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Abstract

Shape-constrained regression in misspecified and multivariate settings

by

Billy Fang

Doctor of Philosophy in Statistics

Designated Emphasis in Communication, Computation and Statistics

University of California, Berkeley

Professor Adityanand Guntuboyina, Co-chair

Professor Martin J. Wainwright, Co-chair

In the context of nonparametric regression, shape-constrained estimators such as isotonic
regression have a number of attractive properties. The shape constraints are typically mild
and are often justified by the context of the estimation problem, allowing for more flexible
fits than a more restrictive parametric model; yet at the same time such estimators can be
computed efficiently and have reasonable risk properties. Additionally, these estimators are
free of tuning parameters and often exhibit adaptation to certain types of hidden structure
in the data (e.g., isotonic regression and piecewise constant functions). Properties of such
estimators in the setting of univariate function estimation are well-studied. This thesis
provides some new insights for shape-constrained regression on two fronts: misspecification
and the multivariate setting.

In Chapter 2, we study least squares estimators under polyhedral convex constraints.
Many estimators fall in this category, including shape constrained estimators like isotonic
regression and convex regression, as well as other estimators like LASSO. We give an explicit
geometric characterization of how the risk of such an estimator behaves when the truth it
is trying to estimate lies outside of the constraint set, and show how this result generalizes
what is known in the well-specified setting. This result leads to a better understanding
of how isotonic regression behaves when applied in settings where the true function is not
isotonic. This chapter is joint work with Adityanand Guntuboyina.

There has been recent interest in understanding shape-constrained estimation in the mul-
tivariate setting. It is known that multivariate isotonic regression suffers from the curse of
dimensionality, making it unsuitable for most high-dimensional applications. In Chapter 3,
we propose and analyze an alternate multivariate generalization of isotonic regression that
uses a notion of monotonicity called entire monotonicity. It is restrictive enough to avoid the
curse of dimensionality (the dependence on the dimension is only in the logarithmic terms),
yet rich enough to include non-smooth functions like rectangular piecewise constant func-
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tions. In parallel, we also propose and analyze a generalization of total variation denoising
using a notion called Hardy-Krause variation, and show it has similar computational and
statistical properties as the entirely monotonic estimator. This chapter is joint work with
Adityanand Guntuboyina and Bodhisattva Sen.

Finally in Chapter 4, we show how entire monotonicity can be viewed as the introduction
of “positive interactions” to the interaction-less additive monotonic model. In making this
comparison between entire monotonicity and additive monotonicity, we introduce various
intermediate models that have different combinations of interactions. We prove a risk rate
for some of these intermediate models that generalizes the analogous risk rate for entire
monotonicity established in the previous chapter, and also discuss hypothesis testing for
interaction terms in these models. This chapter is joint work with Adityanand Guntuboyina
and Hansheng Jiang.
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Chapter 1

Introduction

In regression, we obtain noisy observations yi = f ∗(xi) + ξi of an unknown function f ∗ from
some function class F at design points x1, . . . ,xn and seek to estimate f ∗. In the particular
case of nonparametric shape-constrained regression, the function class F imposes certain
constraints on its functions. One of the most well-studied examples of shape-constrained
regression is isotonic regression [14, 5], where F consists of functions f : [0, 1] → R that
are nondecreasing. Another common example is convex regression (e.g., [48, 27]), where F
consists of convex functions. The choice of function class is usually informed by the context
of the regression problem, where the practitioner knows from domain knowledge that the
unknown function f ∗ satisfies some shape constraint.

Shape-constrained regression has a number of attractive properties. The assumptions
imposed on the functions are usually relatively mild and justified by the context of the
problem, allowing much more flexibility when compared to more restrictive models like
parametric models. One feature that distinguishes shape-constrained regression from other
nonparametric regression problems is that one can use least squares or maximum likelihood
without explicit regularization to obtain estimators that are free of tuning parameters. Cer-
tain shape-constrained least squares estimators also exhibit adaptation to certain types of
hidden structure in the unknown function. For example, in isotonic regression, if the un-
known function f ∗ is piecewise constant and nondecreasing, then the least squares estimator
with respect to the class of nondecreasing functions can estimate the function nearly as well
as an oracle estimator that knows the locations of the constant pieces [19]. The survey
by Guntuboyina and Sen [45] provides more examples and discussion of shape-constrained
regression. In this thesis, we provide some insight into shape-constrained regression on two
fronts: misspecification and the multivariate setting.

1.1 Misspecification

In Chapter 2, we study the risk of constrained least squares estimators

θ̂(Y ) = argmin
θ∈C

‖θ − Y ‖2,
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with respect to some closed convex set C ⊆ Rn. Here, Y is a noisy vector with mean θ∗ ∈ C
and variance σ2I. Many least squares estimators (including isotonic regression and convex
regression) can be cast in this form by identifying θ∗ with (f ∗(x1), . . . , f ∗(xn)). Oymak
and Hassibi [70] showed that the risk of such estimators is governed by the geometry of the

constraint set C near θ∗. Specifically, they showed that the normalized risk σ−2E‖θ̂(Y )−θ∗‖2

is upper bounded by the statistical dimension of the tangent cone of C at θ∗, and that this
upper bound is tight in the limit as σ ↓ 0. However, the above results are under the well-
specified assumption θ∗ ∈ C. In practice we cannot ensure that θ∗ ∈ C when using this
estimator, so it is worth asking how the estimator behaves in the misspecified setting θ∗ /∈ C.
Bellec [10] proved an analogous upper bound for the normalized risk, but we show that,
unlike in the well-specified setting, this upper bound is not tight as σ ↓ 0. In particular we
provide an explicit formula for the low noise limit of the normalized risk in the case where
C is a polyhedral cone, and observe that it can be strictly smaller than the upper bound.
Essentially, the reason why the risk can be smaller in the in misspecified setting is due to
certain directions of the noise in the observations being eliminated under the least squares
projection to the boundary of C. One application of this result is an explicit characterization
of how properties of the target function govern the risk of isotonic regression when the
target function is not nondecreasing. This chapter is based on joint work with Adityanand
Guntuboyina [33].

1.2 Multivariate shape constraints

There has been recent interest in understanding shape-constrained estimators in the multi-
variate setting, such as regression with multivariate functions f : [0, 1]d → R, or estimation
of multivariate densities. However, in many cases the estimators suffer from the curse of
dimensionality, in that the risk is of the order n−1/d, so that amount of observations needed
to obtain a certain level of error grows exponentially in the dimension d (e.g., multivariate
isotonic regression [47] and log-concave density estimation [53]). Thus it is meaningful to
find classes of multivariate functions that are rich enough to be useful, but not so large
that they suffer from the curse of dimensionality. In Chapter 3, we propose and analyze a
multivariate generalization of isotonic regression using a notion called entire monotonicity.
Entire monotonicity has appeared in other contexts before, but has not been studied in this
nonparametric regression framework. We prove an upper bound and a minimax lower bound
for this least squares estimator to show that it avoids the curse of dimensionality to some
extent: the main term of the risk is n−2/3(log n)

2d−1
3 , so the price of going from univariate

isotonic regression to this estimator is only in additional logarithmic factors. Although this
class is small enough to avoid the curse of dimensionality, it is still rich enough to contain
non-smooth functions like rectangular piecewise constant functions. In fact, it adapts to
rectangular piecewise constant functions in the same way that univariate isotonic regression
adapts to piecewise constant functions. In this chapter we also propose a multivariate gener-
alization of univariate total variation denoising using a notion called Hardy-Krause variation.
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Compared to the entirely monotonic estimator, this Hardy-Krause variation denoising es-
timator drops the shape constraint at the cost of introducing a tuning parameter, but has
similar statistical properties to the entirely monotonic estimator. Additionally, we show that
these two estimators can be computed by solving a nonnegative least squares problem and a
LASSO problem respectively. This chapter is joint work with Adityanand Guntuboyina and
Bodhisattva Sen [34].

Finally in Chapter 4, we provide a different perspective on entire monotonicity by
comparing it to the additive monotonic model [6], which considers the class of functions
f : [0, 1]d → R of the form f(x) =

∑d
j=1 fj(xj) where each fj is nondecreasing . This latter

model is relatively simple, since each function’s behavior can be decomposed into individual
univariate monotonic functions, but it excludes the possibility of interactions among its co-
variates: the effect of a change in one covariate when the other covariates are held fixed does
not depend on the actual value of those other covariates. We show how entire monotonicity
introduces interaction terms into the additive model, but also imposes a shape constraint
on these interaction terms. In making this comparison between entire monotonicity and
additive monotonicity, we introduce various intermediate models that have different combi-
nations of interactions. We prove a risk rate for some of these intermediate models and show
that it is almost the same as the analogous risk rate n−2/3(log n)

2d−1
3 for entire monotonicity

established in the previous chapter, except the exponent of the logarithmic factor is reduced.
In the context of linear regression, hypothesis testing is often used to decide whether to
include certain interaction terms in a model. In this chapter we also describe how to set up
a likelihood ratio test to test for the inclusion of interaction terms in these models, and we
apply a result of Menéndez et al. [62] to show that it is dominated by another likelihood
ratio test. This chapter is joint work with Adityanand Guntuboyina and Hansheng Jiang.
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Chapter 2

On the risk of convex-constrained
least squares estimators under
misspecification

2.1 Introduction

In many statistical problems, it is common to model the observations y1, . . . , yn ∈ R as
yi = θ∗i + σzi where θ∗1, . . . , θ

∗
n are unknown parameters of interest, z1, . . . , zn represent noise

or error variables that have mean zero, and σ > 0 denotes a scale parameter. In vector
notation, this is equivalent to writing

Y = θ∗ + σZ,

where Y := (y1, . . . , yn), θ∗ := (θ∗1, . . . , θ
∗
n), and Z := (z1, . . . , zn). A common instance of

this model is the Gaussian sequence model, where the z1, . . . , zn are independent standard
Gaussian random variables, in which case the model can be written as Y ∼ N(θ∗, σ2In),
where In is the n× n identity matrix.

A standard method of estimating θ∗ from the observation vector Y is to fix a closed
convex set C of Rn and use the least squares estimator under the constraint given by θ ∈ C.
Specifically, the least squares projection is

ΠC(x) := argmin
θ∈C

‖x− θ‖2,

(where ‖ · ‖ denotes the standard Euclidean norm in Rn), and one estimates θ∗ by

θ̂(Y ) := ΠC(Y ).

When C is taken to be {Xβ : ‖β‖1 ≤ R} for some deterministic n× p matrix X and R > 0,
this estimator becomes LASSO in the constrained form as originally proposed by Tibshirani
[80]. When C is taken to be {Xβ : minj βj ≥ 0}, this estimator becomes nonnegative least



CHAPTER 2. CONSTRAINED LEAST SQUARES UNDER MISSPECIFICATION 5

squares. Note that shape restricted regression estimators are special cases of nonnegative
least squares for appropriate choices of X (see, for example, Groeneboom and Jongbloed
[41]). Also, note that both sets {Xβ : ‖β‖1 ≤ R} and {Xβ : minj βj ≥ 0} are examples of
polyhedral sets. Therefore in most applications, the constraint set C is polyhedral.

There exist many results in the literature studying the accuracy of θ̂(Y ) as an estimator
for θ∗. Most of these results make the assumption that θ∗ ∈ C. In this chapter, we shall
refer to this assumption as the well-specified assumption. Essentially, the constraint set C
can be taken to be a part of the model specification, and the assumption θ∗ ∈ C means that
the true mean vector θ∗ satisfies the model assumptions, i.e. the model is well-specified.

Under the well-specified assumption, it is reasonable and common to measure the accu-
racy of θ̂(Y ) via its risk under squared Euclidean distance. More precisely, the risk of θ̂(Y )
is defined by

R(θ̂, θ∗) := Eθ∗‖θ̂(Y )− θ∗‖2

where Eθ∗ refers to expectation taken with respect to the noise Z in the model Y = θ∗+σZ.
Many results on R(θ̂, θ∗) in the well-specified setting are available in the literature. Of

all the available results, let us isolate two results from Oymak and Hassibi [70] because of
their generality. In the setting where Z ∼ N(0, In), Oymak and Hassibi [70] first proved the
upper bound

1

σ2
R(θ̂, θ∗) ≤ δ(TC(θ

∗)), (2.1)

where TC(θ
∗) denotes the tangent cone of C at θ∗, defined by

TC(θ
∗) = cl {α(θ − θ∗) : α ≥ 0, θ ∈ C} , (2.2)

(“cl” denotes closure), and where δ (TC(θ
∗)) denotes the statistical dimension of the cone

TC(θ
∗). In general, the statistical dimension of a closed cone T ⊆ Rn is defined as

δ(T ) := E‖ΠT (Z)‖2, (2.3)

where the expectation is with respect to Z ∼ N(0, In). Many properties of the statistical
dimension are covered by Amelunxen et al. [3].

In the case when the constraint set C is a subspace, the estimator θ̂(Y ) is linear and, in
this case, it is easy to see that δ(TC(θ

∗)) is simply the dimension of C, so that inequality
(2.1) becomes an equality. For general closed convex sets, it is therefore reasonable to ask
how tight inequality (2.1) is. It is not hard to construct examples of C and θ∗ ∈ C where
inequality (2.1) is loose for fixed σ > 0. However Oymak and Hassibi [70] proved remarkably
that the upper bound in (2.1) is tight in the limit as σ ↓ 0 (we shall refer to this in the sequel
as the low σ limit); that is, when Z ∼ N(0, In),

lim
σ↓0

1

σ2
R(θ̂, θ∗) = δ(TC(θ

∗)). (2.4)

In summary, Oymak and Hassibi [70] proved that σ2δ(TC(θ
∗)) is a nice formula for the risk

of θ̂(Y ) that is, in general, an upper bound which is tight in the low σ limit.
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We remark that although Oymak and Hassibi [70] state the results (2.1) and (2.4) for
the specific case Z ∼ N(0, In), their proof automatically extends to the more general set-
ting where Z is an arbitrary zero mean random vector with E‖Z‖2 < ∞ (the components
Z1, . . . , Zn of Z can be arbitrarily dependent), provided we generalize the definition (2.3) of
statistical dimension by taking the expectation with respect to Z, without assuming Z is
standard Gaussian. We refer to this modification of the definition (2.3) as the generalized
statistical dimension of the cone T . As a slight abuse of notation, we use the same nota-
tion δ(·) for this more general concept, with the understanding that the expectation in the
definition is with respect to the distribution of Z. By dropping the Gaussian assumption,
the generalized statistical dimension loses much of the interpretability and nice geometric
properties of the usual statistical dimension [3], but still serves as an abstract notion of the
size of a cone T with respect to a distribution Z.

This chapter deals with the behavior of the estimator θ̂(Y ) when the assumption θ∗ ∈ C
is violated. We shall refer to the situation when θ∗ /∈ C as the misspecified setting. Note that,
in practice, one can never know if the unknown θ∗ truly lies in C. It is therefore necessary
to study the behavior of θ̂(Y ) under misspecification.

For the misspecified setting, one must first note that it is no longer reasonable to measure
the performance of θ̂(Y ) by the risk R(θ̂, θ∗), simply because θ̂(Y ) is constrained to be in
C and hence cannot be expected to be close to θ∗ which is essentially unconstrained. There
are two natural notions of accuracy of θ̂(Y ) in the misspecified setting, which we call the
misspecified risk and the excess risk. The misspecified risk is defined as

M(θ̂, θ∗) := Eθ∗‖θ̂(Y )− ΠC(θ
∗)‖2, (2.5)

and the excess risk is defined as

E(θ̂, θ∗) := Eθ∗‖θ̂(Y )− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2. (2.6)

The misspecified risk, M(θ̂, θ∗), is motivated by the observation that, in the misspecifed case,
the estimator θ̂(Y ) is really estimating ΠC(θ

∗) so it is natural to measure its squared distance
from ΠC(θ

∗). On the other hand, the excess risk, E(θ̂, θ∗), measures the squared distance of
the estimator from θ∗ relative to the squared distance of ΠC(θ

∗) from θ∗. We refer the reader
to Bellec [10] and Section 2.2 for some background and basic properties on these notions of
accuracy under misspecification. For example, it can be shown that M(θ̂, θ∗) is always less
than or equal to E(θ̂, θ∗) (see (2.12)). It is easy to see that both of these risk measures equal
R(θ̂, θ∗) in the well-specifed case i.e.,

R(θ̂, θ∗) = M(θ̂, θ∗) = E(θ̂, θ∗), when θ∗ ∈ C.

An analogue to inequality (2.1) for the case of misspecification has been proved by Bellec
[10, Corollary 2.2], who showed that

1

σ2
M(θ̂, θ∗) ≤ 1

σ2
E(θ̂, θ∗) ≤ δ(TC(ΠC(θ

∗))). (2.7)
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Again, although this was originally stated for Z ∼ N(0, In), it holds for arbitrary zero mean
random vectors Z with E‖Z‖2 <∞. Note the similarity between the right-hand sides of the
inequalities (2.1) and (2.7). The only difference is that the tangent cone at θ∗ is replaced by
the tangent cone at ΠC(θ

∗) in the case of misspecification. Moreover, in the well-specified
setting, the above inequality (2.7) reduces to (2.1).

It is now very natural to ask if the second inequality in (2.7) is tight in the low σ limit. One
might guess that this should be the case given the result (2.4) for the well-specified setting.
However, it turns out that (2.7) is not sharp in the low σ limit. The main contribution of
this chapter is to provide an exact formula for the low σ limit of M(θ̂, θ∗) and E(θ̂, θ∗) when
C is polyhedral. Specifically, in Theorem 2.3.1, we prove that if the noise Z is zero mean
with E‖Z‖2 <∞ and if C is polyhedral, then

lim
σ↓0

1

σ2
M(θ̂, θ∗) = lim

σ↓0

1

σ2
E(θ̂, θ∗) = δ

(
TC(ΠC(θ

∗)) ∩ (θ∗ − ΠC(θ
∗))⊥

)
, (2.8)

where v⊥ := {u ∈ Rn : 〈u, v〉 = 0} for vectors v ∈ Rn. As we remarked earlier, in most
applications, the constraint set C is polyhedral.

Because the set TC(ΠC(θ
∗)) ∩ (θ∗ − ΠC(θ

∗))⊥ is a subset of TC(ΠC(θ
∗)), the right hand

side of (2.8) is never larger than δ(TC(ΠC(θ
∗))). Under the assumption that the polyhedron

C has a nonempty interior along with a mild condition on the noise Z, it can be proved
that the right hand side of (2.8) is strictly smaller than δ(TC(ΠC(θ

∗))) when θ∗ /∈ C (an even
stronger statement is proved in Lemma 2.3.4), which then implies that limσ↓0 σ

−2M(θ̂, θ∗) <

limσ↓0 σ
−2R(θ̂,ΠC(θ

∗)). This inequality is more interpretable in the following form:

lim
σ↓0

1

σ2
Eθ∗‖θ̂(Y )− ΠC(θ

∗)‖2 < lim
σ↓0

1

σ2
EΠC(θ∗)‖θ̂(Y )− ΠC(θ

∗)‖2 whenever θ∗ /∈ C. (2.9)

Inequality (2.9) can be qualitatively understood as follows. The left hand side above corre-
sponds to misspecification where the data are generated from θ∗ /∈ C while the right hand
side corresponds to the well-specified setting where the data are generated from ΠC(θ

∗). Note
that in both cases, the estimator θ̂(Y ) is really estimating ΠC(θ

∗) so it is natural to com-
pare the squared expected distance to ΠC(θ

∗) in both situations. The interesting aspect is
that (in the low σ limit) the expected squared distance is smaller in the misspecified setting
compared to the well-specified setting. To the best of our knowledge, this fact has not been
noted in the literature previously at this level of generality.

Our main result, Theorem 2.3.1, is stated and proved in Section 2.3 where some intuition
is also provided for the exact form of the low σ limit in misspecification. The low σ limit
can be explicitly computed in certain specific situations. In Section 2.4, we specialize to the
Gaussian model Z ∼ N(0, In) and study in detail the examples when C is the nonnegative
orthant and when C is the monotone cone (this latter case corresponds to isotonic regression).

In Section 2.5, we explore issues naturally related to Theorem 2.3.1. In Section 2.5.1,
we consider the situation when C is not polyhedral. It seems hard to characterize the low
σ misspecification limits in this case but it is possible to compute them when C is the unit
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ball. It is interesting to note that the low σ limits of M(θ̂, θ∗) and E(θ̂, θ∗) are different in
this case (in sharp contrast to the polyhedral situation). In Section 2.5.2, we deal with the
risks when σ is large. Under some conditions, it is possible to write a formula for the large
σ limits of M(θ̂, θ∗) and E(θ̂, θ∗); see Proposition 2.5.3. In Section 2.5.3, we deal with the
maximum normalized risks:

sup
σ>0

1

σ2
M(θ̂, θ∗) and sup

σ>0

1

σ2
E(θ̂, θ∗). (2.10)

In the well-specified setting, inequalities (2.1) and (2.4) together imply that the maximum
normalized risk equals δ(TC(θ

∗)). However in the misspecified setting, the quantities (2.10)
lie between δ(TC(ΠC(θ

∗)) ∩ (θ∗ −ΠC(θ
∗))⊥) and δ(TC(ΠC(θ

∗))). It seems hard to write down
an exact formula for the quantities (2.10) but we present some simulation evidence in Sec-
tion 2.5.3 to argue that they can be strictly between δ(TC(ΠC(θ

∗)) ∩ (θ∗ − ΠC(θ
∗))⊥) and

δ(TC(ΠC(θ
∗))).

We conclude with an appendix that contains technical lemmas and proofs of the various
intermediate results throughout the chapter.

2.2 Background and Notation

In this short section, we shall set up some notation and also recollect standard results in
convex analysis that will be used in the remainder of the chapter.

For x ∈ Rn and r > 0, we denote by Br(x) := {u ∈ Rn : ‖u − x‖ ≤ r} the closed
ball of radius r centered at x. For v ∈ Rn, let v⊥ := {u ∈ Rn : 〈u, v〉 = 0} denote the
hyperplane with normal vector v. For θ0 ∈ C, let FC(θ0) := {θ − θ0 : θ ∈ C} be the result of
re-centering the set C about θ0. Also recall the definition of the tangent cone (2.2) and note
that TC(θ0) = cl{αx : x ∈ FC(θ0), α > 0}.

If A is an m× n matrix and J ⊆ {1, . . . ,m}, we let aj denote the jth row of A, and let
AJ denote the matrix obtained by combining the rows of A indexed by J .

A polyhedron refers to a set of the form {x ∈ Rn : Ax ≤ b} for some A ∈ Rm×n and b ∈ Rn
where the inequality ≤ is interpreted coordinate-wise, i.e. 〈aj, x〉 ≤ bj for j = 1, . . . ,m. We
will assume that no two pairs (aj, bj) and (ak, bk) are scalar multiples of each other. A
polyhedral cone is a set of the form {x ∈ Rn : Ax ≤ 0} for some A ∈ Rm×n. Again, we will
assume that no two rows of A are scalar multiples of each other. A face of a polyhedron refers
to any subset obtained by setting some of the polyhedron’s linear inequality constraints to
equality instead.

In the remainder of this section, we shall collect some standard results above convex
projections that will be used in the chapter. These results can be found in a standard
reference such as [49]. Recall that ΠC(x) denotes the projection of a vector x ∈ Rn on a
closed convex set C. It is well known that ΠC(x) is the unique vector in C satisfying the
optimality condition

〈z − ΠC(x), x− ΠC(x)〉 ≤ 0, ∀z ∈ C. (2.11)
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Consequently, we have the following Pythagorean inequality

‖z−x‖2 = ‖z−ΠC(x)‖2+‖ΠC(x)−x‖2+2〈z−ΠC(x),ΠC(x)−x〉 ≥ ‖z−ΠC(x)‖2+‖ΠC(x)−x‖2.

Plugging in z = ΠC(y) and x = θ∗ shows that the misspecified error is upper bounded by
the excess error, that is,

‖ΠC(y)− ΠC(θ
∗)‖2 ≤ ‖ΠC(y)− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2, ∀y ∈ Rn. (2.12)

If instead we plug in z = ΠC(θ
∗) to (2.11), we have 〈ΠC(x)− ΠC(θ

∗), x− ΠC(x)〉 ≥ 0, which
implies

‖ΠC(x)− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2 = −‖ΠC(x)− ΠC(θ
∗)‖2 + 2〈ΠC(x)− ΠC(θ

∗),ΠC(x)− θ∗〉
≤ −‖ΠC(x)− ΠC(θ

∗)‖2 + 2〈ΠC(x)− ΠC(θ
∗), x− θ∗〉

≤ ‖x− θ∗‖2.

Combining this with (2.12), we see that for Y = θ∗ + σZ we have

0 ≤ ‖ΠC(Y )− ΠC(θ
∗)‖2 ≤ ‖ΠC(Y )− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2 ≤ σ2‖Z‖2. (2.13)

In the special case where C is a cone, the optimality condition (2.11) implies that ΠC(x)
is the unique vector in C satisfying

〈ΠC(x), x− ΠC(x)〉 = 0, and 〈z, x− ΠC(x)〉 ≤ 0, ∀z ∈ C. (2.14)

2.3 Main theorem: low noise limit for polyhedra

Our main result below provides a precise characterization of the low σ limits of the risks (2.5)
and (2.6) (normalized by σ2) in the misspecified setting (i.e., when θ∗ /∈ C) for polyhedral
C. An implication of this result is that the low σ limit can be much smaller than the upper
bound (2.7) of Bellec [10].

Theorem 2.3.1 (Low noise limit of risk for polyhedra). Let C ⊆ Rn be a closed convex
set, and let Y = θ∗ + σZ where θ∗ ∈ Rn is not necessarily in C, and Z is zero mean with
E‖Z‖2 <∞. Suppose the following “locally polyhedral” condition holds.

TC(ΠC(θ
∗)) is a polyhedral cone, and

TC(ΠC(θ
∗)) ∩Br∗(0) = FC(ΠC(θ

∗)) ∩Br∗(0) for some r∗ > 0.
(2.15)

Then,

lim
σ↓0

1

σ2
M(θ̂, θ∗) = lim

σ↓0

1

σ2
E(θ̂, θ∗) = δ

(
TC(ΠC(θ

∗)) ∩ (θ∗ − ΠC(θ
∗))⊥

)
. (2.16)
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Note again that δ(·) denotes the generalized statistical dimension induced by the noise
Z, and reduces to the usual statistical dimension [3] when Z ∼ N(0, In).

We remark that the “locally polyhedral” condition (2.15) essentially states that C looks
like a polyhedron in a neighborhood around ΠC(θ

∗). As established in the following lemma,
it automatically holds if C is a polyhedron, so one can replace any mention of condition
(2.15) with “C is a polyhedron” for the sake of readability. We provide some remarks on the
case when C is not polyhedral in Section 2.5.1.

Lemma 2.3.2. Let C be a polyhedron. Then the locally polyhedral condition (2.15) holds for
any θ∗ ∈ Rn.

Next, the following lemma establishes that the set TC(ΠC(θ
∗)) ∩ (θ∗ − ΠC(θ

∗))⊥ that
appears in the limit (2.16) is a face of the tangent cone TC(ΠC(θ

∗)).

Lemma 2.3.3. Let θ∗ ∈ Rn and let C ⊆ Rn be a closed convex set satisfying the locally
polyhedral condition (2.15). Let A ∈ Rm×n be such that TC(ΠC(θ

∗)) = {u : Au ≤ 0}. Then
there exists some subset J ⊆ {1, . . . ,m} such that

TC(ΠC(θ
∗)) ∩ (θ∗ − ΠC(θ

∗))⊥ = {u : AJu = 0, AJcu ≤ 0}.

Thus, TC(ΠC(θ
∗)) ∩ (θ∗ − ΠC(θ

∗))⊥ is a face of TC(ΠC(θ
∗)).

Both the above lemmas are proved in Section 2.6.
If θ∗ ∈ C then we have ΠC(θ

∗) = θ∗, and Theorem 2.3.1 reduces to the result (2.4) of
Oymak and Hassibi [70]: the excess risk and the misspecified risk become the same, and the
common limit is the statistical dimension of TC(θ

∗). We must remark here that the result of
Oymak and Hassibi [70] holds for non-polyhedral C as well. We discuss the non-polyhedral
setting further in Section 2.5.1.

Theorem 2.3.1 states that in the misspecified case θ∗ /∈ C, the low sigma limit still involves
the tangent cone TC(ΠC(θ

∗)), but one needs to intersect it with the hyperplane (θ∗−ΠC(θ
∗))⊥

before taking the statistical dimension. Due to the optimality condition (2.11) characterizing
ΠC, the tangent cone lies entirely on one side of the hyperplane, so the hyperplane does
not intersect the interior of the tangent cone. Therefore, the interior of the tangent cone
TC(ΠC(θ

∗)) does not contribute to the low σ limit of the risk under misspecification. This
makes sense because when θ∗ /∈ C and σ is small, the observation vector Y is outside C with
high probability so that θ̂(Y ) lies on the boundary of C.

In general, the intersection TC(ΠC(θ
∗)) ∩ (θ∗ − ΠC(θ

∗))⊥ can be anything from {0} to
the full tangent cone TC(ΠC(θ

∗)) and so the low sigma limit can be anything between 0 and
δ(TC(ΠC(θ

∗))). The case when the limit equals zero corresponds to the situation where θ∗

lies in the interior of the preimage of ΠC(θ
∗) under the map ΠC so that every point in some

neighborhood of θ∗ is projected onto the same point ΠC(θ
∗) (see Figure 2.1c for an example).

The following lemma (proved in Section 2.6), provides mild conditions under which the
intersection TC(ΠC(θ

∗))∩ (θ∗−ΠC(θ
∗))⊥ has strictly smaller generalized statistical dimension

than the full tangent cone TC(ΠC(θ
∗)).
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Lemma 2.3.4. Let C ⊆ Rn be a polyhedron with nonempty interior. Then

sup
θ∗ /∈C:ΠC(θ∗)=θ0

δ
(
TC(ΠC(θ

∗)) ∩ (θ∗ − ΠC(θ
∗))⊥

)
< δ(TC(θ0)).

for every θ0 ∈ C, provided the random vector Z has nonzero probability of lying in the interior
of TC(θ0).

As mentioned already, Lemma 2.3.4 combined with the main result Theorem 2.3.1 implies
the risk gap (2.9). In summary, under the nonempty interior assumption, if we think of the
low σ limit as a function of θ∗, we see that as θ∗ approaches C from the outside there is a
“jump” when θ∗ enters C. This “jump” phenomenon is not unique to the polyhedral case. In
Section 2.5.1 we discuss a non-polyhedral example that also exhibits this jump phenomenon.

Theorem 2.3.1 suggests something that may seem nonintuitive: if θ∗ /∈ C and we use
the estimator θ̂(Y ) = ΠC(Y ), the risk when Y = θ∗ + σZ is smaller than the risk when
Y = ΠC(θ

∗) + σZ. As mentioned already, in the case Y = θ∗ + σZ the estimator is actually
estimating ΠC(θ

∗), not θ∗. Moreover, the risks (2.5) and (2.6) measure error relative to ΠC(θ
∗)

rather than to θ∗. Furthermore, the intuition is that in the low σ limit, the estimator θ̂(Y )
in the misspecified setting is a projection onto a much smaller set than in the well-specified
setting (essentially, a face of a tangent cone instead of the full tangent cone), so more of the
original noise in Y is eliminated. This qualitatively explains why having Y generated from
θ∗ outside C allows the estimator to estimate ΠC(θ

∗) better than if Y were generated from
ΠC(θ

∗) instead.
Finally, we observe that in the misspecified setting, there is a gap between Bellec’s upper

bound δ(TC(ΠC(θ
∗))) (2.7) and the low σ risk limit, unlike in the well-specified setting where

the result (2.4) implies that the normalized risk increases to the upper bound in the low σ
limit. The upper bound, which is constant in σ, can become very loose as σ ↓ 0. However,
in Section 2.5.3 we shown a few examples where the normalized risk is close to the upper
bound for some σ, as well as examples where the normalized risk remains much smaller than
the upper bound for all σ > 0.

2.3.1 Proof of Theorem 2.3.1

We establish one key lemma (proved in Section 2.6) before proving Theorem 2.3.1. It is a
deterministic result that contains the core of the argument: roughly, if we have a polyhedral
cone T and any θ∗ ∈ Rn satisfying ΠT (θ∗) = 0, then any point u sufficiently near θ∗ will
have its projection ΠT (u) lying in the hyperplane with normal direction θ∗.

Lemma 2.3.5 (Key lemma). Fix θ∗ ∈ Rn, and let T be a closed convex set such that the
re-centered set {θ − ΠT (θ∗) : θ ∈ T } is a polyhedral cone. Then there exists r > 0 such that

ΠT (u)− ΠT (θ∗) ∈ (θ∗ − ΠT (θ∗))⊥, ∀u ∈ Br(θ
∗). (2.17)

With this lemma, along with some standard results collected in Section 2.2, we can
proceed with proving Theorem 2.3.1.
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Proof of Theorem 2.3.1. We first prove

lim
σ↓0

1

σ2
M(θ̂, θ∗) = δ

(
TC(ΠC(θ

∗)) ∩ (θ∗ − ΠC(θ
∗))⊥

)
. (2.18)

For any r > 0 we can write

1

σ2
M(θ̂, θ∗) =

1

σ2
Eθ∗
[
‖ΠC(Y )− ΠC(θ

∗)‖21{Y ∈Br(θ∗)}
]
+

1

σ2
Eθ∗
[
‖ΠC(Y )− ΠC(θ

∗)‖21{Y /∈Br(θ∗)}
]
.

(2.19)
We claim the second term on the right-hand side vanishes as σ ↓ 0 (regardless of the value
of r > 0). Since the projection ΠC is non-expansive [49],

0 ≤ 1

σ2
Eθ∗
[
‖ΠC(Y )− ΠC(θ

∗)‖21{Y /∈Br(θ∗)}
]
≤ 1

σ2
Eθ∗
[
‖Y − θ∗‖21{Y /∈Br(θ∗)}

]
= Eθ∗

[
‖Z‖21{σ‖Z‖>r}

]
.

Then, the dominated convergence theorem implies the right-hand side tends to zero as σ ↓ 0,
because E‖Z‖2 <∞ and the random variable ‖Z‖21{σ‖Z‖>r} converges to zero pointwise.

Thus, it remains to show

lim
σ↓0

1

σ2
Eθ∗
[
‖ΠC(Y )− ΠC(θ

∗)‖21{Y ∈Br(θ∗)}
]

= δ
(
TC(ΠC(θ

∗)) ∩ (θ∗ − ΠC(θ
∗))⊥

)
(2.20)

for some r > 0.
We define the re-centered tangent cone

T := {ΠC(θ∗) + u : u ∈ TC(ΠC(θ∗))}.

We claim there exists some r > 0 such that

ΠC(u) = ΠT (u), ∀u ∈ Br(θ
∗). (2.21)

Indeed, note that the locally polyhedral condition (2.15) implies the existence of some r∗ > 0
such that

C ∩Br∗(ΠC(θ
∗)) = T ∩Br∗(ΠC(θ

∗)) (2.22)

Since both projections ΠC and ΠT are continuous [49] at θ∗, there exists some r > 0 such
that the image of Br(θ

∗) under both projections lies in Br∗(ΠC(θ
∗)). Thus the local equality

(2.21) of the projections follows from the locally polyhedral condition (2.22).
By combining this argument with Lemma 2.3.5, we have shown there exists some r > 0

that satisfies not only (2.21), but also (2.17). With this value of r, the equality (2.21)
implies that replacing each instance of C with T in (2.20) does not change either side, since
ΠC(Y ) = ΠT (Y ), ΠC(θ

∗) = ΠT (θ∗), and

TC(ΠC(θ
∗)) = TC∩Br∗ (ΠC(θ∗))(ΠC(θ

∗)) = TT ∩Br∗ (ΠC(θ∗))(ΠC(θ
∗)) = TT (ΠT (θ∗)),
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by the equality (2.22) and the definition of the tangent cone. Thus it remains to prove

lim
σ↓0

1

σ2
Eθ∗
[
‖ΠT (Y )− ΠT (θ∗)‖21{Y ∈Br(θ∗)}

]
= δ(K), (2.23)

where K := TT (θ∗) ∩ (θ∗ − ΠT (θ∗))⊥.
Since r satisfies (2.17), some re-centering yields

ΠT (Y )− ΠT (θ∗) = ΠTT (θ∗)(Y − ΠT (θ∗)) = ΠK(Y − ΠT (θ∗)) (2.24)

in the event {Y ∈ Br(θ
∗)}.

For W := (θ∗ − ΠT (θ∗))⊥, we claim

ΠK = ΠK ◦ ΠW .

In fact this holds for any subspace W and closed convex K ⊆ W , by the Pythagorean
theorem:

ΠK(x) = argmin
u∈K

‖x− u‖2 = argmin
u∈K

{
‖x− ΠW (x)‖2 + ‖ΠW (x)− u‖2

}
= ΠK(ΠW (x)).

Applying this to (2.24) yields

ΠT (Y )− ΠT (θ∗) = ΠK(Y − ΠT (θ∗))

= ΠK(ΠW (θ∗ + σZ − ΠT (θ∗)))

= ΠK(ΠW (σZ)) ΠW is linear, ΠW (θ∗ − ΠT (θ∗)) = 0

= ΠK(σZ) = σΠK(Z) K is a cone

in the event {Y ∈ Br(θ
∗)}. By plugging this into the left-hand side of equation (2.23), we

have
lim
σ↓0
Eθ∗
[
‖ΠK(Z)‖21{Y ∈Br(θ∗)}

]
= E‖ΠK(Z)‖2 = δ(K),

where the first equality follows by dominated convergence (‖ΠK(Z)‖2 ≤ ‖Z‖2 and E‖Z‖2 <
∞). This verifies the desired equality (2.23) and concludes the proof of the first low σ limit
(2.18).

We now prove the other equality

lim
σ↓0

1

σ2
M(θ̂, θ∗) = lim

σ↓0

1

σ2
E(θ̂, θ∗).

We claim

lim
σ↓0

1

σ2
Eθ∗
[(
‖ΠC(Y )− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2

)
1{Y /∈Br(θ∗)}

]
= 0 (2.25)

for any r > 0. Applying some basic properties (2.13) of the projection ΠC yields

0 ≤ 1

σ2
Eθ∗
[(
‖ΠC(Y )− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2

)
1{Y /∈Br(θ∗)}

]
≤ E

[
‖Z‖21{σ‖Z‖≥r}

]
,
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so applying the dominated convergence theorem as before leads to the limit (2.25).
Thus, it suffices to prove

lim
σ↓0

1

σ2
Eθ∗
[
‖ΠC(Y )− ΠC(θ

∗)‖21{Y ∈Br(θ∗)}
]

= lim
σ↓0

1

σ2
Eθ∗
[(
‖ΠC(Y )− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2

)
1{Y ∈Br(θ∗)}

]
(2.26)

for some r > 0. We choose r as before so that (2.17) and (2.21) both hold. By the same
reasoning as before, we can replace each instance of C with T without changing anything.
Furthermore, the condition (2.17) implies we have 〈ΠT (Y )−ΠT (θ∗), θ∗−ΠT (θ∗)〉 = 0 in the
event {Y ∈ Br(θ

∗)}, so the Pythagorean inequality (2.12) becomes equality:

‖ΠT (Y )− ΠT (θ∗)‖21{Y ∈Br(θ∗)} =
(
‖ΠT (Y )− θ∗‖2 − ‖ΠT (θ∗)− θ∗‖2

)
1{Y ∈Br(θ∗)}.

Therefore the equality (2.26) holds, which concludes the proof of Theorem 2.3.1.

2.4 Examples

In this section, we assume the Gaussian noise model Z ∼ N(0, In), or equivalently Y ∼
N(θ∗, σ2In). Thus, δ(·) denotes the usual statistical dimension [3], where Z in the definition
(2.3) is a standard Gaussian vector.

2.4.1 Nonnegative orthant

We now apply Theorem 2.3.1 to the nonnegative orthant Rn+ := {u ∈ Rn : ui ≥ 0,∀i}. In
Figure 2.1 we provide visualizations of the geometry of the main theorem when applied to
this constraint set.

Corollary 2.4.1 (Nonnegative orthant). Let Y ∼ N(θ∗, σ2I) where θ∗ ∈ Rn. Let n+ :=∑n
i=1 1{θ∗i>0} and n0 :=

∑n
i=1 1{θ∗i =0} denote the number of positive components and number

of zero components of θ∗ respectively. Then the normalized excess risk (2.6) and normalized
mispecified risk (2.5) of the least squares estimator θ̂(Y ) := ΠRn+(Y ) with respect to Rn+ both
tend to

n0

2
+ n+

as σ ↓ 0.

Proof. By Theorem 2.3.1, it suffices to prove that the statistical dimension term in (2.16) is
n0

2
+n+. Note that for y ∈ Rn, ΠRn+(y) = max{y, 0} is obtained by taking the component-wise

maximum of y with 0. Consequently,

TRn+(ΠRn+(θ∗)) = {u ∈ Rn : ui ≥ 0 if (ΠRn+(θ∗))i = 0} = {u ∈ Rn : ui ≥ 0 if θ∗i ≤ 0}.
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Also,

(θ∗ − ΠRn+(θ∗))⊥ =

u ∈ Rn :
∑
i:θ∗i<0

θ∗i ui = 0


The intersection is thus

TRn+(ΠRn+(θ∗)) ∩ (θ∗ − ΠRn+(θ∗))⊥ =

{
u ∈ Rn :

ui ≥ 0 if θ∗i = 0

ui = 0 if θ∗i < 0

}
∼= Rn+ × Rn0

+ × {0}n−n+−n0 .

The result follows by noting δ(R) = 1 and δ(R+) = 1/2 and by using the fact that δ(T1×T2) =
δ(T1) + δ(T2) for any two cones T1 and T2 [3].

Remark 2.4.2. For θ∗ ∈ Rn let n+ and n0 be as defined in Corollary 2.4.1. Then the low
σ limit for the corresponding well-specified problem Y ∼ N(ΠRn+(θ∗), σ2I) is n−n+

2
+n+ since

all negative components of θ∗ are sent to zero by ΠRn+. This is larger than the low σ limit

for the misspecified problem Y ∼ N(θ∗, σ2I) because n − n+ ≥ n0, with strict inequality if
θ∗ /∈ Rn+.

θ∗

Π(θ∗)

(a) θ = (1,−1); δ = 1

θ∗

Π(θ∗)

(b) θ = (0,−1); δ = 1/2

θ∗

Π(θ∗)

(c) θ = (−1,−1); δ = 0

Figure 2.1: R2
+ is marked by the gray area. The intersection TR2

+
(ΠR2

+
(θ∗)) ∩ (θ∗ − ΠR2

+
(θ∗))⊥

[translated to be centered at ΠR2
+

(θ∗)] is marked by the bold lines in the first two examples,

and the bold point in the third example. Each sub-caption states the statistical dimension δ =
δ(TR2

+
(ΠR2

+
(θ∗)) ∩ (θ∗ −ΠR2

+
(θ∗))⊥).

2.4.2 Consequences for isotonic regression

This section details interesting consequences of Theorem 2.3.1 for isotonic regression under
misspecification. Let

Sn := {u ∈ Rn : u1 ≤ · · · ≤ un}

be the monotone cone. We call elements of Sn nondecreasing.
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By a block, we refer to a set of the form {k, k + 1, . . . , l} for two nonnegative integers
k ≤ l. Consider a partition of {1, . . . , n} into blocks I1, . . . , Im listed in increasing order (i.e.,
the maximum entry of Ii is strictly smaller than the minimum entry of Ij for i < j). Let
|Ij| denote the cardinality of Ij and note that

∑m
j=1 |Ij| = n as I1, . . . , Im form a partition

of {1, . . . , n}. Let S|I1|,...,|m| denote the induced block monotone cone defined as

S|I1|,...,|Im| := {u ∈ Sn : u is constant on each of the blocks I1, . . . , Im} (2.27)

For example,

S2,3,2 = {u ∈ R2+3+2 : u1 = u2 ≤ u3 = u4 = u5 ≤ u6 = u7}.

Theorem 2.3.1 implies the following result, which we prove in Section 2.7.3.

Proposition 2.4.3 (Isotonic regression). Let Y ∼ N(θ∗, σ2I) where θ∗ ∈ Rn. Let
(J1, . . . , JK) be the partition of {1, . . . , n} into blocks such that ΠSn(θ∗) is constant on each
Jk with respective values µ1 < · · · < µK. For each k ∈ {1, . . . , K}, there exists a unique
finest partition (Ik1 , . . . , I

k
mk

) of Jk into blocks such that for all j ∈ {1, . . . ,mk}, the mean of
the components of θ∗ on each Ikj equals µk; that is,

1∣∣Ikj ∣∣
∑
i∈Ikj

θ∗i = µk, 1 ≤ j ≤ mk. (2.28)

Then the common low σ limit of the normalized excess risk (2.6) and normalized misspecified
risk (2.5) of the isotonic least squares estimator θ̂(Y ) := ΠSn(Y ) equals

K∑
k=1

δ
(
S|Ik1 |,...,|Ikmk |

)
. (2.29)

It is clear from the above proposition that the low σ behavior of the isotonic estimator
under misspecification crucially depends on the statistical dimension of the block monotone
cone S|Ik1 |,...,|Ikmk |. [We remark again that throughout this section we only deal with the usual

statistical dimension, where the noise Z in the definition (2.3) is standard Gaussian.] Here,
we provide two simple properties of the block monotone cone (2.27), each of which implies
that when the block sizes are equal, the statistical dimension is simply that of Smk . The
first result provides a direct connection to weighted isotonic regression.

Lemma 2.4.4 (Weighted isotonic regression). Let z ∈ Rn and let I1, . . . , Im be a partition
of {1, . . . , n} into blocks. Let z̄Ij := 1

|Ij |
∑

i∈Ij zi. Then ΠS|I1|,...,|Im|(y) is the vector that is

constant on the blocks I1, . . . , Im with constant values x∗1, . . . , x
∗
m, where x∗ = (x∗1, . . . , x

∗
m) is

x∗ = argmin
x∈Sm

m∑
j=1

|Ij|(xi − z̄Ij)2.
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In other words, the values on the constant blocks of ΠS|I1|,...,|Im|(z) can be found by weighted
isotonic regression of (z̄I1 , . . . , z̄Im) ∈ Rm with weights |I1|, . . . , |Im|.

Consequently, when |I1| = · · · = |Im|, the statistical dimension of the block monotone
cone is

δ(S|I1|,...,|Im|) =
m∑
j=1

1

j
.

The next lemma shows S|I1|,...,|Im| is isometric to a particular cone in the lower-dimensional
space Rm.

Lemma 2.4.5 (Block monotone cone isometry). The block monotone cone S|I1|,...,|Im| ⊆ Rn
is isometric to {

v ∈ Rm :
v1√
|I1|
≤ · · · ≤ vm√

|Im|

}
⊆ Rm, (2.30)

and thus both sets have the same statistical dimension. In particular, if |I1| = · · · = |Im|,
then the statistical dimension of the block monotone cone is

δ(S|I1|,...,|Im|) =
m∑
j=1

1

j
.

Both lemmas are proved in Section 2.7.1. Note that for the case |I1| = · · · = |Im| = 1,
both lemmas reduce to the statement of the statistical dimension of the monotone cone Sn
[3, Eq. D.12]. More generally, when the m blocks have equal size, the statistical dimension
of the associated block monotone cone is the same as that of the monotone cone Sm. In
Section 2.7.2, we discuss what Lemma 2.4.5 suggests for the completely general case when
the block sizes are arbitrary.

By combining either of these two lemmas with Proposition 2.4.3, we immediately obtain
an explicit expression for the low σ limits in a special case. For m ≥ 1, we denote the
harmonic number

∑m
j=1(1/j) by Hm.

Corollary 2.4.6 (Isotonic regression with equal sub-block sizes). Consider the setting of
Proposition 2.4.3. In the special case where

|Ik1 | = · · · = |Ikmk | for each k ∈ {1, . . . , K}, (2.31)

the common low σ limit has the following explicit expression:

K∑
k=1

Hmk =
K∑
k=1

mk∑
j=1

1

j
.

See the examples to follow (as well as Section 2.7.2) for further discussion about how
the statistical dimension of S|Ik1 |,...,|Ikmk | behaves in general, when the special condition (2.31)

does not hold.
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In Table 2.1, we demonstrate how to apply this theorem to various cases of θ∗. In the
“partition of θ∗” column, we use square brackets to partition the components of θ∗ into K
blocks according to the constant pieces µ1 < · · · < µK of ΠSn(θ∗), and then within the kth
group use parentheses to further partition the components into mk sub-blocks each with
common mean µk.

θ∗ ΠSn(θ∗) partition of θ∗ m1, . . . ,mK

∑K
k=1Hmk

(0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) [(0), (0), (0), (0), (0), (0)] 6 H6 = 2.45

(1,−1, 1,−1, 1,−1) (0, 0, 0, 0, 0, 0) [(1,−1), (1,−1), (1,−1)] 3 H3 = 1.83̄

(5, 3, 1,−1,−3,−5) (0, 0, 0, 0, 0, 0) [(5, 3, 1,−1,−3,−5)] 1 H1 = 1

(−1,−1,−1,−1, 2, 2) (−1,−1,−1,−1, 2, 2) [(−1), (−1), (−1), (−1)], [(2), (2)] 4, 2 H4 +H2 = 3.583̄

(0,−2, 1,−3, 2, 2) (−1,−1,−1,−1, 2, 2) [(0,−2), (1,−3)], [(2), (2)] 2, 2 H2 +H2 = 3

(0, 0,−2,−2, 3, 1) (−1,−1,−1,−1, 2, 2) [(0, 0,−2,−2)], [(3, 1)] 1, 1 H1 +H1 = 2

Table 2.1: Examples of how to compute the limit in Proposition 2.4.3 in the special case (2.31).

We now discuss in detail what Proposition 2.4.3 states for certain cases of θ∗.

1. In the well-specified case where θ∗ ∈ Sn, we have θ∗j = µk for all j ∈ Jk and
k ∈ {1, . . . , K}, so the finest partition of each Jk is the partition into singleton sets.
Then mk = |Jk| for each k, and moreover |Ikj | = 1 for all valid k and j. Thus, Propo-
sition 2.4.3 implies that both low σ limits are

K∑
k=1

H|Jk| :=
K∑
k=1

|Jk|∑
j=1

1

j
,

This is precisely the upper bound (2.7) for the monotone cone as computed by Bellec
[10, Prop. 3.1], so we recover the low σ limit (2.4). Computations for the well-specified
examples θ∗ = (0, 0, 0, 0, 0, 0) and θ∗ = (−1,−1,−1,−1, 2, 2) appear in Table 2.1.

Now, consider the misspecified problem Y ∼ N(θ∗, σ2In) with θ∗ /∈ Sn, and compare
the statement of Proposition 2.4.3 with the corresponding statemetn for the well-
specified problem Y ∼ N(ΠSn(θ∗), σ2I). In both cases, the partition of {1, . . . , n} into
(J1, . . . , JK) is the same. However, we showed above that in the well-specified problem,
the sub-partition of each Jk consists of singletons, whereas for the misspecified problem
we may get nontrivial partitions (Ik1 , . . . , I

k
mk

). Noting the inclusion S|Ik1 |,...,|Ikmk | ⊆ S
|Jk|

for each k and comparing (2.29) for the two cases yields

K∑
k=1

δ(S|Ik1 |,...,|Ikmk |) ≤
K∑
k=1

δ(S |Jk|),

which shows that in general the misspecified low σ limit is smaller than the correspond-
ing well-specified limit.
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2. Suppose θ∗ is nonincreasing and nonconstant i.e., θ∗ ∈ (−Sn) \ Sn. Then ΠSn(θ∗) is
constant (see [73] for various properties of ΠSn), so K = 1 and µ1 = 1

n

∑n
i=1 θ

∗
i . We

also claim m1 = 1. Indeed, if m1 > 1 then there exists some j < n such that µ =
1
j

∑j
i=1 θ

∗
i = 1

n−j
∑n

i=j+1 θ
∗
i . However, the fact that θ∗ is nonincreasing and nonconstant

implies 1
j

∑j
i=1 θ

∗
i >

1
n−j
∑n

i=j+1 θ
∗
i , a contradiction. Thus, Proposition 2.4.3 implies

that both low σ limits are 1. (In fact, by combining the above argument with the proof
of Proposition 2.4.3, we have shown that the intersection TSn(ΠSn(θ∗))∩(θ∗−ΠSn(θ∗))⊥

is simply the subspace of constant sequences.) On the other hand, since ΠSn(θ∗)
is constant, the low σ limit in the well-specified setting Y ∼ N(ΠSn(θ∗), σ2In) is∑n

j=1
1
j
� log n, which is much larger.

The logarithmic term appears here in the well-specified case due to the well-known
spiking effect of isotonic regression (documented, for example, by Pal [71], Wu et al.
[93], Zhang [97]). Indeed, the isotonic estimator is inconsistent near the end points
which leads to the logarithm term in the risk. However, in the misspecified case when
θ∗ is nonincreasing and nonconstant, a combination of the proof of Theorem 2.3.1
(in particular Lemma 2.3.5) with the fact that TSn(ΠSn(θ∗)) ∩ (θ∗ − ΠSn(θ∗))⊥ is the
subspace of all constant sequences implies θ̂(Y ) is a constant sequence with proba-
bility increasing to 1 as σ ↓ 0, in which case the constant value must be the sample
mean Ȳ := 1

n

∑n
i=1 Yi. Alternatively, one can rephrase the geometric argument in

Lemma 2.3.5 more simply in this example; when σ is small, Y is near θ∗ and thus is
also nondecreasing with high probability, in which case θ̂(Y ) is constant, due to the
properties of the projection ΠSn . Hence, in this situation the estimator does not suffer
from any spiking at the endpoints, and consequently there are no logarithmic terms in
the risk in the misspecified case in the low sigma limit.

Computations for the specific example when θ∗ = (5, 3, 1,−1,−3,−5) appear in Ta-
ble 2.1.

3. In the first half of Table 2.1 we consider three choices for θ∗ that project to ΠSn(θ∗) =
(0, 0, 0, 0, 0, 0). Here K = 1 and the sub-block sizes |I1

1 |, . . . , |I1
m1
| are equal in each case

(namely, the common block size is 1, 2, and 6 respectively), so we are in the special
case (2.31). Thus, the limit is

∑m1

j=1
1
j

where m1 is the number of sub-blocks. We see
that for the misspecified θ∗ the low σ limits are smaller.

One can heuristically interpret Theorem 2.3.1 for the example θ∗ = (1,−1, 1,−1, 1,−1)
as follows. With probability increasing to 1 as σ ↓ 0, the estimator θ̂(Y ) is nondecreas-
ing and piecewise constant on three equally sized blocks, so the low σ limit is the same
as if we were estimating (0, 0, 0) in S3.

4. Similarly in the second half of Table 2.1 we consider three θ∗ that project to ΠSn(θ∗) =
(−1,−1,−1,−1, 2, 2). Here K = 2 but, since the low σ limit decomposes, we can
simply consider each constant piece separately. Again, we see that the more sub-
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blocks Iji , the higher the statistical dimension, with the well-specified case having the
most sub-blocks (all singletons).

5. The concrete examples we have considered so far have been in the special case (2.31).
In a few other cases we can still provide the low σ limit. (See also Section 2.7.2 for
further discussion.)

a) If K = 1 and m1 = 2, then the low σ limit is δ(S|I11 |,|I12 |). By Lemma 2.4.5, this is

the same as the statistical dimension of the half space {u ∈ R2 : u1/
√
|I1| ≤

u2/
√
|I2|}, which is 1.5. However, when m1 > 2, it is difficult to compute

δ(S|I11 |,...|I1m1
|) unless we are in the special case |I1

1 | = · · · = |I1
m1
|.

b) In some other extreme cases we can get an approximation. For example, if

θ∗ = (0, 1, . . . , 1︸ ︷︷ ︸
(n−2)/2

,−1, . . . ,−1︸ ︷︷ ︸
(n−2)/2

, 0),

then ΠSn(θ∗) = (0, . . . , 0), so the low σ limit is δ(S1,n−2,1). Lemma 2.4.5 shows
that this is the same as the statistical dimension of {u ∈ R3 : u1 ≤ u2/

√
n− 2 ≤

u3}. As n → ∞ tends to this set tends to {u ∈ R3 : u1 ≤ 0 ≤ u3} which has
statistical dimension 1 + 1

2
+ 1

2
= 2. Thus δ(S1,n−2,1) → 2 as n → ∞. We used

simulations to verify that the low σ limit is indeed near 2 even for n = 20.

2.5 Further discussion

2.5.1 Generalizing Theorem 2.3.1 to the non-polyhedral case

Note that Theorem 2.3.1 requires the condition (2.15) i.e., that C is locally a polyhedron
near ΠC(θ

∗). Here we comment on the situation when C is non-polyhedral. Although non-
polyhedral convex sets can be approximated by polyhedra, the low σ limit magnifies the
local geometry of the set and ignores the goodness of such an approximation. As a stark
counterexample, consider any closed convex C ⊆ R2 with nonempty interior, and let Z ∼
N(0, In). For any polygon in R2, Theorem 2.3.1 implies that the low σ limits are either 0,
1/2, or 1 because in R2 the intersection of a convex cone with a line intersecting the origin
is either the origin, a ray, or a line. Thus, for a sequence of polygons approximating C the
sequence of corresponding low σ limits need not even have a limit, never mind the matter of
two different sequences of polygonal approximations having a common limit. Therefore, the
low σ limit for general C cannot be found using a polyhedral approximation.

In order to understand how the low σ limits behave for general C, we consider the following
specific example. Let C := {θ ∈ Rn : ‖θ‖ ≤ 1} be the unit ball so that ΠC(x) = x

max{‖x‖,1} .

Also let θ∗ := (r, 0, . . . , 0) for some r > 1 so that ΠC(θ
∗) = (1, 0, . . . , 0). By rotational

symmetry of C, the case of any general θ∗ /∈ C can be reduced to this case.
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In the corresponding well-specified case Y ∼ N(ΠC(θ
∗), σ2In)), the result (2.4) of Oymak

and Hassibi [70] implies that the normalized misspecified risk (2.5) and the normalized excess
risk (2.6) are equal in the low σ limit with common value

δ(TC(ΠC(θ
∗))) = n− 1

2
,

since the tangent cone is the half space TC(ΠC(θ
∗)) = {x ∈ Rn : x1 ≤ 0}.

However, in the misspecified case, we observe some new phenomena that do not occur
for polyhedra.

Proposition 2.5.1 (Low noise limits for the ball). Let C := {θ ∈ Rn : ‖θ‖2 ≤ 1}, θ∗ /∈ C,
and Y ∼ N(θ∗, σ2In). For the estimator θ̂(Y ) = ΠC(Y ), we have

lim
σ↓0

1

σ2
M(θ̂, θ∗) =

n− 1

‖θ∗‖2
, (2.32a)

lim
σ↓0

1

σ2
E(θ̂, θ∗) =

n− 1

‖θ∗‖
. (2.32b)

The proof involves direct computation and appears in Section 2.8.
We now highlight some of the interesting behavior. In the polyhedral case, both limits

were equal; in the proof of Theorem 2.3.1 (in particular Lemma 2.3.5) we showed that with
probability increasing to 1 (in the low σ limit), Y would be projected onto the hyperplane
(θ∗ − ΠC(θ

∗))⊥, producing the orthogonality required for the Pythagorean inequality (2.12)
to become an equality. In the general case, the Pythagorean inequality is not tight, and we
explicitly see from this example that even in the low noise limit the the excess risk can be
strictly larger than the misspecified risk.

Note that in contrast to the corresponding well-specified case Y ∼ N(ΠC(θ
∗), σ2In) which

has limit n− 1
2
, the misspecified limits n−1

‖θ∗‖2 and n−1
‖θ∗‖ both tend to n− 1 as ‖θ∗‖ ↓ 1, so there

is a “jump” in the limits between the misspecified and well-specified setting. This is also
a feature of Theorem 2.3.1 when the polyhedron C has nonempty interior, as we discussed
earlier (see Lemma 2.3.4).

This example shows that Theorem 2.3.1 does not hold for nonpolyhedral constraint sets
C, as the two normalized risks are not equal in this particular example of the unit ball, and
moreover neither limit equals

δ(TC(ΠC(θ
∗)) ∩ (θ∗ − ΠC(θ

∗))⊥) = δ({u : 〈u, θ∗〉 ≤ 0} ∩ (θ∗)⊥) = δ((θ∗)⊥) = n− 1.

The intuition for Theorem 2.3.1 is that, in the polyhedral case, the projections of Y largely
end up in some face of the polyhedron C, which can be approximated by a lower-dimensional
cone, for which the statistical dimension is well defined. When C is not polyhedral, the
generalization of this “face” is hard to conceptualize and is likely not well approximated
by a cone, so a statistical dimension can not be even applied. Indeed, for general C such
as the ball, tangent cones are extremely poor approximations for the set. Contrary to this
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drawback, the result (2.4) of Oymak and Hassibi [70] shows that tangent cones are good
enough for the well-specified setting. However for the misspecified setting, we expect that
any general result for the low σ limits does not involve a statistical dimension of some cone,
since the surface of C is the essential object of interest and cannot be approximated by some
cone except in special settings like the polyhedral case.

As mentioned already, Theorem 2.3.1 shows that in the misspecified setting, the upper
bound (2.7), which holds for all σ, is not tight in the low σ limit. One might ask whether
a better upper bound for all σ can be achieved, but Figure 2.2 shows that for some values
of σ the risks can be close to the upper bound, represented by the solid horizontal line. We
observed this behavior in other examples (see also Figure 2.3): the risks can be close to the
upper bound for some moderate values of σ, and then converge to the strictly smaller low σ
limit. Replacing the upper bound (2.7), which is constant in σ, with a σ-dependent upper
bound would be an interesting result, but it would have to be extremely dependent on the
geometry of the set C. In the following sections we further discuss the normalized risks as a
function of σ.
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Figure 2.2: Empirical estimates of the normalized misspecified risk (•) and normalized excess
risk (N) plotted against log10(σ), for the ball C = {θ ∈ Rn : ‖θ‖ ≤ 1} in the case n = 3 with
θ∗ = (1 + ε, 0, 0) and ε ∈ {0.01, 0.1, 1}. The solid horizontal line represents the upper bound
δ(TC(ΠC(θ

∗))) = n − 1
2 = 2.5 guaranteed by (2.7). The dotted lines and dashed lines are the

predicted low σ limits n−1
(1+ε)2

and n−1
1+ε respectively. The dash-dot line is the high σ limit 0.
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2.5.2 High noise limit

Although not interesting in its own right, the high noise limit of the normalized risks can
help characterize the maximum risk as we discuss in the following section. Proofs for this
section appear in Section 2.9.

For a closed convex set C we define the core cone

KC :=
⋂
θ∈C

TC(θ). (2.33)

Recall the notation for the re-centered set FC(θ0) = {θ−θ0 : θ ∈ C} where θ0 ∈ C. For a vector
v ∈ Rn we let R+v := {αu : α ≥ 0}. We have the following equivalent characterizations of
the core cone.

Lemma 2.5.2 (Characterizations of the core cone). Let C ⊆ Rn be a closed convex set. For
any θ0 ∈ C,

KC
(i)
= {v : R+v ⊆ FC(θ0)} (ii)

=
⋂
σ>0

FC(θ0)

σ
.

Additionally, the inclusion KC ⊆ TC(θ) holds for any θ ∈ C. If furthermore FC(θ0) is a cone,
then the equality KC = TC(θ) holds if and only if θ0 − (θ − θ0) ∈ C; in particular, taking
θ = θ0 shows that KC = TC(θ0) = FC(θ0).

Thus, up to a translation, the core cone can either be viewed as the result of shrinking C
radially toward θ0 ∈ C, or as the largest cone centered at θ0 ∈ C that is contained in C. An
interesting point is that θ0 ∈ C can be chosen arbitrarily.

Furthermore, in case when C is a cone, the core cone KC is this cone C, and we can char-
acterize which tangent cones are the “smallest” in the sense that they equal the intersection
(2.33) of all tangent cones.

The following result shows that under a boundedness condition, the core cone character-
izes both high σ limits.

Proposition 2.5.3 (High noise limit). Let C be a closed convex set. Let θ∗ ∈ Rn and
Y := θ∗ + σZ where Z is a zero mean random vector with E‖Z‖2 <∞. If the condition

sup
x∈Rn

(
‖ΠFC(ΠC(θ∗))(x)‖2 − ‖ΠKC(x)‖2

)
<∞. (2.34)

holds, then

lim
σ→∞

1

σ2
M(θ̂, θ∗) = lim

σ→∞

1

σ2
E(θ̂, θ∗) = δ(KC).

The main hurdle in applying Proposition 2.5.3 is verifying the condition (2.34). The
following result covers two cases where it is easy to verify the condition.

Corollary 2.5.4 (Orthant and bounded sets). Let θ∗ ∈ Rn and Y ∼ N(θ∗, σ2In).
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• If C = Rn+ is the nonnegative orthant, then the high σ limits are δ(Rn+) = n/2.

• Let C be a closed convex set. KC = {0} if and only if C is bounded, in which case both
high σ limits are 0.

Figure 2.2 and Figure 2.3 illustrate the result of this corollary.
Verifying (2.34) for more general C is more difficult. We believe it might hold for polyhe-

dral cones with any θ∗, in which case Proposition 2.5.3 would imply that the high σ limits
are δ(C). An interesting feature of the examples presented thus far is that the high σ limits
(including the veracity of (2.34)) do not depend on θ∗.

Remark 2.5.5. More generally, suppose C is a general cone. By applying Lemma 2.5.2
with θ0 = 0 and θ = ΠC(θ

∗), we observe that the core cone KC is C, and moreover C ⊆
TC(ΠC(θ

∗)), with equality if and only if −ΠC(θ
∗) ∈ C. Thus, if the condition (2.34) holds,

then Proposition 2.5.3 implies the high σ limits are δ(C), and moreover Lemma 2.5.2 implies
that these limits equal Bellec’s upper bound (2.7), δ(TC(ΠC(θ

∗))), if and only if θ∗ satisfies
−ΠC(θ

∗) ∈ C.

However, the condition (2.34) does not hold for all C. One can verify numerically that
the epigraph C := {u ∈ R2 : u2 ≥ u2

1}, whose core cone is KC = {(0, u2) : u2 ≥ 0}, does not
satisfy (2.34). Simulations also show that the high σ limits are larger than δ(KC) = 1/2. In
general, it is unclear exactly when the core cone does or does not characterize the high σ
limits.

2.5.3 Maximum normalized risk

Our low and high σ limit results Theorem 2.3.1 and Proposition 2.5.3 provides an incomplete
characterization of the maximum normalized risks (2.10). As mentioned already in (2.7),
δ(TC(ΠC(θ

∗))) is an upper bound for both suprema.
In the well-specified case θ∗ ∈ C, both suprema reduce to the usual normalized risk

σ−2R(θ̂, θ∗); moreover the upper bound becomes δ(TC(θ
∗)), and is attained as σ ↓ 0 by the

result (2.4) of Oymak and Hassibi [70].
However, in the misspecified case we have shown in Theorem 2.3.1 that in general the

low σ limit does not attain the upper bound (2.7). Moreover, simulations show that in some
cases even the suprema do not attain the upper bound; see Figure 2.2 and Figure 2.3. We
see that for some cases the suprema are close to the upper bound, but for others it is much
smaller.

Of course, if one can show that either the low σ limit or the high σ limit is equal to
the upper bound δ(TC(ΠC(θ

∗))), then we know the upper bound is attained either as σ ↓ 0
or σ → ∞ respectively. However, in the settings of Theorem 2.3.1 and Proposition 2.5.3,
this seldom happens. As discussed already, if C is polyhedral with nonempty interior, then
the low σ limit is strictly smaller than the upper bound. If Proposition 2.5.3 applies, then
KC =

⋂
θ∈C TC(θ) ⊆ TC(ΠC(θ

∗)) shows that the high σ limit is typically strictly smaller than
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Figure 2.3: Empirical estimates of the normalized misspecified risk (•) and normalized excess risk
(N) plotted against log10(σ), for the orthant C := R3

+ and θ∗ = (1, 1,−ε) with ε ∈ {0.01, 0.1, 1}.
The solid horizontal line represents the upper bound δ(TC(ΠC(θ

∗))) = n − 1
2 guaranteed by (2.7).

The dashed line is the common low σ limit n − 1 (see Corollary 2.4.1). The dash-dot line is the
high σ limit δ(Rn+) = 3/2.

the upper bound; for the special case where C is a cone, see Remark 2.5.5 for a necessary
and sufficient condition for the high σ limit to equal the upper bound.

Thus in most cases the suprema are attained at some moderate values of σ, but it is
difficult to provide a characterization of these maximizing values σ, as well as the value of
the suprema and whether they are close to the upper bound or not. The plots suggest that
as θ∗ gets closer to C, the suprema get closer to the upper bound as well.

2.6 Proofs of lemmas in Section 2.3

The next lemma is a technical device for representing the largest face of a polyhedral cone
that lies in a particular hyperplane. It is useful for proving Lemma 2.3.3 and Lemma 2.3.5.

Lemma 2.6.1 (Largest face in hyperplane). Let K = {u : Au ≤ 0} ⊆ Rn be a polyhedral
cone, where A ∈ Rm×n has distinct rows. For each y ∈ Rn, consider the subsets J ⊆
{1, . . . ,m} satisfying

{u : AJu = 0} ⊆ (y − ΠK(y))⊥. (2.35)

We let Jy denote the smallest such subset.
This subset Jy characterizes a face of K in the following way.

K ∩ (y − ΠK(y))⊥ = {u : AJyu = 0, AJcyu ≤ 0}. (2.36)
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Proof. The optimality condition for a projection onto a cone (2.14) implies 〈y−ΠK(y), u〉 ≤ 0
for all u ∈ K. If K contains both u and −u, then this implies u ∈ (y − ΠK(y))⊥. Thus for
J = {1, . . . ,m}, (2.35) holds because {u : AJu = 0} ⊆ K. This shows the existence of
subsets J that satisfy (2.35).

Next, note that if J and J ′ both satisfy (2.35), then J ∩ J ′ does as well, because

{u : AJ∩J ′u = 0} = {u+ v : AJu = AJ ′v = 0} ⊆ (y − ΠK(y))⊥.

So, letting Jy be the intersection of all J satisfying (2.35) yields the unique subset of minimal
size.

The ⊇ inclusion in (2.36) follows immediately from {u : AJyu = 0} ⊆ (y −ΠK(y))⊥. For
the other inclusion, suppose v ∈ K ∩ (y − ΠK(y))⊥. Then Av ≤ 0, so it remains to verify
AJyv = 0. That is, if J ⊆ {1, . . . ,m} denotes the indices j for which 〈aj, v〉 = 0, we want to
show Jy ⊆ J ; furthermore, this reduces to showing J satisfies (2.35), by minimality of Jy.

Any u satisfying AJu = 0 can be rewritten as u = v + w for some w also satisfying
AJw = 0. There exists some c > 0 such that both v + cw and v − cw are in K because all
the linear constraints outside of J are strict inequalities at v. Then, the optimality condition
for the projection onto a cone, yields 〈v + cw, y − ΠK(y)〉 ≤ 0 and 〈v − cw, y − ΠK(y)〉 ≤ 0.
Since v ∈ (y − ΠK(y))⊥, this yields w ∈ (y − ΠK(y))⊥ and thus u ∈ (y − ΠK(y))⊥, which
verifies that J satisfies (2.35).

Proof of Lemma 2.3.2. By definition there exist an integer m, matrix A ∈ Rm×n, and vector
b ∈ Rm such that C := {u ∈ Rn : Au ≤ b}. Fix θ∗ ∈ Rn and let θ0 := ΠC(θ

∗). We will show

TC(θ0) = {u : AJu ≤ 0},

where J = {j : 〈aj, θ0〉 = bj}. Then TC(θ0) is a polyhedral cone.
If u ∈ TC(θ0) then for some r∗ > 0 we have θ0+ru ∈ C. Thus, bJ ≥ AJ(θ0+ru) = bJ+rAJu

which implies AJu ≤ 0.
Conversely, suppose u satisfies AJu ≤ 0. Choose r∗ > 0 so that r〈aj, u〉 ≤ bj − 〈aj, θ0〉

for all j /∈ J . This is possible because bj > 〈aj, θ0〉 for each j /∈ J . Then θ0 + r∗u ∈ C so
u ∈ TC(θ0).

Finally, we need to prove the second part of the locally polyhedral condition (2.15),
which will follow if we show TC(θ0) ∩ Br∗(0) ⊆ FC(θ0) for some r > 0. If u ∈ TC(θ0) then
AJu ≤ 0 = bJ − AJθ0, so it suffices to find some r such that AJcu ≤ bJc − AJcθ0 for any
u ∈ Br∗(0). For each j /∈ J , we have 〈aj, θ0〉 < bj so there exists some r∗ > 0 such that all
θ ∈ Br∗(θ0) satisfy 〈aj, θ〉 < bj for all j /∈ J . Taking u = θ − θ0 concludes the proof.

Proof of Lemma 2.3.3. Let T := {u+ΠC(θ
∗) : u ∈ TC(ΠC(θ∗))}. Using the locally polyhedral

condition (2.15) and continuity [49] of ΠC and ΠT , we have ΠT (θ∗) = ΠC(θ
∗) (e.g., see the

verification of (2.24)), and thus translating yields ΠTC(ΠC(θ∗))(θ
∗ − ΠC(θ

∗)) = 0. Applying
Lemma 2.6.1 with K = TC(ΠC(θ

∗)), y = θ∗−ΠC(θ
∗), and ΠK(y) = 0 concludes the proof.
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Proof of Lemma 2.3.4. Fix θ0 ∈ C. For any θ∗ /∈ C such that ΠC(θ
∗) = θ0, Lemma 2.3.2

implies the locally polyhedral condition (2.15) holds, and thus Lemma 2.3.3 establishes that
TC(ΠC(θ

∗)) ∩ (θ∗ − ΠC(θ
∗))⊥ is a face of the tangent cone TC(θ0).

Since the tangent cone has finitely many faces, the supremum is actually a maximum over
the statistical dimensions of finitely many such lower-dimensional faces. Thus it remains to
show

δ(TC(ΠC(θ
∗)) ∩ (θ∗ − ΠC(θ

∗))⊥) < δ(TC(θ0))

for each θ∗ /∈ C such that ΠC(θ
∗) = θ0.

The set (θ∗−ΠC(θ
∗))⊥ is a hyperplane (not all of Rn) because θ∗ /∈ C. Using the fact that

the tangent cone TC(θ0) has nonempty interior (because it contains the translation FC(θ0)
of C), we see that the intersection TC(ΠC(θ

∗)) ∩ (θ∗ − ΠC(θ
∗))⊥ is a face that that lies in a

strictly lower-dimensional subspace of Rn, and is therefore strictly smaller than the full cone
TC(θ0). Thus, we just need to show δ(T ′) < δ(T ) for any polyhedral cone T with nonempty
interior in Rn, and any face T ′ of T that lies in a strictly lower-dimensional subspace of Rn.

For a point x ∈ Rn and a set S ⊆ Rn let d(x, S) := infθ∈S‖x− θ‖. Note that the Moreau
decomposition for cones [3, Sec. B] implies ‖ΠK(x)‖ = d(x,K◦) for any x ∈ Rn and any cone
K, where K◦ := {u ∈ Rn : 〈u, θ〉 ≤ 0,∀θ ∈ K} denotes the polar cone of K. Since T ◦ ⊆ (T ′)◦,
we have

d(x, (T ′)◦) ≤ d(x, T ◦), ∀x ∈ Rn.
Thus, if we show the random vector Z has nonzero probability of being in the set

A := {x ∈ Rn : d(x, (T ′)◦) < d(x, T ◦)} = {x ∈ Rn : ‖ΠT ′(x)‖ < ‖ΠT (x)‖},

then we immediately have the desired strict inequality

δ(T ′) = Ed(Z, (T ′)◦) < Ed(Z, T ◦) = δ(T ).

To prove the above claim that P(Z ∈ A) > 0, we show below that the interior of T is
contained in A; then our assumption on Z will conclude the proof.

Let x be in the interior of T . Then x ∈ T \ T ′. Moreover, if we let U be the smallest
linear subspace of Rn containing T ′, then x /∈ U as well. Note the the Pythagorean theorem
implies

‖ΠT (x)‖2 = ‖x‖2 = ‖ΠU(x)‖2 + ‖x− ΠU(x)‖2 > ‖ΠU(x)‖2. (2.37)

We also have

ΠT ′(x) = argmin
θ∈T ′

‖θ − x‖2 = argmin
θ∈T ′

{
‖θ − ΠU(x)‖2 + ‖ΠU(x)− x‖2

}
= ΠT ′(ΠU(x)),

so combining this with the above inequality (2.37) and the optimality condition (2.14) for
the projection of ΠU(x) onto the cone T ′, we have

‖ΠT ′(x)‖2 = ‖ΠT ′(ΠU(x))‖2 = ‖ΠU(x)‖2−‖ΠU(x)−ΠT ′(ΠU(x))‖2 ≤ ‖ΠU(x)‖2 < ‖ΠT (x)‖2,

and thus x ∈ A.
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Proof of Lemma 2.3.5. The lemma holds immediately if θ∗ ∈ T , so we assume θ∗ /∈ T .
By translating, we may without loss of generality assume ΠT (θ∗) = 0 so that the cone is

centered at 0 and can be written as T = {u : Au ≤ 0} for some number of constraints m
and some matrix A ∈ Rm×n. The objective then reduces to

ΠT (y) ∈ (θ∗)⊥, for all y ∈ Br(θ
∗).

For any y ∈ Rn let Jy ⊆ {1, . . . ,m} be as defined in Lemma 2.6.1 for our polyhedral cone
T ; it characterizes the largest face of T that lies in (θ∗)⊥. We claim there exists r > 0 such
that

{u : AJyu = 0} ⊆ (θ∗)⊥, ∀y ∈ Br(θ
∗). (2.38)

If not, then there exists a sequence of points yk /∈ T converging to θ∗ such that {u : AJyku =

0} 6⊆ (θ∗)⊥ for all k. Since there are finitely many distinct subsets Jyk , we may take a
subsequence and without loss of generality assume it is common subset J = Jyk for all k,
and {u : AJu = 0} 6⊆ (θ∗)⊥. By the definition (2.35) of Jyk , any u satisfying AJu = 0 also
satisfies 〈yk − ΠT (yk), u〉 = 0. By continuity of ΠT and taking k → ∞, we have 〈θ∗, u〉 = 0
as well, a contradiction.

Finally, since the optimality condition (2.11) for ΠT implies 〈ΠT (y), y − ΠT (y)〉 = 0 for
any y ∈ Rn, (2.36) implies ΠT (y) ∈ {u : AJyu = 0}. Combining this with (2.38) concludes
the proof.

2.7 Proofs for Section 2.4.2 (isotonic regression)

2.7.1 Proofs of block monotone cone lemmas

Proof of Lemma 2.4.4. The first claim follows from decomposing the squared Euclidean dis-
tance into blocks.

min
v∈S|I1|,...,|Im|

‖v − z‖2 = min
x∈Sm

m∑
j=1

∑
i∈Ij

(xj − zi)2

= min
x∈Sm

m∑
j=1

∑
i∈Ij

((xj − z̄Ij)2 + (z̄Ij − yi)2)

=
m∑
j=1

∑
i∈Ij

(zi − z̄Ij)2 + min
x∈Sm

m∑
j=1

|Ij|(xj − z̄Ij)2.

Let Z and Z ′ be standard Gaussian in Rn and Rm respectively. If |I1| = · · · = |Im| = r,
then the first claim implies

δ(S|I1|,...,|Im|) := E‖ΠS|I1|,...,|Im|(Z)‖2 (i)
= rE‖ΠSm(Z ′/

√
r)‖2 (ii)

= E‖ΠSm(Z ′)‖2 =: δ(Sm) =
m∑
j=1

1

j
,
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where (i) is due to Z ′/
√
r

d
= (Z̄I1 , . . . , Z̄Im), and (ii) is due to ΠC(cx) = cΠC(x) for a cone

C and c > 0 (e.g., [10, Sec. 1.6]). The statistical dimension of Sm is proved by Amelunxen
et al. [3, Sec. D.4].

Proof of Lemma 2.4.5. We use two useful properties of the statistical dimension of any cone
C [3, Prop. 3.1].

• Rotational invariance: for any orthogonal transformation Q, we have δ(QC) = δ(C).

• Invariance under embedding: δ(C × {0}k) = δ(C).

Thus it suffices to provide an orthogonal transformation Q such that QS|I1|,...,|Im| is an em-
bedding of the cone (2.30) into Rn.

Let ei denote the ith standard basis vector in Rn. Let the last element of each block be
denoted kj := max Ij for 1 ≤ j ≤ m, with k0 = 0 for convenience. The block monotone cone
S|I1|,...,|Im| is defined by the following constraints for u ∈ Rn.

〈ei − ei+1, u〉 ≤ 0, i ∈ {k1, . . . , km} (2.39a)

〈ei − ei+1, u〉 = 0, i ∈ {1, . . . , n− 1} \ {k1, . . . , km} (2.39b)

Let us focus on an arbitrary block Ij. Consider the |Ij| × |Ij| matrix

Ãj =



1

−1 1

−1 1
. . .

. . .

−1 1


Because Ãj is full rank, the QR decomposition implies there exists an |Ij| × |Ij| orthogonal
matrix Q̃j such that R̃j := Q̃jÃj is upper triangular with positive diagonal entries, and this
decomposition is unique.

The block diagonal matrix Q with blocks Q̃1, . . . , Q̃m is an n × n orthogonal matrix.
Let A and R also be block diagonal, each constructed similarly using the Ãj and the R̃j

respectively, so that U = QA. We consider QS|I1|,...,|Im|. We use the fact that if v = Qu then
〈b, u〉 ≤ 0 ⇐⇒ 〈Qb, v〉 ≤ 0 to rewrite the constraints (2.39a) and (2.39b). The following
hold for each j = 1, . . . ,m.

• Note that the ith column of A is ai = ei − ei+1 when kj−1 < i < kj. For these i, the
equality constraints (2.39b) after the transformation become 0 = 〈Q(ei − ei+1), v〉 =
〈ri, v〉 where ri is the ith column of R. Since R̃j is upper triangular with nonzero
diagonal entries (because Ãj is full rank), induction on i = kj−1 + 1, . . . , kj − 1 implies

vi = 0, kj−1 < i < kj.
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• When j < m, we have ekj = ak and ekj+1 = akj + akj+1 + · · · + akj+1
Thus for j < m

the inequality constraint 〈ekj − ekj+1, u〉 ≤ 0 becomes

0 ≥ 〈Q(ekj − ekj+1), v〉 = 〈rkj − rkj+1 − rkj+2 − · · · − rkj+1
, v〉 = 〈rkj − rkj+1

, v〉,

where the last equality is due to 〈ri, v〉 = 0 for kj < i < kj+1, by the previous point.
Since R̃j and R̃j+1 are each upper triangular, the inequality reduces to rkj ,kjvkj ≤
rkj+1,kj+1

vkj+1
, where rk,k denotes the kth diagonal entry of R. Lemma 2.7.1 (proved

below) computes these diagonal elements and yields

vkj√
|Ij|
≤

vkj+1√
|Ij+1|

.

Therefore we have shown that QS|I1|,...,|Im| consists of all vectors satisfying

vk1√
|I1|
≤ vk2√

|I2|
≤ · · · ≤ vkm√

|Im|
, and vi = 0,∀i ∈ {1, . . . , n} \ {k1, . . . , km}.

We have thus verified the claim that QS|I1|,...,|Im| is an embedding of (2.30) into Rn.
When the blocks all have equal size r, the cone (2.30) becomes the monotone cone Sm,

whose statistical dimension is
∑m

j=1
1
j

[3, Sec. D.4].

Lemma 2.7.1. Consider the n× n matrix

A =



1

−1 1

−1 1
. . .

. . .

−1 1


.

There exists a unique orthogonal matrix Q and a unique upper triangular matrix R with
positive diagonal entries such that A = QR. The bottom-right entry of R is rn,n = 1/

√
n.

Proof. Let qi be the ith column of Q. The last column qn is orthogonal to the span of the first
n − 1 columns of A, so qn is either (1, . . . , 1)/

√
n or its negative. The positivity constraint

on the diagonal entries of R implies the former, and thus rn,n = 〈qn, en〉 = 1/
√
n.

2.7.2 Statistical dimension of the block monotone cone in general

In Lemma 2.4.5 we provided an expression for the statistical dimension of the block monotone
cone S|I1|,...,|Im| when the block sizes were equal. In general, the statistical dimension can be
higher or lower than

∑m
j=1

1
j
. Consider the following examples for m = 3.
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Lemma 2.4.5 implies Sn−2,1,1 has the same statistical dimension as {v ∈ R3 : v1/
√
n− 2 ≤

v2 ≤ v3}. As n→∞ this latter cone approaches {v ∈ R3 : 0 ≤ v2 ≤ v3} which has statistical
dimension 1 +

(
1
8
· 2 + 1

2
· 1
)

= 7
4

= 1.75, which is smaller than
∑3

j=1
1
j

= 11
6

= 1.83̄.

On the other hand, S1,n−2,1 has the same statistical dimension as {v ∈ R3 : v1 ≤
v2/
√
n− 2 ≤ v3}. As n → ∞ this latter cone approaches {v ∈ R3 : v1 ≤ 0, v3 ≥ 0}

which has statistical dimension 1 + 1
2

+ 1
2

= 2, which is larger than 1.83̄.
We suspect that the approach used to prove the statistical dimension of Sn [3, Sec. D.4],

which uses the theory of finite reflection groups, cannot be generalized for S|I1|,...,|Im|, due to
the asymmetry of (2.30). However, using a result of Klivans and Swartz [55], it is possible
to show that the average statistical dimension among all block monotone cones with a given
[unordered] set of m block sizes is Hm [2, Prop. 6.6].

2.7.3 Proof of Proposition 2.4.3

When applying Theorem 2.3.1, it is useful to characterize Sn and its tangent cones using
conic generators. If T ⊆ Rn is a cone and there exist x1, . . . , xp ∈ T such that

T =

{
p∑
i=1

αixi : αi ≥ 0, ∀i

}
,

then we call x1, . . . , xp the conic generators of T , and write

T = cone{x1, . . . , xp}.

Lemma 2.7.2. Let θ∗ ∈ Rn and let C ⊆ Rn be closed and convex. If the tangent cone
TC(ΠC(θ

∗)) is generated by x1, . . . , xp ∈ Rn, i.e. TC(ΠC(θ
∗)) = cone{x1, . . . , xp}, then

TC(ΠC(θ
∗)) ∩ (θ∗ − ΠC(θ

∗))⊥ = cone({x1, . . . , xp} ∩ (θ∗ − ΠC(θ
∗))⊥).

Proof of Lemma 2.7.2. The inclusion ⊃ is immediate, so it remains to prove the inclusion ⊆.
Note that the optimality condition (2.11) implies 〈θ∗−ΠC(θ

∗), x〉 ≤ 0 for any x ∈ TC(ΠC(θ∗)).
In particular, if v ∈ TC(ΠC(θ

∗)) ∩ (θ∗ − ΠC(θ
∗))⊥, then v can be written as the conical

combination v =
∑p

i=1 αixi with αi ≥ 0, and we have

0 = 〈θ∗ − ΠC(θ
∗), v〉 =

p∑
i=1

αi 〈θ∗ − ΠC(θ
∗), xi〉︸ ︷︷ ︸

≤0

.

Thus, if a generator xi is not in the hyperplane (θ∗ − ΠC(θ
∗))⊥, then αi = 0, so xi does not

contribute in the conical combination of v. Thus, v can be written as a conical combination
of generators in (θ∗ − ΠC(θ

∗))⊥.

We are now ready to prove Proposition 2.4.3.
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Proof of Proposition 2.4.3. By Theorem 2.3.1, it suffices to prove that the statistical dimen-

sion term is
∑K

k=1 δ
(
S|Ik1 |,...,|Ikmk |

)
.

For p ≥ 1 let

Mp :=



−1 −1 · · · −1

1 1 · · · 1

1 · · · 1
. . .

...

1


∈ R(p+1)×p.

The rows of Mp are the conic generators of Sp.
Suppose first that ΠSn(θ∗) is constant, so that K = 1 and J1 = {1, . . . , n}. Then

ΠSn(θ∗) = (µ1, µ1, . . . , µ1) where µ1 := 1
n

∑n
i=1 θ

∗
i ; this follows directly by minimizing∑n

i=1(θ∗i − µ1)2 with respect to µ1.
The finest partition (I1

1 , . . . , I
1
m1

) of J1 into blocks satisfying (2.28) can be constructed
greedily as follows. Begin populating I1

1 with the elements of {1, . . . , n} in order, stopping as
soon as the mean of the elements of I1

1 is µ1. Then begin populating I1
2 with the remaining

elements in order, again stopping when the mean of the elements in I1
2 is µ1. Continue in

this manner until the last element n is placed in a subset I1
m1

. The mean of the elements
of this last subset I1

m1
is µ1 as well, since the mean of all components of θ∗ is µ1. Thus

this partition satisfies (2.28). To establish uniqueness, note that if some other partition of
J1 satisfies (2.28), then our partition (I1

1 , . . . , I
1
m1

) must be a refinement, due to the greedy
construction.

Because ΠSn(θ∗) is constant, the tangent cone there is TSn(ΠSn(θ∗)) = Sn [10, Prop. 3.1],
which is generated by the rows of Mn. In order to use Lemma 2.7.2, we need to determine
which rows of Mn are in the hyperplane (θ∗ −ΠSn(θ∗))⊥. We already know the mean of the
components of θ∗ − ΠSn(θ∗) is zero, so the first two rows are in the hyperplane.

We claim that exactly m1−1 of the remaining n−1 rows of Mn also lie in the hyperplane.
Explicitly, if (I1

1 , . . . , I
1
m1

) is without loss of generality assumed to be sorted in increasing
order, then the remaining rows of Mn that lie in the hyperplane are the indicator vectors for

mk⋃
j=u

I1
j , 2 ≤ u ≤ mk. (2.40)

No other rows of Mn can be in the hyperplane, else there would exist a finer partition of J1.
So, Lemma 2.7.2 implies TSn(ΠSn(θ∗)) ∩ (θ∗ − ΠSn(θ∗))⊥ is the cone generated by

(−1, . . . ,−1), (1, . . . , 1), and the indicator vectors of the subsets (2.40), otherwise known
as the cone of nondecreasing vectors that are piecewise constant on the blocks I1

1 , . . . , I
1
m1

.
Its statistical dimension is denoted by δ(S|I11 |,...,|I1m1

|). This concludes the proof in the case

when ΠSn(θ∗) is constant.
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We now turn to the general case where ΠSn(θ∗) is piecewise constant with values µ1 <
· · · < µK on J1, . . . , JK respectively. We claim

µk =
1

|Jk|
∑
i∈Jk

θ∗i . (2.41)

Since Sn is a cone, the projection satisfies 〈θ∗−ΠSn(θ∗), x〉 ≤ 0 for all x ∈ Sn, with equality
if x = ΠC(θ

∗) (e.g., [10, Sec. 1.6]). Letting x1, . . . , xn+1 be the conic generators of Sn (the
rows of Mn), we have ΠC(θ

∗) =
∑n+1

i=1 αixi for some coefficients αi ≥ 0. Then,

0 = 〈θ∗ − ΠSn(θ∗),ΠC(θ
∗)〉 =

n+1∑
i=1

αi 〈θ∗ − ΠSn(θ∗), xi〉︸ ︷︷ ︸
≤0

,

which implies 〈θ∗ − ΠSn(θ∗), xi〉 = 0 if αi > 0. Consequently, if ΠSn(θ∗) changes value from
component j − 1 to j, then

∑n
i=j[θ

∗
i − (ΠSn(θ∗))i] = 0. Thus (2.41) holds.

By Proposition 3.1 of [10], the tangent cone is

TSn(ΠSn(θ∗)) = Sn1 × · · · × SnK ,

which is generated by the rows of the block diagonal matrix

A :=


Mn1

. . .

MnK

 .
To find which rows of A are in the hyperplane (θ∗ − ΠSn(θ∗))⊥, we can treat each block
Mnk separately and repeat the above argument. Doing so shows that TSn(ΠSn(θ∗)) ∩ (θ∗ −
ΠSn(θ∗))⊥ is the cone of vectors that are piecewise constant on (I1

1 , . . . , I
1
m1
, . . . , IK1 , . . . , I

K
mK

)
and are increasing within each of the blocks (J1, . . . , JK). The statistical dimension of this
cone is

∑K
k=1 δ(S|Ik1 |,...,|Ikmk |).

2.8 Proof of Proposition 2.5.1

Let r := ‖θ∗‖. By rotating the problem, we may without loss of generality assume θ∗ =
(r, 0, . . . , 0).

Let E := {Y ∈ B(r−1)/2(θ∗)}. Then we have E ⊆ {Y /∈ C}, so under the event E we have

θ̂(Y ) = Y/‖Y ‖. Noting ‖Y ‖2 = ‖θ∗ + σZ‖2 = r2 + 2σrZ1 + σ2‖Z‖2, we have

1

σ2
‖θ̂(Y )− ΠC(θ

∗)‖2 =
1

σ2

(
r + σZ1√

r2 + 2σrZ1 + σ2‖Z‖2
− 1

)2

+

∑n
i=2 Z

2
i

r2 + 2σrZ1 + σ2‖Z‖2
.
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The second term converges to r−2
∑n

i=2 Z
2
i as σ ↓ 0. We show the first term vanishes as

σ ↓ 0. Defining g(σ) := ‖θ∗ + σZ‖, we have

g(σ) =
√
r2 + 2σrZ1 + σ2‖Z‖2

g′(σ) =
rZ1 + σ‖Z‖2

g(σ)

g′′(σ) =
‖Z‖2

g(σ)
− (rZ1 + σ‖Z‖2)g′(σ)

g(σ)2

Moreover we have g(0) = r, g′(0) = Z1, and g′′(0) = (‖Z‖2 − Z2
1)/r. Then by L’Hôpital’s

rule,

lim
σ↓0

1

σ

(
r + σZ1√

r2 + 2σrZ1 + σ2‖Z‖2
− 1

)

= lim
σ↓0

r + σZ1 − g(σ)

σg(σ)
= lim

σ↓0

Z1 − g′(σ)

g(σ) + σg′(σ)
=
Z1 − Z1

r + 0
= 0.

Note 1E → 1 almost surely as σ ↓ 0. Thus, σ−2‖θ̂(Y ) − ΠC(θ
∗)‖21E → r−2

∑n
i=2 Z

2
i almost

surely. By the upper bound (2.7) we may use the dominated convergence theorem to get

lim
σ↓0

1

σ2
Eθ∗
[
‖θ̂(Y )− ΠC(θ

∗)‖21E

]
=

1

r2

n∑
i=2

EZ2
i =

n− 1

r2
.

To conclude the proof of the first limit (2.32a), note that

lim
σ↓0

1

σ2
Eθ∗
[
‖θ̂(Y )− ΠC(θ

∗)‖21Ec
]

= 0,

which holds by the argument used in the proof of Theorem 2.3.1 (e.g., see the second term
in (2.19)).

A similar proof holds for the second limit (2.32b). Let E and g(σ) be the same as before.
Then

1

σ2

(
‖θ̂(Y )− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2

)
=

1

σ2

(
r + σZ1√

r2 + 2σrZ1 + σ2‖Z‖2
− r

)2

+

∑n
i=2 Z

2
i

r2 + 2σrZ1 + σ2‖Z‖2
− (r − 1)2

σ2

=
1

σ2

[(
r + σZ1

g(σ)
− r
)2

− (r − 1)2

]
+

∑n
i=2 Z

2
i

r2 + 2σrZ1 + σ2‖Z‖2
.
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Again, the second term tends to r−2
∑n

i=2 Z
2
i as σ ↓ 0. To handle the first term we use

L’Hôpital’s rule again. Let

h(σ) :=
r + σZ1

g(σ)
− r

h′(σ) =
Z1

g(σ)
− (r + σZ1)g′(σ)

g(σ)2

h′′(σ) = −Z1g
′(σ)

g(σ)2
+ 2

(r + σZ1)g′(σ)2

g(σ)3
− Z1g

′(σ) + (r + σZ1)g′′(σ)

g(σ)2

Recalling the limits g(0) = r, g′(0) = Z1, and g′′(0) = (‖Z‖2 − Z2
1)/r, we have h(σ) →

−(r − 1), h′(σ)→ 0, and

h′′(0) = −Z
2
1

r2
+ 2

rZ2
1

r3
− Z2

1 + ‖Z‖2 − Z2
1

r2
=
Z2

1 − ‖Z‖2

r2
.

Then, L’Hôpital’s rule allows us to compute the limit of the first term.

lim
σ↓0

1

σ2

[(
r + σZ1

g(σ)
− r
)2

− (r − 1)2

]

= lim
σ↓0

h(σ)2 − (r − 1)2

σ2
= lim

σ↓0

h(σ)h′(σ)

σ
= lim

σ↓0
(h′(σ)2 + h(σ)h′′(σ)) =

(r − 1)(‖Z‖2 − Z2
1)

r2
.

Combining terms yields

1

σ2

(
‖θ̂(Y )− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2

)
1E →

(r − 1)(‖Z‖2 − Z2
1) +

∑n
i=2 Z

2
i

r2
=

∑n
i=2 Z

2
i

r
,

so again by dominated convergence with the upper bound (2.7), we have

1

σ2
Eθ∗
[(
‖θ̂(Y )− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2

)
1E

]
→ n− 1

r
.

To conclude the proof of (2.32b), note that

1

σ2
Eθ∗
[(
‖θ̂(Y )− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2

)
1Ec
]
→ 0,

which was proved in the proof of Theorem 2.3.1 (see (2.25)).

2.9 Proofs for Section 2.5.2

The following lemma shows that the left-hand side of (2.34) is nonnegative.
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Lemma 2.9.1. For any θ0 ∈ C,

‖ΠFC(θ0)(x)‖2 ≥ ‖ΠKC(x)‖2.

Proof of Lemma 2.9.1. Because KC is a cone, we have 〈x,ΠKC(x)〉 = ‖ΠKC(x)‖2. Since
KC ⊆ FC(θ0), the optimality condition for ΠFC(θ0)(x) implies 〈x − ΠFC(θ0)(x),ΠKC(x)〉 ≤ 0
and thus

‖ΠKC(x)‖2 ≤ 〈ΠFC(θ0)(x),ΠKC(x)〉 ≤ ‖ΠFC(θ0)(x)‖‖ΠKC(x)‖.
Thus ‖ΠFC(θ0)(x)‖ ≥ ‖ΠKC(x)‖ and Mθ0 ≥ 0.

Proof of Lemma 2.5.2. We first prove the equalities (i) and (ii).

(i) Let v ∈ {u : R+u ⊆ FC(θ0)} and let θ ∈ C. For any c > 0 we have θ0 + cv ∈ C,
and convexity implies θ + α(θ0 + cv − θ) ∈ C for all α ∈ [0, 1]. For large c we have
‖θ0 + cv− θ‖ > 1 and thus θ+ θ0+cv−θ

‖θ0+cv−θ‖ ∈ C. Taking c→∞ and using the fact that C
is closed yields θ+ v

‖v‖ ∈ C and thus v ∈ TC(θ). Since θ was arbitrary, we have v ∈ KC.

Conversely, suppose v ∈ KC. Let c∗ := sup{c > 0 : θ0 + cv ∈ C}. The supremum is over
a nonempty set because v ∈ TC(θ0). Suppose for sake of contradiction that c∗ < ∞.
Since C is closed, θ0 + c∗v ∈ C. Thus v ∈ TC(θ0 + c∗v) which implies θ0 + (c∗ + α)v ∈ C
for some α > 0, contradicting the definition of c∗. Thus c∗ =∞ and θ0 + cv ∈ C for all
c > 0.

(ii) Both sides can be expressed as the set of v ∈ Rn satisfying θ0 + σv ∈ C for all σ > 0.

We now prove the second part of the lemma. The definition (2.33) implies KC ⊆ TC(θ)
for any θ ∈ C.

Now, assume FC(θ0) is a cone. If the reverse inclusion TC(θ) ⊆ FC(θ) holds, then θ0− θ ∈
TC(θ) = FC(θ) so θ0 − (θ − θ0) ∈ C. Conversely, suppose θ0 − (θ − θ0) ∈ C. If v ∈ TC(θ),
then θ + cv ∈ C for some c > 0. By convexity, θ0 + cv/2 ∈ C, so v ∈ FC(θ0). Thus
TC(θ) ⊆ FC(θ).

Proof of Proposition 2.5.3. We use Y instead of θ∗+σZ throughout the proof, but note that
Y depends on σ.

Without loss of generality we can translate the problem so that ΠC(θ
∗) = 0.

In view of (2.13), we may use the dominated convergence theorem on σ−2‖ΠC(Y ) −
ΠC(θ

∗)‖2, so

lim
σ→∞

1

σ2
E‖ΠC(Y )− ΠC(θ

∗)‖2

= E lim
σ→∞

1

σ2
‖ΠC(Y )− ΠC(θ

∗)‖2 dom. conv. with E‖Z‖2

= E lim
σ→∞

1

σ2
‖ΠC(Y )‖2

(i)
= E‖ΠKC(Z)‖2 = δ(KC),



CHAPTER 2. CONSTRAINED LEAST SQUARES UNDER MISSPECIFICATION 37

where we verify the equality (i) below.
Similarly, (2.13) allows us to use the dominated convergence theorem again for the excess

risk.

lim
σ→∞

1

σ2

(
E‖ΠC(Y )− θ∗‖2 − ‖ΠC(θ∗)− θ∗‖2

)
= E lim

σ→∞

1

σ2

(
‖ΠC(Y )− θ∗‖2 − ‖θ∗‖

)
dom. conv. with E‖Z‖2

= E lim
σ→∞

1

σ2

(
‖ΠC(Y )‖2 − 2〈ΠC(Y ), θ∗〉

)
(ii)
= E‖ΠKC(Z)‖2 = δ(KC).

It remains to verify (i) and (ii).

(i) ∣∣∣∣ 1

σ2
‖ΠC(Y )‖2 − ‖ΠKC(Z)‖2

∣∣∣∣
≤ 1

σ2

∣∣‖ΠC(Y )‖2 − ‖ΠKC(Y )‖2
∣∣

+

∣∣∣∣ 1

σ2
‖ΠKC(Y )‖2 − ‖ΠKC(Z)‖2

∣∣∣∣
≤ c

σ2
+
∣∣‖ΠKC(θ

∗/σ + Z)‖2 − ‖ΠKC(Z)‖2
∣∣ Lemma 2.9.1; KC is a cone

σ→∞−→ 0. x 7→ ‖ΠKC(x)‖2 is continuous

(ii) We already showed ‖ΠC(Y )‖2/σ2 → ‖ΠKC(Z)‖2, so it suffices to show the cross term
vanishes. Indeed, we have ‖ΠC(Y )‖/σ → ‖ΠKC(Z)‖, so

1

σ2
|〈ΠC(Y ), θ∗〉| ≤ 1

σ2
‖ΠC(Y )‖‖θ∗‖ σ→∞−→ 0.

Proof of Corollary 2.5.4. We begin with the first claim. Since C = Rn+ is a cone, we have
KC = Rn+. Provided we verify (2.34), the result follows from Proposition 2.5.3. Let θ :=
ΠC(θ

∗) and fix x ∈ Rn. Then some casework yields

‖ΠFC(θ)(x)‖2 − ‖ΠKC(x)‖2 =
n∑
i=1

max{xi,−θi}2 −
n∑
i=1

max{xi, 0}2 ≤
n∑
i=1

θ2
i = ‖θ‖2 =: c.

We now turn to the second claim. If C is bounded, then by Lemma 2.5.2, KC = {u :
R+u ⊆ FC(θ0)} = {0} for any θ0 ∈ C.
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Conversely, suppose C is unbounded and fix θ0 ∈ C. Let

Ur := {v ∈ Sn−1 : θ0 + cv /∈ C for some c ∈ (0, r)}.

This set is open: if (vn) is a sequence in U c
r converging to v, then the fact that C is closed

implies θ0 + rvn ∈ C for all n, and consequently θ0 + rv ∈ C and finally v ∈ U c
r .

If
⋃
r>0 Ur is an open cover of the compact set Sn−1, then Sn−1 ⊆ Ur for some r > 0,

which implies C ⊆ Br(θ0), a contradiction. Thus, some direction v ∈ Sn−1 does not lie in⋃
r>0 Ur, i.e., θ0 + cv ∈ C for all c ≥ 0. This implies cv ∈ KC for all c ≥ 0.

We now apply Proposition 2.5.3. If C is bounded, then so is FC(ΠC(θ
∗)). Choosing c

large enough so that FC(ΠC(θ
∗)) lies in the ball of radius c suffices to satisfy (2.34). Then

Proposition 2.5.3 implies that the high σ limits are δ(KC) = 0.
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Chapter 3

Multivariate extensions of isotonic
regression and total variation
denoising via entire monotonicity and
Hardy-Krause variation

3.1 Introduction

Consider the problem of nonparametric regression where the goal is to estimate an unknown
regression function f ∗ : [0, 1]d → R (d ≥ 1) from noisy observations at fixed design points
x1, . . . ,xn ∈ [0, 1]d. Specifically, we observe responses y1, . . . , yn drawn according to the
model

yi = f ∗(xi) + ξi, where ξi
i.i.d.∼ N (0, σ2) for i = 1, . . . , n, (3.1)

σ2 > 0 is unknown, and the purpose is to nonparametrically estimate f ∗ known to belong
to a prespecified function class. In the univariate (d = 1) case, two such important function
classes are: (i) the class of monotone nondecreasing functions in which case f ∗ is usually
estimated by the isotonic least squares estimator (LSE) (see e.g., Robertson et al. [73],
Groeneboom and Jongbloed [41], Barlow et al. [7], Brunk [13], Ayer et al. [5]); and (ii) the
class of functions whose total variation is bounded by a specific constant in which case it
is natural to estimate f ∗ by total variation denoising (see e.g., Rudin et al. [74], Mammen
and van de Geer [60], Chambolle et al. [16], Condat [24]). Both these estimators—isotonic
regression and total variation denoising—have a long history and are very well-studied. For
example, it is known that both these estimators produce piecewise constant fits and have
finite sample risk (under the squared error loss) bounded from above by a constant multiple
of n−2/3 (see e.g., Meyer and Woodroofe [63], Zhang [97], Mammen and van de Geer [60]).
Moreover, it is well-known that both these estimators are especially useful in fitting piecewise
constant functions where their risk is almost parametric (at most 1/n up to logarithmic
factors); see e.g., Guntuboyina and Sen [45], Dalalyan et al. [26], and Guntuboyina et al.
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[44] and the references therein.
In this chapter, we try to answer the following question: “What is a natural general-

ization of univariate isotonic regression and univariate total variation denoising to multiple
dimensions?” To answer this question we introduce and study two (constrained) LSEs for
estimating f ∗ : [0, 1]d → R where d ≥ 1. We show that both these LSEs yield rectangular
piecewise constant fits and have finite sample risk that is bounded from above by n−2/3 (mod-
ulo logarithmic factors depending on d), thereby avoiding the curse of dimensionality to some
extent. Further, we study the characterization and computation of these two estimators: the
LSEs are obtained as solutions to convex optimization problems—in fact, quadratic programs
with linear constraints—and are thus easily computable. Moreover, as in the case d = 1,
we illustrate that these LSEs are particularly useful in fitting rectangular piecewise constant
functions and can have almost parametric risk (up to logarithmic factors). These results are
directly analogous to the univariate results mentioned in the previous paragraph and thus
justify our claim that our proposed estimators are natural multivariate generalizations of
univariate isotonic regression and univariate total variation denoising.

Our first estimator is the LSE over FdEM, the class of entirely monotone functions on
[0, 1]d:

f̂EM ∈ argmin
f∈FdEM

1

n

n∑
i=1

(yi − f(xi))
2. (3.2)

The class FdEM of entirely monotone functions is formally defined in Section 3.2. Entire
monotonicity is an existing generalization in multivariate analysis of the univariate notion
of monotonicity (see e.g., [1, 56, 95, 51]). Indeed, in the univariate case when d = 1, the
class F1

EM is precisely the class of nondecreasing functions on [0, 1] and thus, for d = 1, the
estimator (3.2) reduces to the usual isotonic LSE. For d = 2, the class F2

EM consists of all
functions f : [0, 1]2 → R which satisfy both f(a1, a2) ≤ f(b1, b2) and

f(b1, b2)− f(a1, b2)− f(b1, a2) + f(a1, a2) ≥ 0, (3.3)

for every 0 ≤ a1 ≤ b1 ≤ 1 and 0 ≤ a2 ≤ b2 ≤ 1. The formal definition of FdEM for general
d ≥ 1 is given in Section 3.2. We remark that in general, entire monotonicity is different
from the usual notion of monotonicity in classical multivariate isotonic regression [73]; see
Lemma 3.2.2 for a connection between these two notions. We also remark that FdEM is closed
under translation and nonnegative scaling; that is, if f ∈ FdEM, then af + b ∈ FdEM for
any a ≥ 0 and b ∈ R. Additionally, the collection of right-continuous functions in FdEM

is precisely the collection of cumulative distribution functions of nonnegative measures on
[0, 1]d (see Lemma 3.2.3).

Our terminology of entire monotonicity is taken from Young and Young [95]. As a
word of caution, we note that some authors (e.g., Aistleitner and Dick [1]) use the term
“completely monotone” in place of “entirely monotone.” We use the latter terminology
because “completely monotone” has been used in the literature for other notions (see e.g., [92,
37, 35]) which are unrelated to our definition of entire monotonicity. Entire monotonicity
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has also been referred by other names in the literature (for example, it has been referred to
as “quasi-monotone” in Hobson [51]).

The second main estimator that we study in this chapter involves VHK0(·), the variation in
the sense of Hardy and Krause (anchored at 0), which we shorten to Hardy-Krause variation
or HK0 variation. The HK0 variation of a univariate function f : [0, 1] → R is simply the
total variation of the function, i.e.,

VHK0(f) = sup
0=x0<x1<···<xk=1

k−1∑
i=0

|f(xi+1)− f(xi)|, (3.4)

where the supremum is over all k ≥ 1 and all partitions 0 = x0 < x1 < · · · < xk = 1 of
[0, 1]. Thus HK0 variation is a generalization of one-dimensional total variation to multiple
dimensions. For d = 2, HK0 variation is defined in the following way: for f : [0, 1]2 → R,

VHK0(f) := VHK0(x 7→ f(x, 0)) + VHK0(x 7→ f(0, x))

+ sup
∑

0≤l1<k1,0≤l2<k2

∣∣∣f(x
(1)
l1+1, x

(2)
l2+1)− f(x

(1)
l1
, x

(2)
l2+1)

−f(x
(1)
l1+1, x

(2)
l2

) + f(x
(1)
l1
, x

(2)
l2

)
∣∣∣

(3.5)

where the first two terms in the right hand side above are defined via the univariate definition
(3.4) and the supremum in the third term above is over all pairs of partitions 0 = x

(1)
0 <

x
(1)
1 < · · · < x

(1)
k1

= 1 and 0 = x
(2)
0 < x

(2)
1 < · · · < x

(2)
k2

= 1 of [0, 1]. Note that a special role
is played in the first two terms of the right hand side of (3.5) by the point (0, 0) and this is
the reason for the phrase “anchored at 0”. For smooth functions f : [0, 1]2 → R, it can be
shown that

VHK0(f) =

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2f

∂x1∂x2

∣∣∣∣ dx1dx2 +

∫ 1

0

∣∣∣∣∂f(·, 0)

∂x1

∣∣∣∣ dx1 +

∫ 1

0

∣∣∣∣∂f(0, ·)
∂x2

∣∣∣∣ dx2

and, from the first term in the right hand side above, it is clear that the HK0 variation
is related to the L1 norm of the mixed derivative. The definition of HK0 variation for
general d ≥ 1 is given in Section 3.2. HK0 variation is quite different from the usual
definition of multivariate total variation (see e.g., Ziemer [99, Chapter 5]) as explained briefly
in Section 3.2.

Functions that are piecewise constant on axis-aligned rectangular pieces (see Defini-
tion 3.2.5) have finite HK0 variation as explained in Section 3.2. More generally, the col-
lection of right-continuous functions of finite HK0 variation is precisely the same as the
collection of cumulative distribution functions of finite signed measures (see Lemma 3.2.8).
An example of a function with infinite HK0 variation is the indicator function of an open
d-dimensional ball contained in [0, 1]d (see [69, Sec. 12]).
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Our second estimator is the constrained LSE over functions with HK0 variation bounded
by some tuning parameter V > 0:

f̂HK0,V ∈ argmin
f :VHK0(f)≤V

1

n

n∑
i=1

(yi − f(xi))
2. (3.6)

This estimator is a generalization of total variation denoising to d ≥ 2 because in the
case d = 1, HK0 variation coincides with total variation and, thus, the above estimator
performs univariate total variation denoising, sometimes also called trend filtering of first
order [74, 60, 16, 24, 54, 81]. This generalization is different from the usual multivariate total

variation denoising as in Rudin et al. [74] (see Section 3.5 for more discussion on how f̂HK0,V

is different from the multivariate total variation regularized estimator). It is also possible to
define the HK0 variation estimator in the following penalized form:

f̂HK0,λ ∈ argmin
f

1

n

{
n∑
i=1

(yi − f(xi))
2 + λVHK0(f)

}
(3.7)

for a tuning parameter λ > 0. In this chapter, we shall focus on the constrained form in
(3.6) although analogues of our results for the penalized estimator (3.7) can also be proved.

Before proceeding further, let us note that entire monotonicity is related to HK0 variation
in much the same way as univariate monotonicity is related to univariate total variation.
Indeed, for functions in one variable, the following two properties are well-known:

1. Every function f : [0, 1]→ R of bounded variation can be written as the difference of
two monotone functions f = f+ − f− and the total variation of f equals the sum of
the variations of f+ and f−.

2. If f : [0, 1]→ R is nondecreasing, then its total variation on [0, 1] is simply f(1)−f(0).

These two facts generalize almost verbatim to entire monotonicity and HK0 variation (see
Lemma 3.2.7). Thus, in some sense, entire monotonicity is to Hardy-Krause variation as
monotonicity is to total variation.

Although the terminology of “entire monotonicity” does not seem to have been used
previously in the statistics literature, entirely monotone functions are closely related to cu-
mulative distribution functions of nonnegative measures which appear routinely in statistics.
HK0 variation has appeared previously in statistics in the literature on quasi-Monte Carlo
(see e.g., [69, 46]) as well as in the power analysis of certain sequential detection problems
(see e.g., [72]). Additionally Benkeser and Van Der Laan [11] (see also [84, 83, 86, 85]) consid-
ered the class {f : VHK0(f) ≤ V } in their “highly adaptive LASSO” estimator and exploited
its connections to the LASSO in a setting that is different from our classical nonparametric
regression framework. They also used the terminology of “sectional variation norm” to refer
to the Hardy-Krause variation (see also [38, Section 2]). An estimator very similar to (3.6)
was proposed by Mammen and van de Geer [60] for d = 2 when the design points take values
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in a uniformly spaced grid (this estimator of [60] is described in Section 3.3.1). Also, Lin
[58] proposed an estimator in the context of the Gaussian white noise model that bears some
similarities to (3.6) (this connection is detailed in Section 2.5).

The goal of this chapter is to analyze the properties of the estimators (3.2) and (3.6). Here
is a description of our main results. Section 3.3 concerns the computation of these estimators.
Note that, as stated, the optimization problems defining our estimators (3.2) and (3.6) are
convex (albeit infinite-dimensional). We show that, given arbitrary data (x1, y1), . . . , (xn, yn),
the two estimators (3.2) and (3.6) can be computed by solving a nonnegative least squares
(NNLS) problem and a LASSO problem respectively, with a suitable design matrix that only
depends on the design-points x1, . . . ,xn. It is interesting to note that the design matrices
in the two finite-dimensional problems for computing (3.2) and (3.6) are exactly the same.

Our main results in this section (Proposition 3.3.1 and Proposition 3.3.3) imply that f̂EM

and f̂HK0,V can be taken to be of the form

f̂EM =

p∑
j=1

(β̂EM)j · I[zj ,1] and f̂HK0,V =

p∑
j=1

(β̂HK0,V )j · I[zj ,1] (3.8)

for some z1, . . . , zp that only depend on the design points x1, . . . ,xn and vectors β̂EM and

β̂HK0,V in Rp which are obtained by solving the NNLS problem (3.28) and the LASSO
problem (3.30) respectively. Here I[zj ,1] denotes the indicator of the rectangle [zj,1] (defined

via (3.16)). Because NNLS and LASSO typically lead to sparse solutions, the vectors β̂EM

and β̂HK0,V will be sparse which clearly implies that f̂EM and f̂HK0,V as given above (3.8) will
be piecewise constant on axis-aligned rectangles. Therefore our estimators give rectangular
piecewise constant fits to data and this generalizes the fact that univariate isotonic regression
and total variation denoising yield piecewise constant fits. In the case when the design points
x1, . . . ,xn form an equally spaced lattice in [0, 1]d (see the definition (3.34) for the precise
formulation of this assumption), the points z1, . . . , zp can simply be taken to be x1, . . . ,xn
and, in this case, more explicit expressions can be given for the estimators (see Section 3.3.1
for details). It should be noted that the lattice design is quite commonly used for theoretical
studies in multidimensional nonparametric function estimation (see e.g., [64]) especially in
connection with image analysis (see e.g., [16, 25]).

We also investigate the accuracy properties of f̂EM and f̂HK0,V via the study of their risk
behavior under the standard fixed design squared error loss function. Specifically, we define
the risk of an estimator f̂ by

R(f̂ , f ∗) := EL(f̂ , f ∗) where L(f̂ , f ∗) :=
1

n

n∑
i=1

(f̂(xi)− f ∗(xi))2. (3.9)

We prove results on the risk of f̂EM and f̂HK0,V in the case of the aforementioned lattice
design. In this setting, our main results are described below.
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We analyze the risk of f̂EM under the (well-specified) assumption that f ∗ ∈ FdEM. We
prove in Theorem 3.4.1 that, for n ≥ 1,

R(f̂EM, f
∗) ≤ C(d, σ, V ∗)

n2/3
(log(en))

2d−1
3 (3.10)

where
V ∗ := f ∗(1, . . . , 1)− f ∗(0, . . . , 0)

and C(d, σ, V ∗) depends only on d, σ and V ∗ (see statement of Theorem 3.4.1 for the explicit
form of C(d, σ, V ∗)). Note that the dimension d appears in (3.10) only through the logarith-
mic term which means that we obtain “dimension independent rates” ignoring logarithmic
factors. Some intuition for why the constraint of entire monotononicity is able to mitigate
the usual curse of dimensionality is provided in Section 3.5. Other nonparametric estima-
tors exhibiting such dimension independent rates can be found in [8, 58, 22, 65, 76, 89]. In
Theorem 3.4.3, we prove a minimax lower bound which implies that the dependence on d
through the logarithmic term in (3.10) cannot be avoided for any estimator.

We also prove in Theorem 3.4.5 that R(f̂EM, f
∗) is smaller than the bound given by

(3.10) when f ∗ ∈ FdEM is rectangular piecewise constant. Loosely speaking, we say that
f : [0, 1]d → R is rectangular piecewise constant if it is constant on each set in a partition
of [0, 1]d into axis-aligned rectangles and the smallest cardinality of such a partition shall be
denoted by k(f) (see Definition 3.2.5 for the precise definitions). In Theorem 3.4.5, we prove
that whenever f ∗ ∈ FdEM is rectangular piecewise constant, we have

R(f̂EM, f
∗) ≤ Cdσ

2k(f ∗)

n
(log(en))

3d
2 (log(e log(en)))

2d−1
2 (3.11)

for a positive constant Cd which only depends on d. Note that when k(f ∗) is not too large,
the right hand side of (3.11) converges to zero as n → ∞ at a faster rate compared to the
right hand side of (3.10). Thus rectangular piecewise constant functions which also satisfy
the constraint of entire monotonicity are estimated at nearly the parametric rate (ignoring

the logarithmic factor) by the LSE f̂EM.

Let us now describe our results for the other estimator f̂HK0,V . In Theorem 3.4.6 we
prove that when VHK0(f ∗) ≤ V (note that V is the tuning parameter in the definition of

f̂HK0,V ), then

R(f̂HK0,V , f
∗) ≤ C(d, σ, V )

n2/3
(log(en))

2d−1
3 . (3.12)

Note that the right sides of the bounds (3.12) and (3.10) are the same and thus the esti-

mator f̂HK0,V also achieves dimension independent rates (ignoring logarithmic factors) (see
Section 3.5 for an explanation of this phenomenon). We also prove a minimax lower bound
in Theorem 3.4.9 which implies that the dependence on d in the logarithmic term in (3.12)
cannot be completely removed for any estimator.
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In univariate total variation denoising, it is known that one obtains faster rates than
given by the bound (3.12) when f ∗ : [0, 1] → R is piecewise constant with not too many
pieces. Indeed if f ∗ is piecewise constant for d = 1 with k(f ∗) pieces, then it has been proved
that

R(f̂HK0,V , f
∗) ≤ C(c)σ2k(f ∗)

n
log(en) (3.13)

provided V = VHK0(f ∗) and f ∗ satisfies a minimum length condition in that each constant
piece has length at least c/k(f ∗) (the multiplicative term C(c) in (3.13) only depends on this
c appearing in the minimum length condition). A proof of this result can be found in [44,
Corollary 2.3] and, for other similar results, see [57, 26, 66, 98]. In light of this univariate

result, it is plausible to expect a bound similar to (3.11) for f̂HK0,V when f ∗ is an axis-aligned
rectangular piecewise constant function provided that the tuning parameter V is taken to
be equal to VHK0(f ∗) and provided that f ∗ satisfies a minimum length condition. We prove
such a result for a class of simple rectangular piecewise constant functions f ∗ : [0, 1]d → R
of the form

f ∗(·) = a1I[x∗,1](·) + a0 (3.14)

for some a1, a0 ∈ R and x∗ ∈ [0, 1]d (here I stands for the indicator function). It is easy
to see that (3.14) represents a rectangular piecewise constant function with k(f ∗) ≤ 2d. In
Theorem 3.4.10, we prove that when f ∗ is of the above form (3.14), then

R(f̂HK0,V , f
∗) ≤ C(c, d)

σ2

n
(log(en))

3d
2 (log(e log(en)))

2d−1
2 (3.15)

provided the tuning parameter V equals VHK0(f ∗) and x∗ ∈ [0, 1]d satisfies a minimum size
condition (3.50). This latter condition, which is analogous to the minimum length condition
in the univariate case, involves a positive constant c and the constant C(c, d) appearing in
(3.15) only depends on c and the dimension d. In the specific case when d = 2, the minimum
length condition (3.50) can be weakened, as discussed in Section A.1.

We are unable to prove versions of (3.15) for more general rectangular piecewise constant
functions. However, some results in that direction have been proved in a very recent paper
by Ortelli and van de Geer [66]. Their results are of a different flavor as they work with a
similar but different estimator and a smaller loss function. Their proof techniques are also
completely different from ours.

The rest of the chapter is organized as follows. The notions of entire monotonicity and
Hardy-Krause variation are formally defined for arbitrary d ≥ 1 in Section 3.2 where we
also collect some of their relevant properties. In Section 3.3, we discuss the computational
aspects for solving the optimization problems in (3.2) and (3.6). The risk results for f̂EM

are given in Section 3.4.1 while the risk bounds for f̂HK0,V are in Section 3.4.2. We discuss
the connections of our contributions with other related work in Section 3.5. The proofs
for our risk results are given in Section A.3 while the proofs of the results in Section 3.2
and Section 3.3 are given in Section A.4.Additional technical results used in the proofs of
Section A.3 are proved in Section A.5.The section also contains another risk bound for f̂HK0,V
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(Section A.1), as well a section for simulations (Section A.2) that contains some examples
and depictions of the two estimators, including an application to estimation in the bivariate
current status model.

3.2 Entire monotonicity and Hardy-Krause variation

The aim of this section is to provide formal definitions of entire monotonicity and HK0
variation for the convenience of the reader. We roughly follow the notation of Aistleitner
and Dick [1] and Owen [69].

Let us first introduce some basic notation that will be used throughout the chapter. We
let 0 = (0, . . . , 0) and 1 = (1, . . . , 1). Given an integer m, we take [m] := {1, . . . ,m}. For
two points a = (a1, . . . , ad) and b = (b1, . . . , bd) ∈ [0, 1]d, we write

a ≺ b if and only if aj < bj for every j = 1, . . . , d

and
a � b if and only if aj ≤ bj for every j = 1, . . . , d.

When a � b, we write

[a,b] := {x : a � x � b} :=
d∏
j=1

[aj, bj], (3.16)

[a,b) := {x : a � x ≺ b} :=
d∏
j=1

[aj, bj).

Note that [a,b] is a closed axis-aligned rectangle and it has nonempty interior when a ≺ b.
Given a function f : [0, 1]d → R and two distinct points a = (a1, . . . , ad),b =

(b1, . . . , bd) ∈ [0, 1]d with a � b, we define the quasi-volume ∆(f ; [a,b]) by

J1∑
j1=0

· · ·
Jd∑
jd=0

(−1)j1+···+jdf(b1 + j1(a1 − b1), . . . , bd + jd(ad − bd)), (3.17)

where Ji := I{ai 6= bi} for each i. For example, when d = 2, it is easy to see that ∆(f ; [a,b])
equals

f(b1, b2)− f(b1, a2)− f(a1, b2) + f(a1, a2) if a ≺ b

f(b1, b2)− f(b1, a2) if a1 = b1 and a2 < b2

f(b1, b2)− f(a1, b2) if a2 = b2 and a1 < b1.

(3.18)

We are now ready to define entire monotonicity.

Definition 3.2.1 (Entire monotonicity). We say that a function f : [0, 1]d → R is entirely
monotone if

∆(f ; [a,b]) ≥ 0 for every a 6= b ∈ [0, 1]d with a � b. (3.19)
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In words, for a entirely monotone function f , every quasi-volume ∆(f ; [a,b]) is nonneg-
ative. The class of such functions will be denoted by FdEM. By (3.18), note that entire
monotonicity is equivalent to (3.3) for d = 2.

A more common generalization of monotonicity to multiple dimensions is the class FdM
consisting of all functions f : [0, 1]d → R satisfying

f(a1, . . . , ad) ≤ f(b1, . . . , bd), for 0 ≤ ai ≤ bi ≤ 1, i = 1, . . . , d. (3.20)

As the following result shows (see Section A.4.1 for a proof), FdEM is a strict subset of FdM
when d ≥ 2 (e.g., when d = 2, functions in FdEM need to additionally satisfy the second
constraint in (3.3)) and thus the estimator (3.2) is distinct from the LSE over FdM for d ≥ 2.
This latter estimator is the classical multivariate isotonic regression estimator [73].

Lemma 3.2.2. When d = 1, entire monotonicity coincides with monotonicity, i.e., F1
EM =

F1
M. For d ≥ 2, we have FdEM ( FdM.

It is well-known that entirely monotone functions are closely related to cumulative distri-
bution functions of nonnegative measures. The following result taken from Aistleitner and
Dick [1, Theorem 3] makes this connection precise.

Lemma 3.2.3 ([1, Theorem 3]). 1. For every nonnegative Borel measure ν on [0, 1]d, the
function f(x) := ν([0,x]) belongs to FdEM.

2. If f ∈ FdEM is right-continuous, then there exists a unique nonnegative Borel measure
ν on [0, 1]d such that f(x)− f(0) = ν([0,x]).

We shall now define the notion of HK0 variation. The HK0 variation is defined through
another variation called the Vitali variation. Let us first define the Vitali variation of a
function f : [0, 1]d → R. To do so, we need some notation. By a partition of the univariate
interval [0, 1], we mean a set of points 0 = x0 < x1 < · · · < xk = 1 for some k ≥ 1. Given d
such univariate partitions:

0 = x
(s)
0 < x

(s)
1 < · · · < x

(s)
ks

= 1, for s = 1, . . . , d, (3.21)

we can define a collection P of subsets of [0, 1]d consisting of all sets of the form A1×· · ·×Ad
where for each 1 ≤ s ≤ d, As = [x

(s)
ls
, x

(s)
ls+1] for some 0 ≤ ls ≤ ks− 1. Note that each set in P

is an axis-aligned closed rectangle and the cardinality of P equals k1 . . . kd. The rectangles
in P are not disjoint but they form a split of [0, 1]d in the sense of Owen [69, Definition 3]
and we shall refer to P as the split generated by the d univariate partitions (3.21).

Definition 3.2.4 (Vitali variation). The Vitali variation of a function f : [0, 1]d → R is
defined as

V (d)(f ; [0, 1]d) := sup
P

∑
A∈P

|∆(f ;A)| (3.22)

where ∆(f ;A) is the quasi-volume defined in (3.17) and the supremum above is taken over
all splits P that are generated by d univariate partitions in the manner described above.
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The following observations about the Vitali variation will be useful for us. Note first
that when d = 1, Vitali variation is simply total variation (3.4) since the rectangles in this
case are intervals. The second fact is that when f is smooth (in the sense that the partial
derivatives appearing below exist and are continuous on [0, 1]d), we have

V (d)(f ; [0, 1]d) =

∫ 1

0

· · ·
∫ 1

0

∣∣∣∣ ∂df

∂x1 . . . ∂xd

∣∣∣∣ dx1 . . . dxd. (3.23)

The third observation is that V (d)(f ; [0, 1]d) can be written out explicitly when f is a rect-
angular piecewise constant function. In order to state this result, let us formally define the
notion of a rectangular piecewise constant function on [0, 1]d. Given d univariate partitions
as in (3.21), let P∗ denote the collection of all sets of the form A1 × · · · ×Ad where for each

1 ≤ s ≤ d, As is either equal to [x
(s)
ls
, x

(s)
ls+1) for some 0 ≤ ls ≤ ks − 1 or the singleton {1}.

Note that, unlike P , the sets in P∗ are disjoint and hence P∗ forms a partition of [0, 1]d. We
shall refer to P∗ as the partition generated by the d univariate partitions (3.21).

Definition 3.2.5 (Rectangular piecewise constant function). We say that f : [0, 1]d → R
is rectangular piecewise constant if there exists a partition P∗ generated by d univariate
partitions as described above such that f is constant on each set in P∗. We use Rd to denote
the class of all rectangular piecewise constant functions on [0, 1]d. For f ∈ Rd, we define
k(f) as the smallest value of k1 . . . kd for which there exist d univariate partitions of lengths
k1, . . . , kd such that f is constant on each of the sets in P∗ generated by these d univariate
partitions.

The following lemma (proved in Section A.4.2) provides a formula for the Vitali variation
of a rectangular piecewise constant function f on [0, 1]d. Note that this lemma implies, in
particular, that the Vitali variation of every rectangular piecewise constant function is finite.

Lemma 3.2.6. Suppose f is rectangular piecewise constant on [0, 1]d with respect to a par-
tition P∗ generated by d univariate partitions and let P denote the split generated by these
univariate partitions. Then

V (d)(f ; [0, 1]d) =
∑
A∈P

|∆(f ;A)|.

Despite these interesting properties, the Vitali variation is not directly suitable for our
purposes because there exist many non-constant functions f on [0, 1]d (such as f(x, y) := x)
whose Vitali variation is zero. This weakness of the Vitali variation is well-known (see
e.g., Owen [69] or Aistleitner and Dick [1]) and motivates the following definition of the
HK0 variation.

Given a nonempty subset of indices S ⊆ [d] = {1, . . . , d}, let

US := {(u1, . . . , ud) ∈ [0, 1]d : uj = 0, j /∈ S}. (3.24)
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Note that US is a face of [0, 1]d adjacent to 0. By ignoring the components not in S, the

restriction of the function f on [0, 1]d to the set US can be viewed as a function f̃ : [0, 1]|S| →
R. The Vitali variation of f̃ viewed as a function of [0, 1]|S| will be denoted by

V (|S|)(f ;S; [0, 1]d) := V (|S|)(f̃ ; [0, 1]|S|).

The Hardy-Krause variation (anchored at 0) of f : [0, 1]d → R is defined by

VHK0(f ; [0, 1]d) :=
∑

∅6=S⊆[d]

V (|S|)(f ;S; [0, 1]d). (3.25)

That is, the HK0 variation is the sum of the Vitali variations of f restricted to each face of
[0, 1]d adjacent to 0. Note the special role played by the point 0 in this definition and this
is the reason for the phrase “anchored at 0”. It is also common to anchor the HK variation
at 1 (see e.g., Aistleitner and Dick [1]) but we focus only on 0 as the anchor in this chapter.
Because of the addition of the lower-dimensional Vitali variations, it is clear that the HK0
variation equals zero only for constant functions and this property is the reason why the
HK0 variation is usually preferred to the Vitali variation.

Let us now remark that the HK0 variation is quite different from the usual notion of
multivariate total variation. Indeed, when f is smooth, the multivariate total variation of f
only involves the first order partial derivatives of f . On the other hand, as can be seen from
(3.23), the HK0 variation is defined in terms of higher order mixed partial derivatives of f .

An important property of the HK0 variation is that it is finite for rectangular piece-
wise constant functions. This is basically a consequence of Lemma 3.2.6 and the fact that
the restriction of a rectangular piecewise constant function to each set US in (3.24) is also
rectangular piecewise constant.

The following lemma formally establishes the connection between entire monotonicity
and HK0 variation, as mentioned earlier in the Introduction.

Lemma 3.2.7. The following properties hold:

(i) If f : [0, 1]d → R has finite HK0 variation, then there exist unique f+, f− ∈ FdEM such
that f+(0) = f−(0) = 0 and

f(x)− f(0) = f+(x)− f−(x), x ∈ [0, 1]d

and
VHK0(f ; [0, 1]d) = VHK0(f+; [0, 1]d) + VHK0(f−; [0, 1]d).

(ii) If f ∈ FdEM, then
VHK0(f ; [0, 1]d) = f(1)− f(0).

The first fact in the above lemma is quite standard (see e.g., [1, Theorem 2]). We could
not find an exact reference for the second fact so we included a proof in Section A.4.3).
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Finally, let us mention that it is well-known that a result analogous to Lemma 3.2.3 holds
for the connection between functions with finite HK0 variation and cumulative distribution
functions for signed measures. This result is stated next.

Lemma 3.2.8 ([1, Theorem 3]). 1. For every signed Borel measure ν on [0, 1]d, the func-
tion f(x) := ν([0,x]) has finite HK0 variation.

2. If f has finite HK0 variation and is right-continuous, then there exists a unique finite
signed Borel measure ν on [0, 1]d such that f(x) = ν([0,x]).

3.3 Computational feasibility

The goal of this section is to describe procedures for computing the two estimators (3.2)
and (3.6). We shall specifically show that the estimators (3.2) and (3.6) can be computed by
solving a NNLS problem and a LASSO problem respectively, with a suitable design matrix
that is the same for both the problems and that depends only on x1, . . . ,xn. This design
matrix will be the matrix A whose columns are the distinct elements of the finite set

Q ≡ Qx1,...,xn := {v(z) : z ∈ [0, 1]d} ⊆ {0, 1}n, (3.26)

where
v(z) ≡ vx1,...,xn(z) := (I[z,1](x1), I[z,1](x2), . . . , I[z,1](xn)). (3.27)

We assume without loss of generality that the first column of A is v(0) = 1 = (1, . . . , 1) ∈ Rn.
Note that A has dimensions n× p where p ≡ p(x1, . . . ,xn) := |Q|. By definition, there exist
distinct points z1, . . . , zp ∈ [0, 1]d with z1 = 0 such that the jth column of A is v(zj) for
each j.

Our first result below deals with problem (3.2). Given the design matrix A, we can define
the following NNLS problem

β̂EM ∈ argmin
β∈Rp:βj≥0,∀j≥2

‖y −Aβ‖2 (3.28)

where y is the n × 1 vector consisting of the observations y1, . . . , yn coming from model
(3.1). (3.28) is clearly a finite dimensional convex optimization problem (in fact, a quadratic

optimization problem with linear constraints). Its solution β̂EM is not necessarily unique but

the vector Aβ̂EM is the projection of the observation vector y onto the closed convex cone
{Aβ : minj≥2 βj ≥ 0} and is thus unique. The next result (proved in Section A.4.6)shows

how to obtain a solution to problem (3.2) using any solution β̂EM of (3.28).

Proposition 3.3.1. One solution for the optimization problem (3.2) is

f̂EM :=

p∑
j=1

(β̂EM)j · I[zj ,1], (3.29)

where β̂EM = ((β̂EM)1, . . . , (β̂EM)p) is any solution to (3.28).
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Thus, one way to compute the estimator (3.2) is to solve the NNLS problem (3.28) and
use the resulting coefficients in the above manner (3.29). It is interesting to note that the

solution (3.29) is a rectangular piecewise constant function and the quantity k(f̂EM) (see Def-

inition 3.2.5) will be controlled by the sparsity of β̂EM. The key to proving Proposition 3.3.1
is the following characterization of FdEM (proved in Section A.4.5).

Proposition 3.3.2 (Discretization of entirely monotone functions). For every set of design
points x1, . . . ,xn ∈ [0, 1]d, we have

{Aβ : βj ≥ 0,∀j ≥ 2} =
{

(f(x1), . . . , f(xn)) : f ∈ FdEM

}
.

Note that Proposition 3.3.2 immediately implies that for every minimizer f̂EM of (3.2),

the vector (f̂EM(x1), . . . , f̂EM(xn)) equals Aβ̂EM and is thus unique.
We now turn to problem (3.6). Given the matrix A and a tuning parameter V > 0, we

can define the following LASSO problem:

β̂HK0,V ∈ argmin
β∈Rp:

∑
j≥2|βj |≤V

‖y −Aβ‖2. (3.30)

Again β̂HK0,V may not be unique but Aβ̂HK0,V is unique as it is the projection of y onto the
closed convex set

C(V ) :=

{
Aβ :

∑
j≥2

|βj| ≤ V

}
. (3.31)

The next result (proved in Section A.4.8)shows how to obtain a solution to (3.6) using any

solution β̂HK0,V of (3.30).

Proposition 3.3.3. One solution for the optimization problem (3.6) is

f̂HK0,V :=

p∑
j=1

(β̂HK0,V )j · I[zj ,1], (3.32)

where β̂HK0,V = ((β̂HK0,V )1, . . . , (β̂HK0,V )p) is the solution to the LASSO problem (3.30).

Thus, one way to compute the estimator (3.6) is to solve the LASSO problem (3.30) and
use the resulting coefficients to construct the rectangular piecewise constant function (3.6).
Note the strong similarity between the two expressions (3.29) and (3.32). The following
result (proved in Section A.4.7)is the key ingredient in proving the above.

Proposition 3.3.4. For every set of design points x1, . . . ,xn ∈ [0, 1]d, we have

C(V ) = {(f(x1), . . . , f(xn)) : VHK0(f ; [0, 1]d) ≤ V }.
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Proposition 3.3.4 immediately implies that for every minimizer f̂HK0,V of (3.6), the vector

(f̂HK0,V (x1), . . . , f̂HK0,V (xn)) equals Aβ̂HK0,V and is thus unique.
We have thus shown that the LSEs defined by (3.2) and (3.6) can be computed via NNLS

and LASSO estimators with respect to the design matrix A whose columns are the elements
of the finite set Q defined in (3.26). Once the design matrix A is formed, we can use existing
quadratic program solvers to solve the NNLS and LASSO problems. The key to forming A
is to enumerate the elements of Q and we address this issue now. We first state the following
result which provides a worst case upper bound on p ≡ p(x1, . . . ,xn), the cardinality of Q.

Lemma 3.3.5. The cardinality of Q satisfies

p(x1, . . . ,xn) ≤
d∑
j=0

(
n

j

)
(3.33)

for every x1, . . . ,xn ∈ Rd.

Lemma 3.3.5 is a consequence of the Vapnik-Chervonenkis lemma [88] and is proved in
Section A.4.9). Note that the upper bound (3.33) can be further bounded by (en/d)d.

We emphasize here that Lemma 3.3.5 gives a worst case upper bound for p(x1, . . . ,xn)
(here worst case is in terms of the design configurations x1, . . . ,xn). For specific
choices of x1, . . . ,xn, the quantity p(x1, . . . ,xn) can be much smaller than the right
hand side of (3.33). For example, if x1, . . . ,xn are an enumeration of the grid
points

{
(i1/n

1/d, . . . , id/n
1/d) : i1, . . . , id ∈ {1, . . . , n1/d}

}
(or form any other full grid) then

p(x1, . . . ,xn) = n whereas the upper bound in (3.33) is of order nd. However, there exist
design configurations x1, . . . ,xn where the upper bound can be tight. For instance, when
d = 2, if x1, . . . ,xn lie on the anti-diagonal (the line segment connecting (0, 1) and (1, 0)),

then p(x1, . . . ,xn) = n(n+1)
2

, so the upper bound n(n+1)
2

+ 1 in (3.33) is nearly tight for
p(x1, . . . ,xn).

The task of enumerating Q in general can be simplified if we show that we only need
to check the value of I[z,1] on the design points x1, . . . ,xn for all z in some finite set S,
rather than all z ∈ (0, 1]d as in definition (3.26). Then we can list all |S| evaluation vectors
(and remove duplicates if necessary) to form A. The following two strategies can be used to
construct the set S:

1. Näıve gridding. The simplest idea is to let S be the smallest grid that contains the
design points x1, . . . ,xn. That is, let S = S1×· · ·×Sd where Sj := {(x1)j, . . . , (xn)j} is
the set of unique jth component values among the design points. It is simple to check
that for any z ∈ (0, 1]d, the value of I[z,1] on the design points is the same as I[z′,1],
where z′ is the smallest element of S such that z � z′. In the worst case, |Sj| = n for
each j, so we would need to check at most |S| = nd vectors.

2. Component-wise minimum. A better approach is to let

S := {min{xi : i ∈ I} : I ⊆ [n], |I| ≤ d},
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where “min” denotes component-wise minimum of vectors. That is, for each subset of
the design points of size ≤ d, we take the component-wise minimum and include that
vector in S. To see why this definition of S suffices, consider any z ∈ [0, 1]d and note
the I[z,1] has the same values on the design points as I[z′,1], where z′ := min{xi : i ∈ J}
and J := {i : z � xi}. Furthermore, by the same reasoning as in our VC dimension
computation above, there must exist some subset I ⊆ J of size ≤ d such that min{xi :
i ∈ J} = min{xi : i ∈ I}, which proves z′ ∈ S. In the worst case, we would need to
check |S| =

∑d
j=0

(
n
j

)
vectors, which is the VC upper bound (3.33).

3.3.1 Special Case: the equally-spaced lattice design

The results stated so far in the section hold for every configuration of design points
x1, . . . ,xn ∈ [0, 1]d. We now specialize to the setting where x1, . . . ,xn form an equally-
spaced lattice (precisely defined below). Our theoretical results described in the next section
work under this setting. Moreover, some of the estimators from the literature that are related
to f̂EM and f̂HK0,V are defined only under the lattice design so a discussion of the form of
our estimators in this setting will make it easier for us to compare and contrast them with
existing estimators (this comparison is the subject of Section 3.5).

Given positive integers n1, . . . , nd with n = n1 . . . nd, by a lattice design of dimensions
n1 × · · · × nd, we mean that x1, . . . ,xn form an enumeration of the points in

Ln1,...,nd := {(i1/n1, . . . , id/nd) : 0 ≤ ij ≤ nj − 1, j = 1, . . . , d} (3.34)

Note that, in this setting, the set Q (defined in (3.26)) can be enumerated by Q =
{v(x1), . . . ,v(xn),0}. Without loss of generality, we may ignore the 0 element and as-
sume the columns of A are v(x1), . . . ,v(xn) so that the i, j entry of A is given by
A(i, j) = I[xj ,1](xi) = I{xj � xi}. We also take x1 := 0 (corresponding to i1 = · · · = id = 0)
so that the first column of A is the vector of ones. Therefore in the lattice design setting, the
optimization problems (3.28) and (3.30) for computing the two estimators f̂EM and f̂HK0,V

can be rewritten as

β̂EM = argmin
β∈Rp:βj≥0,∀j≥2

n∑
i=1

(
yi −

n∑
j=1

I{xj � xi}βj

)2

(3.35)

and

β̂HK0,V = argmin
β∈Rp:

∑
j≥2|βj |≤V

n∑
i=1

(
yi −

n∑
j=1

I{xj � xi}βj

)2

(3.36)

respectively. It also turns out that, in the lattice design setting, the matrix A is square
and invertible (Lemma A.4.1). As a result, it is possible to write down the vectors

(f̂EM(x1), . . . , f̂EM(xn)) and (f̂HK0,V (x1), . . . , f̂HK0,V (xn)) as solutions to more explicit con-
strained quadratic optimization problems. This is the content of the next result which is
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proved in Section A.4.10. Here, it will be convenient to represent vectors in Rn as tensors
indexed by i := (i1, . . . , id) ∈ I where

I :=
{

i = (i1, . . . , id) : ij ∈ {0, 1, . . . , nj − 1} for every j = 1, . . . , d
}
. (3.37)

In other words, we write the components of a vector θ ∈ Rn by θi for i = (i1, . . . , id) ∈ I.
We will also denote the observation corresponding to the design point (i1/n1, . . . , id/nd) by
yi = yi1,...,id .

Lemma 3.3.6. Consider the setting of the lattice design of dimensions n1 × · · · × nd. For
each θ ∈ Rn, associate the “differenced” vector Dθ ∈ Rn whose ith entry is given by

1∑
j1=0

· · ·
1∑

jd=0

I{i1 − j1 ≥ 0, . . . , id − jd ≥ 0}(−1)j1+···+jdθi1−j1,...,id−jd (3.38)

for every i = (i1, . . . , id) ∈ I. Then:

1. The vector
(
f̂EM (i1/n1, . . . , id/nd) : i = (i1, . . . , id) ∈ I

)
is the solution to the opti-

mization problem

argmin

{∑
i∈I

(yi − θi)2 : (Dθ)i ≥ 0 for all i 6= 0

}
. (3.39)

2. The vector
(
f̂HK0,V (i1/n1, . . . , id/nd) : i = (i1, . . . , id) ∈ I

)
is the solution to the opti-

mization problem

argmin

{∑
i

(yi − θi)2 :
∑
i6=0

|(Dθ)i| ≤ V

}
. (3.40)

Remark 3.3.7 (The special case of d = 2). When d = 2, it is easy to see that the differenced
vector Dθ is given by

(Dθ)(i1,i2) =


θi1,i2 − θi1−1,i2 − θi1,i2−1 + θi1−1,i2−1 if i1 > 0, i2 > 0

θi1,0 − θi1−1,0 if i1 > 0, i2 = 0

θ0,i2 − θ0,i2−1 if i1 = 0, i2 > 0

θ0,0 if i1 = i2 = 0.
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Using this, it is easy to see that (3.40) can be rewritten for d = 2 as

argmin

{
n1−1∑
i1=0

n2−1∑
i2=0

(yi1,i2 − θi1,i2)
2 : (3.41)

n1−1∑
i1=1

n2−1∑
i2=1

|θi1,i2 − θi1−1,i2 − θi1,i2−1 + θi1−1,i2−1|

+

n1−1∑
i1=1

|θi1,0 − θi1−1,0|+
n2−1∑
i2=1

|θ0,i2 − θ0,i2−1| ≤ V

}

and a similar formula can be written for (3.39) for d = 2.

As mentioned in the Introduction, an estimator similar to f̂HK0,V has been described by
Mammen and van de Geer [60] for d = 2 under the lattice design setting. Specifically, the
estimator of [60] for the vector (f ∗(i1/n1, i2/n2), 0 ≤ i1 ≤ n1 − 1, 0 ≤ i2 ≤ n2 − 1) is given
by the solution to the optimization problem:

argmin

{∑
i1,i2

(yi1,i2 − θi1,i2)
2 (3.42)

+ λ1

∑
i1,i2≥1

|θi1,i2 − θi1−1,i2 − θi1,i2−1 + θi1−1,i2−1|

+ λ2

∑
i1≥1

|θ(1)

i1
− θ(1)

i1−1|+ λ2

∑
i2≥1

|θ(2)

i2
− θ(2)

i2−1|

}

where λ1 and λ2 are positive tuning parameters, θ
(1)

i1
:= 1

n2

∑n2−1
i2=0 θi1,i2 and θ

(2)

i2
:=

1
n1

∑n1−1
i1=0 θi1,i2 . This optimization problem is similar to (3.41) in that the first term in

the penalty is the same in both problems. However the remaining terms in the penalty
above are different from the terms in (3.41) although they are of the same spirit in that both
are penalizing lower dimensional variations. Moreover, our estimator (3.41) has one tuning
parameter (in the constrained form) and (3.42) has two tuning parameters in the penalized
form. It should also be noted that we defined our estimators for arbitrary design points
x1, . . . ,xn while Mammen and van de Geer [60] only considered the lattice design for d = 2.

3.4 Risk results

In this section, risk bounds for the estimators f̂EM and f̂HK0,V are presented. We define risk
under the standard fixed design squared error loss function (see (3.9)). Throughout this
section, we assume that we are working with the lattice design of dimensions n1 × · · · × nd
with n = n1 × · · · × nd and nj ≥ 1 for all j = 1, . . . , d.
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3.4.1 Risk results for f̂EM

In this subsection, we present bounds on the risk R(f̂EM, f
∗) of f̂EM under the well-specified

assumption where we assume that f ∗ ∈ FdEM. The first result below (proved in Section A.3.2)
bounds the risk in terms of the HK0 variation of f ∗. Note that from part (ii) of Lemma 3.2.7,
VHK0(f ∗; [0, 1]d) = f ∗(1)− f ∗(0) as f ∗ ∈ FdEM.

Theorem 3.4.1. Let f ∗ ∈ FdEM and V ∗ := VHK0(f ∗; [0, 1]d). For the lattice design (3.34),

the estimator f̂EM satisfies

R(f̂EM, f
∗) ≤ Cd

(
σ2V ∗

n

) 2
3
(

log

(
2 +

V ∗
√
n

σ

)) 2d−1
3

+ Cd
σ2

n
(log(en))

3d
2 (log(e log(en)))

2d−1
2 .

(3.43)

where Cd is a constant that depends only on the dimension d.

Note that the bound (3.10) in the Introduction is the dominant first term of this
bound (3.43).

Remark 3.4.2 (Model misspecification). Theorem 3.4.1 is stated under the well-specified

assumption f ∗ ∈ FdEM. In the misspecified setting where f ∗ /∈ FdEM, our LSE f̂EM will not be
close to f ∗, but rather to

f̃ ∈ argmin
f∈FdEM

n∑
i=1

(f(xi)− f ∗(xi))2,

so it is reasonable to consider R(f̂EM, f̃) rather than R(f̂EM, f
∗). By the argument outlined

in Remark A.3.3, one can show that R(f̂EM, f̃) is upper bounded by the right hand side

of (3.43) after re-defining V ∗ as VHK0(f̃ ; [0, 1]d).

As mentioned in the Introduction, when d = 1, the estimator f̂EM is simply the isotonic
LSE for which Zhang [97] proved that

R(f̂EM, f
∗) ≤ C

(
σ2V ∗

n

) 2
3

+ C
σ2

n
log(en) (3.44)

for some constant C > 0. It is interesting to note that our risk bound (3.43) for general
d ≥ 2 has the same terms as the univariate bound (3.44) with additional logarithmic factors
which depend on d. It is natural to ask therefore if these additional logarithmic factors
are indeed necessary or merely artifacts of our analysis. The next result (a minimax lower
bound) shows that every estimator pays a logarithmic multiplicative price of log n for d = 2
and (log n)2(d−2)/3 for d ≥ 3 in the first n−2/3 term. We do not, unfortunately, know if the
(log n)3d/2(log log n)(2d−1)/2 factor in the second term in (3.43) is necessary or artifactual,
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although we can prove that it can be removed by a modification of the estimator f̂EM (see
Theorem 3.4.4 below).

The next result (proved in Section A.3.7) proves a lower bound for the minimax risk:

MEM,σ,V,d(n) := inf
f̂n

sup
f∗∈FdEM:VHK0(f∗)≤V

Ef∗L(f̂n, f
∗), (3.45)

where the expectation is with respect to model (3.1).

Theorem 3.4.3. Let d ≥ 2, V > 0, σ > 0 and let nj ≥ csn
1/d for all j = 1, . . . , d for some

cs ∈ (0, 1]. Then there exists a positive constant Cd depending only on d and cs, such that
the minimax risk on the lattice design (3.34) satisfies

MEM,σ,V,d(n) ≥ Cd

(
σ2V

n

) 2
3
(

log

(
V
√
n

σ

)) 2(d−2)
3

provided n is larger than a positive constant cd,σ2/V 2 depending only on d, σ2/V 2, and cs. In
the case d = 2, this bound can be tightened to

MEM,σ,V,d(n) ≥ C

(
σ2V

n

) 2
3

log

(
V
√
n

σ

)
. (3.46)

Note that the assumption nj ≥ csn
1/d for all j is reasonable, since if, for instance,

nd′+1 = nd′+2 · · · = nd = 1 then we simply have a d′-dimensional problem where d′ < d,
which should have a smaller minimax risk.

As mentioned before, the above result shows that some dependence on dimension d in the
logarithmic term cannot be avoided for any estimator. Note also, that for d = 2, the minimax
lower bound (3.46) matches our upper bound in Theorem 3.4.1 implying minimaxity of f̂EM

for d = 2. For d > 2, there remains a gap of log n between our minimax lower bound and
the upper bound in Theorem 3.4.1. This gap is due to a logarithmic gap between an upper
bound and lower bound given by Blei et al. [12, Theorem 1.1] for the metric entropy of
cumulative distribution functions of probability measures on [0, 1]d, a gap that essentially
reduces to improving estimates of a small ball probability of Brownian sheets (see discussion
in [12] for more detail and references).

As mentioned earlier, the logarithmic factor (log n)3d/2(log log n)(2d−1)/2 appearing in the

second term of (3.43) can be removed by a modification of the estimator f̂EM. This is shown
in the next result. For a tuning parameter V ≥ 0, let

f̃EM,V ∈ argmin
f∈FdEM:VHK0(f)≤V

1

n

n∑
i=1

(yi − f(xi))
2.

Note that this differs from the original estimator (3.2) only by the introduction of the addi-
tional constraint VHK0(f) ≤ V .
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Theorem 3.4.4. Let f ∗ ∈ FdEM and V ∗ := VHK0(f ∗; [0, 1]d). Assume the lattice design (3.34).

If the tuning parameter V is such that V ≥ V ∗, then the estimator f̃EM,V satisfies

R(f̃EM,V , f
∗) ≤ Cd

(
σ2V

n

) 2
3
(

log

(
2 +

V
√
n

σ

)) 2d−1
3

+ Cd
σ2

n
. (3.47)

Note that the second term in (3.47) is just σ2/n and smaller than the second term in
(3.43) but this comes at the cost of introducing a tuning parameter V that needs to be at
least V ∗.

We will now prove near-parametric rates for f̂EM when f ∗ is rectangular piecewise con-
stant. To motivate these results, note first that when f ∗ is constant on [0, 1]d, we have V ∗ = 0
and thus the bound given by (3.43) is σ2/n up to logarithmic factors. In the next result

(proved in Section A.3.3), we generalize this fact and show that f̂EM achieves nearly the
parametric rate for rectangular piecewise constant functions f ∗ ∈ FdEM. Recall the definition
of the class Rd of all rectangular piecewise constant functions and the associated mapping
k(f), f ∈ Rd, from Definition 3.2.5.

Theorem 3.4.5. For every f ∗ : [0, 1]d → R, the LSE f̂EM satisfies

R(f̂EM, f
∗) ≤ inf

f∈Rd∩FdEM

{
L(f, f ∗) + Cdσ

2k(f)

n
(log(en))

3d
2 (log(e log(en)))

2d−1
2

}
.

Theorem 3.4.5 gives a sharp oracle inequality in the sense of [10] as it applies to every
function f ∗ (even in the misspecified case when f ∗ /∈ FdEM) and the constant in front of the
first term inside the infimum equals 1. Even though the inequality holds for every f ∗, the
right hand side will be small only when f ∗ is close to some function f in Rd ∩ FdEM. This
implies that when f ∗ ∈ Rd ∩ FdEM, we can take f = f ∗ in the right hand side to obtain that

the risk of f̂EM decays as σ2k(f ∗)/n up to logarithmic factors. This rate will be faster than
the rate given by Theorem 3.4.1 provided k(f ∗) is not too large. Note that one can combine
the two bounds given by Theorem 3.4.1 and Theorem 3.4.5 by taking their minimum. In the
case d = 1, Theorem 3.4.5 reduces to the adaptive rates for isotonic regression [19, 10] but
with worse logarithmic factors.

We would also like to mention here that Rd∩FdEM is a smaller class compared to Rd∩FdM
(recall that FdM is defined via (3.20)). Risk results over the class Rd ∩ FdM for the LSE over
FdM and other related estimators have been proved in Han et al. [47] and Deng and Zhang
[28].

Before closing this subsection, let us briefly describe the main ideas underlying the proofs
of Theorems 3.4.1, 3.4.3, 3.4.4 and 3.4.5. For Theorem 3.4.1, we use standard results on the
accuracy of LSEs on closed convex sets which related the risk of f̂EM to covering numbers of
local balls of the form

{
f ∈ FdEM : L(f, f ∗) ≤ t2

}
for t > 0 sufficiently small in the pseudo-

metric given by the square-root of the loss function L. We calculated the covering numbers
of these local balls by relating the functions in FdEM to distribution functions of signed mea-
sures on [0, 1]d and using existing covering number results for distribution functions of signed
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measures from Blei et al. [12] and Gao [36]. The proof of Theorem 3.4.3 is also based on
covering number arguments as we use general minimax lower bounds from Yang and Barron
[94]. Finding lower bounds for the covering numbers under the pseudometric

√
L seems

somewhat involved and we used a multiscale construction from Blei et al. [12, Section 4] for

this purpose. The bound in Theorem 3.4.4 for f̃EM,V is a quick consequence of the proof

of the risk bound for f̂HK0,V (Theorem 3.4.6) which is stated in the next subsection. For

Theorem 3.4.5, we used standard results relating R(f̂EM, f
∗) to a certain size-related mea-

sure (statistical dimension) of the tangent cone to f̂EM at f ∗. When f ∗ ∈ Rd (or when
f ∗ is approximable by a function in Rd), this tangent cone is decomposable into tangent
cones of certain lower-dimensional tangent cones. The statistical dimension of these lower-
dimensional tangent cones is then bounded via an application of Theorem 3.4.1 in the case
when V ∗ = 0.

3.4.2 Risk results for f̂HK0,V

In this subsection, we present bounds on the riskR(f̂HK0,V , f
∗) of the estimator f̂HK0,V . Note

that the estimator f̂HK0,V involves a tuning parameter V and therefore these results will re-
quire some conditions on V . Our first result below assumes that V ≥ V ∗ := VHK0(f ∗; [0, 1]d)
and gives the n−2/3 rate up to logarithmic factors. The proof of this result is given in Sec-
tion A.3.4.

Theorem 3.4.6. Assume the lattice design (3.34). If the tuning parameter V is such that

V ≥ V ∗ := VHK0(f ∗; [0, 1]d), then the estimator f̂HK0,V satisfies

R(f̂HK0,V , f
∗) ≤ Cd

(
σ2V

n

) 2
3
(

log

(
2 +

V
√
n

σ

)) 2d−1
3

+ Cd
σ2

n
. (3.48)

Remark 3.4.7. As mentioned earlier, Mammen and van de Geer [60] (see also the very
recent paper Ortelli and van de Geer [67]) proposed the estimator (3.42) that is similar to

f̂HK0,V . Mammen and van de Geer [60] also proved a risk result for their estimator giving
the rate n−(1+d)/(1+2d) which is strictly suboptimal compared to our rate in (3.48) for d ≥ 2.
This suboptimality is likely due to the use of suboptimal covering number bounds in [60].

Remark 3.4.8 (Model misspecification). Theorem 3.4.6 is stated under the well-specified
assumption VHK0(f ∗; [0, 1]d) ≤ V . In the misspecified setting where VHK0(f ∗; [0, 1]d) > V , our

LSE f̂HK0,V will not be close to f ∗, but to f̃ ∈ argminf :VHK0(f)≤V
∑n

i=1(f(xi)− f ∗(xi))2, so it

is reasonable to consider R(f̂HK0,V , f̃) rather than R(f̂HK0,V , f
∗). By the argument outlined

in Remark A.3.3, R(f̂EM, f̃) is upper bounded by the right hand side of (3.48).

In the next result, we prove a complementary minimax lower bound to Theorem 3.4.6
which proves that, for d ≥ 2, the risk of every estimator over the class {f ∗ : VHK0(f ∗) ≤ V }
is bounded from below by n−2/3(log n)2(d−1)/3 (ignoring terms depending on d, V and σ).
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This implies that the logarithmic terms in (3.48) can perhaps be reduced slightly but cannot
be removed altogether and must necessarily increase with the dimension d. Let

MHK,σ,V,d(n) := inf
f̂n

sup
f∗:VHK0(f∗)≤V

Ef∗L(f̂n, f
∗),

where the expectation is with respect to model (3.1). Note that {f ∗ ∈ FdEM : VHK0(f ∗) ≤
V } ⊆ {f ∗ : VHK0(f ∗) ≤ V } which implies that

MHK,σ,V,d(n) ≥MEM,σ,V,d(n)

where MEM,σ,V,d(n) is defined in (3.45). This implies, in particular, that the lower bounds on
MEM,σ,V,d(n) from Theorem 3.4.3 are also lower bounds on MHK,σ,V,d(n). However the next
result (whose proof is in Section A.3.6) gives a strictly larger lower bound for MHK,σ,V,d(n)
for d > 2 than that given by Theorem 3.4.3.

Theorem 3.4.9. Let d ≥ 2, V > 0, σ > 0 and let nj ≥ csn
1/d for j = 1, . . . , d, where

cs ∈ (0, 1]. Then there exists a positive constant Cd depending only on d and cs, such that

MHK,σ,V,d(n) ≥ Cd

(
σ2V

n

) 2
3
(

log

(
V
√
n

σ

)) 2(d−1)
3

provided n is larger than a positive constant cd,σ2/V 2 depending only on d, σ2/V 2, and cs. In
the case d = 2, this bound can be tightened to

MHK,σ,V,d(n) ≥ C

(
σ2V

n

) 2
3

log

(
V
√
n

σ

)
.

Theorems 3.4.6 and 3.4.9 together imply that f̂HK0,V is minimax optimal over {f ∗ :
VHK0(f ∗) ≤ V } for d = 2 and only possibly off by a factor of (log n)1/3 for d > 2.

We next explore the possibility of near parametric rates for f̂HK0,V for rectangular piece-
wise constant functions. In the univariate case d = 1, it is known (see [44, Theorem 2.2])

that f̂HK0,V satisfies the near-parametric risk bound (3.13) provided (a) the tuning param-
eter V is taken to be close to V ∗, (b) f ∗ is piecewise constant, and (c) the length of each
constant piece of f ∗ is bounded from below by c/k(f ∗) for some c > 0. The next result
(proved in Section A.3.8) provides evidence that a similar story holds true for estimating
certain rectangular piecewise constant functions.

For a given constant 0 < c ≤ 1/2, let Rd
1(c) denote the collection of functions f : [0, 1]d →

R of the form
f = a1I[x∗,1] + a0 (3.49)

for some a1, a0 ∈ R and x∗ ∈ [0, 1]d satisfying the minimum size condition

min{|Ln1,...,nd ∩ [x∗,1]|, |Ln1,...,nd ∩ [0,x∗)|} ≥ cn. (3.50)
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To gain more intuition about the above condition, note first that we are working with the
lattice design so that Ln1,...,nd = {x1, . . . ,xn} is the set containing all design points. Roughly
speaking, (3.50) ensures that x∗ is not too close to the boundary of [0, 1]d so that each of the
rectangles [x∗,1] and [0,x∗) contain at least some constant fraction of the n design points.

It is clear that Rd
1(c) is a subset of Rd, i.e., every function of the form (3.49) is rectangular

piecewise constant. Indeed, it is easy to see that k(f) ≤ 2d for every f ∈ Rd
1(c). The following

result (proved in Section A.3.8 bounds the risk of f̂HK0,V for f ∗ ∈ Rd
1(c).

Theorem 3.4.10. Consider the lattice design (3.34) with n > 1. Fix f ∗ : [0, 1]d → R and

consider the estimator f̂HK0,V with a tuning parameter V . Then for every 0 < c ≤ 1/2, we
have

R(f̂HK0,V , f
∗) ≤ inf

f∈Rd1(c):
VHK0(f)=V

{
L(f, f ∗) + C(c, d)

σ2

n
(log n)

3d
2 (log log n)

2d−1
2

}
(3.51)

for a constant C(c, d) that depends only on c and d.

Theorem 3.4.10 applies to every function f ∗ but the infimum on the right hand side
of (3.51) is over all functions f in Rd

1(c) with VHK0(f) = V . Therefore, Theorem 3.4.10

implies that the risk of the estimator f̂HK0,V with tuning parameter V at f ∗ is the near-

parametric rate σ2

n
(log en)3d/2(log log n)(2d−1)/2 provided f ∗ is close to some function f in

Rd
1(c) with V = VHK0(f). As an immediate consequence, we obtain that if f ∗ ∈ Rd

1(c) and
V = VHK0(f ∗), then

R(f̂HK0,V , f
∗) ≤ C(c, d)

σ2

n
(log(en))

3d
2 (log(e log(en)))

2d−1
2 .

Functions in Rd
1(c) are constrained to satisfy the minimum size condition (3.50). A com-

parison of Theorem 3.4.10 with the corresponding univariate results shows that the near-
parametric rate cannot be achieved without any minimum size condition (see e.g., [44, Re-
mark 2.5] and [32, Section 4]). However, condition (3.50) might sometimes be too stringent
for d ≥ 2. For example, it rules out the case when x∗ := (0.5, 0, . . . , 0) which means that
the function class Rd

1(c) excludes simple functions such as f(x) := I{x1 ≥ 1/2}. In Theo-
rem A.1.1 (deferred to Section A.1), we show that when d = 2, it is possible to obtain the
same risk bound under a weaker minimum size condition which does not rule out functions
such as f(x) := I{x1 ≥ 1/2}.

The implication of Theorems 3.4.10 and A.1.1 is that there exists a subclass of Rd con-
sisting of indicators of upper right rectangles in [0, 1]d over which the estimator f̂HK0,V , when
ideally tuned, achieves the near-parametric rate with some logarithmic factors. Simulations
(see Section A.2.3) indicate that this should also be true for a larger subclass of Rd consisting
of all functions in Rd satisfying some minimum size condition, but our proof technique does
not currently work in this generality. Ortelli and van de Geer [66] recently proved, for d = 2,
near-parametric rates for the estimator (3.42) for a more general class of piecewise constant
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functions, but for a smaller loss function. Their proof technique is completely different from
our approach.

Let us now briefly discuss the key ideas behind the proofs of Theorems 3.4.6, 3.4.9 and
3.4.10. Theorem 3.4.6 is proved via covering number arguments which relate R(f̂HK0,V , f

∗)
to covering numbers of {f : VHK0(f) ≤ V } and these covering numbers are controlled by
invoking connections to distribution functions of signed measures. Theorem 3.4.9 is proved
by Assouad’s lemma with a multiscale construction of functions with bounded HK0 variation.
This multiscale construction is involved and taken from Blei et al. [12, Section 4].

The ideas for the proof of Theorem 3.4.10 (and also Theorem A.1.1) is borrowed from
the proofs for the univariate case in Guntuboyina et al. [44] although the situation for
d ≥ 2 is much more complicated. At a high level, we use tangent cone connections where
the goal is to control an appropriate size measure (Gaussian width) of the tangent cone of
{f : VHK0(f) ≤ V ∗} at f ∗. This tangent cone can be explicitly computed (see Lemma A.3.12).
To bound its Gaussian width, our key observation is that for functions f ∗ in Rd

1(c), every
element of the tangent cone can be broken down into lower-dimensional elements each of
which is either nearly entirely monotone or has low HK0 variation. The Gaussian width of
the tangent cone can then be bounded by a combination of (suitably strengthened) versions
of Theorem 3.4.5 and Theorem 3.4.6. This method unfortunately does not seem to work
for arbitrary functions f ∗ ∈ Rd because of certain technical issues which are mentioned in
Remark A.3.17.

3.5 On the “dimension-independent” rate n−2/3 in

Theorem 3.4.1 and Theorem 3.4.6

As mentioned previously, the dimension d appears in the bounds given by Theorem 3.4.1 and
Theorem 3.4.6 only through the logarithmic term which means that f̂EM and f̂HK0,V attain
“dimension-independent rates” ignoring logarithmic factors. We shall provide some insight
and put these results in proper historical context in this section. In nonparametric statistics,
it is well-known that the rate of estimation of smooth functions based on n observations is
n−2m/(2m+d) where d is the dimension and m is the order of smoothness [78]. The constraints
of entire monotonicity and having finite HK0 variation can be loosely viewed as smoothness
constraints of order m = d. This is because, for smooth functions f , entire monotonicity is
equivalent to

∂|S|f∏
j∈S ∂xj

≥ 0 for every ∅ 6= S ⊆ {1, . . . , d}

and the constraint of finite HK0 variation is equivalent to

∂|S|f∏
j∈S ∂xj

∈ L1 for every ∅ 6= S ⊆ {1, . . . , d}. (3.52)
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Because derivatives of order d appear in these expressions, these constraints should be con-
sidered as smoothness constraints of order d. Note that taking m = d in n−2m/(2m+d) gives
n−2/3.

Some other papers which studied such higher order constraints to obtain estimators
having nearly dimension-free rates include [8, 58, 22, 65, 76, 89]. In particular, Lin [58]
studied estimation under the constraint:

∂|S|f∏
j∈S ∂xj

∈ L2 for every ∅ 6= S ⊆ {1, . . . , d}. (3.53)

The difference between (3.52) and (3.53) is that L1 in (3.52) is replaced by L2 in (3.53).
Lin [58] proved that the minimax rate of convergence under (3.53) is n−2/3(log n)2(d−1)/3

and constructed a linear estimator which is optimal over the class (3.53). Let us remark
here that the L2 constraint makes the class smaller compared to (3.52) and also enables
linear estimators to achieve the optimal rate. However, linear estimators will not be optimal
over {f : VHK0(f) ≤ V } as is well-known in d = 1 (see Donoho and Johnstone [30]) and
the estimator of Lin [58] will also not adapt to rectangular piecewise constant functions
(note that it is not possible to extend (3.53) to nonsmooth functions in such a way that the
constraint is satisfied by rectangular piecewise constant functions).

Let us also mention here that, in approximation theory, it is known that classes of smooth
functions f on [0, 1]d satisfying mixed partial derivative constraints such as (3.52) or (3.53)
allow one to overcome the curse of dimensionality to some extent from the perspective of
metric entropy, approximation and interpolation (see e.g., [29, 79, 15]).

Another way to impose higher order smoothness is to impose the constraint:

∂df

∂xdj
∈ L1 for each j = 1, . . . , d (3.54)

as in the Kronecker Trend filtering method of order k+1 = d of Sadhanala et al. [76] who also
proved that this leads to the dimension-free rate n−2/3 up to logarithmic factors. There are
some differences between the constraints (3.52) and (3.54). For example, product functions
f(x1, . . . , xd) := f1(x1) . . . fd(xd) satisfy (3.52) provided each fj satisfies f ′j ∈ L1 while they

will satisfy (3.54) provided f
(d)
j ∈ L1.

Finally, let us mention that, in the usual multivariate extensions of isotonic regression
and total variation denoising, one uses partial derivatives only of the first order which leads
to rates of convergence that are exponential in the dimension d. For example, the usual
multivariate isotonic regression (see e.g., Robertson et al. [73, Section 1.3]) considers the
class FdM of multivariate monotone functions which only imposes first order constraints. The
rate of convergence here is given by n−1/d as recently shown in Han et al. [47]. This rate is
exponentially slow in the dimension d. One sees the same rate behavior for the multivariate
total variation denoising estimator (which also imposes only first order constraints) originally
proposed by Rudin et al. [74] and whose theoretical behavior is studied in Hütter and Rigollet
[52], Sadhanala et al. [77], Chatterjee and Goswami [18], Ortelli and van de Geer [68], Ruiz
et al. [75].
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Chapter 4

Shape constraints and interactions

4.1 Introduction

Consider the nonparametric regression framework, where the goal is to estimate an unknown
function f ∗ : [0, 1]d → R from noisy observations

yi = f ∗(xi) + ξi, where ξi
i.i.d.∼ N (0, σ2) for i = 1, . . . , n. (4.1)

We continue to focus on least squares estimators (LSEs) of the form

argmin
f

1

n

n∑
i=1

(yi − f(xi))
2,

where the minimum is taken with respect to some function class. In the previous chapter,
we proposed and analyzed the least squares estimator with respect to FdEM, the class of en-
tirely monotone functions (3.2) and noted it is one multivariate generalization of univariate
isotonic regression. We discussed in Section 3.5 that this class of entirely monotone func-
tions is a small enough subclass of multivariate monotonic functions to avoid the curse of
dimensionality to some extent.

Yet another multivariate generalization of isotonic regression is additive monotonic regres-
sion [6], where the function class consists of multivariate functions that are sums of univariate
isotonic functions in each component. From a practical standpoint, performing regression
with respect to this class has a number of attractive properties. Computationally, one can
efficiently compute the estimator using the cyclic pool-adjacent violators algorithm [6], a mul-
tivariate generalization of the well-known pool-adjacent violators algorithm [5] for univariate
isotonic regression. From a modeling perspective, one only needs to establish the monotonic
direction of the relationship between the response variable and each covariate, which is usu-
ally known from the context of the regression; this nonparametric modeling avoids making
more stringent assumptions like linearity on the relationship between the response and the
covariates. At the same time, the additivity of the model makes the fitted function fairly
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interpretable, since the effect of a particular covariate on the response is entirely captured
by the corresponding univariate nondecreasing fitted function.

In particular, the class of additive monotonic functions is a subclass of entirely monotone
functions. Contrasting the two function classes allows us to view entirely monotonic re-
gression from a new perspective. The additivity constraint in additive monotonic regression
prevents any interaction in how the covariates affect the response; entire monotonicity can
be viewed as a particular relaxation of this condition by allowing “positive interactions” of
all orders among covariates. This perspective also naturally leads us to consider a variety
of intermediate classes lying between the interaction-less additive monotonic class and the
entirely monotonic class, by allowing only certain interactions.

In Section 4.2, we describe how relative to the additive monotonic function class, the
entirely monotonic function class introduces positive interactions. We then define two types
of intermediate function classes that each interpolate between additive monotonicity and
entirely monotonicity. In Section 4.3 we show how the least squares estimators with respect
to these function classes can be computed by solving corresponding nonnegative least squares
problems. In Section 4.4 we prove a risk bound for one of these types of estimators, and show
that it generalizes the risk bound for entirely monotonic functions (3.43). In Section 4.5,
we describe how one can perform a hypothesis test for whether one should include certain
interaction terms in a model. The test is a likelihood ratio test involving nested convex
cones, and we use a result of Menéndez et al. [62] to prove that this test is dominated by a
different likelihood ratio test for a set of reduced hypotheses.

4.2 Terminology and motivation

We define the class of additive monotonic functions FdAM as functions f : [0, 1]d → R of the
form

f(x) =
d∑
j=1

fj(xj), (4.2)

for some nondecreasing univariate functions fj : [0, 1]→ R, j = 1, . . . , d. This generalization
of univariate isotonic regression via additivity is analogous to how multiple linear regression
generalizes simple linear regression by considering functions of the form (4.2) but with each
fj being a univariate linear function. One common feature of these additive models is that
they exclude interactions of the covariates in the following sense. Given x = (x1, . . . , xd) and
x′ = (x1, . . . , x

′
j, . . . , xd) that differ only in the jth component, the effect of this change in

the jth component is
f(x′)− f(x) = fj(x

′
j)− fj(xj),

which does not depend on the value of the other components x\j := (xk : k 6= j). Equiva-
lently, the univariate slice xj 7→ f(x) for fixed x\j is fj(xj) + c where the other covariates
x\j only affect the constant shift c; see Figure 4.1 for a depiction of these parallel slices. De-
pending on the context, the class of additive monotonic functions may or may not be a good
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modeling choice. Similar to how univariate isotonic regression is flexible in imposing only
the mild shape constraint of monotonicity while producing piecewise constant fitted func-
tions, additive monotonic regression retains the flexible piecewise constant fitted functions
for each component. However, the imposition of having no covariate interaction may be too
restrictive in certain applications where it is known that two or more covariates interact to
affect the response. Contrasting the additive monotonic class with the entirely monotonic
class of functions gives us perspectives on how to relax this no-interaction constraint.
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Figure 4.1: Additive monotonic regression of students’ reading scores on their math and social
studies scores: the slices of the fitted function (for fixed social studies scores) are parallel.

Recall from Section 3.2 the definition of the class of entire monotonic functions FdEM: a
function f : [0, 1]d → R is entirely monotonic if the quasi-volumes

∆(f ; [a,b]) :=

J1∑
j1=0

· · ·
Jd∑
jd=0

(−1)j1+···+jdf(b1 + j1(a1 − b1), . . . , bd + jd(ad − bd)), Jk := I{ak 6= bk},

(4.3)
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are nonnegative for every rectangle [a,b] in [0, 1]d where a � b and a 6= b. The following
lemma (proved in Section 4.6.4) shows exactly how the additive monotonic class is a subclass
of entirely monotonic functions.

Lemma 4.2.1. The class of additive monotonic functions can be characterized as

FdAM = {f ∈ FdEM : ∆(f ; [a,b]) = 0 for a � b where |{k : ak 6= bk}| > 1}.

Consequently, FdAM ⊆ FdEM, with equality if and only if d = 1.

In light of Lemma 4.2.1, we can see how the no-interaction constraint is relaxed in FdEM

as well as in FdM (the class of multivariate monotonic functions (3.20)). Functions f in these
three classes all satisfy

∆(f ; [a,b]) ≥ 0, if |{k : ak 6= bk}| = 1. (4.4)

Stated more simply, any f in any of the three classes is nondecreasing in each component.
How the three classes differ is how they constrain the quasi-volume ∆(f ; [a,b]) when a and
b differ by more than one component.

• The additive monotonic class FdAM is component-wise nondecreasing (4.4) and satisfies
∆(f ; [a,b]) = 0 when |{k : ak 6= bk}| > 1.

• The entirely monotonic class FdEM is component-wise nondecreasing (4.4) and satisfies
∆(f ; [a,b]) ≥ 0 when |{k : ak 6= bk}| > 1.

• The multivariate monotonic class FdM is component-wise nondecreasing (4.4) and im-
poses no constraint on ∆(f ; [a,b]) when |{k : ak 6= bk}| > 1.

We see that entirely removing the no-interaction condition ∆(f ; [a,b]) = 0 leads to the very
large class FdM, which suffers from the curse of dimensionality (as discussed in Section 3.5).
Instead imposing a nonnegativity constraint on these quasi-volumes allows for “positive
interactions.” To understand the nature of a positive interaction, it is helpful to consider
the simple case d = 2, where the quasi-volume constraint can be written as

f(a1, b2)− f(a1, a2) ≤ f(b1, b2)− f(b1, a2), a1 < b1, a2 < b2.

Each side of the inequality represents the effect of a change in the second component from
a2 to b2 while holding the first component fixed. The inequality implies that this effect is
larger when the value of the first component is larger, i.e. the first component positively
interacts with the second component to produce a larger effect. For higher d, there will also
be nonnegativity constraints on higher-order differences. For instance, in the case d = 3,
there will be constraints similar to the above, as well as the higher-order constraint

f(a1, b2, b3)− f(a1, b2, a3)− f(a1, a2, b3) + f(a1, a2, a3)

≤ f(b1, b2, b3)− f(b1, b2, a3)− f(b1, a2, b3) + f(b1, a2, a3), ak < bk, k = 1, 2, 3.
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Although these function classes are defined without any smoothness assumptions, it can
be helpful to consider the special case of smooth functions and state these constraints in
terms of derivatives for the sake of interpretation. All three classes impose the component-
wise nondecreasing constraint

∂f

∂xj
≥ 0, j = 1, . . . , d,

but differ in how they constraint the mixed derivatives

∂|S|f∏
j∈S ∂xj

, S ⊆ {1, . . . , d}, |S| > 1.

The additive monotonic class FdAM forces these mixed derivatives to be zero, the entirely
monotonic class FdEM imposes a nonnegativity constraint on these mixed derivatives, and the
multivariate monotonic class FdM does not impose any constraint on them.

If we revisit the linear regression analogy, the leap from the additive monotonic model
(no interactions) to the entirely monotonic model (interactions of all orders) may seem a bit
drastic. For instance when d = 3, this would be akin to leaping from the multiple linear
regression model f(x) = β0 + β1x1 + β2x2 + β3x3 directly to

f(x) = β0 + β1x1 + β2x2 + β3x3 + β1,2x1x2 + β1,3x1x3 + β2,3x2x3 + β1,2,3x1x2x3

by including second and third-order linear interactions. In practice, one might consider in-
termediate models, like only including some or all of the second-order interaction terms,
without higher-order interaction terms. Moreover, one can help inform modeling decisions
by performing an F -test to compare a simpler null model with an alternative model that
includes certain interaction terms [23]. This begs the questions of a) whether we can analo-
gously establish intermediate models between FdAM and FdEM in the monotonic setting, and
b) whether we can establish hypothesis tests to compare two such models.

One way to define an intermediate class is to apply the additive structure on blocks of
components rather than individual components. Let

S = {S1, . . . , SM} (4.5)

be a partition of the covariates {1, . . . , d} into M disjoint subsets. Let dm := |Sm|. The class
FSEM consists of functions of the form

f(x) =
M∑
m=1

fm(xSm), fm ∈ FdmEM, (4.6)

where xSm denotes the sub-vector of x indexed by Sm. That is, f is the sum of separate en-

tirely monotone functions on each block Sm of covariates. For example, F{{1,2},{3,4,5,6},{7,8,9}}EM

consists of functions f : [0, 1]9 → R of the form

f(x1, . . . , x9) = f1(x1, x2)+f2(x3, x4, x5, x6)+f3(x7, x8, x9), f1 ∈ F2
EM, f2 ∈ F4

EM, f3 ∈ F3
EM.
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To relate this new class to the earlier ones, note that when M = 1, we simply get the EM
class FdEM, and in general

FdAM = F{{1},...,{d}}EM ⊆ FSEM ⊆ F
{{1,...,d}}
EM = FdEM.

These classes are suitable in cases when the set of covariates can be partitioned into blocks
that do not interact with each other across blocks, but might have positive interactions within
each block. The following generalization of Lemma 4.2.1 also holds. (See Section 4.6.4 for
the proof.)

Lemma 4.2.2. The class FSEM can be expressed as

FSEM = {f ∈ FdEM : ∆(f ; [a,b]) = 0 for a � b where {k : ak 6= bk} 6⊆ Sm,∀m}. (4.7)

That is, the quasi-volume over hyperrectangles [a,b] is forced to be zero when the compo-
nents in which a and b differ do not lie entirely within one block Sm. For smooth functions,

this is equivalent to constraining the mixed derivatives ∂|S|f∏
j∈S ∂xj

to be nonnegative if S ⊆ Sm

for some m, and zero otherwise.
An alternative modeling choice could be to allow interactions across all covariates, but

exclude interactions of order exceeding some threshold r. For 1 ≤ r ≤ d, we define

Fd,≤rEM = {f ∈ FdEM : ∆(f ; [a,b]) = 0 for a � b where |{k : ak 6= bk}| > r}.

In light of Lemma 4.2.1, we have

FdAM = Fd,≤1
EM ⊆ · · · ⊆ Fd,≤rEM ⊆ · · · ⊆ Fd,≤dEM = FdEM.

In general, this class imposes nonnegativity constraints on the quasi-volumes of order ≤ r,
and forces all higher-order quasi-volumes to be zero. For smooth functions, this is equivalent

to constraining the mixed derivatives ∂|S|f∏
j∈S ∂xj

to be nonnegative when |S| ≤ r, and zero

when |S| > r.

4.3 Computational feasibility

In Proposition 3.3.1, we showed how the least squares estimator for the entirely monotonic
class FdEM could be computed by solving a nonnegative least squares (NNLS) problem (3.2)
with respect to the matrix matrix A whose columns are the distinct elements of the finite
set

Q ≡ Qx1,...,xn := {v(z) : z ∈ [0, 1]d} ⊆ {0, 1}n, (4.8)

where
v(z) ≡ vx1,...,xn(z) := (I[z,1](x1), I[z,1](x2), . . . , I[z,1](xn)).
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We show below that the LSEs of the intermediate classes Fd,≤rEM and FSEM, namely

f̂EM,≤r ∈ argmin
f∈Fd,≤rEM

1

n

n∑
i=1

(yi − f(xi))
2 (4.9a)

f̂EM,S ∈ argmin
f∈FSEM

1

n

n∑
i=1

(yi − f(xi))
2 (4.9b)

can also be computed by solving a NNLS problem with the same matrix A, but with some
coefficients constrained to be zero. In other words, while the LSE with respect to the large
class FdEM can be computed from performing NNLS with all the columns of A, the LSEs
for the intermediate classes can be computed from performing NNLS with a subset of the
columns of A.

Let the columns of A≤r ∈ Rn×p
′

be the distinct elements of the finite set

{v(z) : z ∈ [0, 1]d, |{j : zj 6= 0}| ≤ r}.

The restriction here forces z to have at most r nonzero elements. Let the columns of AS ∈
Rn×p′ be the distinct elements of the finite set

{v(z) : z ∈ [0, 1]d, {j : zj 6= 0} ∈ {S1, . . . , SM}}.

The restriction here forces the nonzero elements of z to lie entirely within one of the blocks.
Without loss of generality assume the first columns of A≤r and AS are each v(0) = (1, . . . , 1).
Note that the columns of A≤r and AS are all columns of A. We can then consider the NNLS
problems

β̂EM,≤r ∈ argmin
β∈Rp′ :βj≥0,∀j≥2

‖y −A≤rβ‖2, (4.10a)

β̂EM,S ∈ argmin
β∈Rp′′ :βj≥0,∀j≥2

‖y −ASβ‖2. (4.10b)

The following result (proved in Section 4.6.6) shows how these NNLS problems can be
used to compute the least squares estimators for Fd,≤rEM and FSEM.

Proposition 4.3.1. The functions

f̂EM,≤r :=

p′∑
j=1

(β̂EM,≤r)j · I[zj ,1], f̂EM,S :=

p′′∑
j=1

(β̂EM,S)j · I[zj ,1], (4.11)

are solutions to the respective optimization problems (4.9a) and (4.9b).

Since A≤r and AS have fewer columns than A, the NNLS problems (4.10a) and (4.10b)
are computationally less expensive than the analogous NNLS problem (3.28) for computing
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the LSE with respect to FdEM. This savings in computation can be quite large. For instance,
if the design x1, . . . ,xn is a n1/d × · · · × n1/d lattice, then A≤r has on the order of p′ � nr/d

columns and AS has on the order of p′′ � ndmax/d columns (where dmax = maxm|Sm| is the
size of the largest block). Both these numbers are much smaller than n (the number of
columns of A for this lattice design) especially if r is small and if the blocks of S are small.

Similar to how the key to proving Proposition 3.3.1 was Proposition 3.3.2, the key to
proving Proposition 4.3.1 is the following result that establishes the relationship between
the matrices A≤r and AS and the respective classes Fd,≤rEM and FSEM. We defer the proof to
Section 4.6.5.

Proposition 4.3.2. Given n design points x1, . . . ,xn ∈ [0, 1]d, we have

{(f(x1), . . . , f(xn)) : f ∈ Fd,≤rEM } = {A≤rβ : βj ≥ 0,∀j ≥ 2}, (4.12a)

{(f(x1), . . . , f(xn)) : f ∈ FSEM} = {Ad1,...,dMβ : βj ≥ 0,∀j ≥ 2}. (4.12b)

4.4 Risk bound for FSEM

In the rest of this chapter, we will assume the design x1, . . . ,xn is the equally-spaced lattice
design

Ln1,...,nd := {(i1/n1, . . . , id/nd) : 0 ≤ ij ≤ nj − 1, j = 1, . . . , d}. (4.13)

Fix a partition S of {1, . . . , d}. Given the design x1, . . . ,xn from the lattice (4.13),
let y1, . . . , yn be obtained from the Gaussian model (4.1) with f ∗ ∈ FSEM. From these

observations, we can the least squares estimator f̂EM,S (see Equation 4.9b) with respect to
the class FSEM. We define the risk by

R(f̂EM,S , f
∗) := E

1

n

n∑
i=1

(f̂EM,S(xi)− f ∗(xi))2,

where the expectation is taken with respect to the the noise in the Gaussian model (4.1).
The following result (proved in Section 4.6.1) provides a bound on this risk.

Theorem 4.4.1. Let f ∗(x) =
∑M

m=1 f
∗
m(xSm) ∈ FSEM. Under the lattice design (4.13) and

Gaussian model (4.1), the risk of f̂EM,S with respect to f ∗ ∈ FSEM is bounded as

R(f̂EM,S , f
∗)

≤ C max
m∈{1,...,M}

[(
σ2V ∗m
n

) 2
3 (

log(2 +
√
nV ∗m/σ)

) 2dm−1
3 +

σ2

n
(log ñm)

3dm
4 (log(e log(ñm)))

2dm−4
2

]
,

where dm := |Sm| is the size of the mth block, where ñm :=
∏

j∈Sm nj is the size of the lattice
for the block Sm, and where V ∗m := f ∗m(1) − f ∗m(0) is the variation of the function f ∗m that
governs the Sm block of f ∗.
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Note that this is a generalization of the entirely monotone risk bound Theorem 3.4.1:
when S = {{1, . . . , d}} we have FSEM = FdEM, M = 1, V ∗1 = f(1)− f(0), ñ1 = n, and d1 = d,
which then yields the EM risk bound (3.43).

The case S = {{1}, . . . , {d}} corresponds to additive isotonic regression, in which case
the main term of the risk bound is

R(f̂AM, f
∗) .

(
σ2V ∗max

n

) 2
3

(log
√
nV ∗max/σ))

1
3 ,

where V ∗max = maxj{f ∗j (1)− f ∗j (0)} is the largest variation among the component functions

f ∗j of f ∗(x) =
∑d

j=1 f
∗
j (xj). For the general case FSEM, the dominant term in the bound is

essentially n−2/3(log n)
2dmax−1

3 where dmax = maxm dm is the size of the largest block. Thus
the main term in the risk for all of the classes FSEM is n−2/3 up to a logarithmic factor, and
the only place the partition S affects this main term is in the exponent of the logarithmic
factor, which is 1

3
in the smallest case FdAM and 2d−1

3
in the largest case FdEM.

We conjecture that the risk of f̂EM,≤r has a main term of the form n−2/3(log n)O(r), and
thus exhibits a similar behavior of having the same rate as the EM class (3.43) except with the
exponent of the logarithmic term governed by r rather than d. That the risk takes this form
is very plausible given that both Fd,≤rEM and FSEM interpolate between the additive monotonic
class FdAM and the entirely monotonic class FdEM, but the exact form of the logarithmic term’s
exponent is not obvious. The proof of Theorem 4.4.1 (see Section 4.6.1) took advantage of
the fact that interactions in FSEM are over disjoint subsets of covariates, which allowed us to
obtain the above rate despite bounding a Gaussian width rather crudely (see (4.19)). The
disjointness was also useful in obtaining an explicit ANOVA decomposition (4.18) involving

means of slices of functions in FSEM. A proof for the risk of f̂EM,≤r would not be able to take
advantage of this disjointness because each covariate is allowed to interact with any of the
other covariates.

4.5 Hypothesis testing for interactions

In linear regression, the estimator can be interpreted as a projection onto the column space
of the design matrix. If we are comparing two nested linear models, the column space of
the smaller model F0 is a subspace of that of the larger model F1. If we were to test the
null hypothesis H0 : f ∗ ∈ F0 against the alternative Ha − H0 where Ha : f ∗ ∈ F1, one
can perform an F -test [23], which is equivalent to a likelihood ratio test for our Gaussian
model (4.1).

In light of Proposition 4.3.1 and Proposition 4.3.2, the least squares estimators with
respect to classes Fd,≤rEM and FSEM are least squares projections onto convex polyhedral cones

C≤rEM := {A≤rβ : βj ≥ 0,∀j ≥ 2},
CSEM := {ASβ : βj ≥ 0,∀j ≥ 2}.
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Thus if we were to do a test comparing two nested classes, we would be comparing least
squares estimators of two nested cones C0 ⊆ Ca. Let ΠC(v) := argminu∈C‖u − v‖2 denote
the least squares projection onto a cone C. When the nested cones C0 ⊆ Ca satisfy the
condition

ΠC0(θ) = ΠC0(ΠCa(θ)), ∀θ, (4.14)

they are referred to as non-oblique. The notion of non-obliqueness was first introduced by
Warrack and Robertson [90], and when this condition holds, the corresponding likelihood
ratio test (LRT) is well-understood (see [91] and references therein). Unfortunately, for
the cones that we are considering, the non-obliqueness condition (4.14) does not necessarily
hold. See Section 4.6.2 for an example where CAM ⊆ CEM fail to satisfy the condition (4.14).
However, we show below that a result of Menéndez et al. [62] allows us to obtain a test that
dominates the LRT.

We continue to operate under the assumption that the design x1, . . . ,xn is the equally-
spaced lattice (4.13). Let θ∗ = (f ∗(x1), . . . , f ∗(xn)) so that the observations are y = θ∗ + ξ
where ξ ∼ N (0, σ2).

If C0 ⊆ Ca are nested cones of the form C≤rEM or CSEM, then there are matrices A0 and A1

such that the columns of A0 are columns of A1, and such that

C0 = {A0β : βj ≥ 0,∀j ≥ 2}
Ca = {A1β : βj ≥ 0,∀j ≥ 2}.

If we let LC0 be the subspace closure of C0 (that is, the column space of A0), then we have

C0 = Ca ∩ LC0 .

The LRT for testing H0 : θ∗ ∈ C0 against Ha : θ∗ ∈ Ca involves the statistic

T (y) = ‖y − ΠC0(y)‖2 − ‖y − ΠCa(y)‖2.

Menéndez et al. [62] showed that if the condition

ΠLC0
(θ) ∈ Ca, ∀θ ∈ Ca (4.15)

holds, then the LRT is dominated by the LRT for a different pair of hypotheses H∗0 : θ∗ ∈ LC0

and H∗a ∈ C∗ := cl(Ca + LC0). The relevant statistic for the latter LRT is

T ∗(y) = ‖y − ΠLC0
(y)‖2 − ‖y − ΠC∗(y)‖2.

The following result (proved in Section 4.6.3) states that this dominance occurs when the
smaller cone C0 is of the form CSEM.

Theorem 4.5.1. Let x1, . . . ,xn be the lattice design (4.13). Let C0 ⊆ Ca where C0 = CSEM,
and where Ca is either of the form FS′EM or Fd,≤rEM . The LRT for testing H0 : θ ∈ C0 against the
alternative Ha −H0 where Ha : θ ∈ Ca is dominated by the LRT for testing H∗0 : θ∗ ∈ LC0
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against H∗a − H∗0 where H∗a : θ∗ ∈ C∗ := cl(Ca + LC0), in the sense that it has the same
significance level

sup
θ∗∈C0

Pθ∗(T (y) ≥ c) = sup
θ∗∈LC0

Pθ∗(T ∗(y) ≥ c)

and has at least as much power, i.e.

Pθ∗(T (y) ≥ c) ≤ Pθ∗(T ∗(y) ≥ c), ∀θ∗,∀c.

One advantage of the new test with hypotheses H∗0 and H∗a is that the statistic T ∗ is
invariant under translations of θ∗ within the subspace LC0 . In particular, the worst-case
Type I error supθ∗∈LC0

Pθ∗(T ∗(y) ≥ c) is attained at any θ∗ ∈ LC0 , such as θ∗ = 0. This
fact is useful in determining an appropriate cutoff c for the original LRT involving T .

Theorem 4.5.1 can be used to test for whether certain interactions should be included in
a model. For instance, if one wanted to test whether the true function has no interactions
(H0 : f ∗ ∈ FdAM) against the alternative Ha : f ∗ ∈ FdEM, the LRT for this test would be
dominated by the LRT for hypotheses

H∗0 : f ∗ ∈ {f : ∆(f ; [a,b]) = 0 if |{k : ak 6= bk}| > 1} =

{
f : f(x) =

d∑
j=1

fj(xj)

}
H∗a : f ∗ ∈ {f : ∆(f ; [a,b]) ≥ 0 if |{k : ak 6= bk}| > 1}.

More generally, Theorem 4.5.1 can be used for any pair of nested models of the form

• FSEM ⊆ FS
′

EM where the sets of S ′ are unions of sets in S, or

• FSEM ⊆ F
d,≤r
EM where r ≥ maxm|Sm|.

There are a few limitations of Theorem 4.5.1. It is unclear whether the same result holds
when the smaller cone is of the other form C≤rEM. The proof of Theorem 4.5.1 again takes
advantage of the disjointness of the interactions in FSEM to get an explicit expression for the
linear projection ΠLC0

via an ANOVA decomposition. A separate drawback of Theorem 4.5.1
is its reliance on the lattice design (4.13). The condition (4.15) does not necessarily hold for
non-lattice designs, so it is unclear whether this auxiliary LRT involving the statistic T ∗ has
any bearing on the original LRT in the general case.

4.6 Proofs

4.6.1 Proof of Theorem 4.4.1

Without loss of generality, we may assume σ = 1. (The general case can be obtained
by multiplying the estimation risk in the scaled model yi/σ = f ∗(xi)/σ + ξi/σ and then
multiplying by σ2.)
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Let CSEM := {(f(x1), . . . , f(xn)) : f ∈ FSEM}. Since the design is a lattice, the full EM
matrix A (see (4.8)) is square with columns (I[xi,1](x1), . . . I[xi,1](xn)) for i = 1, . . . , n. By
Proposition 4.3.2, CSEM is exactly the set of vectors of the form Aβ where β ∈ Rn such that
βj ≥ 0 for j ≥ 2 and βj = 0 if {i : (xj)i 6= 0} is not contained within one block Sm. (The
coefficients being forced to be zero correspond to the columns of A that are not columns of
AS .) Note that ñ1 + · · ·+ ñM − (M − 1) of the βj are not constrained to be zero.

If we let θ∗ := (f ∗(x1), . . . , f ∗(xn)) and θ̂ := (f̂EM,S(x1), . . . , f̂EM,S(xn)) then

θ̂ = argmin
θ∈CSEM

‖y − θ‖2.

Thus, we have R(f̂EM,S , f
∗) = 1

n
E‖θ̂ − θ∗‖2.

Because the design x1, . . . ,xn is the lattice defined earlier (4.13), it is convenient to treat
elements θ ∈ CSEM not as vectors in Rn, but as arrays in Rn1×···×nd and index their elements
with integer vectors

i = (i1, . . . , id) ∈ I :=
d∏
j=1

{0, 1, . . . , nj − 1}

so that, for instance θ∗i = f ∗(i1/n1, . . . , id/nd). From the above representation of θ ∈ CSEM as
linear combinations of columns of A, we can also similarly treat the nonnegative coefficients
β ∈ Rn as arrays Rn1×···×nd , and we then obtain the direct relationship

θi =
∑
k�i

βk.

Again, recall from the definition of CSEM that βk = 0 if k has nonzero components in more
than one block. Thus if we let (iSm ,0Scm) denote the integer vector whose components in Sm
equal iSm , and whose all other components are zero, we have

θi =
∑
k�i,

∃m:{j:kj 6=0}⊆Sm

βk = β0 +
M∑
m=1

∑
k�i,k 6=0,

{j:kj 6=0}⊆Sm

βk =

(
M∑
m=1

θ(iSm ,0Scm )

)
− (d− 1)θ0, (4.16)

where the last step is due to β0 = θ0 and

β0 +
∑

k�i,k 6=0,
{j:kj 6=0}⊆Sm

βk = θ(iSm ,0Scm ).

Since θ̂ is a least squares estimator, we can use the result of Chatterjee [17] (see Theo-
rem A.3.2) to bound the risk. Thus our goal is to bound

G(t) = E sup
θ∈CSEM:‖θ−θ∗‖≤t

〈Z,θ − θ∗〉, (4.17)
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where the expectation is with respect to the random array Z with i.i.d. standard Gaussian
random variables.

Fix θ ∈ CSEM. We define µ := 1
n

∑
i θi as well as, for iSm ∈ Im :=

∏
j∈Sm{0, . . . , nj − 1},

µm,iSm :=
1

n/ñm

∑
i′:i′Sm=iSm

θi′

αm,iSm := µm,iSm − µ.
Then we claim

θi = µ+
M∑
m=1

αm,iSm , ∀i ∈ I. (4.18)

Indeed, combining the definitions of µ and µm,iSm with the additive decomposition of θi (4.16)
yields

µ =
1

n

∑
i∈I

[(
M∑
m=1

θ(iSm ,0Scm )

)
− (d− 1)θ0

]

= −(d− 1)θ0 +
M∑
m=1

1

ñm

∑
iSm

θ(iSm ,0Scm )

and

µm,iSm =
1

n/ñm

∑
i′:i′Sm=iSm

[(
M∑
m=1

θ(i′Sm ,0Scm )

)
− (d− 1)θ0

]

= θ(iSm ,0Scm ) − (d− 1)θ0 +
∑
m′ 6=m

1

ñm′

∑
iS′m
∈Im

θ(iSm′
,0Sc

m′
),

and thus

µ+
M∑
m=1

αm,iSm = −(M − 1)µ+
M∑
m=1

µm,iSm

= −(M − 1)µ+

(
−(d− 1)θ0 +

M∑
m=1

θ(iSm ,0Scm )

)
︸ ︷︷ ︸

=θi

− (M − 1)(d− 1)θ0 +
M∑
m=1

∑
m′ 6=m

1

ñm′

∑
iSm′

∈Im

θ(iSm′
,0Sc

m′
)

= θi − (M − 1)µ+ (M − 1)

−(d− 1)θ0 +
M∑

m′=1

1

ñm′

∑
iSm′

∈Im

θ(iSm′
,0Sc

m′
)


= θi.
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Note that so far we have only used the fact that θ is in the column space of AS , and have
not needed to use the fact that the coefficients need to be nonnegative.

Let the quantities µ∗ and α∗m,iSm be analogous to µ and αm,iSm , but for θ∗ instead of
θ. By the above decomposition (4.18), the sum of squares in the Gaussian width (4.17)
decomposes as

‖θ − θ∗‖2 =
∑
i∈I

(θi − θ∗i )2

=
∑
i∈I

(
(µ− µ∗) +

M∑
m=1

(αm,iSm − α
∗
m,iSm

)

)2

= n(µ− µ∗)2 +
M∑
m=1

n

ñm

∑
iSm∈Im

(αm,iSm − α
∗
m,iSm

)2,

where the cross terms cancel due to orthogonality. Similarly, the inner product in the
Gaussian width (4.17) can be decomposed as

〈Z,θ − θ∗〉 =
∑
i∈I

Zi

(
(µ− µ∗) +

M∑
m=1

(αm,iSm − α
∗
m,iSm

)

)

=

(∑
i∈I

Zi

)
(µ− µ∗) +

M∑
m=1

∑
iSm∈Im

 ∑
k:kSm=iSm

Zk

(αm,iSm − α
∗
m,iSm

).

Note that if we view αm = (αm,iSm )iSm∈Im as an array, it belongs to the entirely monotone
class

Cdm
EM ≡ C

{1,...,dm}
EM = {(f(x1), . . . , f(xn)) : f ∈ FdmEM}

because it is obtained by averaging many Sm-slices of f ∈ FSEM (each of which is in FdmEM by
definition of FSEM).

Thus, we can bound the Gaussian width by

G(t) ≤ E sup
µ:|µ−µ∗|≤t/

√
n

(∑
i∈I

Zi

)
(µ− µ∗) +

M∑
m=1

Gm(t), (4.19)

where

Gm(t) := E sup
αm∈CdmEM:

‖αm−α∗m‖≤t/
√
n/ñm

∑
iSm∈Im

 ∑
k:kSm=iSm

Zk

(αm,iSm − α
∗
m,iSm

).

The first term can be bounded easily. Since
∑

i Zi is equal in distribution to
√
nU where

U is a standard Gaussian random variables, we have

E sup
µ:|µ−µ∗|≤t/

√
n

(∑
i∈I

Zi

)
(µ− µ∗) =

√
nE sup

µ:|µ−µ∗|≤t/
√
n

U(µ− µ∗)tE|U | = Ct.
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We now turn to bounding the Gm(t). Note that the difference between the largest and
smallest values of α∗m is bounded by V ∗m = f ∗m(1) − f ∗m(0). Since

∑
k:kSm=iSm

Zk is equal

in distribution to
√
n/ñmU where U = (Ui)i∈Im is an array with i.i.d. standard Gaussian

entries, we are able to apply the Gaussian width bound for the EM class (A.18) to obtain

Gm(t) =

√
n

ñm
E sup

αm∈CdmEM:

‖αm−α∗m‖≤t/
√

n
ñm

〈U,αm −α∗m〉

≤ Cdm

√
n

ñm

(
tV ∗m/

√
n/ñm

)1/2

ñ1/4
m

(
log+

eV ∗m
√
ñm

t/
√
n/ñm

) 2dm−1
4

+ Cdm

√
n

ñm
· 1√

n/ñm
t(log ñm)

3dm
4 (log(e log ñm))

2dm−1
4

=: Gm,1(t) +Gm,2(t).

Let

tm,1 := max{1, C ′dm,M}(
√
nV ∗m)1/3

[
max{1, log+(e(

√
nV ∗m)2/3}

] 2dm−1
6 .

If t ≥ tm,1, then

Gm,1(t)

t2
= Cdm(

√
nV ∗m)1/2t−

3
2

(
log+

eV ∗m
√
n

t

) 2dm−1
4

≤ Cdm(
√
nV ∗m)1/2t−

3
2

(
log+(e(

√
nV ∗m)2/3)

) 2dm−1
4

≤ 1

8M
.

Let
tm,2 := C ′′dm,M(log ñm)

3dm
4 (log(e log ñm))

2dm−1
4 .

If t ≥ tm,2, then

Gm,2(t)

t2
= Cdmt

−1(log ñm)
3dm
4 (log(e log ñm))

2dm−1
4 ≤ 1

8M
.

Thus if
t∗ = max{4C, max

1≤m≤M
tm,1, max

1≤m≤M
tm,2}

we have

G(t∗) ≤ Ct∗ +
M∑
m=1

Gm(t∗) ≤
t2∗
4

+
M∑
m=1

(
t2∗

8M
+

t2∗
8M

)
≤ t2∗

2
.
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Applying Theorem A.3.2 implies

1

n
E‖θ̂ − θ∗‖2 ≤ t2∗

2n

≤ C max
m∈{1,...,M}

[(
V ∗m
n

) 2
3 (

log(2 +
√
nV ∗m)

) 2dm−1
3 +

1

n
(log ñm)

3dm
4 (log(e log(ñm)))

2dm−4
2

]
where the constant depends only on d1, . . . , dM and M .

4.6.2 Example of nested cones violating the non-obliqueness
condition

Let d = 2 and n1 = n2 = 2, and consider the lattice design (4.13). Then

CAM = {θ ∈ R2×2 : θ1,1 − θ1,0 − θ0,1 + θ0,0 = 0, θ1,0 ≥ θ0,0, θ0,1 ≥ θ0,0}
CEM = {θ ∈ R2×2 : θ1,1 − θ1,0 − θ0,1 + θ0,0 ≥ 0, θ1,0 ≥ θ0,0, θ0,1 ≥ θ0,0}.

However, if we let θ =

[
0 −6
−6 0

]
, then

ΠCAM
(θ) =

[
−3 −3
−3 −3

]
, ΠCEM

(θ) =

[
−4 −4
−4 0

]
, ΠCAM

(ΠCEM
(θ)) =

[
−5 −3
−3 −1

]
,

which violates the non-obliqueness condition (4.14).

4.6.3 Proof of Theorem 4.5.1

The result follows directly from applying Theorem 2.1 of Menéndez et al. [62], provided we
check the condition (4.15). To check the condition, we provide an explicit formula for the
projection ΠLC0

.

Let I :=
∏d

j=1{0, 1, . . . , nj−1} and Im :=
∏

j∈Sm{0, . . . , nj−1}. Given θ ∈ Ca, we define

µ := 1
n

∑
i θi as well as, for iSm ∈ Im :=

∏
j∈Sm{0, . . . , nj − 1},

µm,iSm :=
1

n/ñm

∑
i′:i′Sm=iSm

θi′

αm,iSm := µm,iSm − µ.

Let θ′ ∈ LC0 , and let µ′, µ′m,iSm , and α′m,iSm be defined analogously. We showed earlier (4.18)

that because θ′ ∈ LC0 , we have

θ′i = µ′ +
M∑
m=1

α′m,iSm , ∀i ∈ I. (4.20)
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We know from the definition of AS (see Section 4.3) that there is a column in AS for every
element of the lattice design with nonzero components entirely within a single block Sm. By
counting the number of such design points, we have dimLC0 = ñ1 + · · · + ñM − (M − 1)
where ñm :=

∏
j∈Sm nj is the size of the lattice in block Sm. But the decomposition (4.20)

also has the same number of degrees of freedom: there is 1 degree of freedom for parameter
µ′, and for each block there are ñ− 1 more degrees of freedom (where the −1 is due to the
constraint that

∑
iSm∈Im

α′m,iSm = 0). Thus, we can parameterize the subspace LC0 using

these parameters (4.20) instead.
Using orthogonality, we obtain

‖θ − θ′‖2 =
∑
i∈I

(θi − θ′i)2

=
∑
i∈I

[
(µ− µ′) +

M∑
m=1

(αm,iSm − α
′
m,iSm

) +

(
θi − µ−

M∑
m=1

αm,iSm

)]2

= n(µ− µ′)2 +
M∑
m=1

n

ñm
(αm,iSm − α

′
m,iSm

)2 +
∑
i∈I

(
θi − µ−

M∑
m=1

αm,iSm

)2

.

Thus, by focusing on the first two terms, we see that the choice of θ′ ∈ LC0 that minimizes
‖θ − θ′‖2 is

ΠLC0
(θ) = µ+

M∑
m=1

αm,iSm . (4.21)

Now that we have an explicit formula for ΠLC0
, we return to checking the condition (4.15)

by arguing that ΠLC0
(θ) ∈ Ca. Since ΠLC0

(θ) ∈ LC0 by definition, this is equivalent to

ΠLC0
(θ) ∈ LC0 ∩ Ca = CSEM = {(f(x1), . . . , f(xn)) : f ∈ FSEM}, so we only need to check

the nonnegativity constraint of FSEM within each block Sm. To see that the nonnegativity
constraint within block Sm holds, note that from the formula (4.21) the only addend that
varies within block Sm is αm,iSm . But this term is obtained by taking an average of Sm-slices
of θ, each of which satisfies the shape constraint within Sm, so θ does as well.

4.6.4 Proof of Lemmas 4.2.1 and 4.2.2

Lemma 4.2.1 is a special case of Lemma 4.2.2, so it suffices to prove Lemma 4.2.2.
Suppose f ∈ FSEM and have the decomposition into entirely monotonic functions

f1, . . . , fM given earlier (4.6). Suppose K := {k : ak 6= bk}, the differing components of
a and b, lie entirely within a block, i.e. K ⊆ Sm for some m. Recalling the notation
Jk := I{ak 6= bk} from the definition of quasi-volume (4.3), we see that the quasi-volume

∆(f ; [a,b]) reduces to a lower-dimensional quasi-volume ∆(f̃ ; [aK ,bK ]) where aK and bK
are the sub-vectors of a and b indexed by K, and where f̃ : [0, 1]|K| → R is obtained by
plugging in ak = bk for the kth covariate where k /∈ K, and leaving the other covariates as
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inputs. Since K ⊆ Sm, we have ∆(f ; [a,b]) = ∆(f̃ ; [aK ,bK ]) = ∆(fm; [aSm ,bSm ]) ≥ 0 since
fm ∈ FdEM by assumption.

Otherwise, suppose K intersects more than one of the blocks Sm. Without loss of gener-
ality, suppose 1 ∈ S1 and 2 ∈ S2 and {1, 2} ⊆ K. For any fixed values of j3, . . . , jd ∈ {0, 1},
we have

1∑
j1=0

1∑
j2=0

(−1)j1+···+jdf(b1 + j1(a1 − b1), b2 + j2(a2 − b2), . . . , bd + jd(ad − bd))

= f(b1, b2, b3 + j3(a3 − b3), . . . , bd + jd(ad − bd))
− f(b1, a2, b3 + j3(a3 − b3), . . . , bd + jd(ad − bd))
− f(a1, b2, b3 + j3(a3 − b3), . . . , bd + jd(ad − bd))
− f(a1, a2, b3 + j3(a3 − b3), . . . , bd + jd(ad − bd))

= (f̃1(b1) + f̃2(b2))− (f̃1(b1) + f̃2(a2))− (f̃1(a1) + f̃2(b2)) + (f̃1(a1) + f̃2(a2))

= 0.

(Above, f̃1 is the univariate function obtained by plugging in bk + jk(ak − bk) into f1 for

k ∈ S1 \ {1}; f̃2 is defined similarly.) Summing over j3, . . . , dd yields ∆(f ; [a,b]) = 0 in this
case.

We now show the reverse inclusion. Suppose f belongs to the right-hand side (4.7). We
define fm : [0, 1]|Sm| → R by

fm(u) := f((u,0Scm))− f(0). (4.22)

The first term on the right-hand side is obtained by plugging into f the inputs u for the
covariates indexed by Sm, and zero for the other covariates. Because f ∈ FSEM ⊆ FdEM, these

fm are each in F |Sm|EM . Thus it suffices to show

f(x) = f(0) +
M∑
m=1

fm(xSm)

for x ∈ [0, 1]d. (The additive constant f(0) can be absorbed by one of the fm.) We can
verify this claim (4.22) by strong induction on the number of nonzero components of x. If
the nonzero components of x lie within a single block Sm, then the claim holds immediately,
since f(0) +

∑M
m=1 fm(xm) = f(0) + fm(xm) = f(x). Now suppose the nonzero components

{k : xk 6= 0} intersect with more than one block. By assumption (4.7), ∆(f ; [0,x]) = 0. From
the definition (4.3), this quasi-volume is an alternating sum of f evaluated at the vertices
of the hyperrectangle [0,x], all of which have fewer nonzero components than x. By strong
induction, the claim (4.22) can be applied to each of these vertices of the hyperrectangle
(excluding x). After cancellations, we have

0 = ∆(f ; [0,x]) = f(x)−

(
f(0) +

M∑
m=1

fm(xm)

)
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as desired.

4.6.5 Proof of Proposition 4.3.2

This proof builds upon the proof of Proposition 3.3.2 (see Section A.4.5). We may without
loss of generality assume for the rest of the proof that the design x1, . . . ,xn forms a lattice
including 0 (i.e. it is an enumeration of a set that is a Cartesian product

∏d
j=1 Uj of finite

sets Uj = {0, uj,1, . . . , uj,mj} ⊆ [0, 1]). (To handle the case of general design, one can use an
argument similar to the proof in Section A.4.5, where one extends the design to a lattice.)

Suppose β ∈ Rp′ satisfies βj ≥ 0 for j ≥ 2. Let z1, . . . , zp′ be the vectors with at most r

nonzero entries such that v(z1), . . . ,v(zp′) are the columns of A≤r. Let f :=
∑p′

k=1 βjI[zk,1]

and note that (f(x1), . . . , f(xn)) = A≤rβ. We claim that f ∈ Fd,≤rEM . By an inclusion-
exclusion argument with the definition of quasi-volume, one can check that

∆(f ; [a,b]) =
∑

k:zk�b,
(zk)j>aj if aj<bj

βk, (4.23)

for any distinct a,b ∈ [0, 1]d satisfying a � b. When a and b differ by more than r
components, the condition that (zj) > aj ≥ 0 is enforced for more than r components, which
is impossible due to the zk having at most r nonzero entries; thus in this case, the above
sum is empty and the quasi-volume is zero. Otherwise, the sum is a sum of βk which are
all nonnegative (except β1, which cannot appear in the sum anyway because z1 = 0 does
not satisfy the condition 0 > aj for the component j where aj < bj), so the quasi-volume is
nonnegative. This proves the ⊇ inclusion for the claim (4.12a).

For the reverse inclusion, suppose f ∈ Fd,≤rEM . Because our design is a lattice, the full
EM matrix A can be taken to have columns (I[x,1](x1), . . . , I[x,1](xn) for x ∈ {x1, . . . ,xn}.
It is square and invertible (see Proposition 3.3.2) so there exists β ∈ Rn such that Aβ =
(f(x1), . . . , f(xn)). One can check that the coefficient βk corresponding to the indicator
function I[xk,1] is equal to ∆(f ; [x′k,xk]) where (x′k)j is zero if (xk)j = 0, and otherwise equals
the next smallest value that appears in the jth component of the lattice. (This is essentially
a special case of the above formula (4.23) where the right-hand side has exactly one term.)
In light of this relationship between β and the quasi-volumes of f , we see that if xk has
more than r nonzero entries, then xk and x′k differ in more than r entries and the definition
of Fd,≤rEM forces the quasi-volume ∆(f ; [x′k,xk]) (which equals βk) to be zero. Otherwise if
xk 6= 0 has at most r nonzero entries, then the fact that f ∈ FdEM leads us to βk ≥ 0. We
see that in the representation Aβ = (f(x1), . . . , f(xn)), we have nonnegativity constraints
on all βk where k ≥ 2, and moreover coefficients corresponding to columns of A that do not
appear in A≤r are forced to be zero. Thus it can be expressed as A≤rβ

′ for some β′ ∈ Rp′

with β′k ≥ 0 for k ≥ 2.
The proof of the other claim (4.12b) is very similar. Suppose β ∈ Rp′′ satisfies

βj ≥ 0 for j ≥ 2. Let z1, . . . , zp′′ be the vectors with at most r nonzero entries such
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that v(z1), . . . ,v(zp′′) are the columns of AS . Let f :=
∑p′′

k=1 βjI[zk,1] and note that
(f(x1), . . . , f(xn)) = A≤rβ. We claim that f ∈ FSEM. Using the expression for the quasi-
volume over [a,b] above (4.23) , we see that when aj < bj, the vector zk must satisfy
(zk)j > aj ≥ 0 to be included in the sum. Thus if {j : aj < bj} intersects with more than
one block Sm (see (4.5)), it is impossible for zk to satisfy the condition to be included in the
sum, since the definition of AS forces the nonzero elements of zk to lie within a single block.
Thus in this case the sum is empty, so the quasi-volume ∆(f ; [a,b]) is zero for such a and
b.

When a and b differ by more than r components, the condition that (zj) > aj ≥ 0 is
enforced for more than r components, which is impossible due to the zk having at most
r nonzero entries; thus in this case, the above sum is empty and the quasi-volume is zero.
Otherwise, the sum is a sum of βk which are all nonnegative (except β1, which cannot appear
in the sum anyway because z1 = 0 does not satisfy the condition 0 > aj for the component
j where aj < bj), so the quasi-volume is nonnegative. In light of the characterization given
by Lemma 4.2.2, this proves the ⊇ inclusion for the claim (4.12b).

For the reverse inclusion, suppose f ∈ FSEM. Because our design is a lattice, the full
EM matrix A can be taken to have columns (I[x,1](x1), . . . , I[x,1](xn) for x ∈ {x1, . . . ,xn}.
It is square and invertible (see Proposition 3.3.2) so there exists β ∈ Rn such that Aβ =
(f(x1), . . . , f(xn)). One can check that the coefficient βk corresponding to the indicator
function I[xk,1] is equal to ∆(f ; [x′k,xk]) where (x′k)j is zero if (xk)j = 0, and otherwise equals
the next smallest value that appears in the jth component of the lattice. (This is essentially
a special case of the above formula (4.23) where the right-hand side has exactly one term.)
In light of this relationship between β and the quasi-volumes of f , we see that if xk nonzero
entries in more than one block, then {j : (xk)j 6= (x′k)j} intersects more than one block,
and the definition of FSEM forces the quasi-volume ∆(f ; [x′k,xk]) (which equals βk) to be
zero. Otherwise if the nonzero components of xk 6= 0 lie within a block, then the fact that
f ∈ FdEM leads us to βk ≥ 0. We see that in the representation Aβ = (f(x1), . . . , f(xn)), we
have nonnegativity constraints on all βk where k ≥ 2, and moreover coefficients corresponding
to columns of A that do not appear in AS are forced to be zero. Thus it can be expressed
as ASβ

′′ for some β′ ∈ Rp′ with β′′k ≥ 0 for k ≥ 2.

4.6.6 Proof of Proposition 4.3.1

This proof is essentially the same as the proof of Proposition 3.3.1 (see Section A.4.6).
The optimization problems (4.9a) and (4.9b) only involve the values of the function at the

design points x1, . . . ,xn. By Proposition 4.3.2, we must have (f̂EM,≤r(x1), . . . , f̂EM,≤r(xn)) =

A≤rβ̂EM,≤r and (f̂EM,S(x1), . . . , f̂EM,S(xn)) = ASβ̂EM,S , so it remains to check that the
functions (4.11) defined in the proposition satisfy this equality and belong to the respective
classes Fd,≤rEM and FSEM. The equalities hold simply because the columns of the matrices A≤r
and AS are defined using precisely the indicators that appear in the sums defining f̂EM,≤r

and f̂EM,S .
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To show membership in the classes, we may assume without loss of generality that the de-
sign x1, . . . ,xn is a lattice containing 0. (The general case can be handled as in Section A.4.6
by extending the design to such a lattice.) Let z1, . . . , zp′ be such that the columns of A≤r
are v(zk). The relationship (4.23) between quasi-volumes and the NNLS coefficients holds
here as well.

∆(f̂EM,≤r; [a,b]) =
∑

k:zk�b,
(zk)j>aj if aj<bj

(βEM,≤r)k,

and a by the same argument used in Section 4.6.5, this quantity is zero if a and b differ in
more than r components, and nonnegative otherwise, which verifies f̂EM,≤r ∈ Fd,≤rEM . The

proof of f̂EM,S ∈ FSEM is completely analogous.
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[5] Ayer, M., H. D. Brunk, G. M. Ewing, W. T. Reid, and E. Silverman (1955). An empirical
distribution function for sampling with incomplete information. Ann. Math. Statist. 26,
641–647.

[6] Bacchetti, P. (1989). Additive isotonic models. J. Amer. Statist. Assoc. 84 (405), 289–
294.

[7] Barlow, R. E., D. J. Bartholomew, J. M. Bremner, and H. D. Brunk (1972). Statistical
inference under order restrictions. The theory and application of isotonic regression. John
Wiley & Sons, London-New York-Sydney. Wiley Series in Probability and Mathematical
Statistics.

[8] Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information theory 39 (3), 930–945.

[9] Bellec, P. C. (2017). Optimistic lower bounds for convex regularized least-squares. arXiv
preprint arXiv:1703.01332 .

[10] Bellec, P. C. (2018). Sharp oracle inequalities for least squares estimators in shape
restricted regression. Ann. Statist. 46 (2), 745–780.

[11] Benkeser, D. and M. Van Der Laan (2016). The highly adaptive lasso estimator. In
2016 IEEE international conference on data science and advanced analytics (DSAA), pp.
689–696. IEEE.



BIBLIOGRAPHY 86

[12] Blei, R., F. Gao, and W. V. Li (2007). Metric entropy of high dimensional distributions.
Proc. Amer. Math. Soc. 135 (12), 4009–4018.

[13] Brunk, H. D. (1955). Maximum likelihood estimates of monotone parameters. Ann.
Math. Statist. 26, 607–616.

[14] Brunk, H. D. (1970). Estimation of isotonic regression. In Nonparametric Techniques in
Statistical Inference (Proc. Sympos., Indiana Univ., Bloomington, Ind., 1969), pp. 177–
197. London: Cambridge Univ. Press.

[15] Bungartz, H.-J. and M. Griebel (2004). Sparse grids. Acta numerica 13, 147–269.

[16] Chambolle, A., V. Caselles, D. Cremers, M. Novaga, and T. Pock (2010). An introduc-
tion to total variation for image analysis. Theoretical foundations and numerical methods
for sparse recovery 9 (263-340), 227.

[17] Chatterjee, S. (2014). A new perspective on least squares under convex constraint. Ann.
Statist. 42 (6), 2340–2381.

[18] Chatterjee, S. and S. Goswami (2019). New risk bounds for 2d total variation denoising.
arXiv preprint arXiv:1902.01215 .

[19] Chatterjee, S., A. Guntuboyina, and B. Sen (2015). On risk bounds in isotonic and
other shape restricted regression problems. Ann. Statist. 43 (4), 1774–1800.

[20] Chatterjee, S., A. Guntuboyina, and B. Sen (2018). On matrix estimation under mono-
tonicity constraints. Bernoulli 24 (2), 1072–1100.

[21] Chen, X., A. Guntuboyina, and Y. Zhang (2017). A note on the approximate ad-
missibility of regularized estimators in the gaussian sequence model. arXiv preprint
arXiv:1703.00542 .

[22] Chkifa, A., N. Dexter, H. Tran, and C. Webster (2018). Polynomial approximation via
compressed sensing of high-dimensional functions on lower sets. Mathematics of Compu-
tation 87 (311), 1415–1450.

[23] Christensen, R. (2011). Plane answers to complex questions: the theory of linear models.
Springer Science & Business Media.

[24] Condat, L. (2013). A direct algorithm for 1-d total variation denoising. IEEE Signal
Process. Lett. 20 (11), 1054–1057.

[25] Condat, L. (2017). Discrete total variation: New definition and minimization. SIAM
Journal on Imaging Sciences 10 (3), 1258–1290.

[26] Dalalyan, A., M. Hebiri, and J. Lederer (2017). On the prediction performance of the
lasso. Bernoulli 23 (1), 552–581.



BIBLIOGRAPHY 87

[27] Demetriou, I. and P. Tzitziris (2017). Infant mortality and economic growth: mod-
eling by increasing returns and least squares. In Proceedings of the World Congress on
Engineering, Volume 2.

[28] Deng, H. and C.-H. Zhang (2018). Isotonic regression in multi-dimensional spaces and
graphs. arXiv preprint arXiv:1812.08944 .

[29] Donoho, D. L. (2000). High-dimensional data analysis: The curses and blessings of
dimensionality. AMS math challenges lecture 1 (32), 375.

[30] Donoho, D. L. and I. M. Johnstone (1998). Minimax estimation via wavelet shrinkage.
Ann. Statist. 26 (3), 879–921.

[31] Dudley, R. M. (1967). The sizes of compact subsets of Hilbert space and continuity of
Gaussian processes. J. Functional Analysis 1, 290–330.

[32] Fan, Z. and L. Guan (2018). Approximate `0-penalized estimation of piecewise-constant
signals on graphs. Ann. Statist. 46 (6B), 3217–3245.

[33] Fang, B. and A. Guntuboyina (2019). On the risk of convex-constrained least squares
estimators under misspecification. Bernoulli 25 (3), 2206–2244.

[34] Fang, B., A. Guntuboyina, and B. Sen (2019). Multivariate extensions of isotonic re-
gression and total variation denoising via entire monotonicity and Hardy-Krause variation.
arXiv preprint arXiv:1903.01395 .

[35] Feller, W. (2015). Completely monotone functions and sequences. In Selected Papers I,
pp. 497–510. Springer.

[36] Gao, F. (2013). Bracketing entropy of high dimensional distributions. In High dimen-
sional probability VI, Volume 66 of Progr. Probab., pp. 3–17. Birkhäuser/Springer, Basel.
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Appendix A

Appendix for Chapter 3

The first section of this appendix contains a statement of another adaptation result for the
HK Variation denoising estimator similar to Theorem 3.4.10. Section A.2 contains simula-
tions containing examples and depictions of our EM and HK variation estimators, including
an application to estimation in the bivariate current status model. The rest of the supple-
ment contains proofs of all results from the main paper. The proofs for the risk results are
given in Section A.3 while the proofs of the results in Section 3.2 and Section 3.3 are given
in Section A.4. Additional technical results used in the proofs of Section A.3 are proved in
Section A.5.

A.1 Another adaptation result for the Hardy-Krause

variation denoising estimator

The goal of this section is to prove a result that is similar to but stronger than Theorem 3.4.10
for d = 2. Specifically, the minimum length condition appearing in (3.50) is relaxed for the

next result. We take d = 2 in this section. For a given constant 0 < c ≤ 1/2, let R̃2
1(c)

denote the collection of functions f : [0, 1]2 → R of the form (3.49) for some a1, a0 ∈ R and
x∗ = (x∗1, x

∗
2) ∈ [0, 1]2 satisfying

min{|Ln1,...,nd ∩ [x∗,1]|, |Ln1,...,nd \ [x∗,1]|} ≥ cn. (A.1)

Note that the above condition is implied by the earlier minimum size condition (3.50) because

[0,x∗) ⊆ [x∗,1]c. Therefore we have R2
1(c) ⊆ R̃2

1(c). Note also that x∗ := (0.5, 0, . . . , 0)
satisfies (A.1). The next result (proved in Section A.3.8) is the analogue of Theorem 3.4.10
for d = 2 which works under the weaker minimum size condition (A.1).

Theorem A.1.1. Consider the lattice design (3.34). Fix f ∗ : [0, 1]2 → R and consider the
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estimator f̂HK0,V with a tuning parameter V . Then for every 0 < c ≤ 1/2, we have

R(f̂HK0,V , f
∗) ≤ inf

f∈R̃2
1(c):

VHK0(f)=V

{
L(f, f ∗) + C(c)

σ2

n
(log(en))3(log(e log(en)))

3
2

}
(A.2)

for a constant C(c) that depends only on c.

When f ∗ ∈ R̃2
1(c) and V = VHK0(f ∗), inequality (A.2) readily implies

R(f̂HK0,V , f
∗) ≤ C

σ2

n
(log(en))3(log(e log(en)))

3
2 .

Note that previously we were only able to claim this result for functions f ∗ in the smaller
class R2

1(c).

A.2 Simulation studies

Here we discuss some simulations we performed with the two estimators f̂EM (3.2) and

f̂HK0,V (3.6) for d = 2.

A.2.1 Examples of the estimators

We start by visual illustrations of our estimators for specific values of f ∗. In Figure A.1 we
depict an example of f̂EM when fit on a 10× 10 grid of observations (i.e., n1 = n2 = 10 and
n = 100) from an EM function f ∗. In Figure A.2, we consider a different example where f ∗

has k(f ∗) = 4 and depict the estimate f̂EM computed on a 10× 10 grid of observations.
In Figure A.3 we consider a function f ∗ ∈ Rd

1(1/4) (see equations (3.49) and (3.50)) and

depict our estimate f̂HK0,V computed from a 10× 10 grid of observations for various values
of the tuning parameter V .

We remark that in these examples, we have chosen the estimator to be rectangular
piecewise constant, with values obtained by solving the finite-dimensional NNLS or LASSO
problem as discussed in Section 3.3. Additionally, one can observe in Figures A.4 and A.3
that the performance of f̂HK0,V improves as V approaches the optimal V ∗. Note also that in
Figures A.2 and A.3 (in the case V = V ∗) where f ∗ is rectangular piecewise constant, the
estimate is also rectangular piecewise constant with relatively few “jumps.”
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Figure A.1: The function f∗(x1, x2) = x1 + x2 (left), and the estimate f̂EM (right) performed on
observations from f∗ on the grid design (n1 = n2 = 10) with standard Gaussian noise (σ2 = 1).

Figure A.2: The function f∗(x1, x2) = I{x1 ≥ 0.5}+I{x2 ≥ 0.5} (left), and the estimate f̂EM (right)
performed on observations from f∗ with the grid design (n1 = n2 = 10) and standard Gaussian
noise (σ2 = 1).
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Figure A.3: The function f∗(x1, x2) = −I{x1 ≥ 0.5, x2 ≥ 0.5} (upper left), and the estimate f̂HK0,V

for V = V ∗, 2V ∗, 3V ∗, performed on observations from f∗ on the grid design (n1 = n2 = 10) with
standard Gaussian noise (σ2 = 1).
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Figure A.4: The function f∗(x1, x2) = x1 + x2 (upper left), and the estimate f̂HK0,V for V =
V ∗, 2V ∗, 3V ∗, performed on observations from f∗ on the grid design (n1 = n2 = 10) with standard
Gaussian noise (σ2 = 1).
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Although our theorems in Section 3.4.1 and Section 3.4.2 only apply in case of lattice
design, we can still compute the estimator for arbitrary design. In Figure A.5, we used the
“näıve gridding” approach described in Section 3.3 to compute the design matrix for the
NNLS optimization problem. Note that the “jumps” in our estimate are located at design
points.

Figure A.5: The function f∗(x1, x2) = I{x1 ≥ 0.5} + I{x2 ≥ 0.5} (left), and the estimate f̂EM

(right) performed on observations from f∗ on a uniformly drawn random design (n = 100) and
standard Gaussian noise (σ2 = 1).

A.2.2 Bivariate current status model

One practical setting where our estimator may be useful is in the bivariate current status
model, which is a particular variant of the interval censoring problem [40, 42, 59]. In this
setting we observe (xi, yi) where the yi are independent Bernoulli random variables yi with
success parameter F0(xi), for some bivariate CDF F0. Since F0 is an entirely monotone
function of x, it is plausible to use our EM estimator (3.2) on these observations to estimate
F0. In Figure A.6, we simulated n = 500 observations in the case where F0(x) = 1

2
(x2

1x2 +
x1x

2
2) on [0, 1]2 (the CDF of the density f0(x) = x1 + x2), and where xi are drawn uniformly

from [0, 1]2, and where yi | xi ∼ Bern(F0(xi)). We get a fairly reasonable estimate of the
original CDF on the interior of the square [0, 1]2. The estimated function is not a proper
CDF, as it can take values outside of [0, 1], which happens often along the boundaries of

the square [0, 1]2. One could avoid this by modifying the estimator f̂EM by restricting the
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least squares optimization to functions in f̂EM that take values in [0, 1], which would amount
to adding two more linear constraints on the corresponding NNLS problem (3.28). This
issue of obtaining an estimate that is not a proper CDF also occurs with a plug-in estimator
studied by Groeneboom [40], which they address by proposing a truncation procedure on
the boundaries of the square.

Figure A.6: The CDF F0(x1, x2) = 1
2(x1x

2
2 + x2

1x2) (left), and the estimate f̂EM (right) applied on
n = 500 observations of the form (xi, yi) where yi ∼ Bern(F0(xi)).

A.2.3 Adaptation to more general rectangular piecewise
constant functions

One severe limitation of Theorems 3.4.10 and A.1.1 is that they only consider functions of
the form (3.49), which only has one “jump” and two continguous constant pieces.

The following simulation study suggests that the upper bound of n−1(log n)γ that we
proved in Theorems 3.4.10 and A.1.1 may also hold for a larger subclass of rectangular
piecewise constant functions Rd.

The function f ∗ : [0, 1]2 7→ R we consider is

f ∗(x) =

{
1 x ∈

(
[1
3
, 2

3
)× ([0, 1

3
) ∪ [2

3
, 1)
)
∪
(
([0, 1

3
) ∪ [1

3
, 1])× [1

3
, 2

3
)
)

0 otherwise.

One can check that V ∗ = 12. Visually, it has a checkered pattern (see Figure A.7).



APPENDIX A. APPENDIX FOR CHAPTER 3 100

Figure A.7: Depiction of f∗ (left), and an example of f̂HK0,V (right) when given noisy measurements
(σ = 0.5) from f∗ on the grid design (n1 = n2 = 50).

We considered the lattice design Ln1,...,nd with n1 = n2 ∈ {50, 60, 80, 95, 110} (note that
consequently n = n1n2 ranges between 2500 and 12100). For each value of n, we performed

20 trials of generating observations y1, . . . , yn with noise σ = 0.5, computed f̂HK0,V with

V = V ∗, and computed the error 1
n

∑n
i=1(f̂HK0,V (xi)− f ∗(xi))2. Averaging over the 20 trials

gives us an estimate rn of R(f̂HK0,V , f
∗) for that value of n.

As shown in Figure A.8 A linear regression of log rn over log n yielded a slope of −0.85
which indicates that the estimator is performing better than the worst-case rate of n−2/3

given in Theorem 3.4.6. A linear regression of log rn over log n
logn

yielded a slope of −0.96,
while a regression of log rn over log n

(logn)2
yielded a slope of −1.11. Thus these simulations

suggest that the estimator f̂HK0,V has risk on the order of n−1(log n)γ (possibly for γ ≤ 2)
for rectangular piecewise constant functions beyond the ones considered in Theorems 3.4.10
and A.1.1.

A.3 Proofs of Risk Results

A.3.1 Preliminaries

Note that the risks R(f̂EM, f
∗) and R(f̂HK0,V , f

∗) both only depend on the values of the

estimators f̂EM and f̂HK0,V at the design points x1, . . . ,xn. Also by the results from Sec-
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Figure A.8: Plot of estimate of logR(f̂HK0,V , f
∗) vs. log n (left) and vs. log n

(logn)2
(right).

tion 3.3, it is clear that the vectors (f̂EM(x1), . . . , f̂EM(xn)) and (f̂HK0,V (x1), . . . , f̂HK0,V (xn))
are Euclidean projections of the data vector y = (y1, . . . , yn) on the closed convex sets{

Aβ : min
j≥2

βj ≥ 0

}
and

{
Aβ :

∑
j≥2

|βj| ≤ V

}
respectively. Consequently, we can apply general results from the theory of convex-
constrained LSEs to prove the risk results for f̂EM and f̂HK0,V . This theory is, by now,
well established (see e.g., van de Geer [82], van der Vaart and Wellner [87], Hjort and Pol-
lard [50], Chatterjee [17]). The following result from Chatterjee [17] provides upper bounds
for the risk of general convex-constrained LSEs. This result will be used in the proofs of
Theorem 3.4.1 and Theorem 3.4.6.

Theorem A.3.1 (Chatterjee [17]). Let K be a closed convex set in Rn and let

θ̂ := argmin
θ∈K

‖y − θ‖2, (A.3)

where y ∼ Nn(θ∗, In) for some θ∗ ∈ Rn (not necessarily in K). Then there exists a universal
positive constant C such that

E‖θ̂ − θ∗‖2 ≤ C max(t2∗, 1)

for every t∗ > 0 which satisfies

E

[
sup

θ∈K:‖θ−θ∗‖≤t∗
〈ξ,θ − θ∗〉

]
≤ t2∗

2
where ξ ∼ Nn(0, In). (A.4)
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Theorem A.3.1 is sufficient to prove Theorem 3.4.1 and Theorem 3.4.6. However, in order
to handle the misspecified setting discussed in Remark 3.4.2 and Remark 3.4.8, one needs
the following generalization of Theorem A.3.1. Below,

ΠK(v) := argmin
θ∈K

‖v − θ‖2

denotes the projection of v onto the closed convex set K. The following result generalizes
Theorem A.3.1 to the case of model misspecification. It is similar to related generalizations
of Theorem A.3.1 from Chen et al. [21] and Bellec [9]. We omit the proof of this result
as it can be proved by a straightforward generalization of the proof of the original result,
Theorem A.3.1, from Chatterjee [17].

Theorem A.3.2. Let K be a closed convex set in Rn, and let θ̂ := ΠK(y) be as defined
above (A.3), with y ∼ Nn(θ∗, In) and θ∗ ∈ Rn. Then there exists a universal positive
constant C such that

E‖θ̂ − ΠK(θ∗)‖2 ≤ C max(t2∗, 1),

for every t∗ > 0 which satisfies

E

[
sup

θ∈K:‖θ−ΠK(θ∗)‖≤t∗
〈ξ,θ − ΠK(θ∗)〉

]
≤ t2∗

2
where ξ ∼ Nn(0, In). (A.5)

Note that in the well-specified setting θ∗ ∈ K, we have ΠK(θ∗) = θ∗, and thus Theo-
rem A.3.1 and Theorem A.3.2 are identical. On the other hand, in the misspecified setting
θ∗ /∈ K, the two results differ in the risk quantity they control: E‖θ̂−θ∗‖2 and E‖θ̂−ΠK(θ∗)‖2

respectively and the fact that θ∗ appearing in (A.4) is replaced by ΠK(θ∗) in (A.5).

Remark A.3.3 (Risk bounds under misspecification). Theorem 3.4.1 and Theorem 3.4.6
are proved via Theorem A.3.1 by establishing (A.4) for an appropriate t∗. If we replace θ∗ in
these proofs by ΠK(θ∗) and replace the use of Theorem A.3.1 with that of Theorem A.3.2, we
obtain the risk bounds under misspecification described in Remark 3.4.2 and Remark 3.4.8.

The risk of the estimator θ̂ in (A.3) can also be related to the tangent cones of the closed
convex set K at θ∗. To describe these results, we need some notation and terminology. The
tangent cone of K at θ ∈ K is defined as

TK(θ){t(η − θ) : t ≥ 0,η ∈ K}.

Informally, TK(θ) represents all directions in which one can move from θ and still remain in
K. Note that TK(θ) is a cone which means that aα ∈ TK(θ) for every α ∈ TK(θ) and a ≥ 0.
It is also easy to see that TK(θ) closed and convex.

The statistical dimension of a closed convex cone T ⊆ Rn is defined as

δ(T ) := E‖ΠT (Z)‖2, where Z ∼ Nn(0, In)
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and ΠT (Z) := argminu∈T ‖Z − u‖2 is the projection of Z onto T . The terminology of
statistical dimension is due to Amelunxen et al. [3] and we refer the reader to this paper for
many properties of the statistical dimension.

The relevance of these notions to the estimator θ̂ (defined in (A.3)) is that the risk of θ̂
can be related to the statistical dimension of tangent cones of K. This is the content of the
following result due to Bellec [10, Corollary 2.2].

Theorem A.3.4. Suppose Y ∼ Nn(θ∗, σ2In) for some θ∗ ∈ Rn and σ2 > 0 and consider the

estimator θ̂ defined in (A.3) for a closed convex set K. Then

E‖θ̂ − θ∗‖2 ≤ inf
θ∈K

[
‖θ − θ∗‖2 + σ2δ(TK(θ))

]
. (A.6)

The statistical dimension δ(T ) of a closed convex cone T is closely related to the Gaussian
width of T which is defined as

w(T ) := E

[
sup

θ∈T :‖θ‖≤1

〈Z,θ〉

]
where Z ∼ Nn(0, In). (A.7)

Indeed, it has been shown in Amelunxen et al. [3, Proposition 10.2] that

w2(T ) ≤ δ(T ) ≤ w2(T ) + 1

for every closed convex cone T . Using this relation in conjunction with (A.6), we obtain the

following bound on the risk of the estimator θ̂ defined in (A.3) when Y ∼ Nn(θ∗, σ2In):

E‖θ̂ − θ∗‖2 ≤ inf
θ∈K

[
‖θ − θ∗‖2 + σ2 + σ2w2(TK(θ))

]
. (A.8)

A.3.2 Proof of Theorem 3.4.1

Let
θ̂ := (f̂EM(x1), . . . , f̂EM(xn)) and θ∗ := (f ∗(x1), . . . , f ∗(xn)) (A.9)

and note that

R(f̂EM, f
∗) = E

1

n
‖θ̂ − θ∗‖2

where ‖·‖ denotes the usual Euclidean norm in Rn.

Observe that by Proposition 3.3.1, it follows that θ̂ = Aβ̂EM is the projection of the data
vector y on the closed convex cone

Dn1,...,nd := {Aβ : βj ≥ 0,∀j ≥ 2} = {(f(x1), . . . , f(xn)) : f ∈ FdEM}. (A.10)

where A is the design matrix introduced in Section 3.3. Note that, under the lattice design
(3.34), the set Dn1,...,nd is completely determined by the values of n1, . . . , nd. We can therefore

employ Theorem A.3.1 to bound the risk E‖θ̂ − θ∗‖2/n.
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First, we claim that it suffices to prove the theorem under the assumption nj ≥ 2 for all

j = 1, . . . , d. To see this, note first that when n = n1 · · ·nd = 1, we have θ̂ = y so that
R(θ̂,θ∗) = σ2/n and the result holds which means that we can assume that maxj nj ≥ 2
for some j. Now if nj = 1 for some values of j, we can simply ignore these components and
focus on the equivalent problem with a lattice design (3.34) in a lower-dimensional space
that has at least two grid points in each component. We can apply the bound (3.43) to this
lower-dimensional problem (for instance, the dimension would be d′ = #{j : nj ≥ 2} instead
of d) and then remark that the bound (3.43) for the original problem is even larger.

Next, we claim that it suffices to prove the theorem under the assumption σ2 = 1.
Indeed in general we may consider the rescaled problem with f̃ := f ∗/σ, Ṽ ∗ := V ∗/σ, and

ỹi ∼ N (f̃(xi), 1), apply the bound (3.43), and then multiply the risk bound by σ2 to account
for rescaling the fitted function by σ. This is possible because FdEM is a cone.

So, we assume nj ≥ 2 for all j = 1, . . . , d and σ2 = 1. As mentioned above, we want to

bound E‖θ̂ − θ∗‖2/n using Theorem A.3.1. For this, we need to obtain upper bounds for

G(t) := E sup
θ∈Dn1,...,nd∩B2(θ∗,t)

〈ξ,θ − θ∗〉

where ξ ∼ Nn(0, In) and B2(θ∗, t) := {θ : ‖θ−θ∗‖ < t} denotes the ball of radius t centered
at θ∗.

In what follows, we sometimes treat vectors in Rn as arrays in Rn1×···×nd indexed by
i = (i1, . . . , id) for 0 ≤ ij ≤ nj − 1 and j = 1, . . . , d.

For each j ∈ 1, . . . , d, let

S
(0)
j := {ij : 0 ≤ ij ≤

nj
2
− 1}, S

(1)
j := {ij :

nj
2
− 1 < ij ≤ nj − 1},

so that

〈ξ,θ − θ∗〉 =

n1−1∑
i1=0

· · ·
nd−1∑
id=0

ξi(θi − θ∗i ) =
∑

z∈{0,1}d

∑
i∈S(z1)

1 ×···×S(zd)

d

ξi(θi − θ∗i ).

We then obtain the bound

G(t) ≤
∑

z∈{0,1}d
E sup
θ∈Dn1,...,nd∩B2(θ∗,t)

∑
i∈S(z1)

1 ×···×S(zd)

d

ξi(θi − θ∗i )

︸ ︷︷ ︸
=:Hz(t)

. (A.11)

We now bound Hz(t) for fixed z ∈ {0, 1}d. For each j = 1, . . . , d let Kj denote the largest
positive integer kj for which{

ij ∈ S
(zj)
j nj2

−(kj+1) − 1 + zjnj/2 < ij ≤ nj2
−kj − 1 + zjnj/2

}
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is nonempty. Let K :=×d

j=1
{1, . . . , Kj} and note that |K| = K1K2 · · ·Kd. For k :=

(k1, . . . , kd) ∈ K and θ ∈ Rn1×···×nd , let

θ(k) :=
{
θi : nj2

−(kj+1) − 1 + zjnj/2 < ij ≤ nj2
−kj − 1 + zjnj/2,

ij = 0, . . . , nj − 1, j = 1, . . . , d
}
.

Let M := {(mk)k∈K : 1 ≤ mk ≤ |K|,
∑

k∈Kmk ≤ 2|K|}. For m ∈M, we define

Tm(t) :=

{
θ ∈ Dn1,...,nd ∩ B2(θ∗, t) : ‖θ − θ∗‖ ≤ t, ‖θ(k) − (θ∗)(k)‖2 ≤ mkt

2

|K|
,∀k ∈ K

}
.

We claim
Dn1,...,nd ∩ B2(θ∗, t) ⊆

⋃
m∈M

Tm(t). (A.12)

Indeed suppose θ ∈ Dn1,...,nd ∩B2(θ∗, t); then we have t2 ≥ ‖θ− θ∗‖2 ≥ ‖θ(k) − (θ∗)(k)‖2 for
each k, and thus there exists 1 ≤ mk ≤ |K| such that

mk − 1 ≤ |K|‖θ
(k) − (θ∗)(k)‖2

t2
≤ mk.

This implies

1 ≥ t−2‖θ − θ∗‖2 ≥ t−2
∑
k∈K

‖θ(k) − (θ∗)(k)‖2 ≥ |K|−1
∑
k∈K

(mk − 1)

and thus
∑

k∈Kmk ≤ 2|K|, so m ∈M and θ ∈ Tm(t), which verifies the claim (A.12).
Using this claim (A.12) we obtain

Hz(t) ≤ E max
m∈M

sup
θ∈Tm

∑
i∈S(z1)

1 ×···×S(zd)

d

ξi(θi − θ∗i ).

Lemma D.1 from [44] then implies

Hz(t) ≤ max
m∈M

E sup
θ∈Tm(t)

∑
i∈S(z1)

1 ×···×S(zd)

d

ξi(θi − θ∗i ) + t
√

2 log|M|+ t
√
π/2.

Because the number of |K|-tuples of positive integers summing to p is
(
p−1
|K|−1

)
=
(
p−1
p−|K|

)
, we

can bound the cardinality of M by

|M| ≤
2|K|∑
p=|K|

(
p− 1

p− |K|

)
≤

2|K|∑
p=|K|

(
2|K| − 1

p− |K|

)
≤ 22|K|−1.
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Thus,

Hz(t) ≤ max
m∈M

E sup
θ∈Tm(t)

∑
i∈S(z1)

1 ×···×S(zd)

d

ξi(θi − θ∗i )

︸ ︷︷ ︸
=:Uz,m(t)

+2t
√
|K|+ t

√
π/2. (A.13)

Since
∑

i∈S(z1)
1 ×···×S(zd)

d

ξi(θi − θ∗i ) =
∑

k∈K

〈
ξ(k),θ(k) − (θ∗)(k)

〉
, we have

Uz,m(t) ≤
∑
k∈K

E sup
θ∈Dn1,...,nd∩B2(θ∗,t):

‖θ(k)−(θ∗)(k)‖2≤t2mk/|K|

〈
ξ(k),θ(k) − (θ∗)(k)

〉
︸ ︷︷ ︸

=:Uz,m,k(t)

. (A.14)

We claim that for any θ ∈ Dn1,...,nd ∩B2(θ∗, t) and any i ∈×d

j=1
{0, 1, . . . , nj − 1} and k ∈ K

satisfying
nj2

−(kj+1) − 1 + zjnj/2 < ij ≤ nj2
−kj − 1 + zjnj/2, (A.15)

then θi can be bounded as

θ∗0 − t(2d+k+/n)1/2 ≤ θi ≤ θ∗n−1 + t(2d+k+/n)1/2. (A.16)

where k+ := k1 + · · · + kd. We prove each bound by contradiction. If the upper bound
of (A.16) does not hold, then

θ` ≥ θi > θ∗n−1 + t(2d+k+/n)1/2 ≥ θ∗` + t(2d+k+/n)1/2

as long as ` � i, which yields

t2 ≥ ‖θ − θ∗‖2 ≥
∑
`�i

(θ` − θ∗`)2 > t22d+k+n−1 ·
d∏
j=1

(nj − ij).

Noting that our condition on ij (A.15) implies nj − ij ≥ nj(1 − zj/2 − 2−kj) ≥ nj2
−(kj+1),

we obtain
∏d

j=1(nj − ij + 1) ≥ n2−(d+k+) which yields the contradiction t2 > t2.
Similarly if the lower bound of (A.16) does not hold, then

θ` ≤ θi < θ∗n−1 − t(2d+k+/n)1/2 ≤ θ∗` − t(2d+k+/n)1/2

as long as ` � i, which yields

t2 ≥ ‖θ − θ∗‖2 ≥
∑
`�i

(θ` − θ∗`)2 > t22d+k+n−1 ·
d∏
j=1

(ij + 1).

Noting that our condition on ij (A.15) implies ij + 1 > nj2
−(kj+1) we obtain

∏d
j=1(ij + 1) ≥

n2−(d+k+) which yields the contradiction t2 > t2.
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Thus, the bounds (A.16) hold. So, for each θ ∈ Dn1,...,nd ∩ B2(θ∗, t) and k ∈ K, the

number of entries in θ(k) is at most

d∏
j=1

(nj2
−kj − nj2−(kj+1)) ≤ n2−(d+k+),

and each entry lies in the interval

[a, b] :=
[
θ∗0 − t(2d+k+/n)1/2, θ∗n−1 + t(2d+k+/n)1/2

]
.

Moreover, θ(k) lies in some D̃ := Dñ1,...,ñd where ñ1, . . . , ñd are the dimensions of θ(k) as a
sub-array.

We make use of the following metric entropy result, proved in Section A.5.1

Lemma A.3.5. For a < b, we have

logN2(ε,Dn1,...,nd ∩ [a, b]n) ≤ Cd
(b− a)

√
n

ε

(
log

(b− a)
√
n

ε

)d− 1
2

I{ε ≤ (b− a)
√
n}.

Combining this metric entropy bound with Dudley’s entropy bound [31] (for instance see
[20, Thm. 3.2]) yields

Uz,m,k(t) ≤ c

∫ t
√
mk/|K|

0

√
B

ε

(
log

B

ε

)d− 1
2

dε,

where

B := (n2−(d+k+))1/2(V ∗ + 2t(n2−(d+k+))−1/2)

= (n2−(d+k+))1/2V ∗ + 2t (A.17)

and V ∗ = f ∗(1)− f ∗(0) ≥ θ∗n−1 − θ∗0. Note that ε ≤ t
√
mk/|K| ≤ t < B, so log(B/ε) > 0.

The following lemma (proved in Section A.5.2) allows us to bound the above integral.

Lemma A.3.6. For every d ≥ 1 there exists a positive constant Cd such that for every
s ∈ (0, B], the following inequality holds.

∫ s

0

√
B

ε

(
log

B

ε

)d− 1
2

dε ≤ Cd
√
sB

(
log

B

s

) 2d−1
4

Applying Lemma A.3.6 with s := t
√
mk/|K| ≥ t/

√
|K| yields

Uz,m,k(t) ≤ Cd
√
Bt(mk/|K|)1/4

(
log

eB
√
|K|
t

) 2d−1
4

.
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We bound this with two terms depending on which of the two terms in the def-
inition (A.17) of B is larger. In the case V ∗(n2−(d+k+))1/2 > 2t, we have B ≤
2V ∗(n2−(d+k+))1/2 ≤ 2V ∗

√
n and

Uz,m,k(t) ≤ Cd
√
tV ∗(n2−k+)1/4

(
log

2eV ∗
√
n|K|

t

) 2d−1
4

.

In the other case where V ∗(n2−(d+k+))1/2 ≤ 2t, we have B ≤ 3t, which yields

Uz,m,k(t) ≤ Cdt(mk/|K|)1/4(log(2e
√
|K|))

2d−1
4 .

Combining the two cases and using the indicator bounds I{V ∗(n2−(d+k+))1/2 > 2t} ≤
I{V ∗

√
n > t} and I{V ∗(n2−(d+k+))1/2 ≤ 2t} ≤ 1, we obtain

Uz,m,k(t) ≤ Cd
√
tV ∗(n2−k+)1/4

(
log

2eV ∗
√
n|K|

t

) 2d−1
4

I{V ∗
√
n > t}

+ Cdt(mk/|K|)1/4(log(2e
√
|K|))

2d−1
4 .

Applying this observation to the earlier bound Uz,m(t) ≤
∑

k∈K Uz,m,k(t) from (A.14) yields

Uz,m(t) ≤ Cd
√
tV ∗n1/4

(
log

2eV ∗
√
n|K|

t

) 2d−1
4

I{V ∗
√
n > t}

∑
k∈K

2−k+/4

+ Cdt(log(2e
√
|K|))

2d−1
4

∑
k∈K

(mk/|K|)1/4.

The first sum can be bounded as

∑
k∈K

2−k+/4 ≤
d∏
j=1

∞∑
kj=1

2−kj/4 ≤ Cd.

For the second sum, note that Hölder’s inequality combined with the fact that
∑

k∈Kmk ≤
2|K| yields ∑

k∈K

m
1/4
k ≤

(∑
k∈K

mk

)1/4

|K|3/4 ≤ 21/4|K|.

Additionally, note that Kj ≤ C log nj for each j, so log|K| ≤
∑d

j=1 log(C log nj) ≤
Cd log n, which allows us to bound the logarithmic term as

log
2eV ∗

√
n|K|

t
≤ log

2eV ∗
√
n

t
+

1

2
log|K| ≤ Cd log

eV ∗
√
n

t
.
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Finally, note that(
log

eV ∗
√
n

t

) 2d−1
4

I{V ∗
√
n > t} =

(
log+

eV ∗
√
n

t

) 2d−1
4

,

where log+(x) := max(0, log x).
Combining these four observations yields

Uz,m(t) ≤ Cd
√
tV ∗n1/4

(
log+

eV ∗
√
n

t

) 2d−1
4

+ Cdt|K|3/4(log(2e
√
|K|))

2d−1
4 .

Combining this bound with the earlier bound (A.13) on Hz(t) yields

Hz(t) ≤ max
m∈M

Uz,m(t) + 2t
√
|K|+ t

√
π/2

≤ Cd
√
tV ∗n1/4

(
log+

eV ∗
√
n

t

) 2d−1
4

︸ ︷︷ ︸
=:G1(t)

+Cdt|K|3/4(log(2e
√
|K|))

2d−1
4︸ ︷︷ ︸

=:G2(t)

.

By observing the earlier bound (A.11), we see that the above upper bound for Hz(t) also
holds for G(t) (after multiplying the constants by 2d). That is,

G(t) ≤ G1(t) +G2(t). (A.18)

where G1 and G2 are the two terms of the previous inequality. Let

t1 := max{1, (4Cd)2/3}(
√
nV ∗)1/3

[
max{1, log+(e(

√
nV ∗)2/3)}

] 2d−1
6 .

Then t1 ≥ (
√
nV ∗)1/3, so for t ≥ t1 we have

G1(t)

t2
= Cd

√
V ∗n1/4

t3/2

(
log+

eV ∗
√
n

t

) 2d−1
4

≤ Cd

√
V ∗n1/4

t3/2
(
log+(e(V ∗

√
n)2/3)

) 2d−1
4 ≤ 1

4
.

Next, with the definition

t2 := 4Cd|K|3/4(log(2e
√
|K|))

2d−1
4 ,

for t ≥ t2 we have
G2(t)

t2
=
Cd|K|3/4

t
(log(2e

√
|K|))

2d−1
4 ≤ 1

4
.
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Combining the two inequalities, we obtain G(t) ≤ t2/2 for t ≥ max{t1, t2}. By Theo-
rem A.3.1 and the bound Kj ≤ c log nj, we obtain

R(f̂EM, f
∗) = E

1

n
‖θ̂ − θ∗‖2 ≤ t21 + t22

n

≤ Cd

(
V ∗

n

) 2
3 [

max{1, log+(e(
√
nV ∗)2/3)}

] 2d−1
3

+
Cd
n

(
d∏
j=1

log nj

) 3
2
(

d∑
j=1

log(e log nj)

) 2d−1
2

≤ Cd

(
V ∗

n

) 2
3 [

log(2 +
√
nV ∗)

] 2d−1
3

+
Cd
n

(log n)
3d
2 (log(e log n))

2d−1
2 .

A.3.3 Proof of Theorem 3.4.5

We use the earlier notation (A.9). As observed in the proof of Theorem 3.4.1, it follows from

Proposition 3.3.1 and Proposition 3.3.2 that θ̂ is the projection of the data vector y onto
the closed convex cone (A.10). We then apply Theorem A.3.4 to obtain

R(f̂EM, f
∗) = E

1

n
‖θ̂ − θ∗‖2 ≤ inf

θ∈K

{
1

n
‖θ − θ∗‖2 +

σ2

n
δ(TK(θ))

}
where K = Dn1,...,nd is the set (A.10). Using the notation θf := (f(x1), . . . , f(xn)) for
f ∈ FdEM, we can rewrite the above inequality as

R(f̂EM, f
∗) ≤ inf

f∈FdEM

{
1

n

n∑
i=1

(f(xi)− f ∗(xi))2 +
σ2

n
δ(TK(θf ))

}

≤ inf
f∈Rd∩FdEM

{
1

n

n∑
i=1

(f(xi)− f ∗(xi))2 +
σ2

n
δ(TK(θf ))

}
.

Therefore to complete the proof of Theorem 3.4.5, it is enough to show that

δ(TK(θf )) ≤ Cdk(f)(log(en))
3d
2 (log log n)

2d−1
2 for every f ∈ Rd ∩ FdEM. (A.19)

Fix f ∈ Rd∩FdEM with k(f) = k. By the definition of Rd, there exist d univariate partitions
as in (3.21) such that f is constant on each of the k rectangles

Rl1,...,ld :=
d∏
s=1

[x
(s)
ls
, x

(s)
ls+1) ls = 0, 1, . . . , ks − 1 and s = 1, . . . , d. (A.20)
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For every s = 1, . . . , d and ls = 0, 1, . . . , ks − 1, let ns(ls) be the number of indices is =

0, 1, . . . , ns − 1 such that is/ns ∈ [x
(s)
ls
, x

(s)
ls+1). It will be convenient in the sequel to, as in

Section 3.3.1, index vectors in Rn by (i1, . . . , id) ∈ I (recall that I is defined as in (3.37)).
Specifically the components of θ ∈ Rn will be denoted by θi1,...,id , (i1, . . . , id) ∈ I. Also, for
θ ∈ Rn and the rectangle (A.20), let θ(Rl1,...,ld) denote the vector in Rn1(l1) × · · · × Rnd(ld)

with components given by θi1,...,id as each is varies over the indices in 0, 1, . . . , ns − 1 such

that is/ns ∈ [x
(s)
ls
, x

(s)
ls+1). We now make the key observation that for every θ ∈ Dn1,...,nd and

rectangle Rl1,...,ld in (A.20), we have

θ(Rl1,...,ld) ∈ Dn1(l1),...,nd(ld). (A.21)

To see this, fix θ ∈ Dn1,...,nd and let f ∈ FdEM be such that θi1,...,id = f(i1/n1, . . . , id/nd) for
every i1, . . . , id. Then

θ(Rl1,...,ld) =

{(
f(
i1
n1

), . . . , f(
id
nd

)

)
:
is
ns
∈ [x

(s)
ls
, x

(s)
ls+1), s = 1, . . . , d

}
=

{(
g(

j1

n1(l1)
, . . . ,

jd
nd(ld)

)

)
: js = 0, 1, . . . , ns(ls)− 1, s = 1, . . . , d

}
where g : [0, 1]d → R is defined as

g(x1, . . . , xd) := f
(

(1− x1)x
(1)
l1

+ x1x
(1)
l1+1, . . . , (1− xd)x

(d)
ld

+ xdx
(d)
l1+d

)
It is easy to see that g ∈ FdEM which proves (A.21). The fact (A.21) will be used to prove
(A.19) in the following way. We first observe that

TK(θf ) ⊆
{
v ∈ Rn : v(Rl1,...,ld) ∈ Dn1(l1),...,nd(ld),∀ls = 0, 1, . . . , ks − 1, ∀s = 1, . . . , d

}
.(A.22)

To prove (A.22), note first that, by the definition of the tangent cone, we have

TK(θf ) = Closure {α(θ − θf ) : θ ∈ K,α ≥ 0} .

Since the right hand side of (A.22) is a closed set, we only need to show that v = α(θ− θf )
belongs to the right hand side of (A.22) for every θ ∈ K and α ≥ 0. Fix l1, . . . , ld. By (A.21),
we have that θ(Rl1,...,ld) ∈ Dn1(l1),...,nd(ld). On the other hand, θf (Rl1,...,ld) is a constant
vector, because f is constant on Rl1,...,ld . As a result, with R = Rl1,...,ld , we obtain that
v(R) = α(θ(R) − θf (R)) ∈ Dn1(l1),...,nd(ld) as Dn1(l1),...,nd(ld) is a cone that is invariant under
translation by constant vectors. This proves (A.22).

The observation (A.22) implies (using the monotonicity of statistical dimension; see
Amelunxen et al. [3, Proposition 3.1]) that δ(TK(θf )) ≤ δ(T ) where T denotes the right
hand side of (A.22). It is now easy to see that

δ(T ) =

k1−1∑
l1=0

· · ·
kd−1∑
ld=0

E‖ΠDn1(l1),...,nd(ld)(Z(Rl1,...,ld))‖2
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where Z ∼ Nn(0, In) and ΠDn1(l1),...,nd(ld) is the projection operator on the closed convex set
Dn1(l1),...,nd(ld) Each addend on the right-hand side is simply the risk of the NNLS estimator

f̂EM when the design points are (j1/n1(l1), . . . , jd/nd(ld)), js = 0, 1, . . . , ns(ls)−1, s = 1, . . . , d
and when the true function f ∗ is constantly equal to zero. Thus, by the second term in (3.43),
and noting that the number of design points here is

∏d
s=1 ns(ls) ≤ n, we obtain

δ(TK(θf )) ≤ δ(T ) ≤ Cdk(log(en))
3d
2 (log(e log(en)))

2d−1
2 ,

which proves (A.19) and completes the proof of Theorem 3.4.5.

A.3.4 Proof of Theorem 3.4.6

Let

θ̂ := (f̂HK0,V (x1), . . . , f̂HK0,V (xn)) = Aβ̂HK0,V and θ∗ := (f ∗(x1), . . . , f ∗(xn)) (A.23)

where β̂HK0,V is defined by the LASSO problem (3.30). Note that R(f̂HK0,V , f
∗) = 1

n
E‖θ̂ −

θ∗‖2.
Similar to the proof of Theorem 3.4.1, we take σ = 1 without loss of generality. To see

this, note that we can consider the scaled problem yi/σ = f ∗(xi)/σ + ξi/σ so that noise is
scaled to have variance 1 and the variation is now VHK0(f ∗/σ, [0, 1]d) ≤ V/σ. Note also that

the estimator for the scaled problem is f̂HK0,V /σ where f̂HK0,V is the estimator in the original
problem. We may apply the bound (3.48) to the scaled problem, and convert this into a
bound on the risk of the original problem by multiplying the bound by σ2 and replacing the
variation term V/σ with V . Thus, for the rest of the proof we assume σ = 1.

Observe first that θ̂ is the projection of y on the closed convex set C(V ) defined in (3.31).

We use Theorem A.3.1 to bound E‖θ̂ − θ∗‖2 and the key is to bound the quantity

G(t) := E sup
θ∈C(V ):‖θ−θ∗‖2≤t

〈ξ,θ − θ∗〉 for t > 0 (A.24)

where ξ ∼ N (0, In) in order to find t∗ > 0 such that G(t∗) ≤ t2∗/2.
Throughout, A is the design matrix from Section 3.3. If θ = Aβ and θ∗ = Aβ∗ both

belong to C(V ) then
∑n

j=2|βj − β∗j | ≤
∑n

j=2|βj|+
∑n

j=2|β∗j | ≤ 2V , so we have

G(t) ≤ H(t) := E sup
α∈C(2V ):‖α‖2≤t

〈ξ,α〉.

Let C(V, t) := C(V ) ∩ B2(0, t). We now use Dudley’s entropy bound (see Chatterjee et al.
[20, Thm. 3.2]) to control the right hand side above:

H(t) ≤ c

∫ t

0

√
logN(ε, C(2V, t)) dε.

The covering numbers above are bounded in the following lemma whose proof is deferred to
Section A.5.3.
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Lemma A.3.7. For every V > 0 and t > 0, we have

logN(ε, C(V, t)) ≤ Cd

(
V
√
n

ε
+ 1

)(
log

(
2V
√
n

ε
+ 1

))d− 1
2

+ log

(
2 + 2

t+ V
√
n

ε

)
.

Lemma A.3.7 and the inequality
√
a2 + b2 ≤ a+ b for a, b ≥ 0 together give

√
logN(ε, C(2V, t)) ≤ Cd

√(
V
√
n

ε
+ 1

)(
log

(
2V
√
n

ε
+ 1

))d− 1
2

+ Cd

√
log

(
2 + 2

t+ V
√
n

ε

)
and thus

H(t) ≤Cd
∫ t

0

√(
V
√
n

ε
+ 1

)(
log

(
2V
√
n

ε
+ 1

))d− 1
2

dε

+ Cd

∫ t

0

√
log

(
2 + 2

t+ V
√
n

ε

)
dε

We can upper bound the second integral as follows.
Let B := 4t + 2V

√
n. Using the fact that ε ≤ t in the integral, and peforming some

substitutions and integration by parts, we obtain∫ t

0

√
log

(
2 + 2

t+ V
√
n

ε

)
dε

≤
∫ t

0

√
log

4t+ 2V
√
n

ε
dε

=

∫ t

0

√
log

B

ε
dε

= B

∫ ∞
α

u1/2e−u du u = log
B

ε
, α := log

B

t

= B
√
αe−α +B

∫ ∞
α

e−u

2
√
u
du

where the last step is due to integration by parts. The last integral can be bounded by∫ ∞
α

e−u

2
√
u
du ≤ 1

2
√
α

∫ ∞
α

e−u du ≤ 1

2
√
α
e−α.
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Noting that α = log(B/t) ≥ log(4) and Be−α = t, we obtain

∫ t

0

√
log

(
2 + 2

t+ V
√
n

ε

)
dε ≤ Be−α

(√
α +

1

2
√
α

)
≤ Ct

√
1 + log(B/t)

≤ Ct

√
log(4 + 2V

√
n/t).

We now return to the first integral.

Cd

∫ t

0

√(
V
√
n

ε
+ 1

)(
log

(
2V
√
n

ε
+ 1

))d− 1
2

dε

≤ Cd

∫ t

0

√
V
√
n+ t

ε

(
log

2V
√
n+ t

ε

)d− 1
2

dε

≤ Cd

√
t(2V

√
n+ t)

(
log

e(2V
√
n+ t)

t

) 2d−1
4

≤ Cd

(
t+

√
2tV
√
n

)(
log(1 + 2eV

√
n/t)

) 2d−1
4 ,

where we have used Lemma A.3.6 to bound the integral.
Combining these two terms yields

G(t) ≤ Cd

(
t+

√
2tV
√
n

)(
log(1 + 2eV

√
n/t)

) 2d−1
4

+ Cdt

√
log(4 + 2V

√
n/t).

(A.25)

As always, the constants Cd that appear below vary from line to line. We have

Cdt
(
log(1 + 2eV

√
n/t)

) 2d−1
4 ≤ t2

6

whenever t ≥ Cd max
{

1, (log(1 + 2eV
√
n))

2d−1
4

}
. We have

Cd

√
2tV
√
n
(
log(1 + 2eV

√
n/t)

) 2d−1
4 ≤ t2

6

whenever t ≥ cd max
{

1, (V
√
n)1/3(log(1 + 2eV

√
n))

2d−1
6

}
. Finally, we have

2Cdt

√
log(4 + 2V

√
n/t) ≤ t2

8
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whenever t ≥ Cd max
{

1,
√

log(4 + 2V
√
n)
}

. So, with

t = Cd max

{
(V
√
n)1/3

(
log
(
1 + 2eV

√
n
)) 2d−1

6 ,

√
log(4 + 2V

√
n),
(
log
(
1 + 2eV

√
n
)) 2d−1

4 , 1

}
the above three inequalities hold, and we obtain G(t) ≤ t2/2, and we may then use Theo-
rem A.3.1 to obtain

R(θ̂LASSO, f
∗) ≤ t2

n
≤ Cd max

{(
V

n

) 2
3 (

log(1 + 2eV
√
n)
) 2d−1

3 ,
1

n
log(4 + 2V

√
n),

1

n

(
log(1 + 2eV

√
n)
) 2d−1

2 ,
1

n

}
.

We claim we can remove the log terms in the second and third terms as well. Note that
log(4 + x) ≤ x2/3 for x ≥ 3. Thus, we may bound the second term by

1

n
log(4 + 2V

√
n) ≤

(
2V

n

) 2
3

I{2V
√
n ≥ 3}+

log(7)

n
I{2V

√
n < 3}

Similarly, log(1 + x)
2d−1

2 ≤ x2/3 for x ≥ Cd, so we may bound the third term by

1

n

(
log(1 + 2eV

√
n)
) 2d−1

2

≤
(

2eV

n

) 2
3

I{2eV
√
n ≥ Cd}+

(log(1 + Cd))
2d−1

2

n
I{2eV

√
n < Cd}.

This allows us to rewrite our risk bound as

R(θ̂LASSO, f
∗) ≤ Cd

(
V

n

) 2
3 (

log(1 + 2eV
√
n)
) 2d−1

3 + Cd
1

n

which is the desired bound in the case σ2 = 1. The general result can be obtained by
rescaling as discussed earlier.

A.3.5 Proof of Theorem 3.4.4

Let
θ̃ := (f̃EM,V (x1), . . . , f̃EM,V (xn)) and θ∗ := (f ∗(x1), . . . , f ∗(xn))

As discussed in Section 3.3, Dn1,...,nd∩(θn−θ1) = Dn1,...,nd∩C(V ) (since if θ = Aβ ∈ Dn1,...,nd

then θn − θ1 =
∑

j≥2 βj =
∑

j≥2|βj|), and we have

θ̃ = argmin
θ∈Dn1,...,nd∩C(V )

‖y − θ‖2
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As in Section A.3.4, we may without loss of generality assume σ2 = 1, and then rescale to
handle the general case.

We again appeal to Theorem A.3.1. We need to bound

E sup
θ∈Dn1,...,nd∩C(V ):‖θ−θ∗‖≤t

〈ξ,θ − θ∗〉

for t > 0 where ξ ∼ Nn(0, In). But by removing the Dn1,...,nd constraint in the supremum, we
immediately see that this quantity is bounded from above by G(t) as defined above (A.24).
Thus we may exactly follow the argument that bounds G(t) in Section A.3.4, and ultimately
end up with the same bound (3.48) in Theorem 3.4.6.

A.3.6 Proof of Theorem 3.4.9

See the end of Section A.3.7 for the proof of the tighter bound in the case d = 2.
We use Assouad’s lemma [4] (see also [96] for more discussion) in the following form:

Lemma A.3.8 (Assouad’s lemma [96, Lemma 2]). Let q be a positive integer, and assume
that for every η ∈ {−1, 1}q there is an associated function fη satisfying VHK0(fη) ≤ V . Then

Mσ,V,d(n) ≥ q

2
min
η 6=η′
L(fη, fη′)

dH(η,η′)
min

dH(η,η′)=1

(
1− ‖Pfη − Pfη′‖TV

)
,

where L(f, g) := 1
n

∑n
i=1(f(xi) − g(xi))

2, where Pf denotes the probability measure of
y1, . . . , yn drawn from the model (3.1) where f ∗ = f , and where dH(η,η′) :=

∑q
j=1 I{ηj 6= η′j}

denotes the Hamming distance.

Below we construct a collection of functions {fη,η ∈ {−1, 1}q}} such that the right-hand
side of Assouad’s bound above is the resulting bound Cd(σ

2V/n)2/3(log(n(V/σ)2))2(d−1)/3 of
Theorem 3.4.9, but under the assumption that n1 = · · · = nd and that n1 is a power of 2.

Our construction of the functions {fη,η ∈ {−1, 1}q} closely roughly mirrors that of Blei
et al. [12, Section 4]. First let

` :=

⌈
1

3 log 2

(
log(CdnV

2/σ2)− (d− 1) log log(CdnV
2/σ2)

)⌉
. (A.26)

The particular choice of this integer ` will be relevant later. We define the index set

M` :=

{
(m1, . . . ,md) ∈ Nd :

d∑
j=1

mj = `, max
j∈[d]

mj ≤ 2`/d

}
,

and for each m ∈M` we define

Im :=
{

(i1, . . . , id) ∈ Nd : ij ∈ [2mj ] for each j ∈ [d]
}
.

One can check that |Im| =
∏d

j=1 2mj = 2` for each m ∈ M`. We also have the following
lower bound which is proved in Section A.5.4.
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Lemma A.3.9. There exist positive constants ad and c′d,σ2/V 2 such that

|M`| ≥ ad`
d−1 for all n ≥ c′d,σ2/V 2 .

Finally, let
q := |M`| · 2` (A.27)

be the cardinality of the set {(m, i) : m ∈ M`, i ∈ Im}. We index the components of
η ∈ {−1, 1}q by ηm,i for m ∈M`, i ∈ Im.

We now define a function fη for each η ∈ {−1, 1}q. For natural numbers m and natural
number i ∈ [2mj ] we define the function φm,i : [0, 1]→ R by

φm,i(x) :=


0 x /∈ [(i− 1)2−m, i2−m],

2−m−2 x = (i− 3
4
)2−m,

−2−m−2 x = (i− 1
4
)2−m,

linear otherwise.

(A.28)

Note that consequently

φ′m,i(x) =

{
1 x ∈ ((i− 1)2−m, (i− 3

4
)2−m) ∪ ((i− 1

4
)2−m, i2−m),

−1 x ∈ ((i− 3
4
)2−m, (i− 1

4
)2−m).

We define the function fη : [0, 1]d → R as

fη :=
V√
|M`|

∑
m∈M`

∑
i∈Im

ηm,i

d⊗
j=1

φmj ,ij ,

that is,

fη(x) :=
V√
|M`|

∑
m∈M`

∑
i∈Im

ηm,i

d∏
j=1

φmj ,ij(xj).

The following lemma (proved in Section A.5.5) contains the key ingredients for the ap-
plication of Lemma A.3.8.

Lemma A.3.10. For the functions fη defined above, the following three inequalities hold.

VHK0(fη; [0, 1]d) ≤ V, (A.29)

max
dH(η,η′)=1

‖Pfη − Pfη′‖TV ≤

√
n

σ2

V 2

|M`|
2−3`−4d, (A.30)

and

min
η 6=η′
L(fη, fη′)

dH(η,η′)
≥ 4V 2

|M`|
2−3`−6d. (A.31)
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The three inequalities in the above lemma, together with Lemma A.3.8, Lemma A.3.9
and equation (A.27) imply

Mσ,V,d(n) ≥ q

2
· 4V 2

|M`|
2−3`−6d

[
1−

√
n

σ2

V 2

|M`|
2−3`−4d

]

≥ 2`+1V 22−3`−6d

[
1−

√
n

σ2

V 2

ad`d−1
2−3`−4d

]

≥ V 22−2`−6d+1

[
1−

√
Cd

n

σ2

V 2

`d−1
2−3`

]
(A.32)

where Cd := 2−4d/ad.
Note that our choice (A.26) of ` implies

2−` =

(
σ2

CdnV 2

) 1
3 (

log(CdnV
2/σ2)

) d−1
3 .

Then

Cd
n

σ2

V 2

`d−1
2−3` =

(
log(CdnV

2/σ2) · log 2
1
3

log(CdnV 2/σ2)− d−1
3

log log(CdnV 2/σ2)

)d−1

=

(
3

log 2

(
1− (d− 1)

log log(CdnV
2/σ2)

log(CdnV 2/σ2)

))−(d−1)

. (A.33)

For all x > 1 we have log log x
log x

≤ (log x)−1/2. Thus if we have

nV 2/σ2 ≥ ed
2/4/Cd (A.34)

then we obtain
log log(CdnV

2/σ2)

log(CdnV 2/σ2)
≤ (log(CdnV

2/σ2))−1/2 ≤ 2

d
.

Applying this bound to the earlier equality (A.33) yields

Cd
n

σ2

V 2

`d−1
2−3` ≤

(
2 log 2

3

)d−1

≤ 1

2
.

Thus continuing from the earlier lower bound (A.32), we obtain

Mσ,V,d(n) ≥ c̃dV
2

(
σ2

CdnV 2

) 2
3 (

log(CdnV
2/σ2)

) 2(d−1)
3

= c′d

(
σ2V

n

) 2
3 (

log(CdnV
2/σ2)

) 2(d−1)
3 ,
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where c̃d := 2−6d+1(1 − 2−1/2) and c′d := C
−2/3
d c̃d, provided the sample size condition (A.34)

holds.
We claim we may replace log(CdnV

2/σ2) with log(n(V/σ)2) in the above lower bound
for sufficiently large n. Indeed as long as n(V/σ)2 ≥ C−2

d we have log(CdnV
2/σ2) ≥

1
2

log(n(V/σ)2), so we obtain

Mσ,V,d(n) ≥ c′′d

(
σ2V

n

) 2
3

(log(n(V/σ)2))
2(d−1)

3

for all n larger than a constant depending only on d and σ2/V 2.

Relaxing assumptions We have proved the theorem under the assumption n1 = · · · = nd
with n1 a power of 2. We now argue that this suffices to handle the general case. First,
suppose n1 = · · · = nd, but n1 is not a power of 2. Let n′1 be the largest power of 2 less
than n1, and let n′ = (n′1)d. Then we may apply the argument on the n′1 × · · · × n′1 and
obtain a collection {fη,η ∈ {−1, 1}q} such that the right-hand side of Assouad’s bound is
Cd(σ

2V/n′)2/3(log(n′(V/σ)2))2(d−1)/3. We now adapt this collection for our original n1×· · ·×
nd grid. Since L(fη, fη′) and ‖Pfη − Pfη′‖TV depend only the values of the functions at the
design points xi, we may assume without loss of generality that the functions are piecewise
constant with respect to the n′1 × · · · × n′1 grid, since keeping the values of fη(xi) intact for
all η and xi while making the function piecewise constant elsewhere can only decrease the
HK-variation, and thus not violate the VHK0(fη) ≤ V condition. Note that n1 − n′1 < n′1.

To move from the n′1 × · · · × n′1 grid×d

j=1
{0, 1

n′1
, . . . ,

n′1−1

n′1
} to a n1 × · · · × nd grid, we

simply include the n1 − n′1 extra points 1
2n′1
, 3

2n′1
, . . . ,

2(n1−n′1)−1

2n′1
to the set {0, 1

n′1
, . . . ,

n′1−1

n′1
}

before taking the Cartesian product d times. This is not an evenly spaced grid, but we may
consider an isotonic function g that maps these n1 points

0,
1

2n′1
,

2

2n′1
, . . . ,

2(n1 − n′1)− 1

2n′1
,
n1 − n′1
n′1

,
n1 − n′1 + 1

n′1
, . . .

n′1 − 1

n′1

to the evenly spaced grid 0, 1
n1
, . . . , n1−1

n1
, and let f̃η = fη ◦G where G =

⊗d
i=1 g.

We now account for how the right-hand side of Assouad’s bound (Lemma A.3.8) changes

when using {f̃η} on the full n1 × · · · × nd grid instead of {fη} on the smaller grid. Since

HK variation is invariant under “stretching” of the domain, VHK0(f̃η) = VHK0(fη) ≤ V .
Furthermore, since the fη are piecewise constant, the addition of the extra points simply

means that certain values of fη on the smaller grid appear up to 2d times as values of f̃η
on the larger grid (since nj < 2n′1 for each j, and n < 2dn′). Thus, using the fact that

n′ < n < 2dn′, the loss L̃(f̃η, f̃η′) with respect to the larger grid satisfies

2−dL(fη, fη′) ≤ L̃(f̃η, f̃η′) ≤ L(fη, fη′)

where L(fη, fη′) is with respect to the smaller grid. In particular, we still have the bound
in (A.30) for ‖Pf̃η − Pf̃η′‖TV, since in the proof of (A.3.10) we show ‖Pf̃η − Pf̃η′‖TV ≤
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√
n

4σ2L(f̃η, f̃η′). For (A.31), we need to multiply the right-hand side by a factor of 2−d,

which amounts to changing a few constants that depend on d. Thus, up to this d-dependent
factor, the result of Lemma A.3.10 hold, and we can apply Assouad’s bound as before, with
the only changes being an adjustment in the constants that depend on d. Thus, we obtain
a final lower bound of the form

Mσ,V,d(n) ≥ Cd

(
σ2V

n′

) 2
3

(log(n′(V/σ)2))
2(d−1)

3 .

To conclude, note that 2−dn ≤ n′ ≤ n, so we have

Mσ,V,d(n) ≥ C ′d

(
σ2V

n

) 2
3

(log(n(V/σ)2))
2(d−1)

3 .

for n larger than a [now slightly larger] constant depending only on (σ/V )2 and d.
We have now proven the theorem under the assumption n1 = · · · = nd where n1

is any sufficiently large positive integer. The argument for relaxing this assumption to
nj ≥ cn1/d is similar. We can consider a smaller square grid n′1× · · ·×n′1 where n′1 = csn

1/d,
and use the above argument to obtain a collection of fη (which may be assumed to
be rectangular piecewise constant on the small grid) for which Assouad’s bound yields
Cd(σ

2V/n′)2/3(log(n′(V/σ)2))2(d−1)/3 where n′ = cdsn. To move to the larger grid, we need
to add nj − csn

′
1 points to each dimension of the grid in the same fashion as above, by

distributing them evenly among the gaps between the points of the smaller grid. We can
again make this larger grid evenly spaced by stretching the domain as before to obtain a new
collection of functions f̃η. Since we have enlarged the grid by a factor of c−ds , each value of

fη on the small grid appears at most c−ds times as values of f̃η on the larger grid. Thus,

cdsL(fη, fη′) ≤ L̃(f̃η, f̃η′) ≤ L(fη, fη′)

We may then use the bounds in Lemma A.3.10 (with the bound (A.31) having an extra
factor of cds that will later be absorbed into constants) and apply Assouad’s bound to obtain
the same bound Cd(σ

2V/n′)2/3(log(n′(V/σ)2))2(d−1)/3. Substituting n′ = cdsn and absorbing
cds into the constant and taking n larger than a constant depending only on cs, (σ/V )2, and
d yields the desired bound.

A.3.7 Proof of Theorem 3.4.3

Let us first consider the case σ2 = 1. Let FdEM(V ) := {f ∈ FdEM : VHK0(f) ≤ V }.
Let FdDF denote the class of cumulative distribution functions of probability distributions

on [0, 1]d. We immediately have V FdDF ⊆ FdEM(V ), which implies

inf
f̂n

sup
f∗∈FdEM(V )

Ef∗L(f̂n, f
∗) ≥ inf

f̂n

sup
f∗∈V FdDF

Ef∗L(f̂n, f
∗).
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Thus it suffices to prove a minimax lower bound for V FdDF. To do so, we employ the Yang
and Barron bound [94], roughly in the form appearing in [43, Thm. IV.1] (after specializing
the Kullback-Leibler divergence to our Gaussian model):

inf
f̂n

sup
f∗∈FdDF

Ef∗L(f̂n, f
∗) ≥ η2

4

(
1− log 2 + logN(ε/V ;FdDF) + nε2

logM(η/V ;FdDF)

)
(A.35)

for any positive η and ε. Here, N(ε;FdDF) is the covering number of FdDF (cardinality N of the
smallest set g1, . . . , gN satisfying minj L(f j, g) ≤ ε2 for any g ∈ FdDF) and M(η;FdDF) is the
packing number of FdDF (cardinality M of the largest set g1, . . . , gM satisfying L(f j, fk) > η2

for all j 6= k).
The case d ≥ 2. We first prove the general minimax bound for cases d ≥ 2, before

specializing to the case d = 2. We claim

logN(ε′;FdDF) ≤ Cd
1

ε′

(
log

1

ε′

)d− 1
2

, ε′ < e−1 (A.36a)

logM(η′;FdDF) ≥ Cd
1

η′

(
log

1

η′

)d−1

. (A.36b)

Assuming these two equations are true, then applying the Yang-Barron bound (A.35) with

ε = ad(V/n)
1
3 (log(nV 2))

2d−1
6 and η = bd(V/n)

1
3 (log(nV 2))

d−2
3 , for certain constants ad and

bd, allows us to conclude the proof. Specifically, we then have nε2 = a2
d(nV

2)
1
3 (log(nV 2))

2d−1
3

as well as

logN(ε/V ;FdDF)

= Cdad(nV
2)

1
3 (log(nV 2))−

2d−1
6

[
1

3
log(nV 2/a3

d)−
2d− 1

6
log log(nV 2)

]d− 1
2

. (nV 2)
1
3 (log(nV 2))

2d−1
3

and

logM(η/V ;FdDF)

= Cdbd(nV
2)

1
3 (log(nV 2))−

d−2
3

[
1

3
log(nV 2/bd)−

d− 2

3
log log(nV 2)

]d−1

& (nV 2)
1
3 (log(nV 2))

2d−1
3 .

In particular, the quantities nε2, logN(ε;FdDF), and logM(η;FdDF) are of the same order, so
a judicious choice of constants ad and bd will make the Yang-Barron bound (A.35) be on the
order of

η2 �
(
V

n

) 2
3

(log(nV 2))
2(d−2)

3 , (A.37)



APPENDIX A. APPENDIX FOR CHAPTER 3 122

which yields the desired minimax bound in the case σ2 = 1. Note that n must be sufficiently
large (larger than a constant depending on d and V ) in order for ε/V < e−1 in order to
use the covering number bound (A.36a). For general σ2 and V , we may rescale the problem
to have noise level (σ′)2 = 1 and variation V ′ = V/σ, apply the above bound (A.37), and
multiply by σ2 to obtain the final minimax bound that appears in Theorem 3.4.3.

It now remains to verify the above two claims. The first claim (A.36a) is due to Blei
et al. [12]; see (A.67) with R = 1 and note that our notion of distance in the present proof
is normalized by n.

We now turn to the other claim (A.36b). Let `,M`, q := |M`|2`, and {fη : η ∈ {−1, 1}d}
be as defined in Section A.3.6 (see (A.26), (A.27), etc.), and let with V = 1. Note that the
fη are continuous functions with VHK0(fη) ≤ 1, so they belong to FdDF −FdDF.

The Gilbert-Varshamov lemma (see [61, Lemma 4.7]) guarantees a subset T ⊆ {−1, 1}q
satisfying log|T | & q and dH(η,η′) & q/2 for all distinct η,η′ ∈ T . Recalling from
Lemma A.3.10 that

min
η 6=η′
L(fη, fη′)

dH(η,η′)
≥ 2−3`−6d+2

|M`|
, (A.38)

we obtain a packing set {fη : η ∈ T} of FdDF − FdDF satisfying L(fη, fη′) ≥ q·2−3`−6d+1

|M`|
=

2−2`−6d+1 =: (η′)2. Note that ` = c log 1
η′

. Recalling |M`| & `d−1 from Lemma A.3.9, the log

cardinality of this packing set {fη : η ∈ T} with radius η′ is

logM(η′;FdDF −FdDF) = |M`|2` & 2``d−1 � 1

η′

(
log

1

η′

)d−1

.

Using basic relationships between covering numbers and packing numbers, we have

1

η′

(
log

1

η′

)d−1

. logM(η′;FdDF −FdDF)

≤ logN(η′/2;FdDF −FdDF)

(∗)
≤ 2 logN(η′/4;FdDF)

≤ 2 logM(η′/4;FdDF),

where the starred inequality is due to the fact that one can obtain a covering set for FdDF−FdDF

by taking a covering set for FdDF with half the radius, and taking the differences between all
pairs drawn from the covering set.

The only place we used the assumption that n1 = · · · = nd with n1 a power of 2 is in our
appeal to the construction of {fη} in proving the packing bound (A.36b). We may follow
the same argument as in the end of Section A.3.6 to relax these assumptions to the setting
of the theorem and obtain the same risk lower bound, since the argument there only results
in changing the right-hand side of the lower bound (A.38) by a factor that depends on d and
cs.
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The case d = 2. We now prove the tighter bound in the case d = 2, which will follow
from tightening the packing number bound (A.36b).

We again refer to notation in Section A.3.6. Let

M̃` := {(m1,m2) ∈ Nd : m1 +m2 = `, m1 and m2 both even}

and let q̃ := |M̃`|2`. Let φm,i be as before (A.28). For η ∈ {−1, 1}q, we define

Fη,m(t1, t2) :=
∑
i∈Im

ηm,iφ
′
m1,i1

(t1)φ′m2,i2
(t2)

and

f̃η(x) :=

∫ x1

0

∫ x2

0

∏
m∈M̃`

(1 + Fη,m(t1, t2)) dt1 dt2

Note that we can rewrite this function as

f̃η(x) = x1x2 +
∑

m∈M̃`

∑
i∈Im

ηm,iφm1,i1(x1)φm2,i2(x2) +Qη(x),

where

Qη(x) :=
∑
P≥2

∑
k1,...,kP

∫ x1

0

∫ x2

0

P∏
p=1

Fη,(kp,`−kp)(t1, t2) dt1 dt2,

and the inner sum above is over even integers 0 ≤ k1 < k2 < · · · < kP ≤ `.
These functions satisfying the following properties (proved in Section A.5.6).

Lemma A.3.11. The functions f̃η belong to F2
DF and satisfy

min
η 6=η′
L(f̃η, f̃η′)

dH(η,η′)
≥ 2−3`−10.

From here, we apply the Gilbert-Varshamov lemma again to obtain a subset T ⊆ {−1, 1}q̃
satisfying log|T | & q̃ and dH(η,η′) ≥ q̃/2 for all distinct η,η′ ∈ T . From the above inequality,

we can obtain a packing set {f̃η : η ∈ T} of F2
DF satisfying L(f̃η, f̃η′) ≥ q̃ ·2−3`−11 & `·2−2` =:

(η′)2 where we have used q̃ = |M̃`|2` & ` · 2`. Note that then we have

1

η′

(
log

1

η′

)3/2

= 2``−1/2(c`− 1

2
log `)3/2 . ` · 2` . q̃ ≤ logM(η′;F2

DF)

since q̃ . log|T |. Note that this packing number bound is of the same order as the earlier
covering number bound (A.36a).

We now return to the Yang-Barron bound (A.35) with ε = a(V/n)
1
3 (log(nV 2))

1
2 and

η = b(V/n)
1
3 (log(nV 2))

1
2 . We have nε2 � (nV 2)

1
3 log(nV 2) as well as

logN(ε/V ;F2
DF) . (nV 2)

1
3 log(nV 2) . logM(η/V ;F2

DF).
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Thus with appropriate choices of constants, obtain a lower bound on the minimax risk on
the order of

η2 �
(
V

n

) 2
3

log(nV 2),

in the case σ2 = 1. Repeating the rescaling argument produces the bound for general σ2.
We can relax the assumption that n1 = n2 with n1 a power of 2 in the same manner as

before, and again, the result of applying the same argument amounts to an additional factor
depending only on cs for the lower bound in Lemma A.3.11.

Having proved the tighter minimax lower bound of Theorem 3.4.3 in the case d = 2, we
note that the analogous bound of Theorem 3.4.9 follows immediately, since

{f ∗ ∈ F2
EM : VHK0(f ∗) ≤ V } ⊆ {f ∗ : VHK0(f ∗) ≤ V }.

A.3.8 Proofs of Theorem 3.4.10 and Theorem A.1.1

We shall first introduce some notation and state some auxiliary results which will hold for
every d ≥ 1 and which will used in the proofs of both Theorem 3.4.10 and Theorem A.1.1.
After that we shall give the proofs of Theorem 3.4.10 and Theorem A.1.1 separately in two
subsections.

Throughout, A is the design matrix from Section 3.3. As observed in Section 3.3.1, A is
square and invertible (note that we are working under the assumption that x1, . . . ,xn come
from the lattice design (3.34)). This means that every θ ∈ Rn can be expressed as θ = Aβ
for a unique β ∈ Rn. By an abuse of notation, we define

VHK0(θ) :=
n∑
j=2

|βj|

where (β1, . . . , βn) are the components of β. This abuse of notation is justified by noting
that if θ = Aβ, then θ = (f(x1), . . . , f(xn)) for f :=

∑m
i=1 βiI[xi,1]. For this function f ,

it is easy to see that VHK0(f) =
∑n

j=2 |βj|. In other words, we are defining VHK0(θ) to be

equal to VHK0(f) for a specific canonical function on [0, 1]d which satisfies f(xi) = θi for
each i = 1, . . . , n.

We shall say that a vector θ = Aβ ∈ Rn is entirely monotone if minj≥2 βj ≥ 0. This
can be justified by noting that the function f :=

∑m
i=1 βiI[xi,1] belongs to FdEM if and only if

minj≥2 βj ≥ 0. We also say that θ = Aβ is nearly entirely monotone if

n∑
j=2

(|βj| − βj) ≤ δ (A.39)

for a small δ > 0. Note that, by the definition of VHK0(θ), this is equivalent to the inequality:
VHK0(θ) ≤ θn − θ1 + δ. Note that if θ is entirely monotone, then (A.39) is true with δ = 0
and this justifies the terminology of nearly entirely monotone.
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We also use the notation in (A.23). Because f̂HK0,V is the LSE over the class C(V ),
inequality (A.8) with K = C(V ) gives

R(f̂HK0,V , f
∗) = E

1

n
‖θ̂ − θ∗‖2 ≤ 1

n
inf
θ̃∈K

{
‖θ̃ − θ∗‖2 + σ2w2(TC(V )(θ̃)) + σ2

}
. (A.40)

To further bound the right hand side above, it is important to understand the structure of
the tangent cone TC(V )(θ̃). The following result (proved in Section A.5.7) provides an explicit

characterization of this tangent cone at θ̃ = Aβ̃.

Lemma A.3.12. Suppose β̃ is such that Aβ̃ ∈ C(V ). Then the tangent cone of C(V ) at

Aβ̃ is

TC(V )(Aβ̃) =

Aβ :
∑

j≥2:β̃j=0

|βj| ≤ −
∑

j≥2:β̃j 6=0

βj sign(β̃j)

, (A.41)

if
∑n

j=2|β̃j| = V ; otherwise, TC(V )(Aβ̃) = Rn.

The structure of the tangent cone given above (in the case
∑n

j=2|β̃j| = V ) has the

implication that, when β̃ corresponds to a function of the form (3.49), every vector in

TC(V )(Aβ̃) can be broken down into lower-dimensional elements each of which is either nearly
entirely monotone or has low HK0 variation. This is the content of the next result. For
this result, it will be necessary, as in Section 3.3.1, to view vectors in Rn as arrays in
Rn1 × · · · × Rnd . Indeed, we shall denote the elements θ ∈ Rn by θi, i ∈ I (where I is as
defined in (3.37). Note that the columns of the design matrix A can also be indexed in this
way so that the ith column (where i = (i1, . . . , id)) of A corresponds to the vector (3.27) with
z = (i1/n1, . . . , id/nd). Note that this implies that the 0th column is the column of ones.

Lemma A.3.13. Let β̃ ∈ Rn1×···×nd satisfy β̃i = 0 for all i /∈ {0, i∗} for some i∗. Let iu and
i` be two indices such that i∗ � iu and i` � i∗, and let Lu := {i : i � iu} and L` := {i : i � i`}.
Then for every α = Aβ ∈ TC(V )(Aβ̃) where V = VHK0(Aβ̃) =

∑
i6=0|β̃i|, we have∑

i/∈{0,i∗}

(|βi| − s(i)βi) ≤ − sign(β̃i∗)(αiu − αi`), (A.42)

where

s(i) :=


1 i ∈ Lu ∩ Lc` \ {i

∗}
−1 i ∈ Lcu ∩ L`
0 i ∈ (Lu ∩ L`) ∪ (Lcu ∩ Lc`) \ {0}

(A.43)

Lemma A.3.13 will be used to bound the Gaussian width w(TC(V )(Aβ̃)) for every β̃ as in

the statement of Lemma A.3.13 in the following way. Assume first that iu and i` are chosen
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so that the right hand side of (A.42) is small. Specifically, for β̃ ∈ Rn1×···×nd and indices
i∗, iu, i` as in the statement of Lemma A.3.13 and a fixed δ ≥ 0, let

T (iu, i`, δ) :=
{
α ∈ TC(V )(Aβ̃) : |αiu − αi`| ≤ δ

}
∩ B2(0, 1), (A.44)

where B2(0, 1) := {θ : ‖θ‖ < 1}. The intersection with the unit ball here arises because of
the presence of the unit norm restriction in the definition of the Gaussian width (see (A.7)).
For every α = Aβ ∈ T (iu, i`, δ), it is clear that:∑

i/∈{0,i∗}

(|βi| − s(i)βi) ≤ |αiu − αi` | ≤ δ. (A.45)

Suppose now that δ is small. Then, if we restrict the indices i to the set Lu ∩ Lc` \ {i
∗}, we

would have s(i) = 1 according to (A.43) and, consequently,
The inequality (A.45) implies that∑

i/∈Lu∩Lc`\{i
∗}

(|βi| − βi) ≤ δ, (A.46)

which resembles the definition of nearly entire monotonicity (A.39). This might suggest
that the restriction of α to its components indexed by Lu ∩ Lc` \ {i

∗} is nearly entirely
monotone, but there are a few issues, one of which is that the definition of nearly entire
monotonicity for a sub-array αQ of α is not quite the same as taking the condition (A.46)
and taking the sum only over indices i in the subset Q (specifically, the βi terms should also
be replaced with the analogous quantities for αQ, which are different than the original βi
terms derived from the full array α). Similarly we also have

∑
i/∈Lcu∩L`

(|βi| + βi) ≤ δ and∑
i/∈(Lu∩L`)∪(Lcu∩Lc`)\{0}

|βi| ≤ δ, which also might suggest nearly entire monotonicity of −α on

Lcu ∩ L` and low HK0 variation on (Lu ∩ L`) ∪ (Lcu ∩ Lc`) \ {0} respectively, but for similar
reasons is not immediately true.

Another complication is that the sets Lu ∩ Lc` \ {i
∗} and (Lu ∩ L`) ∪ (Lcu ∩ Lc`) \ {0} are

not necessarily rectangular. To deal with these above issues, we show that we can further
partition these sets into rectangles such that α restricted to each rectangle is indeed either
nearly entirely monotone or has small HK0 variation. This observation would allow us to
bound w(TC(V )(θ̃)) based on bounds for the Gaussian width of nearly entirely monotone
vectors and vectors with small HK0 variation.

The following result gives conditions on a rectangle Q such that the above holds. To
state this result, it will be convenient to introduce the following notation. For each θ ∈ Rn,
let Dθ denote the differenced vector defined as in (3.38). It is easy to check that

(Dθ)0 := θ0 and θi :=
∑
i′:i′�i

(Dθ)i for i 6= 0. (A.47)

As a result, it follows that Dθ = A−1θ or, equivalently, θ = A(Dθ).
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Every two indices q` and qu in I with q` � qu define the following rectangle in I:

Q := [q`,qu] :=
{
i ∈ I : q` � i � qu

}
(A.48)

For this rectangle Q and an arbitrary θ ∈ Rn, we let θQ be the vector in R|Q| given by the
elements θi, i ∈ Q. For convenience, we shall index elements of θQ by the entries of Q i.e.,
for every q ∈ Q, we have (θQ)q := θq. We also define DθQ := D(θQ) to be the differencing
operator applied to θQ in a manner analogous to (3.38). Specifically, we take

(DθQ)i =
∑

z∈{0,1}d
I{i− z � q`}(−1)z1+···+zdθi−z for i ∈ Q (A.49)

Note that the elements of DθQ are also indexed by the indices in Q. It is important to
observe here that DθQ = D(θQ) is different from (Dθ)Q. A formula for DθQ in terms of
(Dθ)Q is given in Lemma A.5.1.
For the rectangle Q in (A.48) and every i = (i1, . . . , id) ∈ Q, we let

J(i) :=
{

1 ≤ j ≤ d : ij > q`j
}

where q` := (q`1, . . . , q
`
d) (A.50)

Also for i ∈ Q and i′ � i, let
t(i′, i) := I

{
i′J(i) = iJ(i)

}
(A.51)

where we are using the notation kJ := (kj : j ∈ J) for k = (k1, . . . , kd) ∈ I and J ⊆
{1, . . . , d}.

Lemma A.3.14. Consider the same notation and setting as Lemma A.3.13 (in particular,
the signs s(i) below come from (A.43)). Suppose Q = [q`,qu] is a rectangle satisfying the
following.

(a) If i ∈ Q \ {q`} and i � i∗, then t(i∗, i) = 0 and t(0, i) = 0.

(b) Given i ∈ Q \ {q`}, the quantity s(i′) is constant over all i′ satisfying i′ � i, t(i′, i) 6= 0,
and s(i′) 6= 0.

(c) Q is a subset of one of Lu ∩ L`, Lcu ∩ L`, Lu ∩ Lc`, or Lcu ∩ Lc`.

Then for any α ∈ T (iu, i`, δ),∑
i∈Q\{q`}

(|(DαQ)i| − s̃(i)(DαQ)i) ≤ 2δ, (A.52)

where s̃(i) := s(i) for i � q`, and otherwise for i � q` we have s̃(i) := s(i′) for any i′

satisfying i′ � i, t(i′, i) 6= 0, and s(i′) 6= 0.
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As mentioned earlier, our idea will be to partition I into a finite number of rectangles Q
each satisfying the conditions of Lemma A.3.14. This will enable us to employ bounds for the
Gaussian width of nearly entirely monotone vectors and vectors with small HK0 variation
to bound w(TC(V )(Aβ̃)). The next result (proved in Section A.5.11) bounds the Gaussian
width of nearly entirely monotone vectors.

Lemma A.3.15. For every n ≥ 1, δ ≥ 0 and t > 0, we have

E sup
θ:‖θ‖≤t,

VHK0(θ)≤θn−θ1+δ

〈Z,θ〉 ≤ Cd(t+ δ
√
n)(log(en))

3d
4 (log(e log(en)))

2d−1
4

where Z ∼ N (0, In).

For bounding the Gaussian width of vectors with small HK0 variation, we use the bound
derived in (A.25) in the proof of Theorem 3.4.6. This bound gives (here Z ∼ N (0, In))

E sup
θ:‖θ‖≤1,

VHK0(θ)≤2V

〈Z,θ〉 ≤ Cd(1 +

√
2V
√
n)
(
log(1 + 2eV

√
n)
) 2d−1

4 (A.53)

+ Cd

√
log(4 + 2V

√
n)

for every V ≥ 0.
In addition to the above two Gaussian width bounds, we also need the following result

(proved in Section A.5.12) for the proof of Theorem A.1.1. This result is stated for d = 2 as
Theorem A.1.1 only applies to d = 2.

Lemma A.3.16. Let d = 2 and Z ∼ N (0, In). For every δ ≥ 0 and s1, s2 ∈ {−1, 0, 1}, we
have

E sup
θ=Aβ:‖θ‖≤1

VHK0(θ)≤s1(θn1,1−θ1,1)+s2(θ1,n2−θ1,1)+δ
βi=0,∀i�0

〈Z,θ〉

≤ C
{

(1 + δ
√
n)
√

log(en)I{s1 6=0}∪{s2 6=0}

+
[
(δ
√
n)

1
2 +

√
log(en)

]
I{s1=0}∪{s2=0}

}
+
√

2/π.

Before proceeding to the proofs of Theorem 3.4.10 and Theorem A.1.1, let us add a brief
remark below on why our proof technique does not seem to work for more general functions
f ∗ in Rd.

Remark A.3.17. The main technical reason why our adaptive results Theorem 3.4.10 and
Theorem A.1.1 deal only with functions of the form (3.49) and not more general functions in
Rd is that our proof technique seems to break down for these general functions. In particular,
for more complicated functions f ∗ ∈ Rd, it seems that it may not be possible to obtain a
partition of I into a constant (depending only on d) number of rectangles Q satisfying the
conditions in Lemma A.3.14.



APPENDIX A. APPENDIX FOR CHAPTER 3 129

Proof of Theorem 3.4.10

We shall use (A.40). Note that the right hand side of (A.40) consists of infimum over all

θ̃ ∈ K = C(V ) = {(f(x1), . . . , f(xn)) : VHK0(f) ≤ V } .

It is clear then that (A.40) will still be true if we restrict the infimum to θ̃ belonging to any
subset of K. We shall consider the subset{

(f(x1), . . . , f(xn)) : f ∈ Rd
1(c) and VHK0(f) = V

}
.

We shall therefore fix a function f ∈ Rd
1(c) with VHK0(f) = V and bound the Gaussian

width
E sup
α∈TC(V )(θ̃)∩B2(0,1)

〈Z,α〉

where θ̃ = Aβ̃ = (f(x1), . . . , f(xn)). Due to the structure of f , there exists i∗ such that

β̃i = 0 for all i /∈ {0, i∗}. Explicitly, if f = I[x∗,1], then i∗ is the index corresponding to the
smallest design point x = (i1/n1, . . . , id/nd) satisfying x � x∗.

The minimum length assumption (3.50) implies that the sets {i : i � i∗} and {i : i ≺ i∗}
each have ≥ cn elements. Therefore if α ∈ TC(V )(θ̃) ∩ B2(0, 1), the pigeonhole principle and

fact that ‖α‖ ≤ 1 together imply that there exist iu � i∗ and i` ≺ i∗ such that |αiu | ≤ (cn)−1/2

and |αi` | ≤ (cn)−1/2. This implies that

TC(V )(θ̃) ⊆
⋃

iu,i`:i`≺i∗�iu
T (iu, i`, 2(cn)−

1
2 ).

where T (iu, i`, δ) is defined in (A.44). By Lemma D.1 of [44] and noting that the above union
is over ≤ n2 indices, we obtain

E sup
α∈TC(V )(θ̃)∩B2(0,1)

〈Z,α〉

≤ max
iu,i`:i`≺i∗�iu

E sup
α∈T (iu,i`,2(cn)−

1
2 )

〈Z,α〉+
√

4 log n+
√
π/2.

The following lemma bounds the expectations appearing on the right-hand side above and
is proved below.

Lemma A.3.18. Let i` and iu satisfy i` ≺ i∗ � iu. For δ ≥ 0,

E sup
α∈T (iu,i`,δ)

〈Z,α〉 ≤ Cd(1 + 2δ
√
n)(log(en))

3d
4 (log(e log(en)))

2d−1
4 .
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Plugging δ = 2(cn)−1/2 into Lemma A.3.18 yields

E sup
α∈TC(V )(θ̃)∩B2(0,1)

〈Z,α〉 ≤ Cd(log(en))
3d
4 (log(e log(en)))

2d−1
4 +

√
4 log n+

√
π/2

≤ Cd(log(en))
3d
4 (log(e log(en)))

2d−1
4 .

Plugging this bound into the oracle inequality (A.40) concludes the proof of Theorem 3.4.10.
It therefore suffices to prove Lemma A.3.18. For every partition Q1, . . . , QR of I into

rectangles of the form (A.48), we have

E sup
α∈T (iu,i`,δ)

〈Z,α〉 ≤
R∑
r=1

E sup
α∈T (iu,i`,δ)

〈ZQr ,αQr〉. (A.54)

Our idea is to choose the partition such that each Qr satisfies the conditions of Lemma A.3.14
so that then each αQr for α ∈ T (iu, i`, δ) satisfies (A.52) which would allow us to bound
each expectation appearing in the right hand side above.

Here is how we construct the partition. For each j ∈ {1, . . . , d} we partition the interval
{0, . . . , nj − 1} into at most 4 intervals by splitting at iuj + 0.5, i`j + 0.5, and i∗j − 0.5. We
then take the Cartesian product of these partitions over j = 1, . . . , d to obtain a partition
Q1, . . . , QR of I into at most R ≤ 4d rectangles.

We now check that the rectangles each satisfy the three conditions of Lemma A.3.14. Let
Q = [q`,qu] be one of the rectangles of the above partition. Here the auxiliary technical
Lemma A.5.1 will be used. By the second part of Lemma A.5.1, the quantity t(0, i) is zero
for all i ∈ Q except when i = q`. Now suppose i∗ � qu. Due to the splits at i∗j − 0.5 for all
j, we have max{q`j, i∗j} = q`j for all j, so the second part of Lemma A.5.1 implies t(i∗, i) = 0
for all i ∈ Q except i = q`. Thus condition (a) is satisfied.

Recall that by assumption i` ≺ i∗ � iu, so Lcu ∩ L` is empty. Thus by definition (A.43),
s(i) ∈ {0, 1} for all i. Thus condition (b) holds automatically. Finally, note that Q is
contained in either Lu or Lcu due to the splits at iuj + 0.5 for all j ∈ [d]. Similarly Q is
contained in either L` or Lcu. Thus condition (c) holds.

We have thus proved that for each rectangle Qr, r = 1, . . . , R, the inequality (A.52)
holds. We now fix such a rectangle Q ∈ {Q1, . . . , QR} and bound the expected supremum
term appearing on the right hand side of (A.54). By condition (c) of Lemma A.3.14, there
exists s ∈ {−1, 0, 1} such that s(i) = s for all i ∈ Q. We separate the two cases where s = 0
and s 6= 0.

Case 1: s = 0. Because Lcu ∩ L` is empty, we must have s̃(i) ∈ {0, 1} for all i ∈ Q \ {q`}.
For i ∈ Q such that i � q`, we further have s̃(i) = s = 0. Thus (A.52) can be rewritten as∑

i∈Q\{q`}:i�q`
|(DαQ)i|+

∑
i∈Q\{q`}:i�q`

(|(DαQ)i| − s̃(i)(DαQ)i) ≤ 2δ.
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Using the fact that −(DαQ)i ≤ |(DαQ)i| and

(|(DαQ)i| − (DαQ)i) ≤ 2(|(DαQ)i| − s̃(i)(DαQ)i)

for every i ∈ Q \ {q`}, we deduce∑
i∈Q\{q`}

(|(DαQ)i| − (DαQ)i) ≤ 4δ.

Thus, Lemma A.3.15 (with 4δ in place of δ, as well as t = 1 and σ = 1) implies

E sup
α∈T (iu,i`,δ)

〈ZQ,αQ〉

≤ Cd(1 + 4δ
√
n)(log(en))

3d
4 (log(e log(en)))

2d−1
4 (A.55)

Case 2. s 6= 0. Then the fact that Lcu ∩ L` is empty implies s = 1. Thus s̃(i) = 1 for all
i ∈ Q \ {q`}. Therefore, the shape constraint (A.52) can be rewritten as∑

i∈Q\{q`}

(|(DαQ)i| − (DαQ)i) ≤ 2δ.

Thus the above bound (A.55) holds as well.
Returning to the earlier inequality (A.54) and recalling the sum is over R ≤ 4d rectangles,

we obtain

E sup
α∈T (iu,i`,δ)

〈Z,α〉 ≤ Cd(1 + 2δ
√
n)(log(en))

3d
4 (log(e log(en)))

2d−1
4 .

We have thus proved Lemma A.3.18 which completes the proof of Theorem 3.4.10.

Proof of Theorem A.1.1

In this proof we take d = 2. This proof is similar to but longer than the proof of Theo-
rem 3.4.10. We upper bound the oracle inequality (A.40) by taking the infimum only over

θ of the form θ = (f(x1), . . . , f(xn)) where f ∈ R̃2
1(c) and VHK0(f) = V . It then suffices to

control the Gaussian width E supα∈TC(V )(θ̃):‖α‖≤1〈Z,α〉 for such θ = Aβ.

Let i∗ := (i∗1, i
∗
2) 6= (0, 0) be the unique index such that β̃i∗ 6= 0, which is guaranteed by

the form (3.49) of functions in R̃2
1. Specifically, if f ∈ R̃2

1, it is of the form a1I[x∗,1] + a0, and
i∗ is the index corresponding to the smallest design point x satisfying x � x∗.

The minimum size assumption (A.1) implies that the set {i : i � i∗} and its complement
have cardinality ≥ cn. By the pigeonhole principle, for any α satisfying ‖α‖ ≤ 1, there
exists some iu � i∗ such that |αiu| ≤ (cn)−1/2 and some i` � i∗ such that |αi` | ≤ (cn)−1/2.
Then we have

|αiu − αi`| ≤ 2(cn)−
1
2 .
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Thus,

TC(V )(θ̃) ∩ B2(0, 1) ⊆
⋃

iu,i`:iu�i∗,i`�i∗
T (iu, i`, 2(cn)−

1
2 ),

where T (iu, i`, 2(cn)−
1
2 ) is defined in (A.44).

Using Lemma D.1 of [44] and noting the above union is over ≤ n2 sets, we then have

E sup
α∈TC(V ):‖α‖≤1

〈Z,α〉

≤ max
iu,i`:iu�i∗,i`�i∗

E sup
α∈T (iu,i`,2(cn)−

1
2 )

〈Z,α〉+
√

4 log n+
√
π/2.

Therefore it remains to bound the expectation on the right-hand side for each set
T (iu, i`, 2(cn)−

1
2 ). This is the content of the following lemma.

Lemma A.3.19. For d = 2, δ ≥ 0 and every iu � i∗ and i` � i∗,

E sup
α∈T (iu,i`,δ)

〈Z,α〉

≤ c(1 + (δ
√
n)

1
2 )(log(δ

√
n+ 1))

3
4

+ (1 + δ
√
n)

[
(log(en))

3
2 (log(e log(en)))

3
4 +

√
log(4 + 2δ

√
n)

]
.

The proof of this result is quite involved and given below. Note that Lemma A.3.19 only
deals with d = 2 while Lemma A.3.18 is true for arbitrary d. On the other hand, for d = 2,
Lemma A.3.19 is stronger than Lemma A.3.18 because it applies to a more general set of
indices i` (the condition i` � i∗ is weaker than i` ≺ i∗).

Before proving Lemma A.3.19, let us quickly note that plugging in δ = 2(cn)−
1
2 in

Lemma A.3.19 yields

E sup
α∈T (iu,i`,2(cn)−

1
2 )

〈Z,α〉 ≤ C(log(en))
3
2 (log(e log(en)))

3
4 ,

which concludes the proof of Theorem A.1.1.
Let Q1, . . . , QR be the partition constructed in the proof of Theorem 3.4.10. We shall

first prove that each rectangle Q = [q`,qu] in {Q1, . . . , QR} satisfies the three conditions
of Lemma A.3.14. Note that this was proved in the proof of Theorem 3.4.10 under the
stronger condition i` ≺ i∗ but now we are working under the weaker condition i` � i∗.
Conditions (a) and (c) hold by exactly the same argument as in proof of Theorem 3.4.10. To
show condition (b), we need to crucially use d = 2. If i ∈ Q satisfies i � q`, then t(i′, i) = 0
for all i′ � i except i′ = i, so condition (b) holds automatically. We now consider i ∈ Q\{q`}
such that i � q`. Suppose without loss of generality that i = (q`1, i2) for i2 > q`2; the other
case i = (i1, q

`
2) for i1 > q`1 can be handled similarly. Then t(i′, i) = 1 only when i′ satisfies
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i′2 = i2 and i′1 ≤ q`1. Therefore, to verify condition (b) for such i, it suffices to show the
stronger claim that s(i′) is constant over all i′ in the set

{i′ : i′1 ≤ q`1, i
′
2 ∈ [q`2 + 1, qu2 ]} (A.56)

satisfying s(i′) 6= 0. Suppose for sake of contradiction that i′ and i′′ belong to this set and
satisfy s(i′) = 1 and s(i′) = −1. Then i′ ∈ Lu ∩ Lc` and i′′ ∈ Lcu ∩ L`. We then must have
i′j ≤ iuj < i′′j for some j ∈ {1, 2}, and i′′j ≤ i`j < i′j for some j ∈ {1, 2}. From here, we deduce
that either iu2 or i`2 lies in [min{i′2, i′′2},max{i′2, i′′2}) ⊆ [q`2, q

u
2 ). But due to the splits at iu2 +0.5

and i`2 + 0.5 in the construction of the partition, this is a contradiction.
A similar argument shows that s(i′) is constant over all i′ in the set

{i′ : i′2 ≤ q`2, i
′
1 ∈ [q`1 + 1, qu1 ]} (A.57)

satisfying s(i′) 6= 0. Let this constant value be denoted by s1, and let the constant value for
the earlier set (A.56) be denoted by s2. Thus condition (b) holds as well, and we have the
inequality (A.52) by Lemma A.3.14.

We shall now bound the Gaussian width

E sup
α∈T (iu,i`,δ)

〈ZQ,αQ〉

by splitting into the two cases s 6= 0 and s = 0 where s is the common value of s(i) for
i ∈ Q (the fact that s(i) is the same for every i ∈ Q is guaranteed by condition (c) of
Lemma A.3.14).

Case 1: s 6= 0 By definition s(i) = s for all i ∈ Q \ {q`}, so (A.52) can be written as∑
i∈Q\{q`}

(|(D(sαQ))i| − (D(sαQ))i) =
∑

i∈Q\{q`}

(|(DαQ)i| − s(DαQ)i) ≤ 2δ.

Since the sets T (iu, i`, δ) and −T (iu, i`, δ) have the same Gaussian width, we may apply
Lemma A.3.15 to obtain

E sup
α∈T (iu,i`,δ)

〈ZQ,αQ〉

≤ c(1 + 2δ
√
n)(log(en))

3
2 (log(e log(en)))

3
4 (A.58)

Case 2: s = 0 In this case s̃(i) = 0 for all i � q`, and is otherwise equal to s1 (if i2 = q`2)
or s2 (if i1 = q`1) because we showed that s(i′) is constant over the sets (A.56) and (A.57).
So, inequality (A.52) can be rewritten as∑

i∈Q:i�q`
|(D(αQ))i|+

∑
i=(i1,q`2):

i1∈[q`1+1,qu1 ]

(|(D(αQ))i| − s1(D(αQ))i)

+
∑

i=(q`1,i2):

i2∈[q`2+1,qu2 ]

(|(D(αQ))i| − s2(D(αQ))i) ≤ 2δ.
(A.59)
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Let us define α
(0)
Q :=

∑
i∈Q:i�q`(D(αQ))i and α

(1)
Q :=

∑
i∈Q:i�q`(D(αQ))i. Since αQ = α

(0)
Q +

α
(1)
Q , we obtain

E sup
α∈T (iu,i`,δ)

〈ZQ,αQ〉 ≤ E sup
α∈T (iu,i`,δ)

〈ZQ,α(0)
Q 〉+ E sup

α∈T (iu,i`,δ)

〈ZQ,α(1)
Q 〉. (A.60)

We now bound the first term in the right hand side above. Because s̃(i) = 0 for i � q`,
inequality (A.59) implies

VHK0(α
(0)
Q ) =

∑
i∈Q:i�q`

|(D(αQ))i| ≤ 2δ,

so applying (A.53) yields

E sup
α∈T (iu,i`,δ)

〈ZQ,α(0)
Q 〉 ≤ E sup

θ∈R|Q|:‖θ‖≤1,VHK0(θ)≤2δ

〈ZQ,θ〉

≤ Cd(1 +

√
2δ
√
n)
(
log(1 + 2eδ

√
n)
) 3

4

+ Cd

√
log(4 + 2δ

√
n). (A.61)

We turn to the second term in (A.60). Inequality (A.59) implies

VHK0(α
(1)
Q ) =

∑
i∈Q\{q`}:i�q`

|(DαQ)i|

≤ s1

∑
i=(i1,q`2):

i1∈[q`1+1,qu1 ]

(DαQ)i + s2

∑
i=(q`1,i2):

i2∈[q`2+1,qu2 ]

(DαQ)i + 2δ

= s1[(α
(1)
Q )qu1 ,q`2 − (α

(1)
Q )q` ] + s2[(α

(1)
Q )q`1,qu2 − (α

(1)
Q )q` ] + 2δ.

Lemma A.3.16 then implies

E sup
α∈T (iu,i`,δ)

〈ZL,α(1)
L 〉

≤ c
{

(1 + δ
√
n)
√

log(en)I{s1 6=0}∪{s2 6=0}

+
[
(δ
√
n)

1
2 +

√
log(en)

]
I{s1=0}∪{s2=0}

}
+
√

2/π. (A.62)

Summing the bounds (A.61) and (A.62) yields

E sup
α∈T (iu,i`,δ)

〈ZL,αL〉 (A.63)

≤ c(1 + (δ
√
n)

1
2 )(log(δ

√
n+ 1))

3
4 + c(1 + δ

√
n)

[√
log(en) +

√
log(4 + 2δ

√
n)

]
.
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Having handled the two cases s = 0 and s 6= 0, we take the maximum of (A.58) and (A.63)
to obtain

E sup
α∈T (iu,i`,δ)

〈ZL,αL〉

≤ c(1 + (δ
√
n)

1
2 )(log(δ

√
n+ 1))

3
4

+ (1 + δ
√
n)

[
(log(en))

3
2 (log(e log(en)))

3
4 +

√
log(4 + 2δ

√
n)

]
.

Finally, in view of the inequality (A.54), multiplying this bound by 42 = 16 (the maximum
number of rectangles in the partition constructed at the beginning of this proof) produces
the final bound given by Lemma A.3.19 thereby completing the proof of Theorem A.1.1.

A.4 Proofs of results from Section 3.2 and Section 3.3

This section contains the proofs of all the results from Section 3.2 and Section 3.3. Specif-
ically, we prove Lemma 3.2.2, Lemma 3.2.6, part (ii) of Lemma 3.2.7, Proposition 3.3.2,
Proposition 3.3.1, Proposition 3.3.4, Proposition 3.3.3 and Lemma 3.3.5. In addition, we
also state and prove a result in Section A.4.4 which asserts that the columns of the design
matrix A span Rn provided the design points x1, . . . ,xn are distinct.

A.4.1 Proof of Lemma 3.2.2

When d = 1, the only rectangles are intervals [a, b], so the definition of entire monotonic-
ity (3.19) reduces to 0 ≤ ∆(f, [a, b]) = f(b) − f(a) for all 0 ≤ a ≤ b ≤ 1, which is precisely
the definition of FdM (3.20).

More generally for d ≥ 1, suppose a,b ∈ [0, 1]d agree in all but one component, that is,
|{i : ai 6= bi}| = 1. Then entire monotonicity implies 0 ≤ ∆(f, [a,b]) = f(b)− f(a). To see
how this inequality implies monotonicity (3.20) note that for a � b we can apply the above
inequality repeatedly to obtain

f(a) ≤ f(b1, a2, . . . , ad) ≤ f(b1, b2, a3, . . . , ad) ≤ · · · ≤ f(b).

Thus FdEM ⊆ FdM for d ≥ 1.
Finally, for d ≥ 2 consider the function f : [0, 1]d → R defined by

f(u) :=


0 max{u1, u2} < 1/2

3 min{u1, u2} ≥ 1/2

2 otherwise

Note that f is constant in all components except the first two. One can directly check that
f ∈ FdM. However, for a = (1

4
, 1

4
, 0, . . . , 0) and b = (3

4
, 3

4
, 0, . . . , 0), we have

∆(f ; [a,b]) = 3− 2− 2 + 0 = −1 < 0,
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so f /∈ FdEM.

A.4.2 Proof of Lemma 3.2.6

Let P∗ be given by the d univariate partitions (3.21) and let P be the split of [0, 1]d formed
from these univariate partitions (as described after (3.21)). Because P forms a split of [0, 1]d,
it follows from Owen [69, Lemma 1] that

V (d)(f ; [0, 1]d) =
∑
A∈P

V (d)(f ;A)

where V (d)(f ;A) is the Vitali variation of f on the rectangle A (which is defined analogously
to V (d)(f ; [0, 1]d)). Let us now fix a rectangle A = [a,b] ∈ P where a = (a1, . . . , ad) and
b = (b1, . . . , bd). Because f is rectangular piecewise constant with respect to P∗, it follows
that f is constant on each of the sets B1 × · · · × Bd where each Bi is either {bi} or [ai, bi).
Using this, it is easy to observe that

V (d)(f ;A) = |∆(f ;A)|

which completes the proof of Lemma 3.2.6.

A.4.3 Proof of part (ii) of Lemma 3.2.7

If f ∈ FdEM is entirely monotone, then one can check that for each S,

V (|S|)(f ;S; [0, 1]d) = ∆(f ;US),

where US is the face adjacent to 0 defined earlier (3.24). Thus the HK variation of f is the
sum of quasi-volumes of all faces adjacent to 0. From the definition of quasi-volume (3.17),
this sum involves only the value of f at vertices of [0, 1]d (possibly multiplied by −1), and
one can check that all terms cancel except for f(1)− f(0).

A.4.4 Statement and proof of a fact about the design matrix A

Recall the definition of A as the matrix whose columns are the elements of the finite set
Q := {v(z) : z ∈ [0, 1]d}.

Lemma A.4.1. Suppose x1, . . . ,xn are unique. Then the columns of A span Rn.

Proof. It suffices to show the standard basis vector ei lies in the column space of A, for each
i = 1, . . . , n.

Fix i. If xi = 1, then ei = v(1) ∈ Q, which concludes the proof.
Otherwise we assume xi 6= 1. Let uδ be defined by uδj := min{1, (xi)j+δ} for j = 1, . . . , d.

There exists δ > 0 such that the hyperrectangle [xi,u
δ] contains no design point except xi.

Let S := {j : uδj 6= (xi)j}, and note that the rectangle [xi,u
δ] is |S|-dimensional.
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For a subset S ′ ⊆ [d] let eS′ denote the indicator vector of S ′; that is, (eS′)j is 1 if j ∈ S ′
and is zero otherwise. We claim

ei =
∑
S′⊆S

(−1)|S
′|v(xi + δeS′).

To verify this, note that an inclusion-exclusion argument shows that the right-hand side is
(I[xi,uδ)(x1), . . . , I[xi,uδ)(xn)), and this is ei due to the fact that [xi,u

δ) contains no design
point except xi.

A.4.5 Proof of Proposition 3.3.2

If Proposition 3.3.2 holds for a given design x1, . . . ,xn, then adding an additional design
point xn+1 := xi that is a copy of one of the original design points simply gives A a new
row that is a copy of its ith row, and one can observe that the equality in the proposition
still holds even after adding this extra design point. Thus without loss of generality we may
assume the design points are distinct.

Suppose we replace the original design {x1, . . . ,xn} with U :=
∏d

j=1 Uj where Uj =
{0, (x1)j, . . . , (xn)j} for each j = 1, . . . , d. This is a lattice that contains the origi-
nal design. Using this new design, we define a square matrix A′ whose kth column is
(I[uk,1](u1), . . . , I[uk,1](um)). Let u1 = 0 so that the first column of A′ is 1. If we let
K := (k1, . . . , kn) be such that uki = xi so that it indexes the elements of the new design that
are also in the old design, then we claim {(A′β′)K : β′k ≥ 0,∀k ≥ 2} = {Aβ : βj ≥ 0,∀j ≥ 2}.
Indeed, this holds simply because each column of (A′)K is also a column in A, so both sets
are linear combinations of the same columns with the same nonnegativity constraints.

Thus it remains to show

{(A′β′)K : β′k ≥ 0,∀k ≥ 2} = {(f(x1), . . . , f(xn) : f ∈ FdEM}.

We first show the forward inclusion ⊆. Suppose β′ satisfies β′k ≥ 0 for all k ≥ 2. If
f :=

∑m
k=1 β

′
k · I[uk,1], then (f(x1), . . . , f(xn)) = (A′β′)K . We now show f ∈ FdEM. For each

pair of distinct points a � b in [0, 1]d, we want to show ∆(f ; [a,b]) ≥ 0. Then there exist a
pair uk � uk′ in U such that f(a) = f(uk), f(b) = f(uk′), and {j : aj 6= bj} = {j : (uk)j 6=
(uk′)j}, so that ∆(f ; [a,b]) = ∆(f ; [uk,uk′ ]).

Recall that ∆(f ; [uk,uk′ ]) by definition is the sum of terms of the form f(u`) for some
u` ∈ U (possibly with sign changes), since U is a lattice. Note that f(u`) =

∑
i:ui�u` β

′
i for

each `. Putting the pieces together with an inclusion-exclusion argument yields

∆(f ; [uk,uk′ ]) =
∑

i:ui�uk′ ,
(ui)j>(uk)j if (uk)j<(uk′ )j

β′i ≥ 0.

We now show the reverse inclusion ⊇. The matrix A′ is square and has spanning columns
(Lemma A.4.1), so it is invertible. Thus there exists β′ such that A′β′ = (f(u1), . . . , f(um)).
Sub-indexing by K yields (A′β′)K = (f(x1), . . . , f(xn)).
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A.4.6 Proof of Proposition 3.3.1

The optimization problem (3.2) only involves the values of the function at x1, . . . ,xn.

Thus by Proposition 3.3.2, the solution f̂EM to the optimization problem (3.2) must sat-

isfy (f̂EM(x1), . . . , f̂EM(xn)) = Aβ̂EM. It remains to show that the function f̂EM defined in
the result (3.29) satisfies this equality and also lies in FdEM.

The equality holds by definition, since f̂EM satisfies

f̂EM(xi) =

p∑
j=1

(β̂EM)j · I[zj ,1](xi) = (Aβ̂EM)i, i = 1, . . . , n.

To check f̂EM as defined in the result (3.29) lies in FdEM, we need to show ∆(f̂EM; [a,b]) ≥ 0
for any rectangle [a,b] ⊆ [0, 1]d, a 6= b. Similar to the proof in Section A.4.5, we consider the
augmented design U :=

∏d
j=1 Uj where Uj = {0, (x1)j, . . . , (xn)j} for each j = 1, . . . , d. This

is a lattice that contains the original design. Moreover, for each zj there exists some u ∈ U
such that I[zj ,1](xi) = I[u,1](xi) holds for all xi. Thus the function defined in the result (3.29)

can be written as f̂EM =
∑

u∈U β̃uI[u,1] for some coefficients {β̃u : u ∈ U} that are either

zero or equal to (β̂EM)j for some j. Then, as in Section A.4.5, there exist a pair uk � uk′
in U such that f(a) = f(uk), f(b) = f(uk′), and {j : aj 6= bj} = {j : (uk)j 6= (uk′)j}, so

that ∆(f̂EM; [a,b]) = ∆(f̂EM; [uk,uk′ ]), and by the same reasoning as in the earlier section,

∆(f̂EM; [uk,uk′ ]) =
∑

u∈U :uk≺u�uk′
β̃u ≥ 0.

A.4.7 Proof of Proposition 3.3.4

If Proposition 3.3.4 holds for a given design x1, . . . ,xn, then adding an additional design
point xn+1 := xi that is a copy of one of the original design points simply gives A a new
row that is a copy of its ith row, and one can observe that the equality in the proposition
still holds even after adding this extra design point. Thus without loss of generality we may
assume the design points are distinct.

We claim that the feasible set C(V ) (3.31) does not change if we append additional
columns to A (and append corresponding components to β) that are copies of columns
already in A. Concretely, if A′ is the augmented matrix (without loss of generality assume
the new columns are appended on the right) and C ′(V ) := {A′β′ :

∑
j≥2|β′j| ≤ V } is the

analogue of C(V ), then the inclusion C(V ) ⊆ C ′(V ) holds immediately by noting Aβ = A′β′

and
∑

j≥2|βj| =
∑

j≥2|β′j| where β′ is the result of taking β and having coefficients 0 for

the added components. For the reverse inclusion, suppose we are given A′β′ such that∑
j≥2|β′j| ≤ V . Then A′β′ = Aβ where βj :=

∑
k:A′·,k=A·,j

β′j so the triangle inequality

implies ∑
j≥2

|βj| ≤
∑
j≥2

∣∣∣∣∣∣
∑

k:A′·,k=A·,j

β′j

∣∣∣∣∣∣ ≤
∑
j≥2

|β′j| ≤ V.
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Above, A·,j denotes the jth column of A, and A′·,k denotes the kth column of A′.
Thus, similar to Section A.4.5, we may assume without loss of generality that the columns

of A are v(u1), . . . ,v(um) where u1, . . . ,um are the elements of the lattice
∏d

j=1 Uj and
Uj := {0, (x1)j, . . . , (xn)j, 1} for j = 1, . . . , d. Note the inclusion of 0 and 1 in each Uj, so
that the lattice spans the entire hypercube [0, 1]d. Without loss of generality we assume the
uj are ordered such that uj′ � uj implies j′ ≤ j. Note that as a result, u1 = 0.

Fix β and let Aβ. Let f :=
∑m

j=1 βjI[uj ,1]. By construction we have f(xi) = (Aβ)i
for all i = 1, . . . , n. It remains to compute the HK0 variation of f . One can check that a
maximizing partition in the definition of the Vitali variation (3.22) is the partition induced
by the lattice

∏d
j=1 Uj (that is, the unique partition P∗ whose rectangles each intersect the

lattice only at its vertices). That is,

V (d)(f ; [0,xn]) =
∑
R∈P∗
|∆(f ;R)|. (A.64)

Similarly, the maximizing partitions for the Vitali variations over each face US adjacent
to 0 (3.24) can also be shown to be induced by the corresponding face of the lattice. By
construction, the quasi-volume for the rectangle whose largest vertex is uj will turn out to
be βj, so by the definition of HK0 variation (3.25), VHK0(f ; [0, 1]d) =

∑
j≥2|βj| ≤ V .

Conversely, suppose we are given f : [0, 1]d → R with VHK0(f ; [0, 1]d) ≤ V . Suppose first
that the original design x1, . . . ,xn is already a lattice spanning [0, 1]d, i.e. {x1, . . . ,xn} =∏d

j=1 Uj and n = m. We remove this assumption at the end of the proof.
Because A has full column rank (Lemma A.4.1), there exists some β such that

(f(x1), . . . , f(xn)) = Aβ. By the above argument, the function f̃ :=
∑n

j=1 β̃jI[uj ,1] agrees

with f at all the xi (i.e. all the lattice points uj) and satisfies VHK0(f̃ ; [0, 1]d) =
∑

j≥2|βj|.
It then suffices to show VHK0(f ; [0, 1]d) ≤ VHK0(f̃ ; [0, 1]d).

Let P∗ be the partition of [0, 1]d induced by the lattice
∏d

j=1 Uj. As noted already (A.64),

this partition is maximal for the definition of the Vitali variation of f̃ on [0, 1]d. Therefore,

since f and f̃ agree on all the lattice points uj, their quasi-volumes on all the rectangles of
P∗ are the same, so we have

V (d)(f̃ ; [0, 1]d) =
∑
R∈P∗

∣∣∣∆(f̃ ;R)
∣∣∣ =

∑
R∈P∗
|∆(f ;R)| ≤ V (d)(f ; [0, 1]d) ≤ V.

A similar argument on the lower-dimensional faces adjacent to 0 shows that
V (|S|)(f̃ ;S; [0, 1]d) ≤ V (|S|)(f ;S; [0, 1]d) for all S ⊆ [d]. Summing these inequalities over
all Vitali variations in the definition of HK0 variation (3.25) leads to∑

j≥2

|βj| = VHK0(f̃ ; [0, 1]d) ≤ VHK0(f ; [0, 1]d) ≤ V

as desired.
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We now consider the case when the design x1, . . . ,xn is not a lattice. Recall we have
assumed the columns of A are v(u1), . . . ,v(um). We can augment A further by redefin-
ing v(z) as (I[z,1](u1), . . . , I[z,1](um)) which amounts to adding new rows to A. This new
matrix, call it A′′, is precisely the matrix that would have resulted if our original design
x1, . . . ,xn were the full lattice u1, . . . ,um. By the above argument, there exists β such
that A′′β = (f(u1), . . . , f(um)) and

∑
j≥2|βj| ≤ V . Discarding the rows of A′′ that corre-

spond to lattice points uj that do not belong to the original design {x1, . . . ,xn}, we obtain
Aβ = (f(x1), . . . , f(xn)).

A.4.8 Proof of Proposition 3.3.3

The optimization problem (3.6) only involves the values of the function at x1, . . . ,xn. Thus

by Proposition 3.3.4, f̂HK0,V must satisfy (f̂HK0,V (x1), . . . , f̂HK0,V (xn)) = Aβ̂HK0,V . Further-
more, in Section A.4.7 we construct precisely the function in the result (3.32) and shows

that it has HK0 variation equal to
∑p

j=2|(β̂HK0,V )j|.

A.4.9 Proof of Lemma 3.3.5

We will argue that the Vapnik-Chervonenkis (VC) dimension of “upper-right rectangles”:
{(z,1] : z ∈ [0, 1]d} is d. A direct application of the Vapnik-Chervonenkis lemma [88] would
then yield Lemma 3.3.5.

To show that the VC dimension is d, one can first check that the set {1− 1
2
e1, . . . ,1− 1

2
ed}

can be shattered by these rectangles, so the VC dimension is ≥ d. To show that no set
{a1, . . . , ad+1} of size d + 1 can be shattered (so that the VC dimension is ≤ d), note that
there must exist some point ai such that the component-wise minimum of the d + 1 points
does not change after removing ai; thus the rectangles cannot select the other d points
without also selecting ai.

A.4.10 Proof of Lemma 3.3.6

Let us first start by describing some basic notation. Since we are working in the lattice
design setting, we shall write the components of a vector θ ∈ Rn by θi, i ∈ I (note that I is
defined in (3.37)). We shall also write the design points as xi, i ∈ I where

xi =

(
i1
n1

, . . . ,
id
nd

)
for i = (i1, . . . , id).

The design matrix A is n× n. We shall index the rows and columns of A by I so that

A(i, j) = I{xj � xi} = I{j � i}

where j � i simply refers to j1 ≤ i1, . . . , jd ≤ id. The key to proving Lemma 3.3.6 is the
observation that for every θ ∈ Rn, we have

A(Dθ) = θ. (A.65)
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In other words, the differencing operator D is simply equal to the inverse of A. From (A.65),
it should be clear that (3.39) and (3.40) follow directly from immediately (3.35) and (3.36)
respectively. To prove (A.65), we need to show that the ith component of A(Dθ) equals the
ith component of θ for every i ∈ I. For this, we write

(A(Dθ))i =
∑
j∈I

A(i, j)(Dθ)j

=
∑
j∈I

I{j � i}(Dθ)j

=
∑
j

I{j � i}
∑

`∈{0,1}d
I {` � j} (−1)l1+···+ldθj−`

=
∑
k∈I

θk

 ∑
`∈{0,1}d

I{0 � k � i− `}(−1)l1+···+ld


=
∑
k∈I

θk

(
d∏

u=1

1∑
lu=0

I{0 ≤ ku ≤ iu − lu}(−1)lu

)

=
∑
k∈I

θk

d∏
u=1

I{ku = iu} = θi.

This proves (A.65) and completes the proof of Lemma 3.3.6.

A.5 Proofs of technical lemmas from section A.3

In this section, we prove the all the lemmas stated in Section A.3. Specifically, we pro-
vide proofs of Lemma A.3.5, Lemma A.3.6, Lemma A.3.7, Lemma A.3.9, Lemma A.3.10,
Lemma A.3.12, Lemma A.3.13, Lemma A.3.14, Lemma A.3.15 and Lemma A.3.16. In addi-
tion, we also state and prove Lemma A.5.1 which was used in the proof of Theorem 3.4.10
and which is also needed for the proof of Lemma A.3.14.

A.5.1 Proof of Lemma A.3.5

Let Ω := [0, 1]d, and let Ω0 := Ω\{x1} be the result of removing the first design point x1 := 0.
Recall that by definition (A.10), the elements of Dn1,...,nd are of the form Aβ where βj ≥ 0
for j ≥ 2. Recall also that the jth column of A is v(xj) due to the lattice design (3.34)
so (Aβ)i =

∑
i′:xi′�xi

βi′ for i = 1, . . . , n. This suggests we can express Dn1,...,nd in terms of
distribution functions.

Given such a β, we define a measure µ supported on Ω0 by µ{xj} = βj for j ≥ 2. We
also let b := β1. If we consider the distribution function Fµ+bδx1

(x) := (µ + bδx1)([0,x]) of
the signed measure µ+ bδx1 , then Fµ+bδx1

(xi) =
∑

i′:x′i�xi
βi′ = (Aβ)i for all i = 1, . . . , n
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Conversely, given any measure µ supported on Ω0 and real number b, we may define
βj := (µ + bδx1){xj} for all j = 1, . . . , n and note that it satisfies βj ≥ 0 for j ≥ 2 and
Fµ+bδx1

(xi) =
∑

i′:x′i�xi
βi′ = (Aβ)i for all i = 1, . . . , n.

Therefore,

Dn1,...,nd =
{

(Fµ+bδx1
(x1), . . . , Fµ+bδx1

(xn)) : b ∈ R, finite measure µ on Ω0

}
,

Recall that the total variation of a signed measure ν on Ω is defined by ‖ν‖TV := ν+(Ω) +
ν−(Ω) where ν = ν+− ν− is the Jordan decomposition of the signed measure. We define the
more restricted set

Dn1,...,nd(R) :=
{

(Fµ+bδx1
(x1), . . . , Fµ+bδx1

(xn)) : b ∈ R, (A.66)

finite measure µ on Ω0, ‖µ+ bδx1‖TV ≤ R
}
,

which will be useful in our goal of bounding the metric entropy of Dn1,...,nd ∩ B2(0, r). Note
that the total variation term can be written as

‖µ+ bδx1‖TV = µ(Ω0) + |b|.

Let θ := (Fµ+bδx1
(x1), . . . , Fµ+bδx1

(xn)) and θ′ := (Fµ′+b′δx1 (x1), . . . , Fµ′+b′δx1 (xn)); re-

call these distribution functions belong to the function class FdEM (Proposition 3.3.2). The
Euclidean distance on Dn1,...,nd is related to the L2 distance on FdEM, as

n

∫
[0,1]d

(Fµ+bδx1
− Fµ′+b′δx1 )2 dλ

= n
n∑
i=1

(θi − θ′i)2λ([xi,xi + (n−1
1 , . . . , n−1

d )]) = ‖θ − θ′‖2,

where the integral is respect to the Lebesgue measure λ. Note that this equality holds even
when nj = 1 for some of the j.

Thus, the ε-metric entropy of Dn1,...,nd(R) (in the Euclidean norm) is bounded by the
ε/
√
n-metric entropy of distribution functions of signed measures with total variation norm

≤ R (in the L2 norm). As explained in Blei et al. [12, Sec. 3] (see also Gao [36]), we have:

logN2(ε,Dn1,...,nd(R)) ≤ Cd
R
√
n

ε

(
log

R
√
n

ε

)d− 1
2

whenever
ε

R
√
n
< e−1 (A.67)

for d > 1. We remark again that this inequality holds even when nj = 1 for some of the j.
The following inclusions show that Dn1,...,nd(R) is essentially the same as Dn1,...,nd ∩

[−R,R]n up to a constant scaling factor.

Dn1,...,nd(R) ⊆ Dn1,...,nd ∩ [−R,R]n ⊆ Dn1,...,nd(3R). (A.68)



APPENDIX A. APPENDIX FOR CHAPTER 3 143

To verify these inclusions, it is useful to recall that for θ := (Fµ+bδx1
(x1), . . . , Fµ+bδx1

(xn))
we have maxi θi = θn and mini θi = θ1, as well as the fact that if θ ∈ Dn1,...,nd is associated
with the pair (µ, b), then ‖µ + bδx1‖TV = µ(Ω0) + |b| = (θn − θ1) + |θ1|. The first inclusion
follows from the fact that (θn − θ1) + |θ1| ≤ R implies θn ≤ R and θ1 ≥ −R. For the second
inclusion, note that −R ≤ θ1 ≤ θn ≤ R implies (θn − θ1) + |θ1| ≤ 3R.

The second inclusion (A.68) immediately yields

logN2(ε,Dn1,...,nd ∩ [−R,R]n) ≤ Cd
3R
√
n

ε

(
log

3R
√
n

ε

)d− 1
2

, ∀ε < 3R
√
n/e.

Because Dn1,...,nd is translation invariant, we may translate a hyperrectangle of the form
[a, b]n to [−R,R]d for R := b−a

2
, and obtain

logN2(ε,Dn1,...,nd ∩ [a, b]n) ≤ Cd
(b− a)

√
n

ε

(
log

(b− a)
√
n

ε

)d− 1
2

for ε < 3
2e

(b− a)
√
n, where we have absorbed some constants into Cd.

To show that this bound holds under the more general condition ε ≤
√
n(b− a), simply

observe that if ε ≥
√
n(b− a)/2, then a single point whose entries are each (a+ b)/2 covers

Dn1,...,nd ∩ [a, b]n, and so the log covering number is 0, which is bounded by the right-hand
side as long as ε ≤ (b− a)

√
n.

A.5.2 Proof of Lemma A.3.6

The substitution u = 1
2

log B
ε

and du = − 1
2ε
dε allows us to rewrite the integral as

2
2d+3

4 B

∫ ∞
a

e−uu
2d−1

4 du, with a :=
1

2
log

B

s
.

It thus suffices to show

I(a) :=

∫ ∞
a

e−uu
2d−1

4 du ≤ Cde
−a(a+ 1/2)

2d−1
4 , ∀a ≥ 0. (A.69)

If a ≤ 1, then

I(a) ≤
∫ ∞

0

e−uu
2d−1

4 du ≤ Cde
−a2−

2d−1
4

for Cd ≥ e2
2d−1

4

∫∞
0
e−uu

2d−1
4 du, proving the claim (A.69).

Now suppose a > 1. Let v be the smallest positive integer strictly larger than 2d−1
4

.
Performing integration by parts v times yields

I(a) ≤ Cde
−a

v∑
r=1

a
2d−1

4
−r+1 + Cd

∫ ∞
a

e−uu
2d−1

4
−v du

≤ Cde
−aa

2d−1
4 + Cde

−a

≤ (Cd + Cd2
2d−1

4 )e−a(a+ 1/2)
2d−1

4 ,

which proves the claim (A.69).



APPENDIX A. APPENDIX FOR CHAPTER 3 144

A.5.3 Proof of Lemma A.3.7

Suppose θ = Aβ ∈ C(V, t), where A is the usual design matrix defined in Section 3.3. Note
that for any i we have

|θi − θ1| =

∣∣∣∣∣∣
∑

j:xj�xi

βj − β1

∣∣∣∣∣∣ ≤
n∑
j=2

|βj| ≤ V.

Thus, using the simple inequality (a + b)2 ≥ 1
2
a2 − b2 along with the fact that ‖θ‖2 ≤ t we

obtain

θ2
i = (θ1 + θi − θ1)2 ≥ 1

2
θ2

1 − (θi − θ1)2 ≥ 1

2
θ2

1 − V 2

for each i, and thus

t2 ≥
n∑
i=1

θ2
i ≥ θ2

1 + (n− 1)

(
1

2
θ2

1 − V 2

)
.

Rearranging this and applying the inequality
√
a+ b ≤

√
a+
√
b for nonnegative a, b yields

|θ1| ≤
√

2

n+ 1
(t2 + (n− 1)V 2) ≤ t

√
2

n
+ V
√

2 =: t̃.

We fix δ > 0, whose value will be chosen later. If for an integer k we define

C̃k(V, t) := {θ ∈ C(V, t) : kδ ≤ θ1 ≤ (k + 1)δ},

then we have
C(V, t) ⊆

⋃
−K−1≤k≤K

C̃k(V, t)

where K = bt̃/δc. Then,

logN(ε, C(V, t)) ≤ log

(
2 +

t̃

δ

)
+ max
−K−1≤k≤K

logN(ε, C̃k(V, t)). (A.70)

Since C̃−k−1(V, t) = −C̃k(V, t) for k ≥ 0, we may restrict the maximum on the right-hand
side to 0 ≤ k ≤ K.

Fix k ≥ 0. If θ = Aβ ∈ C̃k(V, t), we let π(θ) := Aβ+ and ν(θ) := Aβ−, where
β+
j := max{βj, 0} and β−j := max{−βj, 0} so that θ = π(θ)− ν(θ). Defining

Cπ(V, t) := {π(θ) : θ ∈ C̃k(V, t)},
Cν(V, t) := {ν(θ) : θ ∈ C̃k(V, t)},

we therefore have

logN(ε, C̃k(V, t)) ≤ logN(ε/2, Cπ(V, t)) + logN(ε/2, Cν(V, t)). (A.71)
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We bound the second term first. Because β1 = θ1 ≥ kδ ≥ 0 (recall the first column of A

is the all-ones vector) for θ ∈ C̃k(V, t), we have (π(θ))1 = β1 and (ν(θ))1 = 0. Also,

(π(θ))n − (π(θ))1 + (ν(θ))n − (ν(θ))1 =
n∑
j=2

βjIβj≥0 −
n∑
j=2

βjIβj≤0 =
n∑
j=2

|βj| ≤ V,

which implies ν(θ)n ≤ V for θ ∈ C(V, t). Since elements of Cν(V, t) are of the form Aβ
with βj ≥ 0 for j ≥ 2, we use Proposition 3.3.2 and recall a definition (A.66) to obtain the
inclusion Cν(V, t) ⊆ Dn1,...,nd∩[0, V ]n. Thus, using the bound (A.68) along with Lemma A.3.5
we obtain

logN(ε/2, Cν(V, t)) ≤ Cd
V
√
n

ε

(
log

2V
√
n

ε

)d− 1
2

I{ε ≤ 2V
√
n}

where we have absorbed constants into Cd.
We now bound the first term from earlier (A.71). We claim

Cπ(V, t) ⊆ Dn1,...,nd ∩ [0, V + δ]n + {kδ}.

To see the last inclusion, note that if η ∈ Cπ(V, t) satisfies kδ ≤ η1 ≤ (k + 1)δ then η − kδ1
lies in Dn1,...,nd and has all entries lying in the interval [0, V + δ] (since kδ ≤ η1 ≤ ηi and
ηi − kδ ≤ ηi − (η1 − δ) ≤ V + δ). Noting that Dn1,...,nd is invariant under translation, we
need only compute the metric entropy of Dn1,...,nd ∩ [0, V +δ]n. Applying Lemma A.3.5 again
yields

logN(ε/2, Cπ(V, t)) ≤ Cd
(V + δ)

√
n

ε

(
log

2(V + δ)
√
n

ε

)d− 1
2

I{ε ≤ 2(V + δ)
√
n}.

Choosing δ = ε/
√
n yields

logN(ε/2, Cπ(V, t)) ≤ Cd

(
V
√
n

ε
+ 1

)(
log

(
2V
√
n

ε
+ 1

))d− 1
2

.

Returning to (A.71) we obtain

logN(ε, C̃k(V, t)) ≤ Cd

(
V
√
n

ε
+ 1

)(
log

(
2V
√
n

ε
+ 1

))d− 1
2

.

Going further back to (A.70) and plugging our definitions of δ and t̃ yields

logN(ε, C(V, t)) ≤ Cd

(
V
√
n

ε
+ 1

)(
log

(
2V
√
n

ε
+ 1

))d− 1
2

+ log

(
2 + 2

t+ V
√
n

ε

)
.
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A.5.4 Proof of Lemma A.3.9

Let r := b2`/dc. By an inclusion-exclusion argument, we have the following exact formula
for the cardinality.

|M`| =
d∑

k=0

(−1)k
(
d

k

)(
`− kr − 1

d− 1

)
,

with the convention that
(
a
b

)
= 0 if a < b.

If k ≥ d/2 then we have `− kr ≤ `− d
2

(
2`
d
− 1
)

= d
2
< d which implies

(
`−kr−1
d−1

)
= 0.

Otherwise, for k < d/2 we have

`−(d−1)

(
`− kr − 1

d− 1

)
=

1

(d− 1)!

d−1∏
i=1

`− kr − i
`

.

Noting that lim`→∞
`−kr−i

`
= 1− k lim`→∞

r
`

= 1− 2k
d

, we obtain

lim
`→∞

`−(d−1)

(
`− kr − 1

d− 1

)
=

(
1− 2k

d

)d−1

(d− 1)!
.

for k < d/2. Combining these observations for all k yields

lim
`→∞

|M`|
`d−1

=
d∑

k=0

(−1)k
(
d

k

)(
1− 2k

d

)d−1

+

(d− 1)!
=

dd−1

(d− 1)!

d∑
k=0

(−1)k
(
d

k

)
(d− 2k)d−1

+ ,

where (x)+ := max{x, 0}. It then suffices to check

bd :=
d∑

k=0

(−1)k
(
d

k

)
(d− 2k)d−1

+ > 0

for each fixed d ≥ 2. Indeed, Goddard [39] showed

bd
2d(d− 1)!

=
1

π

∫ ∞
0

(
sinx

x

)d
dx.

When d is even, this clearly positive. When d is odd, we have∫ ∞
0

(
sinx

x

)d
dx =

∞∑
k=0

∫ (k+1)π

kπ

(
sinx

x

)d
dx =

∞∑
k=0

(−1)k
∫ π

0

(
sinx

x+ kπ

)d
dx,

which is positive because the last expression is an alternating sum whose addends’ magni-

tudes
∫ π

0

(
sinx
x+kπ

)d
dx form a positive decreasing sequence in k.
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A.5.5 Proof of Lemma A.3.10

We prove the three inequalities (A.29), (A.30) and (A.31) separately.

Proof of (A.29). For functions f, g : [0, 1]d → R we let ‖f‖2 :=
(∫

[0,1]d
|f(x)|2 dx

)1/2

and

‖f‖1 :=
∫

[0,1]d
|f(x)| dx denote the L2 and L1 norms on [0, 1]d with respect to the Lebesgue

measure, and 〈f, g〉 :=
∫

[0,1]d
f(x)g(x) dx denote the L2 inner product.

Recall the definition of HK0 variation (3.25) as the sum of Vitali variations over faces
adjacent to 0. Because fη(x) is zero whenever xj = 0 for some j, all these Vitali variations
are zero except for the Vitali variation over the entire space [0, 1]d. Thus, recalling that
the Vitali variation can be written as the integral of the magnitude of a mixed partial
derivative (3.23), we have

VHK0(fη; [0, 1]d) = V (d)(f ; [0, 1]d) =

∥∥∥∥ ∂dfη
∂x1 · · · ∂xd

∥∥∥∥
1

≤
∥∥∥∥ ∂dfη
∂x1 · · · ∂xd

∥∥∥∥
2

=
V√
|M`|

∥∥∥∥∥ ∑
m∈M`

gη,m

∥∥∥∥∥
2

,

where

gη,m :=
∑
i∈Im

ηm,i

d⊗
j=1

φ′mj ,ij .

For natural numbers m < m′ and natural numbers i ≤ 2m and i′ ≤ 2m
′
, the functions φ′m,i

and φ′m′,i′ are orthogonal. Thus for distinct m,m′ ∈ M`, the functions gη,m and gη,m′ are
orthogonal as well. Thus from above we have

VHK0(fη; [0, 1]d) ≤ V√
|M`|

√ ∑
m∈M`

‖gη,m‖2
2.

For a fixed natural number m and distinct natural numbers i, i′ ≤ 2m, the functions φ′m,i
and φ′m,i′ are also orthogonal because they have different supports. Thus for fixed m ∈ M
and distinct i, i′ ∈ Im, the functions

⊗d
j=1 φ

′
mj ,ij

and
⊗d

j=1 φ
′
mj ,i′j

are orthogonal. Continuing

from above, we obtain

VHK0(fη; [0, 1]d) ≤ V√
|M`|

√√√√ ∑
m∈M`

∑
i∈Im

∥∥∥∥∥
d⊗
j=1

φ′mj ,ij

∥∥∥∥∥
2

2

=
V√
|M`|

√ ∑
m∈M`

∑
i∈Im

2−` = V,
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where we used the fact that |Im| = 2` and∥∥∥∥∥
d⊗
j=1

φ′mj ,ij

∥∥∥∥∥
2

2

=
d∏
j=1

∥∥∥φ′mj ,ij∥∥∥2

2
=

d∏
j=1

2−mj = 2−`.

Proof of (A.30). By Pinsker’s inequality, we can bound the total variation distance between
Pfη and Pfη′ by their Kullback-Leibler divergence.

‖Pfη − Pfη′‖TV ≤
√

1

2
DKL(Pfη‖Pfη′ ).

The KL divergence can be computed as

DKL(Pfη‖Pfη′ ) =
1

2σ2

n∑
i=1

(fη(xi)− fη′(xi))2 =
n

2σ2
L(fη, fη′),

where L denotes the discrete loss as defined earlier (3.9).
Note that

fη − fη′ =
V√
|M`|

∑
m∈M`

∑
i∈Im

(ηm,i − η′m,i)
d⊗
j=1

φmj ,ij .

If dH(η,η′) = 1, then there exists a unique pair m ∈M` and i ∈ Im such that ηm,i 6= η′m,i.
Then

fη − fη′ =
V√
|M`|

(ηm,i − η′m,i)
d⊗
j=1

φmj ,ij .

Thus, recalling that the design points x1, . . . ,xn come from the lattice Ln1,...,nd (see (3.34))

L(fη, fη′) =
4V 2

n|M`|

n1−1∑
k1=0

· · ·
nd−1∑
kd=0

d∏
j=1

(φmj ,ij(kj/nj))
2

=
4V 2

|M`|

d∏
j=1

 1

nj

nj−1∑
kj=0

(φmj ,ij(kj/nj))
2

.
Note that for each j, the number of nonzero addends (φmj ,ij(kj/nj))

2 (of the above inner
sum) is bounded by nj2

−mj , so we obtain

1

nj

nj−1∑
kj=0

(φmj ,ij(kj/nj))
2 ≤ 1

nj
· nj2−mj · 2−2mj−4 = 2−3mj−4.
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Multiplying over all j yields

d∏
j=1

 1

nj

nj−1∑
kj=0

(φmj ,ij(kj/nj))
2

 =
d∏
j=1

2−3mj−4 = 2−3`−4d.

By combining our work above, we obtain

max
dH(η,η′)=1

‖Pfη − Pfη′‖TV ≤
√

n

4σ2
L(fη, fη′) ≤

√
n

σ2

V 2

|M`|
2−3`−4d.

Proof of (A.31). To compute the loss L(fη, fη′) for some η,η′ ∈ {−1, 1}q, only the values of
φmj ,ij at points {k/nj : k ∈ {0, . . . , nj − 1}} matter. In particular, for each fixed j ∈ [d] and

mj ∈ N and ij ∈ [2mj ] we define the step function φ̃ : [0, 1]→ R by

φ̃j,mj ,ij(x) := φmj ,ij(bxnjc/nj). (A.72)

Recall our assumption that nj is a power of 2. Thus function φ̃j,mj ,ij is a step function
supported on [(ij − 1)2−mj , ij2

−mj ] that is constant on intervals [k/nj, (k + 1)/nj) for k =
0, . . . , nj − 1, and agrees with the value of φmj ,ij at points k/nj for k = 0, . . . , nj − 1.

If for η,η′ ∈ {−1, 1}q we define

gη,η′ :=
V√
|M`|

∑
m∈M`

∑
i∈Im

(ηm,i − η′m,i)
d⊗
j=1

φ̃mj ,ij ,

then gη,η′ agrees with fη−fη′ on points of the form (k1/n1, . . . , kd/nd) for kj = 0, . . . , nj and

all j ∈ [d], and is constant on rectangles of the form×d

j=1
[kj/nj, (kj + 1)/nj). Therefore,

L(fη, fη′) :=
1

n

n∑
i=1

(fη(xi)− fη′(xi))2 =

∫
[0,1]d

(gη,η′(x))2 dx = ‖gη,η′‖2
L2 .

For natural number m and i ∈ [2m], we define the function hm,i : [0, 1]→ R by

hm,i(x) =


2m/2 x ∈ [(i− 1)2−m, (i− 1

2
)2−m],

−2m/2 x ∈ [(i− 1
2
)2−m, i2−m],

0 otherwise.

(A.73)

One can check {hm,i : m ∈ N, i ∈ [2m]} is an orthonormal set. If we define Hm,i :=⊗d
j=1 hmj ,ij , then {Hm,i : m ∈M`, i ∈ Im} is an orthonormal set of functions on [0, 1]d.
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Thus by Bessel’s inequality,

L(fη, fη′) = ‖gη,η′‖2
2 ≥

∑
m′∈M`

∑
i′∈Im

〈
gη,η′ , Hm′,i′

〉2
.

Fix m′ ∈M` and i′ ∈ Im. We have

〈
gη,η′ , Hm′,i′

〉
=

V√
|M`|

∑
m∈M`

∑
i∈Im

(ηm,i − η′m,i)
d∏
j=1

〈φ̃j,mj ,ij , hm′j ,i′j〉.

We claim the inner products satisfy

〈φ̃j,mj ,ij , hm′j ,i′j〉 =


0 (mj, ij) 6= (m′j, i

′
j),mj ≤ m′j

0 log2(nj) ≤ mj + 1

2−3mj/2−3 (mj, ij) = (m′j, i
′
j), log2(nj) ≥ mj + 2

For the first case, if mj = m′j and ij 6= i′j, then the supports of φ̃j,mj ,ij and hm′j ,i′j are disjoint

so their inner product is zero. If instead mj < m′j, then recall
∫ 1

0
φ̃j,mj ,ij(x) dx = 0 and note

that hm′j ,i′j is constant on the support [(ij − 1)2−mj , ij2
−mj ] of φ̃j,mj ,ij . The second case is

due to the fact that nj is a power of 2 and consequently φ̃j,mj ,ij ≡ 0 when log2 nj ≤ mj + 1.
For the third case where (mj, ij) = (m′j, i

′
j) and log2(nj) ≥ mj + 2, we have

〈φ̃j,mj ,ij , hmj ,ij〉 = 2 · 2mj/2
∫ (ij− 1

2
)2−mj

(ij−1)2−mj
φ̃j,mj ,ij(x) dx

= 2 · 2mj/2
∫ (ij− 1

2
)2−mj

(ij−1)2−mj
φmj ,ij(x) dx

= 2mj/2 · 2−mj−12−mj−2 = 2−3mj/2−3,

where the equality of integrals is a consequence of log2(nj) ≥ mj + 2 and the fact that nj is
a power of 2.

If m and m′ both belong to M, they satisfy
∑d

i=1mi =
∑d

i=1m
′
i = `. Thus if m 6= m′,

then because d ≥ 2 there is some j for which mj < m′j, and we obtain

d∏
j=1

〈φ̃mj ,ij , hm′j ,i′j〉 =

{
0 (m, i) 6= (m′, i′)

2−3`/2−3d (m, i) = (m′, i′), mj + 2 ≤ log2 nj∀j
(A.74)

Thus,

〈
gη,η′ , Hm′,i′

〉
=

V√
|M`|

(ηm′,i′ − η′m′,i′)2
−3`/2−3d

d∏
j=1

I{m′j + 2 ≤ log2 nj}.
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If we show that the above product of indicators is always equal to 1, then plugging this into
Bessel’s inequality above yields

L(fη, fη′) ≥
4V 2

|M`|
2−3`−6ddH(η,η′)

which would complete the proof of the desired claim (A.31).
It remains to show this last unverified claim about the product of indicators. Equivalently,

if m ∈M`, then we want to show mj +2 ≤ log2 nj for all j ∈ [d], provided n is large enough.
Since nj = n1/d and since maxj∈[d] mj ≤ 2`/d, it suffices to show

2`

d
+ 2 ≤ 1

d
log n (A.75)

Plugging in the definition (A.26) of ` yields

2

3d log 2
log(CdnV

2/σ2)− 2(d− 1)

3d log 2
log log(CdnV

2/σ2) + 2 ≤ 1

d
log n.

For fixed d and σ2/V 2, we have

lim
n→∞

d

log n

[
2

3d log 2
log(CdnV

2/σ2)− 2(d− 1)

3d log 2
log log(CdnV

2/σ2) + 2

]
=

2

3 log 2
< 1,

so there exists a constant cd,σ2/V 2 such that the bound (A.75) holds if n ≥ cd,σ2/V 2 .

A.5.6 Proof of Lemma A.3.11

We claim the functions Fη,m and Fη,m′ are orthogonal for distinct m,m′ ∈ M̃`. We have∫ 1

0

∫ 1

0

Fη,m(t1, t2)Fη,m′(t1, t2) dt1 dt2

=
∑
i∈Im

∑
i′∈Im′

ηm,iηm′,i′

∫ 1

0

φ′m1,i1
(t1)φ′m′1,i′1(t1) dt1

∫ 1

0

φ′m2,i2
(t2)φ′m′2,i′2(t2) dt2

Fix (m, i) and (m′, i′). Since m and m′ are distinct, we must have m1 6= m′1 (since m1+m2 =
m′1 + m′2). Without loss of generality suppose m1 < m′1. Then φ′m1,i1

is constant on the

support of φ′m′1,i′1
for any i1 ∈ [2m1 ] and i′1 ∈ [2m

′
1 ], and thus

∫ 1

0
φ′m1,i1

(t1)φ′m′1,i′1
(t1) dt1 = 0.

The other case m1 > m′1 can be handled similarly. In the end all terms in the above double
sum are zero.

A similar argument shows that the integral of the product of Fη,m(1) , . . . , Fη,m(k) for

distinct m(1), . . . ,m(k) is zero, since m
(1)
1 , . . . ,m

(k)
1 are distinct in this case where d = 2.
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Note also that 1 +Fη,m ≥ 0 for all m ∈ M̃`, and thus ∂2f̃η/(∂x1∂x2) ≥ 1. Consequently,

VHK0(f̃η) =

∥∥∥∥∥ ∂2f̃η
∂x1∂x2

∥∥∥∥∥
1

=

∥∥∥∥∥∥
∏

m∈M̃`

(1 + Fη,m(x1, x2))

∥∥∥∥∥∥
1

=

∫ 1

0

∫ 1

0

∏
m∈M̃`

(1 + Fη,m(t1, t2)) dt1 dt2

= 1 +
∑

m∈M̃`

∫ 1

0

∫ 1

0

Fη,m(t1, t2) dt1 dt2 + 0

= 1.

Combined with the fact that f̃η is continuous, we have f̃η ∈ F2
DF.

We now define g̃η(x1, x2) := f̃η(bx1n1c/n1, bx2n2c/n2). This function agrees with f̃η at
the design points (i/n1, j/n2), and is piecewise constant on rectangles of the grid. Thus for
η 6= η′ we have

L(f̃η, f̃η′) = ‖g̃η − g̃η′‖2
L2 .

Let us similarly define Q̃η(x1, x2) := Q̃η(bx1n1c/n1, bx2n2c/n2). Let hm,r be as defined

above (A.73). We now show 〈Q̃η, hm1,r1 ⊗ hm2,r2〉 for all m ∈ M̃` and r ∈ Im. Note

Q̃η(x) =
∑
P≥2

∑∫ bx1n1c/n1

0

P∏
p=1

φ′kp,ip(t1) dt1

∫ bx2n2c/n2

0

P∏
p=1

φ′`−kp,jp(t2) dt2

where the inner sum above is over even integers 0 ≤ k1 < k2 < · · · < kP ≤ `, and all
1 ≤ ip ≤ 2kp , 1 ≤ jp ≤ 2`−kp , 1 ≤ p ≤ P .

Because φ′k1,i1 , . . . , φ
′
kP−1,iP−1

are constant on the support of φ′kP ,iP we have for some
constant c1 ∫ bx1n1c/n1

0

P∏
p=1

φ′kp,ip(t1) dt1 = c1φkP ,iP (bx1n1c/n1) =: c1φ̃1,kP ,iP (x1),

where the last equality is due to the earlier definition (A.72). Similarly,∫ bx2n2c/n2

0

P∏
p=1

φ′`−kp,jp(t2) dt2 = c2φ`−k1,j1(bx2n2c/n2) =: c2φ̃2,k1,j1(x2),

Because kP + (` − k1) > ` = m1 + m2, we must have either kP > m1 or ` − k1 > m2. If

kP > m1, then for any 1 ≤ r1 ≤ 2m1 , hm1,r1 is constant on the support of φ̃kP ,iP , and thus∫ 1

0

φ̃kP ,iP (x1)hm1,r1(x1) dx1 = c′
∫ 1

0

φ̃kP ,iP (x1) dx1 = 0.
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Otherwise, if ` − k1 > m2, then
∫ 1

0
φ̃`−k1,j1(x2)hm2,r2(x2) dx2 = 0 for all 1 ≤ r2 ≤ 2m2 . In

either case we have 〈φ̃kP ,iP ⊗ φ̃`−k1,j1 , hm1,r1 ⊗ hm2,r2〉 = 0, and thus 〈Q̃η, hm1,r1 ⊗ hm2,r2〉 = 0

for all m ∈ M̃` and r ∈ Im. Therefore, using the earlier observation (A.74) concerning inner

products between φ̃m,i and hm′,i′ , we obtain

〈g̃η − g̃η′ , hm′1,i′1 ⊗ hm′2,i′2〉

=
∑

m∈M̃`

∑
i∈Im

(ηm,i − η′m,i)〈φ̃m1,i1 ⊗ φ̃m2,i2 , hm′1,i′1 ⊗ hm′2,i′2〉

= (ηm′,i′ − η′m′,i′)2
−3`/2−6I{m′1 + 2 ≤ log2 n1,m

′
2 + 2 ≤ log2 n2}.

As argued before (A.75), the event in the indicator function holds for sufficiently large n, so
we may ignore it. Applying Bessel’s inequality yields

L(f̃η, f̃η′) = ‖g̃η − g̃η′‖2
L2 ≥

∑
m∈M̃`

∑
i∈Im

(ηm,i − η′m,i)
22−3`−12 = dH(η,η′)2−3`−10.

A.5.7 Proof of Lemma A.3.12

If
∑n

j=2|β̃j| < R, then Aβ lies in the interior of C(V ), so the tangent cone there is Rn. Thus

it remains to consider the case
∑n

j=2|β̃j| = R.

Let T denote the right-hand side of the equality (A.41). We first show TC(V )(Aβ̃) ⊆ T .

Since T is a closed convex cone, it suffices to show that Aβ := A(β′ − β̃) lies in T for any

Aβ′ ∈ C(V ). Indeed, using the fact that βj = β′j whenever β̃j = 0, we have∑
j≥2:

β̃j=0

|βj|+
∑
j≥2:

β̃j 6=0

β′j sign(β̃j) =
∑
j≥2:
βj=0

|β′j|+
∑
j≥2:
βj 6=0

β′j sign(βj)

≤
n∑
j=2

|β′j| ≤ V =
n∑
j=2

β̃j sign(β̃j).

Some rearrangement leads to TC(V )(Aβ̃) ⊆ T .
For the reverse inclusion, suppose Aβ ∈ T . We claim that there exists some c > 0

such that Aβ̃ + cAβ ∈ C(V ). Indeed, there exists a sufficiently small c > 0 such that
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sign(β̃j + cβj) = sign(β̃j) for all j satisfying β̃j 6= 0, for which we have
n∑
j=2

|β̃j + cβj| = c
∑
j≥2:

β̃j=0

|βj|+
∑
j≥2:

β̃j=0

(β̃j + cβj) sign(β̃j)

=
n∑
j=2

|β̃j|+ c

∑
j≥2:

β̃j=0

|βj|+
∑
j≥2:

β̃j 6=0

βj sign(β̃j)


︸ ︷︷ ︸

≤0

≤ V,

where the quantity in parentheses is nonpositive due to the definition of Aβ ∈ T . The above
implies Aβ̃ + cAβ ∈ C(V ), concluding the proof.

A.5.8 Proof of Lemma A.3.13

Using the fact that
∑

i′:i′�i βi′ = αi we have

sign(β̃i∗)(αiu − αi`) = sign(β̃i∗)

(∑
i∈Lu

βi −
∑
i∈L`

βi

)

= sign(β̃i∗)

 ∑
i∈Lu∩Lc`

βi −
∑

i∈Lcu∩L`

βi


= sign(β̃i∗)

βi∗ +
∑

i∈(Lu∩Lc`)\{i
∗}

βi −
∑

i∈Lcu∩L`

βi

 (A.76)

≤ βi∗ sign(β̃i∗) +
∑

i/∈{0,i∗}

|βi| (A.77)

≤ 0,

where the last inequality is due to the characterization (A.41) of TC(V )(Aβ̃). The above
chain of inequalities implies that the difference between the expressions (A.77) and (A.76)

is bounded by − sign(β̃i∗)(αiu − αi`). This is precisely the desired inequality (A.42).

A.5.9 Statement and proof of a result connecting D(θQ) and Dθ

Lemma A.5.1. Consider Q as in (A.48) for two indices q` and qu in I with q` � qu. Recall
the notation (A.50) and (A.51). For every θ ∈ Rn, we have

(DθQ)i =
∑
i′�i

t(i′, i)(Dθ)i, for every i ∈ Q (A.78)
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Furthermore, for every i′ � qu, there is a unique i ∈ Q such that i � i′ and i′J(i) = iJ(i); this

i is given by ij := max{q`j, i′j}, j = 1, . . . , d.

Proof. For i ∈ Q, the identities (A.49) and (A.47) together yield

(DθQ)i =
∑

z∈{0,1}d
I{i− z � q`}(−1)z1+···+zdθi−z

=
∑

z∈{0,1}d
I{i− z � q`}(−1)z1+···+zd

∑
i′�i−z

(Dθ)i′

=
∑
i′�i

(Dθ)i′
∑

z∈{0,1}d
I{i− z � q`}(−1)z1+···+zdI{i′ � i− z}.

It then remains to show that the last inner sum equals t(i′, i). We have∑
z∈{0,1}d

I{i− z � q`}(−1)z1+···+zdI{i′ � i− z}

=
d∏
j=1

1∑
zj=0

(−1)zjI{ij − zj ≥ q`j}I{i′j ≤ ij − zj}

=
d∏
j=1

(
I{q`j ≤ ij; i

′
j ≤ ij} − I{q`j ≤ ij − 1; i′j ≤ ij − 1}

)
.

For j ∈ J(i) we have ij > q`j, so the quantity in parentheses is I{i′j ≤ ij} − I{i′j ≤ ij − 1} =
I{i′j = ij}. For j /∈ J(i) we have ij = q`j, so the quantity in parentheses is 1. Thus the above
product is I{i′J(i) = iJ(i)}, and we obtain (A.78).

We now prove the second claim of the lemma. Fix i′ � qu. We would like to produce
i ∈ Q such that i � i′ and i′j = ij for j ∈ J(i) = {j : ij > q`j}. If i′j > q`j, we have no choice
but to let ij = i′j. If i′j ≤ q`j, we must let ij = q`j in order to have i ∈ Q. This defines the
unique i satisfying the conditions.

A.5.10 Proof of Lemma A.3.14

Fix i′ � i such that t(i′, i) 6= 0. If s(i′) 6= 0, then s̃(i) := s(i′) so we have

|βi′| − s̃(i)t(i′, i)βi′ = |βi′| − s(i′)βi′ .

Otherwise if s(i′) = 0, we have

|βi′ | − s̃(i)t(i′, i)βi′ ≤ 2|βi′| = 2(|βi′ | − s(i′)βi′).
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Using these two observations along with the relation (A.78), we have∑
i∈Q\{q`}:i�q`

(|(DαQ)i| − s̃(i)(DαQ)i)

=
∑

i∈Q:i�q`


∣∣∣∣∣∣
∑
i′�i

t(i′, i)βi′

∣∣∣∣∣∣− s̃(i)
∑
i′�i

t(i′, i)βi′


=

∑
i∈Q\{q`}:i�q`

∑
i′�i

t(i′, i){|βi′ | − s̃(i)t(i′, i)βi′}

≤ 2
∑

i∈Q\{q`}:i�q`

∑
i′�i

t(i′, i){|βi′| − s(i′)βi′}

= 2
∑
i′�qu
{|βi′| − s(i′)βi′}

∑
i∈Q

t(i′, i)I{i′ � i, i � q`, i 6= q`}

≤ 2
∑

i′�qu:i′�q`,i′ /∈{0,i∗}

{|βi′| − s(i′)βi′}.

In the last step we noted that for a given i′ � qu, there is a unique i such that t(i′, i) is
nonzero (second part of Lemma A.5.1), so the inner sum only has one nonzero addend. Then
we used assumption (a) to note that I{i′ � i, i � q`, i 6= q`} ≤ I{i′ � q`, i′ /∈ {0, i∗}} for any
i ∈ Q such that t(i′, i) = 1.

Finally, for i ∈ Q such that i � q`, let s̃(i) := s(i). Combining the above work with the
fact that (A.78) implies that (DαQ)i = (Dα)i for i � q`, we obtain∑

i∈Q\{q`}

(|(DαQ)i| − s̃(i)(DαQ)i)

≤
∑

i∈Q:i�q`
{|βi| − s(i)βi}+ 2

∑
i�qu:i�q`,i/∈{0,i∗}

{|βi| − s(i)βi}

≤ 2
∑

i/∈{0,i∗}

{|βi′ | − s(i)βi}.

The last inequality follows by noting that the two sums indexed by i are over disjoint sets.
Finally, the right-hand side can be bounded by 2δ due to (A.45).

A.5.11 Proof of Lemma A.3.15

Without loss of generality we assume t = 1 (the general result can then be obtained by
scaling and replacing δ by δ/t).

Let β be such that θ = Aβ. Let π(θ) := Aβ+ and ν(θ) := Aβ−, where β+
1 = β1 and

β+
i := max{βi, 0} for i ≥ 2, and where β− := β+ − β. Then θ = π(θ) − ν(θ), and both
π(θ) and ν(θ) are entirely monotone.
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We have the following two equalities.

θn − θ1 = [(π(θ))n − (π(θ))1]− (ν(θ))n,

VHK0(θ) =
n∑
i=2

|βi| = [(π(θ))n − (π(θ))1] + (ν(θ))n.

Combining these two equalities shows that the constraint VHK0(θ) ≤ θn−θ1 +δ is equivalent
to

n∑
i≥2

β−i = (ν(θ))n ≤
δ

2
.

Then

‖ν(θ)‖2 ≤ n(ν(θ))2
n ≤

δ2

4
n.

By the triangle inequality,

‖π(θ)‖ ≤ ‖θ‖+ ‖ν(θ)‖ ≤ 1 +
δ

2

√
n.

Thus,

E sup
θ:‖θ‖≤1,

VHK0(θ)≤θn−θ1+δ

〈θ, ξ〉 ≤ E sup
π∈Dn1,...,nd :

‖θ‖≤1+δ
√
n/2

〈π, ξ〉+ E sup
ν∈Dn1,...,nd :

‖ν‖≤δ
√
n/2

〈−ν, ξ〉

Since D is a cone and since ξ
d
= −ξ, the right-hand side can be written as

σ(1 + δ
√
n) E sup

θ∈Dn1,...,nd :‖θ‖≤1

〈θ, z〉,

where z ∼ N (0, In). From the earlier Gaussian width bound (A.18) (with θ∗ = 0, V ∗ = 0,
t = 1, and using the bounds |K| ≤ C(log n)d and log(2e

√
|K|) ≤ Cd log(e log n))) we have

E sup
θ∈Dn1,...,nd :‖θ‖≤1

〈θ, z〉 ≤ Cd(log(en))
3d
4 (log(e log(en)))

2d−1
4 .

A.5.12 Proof of Lemma A.3.16

Because βi = 0 for all i � 0, we have the following equality for all i ∈ {0, . . . , n1 − 1} ×
{0, . . . , n2 − 1}.

θi =
∑
i′�i

βi′ =

i1∑
i′1=0

βi′1,0 +

i2∑
i′2=0

β0,i′2
− β0,0 = θi1,0 + θ0,i2 − θ0,0, ∀i. (A.79)

Let θ1 := 1
n1

∑n1

i1=1 θi1,1 and θ2 := 1
n2

∑n2

i2=1 θ1,i2
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Note that the identity (A.79) implies

1 ≥ ‖θ‖2

=

n1−1∑
i1=0

n2−1∑
i2=0

[(θi1,0 − θ1) + (θ0,i2 − θ2)− (θ0,0 − θ1 − θ2)]2

= n2

n1−1∑
i1=0

(θi1,0 − θ1)2 + n1

n201∑
i2=0

(θ0,i2 − θ2)2 + n1n2(θ0,0 − θ1 − θ2)2,

where the cross terms vanish in the last step due to
∑n1−1

i1=0 (θi1,0− θ1) = 0 and
∑n2−1

i2=0 (θ0,i2 −
θ2) = 0. Thus the vectors

√
n2(θi1,0− θ1)n1−1

i1=0 ,
√
n2(θ0,i2 − θ1)n2−1

i2=0 , and
√
n1n2(θ0,0− θ1− θ2)

each have norm bounded by 1.
Let us view Z as a n1 × n2 matrix, and define Z·,i2 :=

∑n1−1
i1=0 Zi1,i2 , Zi1,· :=

∑n2−1
i2=0 Zi1,i2 ,

and Z·,· :=
∑n1−1

i1=0

∑n2−1
i2=0 Zi1,i2 . Then, using the identity (A.79) we can decompose the inner

product as

〈Z,θ〉 =
∑
i

Ziθi =

n1−1∑
i1=0

n2−1∑
i2=0

Zi1,i2(θi1,0 + θ0,i2 − θ0,0)

=

n1−1∑
i1=0

Zi1,·θi1,0 +

n2−1∑
i2=0

Z·,i2θ0,i2 − Z·,·θ1,1

=

n1−1∑
i1=0

Zi1,·(θi1,0 − θ1) +

n2−1∑
i2=0

Z·,i2(θ0,i2 − θ2)− Z·,·(θ0,0 − θ1 − θ2)

=

n1−1∑
i1=0

Zi1,·√
n2

√
n2(θi1,0 − θ1) +

n2−1∑
i2=0

Z·,i2√
n1

√
n1(θ0,i2 − θ2)

− Z·,·√
n1n2

√
n1n2(θ0,0 − θ1 − θ2).

Note that (Z·,i2/
√
n1)n1

i1=1, (Zi1,·/
√
n2)n2

i2=1, and Z·,·/
√
n1, n2 are each standard Gaussian vec-

tors.
Finally, note that because βi = 0 for i � 1, the HK variation condition on θ can be

written as
n1−1∑
i1=1

(|βi1,0| − s1βi1,0) +

n2−1∑
i2=1

(|β0,i2| − s2β0,i2) ≤ δ,

and thus each of these two sums is bounded by δ
Thus, we can bound the expectation in the lemma by

E sup
θ̃∈Rn1 :‖θ̃‖≤1

VHK0(θ̃)≤s1(θ̃n1−θ̃1)+δ

〈Zn1 , θ̃〉+ E sup
θ̃∈Rn2 :‖θ̃‖≤1

VHK0(θ̃)≤s2(θ̃n2−θ̃1)+δ

〈Zn2 , θ̃〉+ E sup
θ̃∈R:|θ̃|≤1

Z1θ̃,
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where Zn1 , Zn2 , and Z1 are standard Gaussian vectors of the appropriate dimension. The
third term is readily computed to be E|Z1| =

√
2/π.

We now focus on the first term; the second term can be bounded analogously. If s1 ∈
{−1, 1}, then Lemma C.8 of Guntuboyina et al. [44] implies a bound of

c(1 + δ
√
n1)
√

log(en1)

Otherwise if s1 = 0, then Lemma B.1 of the same paper [44] yields a bound of

c(δ
√
n1)

1
2 + c

√
log(en1).

Handling the second term in the same fashion concludes the proof.
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