: (a) backfill spring (since the considered OSB is non-skewed), (b) 

bearing pad element, and (c) exterior shear key spring 

4.5    PEER PBEE Assessment Framework Revisited and Updated 

This section aims to present the PEER PBEE framework, with special emphasis on the 

improvements proposed herein, which integrates the steps of site-specific seismic hazard analysis, 

structural demand analysis, damage analysis, and loss analysis using the Total Probability 

Theorem (TPT) of probability theory to arrive at an estimate of a performance measure, e.g., the 

MAR or MRP of exceedance of an LS, and/or the MAR or MRP at which a decision variable (e.g., 

down time, monetary loss, deaths) exceeds a specific threshold. Performance measures considered 

in this study are the MAR or equivalently the MRP of LS exceedances for a selected set of LSs. 

The task of probabilistically predicting the future seismic performance of a bridge is therefore 

broken down into the following three steps: Probabilistic Seismic Hazard Analysis (PSHA) in 

terms of a ground motion IM, Probabilistic Seismic Demand Hazard Analysis (PSDemHA) in 

terms of EDPs, and Probabilistic Seismic Damage Hazard Analysis (PSDamHA) for various LSs 

of interest. 

The proposed PBEE assessment framework is computationally implemented as a Python 

library, named PyPBEE (PBEE for Python). PyPBEE admits modular class definitions of analysis 

steps (i.e., PSHA, ground motion selection (GMS), nonlinear time-history analysis (NLTHA), 
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PSDemHA, and PSDamHA) and the interface variables (i.e., IMs, EDPs, and LSs). PyPBEE is 

designed to readily accommodate alternative and more refined/effective definitions of its 

components reflecting future improvements made in the various steps of the multidisciplinary 

PBEE methodology. Figure 4.5 shows a schematic Unified Modeling Language (UML) diagram 

describing the relationships between objects of the classes involved in PyPBEE. 

 
Figure 4.5  Schematic UML diagram of PyPBEE 

4.5.1    Probabilistic Seismic Hazard Analysis (PSHA) 

The essence of PSHA is to identify and aggregate the contributions of all possible seismic 

events (characterized by pairs of earthquake magnitude (M) and source-to-site distance (R)) that 

could potentially affect the considered structure to arrive at an estimate of the MARs at which 

specific values of a ground motion IM are exceeded. For a given site, PSHA integrates the 

contributions of all possible seismic sources to the MAR of IM exceedance as 

 ( )   ( ) ( )
flt

1

| ,
i i

i i

N

IM i i i M R

i R M

x P IM x M m R r f m f r dm dr 
=

=  = =         (4.1) 
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where fltN =  number of causative faults or seismic sources; i =  MAR of occurrence of 

earthquakes on fault (or seismic source) i . The functions ( )
iMf m  and ( )

iRf r  denote the probability 

density functions (PDFs) of the magnitude ( )iM  and source-to-site distance ( )iR , respectively, 

given the occurrence of an earthquake on fault i . The conditional probability .

 | ,i iP IM x M m R r = = . in Eq. (4.1), referred to as attenuation relationship or ground motion 

prediction equation (GMPE) (Boore and Atkinson 2008) which is a predictive relationship of IM 

given seismological variables M and R, is typically developed by applying statistical regression 

analyses to recorded earthquake ground motion data. 

4.5.1.1    Improved IM: Average Spectral Acceleration Over a Period Range 

Depending on the results of PSHA, earthquake ground motion records producing desired 

levels of the chosen IM are selected for response assessment of structures subjected to seismic 

loading. Thus, an IM connects seismological characteristics of earthquakes (magnitude, source-to-

site distance, regional seismic wave attenuation, local site-effects, etc.) to structural response. A 

proper choice of IM is therefore crucial to have a true picture of structural performance against 

earthquakes. To this end, an improved IM (in terms of “efficiency” and “sufficiency” in the 

prediction of displacement-based nonlinear structural response6), namely the average spectral 

acceleration over a specified period range (Baker and Cornell 2006) , avg( )aS , is used to particularly 

account for the following factors deemed important for OSBs and typically not captured by the 

traditionally used IM, i.e., elastic 5% damped spectral acceleration ( ( )a pS T ) at the expected 

predominant period of the structure: (i) uncertainty in predicting the period of the predominant 

mode of vibration for RC structures such as OSBs; (ii) change in natural periods of RC structures 



76 

 

from pristine conditions to cracked states under service loads; (iii) lengthening of the predominant 

structural periods due to accumulation of damage during an earthquake which leads to higher 

correlation of structural response with spectral accelerations at longer periods; and (iv) difference 

in periods of the fundamental modes of vibration in the two orthogonal directions (i.e., longitudinal 

and transverse) of the bridge. 

, avgaS  is defined as the geometric mean of spectral accelerations at different periods over a 

period range, i.e.,  

 ( ) ( )
1

, avg 1

1

, ,

n n

a n a p

p

S T T S T
=

 
=  
 
   (4.2) 

where 1[ , ]nT T  is the averaging period range. The range of periods used in the definition of , avgaS  

for the considered OSB spans from the first transverse mode of vibration, i.e., 1, transT , to 1, trans2.5 T  

because the response of the OSB in the transverse direction is believed to be more critical than in 

the longitudinal direction in which the bridge response is eventually going to be stabilized by the 

backfill. Ten periods uniformly spaced in log scale between 1, transT  and 1, trans2.5 T  are used in the 

computation of , avgaS . The selected period range also includes the first mode period of the OSB in 

the longitudinal direction. 

The multivariate normal distribution is found to appropriately model the variability of a 

random vector of the natural logarithm of correlated spectral accelerations at single periods given 

an earthquake scenario (i.e., an M-R pair or M-R bin) (Jayaram and Baker 2008). Owing to the 

property of closure of the multivariate normal distribution under a linear transformation, normality 

of the random variable , avgln aS , given an earthquake scenario (S = s), is ensued and therefore 
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, avgln aS , given S, is completely characterized by two statistical parameters, namely its mean ( )  

and standard deviation ( )  defined as 

 
( ), avgln | ln |

1

1
a a p

n

S S s S T S s
pn

 = =
=

 
=  
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   (4.3) 
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The conditional mean and standard deviation 
ln ( ) |a pS T S s =

 and 
ln ( ) |a pS T S s =

 in Eqs. (4.3) and 

(4.4), respectively, can be obtained from existing GMPEs (Boore and Atkinson 2008) for spectral 

accelerations at single periods. Predictive models (Baker and Jayaram 2008) of the correlation 

structure between spectral acceleration values at multiple periods can be used to obtain the 

correlation coefficient 
ln ( )ln ( )a p a qS T S T  , which was found to be independent of the earthquake 

scenario (Baker and Jayaram 2008). Eqs. (4.3) and (4.4) define the GMPE for , avgaS , given a 

scenario (S = s), which can then be used as building blocks in the computation of the seismic 

hazard at the site. Details of the PSHA in terms of , avgaS , an improved measure of seismic intensity, 

are provided in the next section. 

4.5.1.2    Seismic Hazard Analysis 

Seismic hazard analysis involves a numerical evaluation of the seismic hazard integral 

defined in Eq. (4.1). Standard open-source software tools (e.g., OpenSHA (Field et al. 2003)) 

readily provide results of PSHA given a site and a choice of IM. However, owing to the novelty 

of the chosen IM, standard PSHA tools do not include seismic hazard assessments in terms of this 

IM. Hence, a convenient, yet rigorous, workaround is adopted based on the results of PSHA for 

spectral accelerations at single periods such that the seismic hazard in terms of , avgaS  can be 
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reasonably approximated while avoiding the esoteric step of seismic source probabilistic 

characterization and related calculations. This firstly involves writing the continuous seismic 

hazard integral in Eq. (4.1) in a discrete and simplified form as 
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  (4.5) 

where i

jP m    and i

kP r    are the probabilities of, now assumed, discrete random variables iM  

and iR , related to seismic source i , taking the values i

jm  and i

kr , respectively, out of a number 

MN  and RN  of possible and not equally likely discrete values, respectively. The above 

simplification holds only if an attenuation relationship independent of the characteristics of the 

seismic sources/faults (Boore and Atkinson 2008) is used such that the seismic source (i) 

dependence of the term , avg | i

a i qP S x S s  =   can be dropped. Note that ( )  denotes the 

standard normal cumulative distribution function. Eq. (4.5) provides a more tractable form of the 

seismic hazard integral in terms of , avgaS . The evaluation of 
qs , defined as the MAR of occurrence 

of scenario ( )qS = s  from any seismic source affecting the considered site, is discussed next. 

The seismic hazard curves (SHCs), for the considered testbed OSB, in terms of ( )aS T  for 

each of the ten discrete periods used in the averaging period range are shown in Figure 4.6(a). 

These SHCs were obtained from OpenSHA (Field et al. 2003) using the GMPE by Boore and 
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Atkinson (2008). An important observation from Figure 4.6(a), that facilitates the determination 

of 
qs  to be used in Eq. (4.5), is that all SHCs for spectral accelerations at single periods, 

irrespective of the period, converge to a single value (indicated by the red marker) of MAR of 

exceedance at very small spectral acceleration values (e.g., at 410−  g). Very small values of ( )aS T

, e.g., 410−  g, are almost certainly exceeded, irrespective of the period T, given any earthquake 

scenario (i.e., 4[ ( ) 10 | ]a qP S T g S s− = 1.0). Hence, the MAR of exceeding this value of ( )aS T  

is equal to the sum of the rates of all possible scenarios contributing to the seismic hazard at the 

site, i.e., 
1

s

q

N

sq


= . To obtain ( 1,..., )
qs Sq N =  for a specific site, the M-R deaggregation results, a 

routinely available output from PSHA software tools providing the relative contribution to a 

specific value of seismic hazard, from each earthquake scenario resulting from any seismic source 

affecting the considered site, come to aid. From the value of the seismic hazard corresponding to 

4( ) 10aS T g−=  for any arbitrary period T, ( 1,..., )
qs Sq N =  (shown in Figure 4.6(b)) is calculated 

as 

 
( ) ( ) ( )

( )
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(a) 

 

(b) 

 

(c) 

Figure 4.6  (a) SHCs in terms of ( )aS T  for each of the ten discrete periods used in the averaging 

period range, (b) MARs of occurrences of all M-R scenarios, and (c) SHC in terms of , avgaS  

With ( 1,..., )
qs Sq N =  given by Eq. (4.6), and the GMPE for , avgaS  given by Eqs. (4.3) and 

(4.4) in hand, obtaining the seismic hazard curve in terms of , avgaS  for the considered OSB  merely 

reduces to a straightforward evaluation of Eq. (4.5). Figure 4.6(c) shows the seismic hazard curve 

in terms of , avgaS , and how it compares to the SHC in terms of ( )aS T  for each of the ten periods 

in the averaging period range. The seismic hazard curve in terms of , avgaS  is used to define seismic 

hazard levels corresponding to different MARs or MRPs of IM exceedance (shown in Figure 

4.6(c)), which are of interest to practicing engineers. Six seismic hazard levels corresponding to 

MRPs of 72 years (or 50 percent probability of exceedance in 50 years), 224 years (or 20 percent 

probability of exceedance in 50 years), 475 years (or 10 percent probability of exceedance in 50 

years), 975 years (or 5 percent probability of exceedance in 50 years), 2475 years (or 2 percent 

probability of exceedance in 50 years), and 4975 years (or 1 percent probability of exceedance in 

50 years) are chosen for the purpose of this study. These hazard levels are numbered I through VI, 

respectively. Ensembles of earthquake ground motion records matching these hazard levels of 

seismic intensity are selected next to perform ensemble nonlinear time history analyses to 

characterize the seismic demand on the considered OSB probabilistically. 
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4.5.1.3    Risk-consistent Site-specific Ground Motion Record Selection 

Ground motion record selection serves as the link between PSHA and subsequent 

probabilistic seismic response assessment, thereby imposing a need for hazard- or risk-consistency 

of earthquake ground motion records to be used for ensemble nonlinear response history analyses 

of the considered bridge. The “exact” conditional mean spectrum (CMS) (Baker and Cornell 2006; 

Lin et al. 2013a), representing the expected spectral shape given a specific value of the considered 

IM and incorporating all causative scenarios (Lin et al. 2013b) (see Appendix), is used as the target 

spectrum for ground motion record selection in this study. 

A novel ground motion selection algorithm (Jayaram et al. 2011; Kohrangi et al. 2017) is 

implemented for the selection of site-specific risk-consistent ensembles of ground motion records 

representative of the six seismic hazard levels considered. Given a seismic hazard level and the 

corresponding value of IM, the conditional multivariate probability structure of correlated spectral 

accelerations at different periods is first determined. The algorithm then employs a greedy 

optimization-based technique (Jayaram et al. 2011) to pick scaled (within bounds) earthquake 

records from a strong motion database (Chiou et al. 2008) that individually match Monte-Carlo 

simulated realizations of the target conditional spectrum and as an ensemble follow the complete 

probability structure of the target conditional spectrum defined for that hazard level. With the CMS 

chosen as the target mean spectrum over the uniform hazard spectrum (UHS), which is a more 

commonly used, excessively conservative, spectral envelope-based target spectrum, the natural 

spectral shapes of the selected ensemble of earthquake ground motion records are preserved. 

Ensembles of 100 bi-axial horizontal ground motion records per hazard level (Figure 4.7) are 

selected for the seismic response assessment of the testbed OSB considered herein. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.7  Site-specific risk-consistent ground motion ensembles at (a) hazard level I, (b) hazard 

level II, (c) hazard level III, (d) hazard level IV, (e) hazard level V, (f) hazard level VI 

4.5.2    Probabilistic Seismic Demand Hazard Analysis (PSDemHA) 

The objective of PSDemHA is to characterize probabilistically the seismic demand 

imposed on the considered OSB, in terms of the MARs at which specific values (say  ) of 

meaningful bridge seismic response parameters, called engineering demand parameters (EDPs), 

are exceeded at the bridge site. This is achieved via a convolution of the conditional probability of 

EDP exceedance, given IM, with the site-specific SHC as  

 ( )   ( )|EDP IM

IM

P EDP IM x d x   =  =    (4.7) 

where ( )IMd x  is the absolute differential of the SHC, which corresponds to the MAR of 

occurrence, and not exceedance, of a specific value x of IM. 



83 

 

A set of EDPs, each associated with a discrete damage state in the bridge structure, is 

identified for PSDemHA. The set of considered LSs, pertinent to the seismic evaluation of RC 

OSBs and meaningful to practicing bridge engineers, and their associated EDPs are discussed in 

the next section. 

4.5.2.1    Damage LSs and Associated Material Strain-based EDPs 

Flexural plastic hinge regions in RC columns of an OSB are meant to act as structural fuses 

in a seismic event and thereby dissipate energy through controlled inelastic material behavior. 

Three damage LSs related to the desirable (targeted) damage/failure mode/mechanism concerning 

RC bridge columns (i.e., flexural hinging of columns) are considered in this study. These LSs are: 

(1) concrete cover spalling, (2) onset of longitudinal bar buckling, and (3) a precursor stage to 

longitudinal bar fracture after bar buckling occurs. The first LS represents superficial damage to a 

bridge column and requires cosmetic repair work primarily to prevent corrosion of the bars. The 

other two LSs represent ultimate LSs, exceedances of which lead to significant compromise of 

structural integrity and imminent structural collapse. A fourth LS corresponding to an abutment 

exterior shear key reaching its capacity is also considered. Note that although the exceedances of 

LSs 1 through 3 are of increasing severity and therefore increasing mean return period (i.e., LS 1 

cannot occur after LSs 2 and/or 3, and LS 2 cannot occur after LS 3), the mean return period of 

exceedance of LS 4 is unrelated to those of the exceedances of the first three LSs. 

Displacement-based EDPs have been found to correlate better to structural damage as 

compared to force-based EDPs (Priestley et al. 2007). Traditionally, measures of deformation such 

as displacements, drift ratios, curvatures, etc. have been used as EDPs. However, for RC flexural 

members, such as columns, deformations can be directly and most reliably related to structural 
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damage through material strains (Priestley et al. 2007). Table 4.1 lists the strain-based EDPs 

associated with the selected set of LSs. Definition of these strain-based EDPs are based on 

deterministic predictive capacity models (discussed later in Section 4.5.3.1) for the chosen set of 

LSs. A conventional displacement-based EDP is defined for the fourth LS and is also listed in 

Table 4.1. Figure 4.8 schematically describes the chosen EDPs for the considered OSB. 

 

 

Figure 4.8  Schematic representation of EDPs considered herein 

 

Table 4.1  Definition of LSs and associated EDPs 

LS # Associated Engineering Demand Parameter (EDP) 

1 
Maximum absolute compressive strain of any 

longitudinal bar in any column. 
( )( )( )max max max bar

comp
col bar t

t  

2 
Maximum tensile strain of any longitudinal 

bar in any column. 
( )( )( )max max max bar

tensile
col bar t

t  

3 

Maximum strain range/excursion (i.e., 

difference of maximum tensile and minimum 

compressive strain, the latter following the 

former) of any longitudinal bar in any column 

( ) ( )( )max max max minbar bar

tensile comp
t tcol bar t

t t 
 

 − 
 

 

4 
Maximum relative shear key-abutment 

horizontal displacement of any shear key 
( )( )max max SK

comp
SK t

t  
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4.5.2.2    Demand Hazard Analysis 

For the .
thk . LS and its associated engineering demand parameter, kEDP , the conditional 

probability of kEDP  exceeding any threshold level x given a specified level of IM is evaluated by 

first subjecting the nonlinear FE model of the considered OSB to ensembles of site-specific risk-

consistent ground motion records selected according to the six seismic hazard levels defined 

earlier. All non-collapse (or non-physical failure) related numerical convergence issues 

encountered in this step are resolved in an automated fashion via adaptive switching between 

iterative solution algorithms (e.g., Newton, Newton line-search, modified-Newton, BFGS, 

Newton-Krylov), types of convergence tests, and the tolerance criteria used to check for 

convergence. At each seismic hazard level, response histories of relevant strain/deformation 

measures resulting from nonlinear time-history analyses of the considered OSB are recorded, and 

the values of the EDPs associated with the considered set of LSs are determined. A statistical 

demand model is constructed by fitting a probability distribution to the simulated kEDP  data, 

conditional on each seismic hazard level. The two-parameter | ln |( ,
k kEDP IM EDP IM =  

| ln | )
k kEDP IM EDP IM =  lognormal distribution is found to appropriately model the scatter in the 

values of kEDP  conditional on IM. 

PSDemHA, requiring the convolution of the conditional probability of kEDP  exceedance 

with the site-specific SHC, calls for a continuous regression or interpolation/extrapolation against 

IM of the parameters of the probability distribution functions fitted to kEDP  at discrete IM levels. 

Functional fits traditionally used for this purpose have often been of a power-law form (Cornell et 

al. 2002) for the conditional lognormal median, |kEDP IM  ( )ln |

i.e., 
EDP IMke


, and a constant form 
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(Cornell et al. 2002) for the conditional lognormal dispersion parameter, |kEDP IM . Improved 

versions of these fits, namely (i) a power-law form for piecewise interpolation of |kEDP IM  versus 

IM with the interpolation functions for the first and last piecewise segments simply extended for 

extrapolation and (ii) a piecewise linear variation of |kEDP IM  for interpolation between IM levels 

in logarithmic space with the value of dispersion extrapolated as a constant outside the range of 

IM levels considered, are used in this study after Bradley (Bradley 2013a). These interpolation 

models are given by 

 

( )

( )

| 1ln ln ln

ln ln
, exp ln ln

ln ln

kEDP IM i i i i

i i i
i i i i i

i i i

x a b x x x x

b a b x
x x



 


+

+

+

= +  

−
= = −

−

 (4.8) 

 

( )| 1

1

1

ln ,

, ln
ln ln

kEDP IM i i i i

i i
i i i i i

i i

x c d x x x x

d c d x
x x



 


+

+

+

= +  

−
= = −

−

 (4.9) 

in which i  and i  are shorthand notations for ( )|kEDP IM ix  and ( )|kEDP IM ix , respectively, where 

ix  represent the IM levels at which ensemble nonlinear response history analyses have been 

performed and the lognormal median and dispersion of kEDP  given IM computed. As illustration, 

Figure 4.9 shows the results of the ensemble nonlinear response history analyses of the considered 

OSB and the probabilistic characterization of the seismic demand in terms of 2EDP  conditional 

on IM. The demand hazard curves (DHCs) in terms of all considered EDPs and obtained upon 

numerical convolution of the conditional probability of EDP exceedance with the site-specific 

SHC for the testbed OSB are displayed in Figure 4.10. 
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(a) 

 

(b) 

 

(c) 

Figure 4.9  (a) Conditional probability distributions of 2EDP  given IM, 

Interpolation/extrapolation model for (b) 
2 |EDP IM  versus IM, and (c) 

2 |EDP IM  versus IM. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.10  Demand hazard curves in terms of: (a) 1EDP , (b) 2EDP , (c) 3EDP , and (d) 4EDP  
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4.5.3    Probabilistic Seismic Damage Hazard Analysis (PSDamHA) 

PSDamHA aims at making probabilistic predictions of structural LS exceedances in terms 

of MARs or MRPs associated with these events. For a set of discrete LSs, a limit-state function, 

also known as a performance function, is mathematically expressed as 

 k k kZ C EDP= −  (4.10) 

where kC  and kEDP  represent the random variables corresponding to the capacity and the EDP 

associated with the 
thk  LS. The MAR of exceedance of the 

thk  LS is expressed as the convolution 

of the probability of LS exceedance conditional on the associated EDP with the DHC of the EDP 

as 

   ( )0 |
k k

k

LS k k EDP

EDP

P Z EDP d   =  =    (4.11) 

Conditional on kEDP , the uncertainty in kZ  is solely due to kC , the structural capacity 

associated with the 
thk  LS. Uncertainty quantification of conditional LS exceedance, given a 

specific value of the associated demand, is typically performed using a predictive capacity model 

for the specific LS and comparing predictions from this capacity model with reliable experimental 

and/or numerical data. The probabilistic analysis involved in computing the conditional probability 

of exceeding the 
thk  LS conditioned on the value of the associated EDP is called fragility analysis. 

Strain-based fragility functions for the LSs pertaining to the flexural hinging of RC columns (most 

critical LSs for California OSBs), and a traditional displacement/deformation-based fragility 

function for the LS of a shear key reaching its shear strength capacity are developed and used in 

this study. 



89 

 

4.5.3.1    Deterministic Capacity Models 

A capacity model attempts to relate a combination of structural properties, such as 

geometric properties, mechanical and material properties (e.g., material strength, yield strain), and 

structural demand, such as displacement/deformation (e.g., drift ratio) and material strain, to the 

reaching/crossing of a specific state of damage. The models are typically empirical or semi-

empirical and derived from experimental data and/or engineering judgement and/or mechanics, 

but can also be purely mechanics-based (i.e., analytical/numerical). Consequently, capacity models 

are often found in the form of equations with variables that are deemed pertinent to the LSs of 

interest. The predictive capacity model for the 
thk  LS establishes the threshold value PRED( )

kCEDP  

of the associated EDP, which, upon being exceeded, deterministically predicts the exceedance of 

the 
thk  LS. 

Goodnight et al. (2016), in a comprehensive experimental study on RC bridge columns, 

suggested the use of the peak absolute value of the compressive strain of the longitudinal bar as a 

predictor for the LS of concrete cover spalling. This same study also concludes that the capacity 

of a column against bar buckling can be related to the peak tensile strain of the longitudinal 

reinforcement which, upon exceedance of a threshold value, leads to severe instability in the bar 

upon subsequent reversal of load. In a recent study by Duck et al.8, a semi-empirical, mechanics-

based predictive criterion based on the maximum strain range/excursion (difference between 

maximum tensile and minimum compressive strain with the latter following the former, see Figure 

4.8 and Table 4.1) experienced by a longitudinal bar during a complete loading history is 

formulated for the prediction of Plastic Buckling Straightening Fatigue (PBSF), an LS 

characterized by the initiation of incipient cracks at the root of bar deformations in the compressed 

concave side of a buckled bar which, upon straightening of the bar in a subsequent load cycle, 
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leads to fracture of the bar. A displacement/deformation-based predictive capacity model for the 

abutment exterior shear key reaching its shear strength capacity (i.e., full development of shear 

key failure mechanism) is adopted from the experimental work by Megally et al. (2002). Table 4.2 

lists the deterministic predictive capacity models considered for the selected set of LSs. 

Table 4.2  Deterministic predictive capacity models for the considered LSs 

LS # Predictive Capacity Model 

1 
1

PRED 0.004CEDP =  (4.12) 

2 
2

PRED 0.03 700 0.1
yhe

C s

s ce g

f P
EDP

E f A
= + −


 (4.13) 

3 ( )
3

PRED 30.11 min(0.054,0.032 (%)) 0.0175 2.93 0.054C s bar

T
EPD n

Y
= + − − −  (4.14) 

4 
4

PRED ( )
2 ( )C y d

h d
EDP L b

s


+
= +  (4.15) 

In Eq. (4.13), s  is the volumetric transverse reinforcement ratio, yhef  is the expected yield 

stress of the transverse reinforcement, sE  is the elastic modulus of the transverse reinforcement, 

P  is the axial load on the column (taken as the axial load due to gravity loads), cef   is the expected 

compressive yield stress of the unconfined concrete, and gA  is the gross cross-sectional area of 

the column. In Eq. (4.14), (%)s  is the volumetric transverse reinforcement ratio expressed in 

percent, barn  is the number of bundles of longitudinal bars in a column, and 
T

Y
 is the ratio of the 

ultimate stress to the yield stress of the longitudinal steel reinforcement (taken as 1.48). In Eq. 

(4.15), y  is the yield strain of the horizontal steel reinforcement in the stemwall, s is the larger of 

the horizontal and vertical bar spacings in the stemwall, d  is the height of the shear key above the 
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stemwall, b is the thickness of the stemwall, h is the height of the stemwall, and dL  represents the 

bar development length of the horizontal reinforcement at the shear key stemwall interface. 

4.5.3.2    Fragility Analysis and Experimental/Numerical Data Sources 

The predictive capacity models described in Eqs. (4.12) through (4.15) are deterministic 

and therefore do not take into account any uncertainty related to the capacity of the structural 

components. The uncertainty associated with capacity predictions stems from the path/history-

dependence of the cyclic inelastic structural response, uncertainties in material and/or geometric 

properties, differences in geometric properties, test setup, loading protocols, and boundary 

conditions between experimental specimens, the use of idealized and imperfect predictive 

methods/models with missing explanatory variables, the use of a single predictive demand 

parameter to predict the exceedance of an LS, etc. To quantify the uncertainty related to an LS 

capacity, fragility functions are used. Fragility functions are obtained by making use of the 

deterministic capacity models and comparing their predictions of LS exceedances with reliable 

experimental data from tests conducted in the laboratory and/or numerical results obtained from 

high-fidelity finite element analyses. 

The fragility function for the 
thk  LS is defined in the form of the two-parameter lognormal 

cumulative distribution function as 

  
ln( )

0 | k
k k

k

P Z EDP
 




 −
 = =  

 
  (4.16) 

where k  and k  are the parameters of the fitted lognormal distribution representing the mean and 

standard deviation of the natural logarithm of experimentally and/or numerically measured values 

of kEDP  as the 
thk  LS is reached or exceeded. 
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Fragility functions, typically constructed using experimental and/or numerical data 

pertaining to specimens or models with different geometric, material, and mechanical 

characteristics, need to be normalized such that they can be used for structural components of any 

specified characteristics. To create a normalized fragility function or curve for the 
thk  LS, 

experimentally/numerically measured values of the associated EDP (i.e., )kEDP  at which the LS 

of interest is reached or exceeded, referred to as MEAS

kEDP , are recorded for each specimen/model 

tested/analyzed and divided by the predicted capacity, PRED

kCEDP , obtained using the appropriate 

predictive capacity model (see Table 4.2) and the expected values (or best estimates) of the 

variables defining it. The normalized fragility function for the 
thk  LS is therefore defined as 

 
MEAS

NORM

PRED

ln( )
0 |   

k

k k
k k

C k

EDP
P Z EDP

EDP

 




   −
 = = =    

    

  (4.17) 

where k  and k   are the parameters of the fitted lognormal distribution representing the mean and 

standard deviation of the natural logarithm of the ratios of experimentally/numerically measured 

to predicted value of kEDP  for which the 
thk  LS is reached or exceeded.  

The normalized fragility functions/curves for LSs 1 through 4 are shown in Figure 4.11. It 

is noted from Figure 4.11 that all experimental/numerical data points, except in the case of LS 4, 

lie close to the fitted cumulative lognormal distribution function with only small deviations at the 

upper and lower tails of the CDF. The values of the measured-to-predicted capacity ratios for LSs 

1 through 4 at 50% probability of exceedance are 1.02, 1.05, 0.99, and 1.14, respectively, 

indicating minimal to moderate biases. The experimental/numerical sources selected in this study 

for the construction of the fragility curves are reported in Table 4.3. 
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Figure 4.11  Normalized fragility curves (fitted experimental/numerical data shown as crosses) 

The parameters of the denormalized fragility functions corresponding to LSs 1 through 4, 

to be used in Eq. (4.11) in computation of the MARs of exceedance for the selected set of LSs, are 

obtained using the respective values of the capacity predictors, PRED

kCEDP , for the specific design 

of the considered testbed OSB as 

 PREDlog ,
kk k C k kEDP    = + =   (4.18) 

Table 4.3  Experimental/Numerical sources for the fragility analyses 

Source Type 
No. of  

specimens/models 
LS # 

Schoettler et al. (2015) full scale specimen 1 2 

Trejo et al. (2014) half scale specimen 6 1 

Goodnight et al. (2015) half scale specimen 23 1, 2 

Murcia-Delso et al. (2013) full scale specimen 4 1, 2 

Duck et al. (2018) FE model 593 3 

Megally et al. (2002) half scale specimen 4 4 

4.5.3.3 Damage Hazard Analysis and Discussion of Results 

For the considered testbed OSB, the MAR of LS exceedance for the 
thk  LS is obtained by 

numerically convolving the fragility function corresponding to kLS  with the DHC of the 
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associated EDP (i.e., )kEDP , as per Eq. (4.11). Results of PSDamHA conducted for the considered 

testbed OSB are shown in Table 4.4, where the MRP (= 1/MAR) of exceedance of each LS 

considered is reported. As expected, these results show that exceedances of increasingly severe 

LSs, i.e., LSs 1 through 3, concerning the RC bridge columns have increasing values of MRPs. The 

testbed OSB, which has monolithic non-isolated type abutment shear keys, shows a high MRP of 

exceeding LS 4 that is even higher than the MRP of exceeding the critical LS of bar fracture. The 

design of non-isolated type abutments shear keys, which are expected to transmit lateral shear 

forces generated by small to moderate earthquakes and service loads, is found to be overly 

conservative (in the present case) in terms of the risk associated with the exceedance of their limit-

state capacity. The influence of such overdesigned abutment shear keys for short (2-3 span) OSBs 

(like the one considered in this paper) on the MRPs of exceeding the more critical column related 

LSs should be investigated as part of future research. 

Table 4.4  MRPs of LS exceedances  

LS # MRP of exceedance (yr) Target MRP of exceedance (yr) 

1 466 250 

2 2719 1000 

3 5658 2500 

4 5844 - 

Target MRPs of exceedance for LSs 1-3, which are the LSs related to the desirable 

(targeted) damage/failure mode concerning RC bridge columns (i.e., flexural hinging of columns), 

are selected based on discussions with and feedback from expert Caltrans engineers and are listed 

in Table 4.4. The as-designed (following a traditional prescriptive seismic design philosophy) 

version of the testbed OSB is found to perform well with regard to all three column related LSs of 

interest. The MRPs of exceeding the selected set of LSs are higher than their respective specified 
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targets by factors of 1.9, 2.7, and 2.3, respectively, for LSs 1-3 thus very conservatively ensuring, 

with a high margin, the desired (target) safety against the exceedances of LSs 1-3. 

The MAR or MRP of an LS exceedance, according to the PEER PBEE framework, is 

computed by aggregating or accounting for the contributions from all seismic hazard levels and 

can, therefore, be deaggregated into the contributions from different levels of IM (i.e., 

deaggregated with respect to IM). This deaggregation provides additional insight into the 

distribution of causative IM values leading to a specific level of damage hazard. Figure 4.12 

presents the results of the IM disaggregation of the damage hazard corresponding to LSs 1-4. 

The ordinate on the right-hand-side of each deaggregation plot in Figure 4.12 shows the 

conditional probability distribution of IM, given ( )0 1,2,3,4kZ k = . The ordinate along the left-

hand-side of the same plots shows the site-specific seismic hazard curve (SHC). Also marked in 

each of these plots is the value im of IM with the same MAR of exceedance as the 
thk  LS, i.e., 

( ) ( ) 1,2,3,4
kIM LSim k = = . It is noted from Figure 4.12 that contribution to the MAR of 

exceedance of a specific LS comes not only from the IM value with the same MAR as the limit-

state ( )
kLS  , but from a wide continuum range of IM values with MAR of exceedance both below 

and above 
kLS . This provides a scientific basis to challenge any incomplete PBSD method 

according to which, for the sake of computational, theoretical and/or conceptual convenience, one 

chooses to design a bridge such that specified LSs are not exceeded (with specified confidence 

levels) at specified discrete seismic hazard levels (e.g., earthquake ground motions with an MRP 

of IM exceedance of 475 years, 975 years, 2,475 years, etc.). It is noted that although an 

appreciable part of the IM contributions to the seismic damage hazard associated with an LS of 

interest does come from the range of IM spanned by the six seismic hazard levels (indicated by the 
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light blue patch in Figure 4.12) selected for the ensemble nonlinear response history analyses (see 

Figure 4.9(a)), a significant part of the IM contributions, especially for the more critical LSs, comes 

from the range of IM above the highest seismic hazard level considered. In other words, the results 

of PSDamHA depend not only on the interpolation of the structural response statistics between the 

discrete seismic hazard levels selected for response analyses, but also on their extrapolation 

beyond the IM range considered. This emphasizes the importance of choosing an appropriate IM 

range for performing ensemble nonlinear response history analyses and suitable 

interpolation/extrapolation or regression models for the probabilistic prediction of EDP given IM. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.12  IM deaggregation of damage hazard: (a) LS 1, (b) LS 2, (c) LS 3, (d) LS 4 
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4.6    Conclusions 

Different ingredients of the multidisciplinary PEER PBEE framework, developed or 

improved in various independent studies by past researchers, are integrated in this study, thus 

presenting an updated, and hence improved, framework to assess the seismic performance of 

bridge structures. The PBEE methodology is revisited, presented in terms of the improved interface 

variables considered (e.g., average spectral acceleration as IM, strain-based EDPs, and strain-

based LSs), and applied to a real-world testbed California Ordinary Standard Bridge (OSB). The 

updated framework is implemented as a Python library, which allows for fully automated structural 

performance assessments. The modular nature of this computational framework allows for rapid 

implementation of future advancements made in the various steps of the PBEE methodology. 

The set of LSs considered in this paper for the evaluation of seismic performance of OSBs 

is neither exhaustive nor definitive. The proposed framework is readily able to accommodate more 

refined (e.g., more mechanics-based) definitions of LSs and/or a larger number of LSs. Moreover, 

the influence of the exceedances of other LSs (e.g., full development of the shear key damage 

mechanism considered herein) on the exceedances of critical LSs related to column damage/failure 

should be investigated. 

Overarchingly aiming towards a rigorous framework for PBSD of bridges, in general, and 

OSBs, in particular, the PEER PBEE framework is revisited, and improvements of several aspects 

in various stages of the state-of-the-art assessment framework are incorporated. With the PEER 

PBEE framework put into practice in its most updated and rigorous form, the groundwork for 

utilizing this framework in the context of performance-based design is laid. The implementation 

of the present updated version of the PEER PBEE framework, developed with painstaking details, 

will ensure that a PBSD method based on or distilled out of this rigorous assessment framework 
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will be fittingly risk-informed, rational, and scientific. Such a PBSD method for OSBs will be the 

subject of an upcoming paper. 

The updated version of the PEER PBEE framework can be utilized to assess the seismic 

performance of other testbed OSBs located in regions with disparate levels of seismicity in 

California. The seismic performance of a wide range of design situations representative of the 

population of OSBs in California can be compared with respect to benchmark levels of 

performance reflecting the risk tolerance of the engineering community and society as a whole. 

Such a comparative study will expose irregularities and inconsistencies, if any, in seismic 

performance of OSBs designed following a more traditional (prescriptive) seismic design 

philosophy, rather than an explicitly performance-based one, thus promoting the need for a PBSD 

framework for OSBs such that explicitly stated risk-based performance objectives are consistently 

and uniformly satisfied. 

The performance assessment framework presented in this paper is currently being 

enhanced via the incorporation of finite element model parameter uncertainty, probability 

distribution parameter estimation uncertainty, and structural model form uncertainty (i.e., model 

discrepancy), as pertinent sources of aleatoric and epistemic uncertainty. This will enable a 

comprehensive evaluation of the significance of these commonly neglected sources of uncertainty 

in the seismic performance assessment of OSBs. 

4.7 Preview to Chapter 5 

The next chapter presents the analytical and computational implementation of a parametric 

probabilistic seismic performance assessment framework for OSBs, thus laying the groundwork 

for solving a risk-targeted PBSD problem, an inverse assessment problem. A PBSD methodology 
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involving the design of the bridge piers is proposed wherein a feasible design domain in the 

primary design parameter space of an OSB is identified which facilitates risk-informed 

design/decision making in the face of uncertainty. 
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Appendix: “Exact” Conditional Mean Spectrum Incorporating All 

Causative Scenarios 

Baker and Cornell (Baker and Cornell 2006) defined the CMS, given a seismic hazard 

level, as the expected response spectrum conditioned on a specific value of IM (defined by the 

seismic hazard level considered) and the associated mean causal earthquake scenario (M-R pair), 

S = s . Based on: (i) the multivariate normality of a vector of the natural logarithm of spectral 

https://doi.org/10.1002/eqe.3459
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accelerations (Jayaram and Baker 2008) at different spectral periods, and (ii) the definition of 

, avgaS  that ensures the multivariate normality of , avgln aS  with the vector of jointly normal log 

spectral accelerations, the conditional mean and standard deviation of the log spectral acceleration 

at any period, iT , given , avgaS x= , are given by 
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where ln ( )|a iS T S s =  and ln ( )|a iS T S s =  are obtained from a standard GMPE (Boore and Atkinson 2008), 

and the correlation coefficient between ln ( )a iS T  and , avg 1ln ( , , )a nS T T , 
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where the correlation coefficient between any two spectral periods, 
( ) ( )ln , lna i a pS T S T

 , is assumed to 

be independent of the earthquake scenario (Baker and Jayaram 2008). 

The probability normalized deaggregation of the contribution of M and R to the MAR at 

which the IM , avgaS  exceeds the threshold value x can be viewed as a bivariate probability mass 

function (PMF) of discretized random variables M and R, or equivalently a univariate PMF of the 

random variable S representing possible (M, R) scenarios, given the specific MAR of IM 

exceedance. The mean causal scenario, s , the center of gravity of this conditional PMF of S, may 
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correspond to an unrealistic causative earthquake scenario at the site in case there are widely 

varying contributing scenarios leading to a multimodal PMF of S. 

To address this issue, a more complete version of the CMS, called the “exact” CMS, 

incorporating all causative earthquake scenarios was introduced (Lin et al. 2013a). The 

formulation of the “exact” CMS relies on deriving the unconditional (with respect to S) PDF of 

the log spectral acceleration at any period, iT , as 

 ( ) ( ) ( ) ( )ln ln |
1

|
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a i a i
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q qS T S T S s
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f a f a S s P S s
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where a is a specific value of ln ( )a iS T . The exact mean and standard deviation of the unconditional 

log spectral acceleration at any period, iT , are obtained as 
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respectively. Note that  SE  and  SVar  refer to the expectation and variance, respectively, 

of the operand with respect to S, and [ ]qP S s=  is the deaggregation weight, or the fractional 

contribution of the (M, R) scenario qs  to the considered level of seismic hazard. 

The normality of the conditional distribution ( ) ( )ln |
|

a i
qS T S s

f a S s
=

=  is lost upon 

“unconditioning” with respect to S as per Eq. (4.22). The unconditional random variable ln ( )a iS T  

distributed according to a mixture of normal distributions is, therefore, no longer necessarily 
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normally distributed. A rigorous treatment of this case is possible by assuming the vector of 

unconditional log spectral accelerations to follow some non-unique multivariate distribution (e.g., 

NATAF model) such that the marginal mixture distributions of ln ( )a iS T ’s as per Eq. (4.22) and 

the correlation structure of ln ( )a iS T ’s are preserved. However, for practical purposes and usability 

in ground motion record selection procedures, the vector of unconditional log spectral 

accelerations at different periods can be assumed to follow a multivariate normal distribution (Lin 

et al. 2013b). This is necessarily true if, and only if there is only one contributing scenario to a 

specific level of seismic hazard, or in other words the PMF of S, given a seismic hazard level, is a 

dirac-delta function. The exact mean and standard deviation of ln ( )a iS T  (Eqs. (4.23) and (4.24)) 

can therefore be used to rewrite Eqs. (4.19) through (4.21), now incorporating all causative (M, R) 

scenarios and thereby defining the “exact” CMS as 
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where 
, avgln aS  and 

, avgln aS  are the mean and standard deviation of the unconditional (with respect 

to S) average spectral acceleration a,avgS  , which are obtained as 
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5 Framework for Risk-targeted Performance-based Seismic 

Design of Ordinary Standard Bridges 

5.1 Abstract 

This paper presents the analytical formulation and computational implementation of a 

parametric probabilistic seismic performance assessment framework for ordinary standard bridge 

(OSB) structures, thus laying the groundwork for solving a risk-targeted performance-based 

seismic design (PBSD) problem, an inverse assessment problem. An updated probabilistic 

performance-based earthquake engineering (PBEE) assessment methodology is used for a 

parametric performance assessment of four distinct OSBs in California to investigate the effects 

of varying key structural design parameters over a primary design parameter space on risk-based 

structural performance measures. The dire need for a systematic PBSD framework for OSBs is 

illustrated given the significant variability in risk-based performance levels exhibited by these 

traditionally designed testbed OSBs. A PBSD methodology involving the design of the bridge 

piers is proposed wherein a risk-based feasible design domain in the primary design parameter 

space is identified which facilitates the risk-informed design/decision making process in the face 

of uncertainty. Sensitivities of risk-based feasible design domains to other (secondary) design 

variables and to the method employed for damage hazard assessment are investigated. 

5.2 Introduction 

Risk-targeted performance-based seismic design (PBSD) has emerged as the most 

scientific and promising design methodology as it involves designing a structure in the face of 
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uncertainty to meet performance objectives explicitly stated in terms of the risk (or the probability 

in a specified exposure time) associated with the exceedance of critical limit-states (LSs) or certain 

tolerable thresholds of monetary loss, downtime, etc. Performance objectives stated as such will 

not only allow an active participation of the public and stakeholders in the design and decision-

making process thereby making it more rational, scientific, and transparent, but also lead to greater 

societal awareness of earthquake risk and consequences (May 2001). In order to design structures 

to meet risk-targeted statements of performance objectives, a rigorous treatment and propagation 

of pertinent uncertainties involved at various stages of structural performance assessment is 

inevitably called for. The paradigm of probabilistic performance-based earthquake engineering 

(PBEE) is expected to provide, not only technical support for this shift of design philosophy (or 

paradigm), but also a novel way to tailor structural design to meet the societal risk tolerance. This 

has paved the way for the profession to work towards identification and filling of knowledge gaps 

and make considerable advancement in the realm of probabilistic PBEE over the last few decades. 

Bolstered by the ever increasing computational power, this quest has consistently improved over 

time and culminated in the fully probabilistic, rigorous and advanced assessment framework 

(Moehle and Deierlein 2004; Porter 2003) developed under the auspices of the Pacific Earthquake 

Engineering Research (PEER) Center. 

The PEER PBEE assessment framework integrates site-specific seismic hazard analysis, 

structural demand analysis, damage analysis, and loss analysis, in a comprehensive and consistent 

probabilistic framework. This comprehensive framework has been recommended as a future 

alternative for bridge seismic design in a recent study under the National Cooperative Highway 

Research Program (NCHRP) (NCHRP 2013). The NCHRP study also brings out the fact that the 

current bridge design practice considers safety and risk associated with seismic performance of 
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bridges as mere ramifications of the fulfillment of prescriptive measures and emphasizes on the 

explicit considerations of seismic risk, in order that the public and engineers participate in the 

decision-making process in tandem. Several studies (Cornell et al. 2002; Ellingwood 2008; 

Franchin et al. 2018; Hamburger 2006; Mackie and Stojadinović 2007; Saini and Saiidi 2014) have 

focused on the applicability of the PEER PBEE framework in the PBSD of structures. 

Notwithstanding, seismic design of bridge structures remains a relatively less trodden area as 

compared to that of building structures in terms of PBEE applications, and the rigor/completeness 

thereof. The PBSD procedure proposed by Mackie and Stojadinović (2007) uses closed-form 

solutions (Cornell et al. 2002) for the estimation of the damage/loss hazard. The accuracy of these 

closed-form solutions under simplifying assumptions has been previously questioned (Aslani and 

Miranda 2005; Bradley and Dhakal 2008) and is further investigated in this paper. Saini and Saiidi 

(2014) implemented a probabilistic design method wherein bridge columns are designed to satisfy 

target probabilities of exceedance of damage LSs conditional on different seismic hazard levels 

(e.g., 225 years, 975 years, and 2475 years mean return periods (MRPs) of exceedance of the 

considered seismic intensity measure (IM)), without aggregating the contributions of different 

seismic hazard levels to the total probability of LS exceedance. However, as noted in Deb et al. 

(2021), contribution to a specific MRP of LS exceedance comes not only from the IM value with 

the same MRP of exceedance, but from a wide continuum range of IM values with MRPs of 

exceedance both below and above the MRP of LS exceedance. 

At the crux of structural design lies the selection of optimal values of critical design 

parameters/variables such that predetermined target specifications of certain performance 

measures are met. Overarchingly aiming towards a rigorous framework for PBSD of bridges, this 

paper presents the conceptualization and implementation of a generalized workflow for full-
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fledged parametric probabilistic seismic performance assessment of Ordinary Standard Bridges 

(OSBs), thus laying the groundwork for performing a design through solving an inverse 

assessment problem. Structural performance measures considered in this study are defined as the 

mean annual rates (MARs), or reciprocally the mean return periods (MRPs), of exceedances for a 

selected set of practical LSs that are pertinent to the seismic evaluation of bridge structures and 

physically meaningful to practicing bridge engineers. To this end, the PEER PBEE methodology 

is revisited up to its third step, namely probabilistic damage analysis, simultaneously incorporating 

several novelties and improvements from the state-of-the-art literature related to the individual 

steps of the methodology. The final step of the PEER PBEE methodology, probabilistic loss 

analysis, is kept outside the scope of this study.  

As the main contribution of this paper, a comprehensive PBSD framework involving the 

design of the bridge columns, the primary lateral load resisting components of OSBs, is proposed. 

This framework is applied to and validated with four actual testbed OSBs. A primary design space 

is defined for an OSB in terms of column design parameters to which the exceedances of the 

selected set of LSs are most sensitive. Probabilistic performance-based assessments of the as-

designed and parametrically re-designed versions of the four testbed OSBs are then carried out to 

investigate the effect of varying these key structural design parameters on targeted structural 

performance measures. The end-product of this design framework are regions of safety and/or 

feasibility, referred to as feasible design domains, delineated over a two-dimensional design space 

of primary design variables pertaining to bridge columns that facilitate risk-informed 

design/decision making in the face of uncertainty. 
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5.3 Testbed bridges and Computational Models 

In California, OSBs are conventional, multiple-span, short (span length less than 91.4 m or 

300 ft) and, in general, skewed reinforced concrete (RC) bridges with monolithic or monolithic-

equivalent superstructure supported on soils which may or may not be susceptible to liquefaction 

and/or scour (Caltrans 2013). These are the most common bridges in California; they are designed 

in-house by the California Department of Transportation (Caltrans). Several testbed OSBs located 

in regions of California with disparate levels of seismicity are selected for this study to cover a 

range of realistic design situations for OSBs and to ensure that the parametric probabilistic 

performance-based assessment framework formulated herein is general within its scope and is 

applicable to the gamut of design situations representative of the population of OSBs in California. 

Four existing California OSBs (Figure 5.1), namely Bridge A, Bridge B, Bridge C and Bridge 

MAOC, are chosen for this purpose. These OSBs have been studied extensively in past research 

projects (Kaviani et al. 2012; Omrani et al. 2015) and are representative of modern OSBs in 

California constructed between the late 1990’s and early 2000s. 

 

 

Figure 5.1  Locations of testbed OSBs 
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Bridge A is the Jack Tone Road Overcrossing in Ripon, California, consisting of two spans 

with a single column bent. Bridge B is the La Veta Avenue Overcrossing in Tustin, California, 

also consisting of two spans but supported on a two-column bent. Bridge C is the Jack Tone Road 

Overhead in Ripon, California (located adjacent to Bridge A), consisting of three spans supported 

on two bents with three columns each. Bridge MAOC, the Massachusetts Avenue Overcrossing 

located in San Bernardino, California, has five spans supported on four bents with four columns 

each. These bridges primarily consist of prestressed concrete box-girder decks supported by 

column-bent(s) on pile foundations and seat-type abutments also on pile foundations. 

Three-dimensional nonlinear finite element (FE) models (consisting of nonlinear fiber-

section beam-column elements and nonlinear springs) of these bridges are constructed in 

OpenSees (Mazzoni et al. 2006), the open-source FE analysis software framework developed at 

PEER. Initially inherited Tcl input files of the OpenSees models of these bridges from previous 

Caltrans/PEER funded projects were revisited, parameterized, and improved (Deb et al. 2018). A 

schematic representation of the computational model of one of the four testbed OSBs (Bridge C) 

is shown in Figure 5.2. 

 

Figure 5.2  Schematic representation of the nonlinear FE model of Bridge C 
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Additional modeling details are shown in Figure 5.3 (a) through (f) for Bridge C, namely 

the (i) nonlinear fiber section definition of bridge column modeled using a single Euler-Bernoulli 

force-based beam-column element and of column base hinge, which is a short reduced-diameter 

section between the base of a column and the top of the pile cap, modeled using a single Euler-

Bernoulli displacement-based beam-column element, (ii) material hysteretic stress-strain relations 

for concrete and steel fibers, (iii) hysteretic hyperbolic force-deformation curves of the distributed 

spring model with varying initial stiffnesses and ultimate strengths used to model the soil-structure 

interaction between the soil backfill and a skew-angled abutment (Shamsabadi et al. 2020), (iv) 

plasticity-based coupled bi-directional nonlinear (assumed bilinear) model of the shear force-

deformation response of the bearing pads at the abutments, and (v) semi-empirical mechanics-

based force-deformation hysteretic macro-model (Megally et al. 2002) used to represent the 

transverse resistance of the abutment exterior shear keys. The parameters of the Rayleigh linear 

viscous damping model pertaining to these OSBs are determined based on the following rationale. 

First, to prevent “double-counting” of the damping in a nonlinear FE model wherein nonlinear 

material hysteresis is explicitly accounted for, a low damping ratio of 1% is assigned to the first 

mode of the bridge in the transverse (more critical) direction. Second, to damp out any spurious 

participation of the higher modes, a high damping ratio of 5% is assigned to a sufficiently high 

frequency (about 20 Hz for the bridges considered in this paper). For a detailed description of the 

modeling techniques employed for the various components of the OSBs, the reader is referred to 

the technical report accompanying this study (Deb et al. 2018) as well as Deb et al. (2021a). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.3  FE modeling details for Bridge C: (a) Column and base-hinge fiber-section 

definition; Material hysteretic stress-strain relations for (b) unconfined (red) and confined (blue) 

concrete fibers, and (c) reinforcing steel (black) fibers; Nonlinear hysteretic force-deformation 

curves assigned to: (d) backfill distributed spring model, (e) each bearing pad element, and (f) 

each exterior shear key spring 

5.4 Updated Probabilistic Performance Assessment Framework 

5.4.1 PEER PBEE Framework Integral 

The formulation of the proposed PBSD framework is rooted in the four-step PEER PBEE 

assessment methodology integrating (i) site-specific seismic hazard analysis, (ii) structural 

demand analysis, (iii) damage analysis, and (iv) loss analysis in a comprehensive and consistent 

probabilistic framework using the Total Probability Theorem (TPT) of probability theory to arrive 

at an estimate of a performance measure, e.g., the MAR or MRP of exceedance of an LS, and/or 

the MAR or MRP at which a decision variable (e.g., down time, monetary loss, deaths) exceeds a 

specific threshold. Performance measures considered in this study are the MAR or equivalently 
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the MRP of LS exceedances for a selected set of LSs. The task of probabilistically predicting the 

future seismic performance of a bridge is therefore broken down into the following three steps (see 

Figure 5.4): Probabilistic Seismic Hazard Analysis (PSHA) in terms of a ground motion intensity 

measure (IM), Probabilistic Seismic Demand Hazard Analysis (PSDemHA) in terms of 

engineering demand parameters (EDPs), and Probabilistic Seismic Damage Hazard Analysis 

(PSDamHA) for the various LSs of interest. These steps are pieced together using the TPT as 

shown in Eq. (5.1). 

   ( )|0 | | ( )
k k

k

LS k k EDP IM IM

IM EDP

P Z EDP f x d d x    =  =      (5.1) 

where [ 0 | ]k kP Z EDP  =  is the conditional probability of exceedance of kLS  (i.e., safety 

margin 0k k kZ C EDP= −   where kC  denotes the structural capacity associated with kLS ) given 

a specific value   of the associated EDP (i.e., kEDP ), | ( | )
kEDP IMf x  is the conditional probability 

distribution of kEDP  given a specific value x of the IM, and ( )IM x  is the MAR of IM exceeding 

the specific value x. 

Novelties and improvements from the state-of-the-art literature related to the individual 

steps of the PEER PBEE assessment methodology are incorporated in this study (Deb et al. 2021a). 

Brief accounts of such enhancements are presented next. 

 

Figure 5.4  PEER PBEE Assessment Methodology (Porter 2003) 
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5.4.2 Improved Seismic Intensity Measure 

The spectral acceleration averaged over a period range , avg( )aS , originally proposed by 

Baker and Cornell (2006), is selected as the ground motion IM in this study. Defined as the 

geometric mean of spectral accelerations at different periods, , avgaS  is mathematically given by 

 ( ) ( )
1

, avg 1

1

,

n n

a n a p

p

S T T S T
=

 
=  
 
   (5.2) 

where 1[ , ]nT T  is the averaging period range. This IM has been demonstrated to perform better in 

terms of “efficiency” and “sufficiency” in the prediction of displacement-based nonlinear 

structural response (Eads et al. 2015) as compared to the traditionally used IM, ( )a pS T , the spectral 

acceleration at a single predominant period of the structure. Furthermore, the period range over 

which the spectral acceleration is averaged specifically accounts for the following phenomena not 

captured by ( )a pIM S T= : (i) uncertainty in predicting the period of the predominant mode of 

vibration for RC structures such as OSBs; (ii) change in natural periods of RC structures from 

pristine conditions to cracked states under service loads; (iii) lengthening of the predominant 

structural periods due to accumulation of damage during an earthquake which leads to higher 

correlation of the structural response with spectral accelerations at longer periods; and (iv) 

difference in periods of the fundamental modes of vibration in the two orthogonal directions (i.e., 

longitudinal and transverse) of the bridge. The range of periods used in the definition of , avgaS  for 

the considered OSBs spans from the period of the first transverse mode of vibration, i.e., 1, transT , to 

1, trans2.5 T  since the response of an OSB in the transverse direction is believed to be more critical 

than in the longitudinal direction in which the seismic bridge response is eventually stabilized 
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(limited) by the backfill at the abutments. Ten periods uniformly spaced in log scale between 1, transT  

and 1, trans2.5 T  are used in the computation of , avgaS . The selected period range also includes the 

period of the first mode of the OSB in the longitudinal direction.  

Closed-form probabilistic characterization of , avgaS  given an earthquake scenario (i.e., a 

magnitude and source-to-site distance pair), required in PSHA calculations, is obtained using 

existing attenuation relationships (e.g., Boore and Atkinson (2008)) for spectral accelerations at 

single periods. Seismic hazard analyses results for spectral accelerations at single periods along 

with the corresponding scenario deaggregation information, which are routinely available from 

standard PSHA software tools such as OpenSHA (Field et al. 2003), are inventively utilized (Deb 

et al. 2021a) to evaluate the MARs of exceedance of any specified value of the chosen novel IM. 

Figure 5.5 shows the seismic hazard curves for the testbed OSBs in terms of , avgaS , and how they 

compare with the seismic hazard curves at single periods 1, trans 1, trans( ), , , 2.5a p pS T T T T    . 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.5  Seismic hazard curves in terms of , avgaS  for (a) Bridge A, (b) Bridge B, (c) Bridge C, 

and (d) Bridge MAOC 

5.4.3 Risk-consistent Site-specific Ground Motion Record Selection 

The conditional mean spectrum (CMS) (Baker and Cornell 2006; Lin et al. 2013a), 

representing the expected spectral shape given a specific value of the considered IM, is used as the 

target spectrum for ground motion record selection in this study. Six different seismic hazard levels 

corresponding to MRPs of IM exceedances equal to 72, 224, 475, 975, 2475, and 4975 years 

(numbered I through VI, respectively) are chosen and ensembles of 100 scaled bi-axial horizontal 

ground motions per hazard level are selected for the seismic response assessment of each (as-

designed or re-designed) testbed OSB considered. 
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A ground motion selection algorithm, originally developed by Jayaram et al. (2011) and 

recently modified by Kohrangi et al. (2017) to include , avgaS  as the conditioning IM, is 

implemented for the selection of site-specific risk-consistent ensembles of ground motion records 

representative of the six seismic hazard levels considered. Given a seismic hazard level and the 

corresponding value of IM, the conditional joint probability structure of correlated spectral 

accelerations at different periods is first determined. The algorithm then picks earthquake records 

from a ground motion database (Chiou et al. 2008) that, as an ensemble, follow the complete 

probability structure of the target conditional spectrum defined for that hazard level. As 

illustration, Figure 5.6 shows the set of six ensembles (corresponding to the six seismic hazard 

levels) of 100 records each, selected for the as-designed version of Bridge B. With the CMS chosen 

as the target spectrum over the uniform hazard spectrum (UHS), which is a more commonly used, 

excessively conservative, spectral envelope-based target spectrum, the natural spectral shapes and 

variability of the selected ensemble of earthquake ground motion records are preserved. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.6  Ground motion ensembles selected for Bridge B at (a) hazard level I, (b) hazard level 

II, (c) hazard level III, (d) hazard level IV, (e) hazard level V, and (f) hazard level VI; green 

shaded region represents the averaging period range.  

5.4.4 Damage LSs and Associated Material Strain-based EDPs 

Three damage LSs related to the targeted failure mode of RC bridge columns (i.e., flexural 

hinging of columns), which are pertinent to the seismic evaluation of bridge structures and 

physically meaningful to bridge engineers, are considered in this study. These LSs are: (1) concrete 

cover crushing/spalling, (2) initiation (onset) of longitudinal bar buckling, and (3) precursor stage 

to longitudinal bar fracture post-buckling. The first LS represents superficial damage to a bridge 

column and requires cosmetic repair work primarily to prevent corrosion of rebars. The other two 

LSs represent ultimate LSs, exceedances of which lead to significant compromise of structural 

integrity and imminent structural collapse. 
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Traditionally, measures of deformation such as displacements, drift ratios, curvatures, etc. 

have been used as EDPs. However, for RC flexural members, such as columns, deformations can 

be directly and most reliably related to structural damage through material strains (Priestley et al. 

2007). Table 5.1 lists the strain-based EDPs associated with the selected set of LSs. Definition of 

these EDPs are based on deterministic predictive capacity models (discussed in the next section) 

for the chosen set of LSs. Figure 5.7 schematically describes the chosen EDPs. 

 

Table 5.1  LSs and associated strain-based EDPs 

LS # Associated Engineering Demand Parameter (EDP) 

1 
Maximum absolute compressive strain in 

any longitudinal bar of any column. 
( )( )( )max max max bar

comp
col bar t

t  

2 
Maximum tensile strain in any longitudinal 

bar of any column. 
( )( )( )max max max bar

tensile
col bar t

t  

3 

Maximum strain range/excursion (i.e., 

difference of maximum tensile and 

minimum compressive strain, the latter 

following the former) in any longitudinal 

bar of any column 

( ) ( )( )max max max minbar bar

tensile comp
t tcol bar t

t t 
 

 − 
 
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Figure 5.7  Schematic representation of material strain-based EDPs 

5.4.5 Strain-based Fragility Functions 

A fragility function expresses the probability of exceeding a system- or component-based 

LS given a specific value of a predictive demand parameter associated with this LS. The fragility 

function for the 
thk  LS is defined in the form of the two-parameter lognormal cumulative 

distribution function as 

  
ln( )

0 | k
k k

k

P Z EDP
 




 −
 = =  

 
 (5.3) 

where k  and k  are the mean and standard deviation of the normal distribution fitted to the 

natural logarithm of experimentally and/or numerically measured values of kEDP  at which the 
thk  

LS is reached or exceeded. Strain-based fragility functions developed using reliable experimental 

data or high-fidelity numerical data are constructed for the LSs considered in this study through 

proper identification of relevant test and research programs previously conducted (Duck et al. 

2018; Goodnight et al. 2015; Murcia-Delso et al. 2013; Schoettler et al. 2015; Trejo et al. 2014). 

Fragility functions, typically constructed using experimental or numerical data pertaining to 

specimens or models with different geometric, material and mechanical characteristics, need to be 
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normalized such that they can be used for structural components of any specified characteristics. 

The normalized fragility function for the 
thk  LS has the form 

 
MEAS

NORM

PRED

ln( )
0 |   

k

k k
k k

C k

EDP
P Z EDP

EDP

 




   −
 = = =    

    

 (5.4) 

where k  and k   are the mean and standard deviation of the normal distribution fitted to the 

natural logarithm of NORM

kEDP  at which the 
thk  LS is reached or exceeded. NORM

kEDP  is defined 

as the ratio of experimentally or numerically measured values of kEDP  at which the kLS  is reached 

or exceeded, referred to as 
MEAS

kEDP , to the corresponding predicted capacity, PRED

kCEDP , obtained 

using a predictive capacity model. Appropriate models for the capacity predictor, PRED

kCEDP , 

(Goodnight et al. (2016) for LSs 1 and 2, and Duck et al. (2018) for LS 3), are identified and listed 

in Table 5.2. 

Table 5.2  Deterministic predictive capacity models for the considered LSs 

LS # Predictive Capacity Model 

1 
1

PRED 0.004CEDP =  (5.5) 

2 
2

PRED 0.03 700 0.1
yhe

C trans

s ce g

f P
EDP

E f A
= + −


 (5.6) 

3 ( )
3

PRED 30.11 min(0.054, 3.2 ) 0.0175 2.93 0.054C trans bar

T
EPD n

Y
= + − − −  (5.7) 

In Eq.s (4.13) and (4.14), trans  is the volumetric transverse reinforcement ratio, yhef  is the 

expected yield stress of the transverse reinforcement, sE  is the elastic modulus of the transverse 
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reinforcement, P  is the axial load on the column (taken as the axial load due to gravity loads), cef   

is the expected compressive yield stress of the unconfined concrete, gA  is the gross cross-sectional 

area of the column, barn  is the number of bundles of longitudinal bars in a column, and 
T

Y
, taken 

as 1.4 (Duck et al. 2018), is the ratio of the ultimate stress to the yield stress of the longitudinal 

steel reinforcement.  

The normalized fragility functions for LSs 1 through 3 are shown in Figure 5.8. These 

fragility functions are denormalized by the respective values of the capacity predictors for the 

specific designs of the considered testbed OSBs and used in Eq. (5.1) to compute the MARs of 

exceedances for the selected set of LSs. 

 

Figure 5.8  Normalized fragility curves (fitted experimental/numerical data are shown as crosses) 

5.5 Framework for Risk-targeted Performance-based Seismic 

Design 

At the crux of structural design lies the selection of optimal values of critical design 

parameters/variables such that predetermined target specifications of certain performance 
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measures are met. Hence, carrying out a parametric full-fledged probabilistic seismic performance 

assessment of the testbed bridges is a rational first step towards a rigorous framework for PBSD 

of OSBs so that the effects of varying key structural design parameters on the sought performance 

measures can be investigated. To design complex structural systems such as bridges in a rigorous 

manner such that multiple risk-targeted performance objectives are consistently satisfied, 

computationally expensive forward assessments of design iterations are unavoidable. To ensure 

computational feasibility and practicability of the parametric study, it is therefore essential to 

identify primary (key) design variables to which the sought performance measures are sensitive 

and perform the parametric study in terms of these variables. 

5.5.1 Primary and Secondary Design Variables 

LSs pertaining to RC bridge columns are considered in this study because columns 

constitute the primary lateral load resisting structural components of OSBs. Design 

variables/parameters selected for the parametric seismic performance assessment study, referred 

to as primary design variables, are structural parameters to which the exceedances of the selected 

set of LSs are most sensitive. Two such key parameters, revolving around the design of RC bridge 

columns and with readily alterable values from a design perspective, are (i) the column diameter, 

colD , and (ii) the column longitudinal reinforcement ratio, long . A high-dimensional inverse 

problem of PBSD is therefore reduced to a two-dimensional search over the primary design space 

of an OSB. 

In defining an OSB’s primary design space, practical constraints applicable to the values 

of the chosen primary design variables are considered. According to engineers at Caltrans, 

admissible values of the diameter of a bridge column, with regard to the availability of existing 

prefabricated formwork used in bridge construction, range from 1.2 m (4 ft) to 2.4 m (8 ft) in 
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increments of 152 mm (6 in) depending on the bridge span and/or number of columns per bent in 

an OSB. Practical values of the longitudinal steel reinforcement ratio, although a continuous 

variable, range from 0.01 (1.0 %) to 0.03 (3.0 %) in increments of 0.005 (0.5 %). The primary 

design space of each testbed OSB considered is hence defined as a two-dimensional regular grid 

of possible design points (see Figure 5.9). It is noted that in defining the primary design space for 

each testbed OSB, the minimum value of colD  is selected such that localization or softening 

behavior (leading to loss of objectivity in strain prediction (Coleman and Spacone 2001)) is not 

observed for RC column sections with low expected axial load ratios (typically less than 15% 

under combined gravity and earthquake loading) which are characteristic of OSBs in California.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.9  Primary design space for (a) Bridge A, (b) Bridge B, (c) Bridge C, and (d) Bridge 

MAOC (red stars indicate the as-designed testbed OSBs, red circles indicate considered re-

designs of the testbed OSBs); (1 ft = 304.8 mm) 

All other bridge design parameters, i.e., (i) parameters whose values are obtained after 

determining the values of the primary design variables, to meet the requirements of capacity 

design, minimum ductility capacity, code-based reinforcement ratio restrictions, etc., and (ii) those 

restricted by the geometry of the bridge, available real estate, traffic requirements, etc., are grouped 

into the category of secondary design variables. A non-exhaustive list of such variables includes 

the column transverse reinforcement ratio ( )trans , spacing of transverse hoops in a column, 

diameter and distribution of longitudinal bars in a column, height of a column, number of columns 

in a bent, skew of column bent(s), number of bents, variables involving the design of the bridge 

(1 ft = 304.8 mm) 
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deck, bent caps, abutments, abutment shear keys, backwall, foundations, etc. In the parametric 

study of the four testbed OSBs, values of the respective secondary design variables are taken as 

per the original designs of the testbed OSBs, except for trans . The value of trans  is expressed as 

a practical fraction of long , i.e., 0.5trans long = , which has been found to ensure stable post-peak 

response of longitudinal reinforcement bars (Duck et al. 2018). 

5.5.2 Overall Workflow and Computational Framework 

For each design point in the primary design space of an OSB, a full-fledged seismic 

performance assessment, involving PSHA, ground motion selection (GMS), ensembles of 

nonlinear time-history analyses (NLTHA), PSDemHA, and PSDamHA, is carried out using the 

updated version of the PEER PBEE framework (see Figure 5.10) to arrive at estimates of the MRP 

of exceedances of the selected set of LSs. The mean RPs of exceedances for the considered LSs 

computed for all the re-designs of an OSB are then used to construct three (one for each LS) 

piecewise linearly interpolated surfaces for MRPs over a triangulation of the regular grid of design 

points (see Figure 5.10) defining the OSB’s primary design space. 

To seamlessly execute the above mentioned analytical steps of PSHA, GMS, NLTHA, 

PSDemHA, and PSDamHA for the given choice of IM, the considered set of LSs and their 

associated EDPs pertaining to a testbed OSB, a fully-automated, open-source, object-oriented, 

cross-platform compatible Python package, named PyPBEE (PBEE for Python) was developed 

(Deb et al. 2021a). The above-mentioned analytical steps are prototyped as analysis classes in the 

form of Python modules in PyPBEE. Moreover, PyPBEE admits modular class definitions of the 

key variables (i.e., IM, EDPs, and LSs) involved in the different analytical steps and of the type of 

structure (e.g., the OSB) to be analyzed. Figure 5.11 shows a schematic Unified Modeling 
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Language (UML) diagram describing the relationship between the objects of the classes involved 

in PyPBEE. It is noted that, although integrally composed of the analysis classes (shown in blue 

in Figure 5.11), PyPBEE is designed to readily accommodate alternative and more refined 

definitions of modules for an OSB (or any structure), an IM, and the set of LSs and their associated 

EDPs which are intended to be placeholder classes (shown in yellow in Figure 5.11). 

A full-fledged seismic performance evaluation of an OSB over its primary design 

parameter space involves sequential execution of the different analysis modules. However, each 

module consists of several mutually independent embarrassingly parallelizable jobs (e.g., PSHA 

for each design point, GMS for each seismic hazard level at each design point, NLTHA for each 

ground motion in an ensemble selected for each hazard level at each design point, etc.). 

Parallelization of such tasks is achieved using multiprocessing in Python. It is noteworthy to 

mention here that for the sizable number of NLTHAs carried out for the performance assessment 

of each of the re-designs of the considered testbed OSBs, all non-collapse related numerical 

convergence issues encountered are resolved in an automated fashion (using built-in functionalities 

of the NLTHA module in PyPBEE) via adaptive switching between iterative methods (e.g., 

Newton line search, modified-Newton, BFGS, Newton-Krylov), convergence test types, and the 

convergence tolerance used to incrementally solve the nonlinear equations of motion. The 

exceedingly large number of NLTHAs to be performed necessitates the extensive use of high-

performance computing (HPC) resources made available through Stampede2, the flagship 

supercomputer at the University of Texas at Austin’s Texas Advanced Computing Center (TACC). 

This is easily achieved using the cross-platform capabilities of PyPBEE which allows for an 

equally efficient execution of the workflow in both desktop computing and supercomputing 

environments. 
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Figure 5.10  Overall workflow for parametric probabilistic seismic performance assessment 

 

 

Figure 5.11  Schematic Unified Modeling Language (UML) diagram of PyPBEE 

5.5.3 Feasible Design Domains  

For each LS considered, a piecewise linearly interpolated surface for the MRP of 

exceedance is constructed using the computed MRPs over a triangulated regular grid representing 

the primary design space of an OSB (see Figure 5.12). Although the overall topologies of the MRP 

surfaces over the primary design parameter space are accurate, some topology details are by-

products of the type of interpolation performed (here piecewise linear). It is important to notice 

that the MRP of LS exceedance results obtained for the as-designed bridges, in each case, are in 
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excellent agreement with the topology of the piecewise linearly interpolated MRP surfaces despite 

being excluded from the data used for constructing these surfaces. It is also observed that 

increasing the values of the two primary design variables result in stronger and safer designs 

characterized by lower MARs or higher MRPs of LS exceedances. From the topologies of the MRP 

surfaces, the MRPs of exceeding the considered set of LSs, pertaining to the seismic design of 

OSBs, are found to be indeed sensitive to the chosen primary design variables thereby justifying 

their choice. 

The MRP surfaces for the considered set of LSs are intersected by horizontal planes (see 

Figure 5.12) corresponding to respective specified target MRPs listed in Table 5.3. The target 

values of MRPs of LS exceedances are based on discussions with and feedback from Caltrans 

expert bridge engineers, thereby reflecting the current risk tolerance of the bridge engineering 

community in general. An LS-specific feasible design domain, i.e., a collection of design points in 

the two-dimensional primary design parameter space of an OSB with MRPs of exceeding the 

considered LS higher than or equal to the specified target MRP, is computed through the full-

fledged parametric probabilistic seismic performance assessment framework. Such domains 

corresponding to each LS are superimposed in the primary design parameter space of a bridge to 

delineate the overall feasible design domain (see Figure 5.12). This also helps identify the 

governing LSs along the boundary of the feasible design domain. 
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Table 5.3  Target MRPs of LS exceedance 

Limit-state Target MRP of exceedance (years) 

1. Concrete cover spalling 225 

2. Longitudinal bar buckling 1000 

3. Longitudinal bar fracture 2500 

The seismic performance of the as-designed version of a testbed bridge is gauged by the 

location of the corresponding design point in the design parameter space relative to the overall 

feasible design domain of the bridge (i.e., does the as-designed bridge belong to the feasible design 

domain and how close is it from its boundary?). The seismic performance of the as-designed 

testbed bridges is found to show considerable variability. These bridges originally designed 

following a more traditional (prescriptive) seismic design philosophy, rather than an explicitly 

performance-based one, are found to exhibit erratic levels of conservativeness. While some of the 

as-designed testbed bridges are found to be conservative (Bridges B and C), sometimes too much 

(e.g., Bridge C), with respect to the selected LSs and corresponding target MRPs, others are found 

to lie near the borderline of safety (e.g., Bridge A), or clearly in the unsafe domain (e.g., Bridge 

MAOC). 

The concept of a feasible design domain in the design parameter space can be utilized to 

make risk-informed design decisions while trying to satisfy multiple risk-targeted objectives. 

Values of primary design variables are first selected such that multiple risk-targeted performance 

objectives are met. This involves selection of a physically realizable design point (i.e., satisfying 

practical constraints reflecting design/construction practice) in the primary design parameter space 

either lying on the boundary of, or inside and in the vicinity of the boundary of, the feasible design 
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domain. Upon selection of the primary design variables, the secondary design variables are to be 

determined and adjusted to meet requirements of capacity design, code-based minimum ductility 

capacity and minimum reinforcement, etc., and/or other restrictions imposed by the real estate 

available, traffic flow, etc. In this regard, knowledge of the feasible design domain of an OSB in 

its design space emerges as an extremely valuable resource in the context of a design process to 

be carried out in stages as it can be utilized to make risk-informed adjustments, if required, of the 

primary design variables. After all primary and secondary design variables have been determined, 

a final check of structural performance is required to ensure that the final design still satisfies the 

specified risk-targeted performance objectives. 
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Figure 5.12  Piecewise linearly interpolated MRP surfaces and feasible design domains (green 

shaded region) for the considered testbed OSBs. The target MRP contour lines for LSs 1, 2, and 3 

are shown in blue, red, and green, respectively. The as-designed testbed OSB is shown as a red 

star; (1 ft = 304.8 mm).  

5.5.4 Sensitivity of Feasible Design Domains to Column Transverse 

Reinforcement Ratio 

The categorization of an important column design parameter, the transverse reinforcement 

ratio ( )trans , for columns with low expected axial load ratios (say less than 15% under combined 

gravity and earthquake loading) which is typical of OSBs, as a secondary design variable is 
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investigated next. A sensitivity analysis is conducted by repeating the performance evaluations 

over the primary design parameter space of a bridge for two additional values of trans , with the 

three levels of trans  considered, i.e., Case I: 0.5trans long = , Case II: 0.01trans = , and Case III: 

0.75trans long = , spanning a practical range of column transverse reinforcement ratio in bridge 

seismic design practice. 

To facilitate a simple, yet reasonably accurate, comparative study of Cases I through III, 

the analytical steps of the PBEE framework up to PSDemHA already carried out with 

0.5trans long =  are not repeated for the other two values of trans . The rationale behind this being 

that for columns with low expected axial load ratios, and for the type of nonlinear FE modeling 

technique employed in this study (i.e., the use of Euler-Bernoulli beam-column elements with 

nonlinear fiber-sections to model bridge columns), the value of trans  minimally affects the 

compressive strength of the core concrete fibers, thereby only marginally impacting the seismic 

demand hazard assessment of OSBs. However, because trans  effects the prediction of the capacity 

of bridge columns corresponding to LSs 2 and 3 (i.e., incipient bar buckling and precursor stage of 

bar fracture, see Eq.s (4.13) and (4.14)), the sensitivity analysis performed with respect to trans  

involves recomputing the final step, i.e., PSDamHA, wherein Eq.s (4.13) and (4.14) are used to 

denormalize the respective fragility functions needed in the computation of the MRP of 

exceedance for LSs 2 and 3. 

The feasible design domains obtained for the two additional values of trans  for each testbed 

OSB are shown in Figure 5.13. It is noted that the extent to which these new feasible design 

domains for an OSB differ from the corresponding originally obtained feasible design domain (for 

0.5trans long = ) is noticeable. However, the overall shape of the feasible design domains and the 
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feasibility of the re-design points remain comparable. The observed level of sensitivity of the 

performance evaluation results with respect to trans  does bring out the importance of trans  in the 

context of seismic design of bridge columns. Hence, a smart and practical initial choice of this 

rather critical secondary design variable (like the one chosen in this study, i.e., 0.5trans long = ) is 

essential as the primary design variables are being determined. As far as ductility requirements 

impacted by trans  are concerned, the designer can check whether these requirements are met after 

the primary design variables have been determined and adjust accordingly the value of trans  to 

meet these criteria. 

 

Figure 5.13  Feasible design domains for 0.01trans =  (1st row) and 0.75trans long =  (2nd row) 

5.5.5 Accuracy of Closed-form Solutions to Damage Hazard 

In an attempt to provide a PBSD format similar to that of Load and Resistance Factor 

Design (LRFD), closed-form solutions (CFSs) have been derived for the MAR (or the MRP) of 

exceedance of an LS. A comparative study is conducted between feasible design domains obtained 

using CFSs to the MRP of LS exceedances, available in the literature, and the one obtained 
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numerically via the full-fledged probabilistic performance assessment method used herein. This is 

done to assess the potential viability of LRFD-like design formats based on such CFSs to be used 

as the sought PBSD methodology. Two such CFSs proposed by Cornell et al. (2002) and 

Vamvatsikos (2013), referred to as CFS-1 and CFS-2, respectively, are used for this purpose. 

These CFSs hold under a set of restrictive (idealized) assumptions, i.e., (1) the seismic hazard 

curve is assumed to be either linear (Cornell et al. 2002) or quadratic (Vamvatsikos 2013) in 

logarithmic space, (2) the EDPs are assumed to be lognormally distributed when conditioned on 

IM, (3) the median of an EDP conditional on IM is assumed to have a power-law form, (4) the 

dispersion (standard deviation in logarithmic space) of an EDP conditional on IM is assumed to 

be constant, and (5) the structural capacity associated with an LS is assumed to follow a lognormal 

distribution. The feasible design domains obtained using CFS-1 and CFS-2 for each testbed OSB 

considered herein and for 0.5trans long =  are shown in Figure 5.14. 

 

Figure 5.14  Feasible design domains obtained using CFS-1 (1st row) and CFS-2 (2nd row) 

As observed by comparing Figure 5.14, the feasible design domains for the testbed OSBs 

obtained using CFS-2 match the corresponding numerically obtained feasible design domains 
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better than those obtained using CFS-1. This is attributed to the fact that CFS-2 approximates the 

seismic hazard curve more accurately as compared to CFS-1. However, both CFSs-1 and -2 can 

lead to considerable errors in the estimation of the feasible design domains and the identification 

of the governing LSs along the boundary of the feasible design domains. It is also noted that the 

use of CFSs does not alleviate the computational expense associated with the most expensive step 

of running ensemble NLTHAs for a bridge, albeit circumventing the rather inexpensive numerical 

evaluation of the demand and damage hazard integrals. Moreover, the results obtained using such 

simplified CFSs, that require going through almost the same rigmarole as that in the numerical 

full-fledged method, are often inaccurate by a significant margin. 

5.6 Conclusions 

Erratic levels of safety exhibited by a set of distinct as-designed representative California 

OSB testbeds illustrates the need for a PBSD framework for OSBs such that explicitly stated risk-

targeted performance objectives are consistently satisfied by the population of OSBs in California. 

The formulation (assembly) and software implementation of a rigorous framework for risk-

targeted PBSD of OSBs is presented in this paper. The proposed design methodology is a two-

stage procedure with the first-stage involving the design of the bridge columns and the second-

stage the determination of other design variables (e.g., the ones not restricted by the geometry of 

the bridge, available real estate, traffic flow requirements, etc.) so as to meet code-based 

requirements of capacity design (to limit the number and locations of damage and failure 

mechanisms), minimum ductility limitations, reinforcement ratio restrictions, etc. The end-product 

of this design framework are regions of safety and/or feasibility, referred to as feasible design 

domains, over a two-dimensional design space of primary design variables pertaining to the 
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seismic design of bridge columns. Knowledge of the feasible design domain of an OSB in its 

design space emerges as an extremely valuable resource in the context of a design process to be 

carried out in stages as it can be utilized to make risk-informed adjustments, if and when required, 

of the primary design variables while ensuring the satisfaction of multiple risk-based performance 

objectives, and thus leading to safe and economic design of OSBs. 

The PBSD framework presented in this paper is currently being extended via incorporation 

of finite element model parameter uncertainty and probability distribution parameter estimation 

uncertainty as additional pertinent sources of aleatoric and epistemic uncertainty. A 

comprehensive evaluation of the significance of these commonly neglected sources of uncertainty 

in the seismic performance assessment and PBSD of OSBs will be the subject of an upcoming 

paper. 

The set of three LSs defined and considered herein for the development of the proposed 

PBSD methodology for OSBs is neither exhaustive nor definitive. The proposed methodology and 

the supporting software/computational framework are developed with LS definitions as mere 

placeholders and is readily able to accommodate more refined (e.g., more mechanics-based) 

definitions and/or a larger number of LSs. 

The seismic performance measure selected in this study is the MRP of LS exceedance. This 

can be taken one step further by defining performance measures in terms of the hazard associated 

with the exceedance of specific values of decision variables, e.g., monetary loss, downtime, deaths, 

etc., which are more meaningful to stakeholders and/or decision makers (e.g., government 

officials). 

The proposed PBSD methodology is formulated by retaining the inherent rigor of the PEER 

PBEE framework lying at its crux. The implementation of this framework in a practical design 
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environment may seem computationally overpriced. In this regard, efforts can be channeled to 

distill out of this comprehensive study, without significantly compromising its rigor, a simplified, 

computationally economical, and sufficiently accurate PBSD methodology for OSBs following 

either a more traditional design format requiring LRFD-like checks of structural demand-to-

capacity ratios or a new unconventional design format. 

The proposed PBSD method recommends determining most secondary design variables, 

upon sizing of the primary design variables, to meet code-based requirements of capacity design, 

minimum ductility limitations, reinforcement ratio restrictions, etc. These requirements typically 

involve the use of prescriptive measures and/or safety factors such that undesirable consequences 

are prevented with some level of confidence. Empirical observations, experience and/or 

engineering judgment have dictated the prescription of such measures and safety factors in codes 

of practice. Future research can be directed towards developing a more transparent and more 

probabilistically explicit determination of these secondary design variables. Finally, extension of 

the proposed framework for PBSD of OSBs to accommodate larger and more complicated bridge 

structures involving a higher-dimensional primary design parameter space can be the subject of 

future research. 
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6 Simplified Risk-targeted Performance-based Seismic 

Design Method for Ordinary Standard Bridges 

6.1 Abstract 

This paper presents the formulation of a comprehensive risk-targeted performance-based 

seismic design (PBSD) framework involving the seismic design of bridge piers for California 

Ordinary Standard Bridges (OSBs) facilitating risk-informed design and decision making in the 

face of uncertainty. A full-fledged implementation of this all-inclusive design method formulated 

by retaining the inherent rigor of the underlying seismic performance assessment methodology 

might impose a seemingly prohibitive computational cost for the available resources in the current 

scenario of seismic bridge design practice. For reasons of practicability, the findings of the full-

fledged design framework are inventively utilized to distill out a computationally more economical 

and simplified PBSD procedure and its efficacy is validated using four real-world California 

testbed OSBs as cases in point. The proposed simplified design methodology is able to (1) find a 

design point in the primary design parameter space of a bridge being designed for multiple risk-

targeted performance objectives, and (2) delineate an approximate, yet sufficiently accurate, 

feasible design domain and identify the limit-states controlling its boundary in the primary design 

parameter space of the bridge, at a computational cost significantly lower than that of the original 

method. 
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6.2 Introduction 

Current practice of seismic design for ordinary or conventional reinforced concrete (RC) 

bridges primarily includes two design methodologies. The first is a force-based approach 

incorporated into the American Association of State Highway and Transportation Officials 

(AASHTO) LRFD Bridge Design Specifications (AASHTO 2012), while the second is a 

displacement-based approach on which the AASHTO Guide Specifications for Seismic Bridge 

Design (AASHTO 2011) is predicated. The force-based approach, with capacity design as its 

underlying philosophy, relies on designing specific structural components of the bridge to dissipate 

energy by way of yielding when subjected to an earthquake. The imposed seismic force demands 

are calculated corresponding to a design ground motion (with a probability of exceedance of 5% 

in 50 years or 1000-year mean return period (MRP)). While adequate detailing is provided at the 

locations of yielding to get desired inelastic action through ductility, all other structural members 

are capacity-protected to ensure linear elastic behavior. The displacement-based approach differs 

from its force-based counterpart in that it involves a direct check of the displacement capacity of 

the primary lateral load resisting system (i.e., bridge column bents). Still rooted in capacity design 

philosophy, this approach first involves the selection of a trial design for a column bent that is 

detailed for suitable inelastic action and ductility. This is followed by a direct check of the 

displacement capacity of the trial design via nonlinear static pushover analysis of the column bent. 

The system displacement capacity is controlled by material fibers reaching or exceeding prescribed 

strain limits corresponding to different damage limit-states (LSs). The inelastic displacement 

capacity is then compared to the displacement demand (determined either from equivalent static 

analysis or from elastic dynamic analysis) generated due to the action of the design earthquake 

(with a probability of exceedance of 5% in 50 years or 1000-year return period). 
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In addition to an inaccurate account of pertinent uncertainties by merely considering an 

incomplete probabilistic description of the input seismic hazard in both design approaches, the 

force-based approach has the added disadvantage of assuming that the satisfaction of prescriptive 

code-based requirements will ensure desired bridge performance without any direct check of 

system level seismic response/behavior. The displacement-based approach has the merit of a 

quantitative check of displacement capacity and is welcoming of the definition of displacement-

based LSs of interest and their intended satisfaction, thus bringing in the notion of explicit 

statements of structural performance objectives. However, structural performance evaluation in 

the displacement-based approach is assumed to be void of uncertainties and the satisfaction of 

prescriptive measures based on laboratory tests, simplified analytical models, and engineering 

judgment are subjectively assumed to translate to satisfactory system behavior. Moreover, metrics 

of structural performance being specific to the profession and not risk-targeted, do not allow the 

public/stakeholders to participate in risk-informed decision making 

Risk-targeted performance-based seismic design (PBSD) therefore emerges as the most 

scientific and promising design methodology and is expected to provide the foundation for future 

design codes (Cornell 2000; Ellingwood 2008; NCHRP 2013). It involves designing a structure to 

meet more refined and non-traditional performance objectives explicitly stated in terms of the risk 

(or the probability in a specified exposure time) associated with the exceedance of critical LSs or 

certain tolerable thresholds of monetary loss, downtime, etc. The recent advent of performance-

based earthquake engineering (PBEE) and its culmination in the form of the fully probabilistic, 

rigorous and advanced assessment framework (Moehle and Deierlein 2004; Porter 2003) 

developed under the auspices of the Pacific Earthquake Engineering Research (PEER) Center, not 

only provides technical support for this intended shift of design philosophy, but also brings about 
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a novel way to tailor structural design to meet the societal risk tolerance. Although not in its all-

inclusive and rigorous form, PBEE has already started to find its footing in both spheres of seismic 

design of buildings and bridges (Buckle et al. 2006; Cornell et al. 2002; Franchin et al. 2018; 

Hamburger 2006; Mackie and Stojadinović 2007; Saini and Saiidi 2014), albeit the latter has seen 

relatively less advancement as compared to the former (NCHRP 2013). 

Building on this comprehensive probabilistic framework integrating site-specific seismic 

hazard analysis, structural demand analysis and damage analysis, while keeping loss analysis 

outside the scope of this study, a PBSD framework involving the design of the bridge columns, 

the primary lateral load resisting component of Ordinary Standard Bridges (OSBs) (Caltrans 

2013), was recently proposed by the authors (Deb et al. 2021b). According to this framework, a 

primary design space is first defined for an OSB in terms of column design parameters to which 

the sought metrics of structural performance, i.e., the MRPs of exceedances of a selected set of 

LSs, are believed to be most sensitive. Probabilistic performance-based assessments of 

parametrically redesigned versions of an OSB are then carried out to obtain regions of safety and/or 

feasibility with respect to multiple risk-targeted performance objectives, referred to as feasible 

design domains, delineated over the primary design space of the bridge. Upon selection of a 

physically realizable DP (subject to practical constraints reflecting design/construction practice) 

in the primary design parameter space either lying on the boundary of, or inside and in the vicinity 

of the boundary of, the feasible design domain, other bridge design variables are to be determined 

and adjusted to meet requirements of capacity design, code-based minimum ductility capacity and 

minimum reinforcement, etc., and/or other restrictions imposed by the real estate available, traffic 

flow, etc. In this regard, knowledge of the feasible design domain of an OSB in its design space 

emerges as an extremely valuable resource in the context of a design process to be carried out in 
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stages as it can be utilized to make risk-informed adjustments, if required, of the primary design 

variables. 

The full-fledged PBSD framework can be very well used for the seismic design of OSBs 

unless, owing to its all-inclusive nature and pressing computational requirements, it imposes a 

computational cost that is prohibitive for the computational resources available. For reasons of 

practicability, the findings of the full-fledged design framework are inventively utilized to distill 

out a computationally more economical and simplified risk-targeted PBSD procedure and its 

efficacy is validated using four real-world California testbed OSBs as cases in point. The proposed 

simplified design methodology is able to: (i) find a DP in the primary design parameter space of a 

bridge being designed for multiple risk-targeted performance objectives; and (ii) delineate an 

approximate, yet sufficiently accurate, feasible design domain and identify the LSs controlling its 

boundary in the primary design parameter space of the bridge, at a computational cost significantly 

lower than that of the full-fledged method. 

6.3 Testbed Bridges and Computational Models 

OSBs are conventional, multiple-span, short (span length less than 91.4 m or 300 ft) and, 

in general, skewed reinforced concrete (RC) bridges with single superstructures emulating a cast-

in-place continuous structure and supported on soils which may or may not be susceptible to 

liquefaction and/or scour (Caltrans 2013). These are the most common bridges in California 

designed in-house by the California Department of Transportation. Several testbed OSBs located 

in regions with disparate levels of seismicity in California are selected for this study in order to 

cover a range of realistic design situations for OSBs and ensure that the parametric probabilistic 

performance-based assessment framework formulated herein is general within its scope and is 
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applicable to the gamut of design situations representative of the population of OSBs in California. 

Four existing California OSBs (Figure 5.1), namely Bridge A, Bridge B, Bridge C and Bridge 

MAOC, are chosen for this purpose. These OSBs have been studied extensively in recent research 

projects (Kaviani et al. 2012; Omrani et al. 2015) and are representative of modern OSBs in 

California constructed between late 90’s and early 2000s. 

 

Figure 6.1  Location of testbed OSBs 

Bridge A is the Jack Tone Road Overcrossing in Ripon, California consisting of two spans 

with a single column bent. Bridge B is the La Veta Avenue Overcrossing in Tustin, California also 

consisting of two spans but supported on a two-column bent. Bridge C is the Jack Tone Road 

Overhead in Ripon, California (located adjacent to Bridge A) consisting of three spans supported 

on two bents with three columns in each. Bridge MAOC, the Massachusetts Avenue Overcrossing 

located in San Bernardino, California consists of five spans supported on four bents each consisting 

of four columns. These bridges primarily consist of prestressed concrete box-girder decks 

supported by column-bent(s) on pile foundations and seat-type abutments also on pile foundations. 

Three-dimensional nonlinear finite element (FE) models (consisting of nonlinear fiber-

section beam-column elements and nonlinear springs) of these bridges are constructed (Deb et al. 

2018, 2021a) in OpenSees (Mazzoni et al. 2006), the open-source FE analysis software framework 
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developed at PEER. A schematic representation of the computational model of one of the four 

testbed OSBs (Bridge C) is shown in Figure 5.2. 

 

Figure 6.2  Schematic representation of the FE model of Bridge C 

6.4 Forward Probabilistic Performance Assessment 

6.4.1 PEER PBEE Framework Integral 

Metrics of structural performance considered in this study are the mean annual rates 

(MARs), or equivalently the MRPs, of exceedances for a selected set of practical LSs, which 

according to the PEER PBEE methodology are given by: 

   ( )|0 | | ( )
k k

k

LS k k EDP IM IM

IM EDP

P Z EDP f x d d x    =  =       (6.1) 

where [ 0 | ]k kP Z EDP  =  is the fragility function expressing the conditional probability of 

exceedance of LS k (i.e., safety margin 0k k kZ C EDP= −   where kC  is the structural capacity 

associated with kLS  and kEDP  is the associated engineering demand parameter) given a specific 
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value   of kEDP , | ( | )
kEDP IMf x  is the conditional probability distribution of kEDP  given a 

specific value x of the intensity measure (IM), and ( )IM x  is the MAR of IM exceeding the specific 

value x. 

6.4.2 Improvement of PEER PBEE Assessment Framework 

Novelties and improvements from state-of-the-art literature related to the individual steps 

of the PEER PBEE assessment methodology are incorporated in this study (Deb et al. 2021a). 

These improvements/updates include:  

(i) inclusion of an improved IM, i.e., average spectral acceleration over a period range (Baker 

and Cornell 2006; Kohrangi et al. 2016), 

(ii) conditional mean spectrum (CMS)-based site-specific risk-consistent ground motion 

selection (Jayaram et al. 2011; Kohrangi et al. 2017) (100 ground motions per hazard level 

for six seismic hazard levels corresponding to MRPs of IM exceedances equal to 72, 224, 

475, 975, 2475, and 4975 years, respectively) for ensemble nonlinear response-history 

analyses 

(iii) introduction of material strain-based EDPs (see Table 5.1) associated with practical 

material strain-based LSs related to the desirable (targeted) failure mode concerning RC 

bridge columns (i.e., flexural hinging of columns), namely (1) concrete cover spalling, (2) 

initiation (onset) of longitudinal bar buckling, and (3) initiation (onset) of longitudinal bar 

fracture post-buckling 

(iv) identification of experimental test programs and numerical studies (Duck et al. 2018; 

Goodnight et al. 2015; Murcia-Delso et al. 2013; Schoettler et al. 2015; Trejo et al. 2014) 

providing reliable data for the development of strain-based normalized fragility functions 
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for the considered LSs. Fragility functions for LSs 1 through 3, are normalized using 

appropriate deterministic capacity prediction equations (Duck et al. 2018; Goodnight et al. 

2016) (listed in Table 5.2). Normalized fragility functions for LSs 1 through 3 are shown 

in Figure 5.8. 

Table 6.1  LSs and associated strain-based EDPs 

LS # Associated Engineering Demand Parameter (EDP) 

1 
Maximum absolute compressive strain of 

any longitudinal bar in any column. 
( )( )( )max max max bar

comp
col bar t

t  

2 
Maximum tensile strain of any longitudinal 

bar in any column. 
( )( )( )max max max bar

tensile
col bar t

t  

3 

Maximum strain range/excursion (i.e., 

difference of maximum tensile and 

minimum compressive strain, the latter 

following the former) of any longitudinal 

bar in any column 

( ) ( )( )max max max minbar bar

tensile comp
t tcol bar t

t t 
 

 − 
 

 

Table 6.2  Deterministic predictive capacity models for the considered LSs 

LS # Predictive Capacity Model 

1 
1

PRED 0.004CEDP =  (6.2) 

2 
2

PRED 0.03 700 0.1
yhe

C trans

s ce g

f P
EDP

E f A
= + −


 (6.3) 

3 ( )
3

PRED 30.11 min(0.054, 3.2 ) 0.0175 2.93 0.054C trans bar

T
EPD n

Y
= + − − −  (6.4) 
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In Eqs. (4.13) and (4.14), trans  is the volumetric transverse reinforcement ratio, yhef  is the 

expected yield stress of the transverse reinforcement, sE  is the elastic modulus of the transverse 

reinforcement, P  is the axial load on the column (taken as the axial load due to gravity loads), cef   

is the expected compressive yield stress of the unconfined concrete, gA  is the gross cross-sectional 

area of the column, barn  is the number of bundles of longitudinal bars in a column, and 
T

Y
, taken 

as 1.4 (Duck et al. 2018), is the ratio of the ultimate stress to the yield stress of the longitudinal 

steel reinforcement. 

 

Figure 6.3  Normalized fragility curves (fitted experimental/numerical data shown as crosses) 

6.5 Risk-targeted PBSD Methodology 

In a recent study by the authors (Deb et al. 2021b), a two-stage design procedure was 

proposed with the first-stage involving the design of RC bridge columns, the primary lateral load 

resisting structural components of OSBs, followed by the determination of other design variables 

(e.g., the ones not restricted by the geometry of the bridge, available real estate, traffic flow 

requirements, etc.) so as to meet code-based requirements of capacity design (to limit the number 
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and locations of damage and failure mechanisms to be considered), minimum ductility limitations, 

reinforcement ratio restrictions, etc. This framework allows delineation of regions of safety and/or 

feasibility, referred to as feasible design domains, over a two-dimensional design space of primary 

design variables. 

6.5.1 Primary and Secondary Design Variables 

Design variables/parameters to which the exceedances of the selected set of LSs are 

believed to be most sensitive are referred to as primary design variables. These variables, revolving 

around the design of RC bridge columns and with readily alterable values from a design 

perspective, are: (i) the column diameter, colD , and (ii) the column longitudinal reinforcement 

ratio, long . In defining an OSB’s primary design space, practical constraints applicable to the 

values of the chosen primary design variables are considered. According to practicing engineers 

in Caltrans, admissible values of the diameter of a bridge column, with regard to the availability 

of existing prefabricated formwork used in bridge construction, range from 1.2 m (4 ft) to 2.4 m 

(8 ft) in increments of 15.24 cm (6 in) depending on the bridge span and/or number of columns 

per bent in an OSB. Practical values of the longitudinal steel reinforcement ratio, although a 

continuous variable, range from 0.01 (1.0 %) to 0.03 (3.0 %) in increments of 0.005 (0.5 %). The 

primary design space of each testbed OSB considered is hence defined as a two-dimensional 

regular grid of possible DPs (see Figure 5.9). It is noted that in defining the primary design space 

for each testbed OSB, the minimum value of colD  is selected such that localization or softening 

behavior (leading to loss of objectivity in strain prediction) is not observed for RC column sections 

with low expected axial load ratios (typically less than 15% under combined gravity and 

earthquake loading) which are characteristic of OSBs in California (Coleman and Spacone 2001). 
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All other bridge design parameters, viz., (i) parameters whose values are chosen after 

determining the values of primary design variables, to meet the requirements of capacity design, 

minimum ductility capacity, code-based reinforcement ratio restrictions, etc., and/or (ii) those 

restricted by the geometry of the bridge, available real estate, traffic requirements, etc., are grouped 

into the category of secondary design variables. A non-exhaustive list of such variables include 

column transverse reinforcement ratio ( )trans , spacing of transverse hoops in a column, diameter 

and distribution of longitudinal bars in a column, height of a column, number of columns in a bent, 

skew of column bent(s), number of bents, variables involving the design of bridge deck, bent cap, 

abutment shear keys, backwall, foundations, etc. In the parametric study of the four testbed OSBs, 

values of the respective secondary design variables are taken as per the original designs of the 

testbed OSBs, except for trans . The value of trans  is expressed as a practical fraction of long , i.e., 

0.5trans long = , which has been found to ensure stable post-peak response of longitudinal 

reinforcement bars (Duck et al. 2018) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.4  Primary design space for (a) Bridge A, (b) Bridge B, (c) Bridge C, and (d) Bridge 

MAOC (red stars indicate the as-designed testbed OSBs, red circles indicate considered re-

designs of the testbed OSBs) 

6.5.2 Overall Workflow for Full-fledged Parametric Forward PBEE 

Assessment 

For each design point (DP) in the primary design space of an OSB, a full-fledged seismic 

performance assessment, involving probabilistic seismic hazard analysis (PSHA), ground motion 

selection (GMS), nonlinear time-history analyses (NLTHA), probabilistic seismic demand hazard 

analysis (PSDemHA), and probabilistic seismic damage hazard analysis (PSDamHA), is carried 

out (see Figure 5.10) using a fully-automated, open-source, object-oriented, cross-platform 

compatible Python package, named PyPBEE (PBEE for Python) (Deb et al. 2021a) to arrive at 
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estimates of the MRP of exceedances of the selected set of LSs. The exceedingly large number of 

NLTHA to be performed necessitates the extensive use of high-performance computing (HPC) 

resources made available through Stampede2, the flagship supercomputer at the University of 

Texas at Austin’s Texas Advanced Computing Center (TACC). This is easily achieved using the 

cross-platform capabilities of PyPBEE which allows for an equally efficient execution of the 

workflow in both desktop computing and supercomputing environment. 

 

Figure 6.5  Overall workflow for parametric probabilistic seismic performance assessment 

6.5.3 Feasible Design Domains and Risk-targeted PBSD 

The MRPs of exceedances for the considered LSs computed for all the re-designs of an 

OSB are used to construct three (one for each LS) piecewise-linear MRP interpolation surfaces 

over a triangulation of the regular grid of DPs (see Figure 5.10) defining the OSB’s primary design 

space. A feasible design domain consisting of DPs in the primary design space of each OSB with 

MRPs of exceedances of the considered LSs higher than or equal to respectively specified target 

MRPs (see Table 5.3) is delineated and LSs controlling its boundary are identified (see Figure 

5.12). The target values of MRPs of LS exceedances are based on discussions with and feedback 

from expert Caltrans engineers thereby reflecting the current risk tolerance of the bridge 

engineering community in general. The as-designed OSBs, originally designed following a more 
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traditional (prescriptive) seismic design philosophy rather than an explicitly performance-based 

one, are found to exhibit erratic levels of conservativeness. While some of the as-designed testbed 

bridges are found to be conservative (Bridges B and C), sometimes too much, with respect to the 

selected LSs and corresponding target MRPs, others are found to lie near the borderline of safety 

(e.g., Bridge A), or clearly in the unsafe domain (e.g., Bridge MAOC). This illustrates the need for 

a PBSD framework for OSBs such that explicitly stated risk-targeted performance objectives are 

consistently satisfied by the population of OSBs in California. 

Table 6.3  Target MRPs of LS exceedance 

LS Target MRP of exceedance (years) 

4. Concrete cover spalling 225 

5. Longitudinal bar buckling 1000 

6. Longitudinal bar fracture 2500 

The concept of a feasible design domain in the design parameter space can be utilized to 

make risk-informed design decisions while trying to satisfy multiple risk-targeted objectives. 

Values of primary design variables are first selected such that multiple risk-targeted performance 

objectives are met. This involves selection of a physically realizable DP (subject to practical 

constraints reflecting design/construction practice) in the primary design parameter space either 

lying on the boundary of, or inside and in the vicinity of the boundary of, the feasible design 

domain. Upon selection of primary design variables, secondary design variables are to be 

determined and adjusted to meet requirements of capacity design, code-based minimum ductility 

capacity and minimum reinforcement, etc., and/or other restrictions imposed by the real estate 
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available, traffic flow, etc. In this regard, knowledge of the feasible design domain of an OSB in 

its design space emerges as an extremely valuable resource in the context of a design process to 

be carried out in stages as it can be utilized to make risk-informed adjustments, if required, of the 

primary design variables. After all primary and secondary design variables have been determined, 

a final check of structural performance is required to ensure that the final design still satisfies the 

specified risk-targeted performance objectives. 

 

Figure 6.6  MRP interpolation surfaces and feasible design domains (green shaded region) for 

the considered testbed OSBs. Target MRP contour line for LSs 1, 2, and 3 shown in blue, red, 
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and green respectively. As-designed testbed OSB shown as a red starSimplified Risk-

Targeted PBSD Methodology 

The full-fledged PBSD methodology involving parametric probabilistic seismic 

performance assessments can be used for the design of a new OSB unless its computational cost 

is prohibitive for the computational resources available. For reasons of practicability in current 

bridge design practice, findings of the full-fledged method are inventively utilized to distill out a 

computationally more economical, simplified, non-traditional, risk-targeted PBSD procedure. The 

simplified PBSD methodology proposed herein is intended to: 

(i) primarily find a DP in the primary design parameter space of a bridge being designed for 

multiple risk-targeted performance objectives, and  

(ii) optionally delineate an approximate, yet sufficiently accurate, feasible design domain and 

identify the LSs controlling its boundary in the primary design parameter space of the 

bridge 

at a computational cost significantly lower than that of the full-fledged method. 

6.6.1 Finding a DP Satisfying Multiple Risk-targeted Performance Objectives 

It is noted from the results of the parametric study that along any line 1 pD D  connecting p 

( 2)  DPs 1( , , )pD D  in the primary design parameter space with a positive gradient, i.e., along 

any direction with increasing values of colD  and long , the MRP surfaces corresponding to the LSs 

of interest can be well-approximated using a piecewise power law (see Figure 6.7 (a) and (b)). The 

equation of such a line is given by: 
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      1ft ftlong colm D − − =  + −    (6.5) 

where m  denotes the slope of the line, and   is the intercept of the line along the long  axis. 

Having selected such a line with a positive slope equal to m  1ft− , in the design space, a unitless 

non-physical quantity, X, with the role of continuously increasing values of colD  and long  along 

that line is defined as follows: 

      11
ft ftlong colX D

m
 − − = − +     (6.6) 

Mathematically, Eq. (6.6) represents a family of lines with slopes equal to 1
m

−  1ft−  which 

are perpendicular to the original line 1 pD D  (of slope equal to m  1ft− ) with different values of X  

representing the intercepts of these lines along the long  axis as shown in Figure 6.7 (c). 

Comparisons of observed versus assumed (piecewise power law) variation of MRP of LS 

exceedance (for LS-2 for Bridge A as an example) with respect to X for three possible choices of 

the line 1 pD D  (shown in Figure 6.7 (a)) are shown in Figure 6.7 (d) through (f). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 6.7  (a) Three possible definitions of 1 pD D , (b) observed variation of MRP surface (for 

Bridge A, LS-2) along considered 1 pD D ’s, (c) graphical interpretation of X; (d) through (f): 

variation of MRP with X (observes vs assumed) for lines (1) through (3), respectively 

To reasonably capture the variation of MRP of LS exceedance versus X using the proposed 

piecewise power law, it is recommended to use three (i.e., 3p = ) DPs in defining 1 pD D . These 

three DPs 1( ,D  2 ,D  and 3D ) are numbered in order of increasing colD  and ,long i.e., corresponding 

to increasingly stronger designs along the positive gradient line 
1 3D D . The choice of these three 

DPs, however, is not completely arbitrary. The procedure for choosing these DPs is illustrated in 

the flowchart in Figure 6.8. 
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Figure 6.8  Procedure for selection of the three DPs to be assessed in the simplified PBSD 

methodology 

Having carried out full-fledged probabilistic seismic performance assessments for the three 

DPs along 
1 3D D , one can interpolate a final DP, *

D , satisfying multiple risk-targeted performance 

objectives (i.e., exactly satisfying the target MRP of exceedance for one LS while being on the 

safer side for the other LSs) with reasonable accuracy using the assumed piecewise power law 

variation of MRP of LS exceedance versus X. As per this assumption which is shown to hold well 

along 
1 3D D , the value of X , i.e., 

*( ) kLS
X , satisfying a target value of MRP of exceedance, i.e., 

TARGET(MRP) kLS
, for the 

thk  LS such that TARGET 1(MRP) (MRP) (MRP)k k kLS LS LS

i i+   is given by: 

 ( )
( ) ( )

( ) ( )( )* 1

TARGET

1

ln ln
exp ln ln MRP ln MRP

ln MRP ln MRP

k k k

k k

LS LS LSi i
i LS LS i

i i

X X
X X +

+

 −
 = +  −
 − 

  (6.7) 



159 

 

where iX  corresponds to the DP iD  for which the MRP of LS-k exceedance is evaluated (via full-

fledged seismic performance assessment) to be (MRP) kLS

i . *X , representing the final DP, *
D , is 

given by: 

 ( )1* * *max ( ) , , ( ) nLSLS
X X X=   (6.8) 

where n  is the number of LSs considered, in this case, equal to 3. Once a value of *X  is obtained, 

Eq. (6.6) can be invoked to write: 

    * * 1 *1
ft ftlong colX D

m
 − = − +     (6.9) 

where, *

colD  and *

long  are the primary design parameters of the DP *
D . Eq. (6.9) represents the 

equation of a line passing through the DP *
D  and perpendicular to 

1 3D D . The coordinates of *
D

, the point of intersection between the two lines given by Eq. (6.5) and Eq. (6.9), can henceforth 

be obtained as follows: 
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long

D X
m

m
 

−

−

−

 
  −   −  

= =    − −      − −   

D   (6.10) 

Final DPs, *
D s, obtained for the considered testbed OSBs are shown in Figure 6.9. DPs, 

1D , 2 ,D  and 3D , considered in each case are shown as yellow circles, the positive gradient line 

1 3D D  is shown as an arrow, and the DP *
D  is marked as a yellow star. The close proximity of *

D

, in each case, with respect to the boundary of the originally delineated feasible design domain is 

suggestive of the validity of the assumed piecewise power law form for capturing the variation of 

MRP of LS exceedance versus X. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.9  Final DPs, *
D s, satisfying multiple risk-targeted performance objectives shown 

along with the originally delineated feasible design domains, for (a) Bridge A, (b) Bridge B, (c) 

Bridge C, and (d) Bridge MAOC. 

It is to be noted that, in practice, values of colD  and long  are constrained by various factors 

such as the availability of existing prefabricated formwork, restrictions on rebar sizes, etc. In case 

the exact values of 
*

colD  and *

long  obtained are not practically realizable, a viable DP nearest to 

*
D  along 

1 3D D  and on the safer side is chosen as the final design. However, it is possible that 

some other DP in the design space of an OSB near 
1 3D D , and not exactly on it, can be more 
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economical, practicable, and hence more desirable than the next viable safe DP lying along 
1 3D D

. This, along with the need to make risk-informed design adjustments in the context of a design 

process to be carried out in stages (i.e., determining secondary design variables upon an initial 

selection of the primary design variables), highlights the importance of knowing the feasible 

design domain in the design parameter space of an OSB, an approximate delineation of which is 

discussed next. 

6.6.2 Approximate Delineation of a Feasible Design Domain 

From observations of the topology of the MRP interpolation surfaces for the selected set 

of LSs, contour lines of these surfaces can be reasonably assumed as bilinear about the chosen 

positive gradient line 
1 3D D  and also approximately parallel to each other over the primary design 

space. The next step in the simplified PBSD methodology towards delineating an approximate 

feasible design domain is, therefore, to obtain an approximate MRP interpolation surface over the 

primary design space of an OSB for LS-k with bilinear (about 
1 3D D ) and parallel contours. 

The proposed procedure requires full-fledged seismic performance assessments of two 

additional DPs, 
a

rD  with [1, 2]r , that form a rectangle in the design space with 
1 3D D  as the 

diagonal. Bilinear contour lines are split into two segments, each corresponding to region r (see 

Figure 6.10) defined as the region in the design space with respect to the line 
1 3D D  containing 

a

rD . The DP ( ) kLSa

r
D  (yellow diamonds in Figure 6.10) along 

1 3D D  having the same MRP of 

exceeding LS-k as that of 
a

rD , i.e., (MRP) k
a
r

LS

D
, is found, as follows: 
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where ( ) kLSa

rX  , as per Eq. (6.7), is given by: 

 
( ) ( )
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1
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X X
X X +

+

 −  = +  −
 − 

D
  (6.12) 

The orientation of the bilinear contours of the MRP surface for LS-k in region r is hence given by 

k

rm  which is equal to the gradient of the line ( ) kLSa a

r r
D D . The above procedure is graphically 

shown in Figure 6.10. 

 

(a) 

 

(b) 

Figure 6.10  (a) Illustrative definitions of 
a

rD , ( ) kLSa

r
D , and 

k

rm  for LS-k, (b) illustration of the 

procedure to determine 
k

rm  for LS-k 

To obtain an approximate value of MRP of LS-k exceedance for an arbitrary DP, 

T[ , ]col longD =D , lying in region r over the primary design space of an OSB, ( ) kLS
X   
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corresponding to T( ) [ , ]kLS k k

col longD   =D , the point of intersection of 
1 3D D  with a line passing 

through D and having gradient k

rm  is first calculated as: 

    11
( ) ft ftkLS k k

long colX D
m

 −   = − +    (6.13) 

where 

 
 
 

 

 

 

( ) 

1
1

1

ft 1ft

ft 1

k

col

k kk
long r col longr

mD

m Dm



 

−
−

−

   − −  − −    =   
 − − −    − −       

 (6.14) 

This value of X   is used to determine (MRP) kLS

D , the MRP of LS-k exceedance for the DP D, using 

the piecewise power law for MRP versus X assumed to hold along 
1 3D D  as follows: 

 ( )
( ) ( )

( )1

1

ln MRP ln MRP
(MRP) exp ln MRP ln ( ) ln

ln ln

k k

kk k

LS LS

LSLS LSi i
ii
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X X
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+

 −
 = +  −

 −
 

D  (6.15) 

where 1i iX X X +
  . 

Eq. (6.15) represents an approximate MRP interpolation surface over the primary design 

space (i.e., the col longD −  space) of an OSB for LS-k with bilinear (about 
1 3D D ) and parallel 

contours. Approximate feasible design domains delineated for the four testbed OSBs using such 

approximate MRP interpolation surfaces are shown in Figure 6.11. 

As observed from Figure 6.11, the approximate feasible design domains for all four testbed 

OSBs tally reasonably well with the feasible design domains previously outlined using the full-

fledged parametric PBSD methodology, hence validating the simplified PBSD methodology. It is 

to be noted that benefit (i.e., the gain in ability to make risk-informed design adjustments in the 

primary design space of an OSB which could potentially lead to safe and more economic design 

of OSBs) derived from this optional step of approximately delineating the feasible design domain 
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greatly outweigh the computational cost involved in the seismic performance assessments of two 

additional DPs. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.11  Approximate feasible design domains, for (a) Bridge A, (b) Bridge B, (c) Bridge C, 

and (d) Bridge MAOC 

6.6.3 Further Reduction in Computational Workload 

The simplified PBSD methodology, formulated thus far, significantly reduces the 

computational workload, as compared to the full-fledged method, in terms of the number of DPs 

to be assessed towards achieving the goal of finding a DP satisfying multiple risk-targeted 

performance objectives and obtaining a feasible design domain in the design space of an OSB. 
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While maintaining reasonable levels of accuracy of results, it is found that further reduction in 

computational cost is possible in terms of the number of seismic hazard levels considered (from 6 

to 3) and the number of nonlinear time-history analyses performed per hazard level (from 100 to 

as low as 20) in the performance assessment for a single DP. The set of three seismic hazard levels 

to be considered for the performance evaluation of a DP are recommended to be well-spaced in 

terms of MRPs of IM exceedance (e.g., 72 yrs., 975 yrs., and 4975 yrs.). Final DPs, *
D s, satisfying 

multiple risk-targeted performance objectives and approximate feasible design domains hence 

obtained for the considered testbed OSBs are shown in Figure 6.12. The results of this reduced-

workload simplified PBSD method are found to be in reasonable agreement with the previously 

obtained results corresponding to both the full-fledged PBSD method and the simplified PBSD 

method. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.12  Approximate feasible design domains obtained using reduced computational 

workload, for (a) Bridge A, (b) Bridge B, (c) Bridge C, and (d) Bridge MAOC 

6.7 Conclusions 

A simplified PBSD methodology for OSBs is distilled out of a full-fledged parametric 

PBSD methodology previously forwarded by the authors. The full-fledged method is used to 

calibrate and validate the proposed simplified procedure with four real-world testbed OSBs as 

cases in point. With this, a step forward in the direction of a rigorously implemented practicable 

risk-targeted PBSD framework for bridges is taken. The need for such a framework is illustrated 

by the telltale irregularities in the seismic performance (gauged by the MRP of exceeding a 
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practical set of pertinent LSs) of the as-designed testbed OSBs which are designed using traditional 

prescriptive design methods. 

The proposed simplified PBSD method preserves the original idea (of the full-fledged 

parametric PBSD method) of a two-stage design procedure with the first-stage involving the design 

of the bridge columns and the second-stage the determination of other design variables (e.g., the 

ones not restricted by the geometry of the bridge, available real estate, traffic flow requirements, 

etc.) so as to meet code-based requirements of capacity design (to limit the number and locations 

of damage and failure mechanisms to be considered), minimum ductility limitations, reinforcement 

ratio restrictions, etc. A significant bottleneck in the full-fledged method inhibiting its practical 

implementation is the computationally prohibitive step of carrying out extensive ensemble 

NLTHA for the seismic performance assessments of multiple DPs. The purpose of the simplified 

method is therefore to provide, without any compromise in rigor, a computationally more frugal 

alternative to the full-fledged method.  

The reduction in the computational load for the simplified method primarily comes from 

(i) reduction in the number of DPs to be assessed, (ii) reduction in the number of seismic hazard 

levels at which ensemble NLTHA are performed, and (iii) reduction in the size of the ensemble, 

i.e., the number of NLTHA, per seismic hazard level. By implementing a smart combination of 

the above, the desired design objectives of (i) finding a DP in the primary design space of a bridge 

being designed for multiple risk-targeted performance objectives, and (ii) delineating an 

approximate, yet accurate, feasible design domain facilitating risk-informed design adjustments in 

the face of uncertainty, are systematically achieved while striking the right balance between 

computational cost, practicability, and rigor. In addition, the distinguishing features of the 

proposed PBSD methodology are:  
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(i) explicit account of pertinent sources of uncertainty 

(ii) comprehensive seismic damage hazard assessments of OSBs 

(iii) state-of-the-art strain-based criteria for damage assessment 

(iv) ability to accommodate any number of pertinent LSs 

(v) reliance on rigorous probabilistic performance assessments of design iterations (or DPs) to 

arrive at a final DP 

It is believed that the adoption of the proposed PBSD methodology will be extremely 

beneficial in the medium and long-term. An immediate implementation of this rather non-

traditional design method in current bridge design practice might still seem overly optimistic. 

However, such an initial venture will prove crucial in supporting and fostering future research 

work and innovative technological developments in bridge infrastructure engineering. 

6.8 Preview to Chapter 7 

The PBSD framework proposed thus far explicitly considers: (1) the uncertainty in the 

seismic input, and (2) the uncertainty in the capacity of the various LSs. This framework is 

enhanced in the next chapter to account for the following additional sources of uncertainty: (i) the 

aleatory uncertainty associated with FE model parameters, and (ii) the epistemic parameter 

estimation uncertainty associated with using finite datasets to estimate the parameters of the 

probability distributions characterizing FE model parameters and LS fragilities. 
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7 Comprehensive Treatment of Uncertainties in Risk-

targeted Performance-based Seismic Design and 

Assessment of Bridges 

7.1 Abstract 

This study complements and extends a recent work on the development of a rigorous 

framework for risk-targeted performance-based seismic design/assessment of ordinary standard 

bridges (OSBs) in California. Rooted in the formulation of this framework is an updated fully 

probabilistic performance-based earthquake engineering (PBEE) assessment methodology 

wherein metrics of structural performance are formulated in terms of the mean return periods of 

exceedances for several strain-based limit-states (LSs). The originally proposed framework 

explicitly considering: (1) the uncertainty in the seismic input, and (2) the uncertainty in the 

capacity of the various LSs, is extended in this study to account for the following additional 

pertinent sources of uncertainty: (i) the aleatory uncertainty associated with finite element (FE) 

model parameters, and (ii) the epistemic parameter estimation uncertainty associated with using 

finite datasets to estimate the parameters of the probability distributions characterizing the FE 

model parameters and LS fragilities. These additional sources of uncertainty are commonly omitted 

or neglected in PBEE often by invoking that the earthquake ground motion uncertainty is the 

predominant source of uncertainty. However, their inclusion and consistent propagation in seismic 

performance-based assessment of OSBs is imperative to obtain a more complete picture of seismic 

performance, thereby leading to more comprehensive, transparent, and reliable design of these 

simple, yet essential bridges which represent an integral part of lifeline infrastructure systems 
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especially in earthquake-prone regions. The analytical and computational framework previously 

assembled is extended via modular incorporation of these additional sources of uncertainty. Four 

OSB testbeds and their risk-targeted re-designed versions are analyzed with and without these 

additional sources of uncertainty to evaluate their significance.  

7.2 Introduction 

Several studies (Cornell et al. 2002; Ellingwood 2008; Franchin et al. 2018; Hamburger 

2006; Mackie and Stojadinović 2007; Saini and Saiidi 2014) have focused on the applicability of 

the probabilistic performance-based earthquake engineering (PBEE) assessment framework 

(Moehle and Deierlein 2004; Porter 2003), developed under the auspices of the Pacific Earthquake 

Engineering Research (PEER) Center, in the performance-based seismic design (PBSD) of 

structures. Notwithstanding, the seismic design of bridge structures remains a relatively less 

trodden area than for building systems in terms of rigorous/comprehensive PBEE applications. 

Recent studies on PBSD of bridges either rely on simplified closed-form solutions (Mackie and 

Stojadinović 2007), or lack comprehensiveness by estimating the probabilities of damage/limit-

state (LS) exceedances conditioned on earthquakes at discrete seismic hazard levels only (Saini 

and Saiidi 2014), thereby neglecting the contributions of the continuum of seismic hazard levels 

to the total probability of LS exceedance (LSE).  

The somewhat hindered implementation of PBEE in bridge seismic design is addressed in 

Deb et al. (Deb et al. 2021b), wherein a full-fledged risk-targeted PBSD framework, and a 

simplification thereof (Deb et al. 2021c), are proposed for ordinary standard bridges (OSBs), 

which represent the most common reinforced concrete (RC) bridges in California and are designed 

in-house by the California Department of Transportation (Caltrans). The PBSD methods proposed 
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by Deb et al. (Deb et al. 2021b; c) explicitly consider the following basic sources of uncertainty: 

(i) the uncertainty associated with the seismic intensity measure (IM) at the bridge site (Boore and 

Atkinson 2008), (ii) the record-to-record variability of earthquake ground motions given a seismic 

hazard level (a specific value of IM) by using ensembles of ground motions consistent with the 

natural conditional variability of earthquake ground motions given IM (Kohrangi et al. 2017; Lin 

et al. 2013a), and (iii) the uncertainty in the capacity of the various strain-based LSs (Duck et al. 

2018; Goodnight et al. 2016) as represented by the corresponding fragility curves; while ignoring 

the following additional pertinent sources of uncertainty: (i) the aleatory uncertainty associated 

with finite element (FE) model parameters (e.g., constitutive material model parameters, damping 

model parameters), and (ii) the epistemic parameter estimation uncertainty associated with using 

finite datasets to estimate the parameters of the probability distributions characterizing FE model 

parameters and LS fragilities. However, recent studies (Bradley 2010, 2013b; Gokkaya et al. 2016; 

Iervolino 2017; Lee and Mosalam 2005; Li et al. 2020; Liel et al. 2009; Padgett et al. 2013; Pang 

et al. 2014) have shown that these additional sources of uncertainty can be significant and must be 

included for a comprehensive seismic performance assessment of structures. 

Despite being traditionally overlooked, the importance of the inclusion of FE model 

parameter uncertainty in the seismic performance assessment of structures (Gokkaya et al. 2016; 

Lee and Mosalam 2005; Liel et al. 2009) in general, and bridges (Li et al. 2020; Padgett et al. 2013; 

Pang et al. 2014) in particular, has been recently studied, although not extensively. Factors 

contributing to this conventional disregard range from misconceptions about the relative 

importance of this source of uncertainty when compared to the uncertainty in the seismic input, to 

the high computational cost incurred due to the inclusion of this additional source of uncertainty. 

To address the latter concern, some researchers have proposed a preliminary screening of random 
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variables (RVs) based on sensitivity studies to allow for savings in the computational effort 

required (Padgett and DesRoches 2007; Porter et al. 2002; Tubaldi et al. 2012). Some researchers 

have used traditional simplified approaches based on the first-order second-moment (FOSM) 

method (Barbato et al. 2010; Lee and Mosalam 2005) to account for this source of uncertainty, 

while others have looked into the use of more advanced response surface/regression-based 

techniques (Liel et al. 2009; Mangalathu et al. 2018). However, such methods are found to yield 

inaccurate results in the case of highly nonlinear structural systems and/or high dimensionality of 

the vector of RVs describing the FE model parameters (Gokkaya et al. 2016). With the surging 

advent of high-performance computing (HPC) resources and the ready availability of ample 

computational power, Monte-Carlo (MC) simulation emerges as one of the most reliable 

approaches for incorporating and propagating the FE model parameter uncertainty in nonlinear 

time history analyses. MC simulation is also the approach adopted in this paper. 

Most studies [e.g., 18,20] on the effects of parameter estimation uncertainty have primarily 

focused on the use of a finite number of ground motion records in the estimation of the seismic 

demand, and not on the use of finite datasets to estimate the parameters of the probability 

distributions characterizing FE model parameters and LS fragilities. To the authors’ knowledge, a 

comprehensive analytical and computational framework explicitly accounting for all the above-

mentioned sources of uncertainty is not currently available for the seismic performance evaluation 

and PBSD of bridge structures. Available are only studies [e.g., 16–24] that include one or the 

other of these targeted additional sources of uncertainty in addition to the uncertainties associated 

to the earthquake ground motion input and LS capacities. The current study augments the full-

fledged PBSD methodology proposed by Deb et al. (Deb et al. 2021b) via the inclusion, 

quantification, and propagation of the targeted additional sources of uncertainty in the underlying 
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PBEE assessment framework. The analytical and computational framework previously assembled 

is extended via the modular incorporation of these additional sources of uncertainty. Four testbed 

OSBs and their risk-targeted re-designed versions are analyzed with and without these additional 

sources of uncertainty to evaluate their significance. 

7.3 Description of Testbed Bridges 

OSBs are conventional, multiple-span, short (span length less than 91.4 m or 300 ft) and, 

in general, skewed RC bridges with monolithic or monolithic-equivalent superstructure supported 

on soils that may or may not be susceptible to liquefaction and/or scour (Caltrans 2013). The 

current study focuses on the as-designed and risk-targeted re-designed (as per Deb et al. (Deb et 

al. 2021b; c)) versions of four existing California OSBs (see Figure 7.1), namely Bridge A, Bridge 

B, Bridge C, and Bridge MAOC. Bridge A is the Jack Tone Road Overcrossing in Ripon, 

California, which has two spans and one single column bent. Bridge B is the La Veta Avenue 

Overcrossing in Tustin, California, consisting of two spans but supported on a two-column bent. 

Bridge C is the Jack Tone Road Overhead in Ripon, California (located adjacent to Bridge A), 

which consists of three spans supported on two bents with three columns each. Bridge MAOC, the 

Massachusetts Avenue Overcrossing located in San Bernardino, California has five spans 

supported on four bents with four columns each. These bridges primarily consist of prestressed 

concrete box-girder decks supported by column bent(s) on pile foundations and seat-type 

abutments also on pile foundations. 

Three-dimensional nonlinear FE models (consisting of nonlinear fiber-section beam-

column elements and nonlinear springs) of these bridges developed (detailed description provided 

in Deb et al. (Deb et al. 2018, 2021a)) in OpenSees (Mazzoni et al. 2006), the open-source FE 
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analysis software framework developed at PEER, are employed in this study. A schematic 

representation of the computational model of one of the four testbed OSBs (Bridge C) is shown in 

Figure 7.2. Figure 7.3 shows the hysteretic constitutive models used for concrete and reinforcing 

steel as well as different structural components of Bridge C. 

 

Figure 7.1  Locations of testbed OSBs 

 

Figure 7.2  Schematic representation of FE model of Bridge C 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 7.3  FE modeling details for Bridge C: (a) Column and base-hinge fiber-section 

definition; Material hysteretic stress-strain relations for (b) unconfined (red) and confined (blue) 

concrete fibers (Kent and Park 1971; Mander et al. 1988; Scott et al. 1982) using Concrete01 in 

OpenSees, and (c) reinforcing steel (black) fibers (Filippou et al. 1983; Menegotto and Pinto 

1973) using SteelMPF in OpenSees; Nonlinear hysteretic force-deformation relations assigned 

to: (d) backfill distributed spring model (Shamsabadi et al. 2020) using HyperbolicGapMaterial 

in OpenSees, (e) each bearing pad element using elastomericBearingPlasticity in OpenSees, and 

(f) each non-isolated exterior shear key spring (Megally et al. 2002) using Concrete01 in 

OpenSees 

7.4 Framework for Risk-targeted PSBD of OSBs 

7.4.1 Computational Framework for Forward PBEE Assessment 

The four-step PEER PBEE assessment methodology involves (i) site-specific probabilistic 

seismic hazard analysis (PSHA) in terms of a ground motion IM, (ii) probabilistic seismic demand 

hazard analysis (PSDemHA) in terms of engineering demand parameters (EDPs), (iii) probabilistic 

seismic damage hazard analysis (PSDamHA) in terms of practical LSs of interest, and (iv) 

probabilistic seismic loss hazard analysis (PSLHA) in terms of pertinent decision variables (DVs) 
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(e.g., downtime, monetary loss, deaths). With performance measures defined as the mean annual 

rate (MAR), or equivalently its reciprocal, the mean return period (MRP), of LSE for a selected set 

of LSs, and keeping the fourth step of PSLHA outside the scope of this study, the PEER PBEE 

integral quantifying structural performance of a bridge in terms of the MAR of exceedance for LS-

k ,( )LS k takes the following form: 
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where 
,[ | ]bridge

C k k kP EDP EDP EDP  =  is the conditional probability of exceedance of LS-k given 

a specified value   of the associated EDP ( kEDP ), 
,

bridge

C kEDP  denotes the structural capacity 

against the exceedance of LS-k in the bridge being analyzed, | ( | )
kEDP IMf x  is the conditional 

probability distribution function (PDF) of kEDP  given IM = x, ( )IM x  is the MAR of IM exceeding 

the specified value x, 
,

( )bridge
C kEDP

F   is the cumulative distribution function (CDF) of 
,

bridge

C kEDP  

evaluated at   (this is commonly referred to as the fragility function for LS-k), and ( )
kEDP   is the 

MAR of kEDP  exceeding the specified value  . 
,

bridge

C kEDP  in Eq. (7.1) can be written as 
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where MEAS PRED

, ,/C k C kEDP EDP  is the ratio of the experimentally measured to deterministically 

predicted (using a predictive capacity model) values of EDP-k at which LS-k exceedance is 

encountered for different experimentally (or numerically) tested specimens, and PRED,

,

bridge

C kEDP  
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denotes the predicted (using the same predictive capacity model) value of capacity against the 

exceedance of LS-k in the bridge being analyzed. 

Deb et al. (Deb et al. 2021a) recently developed a modular computational implementation, 

in the form of a Python package named PyPBEE (PBEE for Python), of an updated version of the 

PEER PBEE framework assembling different state-of-the-art improved ingredients of the 

multidisciplinary PEER PBEE framework, particularly suited to bridge structures These 

improvements include: (i) introduction of an improved IM, i.e., average spectral acceleration over 

a period range, (ii) conditional mean spectrum-based hazard-consistent and site-specific ground 

motion selection, (iii) use of practical LSs pertinent to seismic damage evaluation of bridge 

columns: concrete cover spalling (LS-1), the onset of longitudinal bar buckling (LS-2), and a 

precursor stage to bar fracture (LS-3), (iii) introduction of material strain-based EDPs (see Table 

7.1) associated with the considered LSs, and (v) identification of reliable experimental/analytical 

studies and predictive capacity models (see Table 7.2) for the development of strain-based fragility 

functions for the considered LSs. Such an effort is of paramount importance and is the first step 

required towards the development of any comprehensive, scientific, and rational PBSD 

method/procedure. It not only equips bridge engineers with a handy analytical tool enabling them 

to rigorously carry out the inevitable step of forward structural performance assessment in solving 

a PBSD problem (which is an inverse assessment problem), but also allows them to readily 

incorporate alternative and more refined ingredients reflecting future improvements and progress 

made in the various aspects of the field. 
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Table 7.1  Definition of LSs and associated EDPs 

# LS Associated EDP 

1 
Concrete cover 

spalling 

Maximum absolute compressive strain in any longitudinal bar of any 

column, ( )( )( )1 max max max bar

comp
col bar t

EDP t=  

2 

Onset of 

longitudinal 

rebar buckling 

Maximum tensile strain in any longitudinal bar of any column 

( )( )( )2 max max max bar

tensile
col bar t

EDP t=  

3 

Precursor to 

longitudinal 

rebar fracture 

Maximum difference of tensile (positive) and compressive (negative) 

strain, with the latter following the former, in any longitudinal bar of 

any column, ( ) ( )( )3 max max max minbar bar

tensile comp
t tcol bar t

EDP t t 
 

 = − 
 

 

Table 7.2  Deterministic predictive capacity models for the considered LSs 

LS # Predictive Capacity Model  

1 
PRED

,1 0.004CEDP =   (Goodnight et al. 2016) (7.3) 

2 
PRED

,2 0.03 700 0.1
y

C trans

s c g

f P
EDP

E f A
= + −


  (Goodnight et al. 2016) (7.4) 

3 
( )PRED 3

,3 0.11 min(0.054, 3.2 ) 0.0175 2.93 0.054 u
C trans bar

y

f
EDP n

f
= + − − −  

 (Duck et al. 2018) 

(7.5) 

Remarks: 

(i) In Eq. (7.4), trans  is the column transverse reinforcement ratio (taken as 0.5 times the 

column longitudinal reinforcement ratio (Duck et al. 2018)), yf  is the yield stress of the 

transverse reinforcement, sE  is the elastic modulus of the transverse reinforcement, P  is 

the axial load on the column due to gravity loads, cf   is the compressive strength of the 

unconfined concrete, and gA  is the gross cross-sectional area of the column. 
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(ii) In Eq. (7.5), barn  is the number of bundles of longitudinal bars in a column, and /u yf f  is 

the ratio of the ultimate to the yield stress of the longitudinal steel reinforcement (taken as 

1.4 (Duck et al. 2018)). 

7.4.2 Risk-targeted PBSD Methodology 

Deb et al. (Deb et al. 2021b) demonstrated the capabilities of PyPBEE by extensively 

utilizing this tool for comprehensive parametric performance assessment studies of four California 

testbed OSBs. The parametric study was carried out over a two-dimensional regular grid 

representing the primary design space of an OSB comprising of values of the column diameter 

( )colD  and column longitudinal reinforcement ratio ( )long  subjected to practical constraints 

reflecting design/construction practice. This study was aimed to investigate the effects of varying 

key/primary structural design parameters on the sought performance measures, i.e., the MRPs of 

exceedance of a set of strain-based LSs pertaining to RC bridge columns, the primary lateral load 

resisting structural components of OSBs. Based on this parametric study, Deb et al. (Deb et al. 

2021b) proposed a full-fledged PBSD framework for OSBs being designed for multiple risk-

targeted performance objectives. This procedure requires a full-blown parametric performance 

assessment of a preliminary design (based on traditional prescriptive measures) of the OSB over 

its primary design space and delineation of a risk-based feasible design domain defined as the 

collection of design points (DPs) in the two-dimensional primary design parameter space of the 

OSB with MRPs of exceeding the considered set of LSs higher than or equal to the respective 

specified target MRPs (225 years for LS-1, 1000 years for LS-2, and 2500 years for LS-3). Upon 

selection of a physically realizable DP in the primary design parameter space (either lying on the 

boundary of, or inside and in the vicinity of the boundary of the feasible design domain), other 
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(secondary) bridge design variables are determined/adjusted and finalized to meet requirements of 

capacity design, code-based minimum ductility capacity and minimum reinforcement, etc., and/or 

other restrictions imposed by the real estate available, traffic flow, etc. Knowledge of the risk-

based feasible design domain of an OSB in its design space provides an extremely valuable 

resource in the context of a design process to be carried out in stages as it can be utilized to make 

risk-informed adjustments in the face of uncertainty, if required, of the primary design variables. 

Figure 7.4 shows the feasible design domain obtained for each of the four testbed OSBs considered 

along with the as-designed version (red star) and one possible redesigned version (yellow star) 

satisfying the three risk-targeted performance objectives of interest. The telltale irregularity in the 

seismic performance of the as-designed testbed OSBs (gauged by the difference in the calculated 

vs expert opinion-based target MRPs of LSEs) observed in this study is indicative of the 

inconsistency and opacity of current design principles and methods that do not explicitly state, 

analyze, and design for risk-targeted performance objectives, but implicitly expect them to be 

satisfied. 

For reasons of practicability, Deb et al. (Deb et al. 2021c) distilled out a computationally 

more economical and simplified PBSD procedure from the findings obtained using the full-fledged 

risk-targeted design framework. The simplified PBSD method, while significantly alleviating the 

computational burden of the full-fledged method, inventively utilizes the findings of the latter to: 

(i) determine accurately the DP at the intersection of a chosen line in the primary design parameter 

space and the boundary of the feasible design domain of a bridge being designed for multiple risk-

targeted performance objectives, and (ii) delineate an approximate, yet sufficiently accurate, 

feasible design domain and identify the LSs controlling its boundary in the primary design 

parameter space of the bridge. 
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For the purpose of this study, the as-designed and redesigned versions (DPs indicated by 

the red and yellow stars, respectively, in Figure 7.4) of the four testbed OSBs are re-evaluated after 

incorporation of the targeted additional sources of uncertainty that were neglected in the original 

study, i.e., (i) the aleatory uncertainty associated with FE model parameters, and (ii) the epistemic 

parameter estimation uncertainty (in addition to (i)) associated with the probability distributions 

characterizing the FE model parameters and LS fragilities. The systematic approach taken to this 

end along with the necessary modifications/upgrades to the originally updated and assembled 

PBEE assessment framework are outlined in the subsequent sections. It is to be noted that the 

choice of the redesigned versions of the testbed OSBs considered in this study is arbitrary, and the 

following discussion would hold equally well for the redesigns of these bridges obtained using the 

simplified PBSD method (Deb et al. 2021c), or any other viable redesigns for that matter. 

 

Figure 7.4  Risk-based feasible design domain, as-designed version (red star), and one possible 

redesigned version (yellow star) for (a) Bridge A, (b) Bridge B, (c) Bridge C, and (d) Bridge 

MAOC. Target MRP contour line for LSs 1, 2, and 3 shown in blue, red, and green, respectively 

7.5 Incorporation of FE Model Parameter Uncertainty 

The PEER PBEE framework integral in Eq. (7.1) can be rewritten as follows showing its 

explicit dependance on the vector ( )Θ  (denoted in bold font) of RVs describing random/uncertain 

FE model parameters: 

 ( ) ( ) ( )
,

, ||
| |bridge

kC k

k

LS k EDPEDP

EDP

F d   = =  ΘΘ
Θ θ θ θ  (7.6) 
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where θ  (in lower case) represents a specific realization (random variate) of Θ . The above form 

of the damage hazard integral clearly shows the dependence of the structural demand and capacity 

on the FE model parameter vector Θ . It is important to note that, for the results shown in Figure 

7.4 where FE model parameter uncertainty is not accounted for, θ  corresponds to the expected 

value of each of the FE model parameters. 

From the standpoint of basic MC simulation, as shown schematically in Figure 7.5, each 

simulated variate ( )( , [1, ... , ])i

Si N Θ
θ  of Θ , sampled from its joint probability distribution ( )f

Θ
θ  

representing the aleatory uncertainty of Θ , corresponds to a randomly realized bridge FE model. 

For each such FE model, a full-fledged probabilistic seismic performance assessment is carried 

out to obtain ( )

, ( )i

LS k θ , the conditional MAR of LSE, given 
( )i=Θ θ , for LS-k as per Eq. (7.6). 

The unconditional MAR of exceedance of LS-k is theoretically defined as the expectation, with 

respect to (w.r.t) the joint PDF of Θ , of the conditional MAR of LSE, given Θ . This can be 

approximated in a MC sense by computing the sample mean estimate of ( )

, ( )i

LS k θ  for 1, ..., Si N= Θ
 

as shown below (note that, for any RV X, its PDF and the expectation operator w.r.t its PDF are 

denoted by ( )Xf x  and [ ]XE  , respectively): 

 

( ) ( ) ( )

( )

, , ,

( )

,

1

1 S

LS k LS k LS k

N
i

LS k

iS

f d E

N

  


=

 =   =  






Θ

Θ Θ

Θ

Θ

θ θ θ Θ

θ

 (7.7) 
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Figure 7.5  Schematic representation of the incorporation of FE model parameter uncertainty 

An important quantity of interest to practicing engineers is the probability of LSE during a 

specified exposure time/period ET . Assuming that – (i) the homogenous Poisson process describes 

the random earthquake temporal occurrences, (ii) the bridge in question (characterized by the FE 

model with 
( )i=Θ θ ) does not deteriorate in time and is restored to its initial undamaged state after 

each damaging earthquake, and (iii) the uncertainty in IM, record-to-record variability given IM, 

and the uncertainty in the normalized part (explained in the next line) of LS capacities (especially 

for load path/history dependent LSs such as rebar buckling/fracture) renew with each earthquake 

occurrence, the temporal exceedances of a specific LS, conditioned on 
( )i=Θ θ , also follow a 

Poisson (censored-Poisson) random counting process. Note that an LS capacity is given by the 

product of a normalized part MEAS PRED

, ,/C k C kEDP EDP  and a predictive capacity part 

PRED, ( )

, ( )bridge i

C kEDP θ ; the former is assumed to renew with each earthquake occurrence while the Θ

-dependent latter part remains invariant in time as the values of parameters 
( ) (i.e., )i

Θ θ  do not 

renew at each earthquake occurrence (in stochastic process theory, the RVs in Θ  are said to be 

non-ergodic in time (Kiureghian 2005)). Thus, the Poisson probability of exceedance of LS-k at 
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least once during the exposure time ET , conditioned on 
( )i=Θ θ  (i.e., for the bridge characterized 

by the FE model with 
( )i=Θ θ ) is given by: 

 ( )( )( ) ( )

, during exposure time  | 1 expi i

E LS k EP LSE T T = = − −  Θ θ θ  (7.8) 

Note that ,LS k , the unconditional MAR of LS-k exceedance (given by Eq. (7.7) as the 

expected value of Poisson-MARs of LSEs conditioned on specific variates of Θ ) is not the MAR 

of a Poisson process and one cannot just invoke Eq. (7.8) with ,LS k  in the right-hand-side to 

determine the unconditional probability of LS-k exceedance during the exposure time ET . The 

unconditional probability of exceedance of LS-k during the exposure time ET  is correctly estimated 

as: 

 

  ( )( ) ( )

( )( )

( )

,

( )

,

1

 in time 1 exp

1
1 exp

S

i

E LS k E

N
i

LS k E

iS

P LSE T T f d

T
N




=

= − −   

 − − 




Θ

Θ

Θ

Θ

θ θ θ

θ

 (7.9) 

7.5.1 Random Variables 

A total of 10 parameters influencing different aspects of FE modeling, e.g., material 

constitutive laws, soil-structure interaction, structural geometry, mass, and viscous damping, are 

modeled as basic RVs. These parameters include (note that a FE model parameter modeled as a 

RV is marked with a tilde): 

• the compressive strength ( )cf   and the modulus of elasticity ( )cE  of unconfined concrete, 

• the yield strength ( )yf , the ultimate strength ( )uf , the uniform strain ( )u , and the 

modulus of elasticity ( )sE , of steel rebars, 
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• the total ultimate strength ( )ultF  and the total secant stiffness 50( )K  (secant stiffness 

corresponding to 0.5 ultF ) of the embankment backfill on each side of a bridge, 

• the RC weight density ( )concw , and 

• the damping ratio 1,( )trans  assigned to the first mode of an OSB in the supposedly more 

critical transverse direction. 

Table 7.3 provides the marginal probability distributions, expected values, and coefficients of 

variation (COVs) of each of these parameters as obtained from the available literature, 

experimental observations, and/or engineering judgment. 
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Table 7.3  Marginal distributions of RVs 

RV (unit) Marginal distribution Expected value COV (%) 

cf   (MPa) 
Normal (Mirza et al. 

1979) 
,1.3 c nomf    (Caltrans 2013) 16 

cE  (MPa) 
Normal (Mirza et al. 

1979) 
,3320 1.3 6900c nomf  +   

(Carrasquillo et al. 1981) 
10 

yf  (MPa) 
Beta (Bournonville et al. 

2004; Mirza and 

MacGregor 1979) 

475.7 (Bournonville et al. 

2004; Caltrans 2013) 

4 (Carreño et al. 

2020) 

uf  (MPa) 
Beta (Bournonville et al. 

2004; Mirza and 

MacGregor 1979) 

656.4 (Bournonville et al. 

2004) 

3 (Carreño et al. 

2020) 

u  (-) 
Normal (Lee and 

Mosalam 2006; Mirza 

and Skrabek 1991) 

0.15 (Lee and Mosalam 2006; 

Mirza and Skrabek 1991) 

20 (Lee and Mosalam 

2006; Mirza and 

Skrabek 1991) 

sE  (MPa) 
Normal (Lee and 

Mosalam 2006; Mirza 

and MacGregor 1979) 

2×105 (Lee and Mosalam 

2006; Mirza and MacGregor 

1979) 

3.3 (Lee and 

Mosalam 2006; 

Mirza and 

MacGregor 1979) 

50K  

(kN/mm) 

Lognormal (Xie et al. 

2019) 
see Table 7.4 20 

ultF  (kN) 
Lognormal (Xie et al. 

2019) 
see Table 7.4 20 

concw  

(kN/m3) 

Normal (Ellingwood et 

al. 1982) 
22.6 (Caltrans 2013) 4 

1,trans  (-) Shifted lognormal 0.01 
50 (Astroza et al. 

2013) 

Table 7.4  Expected values ( [ ]E  ) of 50K  and ultF  (Shamsabadi et al. 2020) 

Bridge Skew (degree) Backwall dim. (h × w) (m) 50[ ]E K  (kN/mm) [ ]ultE F  (kN) 

A 33.0 1.4 × 6.5 81.5 967.5 

B 0.0 1.9 × 19.2 598.7 9.5×103 

C 36.0 1.9 × 24.3 342.3 5.5×103 

MAOC 8.0 1.4 × 12.2 263.1 3.0×103 

Remarks 

(i) The Pearson’s correlation coefficient between the following hyphen (-) separated pairs, 

viz., 
cf  - cE , yf -

uf , yf - u , 
uf - u , and 50K - ultF  are assumed to be 0.40, 0.85 (JCSS 2001; 

Lee and Mosalam 2006; Mirza and MacGregor 1979), -0.50 (JCSS 2001; Lee and Mosalam 
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2006), -0.55 (JCSS 2001; Lee and Mosalam 2006), and 0.50, respectively. All other 

possible pairs of RVs are assumed to be statistically independent. 

(ii) The respective COVs of 
cf   and cE , and their correlation coefficient, are estimated using 

experimental data (corresponding to 
cf   lying between 34.5 MPa to 69 MPa) obtained from 

some recently conducted uniaxial compression tests on concrete cylinders (see Figure 7.6). 

(iii) For ASTM (American Society for Testing and Materials) A 706 Grade 60 rebars (used in 

the testbed OSBs considered), the minimum and maximum values of yf  are 413.7 MPa 

and 588.8 MPa, respectively (Bournonville et al. 2004), while those of 
uf  are 551.6 MPa 

and 799.8 MPa, respectively (Bournonville et al. 2004). 

(iv) Expected values and COVs of 50K  and ultF  for the four testbed OSBs considered are 

calculated using the skew-log-spiral-hyperbolic model (Shamsabadi et al. 2020) assuming 

highly engineered embankment backfills with 95% compaction. The respective COVs of 

50K  and ultF , and their assumed (based on engineering judgment) correlation coefficient 

are in reasonable agreement with Xie et al. (Xie et al. 2019). 

(v) In addition to capturing the natural variability of RC weight density, the assumed COV of 

concw  serves as a proxy for other sources of uncertainty in structural mass/gravity-loads 

such as geometric imperfections of formwork, and design versus built geometric 

characteristics. 

(vi) 1,trans  is assumed to follow the shifted lognormal distribution with a minimum value (shift) 

of 0.0025 to avoid impractically small damping ratios. The expected value of 1,trans  is 

assumed to be 0.01 (small) to prevent double-counting of damping in a nonlinear FE model 
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wherein nonlinear material hysteresis is already explicitly accounted for. To damp out the 

effect of spurious higher modes, a high damping ratio of 0.05 is deterministically assigned 

to a sufficiently large frequency (e.g., 20 Hz). 

(vii) Material parameters defining the stress-strain behavior of confined concrete (Mander et al. 

1988) in bridge columns are modeled as derived RVs (depending on 
cf   and cE  of column 

concrete, and yf  and sE  of transverse rebars). The strain hardening ratio parameter ( )b  of 

longitudinal rebars required in the SteelMPF material definition is modeled as a derived 

RV given by 
1 1( ) (0.5 / )u y u y s sf f f E E − −−  −  . The force-deformation relationship of 

abutment exterior shear keys (Megally et al. 2002) depends on 
cf   of concrete in the 

abutment, and yf  and sE  of the shear key/stemwall reinforcement. The predictive capacity 

model for LS-2 (Eq. (7.4)) depends on 
cf   of column concrete, and yf  and sE  of column 

transverse rebars, while that for LS-3 (Eq. (7.5)) depends on yf  and 
uf  of column 

longitudinal rebars. 
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Figure 7.6  Experimentally measured values of 
cf   and cE  for concrete cylinders tested in 

uniaxial compression. Values in the legend indicate maximum aggregate size (in mm), target 

compressive strength (in MPa) at day (in parentheses), age of specimen in days, and concrete 

unit weight (in kN/m3) of the different batches of specimens tested. 

7.5.2 Complete Vector and Correlation Matrix (Accounting for Random 

Spatial Variability) of FE Model Parameters 

The complete vector Θ  of random FE model parameters and the corresponding matrix R  

of correlation coefficients between pairs of these parameters, approximately accounting for their 

spatial variability in the FE model of an OSB, are defined in this section. Incorporation of random 

spatial variability of FE model parameters can be rigorously achieved via stochastic FE modeling 

requiring a random field representation in terms of the considered RVs. However, for practical 

purposes, a simplified, yet reasonably accurate, approach is adopted in this paper. 

Each plastic hinge region h ( [1,2])h , of column c ( [1,..., ]colc N , where colN  is the 

number of columns in a bridge) is characterized by a vector 
,hinge h col c

Θ  and a correlation matrix 

,hinge h col c
R  given by: 
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,

unconfined transverse longitudinal 
concrete rebarsrebars

, , , , , , ,

hinge h col c

c c y u u s y sf E f f E f E

=

 
 

 
 
  

Θ

, 

,

1.0

0.40 1.0

0.0 0.0 1.0

0.0 0.0 0.85 1.0

0.0 0.0 0.5 0.55 1.0

0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

hinge h col c

sym

=

 
 
 
 
 
 
 − −
 
 
 
 
  

R

    (7.10) 

Each abutment a ( [1,2])a  is characterized by a vector abut a
Θ  and a correlation matrix 

abut a
R  given by 

 50

embankment shear key concrete
backfilland reinforcement

1.0

0.0 1.0

, , , , , 0.0 0.0 1.0

0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.5 1.0

abut a abut a

c y s ult

sym

f f E K F

 
  
  

  = = 
  
   
  

Θ R  (7.11) 

Finally, the vector Θ  and the correlation matrix R  of random FE model parameters are 

defined as follows: 

,

1,..., , ..., , ..., ,
T

hinge h col c abut a

conc transw 

=

 
 

Θ

Θ Θ
, 

,

1

1

hinge h col c

abut a

=

 
 
 
 
 
 
 
 
 
 
 

R

R 0

R

0

   

(7.12) 
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7.5.3 Latin Hypercube Sampling 

Latin hypercube (LH) sampling is a variance reduction technique that is widely used in 

seismic response assessment of structures. This method has been shown to effectively reduce the 

variance of the class of estimators of the form given by Eq.s (7.7) and (7.9) (i.e., the sample mean 

estimator) (McKay et al. 2000), especially for small to moderate sample size, by drawing variates 

of the considered RVs from equiprobable disjoint strata covering the entire range of possible 

values of these RVs. Under incomplete probability information of prescribed marginal 

distributions of the RVs in Θ  and their correlation matrix R , SNΘ  variates of Θ , preserving the 

desired correlation structure, are generated according to the following algorithm (Chang et al. 

1994) (demonstrated in Figure 7.7 (a) through (d) for a special case of correlated RVs 

50[ , ]T

ultK F=Θ  for Bridge A, and SNΘ  = 30.): 

• Generate SNΘ  LH variates 
( )( , 1, ... , )i

Si N= Θ
u  of a vector U (of dimension equal to that of 

Θ ) of independent uniformly distributed (between 0 and 1) RVs (see Figure 7.7 (a)). 

• Transform ( )i
u  to independent standard normal variates ( )i

z  by 
( ) 1 ( )( )i i−= z u , where 

1( )−   is the standard normal inverse cumulative distribution function (CDF) (see Figure 

7.7 (b)). 

• Transform ( )i
z  to correlated standard normal variates 

( )i
y  by inverse orthogonal 

transformation, i.e., ( ) ( )i i

 =  
R R

y Ψ Λ z , where R
Ψ  and R

Λ  are the matrix of eigenvectors 

and the diagonal matrix of eigenvalues of R , the equivalent correlation matrix of R  in 

the standard normal space as per the Nataf model (Liu and Der Kiureghian 1986), 

respectively (see Figure 7.7 (c)) 
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• Transform 
( )i

y  to the targeted variates ( )i
θ  by the following one-to-one nonlinear 

transformation ( ) 1 ( )( ( ))
m

i i

m mF y −

=  , where ( ) ( )i i

m θ , ( ) ( )i i

my y , 1( )
m

F −

   is the marginal 

inverse CDF of m , and ( )   is the standard normal CDF (see Figure 7.7 (d)). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 7.7  LH sampling of correlated RVs 50[ , ]T

ultK F=Θ  for Bridge A (contour lines represent 

the Nataf joint PDF of Θ  and the regions between grid lines represent equiprobable strata) 

7.5.4 Probabilistic Seismic Damage Hazard Analysis with Revised Definition 

of LSs and Associated EDPs 

The considered set of LSs and their associated EDPs, previously defined at the system level 

(i.e., extremum over all plastic hinge regions and columns of a bridge) (Deb et al. 2021b), are now 

redefined at the component level for each plastic hinge region h ( [1,2])h  of column c 

( [1,..., ])colc N  in the FE model realization corresponding to 
( )i=Θ θ  ( [1,..., ])Si N Θ

 as shown in 

Table 7.5. 
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Table 7.5  Revised definitions of LSs and associated EDPs for FE model corresponding to a 

single FE model realization 

# 
LS (for hinge h 

of column c) 
Associated EDP (for hinge h of column c) 

1 
Concrete cover 

spalling 

Maximum absolute compressive strain of any longitudinal rebar 

( )( ),

1 max maxh c bar

comp
bar t

EDP t=  

2 

Onset of 

longitudinal 

rebar buckling 

Maximum tensile strain of any longitudinal rebar 

( )( ),

2 max maxh c bar

tensile
bar t

EDP t=  

3 

Precursor to 

longitudinal 

rebar fracture 

Maximum difference of tensile (positive) and compressive (negative) 

strain, the latter following the former, of any longitudinal rebar 

( ) ( )( ),

3 max max minh c bar bar

tensile comp
t tbar t

EDP t t 


= −  

The damage hazard integral (Eq. (7.6)) is rewritten as follows in terms of the revised 

definition of the kth LS and its associated EDP: 

 ( ) ( ) ( ), ,
,

,

, ( ) ( ) ( )

, | |
| |h c h c

C k k
h c

k

h c i i i

LS k EDP EDP

EDP

F d   =  Θ Θ
θ θ θ  (7.13) 

where , ( )

, ( )h c i

LS k θ  is the MAR of exceedance of LS-k, ( ),

( )

|
|h c

k

i

EDP
 

Θ
θ  is the demand hazard curve 

in terms of 
,h c

kEDP , and ,

,

h c

C kEDP  is the structural capacity against the exceedance of LS-k, all 

corresponding to plastic hinge region h of column c in the bridge FE model realization given by 

( )i=Θ θ . ,

,

h c

C kEDP  given 
( )i=Θ θ  in Eq. (7.13) can be written (in a way similar to Eq. (7.2)) as: 

 ( )
MEAS

,, ( ) PRED, , ( )

, ,PRED

,

|
C kh c i h c i

C k C k

C k

EDP
EDP EDP

EDP
= = Θ θ θ  (7.14) 
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where ( )PRED, , ( )

,

h c i

C kEDP θ  is the predicted (using the predictive capacity model for LS-k) value of 

capacity against the exceedance of LS-k in plastic hinge region h of column c in the bridge model 

realization corresponding to 
( )i=Θ θ . Note that under a lognormal distribution assumption for the 

normalized RV MEAS PRED

, ,/C k C kEDP EDP  with parameters 
,C k  and 

,C k  (which are the mean and the 

standard deviation of the natural logarithm of MEAS PRED

, ,/C k C kEDP EDP , respectively), the RV ,

,

h c

C kEDP  

given 
( )i=Θ θ  also follows a lognormal distribution with parameters given by 

( )PRED, , ( )

, ,log h c i

C k C kEDP + θ  and 
,C k , respectively. 

PSDamHA thus entails the convolution (as per Eq. (7.13)) of the fragility curve for each 

plastic hinge region of each column in each bridge model realization (the first term of the integrand 

in Eq. (7.13)) with the corresponding absolute differential of the demand hazard curve (the second 

term of the integrand in Eq. (7.13)). The MAR of exceedance of LS-k at the system level for a 

particular bridge model realization characterized by 
( )i=Θ θ  is then defined as the most frequent 

(over all plastic hinge regions in different columns of the bridge) rate of LS-k exceedance and 

computed as follows: 

 ( ) ( )( )( ) , ( )

, ,
,

max ..., , ...i h c i

LS k LS k
h c

 =θ θ  (7.15) 

It is noted that, for simplicity, a single component-level performance metric (i.e., the MAR 

of LS-k exceedance in a single plastic hinge region) is evaluated independently/irrespective of the 

performance of other plastic hinge regions in the bridge, thus not requiring the statistical 

correlation between EDP-k’s corresponding to different plastic hinge regions in different columns 

of an OSB. This correlation can be accounted for in future research to rigorously explore the joint 

statistical behavior of LSEs in different regions/parts of a bridge. Finally, Eq.s (7.7) and (7.9) are 



196 

 

invoked to determine the unconditional (or expected value of), w.r.t the joint PDF of Θ , MAR 

and probability (in some exposure period), respectively, of exceedance of LS-k for a bridge. 

7.6 Incorporation of Probability Distribution Parameter Estimation 

Uncertainty 

The damage hazard integral, giving the MAR of exceedance of LS-k at the system level for 

a specific bridge model realization, explicitly conditioned on the probability distribution 

parameters (also referred to as probabilistic model parameters) of the RVs at play is rewritten as 

follows: 

 ( ) ( ) ( ), ,
,,

,

, , ,| , |,
, max ..., | , | , ...h c h c

L kC k k
h c

k

LS k L k L kEDP EDPh c
EDP

F d   
 
 = 
 
 

 Θ Λ Θ
θ λ θ λ θ  (7.16) 

where θ  is a specific variate of Θ  drawn from | ( | )f
ΘΘ Λ Θ
θ λ , the joint PDF of Θ  conditioned on 

a specific variate ( )
Θ
λ  of the vector ( )

Θ
Λ  of parameters (e.g., means, COVs, and correlation 

coefficients) characterizing the probability structure of Θ , and ,L kλ  is a specific variate of the 

vector ,( )L kΛ  of probabilistic model parameters characterizing the normalized fragility function 

corresponding to LS-k. Parameters in Θ
Λ  and ,L kΛ  are modeled as RVs owing to finite-sample 

estimation (say with sn  samples) of these parameters in practice. The unconditional (w.r.t the joint 

PDF of Θ , Θ
Λ , and ,L kΛ ) MAR of exceedance of LS-k is hence given by: 
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Θ Λ
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θ λ

 (7.17) 

where ( )

,

l

L kλ  ,( 1, ... , )L k

Sl N=
Λ

 in Eq. (7.17) are specific variates of ,L kΛ , drawn from its joint PDF 

( )
, ,L k L kf

Λ
λ  for a given sn  (also known as the sampling distribution of ,L kΛ  given sn ; the 

procedure to draw these variates is discussed in the next section), and ( )i
θ  ( 1, ... , )Si N= Θ  are 

variates of Θ  drawn from ( )f
Θ
θ , the predictive (marked with a bar) joint PDF of Θ  defined as 

follows: 

 

( ) ( ) ( )

( )

|

( )

|

1

|

1
|

SN

j

jS

f f f d

f
N =

=  







Θ Θ

Θ

ΛΘ

ΘΘ

Θ Θ Λ Θ Λ Θ Θ

Λ

Θ Λ ΘΛ

θ θ λ λ λ

θ λ

 (7.18) 

where 
( )j

Θ
λ  ( 1, ... , )Sj N= ΘΛ  in Eq. (7.18) are specific variates of Θ

Λ , drawn from its joint PDF 

( )f ΘΛ
λ  for a given sn  (i.e., the sampling distribution of Θ

Λ  given sn ; the procedure to draw 

theses variates is discussed next). The above discussion is schematically described in Figure 7.8 
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Figure 7.8  Schematic representation of the incorporation of probabilistic model parameter 

estimation uncertainty using MCS 

7.6.1 Drawing Variates from the Sampling Distribution of Probabilistic Model 

Parameters 

It is noted that the predictive distribution of FE model parameters, i.e., ( )f
Θ
θ , as per Eq. 

(7.18), follows a mixture distribution defined as the sample mean of ( )

| ( | )jf
ΘΘ Λ Θ
θ λ  ( 1, ... , )Sj N= ΘΛ  

in an MC sense. Thus, ( )f
Θ
θ  can be very accurately and inexpensively approximated 

(schematically shown in Figure 7.8 (b)) using massive MC simulation of an arbitrarily large 

number (say 50,000) of variates ( ( )j

Θ
λ , 1, ... , Sj N= ΘΛ ) of Θ

Λ , provided the joint distribution of Θ
Λ  

(for a given sn ) is known. It is to be noted that the uncertainty in Θ
Λ  is purely epistemic in nature 

with ( )f
ΘΛ Θ
λ  approaching the Dirac delta function 

TRUE( ) −
Θ Θ
λ λ  and ( )f

Θ
θ  approaching the true 

distribution ( )f
Θ
θ  as sn  approaches  . 
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A complete knowledge of the joint distribution of Θ
Λ  for a given sn  requires deriving joint 

distributions of sample statistics which are functions of the underlying RVs in Θ . Closed-form 

solutions of such distributions are available in the literature only for a few special cases when the 

underlying RVs are distributed according to some specific distributions. Deriving the joint 

distribution ( )f
ΘΛ Θ
λ  in closed-form for the general case of correlated RVs (listed in Table 7.3) is 

extremely challenging, if not impossible. Therefore, a MC simulation-based algorithmic expedient 

(described below) is incorporated in this study to generate SN ΘΛ  variates of Θ
Λ  without knowing 

the form of ( )f
ΘΛ Θ
λ  for a given sn . 

• Assume that the known parameters (e.g., means, COVs, and correlation coefficients) 

characterizing the probability structure of Θ  are the true parameters, given by 
TRUE

Θ
λ  

• Repeat the following steps for 1, ... , Sj N= ΘΛ  

o Generate sn  random (not LH) variates of Θ  drawn from TRUE

| ( | )f
ΘΘ Λ Θ
θ λ  (Note that for 

this purpose, the algorithm described under section 7.5.3 can be used by modifying just 

the first step to generate sn  (and not SNΘ ) random (and not LH) variates of independent 

uniformly distributed (between 0 and 1) RVs). 

o With sn  variates of Θ  generated in the previous step, estimate the jth variate of the 

sample mean vector and sample covariance matrix of Θ  

o Compute 
( )j

Θ
λ , i.e., the jth variate of parameters characterizing the probability structure 

of Θ  using the quantities estimated (using sn  samples) in the previous step. 

The algorithm described above holds equally well for generating ,L k

SN
Λ

 variates of ,L kΛ  

to be used in Eq. (7.17) without knowing the form of 
, ,( )

L k L kf
Λ

λ  for a given sn . For LS-k, replace 
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Θ  in the above algorithm with the RV MEAS PRED

, ,/C k C kEDP EDP  which is assumed to follow a 

lognormal distribution with the probabilistic model parameter vector ,L kΛ  defined as , ,[ , ]C k C k 

, where ,C k  and ,C k  (note the tilde on each parameter representing a RV) are the mean and the 

standard deviation of MEAS PRED

, ,ln ( / )C k C kEDP EDP , respectively. 

7.6.2 Predictive Distribution of FE Model Parameters 

Having generated SN ΘΛ  variates of Θ
Λ , a Nataf model of the predictive joint distribution 

of Θ  corresponding to a specific value of sn  can now be constructed wherein each RV in Θ  can 

be assumed to marginally follow a mixture distribution with a PDF and a CDF given by 
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|

1
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|
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

ΛΘ

Θ

ΛΘ

Θ

ΛΛ

Θ

ΛΛ

λ

Θ Λ Λ
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 (7.19) 

The total mean vector (denoted by Θ
μ ) and the total covariance matrix (denoted by 

ΘΘ
Σ ) 

of Θ  to be used in defining the Nataf model of the predictive joint distribution can be determined 

as follows (note that a subscripted expectation ( [ ]E  ) or covariance ( cov[ ] ) operator indicates the 

operation w.r.t the joint PDF of the vector in the subscript): 

  

( )

|

( ) ( )

|

1 1

1 1
| |

S s

j

N n
s j

j sS s

E E
N n= =

 =    
ΛΘ

Θ Θ Θ

Θ ΛΘ

Θ Λ Θ Λ Θ ΘΛ

μ

μ Θ Λ θ λ  (7.20) 
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 (7.21) 

The algorithm described under section 7.5.3 can now be invoked to generate LH variates 

of Θ  drawn from its predictive joint distribution. Note that the marginal inverse predictive CDF, 

1( )
m

F −

  , required in the algorithm can be obtained numerically. 

7.7 Case Studies and Discussion of Results 

Three analysis cases are considered to evaluate the impact of the inclusion of the targeted 

additional sources of uncertainty in the seismic performance assessment of the considered OSBs. 

These cases include: 

• Case 1: As-designed testbed OSBs (red stars in Figure 7.4) with FE model parameter 

uncertainty only, 

• Case 2: As-designed testbed OSBs (red stars in Figure 7.4) with both FE model parameter 

uncertainty and probability distribution parameter estimation uncertainty, and 

• Case 3: Redesigned testbed OSBs (yellow stars in Figure 7.4) with both FE model 

parameter uncertainty and probability distribution parameter estimation uncertainty. 

For each testbed OSB analyzed under each analysis case, 50 variates of the FE model parameter 

vector Θ  are generated. Seismic performance evaluation of each FE model realization is carried 

out using 300 ground motion records (50 ground motion records at six different seismic hazard 

levels with MRP of IM exceedance ranging from 72 years to 4975 years) selected for that specific 

FE model realization. For analyses cases 2 and 3, 50,000 variates of Θ
Λ , the vector of probabilistic 
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model parameters characterizing the distributions of FE model parameters, are generated to 

accurately approximate the predictive distributions (corresponding to a finite dataset size 5sn = ) 

of FE model parameters. However, the number of variates of ,L kΛ , the vector of probabilistic 

model parameters characterizing the normalized fragility function for LS-k, is intentionally kept 

equal to the number of variates generated for the FE model parameter vector Θ  (i.e., ,L k

S SN N=
ΛΘ

). This is done to induce the same level of estimation error due to the finite sampling of both ,L kΛ  

and Θ , the two vectors of RVs w.r.t which the unconditional MAR of LS-k exceedance is 

estimated using Monte Carlo simulation (see Eq. (7.17)). 

Table 7.6, shows the following quantities of interest computed for the selected set of LSs 

as comma-separated ordered lists of three values corresponding to the three analyses cases 

mentioned above: 

• the COV of MRP of LSE, 

• the ratio of E[MRP] (the expected value of MRP of LSE estimated by the sample mean of 

MRP of LSE values obtained for each FE model realization) to MRPDet (the respective 

MRP of LSE evaluated for the deterministic FE model without accounting for any of the 

additional uncertainties) 

• the probability of MRP of LSE being less than MRPTarget (the respective specified target 

MRP of LSE, i.e., 225 years for LS-1, 1000 years for LS-2, and 2500 years for LS-3),  

• the probability of MRP of LSE being less than MRPDet,  

• the non-Poisson probability of LSE in an exposure period equal to 50 years and how it 

compares (in terms of % change) to the corresponding Poisson probability evaluated for 

the deterministic FE model case. 
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Table 7.6  Results of seismic performance assessment corresponding to analyses cases 1, 2, and 3 

shown as comma-separated ordered lists of values; (all values in %) 

OSB LS 
COV 

of MRP 

E[MRP] 

MRPDet 

P[MRP < 

MRPTarget] 

P[MRP < 

MRPDet] 

P[LSE in 50 years] 

Case: 1, 2,  

3 

Change w.r.t 

Det. case 

A 

1 
36.8, 48.7, 

41.4 

92.5, 98.2, 

101.0 

40.0, 49.5, 

14.4 

62.0, 64.0, 

55.5 

20.4, 20.1, 

14.0 

19.3, 17.6, 

13.8 

2 
42.7, 51.9, 

46.1 

98.1, 97.8, 

107.0 

24.0, 31.5, 

22.8 

60.0, 68.4, 

54.6 

4.09, 4.2, 

3.86 

18.1, 21.3, 

11.9 

3 
48.2, 54.9, 

43.4 

100.0, 99.4, 

101.0 

36.0, 45.1, 

50.8 

68.0, 68.3, 

59.3 

1.8, 1.84, 

2.06 

17.2, 19.5, 

16.4 

B 

1 
37.0, 38.0, 

39.6 

83.7, 83.3, 

87.6 

6.0, 10.6, 

19.2 

78.0, 73.9, 

69.7 

13.6, 13.8, 

15.4 

31.6, 33.6, 

28.2 

2 
55.1, 49.4, 

43.8 

75.7, 73.9, 

83.4 

8.0, 8.52, 

32.5 

80.0, 82.8, 

75.4 

2.98, 2.97, 

4.34 

63.4, 62.8, 

40.3 

3 
75.2, 58.8, 

51.6 

73.1, 68.8, 

74.2 

30.0, 28.2, 

68.4 

82.0, 83.7, 

83.8 

1.59, 1.56, 

2.57 

88.9, 85.8, 

63.4 

C 

1 
37.0, 48.7, 

49.9 

64.8, 63.9, 

78.6 

0.0, 0.0,  

15.4 

92.0, 89.1, 

77.7 

4.95, 5.47, 

13.5 

71.7, 89.6, 

53.8 

2 
42.1, 49.7, 

42.2 

58.5, 62.6, 

67.9 

0.0, 0.0,  

53.6 

92.0, 90.4, 

88.6 

0.733, 0.724, 

5.69 

94.6, 92.2, 

73.1 

3 
45.0, 57.5, 

40.3 

51.9, 59.0, 

64.9 

0.0, 0.0,  

90.0 

94.0, 90.6, 

91.2 

0.326, 0.309, 

3.43 

123.0, 111.0, 

78.5 

MAOC 

1 
17.6, 27.9, 

31.1 

78.4, 77.5, 

77.6 

94.0, 91.2, 

22.3 

90.0, 84.7, 

83.0 

26.9, 28.1, 

16.6 

26.2, 31.9, 

37.1 

2 
20.8, 28.5, 

28.7 

72.6, 72.3, 

71.6 

100.0, 99.8, 

58.8 

94.0, 91.0, 

90.3 

10.8, 11.2, 

5.39 

40.7, 45.6, 

49.3 

3 
23.7, 28.4, 

30.2 

66.2, 64.5, 

65.9 

100.0, 100.0, 

93.8 

96.0, 95.8, 

93.8 

7.09, 7.4, 

3.25 

56.9, 63.7, 

64.0 

Based on the results of analysis case 1 (first of the three comma-separated values in Table 

7.6), it can be concluded that the inclusion of FE model parameter uncertainty induces significant 

variability (indicated by large COVs ranging from 18 – 75 %) in the computed MRPs of LSEs. 

The estimates of the unconditional (expected value of) MRPs of LSEs are found to be lower than 

the respective MRPs computed for the deterministic FE models of the considered OSBs by as 

much as 48%, barring the case of Bridge A where these quantities are found to be almost equal 

(note that MRP of LSE is directly proportional to the reliability/safety of an OSB against the 

exceedance of the considered LS). The probabilities that MRPs of LSEs for the as-designed testbed 

OSBs are less than the respective specified target MRP values are found to be moderate to high 

(up to 40 %) for Bridges A and B lying on the conservative side of their respective feasible 
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domains, extremely low (~ 0 %) for Bridge C lying too conservatively inside the feasible domain, 

and exceedingly high (~ 100 %) for the as-designed Bridge MAOC lying clearly in the unsafe 

domain. More interestingly, the probabilities that MRPs of LSEs for these OSBs are less than the 

respective MRPs of LSEs evaluated for deterministic FE models (in other words, the probabilities 

that the actual performance of these bridges are worse than that assessed without accounting for 

FE model parameter uncertainty) are consistently found to be very high (60 – 96 %). Finally, the 

probabilities of LSEs in 50 years are also found to be consistently higher (by even more than 100 

%) than the corresponding probabilities evaluated for the deterministic FE models. 

The inclusion of probability distribution parameter estimation uncertainty on top of FE 

model parameter uncertainty is found to moderately influence the results of seismic performance 

assessment. The results of analysis case 2 (second of the three comma-separated values in Table 

7.6) are sometimes found to be even counter-intuitive with smaller values of COVs than those 

computed in analysis case. This additional source of uncertainty is also found to somewhat increase 

(sometimes even decrease), when compared to the results of analysis case 1, the amount by which 

the probabilities of LSEs in 50 years are more than these probabilities evaluated for the 

deterministic FE models. This is attributed to the fact these quantities are themselves estimated 

using a finite number of ground motion records and FE model realizations. Hence, the effect of 

the inclusion of probability distribution parameter estimation uncertainty is seemingly buried in 

the noise associated with the finite-sample estimation (w.r.t the number of ground motion records 

and FE model realizations) of the quantities of interest shown here. 

Although found to be not significantly influential, the incorporation of probability 

distribution parameter estimation uncertainty on top of FE model parameter uncertainty requires 

minimal additional computational overhead. The performance assessment of the redesigned 
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versions of the testbed OSBs, under analysis case 3, is therefore carried out accounting for both 

sources of uncertainty. Figure 7.9 shows the resulting probability density normalized histograms 

and empirical CDFs of MRPs of LSE obtained for the four testbed OSBs analyzed. As expected, 

analysis case 3 not only results in high COVs (ranging from 29 – 52 %) of the MRPs of LSEs, but 

also leads to increase (w.r.t the deterministic FE model case) in probabilities of LSEs in 50 years 

exposure period. It is important to note that the redesigned version of each testbed OSB analyzed 

under analysis case 3 is a DP satisfying all risk-targeted performance objectives. However, in the 

PBSD procedure used to arrive at these DPs, the targeted additional sources of uncertainty are not 

accounted for. Inclusion of these sources of uncertainty (more importantly, FE model parameter 

uncertainty) in the seismic performance assessments of these presumably ideal design situations 

now reveals a more transparent and complete picture. The probabilities that the MRPs of LSEs for 

these DPs are smaller than the respective previously assessed target-achieving values (using 

deterministic FE models) are found to be remarkably high (59 % for Bridge A, 84 % for Bridge B, 

91 % for Bridge C, and 94 % for Bridge MAOC), thereby deeming these DPs to be of questionable 

reliability. 
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Figure 7.9  Probability density normalized histograms and empirical CDFs of MRPs of LSE for 

the redesigned versions of the testbed OSBs considered; note that the diamond represents 

E[MRP], while the circle represents MRPDet; also note that the horizontally hatched region 

represents P[MRP < MRPTarget] while the angled hatched region represents P[MRP < MRPDet] 

7.8 Conclusions 

This paper presents the analytical and computational extension of a risk-targeted PBSD 

framework by incorporating the following sources of uncertainty into the underlying performance 

assessment methodology – (i) the aleatory uncertainty associated with FE model parameters, and 
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(ii) the epistemic finite-sample uncertainty in the estimated parameters of the probability 

distributions characterizing the FE model parameters and LS fragilities. These uncertainties are 

meticulously quantified via RV modeling of FE model parameters recognizing their random spatial 

variability in a bridge, characterization of their joint probability structure, and determination of the 

predictive distribution of FE model parameters and LS fragilities in the presence of finite-sample 

estimation uncertainty. The targeted uncertainties are then propagated using MC simulation with 

LH sampling in the seismic performance assessment of the as-designed and redesigned (using the 

original PBSD methodology) versions of four representative testbed California OSBs. 

Incorporation of FE model parameter uncertainty induces significant variability in bridge 

seismic performance assessed in terms of the MRPs of exceedance of a set of three practical strain-

based LSs that are pertinent to the seismic evaluation of bridge structures and physically 

meaningful to practicing bridge engineers. The MRP of LSE, which is a function of random FE 

model parameters, can be viewed as a derived RV. Random MRPs of LSEs are generally found to 

exhibit high COVs with expected values smaller than their deterministic counterparts (i.e., those 

evaluated for a deterministic FE model) thereby indicating worse reliability/safety against the 

exceedances of the considered LSs. The probability of MRP of LSE being less than its deterministic 

counterpart (i.e., the probability of actual bridge performance being worse than that assessed for a 

deterministic FE model) is also found to be high in general. Furthermore, the inclusion of this 

source of uncertainty systematically leads to higher (w.r.t the deterministic FE model case) 

probabilities of LSEs in specified target exposure periods. Accounting for probability distribution 

parameter estimation uncertainty on top of FE model parameter uncertainty is found to moderately 

impact these results. Notwithstanding, a rigorous procedure is outlined that inventively achieves 

this optional inclusion with minimal additional computational overhead. 
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The importance of a comprehensive treatment of uncertainties in the context of PBSD is 

established by re-evaluating the seismic performance of risk-targeted redesigns of the considered 

bridges initially chosen such that multiple performance objectives are deterministically satisfied 

without accounting for the targeted sources of uncertainty. The redesigned OSBs are now found 

to violate the targeted performance objectives with high probabilities thus revealing the true 

(probabilistic) picture of their seismic performance. This brings in transparency in design/decision-

making in the face of uncertainty, one of the key promises of PBSD. 

Bolstered by a modular computational seismic performance assessment framework 

developed by the authors along with the availability of high-performance computing resources, 

this study provided the unique opportunity of investigating the effect of pertinent sources of 

uncertainty that are typically ignored in seismic performance-based assessment/design of ordinary 

bridges. The modular design of the underlying computational framework can be further leveraged 

to study the effect of structural model discrepancy or model form uncertainty (the subject of an 

upcoming paper), which is another major, yet seldom accounted for, source of uncertainty. 
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8 Conclusions 

8.1 Summary of Research Work 

Probability-based design provides the most scientific and rational solution to an 

earthquake-resistant structural design problem wherein an inherently uncertain structural system 

needs to be designed such that its performance entails, not only resisting highly uncertain seismic 

demands, but also meeting reliably societal demands of life safety, economy, and resiliency. The 

classification of structural performance should therefore be predicated on an acceptable risk, 

defined by the risk tolerance of society as a whole. Fueled by such needs, the structural engineering 

community, over the last few decades, has moved on towards implementing the philosophy of 

probabilistic performance-based earthquake engineering (PBEE) in the realm of structural seismic 

design. Probabilistic performance-based seismic design (PBSD) involves designing a structure to 

meet more refined and non-traditional performance objectives explicitly stated in terms of the risk 

associated with the exceedance of critical damage limit-states (LSs) or certain tolerable thresholds 

of monetary loss, downtime, etc. (i.e., probability of LS or threshold exceedance in a specified 

exposure time). The recent advent of PBEE in seismic design practice of buildings motivated this 

research wherein a simplified risk-targeted PBSD methodology, building on the comprehensive 

probabilistic PEER PBEE framework, is developed for Ordinary Standard Bridges (OSBs) in 

California. The overarching goal of this project is to address, without any compromise in rigor, the 

somewhat hindered implementation of the PEER PBEE framework in seismic bridge design 

practice owing to its all-inclusive nature, pressing computational requirements and inherent 

theoretical complexity. 
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A summary of the overall approach taken to arrive at a solution to the formulated problem 

can be best presented by classifying the entire bulk of the conducted research into three distinct 

phases:  

I. Implementation of the PEER PBEE assessment framework 

II. Full-fledged parametric probabilistic performance assessment 

III. Development of simplified risk-targeted PBSD methodology 

IV. Comprehensive treatment of uncertainties in PBSD 

The following sections provide a general idea of the work entailed in each of these three 

phases. 

8.1.1 Phase I: Implementation of the PEER PBEE Assessment Framework 

At the very outset, the road taken involves a meticulous implementation of the PEER PBEE 

assessment framework for OSBs which lies at the heart of the proposed PBSD methodology. The 

performance measure sought for in this study is the MAR of LS exceedance or, equivalently its 

reciprocal, the mean return period (MRP) of LS exceedance. The task of probabilistically 

predicting the future seismic performance of a bridge, in terms of the MRPs of exceeding a selected 

set of LSs, is broken down into three analytical steps, namely: probabilistic seismic hazard analysis 

(PSHA), probabilistic seismic demand hazard analysis (PSDemHA), and probabilistic seismic 

damage hazard analysis (PSDamHA). Improvements from state-of-the-art literature relating to 

various steps of the PEER PBEE analytical framework are also incorporated. 

PSHA is formulated in terms of an improved (in terms of “efficiency” and “sufficiency”) 

earthquake IM, i.e., average spectral acceleration over a specified period range. Owing to the 

novelty of the chosen IM, standard PSHA tools do not include seismic hazard assessments in terms 
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of this IM. Hence, a convenient, yet rigorous, workaround is adopted based on the results of 

standard PSHA for spectral accelerations at single periods such that the seismic hazard in terms of 

the average spectral acceleration can be reasonably approximated. 

A state-of-the-art ground motion selection algorithm is implemented for the selection of 

site-specific risk-consistent ensembles of ground motion records. The algorithm employs a 

conditional mean spectrum-based ground motion selection to pick earthquake records from a 

strong motion database that, as an ensemble, follow the complete probability structure of the target 

conditional spectrum defined for a given seismic hazard level. 

PSDemHA and PSDamHA are formulated in terms of a set of novel strain-based 

engineering demand parameters (EDPs) and LSs. Three LSs mainly concerning reinforced concrete 

bridge columns, the primary lateral load resisting component of an OSB, are defined. These LSs 

are selected as: LS 1: concrete cover spalling, LS 2: a precursor stage to longitudinal rebar buckling, 

and LS 3: the onset of longitudinal rebar fracture. These LSs are pertinent to the seismic evaluation 

of bridge structures and meaningful to practicing engineers. A fourth LS corresponding to an 

abutment exterior shear key reaching its shear strength capacity is also considered. Material strain-

based EDPs associated with the LSs related to the desired failure mode involving bridge columns 

(i.e., hinging of columns) are defined. Strain-based EDPs correlate better to damage than 

traditionally used displacement based EDPs (e.g., column drift, plastic hinge rotation). 

Strain-based fragility functions based on reliable experimental data or high-fidelity 

numerical data are developed or inherited for the considered LSs through proper identification of 

relevant test and research programs previously conducted. Fragility functions, typically 

constructed using experimental or numerical data pertaining to specimens or models with different 

geometric, material and mechanical characteristics, need to be normalized such that they can be 
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used for structural components of any specified characteristics. Appropriate normalizing 

deterministic capacity prediction equations are identified and used for this purpose. 

The proposed PBEE assessment framework is computationally implemented as a Python 

library, named PyPBEE (PBEE for Python). PyPBEE admits modular class definitions of analysis 

steps (i.e., PSHA, ground motion selection (GMS), nonlinear time-history analysis (NLTHA), 

PSDemHA, and PSDamHA) and the interface variables (i.e., OSB, IMs, EDPs, and LSs). PyPBEE 

is designed to readily accommodate alternative and more refined/effective definitions of its 

components reflecting future improvements made in the various steps of the multidisciplinary 

PBEE methodology. 

The improved version of the PEER PBEE framework is utilized for the seismic 

performance assessment of four real-world California testbed OSBs located in regions with 

disparate levels of seismicity. The selected testbed bridges also cover a wide range of geometrical 

parameters such as number of spans, span lengths, number of columns per bent, skew angle, etc. 

It is noted that caution is exercised in the mitigation of non-collapse related convergence issues in 

the iterative scheme used to integrate the nonlinear equations of motion. This helps avoid the 

common practice of “throwing away” non-converged analyses results, which can lead to the 

introduction of significant biases in the results of probabilistic analyses. 

8.1.2 Phase II: Full-fledged Parametric Probabilistic Performance Assessment 

A two-dimensional design space is defined in terms of the primary design variables, viz., 

column diameter ( )colD  and column longitudinal reinforcement ratio ( )long , to which the 

exceedances of the selected set of LSs are believed to be most sensitive. The chosen design 

variables pertain to the reinforced concrete bridge columns because they constitute the primary 
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lateral load resisting structural components of an OSB. Moreover, column plastic hinge regions 

are also meant in a seismic event to act as structural fuses and thereby dissipate energy through 

inelastic material behavior. All other bridge design parameters to be determined by meeting the 

requirements of capacity design, minimum ductility capacity, reinforcement ratio restrictions, etc., 

and/or restricted by the geometry of the bridge, available real estate, traffic requirements, etc. are 

referred to as secondary design variables. In the parametric study of the four testbed OSBs, values 

of the respective secondary design variables are taken as per the original designs of the testbed 

OSBs, except for the column transverse reinforcement ratio ( )trans , the value of which is 

expressed as a practical fraction of long , i.e., 0.5trans long = . 

A fully automated workflow incorporating an efficient utilization of available computing 

resources is developed for a smooth and seamless execution of the full-fledged parametric 

probabilistic seismic performance assessment of the considered bridges. The seismic performance 

of re-designs of the considered testbed OSBs generated by varying the primary design parameters, 

subject to practical constraints, are evaluated using the improved PEER PBEE framework 

described. This involved the extensive parallelization of computationally independent jobs, which 

was made possible through Stampede2, the flagship supercomputer at the University of Texas at 

Austin’s Texas Advanced Computing Center (TACC). It is noteworthy to mention here that for 

the sizable number of nonlinear time-history analyses performed for each of the re-designs of the 

considered testbed bridges, convergence of the numerical integration of the equations of motion 

over the entire duration of the seismic input is also ensured in an automated fashion. 

Finally, for each considered LS, a piecewise-linear interpolation surface for MRP of 

exceedance is constructed using the computed MRPs over a triangulated regular grid representing 

the primary design space of an OSB. Topologies and contours of these surfaces are explored. 
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Feasible design domains, i.e., collection of design points in the two-dimensional design parameter 

space with MRPs of LS exceedances higher than or equal to the respective specified targets, are 

identified. Safety of the as-designed bridges and feasibility of their re-designs are examined.  

8.1.3 Phase III: Development of Simplified Risk-targeted PBSD Methodology 

The concept of a feasible design domain in the design parameter space can be utilized to 

make risk-informed design decisions while trying to satisfy multiple risk-based performance 

objectives. The full-fledged parametric probabilistic seismic performance assessment framework 

can therefore be very well used for the design of a new OSB unless its computational cost is 

prohibitive for the computational resources available. For reasons of practicability in current 

bridge design practice, a computationally more economical, simplified, non-traditional, risk-

targeted PBSD procedure is distilled out of this study by inventively utilizing the findings of the 

full-fledged parametric probabilistic seismic performance assessment carried out for the testbed 

bridges. The proposed simplified design methodology is able to: 

(i) find a design point in the primary design parameter space of a bridge being designed for 

multiple risk-based performance objectives; and  

(ii) delineate an approximate, yet sufficiently accurate, feasible design domain and identify the 

LSs controlling its boundary in the primary design parameter space of the bridge, 

at a computational cost significantly lower than that of the full-fledged parametric method. 

Upon selection of primary design variables, secondary design variables are to be 

determined and adjusted to meet requirements of capacity design, code-based minimum ductility 

capacity and minimum reinforcement, etc., and/or other restrictions imposed by the real estate 

available, traffic flow, etc. After all primary and secondary design variables have been determined, 
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a final check of structural performance is required to ensure that the final design still satisfies the 

specified risk-based performance objectives. 

8.1.4 Phase IV: Comprehensive treatment of uncertainties in PBSD 

The underlying PBEE assessment methodology of the PBSD framework proposed thus far 

explicitly considers only the following basic sources of uncertainty: (i) the uncertainty associated 

with the seismic IM, (ii) the record-to-record variability of earthquake ground motions given a 

seismic hazard level (a specific value of IM) by using ensembles of ground motions consistent 

with the natural conditional variability of earthquake ground motions given IM, and (iii) the 

uncertainty in the capacity of the various strain-based LSs as represented by the corresponding 

fragility curves. The PBEE assessment methodology is now significantly enhanced by the 

inclusion of the following additional sources of uncertainty: (i) the aleatory uncertainty associated 

with FE model parameters (e.g., constitutive material model parameters, damping model 

parameters), and (ii) the epistemic parameter estimation uncertainty associated with using finite 

datasets to estimate the parameters of the probability distributions characterizing FE model 

parameters and LS fragilities. 

These uncertainties are meticulously quantified via random variable modeling of FE model 

parameters recognizing their random spatial variability in a bridge, characterization of their joint 

probability structure, and determination of the predictive distribution of FE model parameters and 

LS fragilities in the presence of finite-sample estimation uncertainty. The targeted uncertainties are 

then propagated using Monte-Carlo simulation with Latin Hypercube sampling in the seismic 

performance assessment of the as-designed and redesigned (using the original PBSD 

methodology) versions of four representative testbed California OSBs. 
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8.2 Highlight of Findings 

Findings of the present research related to the phases of work described above are grouped 

accordingly and presented next. 

8.2.1 Findings of Phase I 

As expected, the results of PSDamHA of the testbed bridges show that exceedances of 

increasingly severe LSs, i.e., LSs 1 through 3, concerning the reinforced concrete bridge columns 

for OSBs have increasing values of MRPs. The as-designed testbed bridges considered, as assessed 

using the implemented PEER PBEE framework, exhibit a wide range of seismic performance as 

measured by the MRPs of exceeding the selected set of LSs. The MRPs of exceeding LSs 1 through 

3 are found to cover a wide range of values from 208 to 1,709 years for LS 1, 626 to 13,245 years 

for LS 2, and 1,080 to 34,185 years for LS 3. The MRP of exceeding the 4th LS, namely that of an 

abutment exterior shear key reaching its shear strength capacity, is found to range between 85 and 

5,844 years depending on the type of shear key used in the bridge. Bridges A, B and C, having 

monolithic non-isolated type abutment shear keys, show high MRPs of exceeding LS 4, while the 

MRP of exceedance associated with this LS is found to be relatively small (compared to those of 

Bridges A, B, and C) for Bridge MAOC with sacrificial isolated type shear keys specified in its 

design. It is also found that the MRP of abutment shear key LS exceedance is almost the same as 

that of exceeding the critical LS of rebar fracture for Bridges A and B. Shear keys of Bridges C 

and MAOC, on the other hand, are found to exceed this LS with MRPs smaller than the respective 

MRPs of exceeding the LS of concrete cover spalling.  

The implementation of the present improved version of the PEER PBEE framework, 

developed with painstaking details, is highly advantageous. A design method based on or distilled 
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out of this rigorous assessment framework will be fittingly risk-informed, rational, and scientific. 

The MAR or MRP of a damage LS exceedance for an OSB, according to the PEER PBEE 

framework, is computed by aggregating or accounting for the contributions from all seismic hazard 

levels. As shown by the disaggregation with respect to IM of the MRP of exceedance of (or the 

hazard level associated with) any of the damage LSs considered, different levels of IM (both 

corresponding to higher and lower MRPs of exceedance as compared to the specific MRP of the 

damage LS exceedance) contribute to the damage LS hazard. This provides a scientific basis to 

disapprove an incomplete method according to which, for the sake of computational and/or 

theoretical convenience, one chooses to design a bridge such that specified LSs are not exceeded 

(with a specified confidence levels) at specified discrete seismic hazard levels (e.g., earthquake 

ground motions with an MRP of IM exceedance of 975 years, 2475 years, etc.).  

8.2.2 Findings of Phase II  

For each of the three LSs pertaining to bridge columns (i.e., LSs 1 through 3), a piecewise-

linear interpolation surface for MRP of exceedance is constructed using the computed MRPs over 

a triangulated regular grid representing the primary design space of an OSB. Although the overall 

topologies of the MRP surfaces over the design space are accurate, some topology details are by-

products of the type of interpolation assumed (here piecewise linear). It is important to notice that 

the MRP of LS exceedance results obtained for the as-designed bridges, in each case, are in 

excellent agreement with the topology of the MRP surfaces despite being excluded from the data 

used for constructing these surfaces. 

Increasing values of the two primary design variables (both related to the design of the 

bridge columns) result in stronger, and thereby translating to safer designs characterized by lower 
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MARs or higher MRPs of LS exceedances. The MRPs of exceeding these LSs, pertaining to 

seismic design of OSBs, are found to be indeed sensitive to the chosen primary design variables 

thereby justifying their choice.  

Contour lines of the MRP surfaces for LSs 1, 2, and 3, corresponding to respectively 

specified target MRPs selected based on discussions with and feedback from expert Caltrans 

engineers, are superimposed in the primary design space to delineate the overall feasible design 

domains. This also helps identify the governing LSs along the boundaries of the feasible design 

domains. The seismic performance of the as-designed version of a testbed bridge is gauged by the 

location of the corresponding design point in the design parameter space relative to the overall 

feasible design domain of the bridge (i.e., does the as-designed bridge belong to the feasible design 

domain and how close is it from its boundary?). While some of the as-designed testbed bridges are 

found to be conservative, sometimes too much, with respect to the selected LSs and corresponding 

target MRPs, others are found to lie near the borderline of safety, or clearly in the unsafe domain. 

This telltale irregularity in the seismic performance of the as-designed testbed OSBs (gauged by 

the difference in the estimated vs expert opinion-based target MRPs of LSEs) observed in this 

study is indicative of the inconsistency and opacity of current design principles that do not 

explicitly state, analyze, and design for risk-targeted performance objectives, but implicitly expect 

them to be satisfied. 

The idea of a full-fledged parametric probabilistic seismic performance assessment 

framework lends itself to the formulation of PBSD of OSBs as an inverse assessment problem. A 

two-stage design procedure is thus proposed. The first-stage involves the design of the bridge 

columns, the primary lateral load resisting component of OSBs. Values of primary design variables 

are first selected such that multiple risk-targeted performance objectives are met. This involves 
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selection of a physically realizable design point in the primary design parameter space either lying 

on the boundary of, or inside and in the vicinity of the boundary of, the feasible design domain. 

The second-stage involves the determination of secondary design variables (the ones not restricted 

by the geometry of the bridge, available real estate, traffic flow requirements, etc.) to meet code-

based requirements of capacity design (to limit the number and locations of damage and failure 

mechanisms to be considered), minimum ductility limitations, reinforcement ratio restrictions, etc. 

The categorization of an important column design parameter, the transverse reinforcement 

ratio ( )trans , for columns with low expected axial load ratios (typically less than 15% under 

combined gravity and earthquake loading) which is typical of OSBs, as a secondary design variable 

is investigated. A non-negligible impact of trans  on the results of seismic performance assessment 

of OSBs brings out the importance of trans  in the context of seismic design of bridge columns. 

Hence, a smart and practical initial choice of this, rather critical, secondary design variable (e.g., 

0.5trans long = ) is essential as the primary design variables are being determined. 

A comparative study is conducted between feasible design domains obtained using closed-

form solutions to the MRP of LS exceedances, available in the literature, and the one obtained 

numerically via the full-fledged probabilistic performance assessment method. This is done to 

assess the potential viability of LRFD-like design formats based on such closed-form solutions to 

be used as the sought PBSD methodology. These closed-form solutions still require the 

computationally most demanding step of running ensemble nonlinear time-history analyses for a 

bridge, while circumventing the rather inexpensive numerical evaluation of the demand and 

damage hazard integrals. Moreover, the results obtained from such simplified closed-form 

solutions, that require going through almost the same rigmarole as that in the numerical full-

fledged method, are often inaccurate by a significant margin. 
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8.2.3 Findings of Phase III  

The topologies of the MRP surfaces for LSs 1, 2, and 3, in the primary design parameter 

space are explored. These topologies are found to be well-captured by piecewise power functions. 

Based on this observation, a step-by-step strategy requiring the performance evaluation of only 3 

design points is devised that allows locating a design point, which satisfies multiple risk-based 

performance objectives, in the primary design parameter space of a bridge under design. An 

approximate delineation of the feasible design domain is systematically achieved with the 

performance evaluation of 2 additional design points. This approach is based on the observation 

that contours of the MRP surfaces for the LSs considered can be approximated by parallel bilinear 

lines in the primary design space. 

The computational requirement of the full-fledged parametric method is therefore 

significantly reduced by requiring the performance evaluation of only 3 (or 5) design points to 

realize the risk-targeted design objectives. The computational workload is further reduced by 

drastically curtailing the total number of nonlinear time-history analyses to be run for the 

performance evaluation of a single design point while still maintaining reasonable levels of 

accuracy. 

Results of the reduced-workload, simplified, non-traditional, risk-targeted, performance-

based seismic design procedure applied to the considered testbed bridges are found to tally well 

with the results of the full-fledged parametric method, thereby validating the proposed PBSD 

methodology. 
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8.2.4 Findings of Phase IV 

Incorporation of FE model parameter uncertainty induces significant variability in bridge 

seismic performance assessed in terms of the MRPs of exceedance of the considered set of LSs. 

MRPs of LS exceedances are generally found to exhibit high coefficient of variations with 

expected values smaller than their deterministic counterparts (i.e., those evaluated for a 

deterministic FE model) thereby indicating worse reliability/safety against the exceedances of the 

considered LSs. The probability of actual bridge performance being worse than that assessed for a 

deterministic FE model is also found to be high in general. Accounting for probability distribution 

parameter estimation uncertainty on top of FE model parameter uncertainty is found to moderately 

impact these results. Notwithstanding, a rigorous procedure is outlined that inventively achieves 

this optional inclusion with minimal additional computational overhead. 

The importance of a comprehensive treatment of uncertainties in the context of PBSD is 

established by re-evaluating the seismic performance of risk-targeted redesigns of the considered 

bridges initially chosen such that multiple performance objectives are deterministically satisfied 

without accounting for the targeted sources of uncertainty. These redesigned bridges when 

assessed via consistent quantification and propagation of pertinent uncertainties, are found to have 

high probabilities of violating the targeted performance objectives. The reliability of these 

presumably ideal design points is found to be questionable in light of the true (probabilistic) picture 

of their seismic performance. Comprehensive treatment of uncertainties in seismic performance 

assessment thus brings in transparency in design/decision-making in the face of uncertainty, one 

of the key promises of PBSD. 
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8.3 Recommendations for Future Research 

The completed research work is neither exhaustive nor fully devoid of limitations. A brief 

account of identified issues, possible solutions, and relevant avenues for further research is 

presented in this section. 

At the heart of performance-based earthquake engineering is the explicit quantification of 

relevant uncertainties and their consistent propagation through the performance assessment 

framework. Bolstered by a modular computational seismic performance assessment framework 

developed herein, along with the availability of high-performance computing resources, this study 

provided the unique opportunity of investigating the effect of pertinent sources of uncertainty that 

are typically ignored in seismic performance-based assessment/design of ordinary bridges. The 

modular design of the underlying computational framework can be further leveraged to study the 

effect of structural model discrepancy or model form uncertainty, which is another major (Terzic 

et al. 2015), yet seldom accounted for, source of uncertainty. Some avenues that can be explored 

in this regard are listed below: 

(i) improvement of computational models of OSBs to account for the effect of complicated 

yet realistic phenomena, e.g., flexure-shear interaction in bridge piers, and bar bond-slip in 

the column-foundation and/or column/bent-cap interface due to strain penetration, the soil-

structure interaction effects at the column foundations and/or at the abutments, response of 

structures to the vertical and/or rotational component of ground motions, etc.;  

(ii) use of more elaborate hysteretic material stress-strain laws and force-deformation 

relationships for different structural components;  
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(iii) improvement of the modeling of skewed bridge abutment components by calibrating and 

validating such models with experimental data from reliable sources and/or numerical data 

from analyses conducted using full-fledged physics-based high-fidelity FE models; 

(iv) use of different/improved damping models in the nonlinear response history analyses of 

OSBs 

Future research can focus towards alleviating the computational cost involved in the 

uncertainty quantification/propagation phase of the proposed seismic performance 

assessment/design framework via the use of advanced response surface/regression-based 

techniques. However, such methods are found to yield inaccurate results in the case of highly 

nonlinear structural systems coupled with high dimensionality of the vector of random variables 

describing the FE model parameters. In this regard, a screening of random variables based on 

global sensitivity studies would help rigorously, accurately, and efficiently propagate the 

uncertainty in FE model parameters using response surface/regression-based techniques, thus 

bringing about savings in the required computational effort. 

This work quantifies the seismic performance of an OSB in terms of the most frequent 

(over all plastic hinge regions in different columns of the bridge) rate of LS exceedance. The 

statistical correlation between performance metrics (i.e., the joint statistical behavior of the 

performance metrics) computed for different plastic hinge regions in a bridge can be studied to 

better quantify system-level bridge performance. Also, for simplicity, a single component-level 

performance metric (i.e., the MAR of LS-k exceedance in a single plastic hinge region) is evaluated 

independently/irrespective of the performance of other plastic hinge regions in the bridge, thus not 

requiring the statistical correlation between EDP-k’s corresponding to different plastic hinge 
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regions in different columns of an OSB. This correlation can be accounted for in future research 

to rigorously explore the joint statistical behavior of LSEs in different regions/parts of a bridge. 

Both a scalar IM for PSHA and a scalar EDP associated with each damage LS of interest 

for both PSDemHA and PSDamHA are considered in this study. Vector-valued IMs are found to 

characterize/predict more accurately, by exhibiting higher levels of “efficiency” and “sufficiency”, 

the seismic demand on structural systems. A single predictive demand parameter can be 

insufficient to perfectly predict whether an LS is reached or exceeded (i.e., other demand 

parameters may also play a role). A vector of statistically correlated EDPs can therefore be used 

to more accurately predict the exceedance of damage LSs of interest. 

Explicit consideration of near fault effects in PSHA and a risk-consistent incorporation of 

velocity pulses in the selected ensembles of ground motion records are kept beyond the scope of 

this project. This can lead to an underestimated seismic risk to OSBs as evaluated using the current 

implementation of the PEER PBEE framework. 

The set of LSs considered in this paper for the evaluation of seismic performance of OSBs 

is neither exhaustive nor definitive. The proposed framework is developed with such LS definitions 

as mere placeholders and is readily able to accommodate more refined (e.g., more mechanics-

based) definitions of LSs and/or a larger number of LSs. Moreover, the influence of the 

exceedances of other LSs (e.g., full development of the shear key damage mechanism) on the 

exceedances of critical LSs related to column damage/failure should be investigated. 

The seismic performance measure selected in this study is the MAR of LS exceedance or, 

equivalently, the MRP of LS exceedance. This can be taken one step further by defining 

performance measures in terms of the hazard associated with the exceedance of specific values of 
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decision variables, e.g., monetary loss, downtime, deaths, etc., which are more meaningful to 

stakeholders and/or decision makers (e.g., government officials).  

The proposed simplified PBSD methodology is formulated by retaining the inherent rigor 

of the PEER PBEE framework lying at its crux. As a result, a rather non-traditional design method 

is proposed requiring complete probabilistic performance assessments of design iterations (i.e., 

design points). In this regard, efforts can be channeled to convert the non-traditional method 

distilled out of this project, without significantly compromising its rigor, into a more traditional 

design format requiring LRFD-like checks of structural demand-to-capacity ratios. Furthermore, 

different techniques (e.g., uncertainty aggregation methods) can be explored to reorganize/simplify 

the nested approach (taken herein) for the inclusion and treatment of different sources of 

uncertainty considered in this work. Future research can also be directed towards reproducing, in 

a consistent but simpler way, the effects of the nested inclusion of these uncertainties. Care should 

be exercised, however, so that the achievement of a middle ground between rigor and practicability 

does not involve any over-simplification. 

Having identified the combined values of primary design variables satisfying multiple risk-

based performance objectives, the proposed PBSD method recommends determining most 

secondary design variables (e.g., the ones not restricted by the geometry of the bridge, available 

real estate, traffic flow requirements, etc.) so as to meet code-based requirements of capacity 

design, minimum ductility limitations, reinforcement ratio restrictions, etc. These requirements 

typically involve the use of prescriptive measures and/or safety factors such that undesirable 

consequences are prevented with some level of confidence. Empirical observations, experience 

and/or engineering judgment have dictated the prescription of such measures and safety factors in 
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codes of practice. Future research can be directed towards developing a more transparent and more 

probabilistically explicit determination of these secondary design variables. 

Finally, the viability of the proposed simplified PBSD methodology currently relies on a 

two-dimensional primary design parameter space for OSBs. The possibility of extending the 

proposed simplified method to accommodate more than two primary design variables, especially 

for non-ordinary, larger, and more complicated bridge structures, should be investigated. 
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