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ABSTRACT OF THE DISSERTATION 

 

Prostate Cancer Detection with Micro-Ultrasound:  

Evaluation of Expert Readers and Deep Learning Classifiers 

Through Accurate Co-registration with Final Pathology 

 

by 

 

Jake William Pensa 

Doctor of Philosophy in Biomedical Engineering 

University of California, Los Angeles, 2024 

Professor Leonard S. Marks, Co-Chair 

Professor Corey Wells Arnold, Co-Chair 

 

 

Prostate cancer (PCa) is a leading cause of cancer related mortality in men in the United 

States. Imaging is crucial for PCa staging and treatment decisions. Currently, the gold 

standard is a multi-parametric magnetic resonance imaging (mpMRI) scan followed by 

confirmatory ultrasound (US) guided biopsy. While mpMRI has good sensitivity and 

specificity for index lesion detection, the largest and most aggressive lesion, it is 

resource intensive, expensive, and generally limited to larger centers.  

Micro-ultrasound (microUS) is a high-resolution US imaging system that has 

recently been introduced as a low-cost alternative to mpMRI for imaging PCa. While 
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preliminary results are encouraging, microUS lacks direct comparison with mpMRI and 

ground-truth whole-mount (WM) pathology. It also requires substantial hands-on 

experience for accurate interpretation. Ultimately, skepticism relative to established 

mpMRI imaging and barriers to entry for new users among other reasons have limited 

microUS adoption. 

This thesis details a comprehensive investigation into microUS imaging and its 

role in PCa diagnosis. To this end we performed a clinical trial collecting microUS images 

of patients undergoing radical prostatectomy for PCa with corresponding mpMRI 

imaging and WM pathology. Using this dataset, we were able to quantitatively explain 

the diagnostic ability of microUS, however its utility relative to mpMRI required further 

investigation. 

To quantify the diagnostic ability of microUS, expert and novice readers reviewed 

the collected microUS and mpMRI images. For correlation of the delineated regions of 

interest (ROIs), we developed and validated a novel co-registration process to allow for 

direct registration of microUS and mpMRI with WM pathology with a registration error 

of 3.90±0.11mm. Comparing the confirmed regions of cancer on WM pathology with the 

identified regions on microUS and mpMRI, we found microUS to have similar detection 

of index lesions to equivalent MRI review (91.7% vs 80%). In an attempt to alleviate inter-

reader variability and the reduced performance of novice users, we trained deep learning 

classifiers to identify PCa on microUS imaging using our accurately labeled data. These 

models exhibited expert level performance for image classification and targeted biopsy 

guidance. Further work is necessary for clinical adoption of deep learning models for 

microUS imaging of PCa. 
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CHAPTER 1 

Introduction 

 

1. Introduction 

Prostate cancer (PCa) is a leading cause of cancer related morbidity and mortality for 

men in the United States with a projected 35,000 deaths and 300,000 new cases in 2024 

[1]. While high-grade, clinically significant PCa can be deadly, low-grade, clinically 

insignificant PCa has less than a 2% chance of cancer specific mortality 10 years after 

diagnosis [2], [3]. As such accurate diagnosis is vital for proper treatment of PCa, since 

overtreatment of low-grade cancer can severely impact the quality of life of patients and 

increase healthcare expenditures, while undertreatment of high-grade cancer can be 

fatal [3]. 

 The conventional diagnostic pathway utilizes an ultrasound (US) guided 

systematic biopsy following an elevated value on a prostate-specific antigen (PSA) 

screening test [4]. While US allows for general gland visualization and biopsy guidance, 

it has poor sensitivity and specificity for tumor detection [5]. In contrast, multi-

parametric magnetic resonance imaging (mpMRI) has high sensitivity (86-92%) and 

specificity (60-83%) for identification of prostate cancer index lesions [6], [7], [8]. Index 

lesions are defined as the largest and most aggressive tumor in a prostate, the size and 

grade of which are often used to decide the appropriate treatment pathway [9]. 

Consequently, current recommendations include an MRI-guided biopsy or more 

commonly: MR-US fused biopsy [10], [11]. For fusion biopsies, a pre-biopsy mpMRI 

identified region-of-interest (ROI) is fused to a live US scan allowing for US guided 

targeted biopsy of an MRI ROI [12]. This targeted approach improves cancer detection, 
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however, mpMRI is resource intensive, has substantial inter-observer variability, can still 

fail to detect 10-15% of clinically significant lesions, and tumor volume estimates can be 

low as 1/3 of the true volume [7], [13], [14], [15]. In an effort to resolve these issues, a 

low-cost high resolution ultrasound technology known as micro-ultrasound (microUS) 

(ExactVu, Exact Imaging, Ontario Canada) has recently been introduced. This technology 

may enable direct identification of cancerous tissue on live US imaging, potentially 

mitigating the need for a pre-biopsy MRI. 

MicroUS is a promising new modality, however it has not been robustly evaluated 

against mpMRI in clinical studies validated by ground truth histology. Previous studies 

validated with tracked biopsy have demonstrated similar cancer detection rates between 

microUS (35%) and mpMRI (39%) with comparable sensitivities (93% vs 94%) and 

specificities (21% vs 17%) [16], [17], [18]. Although these studies have demonstrated 

promise for microUS imaging, the gold standard evaluation for prostate imaging is 

validation against ground truth whole-mount (WM) pathology slides. Furthermore, the 

system lacks a scientific justification for why increased resolution allows for PCa to be 

visualized. Additionally, as a new imaging modality, there is a considerable training 

requirement for new users to correctly interpret microUS images and considerable inter-

reader variability among expert reviewers [19]. Ultimately, skepticism relative to 

established mpMRI imaging and barriers to entry for new users among other reasons 

have limited microUS adoption. 

This thesis details our efforts to investigate and improve the diagnostic ability of 

microUS. Our central hypotheses are: 1) microUS enables cancer detection similar to 

mpMRI and 2) accuracy and ease of use can be improved through implementation of 

deep learning image classification algorithms. 
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1.1. Overview of Chapters 

Chapter 2 provides background information on prostate cancer and related imaging as 

well as an extensive review of microUS. Chapter 3 outlines a clinical trial in which 

microUS scans, mpMRI scans, and WM pathology slides were collected from patients 

undergoing radical prostatectomy for prostate cancer. Chapter 4 describes the 

development and validation of an ex vivo microUS scanning system and related co-

registration with WM pathology. Chapter 5 details the development, evaluation, and 

implementation of in vivo microUS registration with final histology. A reader study 

implementing this registration technique is subsequently performed to evaluate the 

diagnostic accuracy of microUS and MRI. Lastly, the implementation of deep learning 

classifiers for prostate cancer detection on microUS is explored in Chapter 6. Below is a 

brief summary of each chapter.  

 

1.1.1. Chapter 2 

This chapter serves to introduce the reader to prostate anatomy and associated cancer, 

with a focus on the morphology of cancer and the index lesion theory. From there it 

describes prostate cancer screening and diagnosis. Beyond that there is an overview of 

imaging, primarily ultrasound and mpMRI due to their prevalence in PCa diagnosis as 

well as the related fusion of the two modalities for targeted biopsy. The last section of 

this chapter covers microUS specifically, as well as deep learning approaches for 

prostate cancer imaging. The intersection of PCa morphology and imaging physics is 

vital for understanding mechanisms behind PCa visualization. Additionally, while US 

and mpMRI are both imaging modalities for visualizing the prostate, their specific roles 
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in the diagnostic pathway are different, as mpMRI is typically a noninvasive triage for 

biopsy. Conversely, US is transrectal, often requires local anesthesia, and imaging is 

performed during biopsy. MicroUS presents a new method of PCa visualization and 

diagnosis and the specifications of the system and preliminary studies are discussed. In 

addition, prior application of deep learning techniques for PCa on both MRI and microUS 

are highlighted. Ultimately, this chapter serves to frame the work presented in this thesis 

in context for the reader. 

 

1.1.2. Chapter 3 

In order to thoroughly investigate microUS imaging of prostate cancer, we needed to 

collect a high-quality dataset. Patients with biopsy confirmed prostate cancer and a 

recent mpMRI scan set to undergo radical prostatectomy were enrolled in a clinical trial. 

In the operating room on the day of surgery, patients received a comprehensive microUS 

scan of their prostate. Following radical prostatectomy and gland removal, the prostate 

received another microUS scan using a custom-built ex vivo scanning gantry developed 

and validated for this trial. After scanning, the prostate was grossed and sectioned 

following routine clinical practice. Furthermore, as a part of routine clinical practice, the 

prostate is sectioned in a patient specific 3D printed sectioning mold, a process 

implemented by our group. Following this process, we obtained spatially tracked, in vivo 

microUS, ex vivo microUS, mpMRI, and WM pathology for 86 patients with prostate 

cancer. To our knowledge this is the highest quality microUS imaging dataset collected 

to date, allowing for comprehensive examination of both mpMRI and microUS imaging. 

 As we acquired WM pathology and microUS imaging data, we used this data to 

investigate our hypothesis of why microUS imaging is diagnostic for PCa when 
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conventional US is not. In summary, our hypothesis was: there are morphological 

features that are 1) smaller than the resolution limit on conventional US (200µm) and 

larger than the resolution limit on microUS (70µm) and 2) these features correlate with 

the presence of cancer. Using computer vision, prostatic features were measured on WM 

pathology in regions of cancer and regions of benign tissue. Aligning with our 

hypothesis, we found prostatic ducts are generally too small to be resolved by 

conventional US but big enough to be resolved on microUS, and there is a significantly 

reduced amount of ductal space present in areas of cancer relative to benign tissue. 

While this is not a comprehensive explanation for why microUS is diagnostic for PCa, it 

does provide confidence that there is a measurable explanation for why microUS can 

visualize PCa when conventional US is non-diagnostic. 

 

1.1.3. Chapter 4 

In this chapter we cover the development and validation of our ex vivo scanning gantry 

introduced in the prior chapter. The system was designed to enable spatially tracked 

microUS imaging in the axial orientation, which is impossible to obtain natively with an 

in vivo scan. Using a translation stage, 3D printed flexible alignment molds, and US 

absorbent material, we were able to collect images that can be matched directly to 

mpMRI images and WM pathology slides. Furthermore, we also used the system to scan 

patients with conventional US probes, allowing for direct comparison between microUS 

and conventional US for visualization of prostate cancer. 

The goal of this scanning system is to facilitate co-registration of microUS 

imaging, mpMRI, and WM pathology. The crux of the issue lies in in vivo microUS imaging 

being acquired in a freehand rotational fan shaped, para-sagittal sweep in the rectum, 
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while mpMRI and WM pathology are both acquired axially. Furthermore, microUS probes 

only have an integrated rotational sensor, leaving the pitch and yaw untracked in 

addition to any translation. As such, accurate registration with mpMRI and WM 

pathology is challenging. At the time of starting this study it was not clear if this would 

be a surmountable challenge, as a prior study by Palmeri et al had to utilize zonal based 

registration rather than direct registration of para-sagittal US to final histology even with 

a mechanical stepper for scanning [20]. 

 The primary purpose of ex vivo microUS imaging was to facilitate straightforward 

registration of microUS with mpMRI and WM pathology, due to all imaging being in the 

axial orientation if in vivo registration proved too difficult. Furthermore, alternatively ex 

vivo microUS imaging could serve to inform the transformation of para-sagittal in vivo 

microUS to axial orientation due to improved spatial tracking. Briefly, ex vivo microUS 

imaging and mpMRI were registered to WM pathology through slice alignment, then a 

two-step capsule based registration. The first step involved a rigid alignment of capsule 

orientation, scaling, and rotation. The second step involved a non-rigid thin-plate-spline 

(TPS) registration to account for tissue deformation and differences in the capsule. To 

evaluate target registration error (TRE), common internal fiducials across all three 

methodologies were selected and the distance between each selected fiducial was 

measured. Registration of ex vivo microUS and mpMRI to WM pathology had a TRE of 

2.16mm ± 1.02mm and 2.34mm ± 1.35mm respectively, similar to other WM registration 

studies. 

 We then performed a pilot reader study. An expert microUS reader delineated 

regions of suspected cancer on ex vivo microUS imaging in 3 patients. These ROIs were 

subsequently registered to WM pathology and evaluated against the gold standard 
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mpMRI ROIs. The expert microUS reader was able to correctly identify 3/3 index lesions 

and 13/20 tumor cross-sections. Comparatively mpMRI review identified 2/3 index 

lesions and 4/20 tumor cross-sections. Ultimately these results provide confidence that 

if in vivo microUS registration with WM pathology is not possible, ex vivo imaging can 

be used as a proxy for tumor identification on WM pathology and data labeling for deep 

learning. While promising, the results presented in this chapter will need to be confirmed 

in a larger study. Additionally, ex vivo microUS imaging is not necessarily indicative of 

in vivo microUS imaging and its use limits the generalizability of this study. As such, 

implementation of in vivo imaging is preferred, the focus of the next chapter. 

 

1.1.4. Chapter 5 

In this chapter, we develop and validate a methodology for direct registration of in vivo 

microUS imaging with mpMRI and WM pathology. As mentioned in the prior chapter, 

this is challenging due to the scanning orientation and tissue deformation of native 

microUS imaging. More specifically, the para-sagittal orientation collected with limited 

probe positional information and the compression required to sufficiently interrogate 

the prostate makes registration difficult. In our preliminary efforts we found capsule-

based information alone is not informative enough to compensate for these registration 

issues, while the high amount of texture from diffuse US reflections provides excessive 

noise for mutual information-based registration.  

To overcome the challenges of in vivo microUS registration with WM pathology, 

we developed and validated a three-step registration methodology. The process consists 

of: 1) reconstruction of microUS imaging in the true sagittal orientation to allow for 3D 

positioning and approximation of the overall prostate gland shape 2) 3D capsule and 
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urethra based TPS registration of reconstructed microUS with MRI to account for tissue 

deformation from microUS scanning and reconstruction errors due to a lack of tracked 

positional information during scanning, and 3) 2D capsule based registration of MRI 

imaging with WM pathology sections.  After validation of this process, the overall 

registration error was found to be 3.90±0.11mm, on par with commercial MR-US fusion 

systems and prior published MRI to WM registration studies [21], [22]. 

Following registration, we performed a reader study to evaluate the diagnostic 

accuracy of microUS relative to MRI using direct evaluation against WM pathology. 

Utilizing the developed registration methodology we accurately registered microUS and 

MRI delineations to WM pathology sections and measured the degree of overlap between 

reviewer identified ROIs and the actual extent of cancer. 

 Expert and novice readers delineated regions of interest on microUS scans from 

15 patients. In addition to the original MRI review prior to surgery, an expert radiologist 

also performed a retrospective read of the microUS cases for equal comparison to the 

retrospective microUS review. Utilizing the developed registration process, the reviewer 

delineations were co-registered to WM pathology and ROI agreement with WM confirmed 

cancer locations and extent was quantitatively measured. This direct registration allows 

for an especially granular analysis of both mpMRI and microUS providing a rigorous 

investigation into the two modalities. Expert microUS readers were found to have 

equivalent performance to mpMRI for prostate cancer detection with similar rates of 

index lesion identification (91.7% vs 80% respectively), slightly improved identification 

of tumor extent (52.5% vs 36.7% respectively), and similar false positive rates (38.3% vs 

40.8%). We also found a significant difference in microUS results based on reviewer 

expertise, as the urologist with limited microUS experience identified only 50% of the 
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index lesions and had significantly worse lesion overlap than the other three expert 

microUS readers. As such, we concluded training beyond baseline competency and 

overall biopsy experience is vital for correct interpretation of microUS imaging 

highlighting the need for deep learning solutions to alleviate these barriers to adoption. 

 

1.1.5. Chapter 6 

This chapter describes the development and evaluation of a deep learning solution for 

prostate cancer identification on microUS. As noted earlier, utilization of accurate deep 

learning models may eradicate much of the inter-reader variability and training 

requirement surrounding microUS implementation. In this chapter, we train and validate 

microUS classifiers on high quality labeled data with direct comparison to the 

classification ability of expert microUS and MRI reviewers. 

 Inverting the order of the registration process developed in chapter 5, we labeled 

reconstructed microUS imaging with the location of WM pathology confirmed prostate 

cancer. If an image contained confirmed cancer, it was labeled as cancerous, and if it did 

not contain any WM confirmed lesions it was labeled as benign. With the data labeled, 

pretrained image net models were fine-tuned on a subset of the dataset. Withheld data 

from training was used to quantify the accuracy of the microUS models. For a pilot study 

we evaluated the potential of deep learning classifiers in a dataset of 15 patients (12 

training, 3 test) and found similar results to expert reviewers (78.9% vs 60.6% respective 

sensitivity, 72.7% vs 80.5% respective specificity) with an AUC of 0.80. We then confirmed 

these results in a larger study with 100 patients and three different methods of training. 

In this study the deep learning classifier achieved an AUC of 0.82 and equal sensitivity 

to the expert reviewers (0.72 vs 0.71 respectively) at similar specificity (0.8 vs 0.83 
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respectively). Furthermore, when confined to only predicting one image per patient as 

prostate cancer, to approximate identifying a targeted biopsy location, the microUS 

classifier identified clinically significant PCa 82.6% of the time. For reference, the center 

of the MRI identified ROI (gold standard) identified clinically significant cancer 80% of 

the time. Ultimately, these results indicate deep learning models can be used to identify 

prostate cancer on microUS and have the ability to alleviate much of the challenges 

associated with microUS adoption. 
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CHAPTER 2 

Background 

 

2. Background 
2.1. Prostate Anatomy and Cancer 

2.1.1. Prostate Anatomy 

The prostate is a “walnut-shaped” gland located in subperitoneal compartment anterior 

to the rectum [23]. The gland is comprised of 3 main zones: the peripheral zone (70% of 

prostate volume), central zone (25% of prostate volume), and transition zone (5% of 

prostate volume) (Figure 1)  [23], [24]. 

 The peripheral zone is primarily located in the posterior of the prostate at 

midline and also comprises the apical horn and lateral edges. The peripheral zone is also  

Figure 1: Sagittal view of Prostate Zonal Anatomy [226]. 
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filled with prostate ducts with a width of approximately 135µm [25].The base of the 

prostate is connected to the base of the bladder and seminal vesicles, the urethra runs 

through the anterior base of the prostate at midline and exits the prostate at the apical 

horn in a curved fashion. The neurovascular bundles responsible for controlling urinary 

and sexual function are located at both lateral sides outside the apex of the prostate. 

The ejaculatory ducts run parallel to the posterior capsule at the base of the prostate at 

midline, and separate the peripheral zone from the central zone. Approximately 70% of 

cases of prostate cancer arise in the peripheral zone, 25% originates in the transition 

zone, and very few cancers originate in the central zone [23], [24]. 

 

2.1.2. Prostate Cancer 

Prostate cancer (PCa) is a leading cause of cancer related morbidity and mortality for 

men in the United States with a projected 35,000 deaths and 300,000 new cases in 2024 

[1]. While clinically significant, Gleason score 3+4 or higher, prostate cancer can be 

deadly for the patient, patients with low grade clinically insignificant prostate cancer, 

Gleason score 3+3 or lower, have less than a 2% risk of cancer specific mortality 10 years 

after diagnosis when properly managed [2], [3], [26]. Autopsy studies have shown that 

up to 40% of men older than age 50 will develop some level of microscopic prostate 

cancer but less than 20% will develop clinically significant prostate cancer in their 

lifetime [27]. Also referred to as Grade Group 1, early detection of clinically insignificant 

prostate cancer can lead to overtreatment of the disease, side effects of which are 

decreased quality of life for the patient as well as increased health care expenditures [3]. 

Common complications arise from damaged nerves during treatment, most notably 

incontinence and impotence which greatly diminish patient quality of life. As a result, 
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patients diagnosed with low risk prostate cancer are recommended to be enrolled in 

active surveillance of their disease, where the disease is monitored over a span of several 

years, and only treated once the cancer becomes clinically significant [2], [28]. 

 

2.1.3. Histopathology of Prostate Cancer 

The Gleason grade and type of prostate cancer are best determined through 

histopathological analysis from either biopsy cores or tissue specimen (Figure 2) [29]. 

Prostate cancer is defined as a malignant neoplasm or uncontrolled abnormal growth of 

cells in the prostate. The vast majority of these neoplasms are carcinomas and of 

epithelial origin [29]. 

 The two main forms of prostate cancer are intraductal carcinoma (17-40% of 

radical prostatectomies) and adenocarcinomas (72% of radical prostatectomies) which 

fall under the World Health Organizations glandular neoplasms classification of prostate 

tumor morphology [29], [30], [31]. Intraductal carcinoma is characterized by epithelial 

cell proliferation that fills acini and prostate ducts and is often associated with solid or 

dense cribriform pattern. Linked to aggressive prostate cancer, it is often found 

alongside high-grade, high-stage adenocarcinoma [29], [32]. Adenocarcinoma is 

Figure 2: Gleason Grades of adenocarcinoma from biopsy cores. Gleason 3+3 (left), 4+4 (middle) and 5+5 (right). 

Gleason grades of 4 or higher are considered clinically significant cancer [29]. 
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characterized by the disturbance of benign epithelial-stromal relationships. Gleason 

grade 1 and 2 glands are single, separate, and well formed, at Gleason grade 3 the glands 

become crowded and begin to infiltrate the stroma, however, the glands are still discrete 

and well-formed [29], [33]. High-grade Gleason grade 4 has poorly formed fused 

cribriform glands and at Gleason 5 cells form sheets of tumors, linear arrays, and solid 

nests of malignant cells with an overall lack of gland formation [29], [33]. As a result of 

malignant neoplasm many high grade clinically significant prostate cancers are 

characterized by dense tumors, a predominant reason why T2 weighted MRI imaging is 

a useful tool for delineation of tumors due to decreased signal from a lack of free-water 

content [34], [35]. Gleason score is often used interchangeably with grade group (GG), 

the latter released in 2014 by the International Society of Urological Pathology (ISUP) 

[33]. Grade group 1 is equivalent to Gleason score 3+3, as such GG ≥ 2 is often used to 

denote clinically significant cancer. 

 

2.1.4. Index Lesion Theory 

More than 60% of prostate cancers at the point of radical prostatectomy are multi-

focal with multiple distinct genetically distinct cancer clones [36], [37], [38], [39], [40], 

[41]. However, metastatic cancer often responsible for patient death originates from a 

single precursor parent cell from a single precursor lesion [42]. This information is the 

basis behind the index lesion theory which states the largest and most aggressive tumor 

is responsible for disease progression [43], [44], [45]. Based on this theory, the primary 

focus for prostate cancer management should be to accurately diagnose and base 

treatment on the size, severity, and location of the index lesion [43]. Identifying and 
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grading the index lesion in patients is crucial for patient care, and heavily dependent on 

prostate imaging and biopsy. 

 

2.1.5. Prostate Cancer Screening 

The strongest risk factors for prostate cancer are old age, black ethnicity, and a positive 

family history [46].  In the United States, 90% of prostate cancer is detected by screening 

[46], [47]. From 1985 to 2007 the lifetime risk of diagnosis of prostate cancer nearly 

doubled from 9% to 16% due to the advent of prostate-specific antigen (PSA) screening 

[46], [48], [49]. Prior to the use of PSA testing a digital rectal exam (DRE) was the primary 

screening test for prostate cancer. However, this exam has considerable inter-examiner 

variability and the majority of DRE positive detections are advanced stage cancers [46], 

[50], [51]. A PSA test measures the level of PSA in the bloodstream, a protein produced 

by normal as well as malignant prostate cells [52]. However, most abnormal PSA values 

are false positives and approximately 15% of normal PSA values are false negatives [46]. 

Furthermore, it is estimated that 23-42% of PSA-detected cancers are over-diagnosed, 

leading to potential over-treatment of insignificant cancer [46], [53]. Results from 1,226 

men have shown that the PSA values are more insightful when normalized for the 

patient’s gland size also known as PSA density (PSAD), and in particular a low PSAD 

below 0.09ng/mL2 is protective against the patient having clinically significant prostate 

cancer [54]. Due to the uncertainty of PSA and DRE testing, it is difficult to accurately 

diagnose clinically significant prostate cancer [46]. As a result, positive screening results 

often warrant a follow up biopsy to allow for histopathological analysis [55]. 
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2.1.6. Prostate Diagnosis 

Following an elevated result during cancer screening, the traditional diagnostic pathway 

will typically employ a confirmatory ultrasound guided biopsy. When available, larger 

centers will also utilize multiparametric MRI to identify any suspicious regions for 

targeted biopsy.  

Since the development of transrectal ultrasound (TRUS) in the 1970’s, US has had 

a vital role in prostate gland visualization and guiding of systematic 12-core biopsies 

(Figure 3) [56], [57], [58]. Prior to the advent of PSA testing in the late 1980’s, prostate 

cancer screening relied heavily on DRE’s for diagnosis, resulting in cancers that were 

later stage and larger at time of biopsy than they are today, many of which were visible 

Figure 3: A) - Anatomic position of the prostate and the relative orientation 

of transrectal and transperineal biopsies; both are guided via transrectal 

ultrasound. B) - Illustration of a systematic biopsy. C) – Illustration of a 

targeted biopsy. 
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on US [5], [59]. Following the United States Food and Drug Administration (FDA) approval 

of PSA testing in 1986 prostate cancer is generally identified at earlier stages and smaller 

than it was in prior decades. Consequently, ultrasound has poor sensitivity and 

specificity for prostate cancer with biopsy results often identifying benign tissue in 

hypoechoic regions while cancer is found within otherwise inconspicuous isoechoic 

regions [5]. However, US scans are still vital for prostate cancer screening as they help 

guide biopsy cores for systematic sampling, and allow physicians to accurately measure 

the volume of the gland to calculate PSA density, a metric that is reported to have similar 

sensitivity, but superior specificity to PSA for predicting clinically significant prostate 

cancer [60], [61], [62], [63].  

Due to US having limited diagnostic utility for visualizing PCa, if alternative 

imaging is not available, TRUS biopsies are typically performed following a 12-core 

template, known as a systematic biopsy (Figure 3B). A systematic biopsy samples the 

prostate at standardized locations to minimize the number of cores taken while 

retaining confidence for prostate cancer identification [4].  

However, it has been shown targeted biopsies improve clinically significant cancer 

detection rates and as such are recommended for biopsy [10], [64]. Targeted biopsy 

seeks to maximize biopsy yield by acquiring samples from suspicious regions identified 

on diagnostic imaging (Figure 3C).  A combination of these strategies is often used to 

identify prostate cancer during biopsy. The current recommended diagnostic strategy is 

a pre-biopsy, multi-parametric magnetic resonance imaging (mpMRI) scan which has 

demonstrated improved sensitivity (89%) and specificity (73%) over standard US for 

imaging prostate cancer [6], [8], [10], [64]. To fully utilize mpMRI imaging for prostate 

cancer detection, radiologist-identified suspicious lesions are fused to 3D ultrasound 
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scans to allow for real-time visualization during biopsy [12], [65]. While it is possible to 

do in-bore MRI-guided biopsy, these procedures are resource intensive, time consuming, 

complex, and often cost prohibitive, and do not offer a substantial diagnostic benefit 

over less expensive, and more time efficient, MRI-US fusion biopsies [11]. In general, use 

of US-guided MRI targeted prostate biopsies are superior to traditional systematic US-

guided biopsy, with higher rates of identification of clinically significant prostate cancer 

and fewer diagnosis of clinically insignificant cancer [64]. 

 

2.2. Prostate Cancer Imaging 

With advances in PSA screening early detection of prostate cancer has dramatically 

increased [46]. As a result, the importance of tumor grading and patient risk 

stratification has become vital to patient care to prioritize treatment for patients with 

high grade PCa and avoid treatment for low-grade PCa. Biopsy cores are the gold 

standard for grading prostate cancer [5], [29]. Imaging when used before or during 

prostate biopsy plays a critical role in prostate cancer diagnosis as well as treatment 

planning [5], [12], [66]. There are a number of different imaging modalities used for 

prostate cancer imaging including: ultrasound (US), magnetic resonance imaging, (MRI), 

computed tomography (CT) and positron emission tomography (PET)-CT, and 

radionuclide bone scanning [67]. In order to provide optimal care and avoid 

overtreatment, an ideal imaging modality should allow physicians to identify clinically 

significant cancer from clinically insignificant cancer [2], [3], [67]. 
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2.2.1. Ultrasound 

Conventional US is widely used clinically for visualizing the prostate during biopsy 

procedures and measuring the size of the prostate [67]. Performed either transrectally 

or transperineally, US without biopsy is about as accurate as DRE, with retrospective 

studies showing upwards of 40% of tumors are isoechoic under US [59], [67], [68], [69]. 

With earlier detection of prostate cancer due to PSA testing, the majority of lesions are 

smaller and earlier-stage than before [67]. In the 1980s, cancer was often diagnosed at a 

later stage resulting in US having higher sensitivity and specificity for prostate cancer, 

but today with many biopsy detected cancers are not visible on US and many hypoechoic 

areas do not appear to be malignant at biopsy [67]. As a result, US alone has poor 

sensitivity and specificity for the detection of prostate cancer without biopsy [67]. 

Ultrasound Imaging 

US utilizes a transducer to generate images. An US transducer converts electrical energy 

into mechanical pressure waves based on the piezoelectric effect [70], [71]. The 

piezoelectric effect is the ability of certain materials to generate electrical charge in 

response to applied mechanical stress, or inversely the generation of stress when an 

electric field is applied, and this phenomenon is the basis for artificial sound production 

and detection [71], [72]. A material’s piezoelectric properties are based on atomic scale 

polarization, and to be piezoelectric a material must be non-centrosymmetric: does not 

have points of inversion symmetry throughout its volume [71], [73]. US machines 

commonly utilize lead zirconate titanate (PZT) crystal elements either as a single element 

or as a broadband transducer with multiple elements [70]. Applying an electric field to 

these crystals in a controlled manner allows for the generation of pressure waves. The 

peak of the wave is where the pressure is higher than ambient pressure and, and the 
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valley of the wave is where the pressure is lower than ambient pressure [74]. 

Conventional US machines generate longitudinal mechanical pressure waves at a 

frequency of 2-15 MHz, much higher than the upper human auditory limit of 20 kHz 

[69], [74], [75]. Mechanical waves must pass through a medium. Longitudinal waves 

oscillate in the same direction of wave propagation. Transverse or shear waves are 

perpendicular to the longitudinal wave and are rapidly attenuated in tissue, providing 

no role in standard brightness-mode (B-mode) medical imaging [74]. 

US machines primarily employ a pulse-echo imaging with a B-mode display [74]. 

In pulse-echo imaging an initial US pressure wave, generated by the transducer, is 

transmitted through the imaging specimen. The power per unit cross-sectional area of 

the pulse is defined as the acoustic intensity [74]. The more concentrated or focused the 

US pulse, the higher the intensity. Acoustic intensity is directly correlated with bioeffects 

such as tissue destruction from heating due to exposure to US energy and is the basis 

for tissue death in High-Intensity Focused Ultrasound (HIFU) [76]. In standard imaging 

as the pulse (often referred to as the US beam) propagates through the tissue a small 

fraction reflects off of heterogeneous structures and part of this echo travels back to 

the transducer which detects the echo during the listening phase. The rest of the US 

beam travels deeper into tissue and reflections continue with each encountered 

heterogeneous structure (Figure 4). These echoes are detected and processed to generate 

a pixel map of the intensity of reflections detected by the transducer, giving a B-mode 

image. In B-mode imaging the stronger the reflection, the brighter the structure appears 

[74]. A complete image is obtained by many co-planar pulse-echo cycles, with the next 

US beam pulse beginning after all the all the echoes have been detected and processed 
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from the first pulse. This process of successive pulse-echoes is then repeated for the 

next frame, and imaging can generate up to 40 frames per second [74]. 

Ultrasound Properties 

The intensity of the reflected US echo is heavily dependent on an intrinsic material 

property known as acoustic impedance (Z). The specific acoustic impedance of a medium 

(𝑍)  is defined as: 

𝑍 =  𝜌𝑐 

𝜌 is the tissue density and 𝑐 is the speed of sound in the medium [74]. A table of speeds 

of sound for biological tissue can be seen in below (Table 1). The average speed of sound 

in biological tissue is 1,540 m/sec and US scanners assume this speed to determine the 

depth at which echoes are produced [74]. The formula for depth (𝐷) is: 

𝐷 =
𝑡 ∗ 𝑐

2
 

𝑡 is the time it takes from pulse generation to echo detection. The wavelength of the US 

beam (𝜆) is defined as a function of the speed of sound divided by the frequency (𝑓) 

Figure 4: US beam imaging a heterogenous specimen. Part of the beam reflects off of the 

interface of Z1 and Z2 and part of the beam continues to travel into the specimen [74]. 
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Table 1: Speed of sound in various biologic mediums [74]. 

 

𝜆 =  
𝑐

𝑓
 

Ultrasound wavelengths in tissue range from 0.77mm at 2MHz to 0.10 mm at 15MHz 

[74]. The echo pressure amplitude of an US beam can vary by a factor of 105 or greater 

so relative pressure and intensity are expressed in decibels (dB) [74]. The formulas for 

relative pressure and relative intensity are: 

20 log
𝑃2

𝑃1
 and 10 log

𝐼2

𝐼1
 

When an incident US pulse hits a large smooth interface between two different 

homogeneous mediums a partially reflected echo travels back to the transducer, and a 

partially transmitted pulse travels deeper into the imaging specimen (Figure 3). Known 

as specular reflection, the intensities of the reflected and transmitted pulses sum to the 

intensity of the original pulse, and for a normal (90°) incidence the intensity of the 

reflected pulse (𝐼𝑟) is defined as: 

𝐼𝑟 =  𝐼0

(𝑍2 − 𝑍1)2

(𝑍2 + 𝑍1)2
 

Medium Speed of Sound [m/sec] 

Fat 1450 

Amniotic Fluid 1540 

Kidney 1565 

Muscle 1600 

Bone 4080 
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Where 𝐼0 is the initial beam intensity, 𝑍1 is the acoustic impedance of the first medium, 

and 𝑍2 is the acoustic impedance of the second medium. The ratio of 
𝐼𝑟

𝐼0
⁄  is the intensity 

reflection coefficient between two mediums. As the acoustic impedance difference (Δ𝑍) 

between two mediums increases the intensity of the reflected echo increases as well [74]. 

For example, the Δ𝑍 between air and tissue is extremely high and can result in a lack of 

beam penetration, so to remedy this US gel is used which decreases the acoustic 

impedance difference allowing for better beam penetration. 

The angel of incidence of a specular boundary is not always normal, and in this 

case the echo will not travel directly back to the transducer, and if the boundary is rough 

there will be a diffuse reflection through a wide variety of angles and only a portion of 

the beam will reflect back to the transducer resulting in a dimmer echo on the B-mode 

image. For nonperpendicular incidence of an US beam on two different media, the 

behavior of the transmitted beam behaves in accordance with Snell’s law: 

sin 𝜃2

sin 𝜃1
=

𝑣2

𝑣1
=

𝑛1

𝑛2
 

Where 𝜃 is the angle from the normal of the boundary, 𝑣 is the velocity of the US beam 

in the respective medium, and 𝑛 is the refractive index of the medium [74]. 

If the reflector with dimensions (𝑑) is such that 𝑑 ≪ 𝜆 the US beam will scatter 

and the beam will be reflected in a wide range of angles (Figure 5). Similar to diffuse 

reflection the echo intensity will be greatly reduced, but the echo intensity will be 

detected regardless off the incident angle. This speckle signal provides the visible 

texture in most organs due to the inherent heterogenous nature of tissue and the 

presence of many small scattering structures. The appearance of the speckle is 

dependent on the axial and lateral dimensions of the US pulse as well as the orientation 
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of the of the speckle cells. This appearance will not change with time, but rather with 

changes of the transducer position and orientation [74]. As US resolution increases 

larger specular reflections will transition to diffuse reflections. 

Another tenant of US imaging is that as US pulses travel through tissue their 

intensity is attenuated due to reflection and scattering, beam divergence, and friction-

like losses (heat absorption). Absorption is the most important factor of US attenuation. 

Attenuation is measured in loss of intensity decibels per centimeter of tissue traveled 

per megahertz (dB/cm/MHz), as it is approximately proportional to the path length and 

US frequency. For soft tissue attenuation is generally between 0.3-0.8 dB/cm/MHz, and 

thus to image deeper into tissue lower US frequencies are required at the cost of imaging 

resolution [74]. 

Ultrasound Pulses 

US pulses generated by a transducer are generally have a short spatial pulse length, the 

number of cycles in a pulse multiplied by the wavelength. Short pulse lengths generally 

have the best axial resolution. This is accomplished by electronically exciting the 

Figure 5: Specular reflections depend on the size of the reflector relative to 

the US wavelength resulting in scattering of the US signal  [74]. 
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piezoelectric elements for a very short time (1µsec or less). Axial resolution is constant 

as the pulse propagates to greater depths. Similarly, the narrower a pulse is in the lateral 

direction, the better the lateral resolution. This is achieved by focusing the transducer, 

which can be accomplished for single crystal elements by mechanical focusing. Examples 

of this include curving the transducer or using an acoustic lens. Regardless of 

mechanical focusing, all US beams have widths that (lateral resolution) that vary with 

distance from the transducer. The focal distance is the point of narrowest width, with 

the near field being closer than the focal distance, and the far field being further. 

Focusing can only occur in the near field. Higher US frequencies have narrower widths 

at the focal distance, giving improved lateral resolution, but this produces a trade-off 

since higher frequencies have increased attenuation leading to weaker signals at greater 

depths. Lastly side lobes are unwanted regions of US intensity that lie off the axis of the 

main beam. Side lobes are much weaker than the main US beam but are present for all 

transducers and have the ability to produce image artifacts[74]. 

US Beam Scanning 

Most modern US probes consist of an array of transducers that are activated in subsets 

to scan the US beam across the imaging plane. These arrays often consist of around 128 

to 196 elements. By activating a subset of elements, the US beam is centered over the 

activated elements, and changing the activated elements laterally the beam line also 

shifts laterally (Figure 6). Generally, for readout a larger number of elements are used to 

receive the returning echoes than those used to produce the US beam. This results in 

image acquisition across the entire field of view (FOV) in less than 1/10 of a second [74]. 
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By altering the shape of the array, such as a convex arc, also known as a curvilinear-

array, FOV and beam shape can be changed. Furthermore, the timing of element 

activation to produce non perpendicular US beams. Timing offsets, at both beam 

formation and readout, can also be used to focus beams laterally for improved lateral 

resolution. Elevational resolution, also known as beam thickness, is commonly 

controlled through mechanical focusing, and like lateral resolution, varies with depth 

[69]. 

US Echo Detection and Signal Processing 

After receiving an echo, it is amplified in several stages. The transducer immediately 

applies a uniform preamplification to the detected signal, and then a user-controlled 

gain is applied in addition. To account for attenuation in the image, a depth dependent 

Figure 6: : Diagram of US scanning in a linear-array transducer [74]. 
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gain, also known as timer-gain compensation (TGC), is applied to the echoes as well, with 

deeper echoes receiving greater amplification [74]. 

A logarithmic transformation is then applied to the signal to decrease the 

dynamic range and allow for representation on an 8-bit display. Furthermore, 

oscillations at the US frequency are filtered out along with very small signals in an effort 

to improve the signal to noise ratio [74].  

Advanced Ultrasound Techniques 

Beyond standard B-mode imaging, there has been considerable research in contrast 

enhanced ultrasound (CEUS), elastography, and quantitative ultrasound, for 

visualization of prostate cancer [77], [78], [79], [80], [81]. Furthermore, these techniques 

can be applied to microUS imaging which can allow for further improvement in 

ultrasound imaging of prostate cancer as techniques are developed [78], [82].  

CEUS utilizes gas filled microbubbles to increase US reflections for greater signal 

to noise ratio in vascular architecture through subharmonic imaging (signal at half the 

transmit frequency) isolation of the micro-bubble signature from surrounding tissue 

[78], [83]. Advances in CEUS imaging have allowed for detection of individual 

microbubbles allowing for microvascular visualization [78]. While CEUS is promising, 

subharmonic imaging relies on low amplitude signals and tissue perfusion, which is 

often low for prostate relative to other organs such as the liver. Beyond that it requires 

an injection of contrast during the biopsy for visualization increasing the complexity of 

the procedure. Meta-analysis of six CEUS studies report only a minor increase of 2-8% in 

cancer detection rates for CEUS targeted biopsies over systematic template biopsies [77]. 

For reference the same meta-analysis of 15 studies reported up to a 43% increase in 

cancer detection for mpMRI targeted biopsies over systematic biopsies [77]. 
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Elastography has two modes: strain and shear wave elastography. Utilizing the 

increased density of PCa relative to surrounding tissue, elastography attempts to 

quantify tissue stiffness, overlaying elastography information on B-mode imaging [78]. 

Strain elastography requires tissue compression, then the transducer performs 

compression and decompression cycles to measure tissue stiffness [78]. Shear wave 

elastography measures shear wave speed related to elasticity or the Young’s modulus, 

and requires the transducer to not compress the prostatic tissue to avoid incorrect 

measurements [78]. Both types of elastography are highly dependent on operator skill, 

furthermore, acoustic forces reaching the anterior of the prostate are often limited and 

compression from prior B-mode imaging can diminish shear wave elastography results 

[78]. Meta-analysis from five elastography studies found elastography increased cancer 

detection rates by 7-15% relative to systematic biopsy [77]. 

Quantitative ultrasound applies power-spectrum analysis on US radiofrequency 

(RF) signals to quantify the bio-acoustic properties of tissue. Backscatter normalization 

allows for elimination of instrument-setting variables on results [80]. Resulting 

parametric maps have demonstrated potential for prostate cancer visualization when 

evaluated against ground truth WM pathology [80]. However, quantitative US requires 

substantial processing to create parametric maps limiting real-time application. 

 

2.2.2. Multi-parametric Magnetic Resonance Imaging 

MRI, specifically, multiparametric MRI (mpMRI) (Figure 7), has been in use for prostate 

cancer imaging since the 1980’s [6]. In contrast to US, mpMRI has high sensitivity (86-

92%) and specificity (60-83%) for identification of prostate cancer index lesions [6], [7], 

[8]. However, mpMRI is resource intensive, has high inter-reader variability, can still fail 
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to detect 10-15% of tumors, and routinely underestimates tumor volume by as much as 

1/3 [7], [13], [14], [15]. Originally focusing on only T1-weighted and T2-weighted 

sequences, mpMRI imaging for prostate cancer have expanded to include diffusion-

weighted imaging (DWI), dynamic-contrast enhanced imaging (DCEI), and, when 

available, magnetic resonance spectroscopy imaging (MRSI) providing a variety of 

different contrast mechanisms to improve diagnostic accuracy of prostate cancer [6]. 

MRI is based on manipulating the alignment of atomic nuclei of water molecules 

with an external magnetic field to produce an external radio frequency (RF) signal. By 

aligning the nuclei and measuring the RF signal upon relaxation at various points various 

emitted signals can be measured [84].  

T1-Weighted Imaging 

T1-weighted imaging uses longitudinal relaxation of protons for contrast and is obtained 

from short repetition time (TR) and short time from RF pulse to echo signal (TE) [84]. 

Figure 7: Example subset of sequences comprising an mpMRI prostate scan. The images are all from the same 

location in the prostate and the specific sequences are: a) T2 b) DWI c) ADC d) DCEI [6]. 
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T1-weighed imaging provides good contrast for identifying lymph nodes and bone 

structures, and in the context of prostate cancer, is useful for detecting hemorrhaging 

that can obscure or mimic cancers [6], [85], [86]. However, prostate cancer does not have 

any noticeable changes on T1-weighted imaging [6], [87]. 

T2-Weighted Imaging 

T2-weighted imaging uses transverse relaxation time for contrast and is obtained from 

longer TE and TR times relative to T1 imaging [84]. T2-weighted imaging highlights the 

water content of tissue which is directly related to cellularity [6], [87]. For prostate 

imaging T2 imaging provides a highly defined anatomical image with distinguishable 

zonal architecture and excellent soft-tissue contrast [6], [88]. In healthy prostate tissue, 

the peripheral zone appears homogenous and hyperintense on T2 imaging due to high 

glandular ductal tissue content [6], [87]. Prostate cancer is characterized by high 

cellularity and low water constant due to a disruption of the normal ductal pattern, 

resulting in hypointense regions on T2-weighted imaging [6], [87]. The transition zone, 

however, is heterogeneous and given every prostate is morphologically unique, cancer 

detection in this zone on T2 imaging is challenging [6], [86]. Furthermore, other changes 

may mimic prostate cancer on T2 imaging, such as prostatitis, scars, irradiation, 

hormone treatment, and post-biopsy hemorrhaging [6], [85]. As a result, T2 imaging is 

great at identifying suspicious areas, and the sensitivity of detection is improved with 

the use of DWI [6]. 

Diffusion-Weighted Imaging 

DWI imaging quantifies the random movement of water molecules within tissue, which 

is generally high in nonmalignant tissue, but lower in cancerous tissue due to increased 

epithelium and higher cellularity [6], [85]. The apparent diffusion coefficient (ADC) 
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reflects the ability of water to move and is mapped by performing DWI at multiple 

magnetic field strengths [6]. On DWI suspicious areas appear as a bright spot surrounded 

by low signal tissue, and conversely on an ADC map prostate cancer appears as a low 

signal area with a lower signal for increasing Gleason scores [6], [89]. DWI with T2 

imaging has been proven to improve sensitivity (0.76) and specificity (0.82) over T2 

imaging alone as well as improve characterization of transition zone tumors [6], [90], 

[91]. 

Dynamic Contrast-Enhanced Imaging 

DCEI as the name suggests relies on gadolinium-based contrast, and is generated by 

rapid acquisition of a series of T1-weighted images following intravenous injection. The 

goal of DCEI is to evaluate tumor angiogenesis based on the velocity and intensity of 

contrast agent uptake of tissue[6], [92]. Areas of increased contrast intensity are 

associated with prostate cancer, however other benign conditions can also be 

hyperintense, resulting in a sensitivity range of 46-90% and specificity range of 74-96% 

for DCEI alone [6], [92]. DCEI is particularly valuable when T2 imaging and DWI are 

uncertain or degraded by artifacts, and in instances of local recurrence after intervention 

such as resection and focal therapy where prostate morphology is altered [6], [86], [93], 

[94]. 

Magnetic Resonance Spectroscopy Imaging 

MRSI sequences highlight the expression of specific metabolites such as citrate and 

choline [6], [95]. Citrate is produced by nonmalignant prostatic tissue but its production 

is reduced in cancerous tissue, while conversely choline, a cell membrane component,  

levels are high in cancerous tissue but low in non-malignant tissue [6], [95]. MRSI alone 

has a sensitivity of 75-89% and a specificity of 77-91%, but is currently limited to use in 
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large academic centers due to related costs, availability, and limited research supporting 

extensive use [96], [97]. 

MRI Interpretation 

Interpreting a mpMRI scan can be subject to significant interobserver variability, and a 

big challenge has been standardizing scoring between observers [6], [15]. Initially, a 

subjective score was assigned based on the radiologist’s subjective opinion, known as 

the Likert score [6], [98]. Due to the high rate of inter-observer variability, the Prostate 

Imaging Reporting and Data System (PI-RADS) v1 was developed in 2012, applying rigid 

criteria to specific scores [6], [87]. This system assigned a score for each sequence (T2, 

DWI, DCEI, and MRSI when available) and a total score based on these scores, however it 

was a complex system, time-consuming, and had poor reducibility [6]. To fix these issues 

PI-RADS v2 was published in 2014 [86]. The scoring system is continually being 

optimized with new guidelines being established with the most current version being PI-

RADS v2.1. As a pre-biopsy scan PI-RADS is designed to prioritize specificity to 

potentially avoid unnecessary biopsies while also maintaining high sensitivity. 

Consequently, mpMRI identified suspicious regions can miss 10-15% of tumors and 

routinely underestimate tumor volumes by as much as a 1/3 [7], [13], [14]. 

 

2.2.3. PSMA PET-CT 

Prostate-specific membrane antigen (PSMA) is overly expressed in many PCa cells 

allowing for PET imaging ligands [99]. The FDA has approved a gallium based radiotracer 

for prostate cancer imaging [99]. In PET-CT imaging a radioactive tracer is created in a 

cyclotron and injected into a patient prior to scanning to circulate in the body. The 

unstable radioactive material will decay after some time and emit a positron. The 
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positron scatters in tissue losing energy before colliding with an electron and 

annihilating in two antiparallel photons [100]. These paired photons are subsequently 

detected by the PET scanner and used to localize the radiotracer in a CT image. The 

amount of distance the positron travels before annihilating is based on the energy of the 

positron and directly affects the spatial resolution of the signal relative to the true 

location of the tracer decay [100]. The gallium-based radiotracer for PSMA PET has a 

maximum path length of approximately 9mm, and with scattering the misposition error 

is roughly 1.6mm on average [100], [101]. Through fusion with MRI or region-based 

mapping of PSMA PET targets it is possible biopsy identified hotspots for PCa. 

 PSMA PET-CT has demonstrated similar performance to mpMRI for prostate 

cancer detection when evaluated against ground-truth whole-mount (WM) pathology 

[102]. Furthermore, the use of both PSMA PET-CT and mpMRI allows for improved 

detection and delineation of tumors [102], [103]. While promising, PSMA PET-CT is 

similarly resource intensive as a cyclotron is required to manufacture radiotracers with 

relatively short half-lives, ultimately limited it to larger centers. Furthermore, the 

radioactive tracer causes potentially harmful radiation resulting in longer stays for 

patients before and after scans. 

 

2.3. MRI-US Fusion 

In the last decade, 3D ultrasound fusion devices have revolutionized prostate biopsies, 

allowing for precision targeting of suspicious lesions and improved detection rates of 

clinically significant cancer [104]. The following section covers in detail the various 

aspects of MRI-US fusion biopsies. This is particularly relevant to the work in this thesis 

as MRI-US fusion biopsies are the gold standard for diagnosis, and if microUS eventually 
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replaces MRI as a diagnostic, the need for MRI-US fusion and the associated drawbacks 

would ultimately be alleviated. Furthermore, this section also introduces topics of fusion 

or co-registration and target registration error, two topics that are vital for the work 

presented in this thesis. 

2.3.1. Ultrasound Tracking 

US volume acquisition is typically necessary to perform fusion with MRI. Generally, two 

types of US probes are used for acquiring US volumes (Figure 8):  

1) One-dimensional array transducers with position tracking: these are traditional 

US probes that create standard two-dimensional images. The depth of the 

reflection of the US beam is recorded along the dimension of the transducer, 

providing one-dimensional positional data with a time component, resulting in a 

beam-formed 2D image. The location and orientation of the probe in 3D space is 

tracked while the 2D images are collected to allow for a 3D reconstruction of the 

imaging sweep. Multiple arrays can be embedded within a probe to image 

different planes simultaneously. Embedded motors may robotically move the 

array or probe to generate a smooth 3D reconstruction. 

2) Two-dimensional array (matrix) transducers: these are more advanced US 

transducers that create native three-dimensional images. The depth of the 

reflection of US beam is recorded along the transducer matrix, resulting in two-

dimensional positional data with a time component, which provides a 3D image. 

 

The primary advantage of array transducers is the ability to image the entire 3D 

volume without moving the probe. In contrast to 1D transducers, this enables biopsy 

needle insertion under direct visualization without having to navigate the probe to the 
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desired biopsy site. This simplifies user interaction and also improves registration with 

MRI as each time the probe is moved, the prostate undergoes new deformation which 

needs to be accounted for. Imaging is acquired transrectally, therefore, minimizing 

probe size is of paramount importance for patient comfort. However, 2D transducer 

arrays have not been commercialized for prostate biopsy. The cost and complexity of 

2D probe design is prohibitive given that one-dimensional probes already achieve 

adequate levels of co-registration with MRI [65], [105], [106], [107], [108]. Today, all 

commercial 3D ultrasound systems for prostate biopsy rely on 1D array transducers that 

employ various tracking techniques during the interrogation of the prostate (Table 2). 

The first 3D ultrasound device for prostate biopsy to receive regulatory approval 

Figure 8: One-dimensional array transducers (top) create US beams from a subset of 

elements in the array, and the resulting echo is read by the full array to create a 2D 

planar image. Two-dimensional array (matrix) transducers (bottom) also create US 

beams from a subset of elements and read the echo from elements in a two-

dimensional area to create a 3D volumetric image. 
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incorporated a 1D array with a mechanical fixed arm, receiving clearance in 2008 

(Artemis, Table 2). Many other platforms were subsequently brought to market using a 

variety of approaches to track probe movement as described below. 

Integrated Encoder 

Integrated encoders (Figure 9A) are one of the simplest methods for monitoring US 

probe position. Encoders built into the casing of the probe monitor the roll, pitch, and 

yaw while scanning the prostate [109]. Probe translation can also be monitored with an 

inertial measurement unit.  While user-friendly and able to provide general correlation 

with MRI planes, this tracking mechanism is not as rigorous other approaches and is not 

commonly used for fusion biopsies. 

Device Name Manufacturer Approval Tracking Method 

Artemis Eigen 2008 - FDA Mechanical Arm 

Trinity/Urostation Koelis 2010 - FDA Mechanical Scanning 

Navigo UC-Care 2011 - FDA Electromagnetic 

iSR’obot Mona Lisa BioBot 2011 - FDA Mechanical Arm 

BioJet Medical Targeting Technologies 2012 - FDA Mechanical Arm 

UroNav Philips 2012 - FDA Electromagnetic 

Virtual Navigator Esaote 2014 - FDA Electromagnetic 

Bk3000 BK Ultrasound/MIM 2016 - FDA Electromagnetic 

Fusion Bx Focal Healthcare 2016 - FDA Mechanical Arm 

ExactVu Exact Imaging 2016 - FDA Integrated Encoder 

BiopSee MedCom 2017 - FDA Mechanical Arm 

SmartTarget SmartTarget Ltd. 2017 - FDA Mechanical Arm 

RS85 Prestige Samsung 2018 - FDA Electromagnetic 

Table 2: List of FDA approved commercial 3D Ultrasound machines for prostate biopsy and their respective tracking 

mechanism.  
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Mechanical Arm or Cradle  

In contrast, to integrated encoders, mechanical arms or cradles offer improved tracking 

and allow for the full 6 degrees of freedom during scanning. Here, the US probe is 

mounted in a cradle connected to a jointed mechanical arm (Figure 9B) containing 

positional encoders which provide precise, real-time tracking in 3D space [107], [108]. 

This positional information along with the US image data is used to create highly 

Figure 9: Tracking mechanisms for creating 3D US volumes. A - Integrated 

encoders use built in encoders in the probe casing to track probe movement. B - 

Mechanical arm or cradle systems stabilize and record the location of an US probe 

in a cradle using a jointed mechanical arm containing positional encoders. C - 

Electromagnetic tracking records the position of a US probe in a time-varying 

magnetic field. D - Mechanical scanning: the transducer array is automatically 

rotated inside the probe inside a casing to perform the sweep of the prostate while 

recording orientation. 
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accurate 3D US volumes. This ensures that existing MRI defined targets can be accurately 

fused with the real-time US scan. Additionally, the exact biopsy site can be stored 

allowing re-biopsy in a subsequent session with an error of a few millimeters [110]. 

Although the mechanical arm removes movement error and improves tracking accuracy, 

the large form factor of these machines and unconventional fixed axis for scanning 

increase the learning curve and space required for TRUS prostate biopsies [107]. 

Electromagnetic Tracking 

Electromagnetic tracking (Figure 9C), based on Faraday’s Law, generates current in a 

solenoid sensor based on its location in a time-varying magnetic field [107], [108]. Three 

sensors, oriented in three orthogonal directions, are mounted on an US probe and 

measure the strength of a time-varying magnetic field via the generated voltage in each 

sensor [108]. From the sensor values it is possible to track the position and orientation 

of the probe relative to the magnetic field generator [107], [108]. With this tracked 

positional information, it is possible to generate 3D reconstructions of the prostate and 

track biopsy cores, while allowing the operator to maneuver the probe unrestricted [107]. 

However, this approach can be prone to distortion and reduced tracking accuracy due 

to electromagnetic interference and metallic objects [108]. Additionally, without 

stabilization, errors may arise during biopsy needle deployment that reduce targeting 

accuracy relative to mechanical arm approaches [107]. Electromagnetic tracking has also 

been used to track biopsy needles independent of probe tracking, removing the need for 

a mounted guide for tracking core location [111].  

Mechanical Scanning 

Mechanical scanning (Figure 9D) probes utilize mechanized transducers housed within 

the probe casing [108]. The location of the transducer is electronically rotated inside the 
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probe casing to interrogate the volume of the prostate [108]. Based on the angular 

position of the transducer, these systems may recreate a 3D volume, though are 

influenced by precession during rotation. These systems do not require the operator to 

move the probe after positioning, as the mechanized transducer is able to rotate the 

image plane to the desired location within the prostate [112]. The accuracy of this 

approach can be degraded by the motion of the patient or the US probe, however, it is 

possible to update the 3D scan following deformation or substantial misalignment 

through image-based tracking [107], [108]. Furthermore, through sophisticated 

registration methods and organ tracking (image based tracking of capsule deformation 

during biopsy) it is possible to improve prediction accuracy of the location of a biopsy 

core prior to biopsy [113].  

Alternative Tracking Approaches 

Apart from the approaches in clinical use listed in Table 2, two other tracking techniques 

are in development – optical tracking and sensor-less tracking. In optical tracking, a 

visual target is mounted to the handle of the US probe and tracked by a camera [114], 

which calculates the location of the US transducer. This technique is limited in clinical 

use due to difficulties maintaining line-of-sight [30]. In sensor-less tracking, 3D US 

volumes are generated from array transducers using image data alone through software. 

Several groups have been able to achieve a drift error of ~5 mm using speckle 

decorrelation algorithms combined with Gaussian filtering to estimate the elevational 

distance between neighboring US frames [115], [116], [117], though in ex vivo setting. In 

vivo, drift errors of 10 mm were achieved using a type of deep learning network, a deep 

contextual-contrastive network (DC2-Net) with a 3D ResNeXt backbone structure, that 

focused on areas of strong speckle patterns. This model also managed to achieve dice 
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similarity scores of 0.89 [115]. With continued active research into deep learning, sensor-

less 3D US reconstruction is a promising approach to obviate errors associated with 

motion and deformation. 

2.3.2. Volume Reconstruction 

Following acquisition of a series of 2D US images using one of the various tracking 

techniques, the volume of the scan needs to be reconstructed before segmentation and 

fusion with MRI. There are a variety of techniques that can be employed to reconstruct 

the 3D volume, but all methods use the tracked location of the US plane for each image 

and the B-mode intensity data as inputs for reconstruction. Prostate volumetric 

correlation of MRI and US volumes, against excised whole gland measurements can vary 

(US: 0.70-0.90, MRI: 0.8-0.96) [62], [63], but in general it is possible to achieve accurate 

targeting with a ±20% variation [110]. There are three general subcategories used for 

reconstruction of 3D US volumes: voxel-based algorithms, pixel-based algorithms, and 

function-based algorithms (Figure 10) [108], [118]. 

Voxel Grid Selection 

In all three techniques, prior to reconstruction, a 3D grid is established across the data 

volume to determine sampling density, called the voxel grid [118]. An appropriate voxel 

grid has two main components: a sufficient amount of information for the defined 

volume to preserve information present in the original images; and a homogenous 

information density throughout the whole volume to reduce the amount of interpolated 

voxels [118], [119]. If voxel size and spacing in the 3D grid is too large, there will be a 

loss of information and resolution (aliasing) from the original 2D images, and if the voxel 

size and spacing is too small, there will be a large number of voxels that need to be 

interpolated in the 3D sweep inducing unnecessary error into the 3D reconstruction. 
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One approach for selecting an appropriate voxel grid is to first perform a principal 

component analysis (PCA) to select an appropriate coordinate system based on the pixel 

distribution in 3D space, and then calculating the appropriate voxel size based on probe 

resolution and the rotation of 2D image planes in 3D space as a trigonometric 

minimization function [119]. Another approach involves subdivision of a tetrahedral 

grid that is specifically adapted to match the complexity of the dataset, resulting in 

efficient and compressed volume grids [118], [120]. 

Voxel-Based Algorithms 

Voxel-based reconstruction algorithms assign every voxel in a pre-defined volume a 

value based on nearby pixel information. Depending on the specific technique a voxel 

can be assigned an intensity value based on one pixel or many [108]. A general approach 

for voxel-based reconstruction is as follows. First, a voxel grid is established for a desired 

volume within the US sweep. Next, for each voxel, relevant nearby US image frames are 

selected based on their proximity to the voxel in 3D space. Within those frames relevant 

pixel information is selected along with associated weights depending on distance from 

the voxel. Then, an intensity value is assigned to the voxel based on the selected 

surrounding pixels and their corresponding weights. For one-pixel approaches, each 

voxel is generally assigned the value of the nearest pixel, while for multi-pixel 

approaches, the value of a voxel is normally set to an interpolated value depending on 

the nearby pixels from multiple frames [121], [122]. For multi-pixel approaches a weight 

factor is typically applied to the pixel values prior to interpolation that is inversely 

proportional to the pixels distance from the specific voxel [108], [122]. As a result, the 

closer pixel values have stronger influence on the voxel’s intensity value. Since voxel-
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based algorithms loop through each voxel and assign an intensity value; there are 

generally no gaps in the resulting reconstruction. 

Pixel-Based Algorithms 

Pixel-based reconstruction algorithms assign the value of each pixel in the series of 

images to one or more voxels [108]. A general pixel-based reconstruction approach 

would be as follows: a voxel grid is created around the imaging sweep. The algorithm 

then loops through each frame and assigns the pixel values from each frame to the 

voxels that intersect the corresponding pixel. Pixel distribution to various voxels can be 

based on a single pixel, an average of pixels, or an interpolated vale from a surrounding 

group of pixels. A common approach is to take a local kernel of pixels and apply various 

weights to each pixel value to populate the surrounding voxels [108], [123]. Depending 

on the scan distribution and voxel size, there may be unfilled voxels after pixel 

distribution due to voxels located away from any nearby frames. As such, a gap-filling 

or interpolation step is used to fill the remaining gaps in the data. Following pixel 

distribution and assignment to various voxels, a follow up interpolation step based on 

nearby pixel values is applied to fill in the empty voxels, however sometimes it is 

beneficial to leave empty voxels unfilled to let the reviewer know there is missing data 

[108]. 
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Figure 10: Example of various volume reconstruction techniques using three images 

at different orientations (red, green, blue). Voxel techniques assign a value to each 

voxel often based on weighted interpolation from nearby pixels. Pixel methods assign 

pixel values to nearby voxels and can have empty voxels based on scan distribution. 

Function based methods fit a curve to the pixel data to populate voxels. 



44 

 

Function-Based Algorithms 

Function-based reconstruction algorithms utilize function derived interpolation to 

populate voxel values. By taking small windows of nearby frames at known distances 

apart, a function can be fit to pixel values within these frames to interpolate to voxel 

values between frames. Commonly used functions are polynomials, splines, radial basis 

functions, or Bézier curves [108], [118]. By overlapping the series of neighboring scans 

for each section of interpolation, it is possible to further improve reconstruction 

accuracy through distance weighted averaging of shared voxels [108]. 

Computation time vs Reconstruction Quality 

In order to choose an adequate reconstruction algorithm, balance between 

reconstruction speed and quality must be considered [108]. The more sophisticated 

algorithms, such as spline-based approaches, or those that create local pixel kernels to 

approximate voxel values, generally allow for improved reconstruction accuracy at the 

cost of longer computation times. However, some approaches such as Bézier curve 

interpolation manages to achieve extremely fast reconstruction times (0.008 sec/image) 

while maintaining a high level of reconstruction accuracy [108], [124]. In general, 

advances in computer computational power and GPU performance have improved the 

overall speed of reconstruction, allowing for near real-time volume reconstruction, 

allowing for the use of 3D US in the clinic setting during biopsy [108]. 

2.3.3. Segmentation 

In addition to 3D reconstruction, before fusion with MRI can occur, a segmentation step 

is typically implemented. The specific process varies from device to device, but in 

general the operator is asked to mark points around the prostate capsule and some 

fiducial points visible on both MR and US [65]. Examples of fiducials include: BPH 
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nodules, calcifications, the urethra, seminal vesicles, or the boundary between the 

peripheral and transition zones. Typically, the user is asked to mark the prostate capsule 

on a subset of slides and an interpolative algorithm fills in the remaining slides to create 

the prostate capsule volume [125]. Prior to biopsy the MRI is also segmented by a 

radiologist or experienced reviewer, these segmentations of the prostate capsule and 

any included fiducials are used as the basis for registration between MRI and US [65], 

[110]. There are a number of different prostate segmentation methods, as well as 

research into semi and fully-automated segmentation algorithms to speed up and 

improve registration accuracy. Manual segmentation tends to be time consuming and 

prone to variability, while automated segmentation is difficult due to inherently low 

signal-to-noise and contrast-to-noise ratios of US imaging [125], [126]. A comprehensive 

review paper, published in 2022 by Jiang et. al, describes the popular and developing 

techniques for prostate segmentation; a brief summary is included below [125]. 

Edge-Based Algorithms 

Edge-based algorithms employ an edge identification step followed by a point ordering 

step to create an outline of the prostate capsule [125]. For edge detection, a filtering 

process is applied to identify the boundaries of the prostate. This can be done via 

conventional filtering, probabilistic filtering, or through more complicated filtering 

processes such as super-imposing the original image over an inverted multi-resolution 

filtered image, a method known as Radial Basi-Relief [127]. In general, edge-based 

filtering algorithms need to be finely tuned to allow for adequate edge detection, and 

tend to be very sensitive to image noise and artifacts [125]. As such they are commonly 

used alongside other filtering algorithms to achieve adequate segmentation, in both fully 

and semi-automated approaches. 



46 

 

 

Figure 11: Region based segmentation approach. After a urologist or 

assistant places initialization points a region is established that is then 

expanded to find the boundaries of the prostate. 
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Region-Based Algorithms 

Region-based algorithms utilize both regional and edge information to segment the 

prostate based on common areas (Figure 11). This can be achieved through regional 

clustering and statistical analysis [125]. Regional clustering invokes a parameter to 

divide an image into regions to find the boundaries of the prostate. Common parameters 

include the greyscale value of pixels, or more robustly, a parameter known as the Local 

Binary Pattern, a measure of a pixels value relative to its neighborhood and a metric for 

localized image contrast [125], [128]. By applying adaptive thresholding, optimizing for 

inter-class variance, and accounting for density and Euclidean distance of points 

(Density-based spatial clustering of applications with noise, DBSCAN) it is possible to 

identify the boundaries of the prostate [125], [129]. Statistical analysis region 

identification uses region-based statistics, such as intensities, averages, and standard 

deviations, to identify similar areas within images through minimization techniques. 

This approach can be assisted through the use of a priori knowledge of greyscale 

distributions and pixel intensity gradients of various regions [125], [130]. 

Deformable Model-Based Algorithms 

Deformable model-based algorithms implement a template prostate model that is 

modified based on image data and energy minimization functions while balancing 

internal and external forces on the model that maintain contour smoothness [125], [131]. 

Three different frameworks are generally used: the active contour model framework 

(also known as snake or energy minimization curve framework), edge level set 

framework, and curve fitting framework. The active contour model is a spline curve 

created from input points that is deformed based on image gradient data in a specified 

region of interest, characterized by an energy minimization function that balances 
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preservation of the original shape’s smooth contours with deformation to match the 

input image data [132]. This approach is dependent on proper assignment of internal 

and external forces to drive and control the deformation [125]. Edge level set framework 

utilizes level set implicit functions as desired boundaries, applying finite differences to 

approximate the solution of a partial differential equation [133]. The level set propagates 

from the seed point, perpendicular to the curve until it reaches the maximum of the 

intensity gradient. This approach is characterized by good signal to noise ratio and well 

defined edges, thus is commonly used [125], [130]. Curve fitting framework 

approximates the prostate boundary through fitting ellipsoids or splines. These 

ellipsoids or splines are initialized from a series of user selected points, and are then 

transformed using varying combinations of thin plate splines, Bayesian frameworks, a 

priori knowledge, and a variety of other optimization techniques [125]. Without using a 

priori knowledge, deformable model segmentations may differ significantly from the 

actual prostate boundaries reducing segmentation accuracy [134]. 

Statistical Model-Based Algorithms 

Statistical model algorithms utilize big data and computational power to delineate the 

prostate. Utilizing a database of prostate shape features and the associated B-mode 

intensity data an optimal segmentation is selected [125]. One such approach is a Point 

Distribution Model (PDM) selection of an Active Shape Model (ASM) framework is 

performed, followed by a Principal Component Analysis (PCA) of the PDM with a 

generalized Procrustes analysis to allow for model variation. Building on this approach, 

the Active Appearance Model (AAM) algorithm framework was developed, utilizing the 

shape information of the ASM framework in combination with greyscale information to 

generate texture information for improved segmentation results. 
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Learning Model-Based Algorithms 

Learning Model algorithms generally utilize either support vector machines (SVM) or 

neural networks to train a model to delineate the prostate boundary [125]. SVM are 

supervised learning models that attempts to create a hyper-plane between different 

types of data, such as the prostate capsule and the surrounding tissue, with an optimal 

compromise between model complexity and training results to avoid overfitting and 

promote generalization. A general SVM approach utilizes Gabor filters applied to the 

image data to extract texture features which are then input into a SVM for classification. 

This classification allows for a statistical shape model which automatically delineates 

the prostate [135], [136]. SVM approaches tend to work well with limited nonlinear 

analytical data [125]. Neural networks, designed to mimic brain neurons, are learning 

algorithms capable of identifying complex multivariate relationships, and generally 

outperform linear regression techniques when working with patient data. In particular, 

U-Net convolutional neural networks (CNN) perform particularly well at medical image 

segmentation tasks, and this holds true for prostate delineation [125], [137], [138]. 

Learning based approaches often experience degraded performance in the far apex and 

base of the prostate due to poor contrast to noise ratios and increased variability in 

prostate shape. Recent research has managed to overcome this hurdle through radially 

re-slicing a diverse set of 3D prostate volumes about the center axis into 2D images. In 

doing so, each image slice passes through the approximate center of the prostate, 

avoiding images only containing the far apex or base. These images are then 

subsequently segmented by a modified 2D U-Net model and reconstructed back into a 

3D US sweep with a dice similarity coefficient of around 0.95 and a processing speed of 
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less than 0.7 seconds per prostate, outperforming 3D V-Net segmentation networks 

[139], [140]. 

2.3.4. Rendering 

Following reconstruction and typically after segmentation, rendering is performed to 

relay 3D US information to the physician performing the biopsy. Given the large volume 

of data acquired in a 3D US scan and the time constraints associated with use in the 

clinic, it is important to consider the optimal approach to render the data [108]. 

Displaying too much information can increase rendering times and consume resources, 

while on the other hand, rendering not enough information can diminish the benefit of 

3D US leaving out information that could be potentially helpful to the physician. In 

general there are three main rendering approaches: slice projection, surface rendering, 

and volume rendering [108], [141]. 

Slice projection (Figure 12A) displays a 2D slice of the 3D US data, either in the 

native imaging plane or in a reconstructed plane. The operator can typically scroll 

through the rendered image plane to visualize various regions of the prostate. However, 

there can be an increased cognitive load for the physician in this approach as they are 

required to mentally correlate the location of the image plane in 3D space [108], [142]. 

Surface rendering (Figure 12B) is a fast-rendering approach that only displays a 

3D model of the prostate capsule. This approach is dependent on a segmentation step 

prior to rendering in order to identify the capsule boundaries [108]. Visualizing the 

shape of the prostate during biopsy allows for simple real time visualization of 

systematic and targeted biopsy locations as well an easy-to-read overlay model for any 

MRI targets.  
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Figure 12: Various methods for rendering 3D US data of the prostate. Slice 

projection (A) displays a 2D planar image of the US data in native and non-

native orientations. Surface rendering (B) displays a model of the prostate 

capsule for localization, core placement tracking, and MRI target 

visualization. Volume rendering (C) presents the full 3D sweep of the 

prostate allowing for thorough review by the physician [143]. 
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Volume rendering (Figure 12C) provides all of the 3D US data together, typically 

utilizing translucent anatomy to allow for visualization of interior feature information 

[143]. While computationally intense, this approach provides physicians with the most 

comprehensive view of the prostate. 

The primary roles of US in prostate biopsy are for gland visualization, biopsy 

needle targeting, and fusion with MRI, rather than for cancer identification. 

Consequently, it is often better to mitigate the processing times by hiding extraneous 

information that could potentially distract the user while providing no utility. As such, 

one common approach that 3D US fusion devices utilize is a hybrid surface rendering 

and slice projection approach. In this approach, a 3D model of the prostate is displayed 

with associated slice projections, while tracking probe locations on the model aid with 

probe navigation. As such, the surface model allows the physician to quickly reference 

MRI targets and identify biopsy sites; while slice projection allows the physician to 

review the 3D data as desired. The US probe itself can still be used to interrogate the 

prostate for biopsy core targeting, with some systems overlaying 3D targeting data onto 

the real-time US. 

2.3.5. Fusion Techniques 

Following image acquisition and segmentation of both 3D US and T2-weighted MRI 

scans, a fusion step is performed to co-register MRI image data and target information 

to the US scan [104], [107]. The goal of the fusion transformation is to map the MRI space 

and coordinates to the US space to allow for real-time visualization of MRI information 

on the US scan, thus, improving clinically significant prostate cancer detection rates 

[104]. This fusion step can also be performed multiple times throughout the biopsy to 

account for any changes to the prostate shape which often occurs as the US probe 
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deforms the prostate when it is moved across the gland. One study found that the 

majority of missed lesions (1.9% of patients) during prostate biopsy were due to errors 

in targeting (51.2% of misses), rather than the lesion being MRI invisible (40.5% of misses) 

or missed by the radiologist (7.1% of misses), highlighting the importance of accurate 

co-registration and targeting [144]. It is estimated in order to have a 90% biopsy hit rate 

on a MRI identified target, the target registration error (TRE) between MRI and US needs 

to be less than 2.87 mm not accounting for needle deflection, frequently substantial in 

clinical practice [145]. Existing MRI-US fusion systems have a validated TRE of 

approximately 3 mm [113], [146], [147], [148], [149], which may be sufficient for 

diagnosis but may not be accurate for focal therapy guidance [150]. MRI-US fusion is 

typically performed using one of the following approaches: rigid registration, elastic 

(non-rigid) registration, or learning-based registration [104], [107], [151]. A 2018 meta-

analysis found no significant difference in the odds ratio for identifying clinically 

significant prostate cancer between the two most common approaches: elastic (1.45) and 

rigid (1.40) registration [104]. However, some studies have found improved TRE for 

elastic registration (2-3 mm) over rigid registration alone (5-6 mm) [113], [146], [147], 

[148], [149]. Regardless, software-based fusion outperforms cognitive based fusion for 

identifying clinically significant prostate cancer at time of biopsy [152].  

Rigid Registration 

Rigid or affine registration preserves the shape and relative positioning between pixels 

of the transformed data [104], [107]. Typical transformations encompassed by rigid 

registration algorithms include: translation, scaling, shearing, and rotating of 

unregistered data to match a registration target (Figure 13A,B) [107]. A general rigid 

registration approach for prostate biopsy starts with US and MRI surface segmentations 
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(capsule-based registration) or image data (image-based registration). For capsule or 

surface-based registration, the MRI data is scaled to match the US data based on the 

capsule volume differences, and the MRI is translated to align the centroids of the 

prostate capsule on MRI and US. Following scaling and translation, the MRI is rotated to 

maximize alignment between the two gland segmentations. At this point the image data 

between MRI and US is relatively aligned, but there will still be some differences based 

on tissue deformation from the US probe, an issue that can be accounted for with 

subsequent elastic registration [107].   

An alternative to gland-based registration uses anatomic landmarks (features) 

and other sources of mutual information in the image data to drive the registration. 

While image-based registration is more computationally intensive, as it compares raw 

image data, improved registration accuracy has been reported for image-based mutual 

information registration over surface-based registration with the added benefit of not 

Figure 13: Simple example of a rigid and non-rigid capsule-based registration 

process in 2D. Using delineated capsules (A) of the unregistered MRI data 

(red) and the US registration target (blue), the MRI data is scaled (1) and 

rotated (2) to maximize alignment with the US capsule for rigid registration 

(B). The subsequent elastic registration step (C) identifies alignment points 

(3) between the two capsules and performs a thin-plate spline (TPS) 

transformation (4) to match the MRI data with the US data. 
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requiring preliminary segmentation [150]. Image based registration often use a 

technique known as block matching consisting of several iterative steps of increasingly 

finer adjustments [153]. First, the source image data are divided into rectangular regions 

called blocks. These blocks are then matched to a similar block within the target image 

data based on image-to-image similarity metrics, in this case mutual information 

between image sets [154]. Next, a vector field is generated that maps each source image 

block to its best matching target image block. A regularization step is applied to the 

vector fields to generate the transformation map for the source image set to the target 

image set [150]. 

Elastic (Non-Rigid) Registration 

Elastic or non-rigid registration is typically performed after rigid registration and 

attempts to account for tissue deformation through a transformation map based on 

alignment points (Figure 13C) [104], [107]. As the US probe pushes against the prostate 

gland, the shape can significantly deviate from the image of the gland on MRI. This 

deformation is also operator dependent and changes throughout the procedure as the 

probe is navigated to different locations of the prostate. Additionally, needle biopsy 

causes bleed and localized swelling, further affecting registration [104]. Alignment or 

control points may include a combination of points along prostate capsule or internal 

landmarks, (urethra, BPH nodules, zonal boundary points, calcifications, etc.) selected 

by the operator on both the MRI and US scan. The transformation algorithm, typically a 

spline based transform (b-spline or thin-plate-spline), will warp the MRI data to align the 

selected control points on MRI and US [22], [107], [155]. While warping the MRI alignment 

points to match the US control points, the transform will also warp the surrounding 

voxels proportionally depending on relative distance from the alignment points. For 
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image based registration, instead of using the capsule segmentation, a moving image is 

compared to a fixed image and an optimization step compares image-to-image metrics 

(mutual information) through changing the parameters of a grid of b-splines to yield the 

transformation with the best match between the two images [150]. 

Learning-Based Registration 

Boundary and feature-based registration generally rely on the operator to identify 

corresponding locations or gland boundaries on MRI and US scans, but are tedious for 

the operator, challenging to accurately find corresponding points, and are prone to error 

[22], [151]. To improve fusion quality, consistency, and ease there is considerable 

research into automated learning-based MRI-US fusion approaches. Conventional 

machine learning fusion approaches utilize a deformable model and are generally 

employed as an elastic registration step following rigid registration, making them 

dependent on operator segmentation for initialization [151]. Utilizing patient specific 

deformable models and a hybrid surface point matching method, it is possible to achieve 

a TRE of 1.44 mm [151], [156]. Recent research efforts have focused on developing deep 

learning models for performing MRI-US fusion, with the goal of predicting the necessary 

transformation matrix. Due to a lack of a ground truth co-registration transformation 

matrices for training, research primarily focuses on unsupervised or weakly supervised 

models [151]. Various approaches include combinations of fully convolutional networks 

(FCN), 2D and 3D CNNs, and multi-modality generative adversarial networks (GAN) [151], 

[157], [158], [159]. With the addition of biomechanical constraints to deformation one 

group was able to achieve a TRE of 1.57 mm and a dice similarity coefficient of 0.94. The 

framework is capable of first segmenting both MRI and US, then applying a point-cloud-



57 

 

based deformation for accurate registration in a manner that could potentially be 

translated to the clinic [151], [160]. 

2.3.6. Validation Techniques 

Validation of biopsy accuracy is a key step in demonstrating the clinical utility of a 3D 

US system for prostate biopsy. While systems may differ in image acquisition, tracking, 

reconstruction, and registration, the same fundamental sources of error can be 

independently characterized (Figure 14): 

1. a - Initial registration error: Imperfect registration between the MRI defined 

lesion and the initial 3D ultrasound scan. 

b - Dynamic registration error: Further error is introduced throughout the biopsy 

procedure due to tissue deformation from movement of the probe and tissue 

trauma induced by the needle 

2. Targeting error – Inaccuracy in positioning needle over the intended target which 

occurs for many reasons including user inexperience and the spacing of the holes 

in the biopsy template (if used). 

3. Needle deflection - Caused by tissue mechanical properties and needle design 

4. Stored location: In many systems, the coordinates of the biopsy needle are 

digitally recorded, to enable re-biopsy at a future date. However, the capture of 

this information may involve a user-confirmed action to mark the biopsy location 

or needle depth, which introduces perceptual error in the needle localization. This 

error is also introduced when registering this location with a previously obtained 

3D US scan during a follow-up biopsy, typically 6 months after the initial biopsy. 
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It is important to note that these errors do not sum together linearly, and the 

overall error will be less than the sum. It should also be noted that many of the 

preclinical validation studies were performed on early system versions, sometimes 

before commercialization, thus, existing literature may not correctly reflect biopsy 

accuracy. In existing validation studies of commercially available systems, the metric for 

biopsy accuracy can be defined in numerous ways thus preventing direct comparison 

between studies. Additionally, due to the nature of regulation of 3D ultrasound systems 

for prostate biopsy, many commercially available systems report benchtop validation, 

with unknown accuracy in a real-world clinical setting. Moreover, clinical studies often 

report on cancer detection rate in comparison to conventional systematic or cognitive 

fusion biopsy. This further complicates analysis as it is dependent on the reliability of 

the MRI defined lesion which is essentially a function of radiologist skill and cancer 

grade. Consequently, when comparing clinical studies, it is important to account for the 

Prostate Imaging Reporting & Data System (PI-RADS) score and radiologist experience.  

Figure 14: Sources of error when performing MRI-US fusion biopsy. Here, the goal 

is to biopsy the center of the true lesion. 
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Pre-clinical 

Pre-clinical studies typically employ prostate tissue mimicking phantoms composed of 

agar or hydrogels to assess the targeting error of fusion guidance platforms [149]. In 

order to determine TRE biopsy samples are taken of MR- or CT-visible targets so that the 

distance between the needle tracks and lesions can be calculated. Using this approach, 

Uronav, an electromagnetic-tracking system, reported a TRE of 2.4 ± 1.2 mm [66]. 

The Trinity system, which uses an image-based tracking approach, was validated 

using a similar study with a hydrogel phantoms except the needle tracks were identified 

by injecting a mixture of dye and gadolinium though the outer sheath of the biopsy 

needle immediately after deployment [148]. The phantoms were then scanned on MRI to 

reconstruct the 3D volume and also sectioned and photographed to identify each needle 

track based on dye color coding. Here, procedural targeting error is defined as the 

shortest distance between the needle track and lesion center, was found to be 2.09 ± 

1.28 mm. Additionally, the system registration error was 0.83 ± 0.54 mm. It was then 

assumed that these errors are independent and additive giving an overall error of 2.92 

mm. 

The BiopSee system was validated using the same approach and found a targeting 

error of 0.83 ± 0.48 mm [161] which was defined as the distance between virtually 

planned cores and the confirmed needle tracks. The needle track was also derived from 

the US images during biopsy. Importantly, procedural targeting error (PTE) is defined 

differently than above, corresponding to the distance between this tracked core and the 

virtually planned core. This measure of PTE was found to be 0.26 ± 0.46 mm. There was 

no statistical difference between the two metrics which was used to support the use of 

this automatically calculated error in later in vivo studies [162]. While this study 
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supports the use of PTE, it is not clear if it provides an accurate assessment of overall 

error (distance from lesion center to true needle track). Indeed in a similar a follow-up 

phantom study [163], the PTE (0.39 mm) was found to be only a modest contributor to 

overall error (2.33 mm). Moreover, errors are likely to be even greater in vivo due to 

needle deflection from inhomogeneous tissue resistance and reduced precision of 

contouring. 

A similar study was also performed during the initial validation of the Artemis 

platform [164]. Here, the authors constructed an agar phantom using an MRI scan of a 

patient’s prostate and previously developed phantom recipe [165]. The total needle 

guidance error was found to be 2.13 ± 1.28 mm which largely arises due to needle 

deflection which accounts for 2.08 ± 1.59 mm. Additionally, a commercially available 

hydrogel phantom (Zerdine, CIRS) was used for assessing the accuracy of segmentation 

and volume calculation which exhibited a 5% error. Agar phantoms are advantageous as 

they are inexpensive, can be easily cast in patient-specific molds and also permit 

placement of fiducials of any desired shape and size [166], [167]. Similar phantoms can 

be produced for extending the study to include analysis of ultrasound guided focal 

therapy modalities such as laser ablation [168], [169], high-intensity focused ultrasound 

[170] and radiofrequency ablation [171]. 

Clinical – Target Registration Error 

Clinical studies typically focus on cancer detection rates rather than attempting to 

assess biopsy accuracy because of the inability to assess ground truth needle tracks. 

However, there are some notable exceptions such as the a study by Moldovan et al which 

rigorously quantifies the registration accuracy of the Trinity fusion platform [172]. Three 

intraprostatic fiducials were inserted into patients prior to radiotherapy. The fiducials 
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were inserted through a needle under ultrasound guidance using the same procedure 

that would have been used for biopsy. The patient then received an MRI on the same 

day. Using the ultrasound images, a virtual needle was positioned with the tip defined 

by the fiducial and the angle defined by that of the ultrasound probe. Virtual lesions 

were defined as a sphere overlaying the fiducial on the MRI image set. The ultrasound 

and MR images were then fused together using the software on the Trinity system. 

Registration error was defined as follows: 1) TRE3D is the distance between the tip of the 

virtual needle and the virtual lesion, and 2) TRE2D is the orthogonal distance between the 

virtual needle tract and the virtual lesion. TRE2D is the better metric of registration 

accuracy as small errors along the needle trajectory are less critical given that most 

biopsy cores are 15-20 mm. Here, TRE3D and TRE2D ranged from 3.8-5.6mm and 2.5-3.6 

mm respectively with much of the variation attributed to location and user experience. 

Importantly, the design of the study removes contributions from needle deflection thus 

providing an accurate assessment of registration error alone.  

Studies such as this suffer from three intrinsic sources of error: 1) fiducial 

localization error, 2) fiducial migration and 3) segmentation variability. When 

determining registration accuracy with fiducials, it is necessary to define the center of 

the fiducial on each image set. This is generally a manual process and as such it is user 

dependent. In an earlier study, the same user identified fiducials on the same image set 

for 5 consecutive days resulting in a fiducial localization error (FLE) of 0.21 ± 0.11 mm 

[173]. This suggests that FLE is a relatively minor contributor to overall error. In contrast, 

the same study found that segmentation variability was responsible for ~50% of the 

calculated TRE. Segmentation error arises when using semi-automated algorithms in 

which the user is required to manually outline the prostate on a subset of the images. 
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Finally, implanted fiducials are susceptible to migration with one study showing mean 

migration of 1.2 ± 0.2 mm in patients receiving radiotherapy [174]. Fiducial localization 

error and migration can be mitigated by using anatomical landmarks (e.g., calcifications, 

capsule, peripheral zone – transition zone boundary) instead of implants. Accurately 

identifying these landmarks on different imaging modalities is quite challenging but can 

be achieved as demonstrated in multiple studies including ultrasound, MRI and 

wholemount registration [157], [167], [175], [176]. 

In one clinical study on 106 patients, TRE was determined to 1.7 mm [162] using 

a stepper-stabilizer, while image-based TRE in another system was found to be 2.8 mm 

in a clinical study on 88 patients [113]. In the same study, the accuracy of cognitive 

fusion was 7.1 mm. It is important to note that the methodology and definitions of error 

between the two systems are very different, thus, they cannot be directly compared. 

Moreover, these automatically calculated errors may not accurately reflect the true TRE. 

Clinical – Cancer Detection Rates 

In general, clinical studies have continuously demonstrated that targeted biopsy has a 

greater detection rate than conventional systematic or cognitive fusion biopsy, though 

taking both targeted and systematic biopsy cores yields the highest rate. In an early 

clinical trial on 101 patients, the per core cancer detection rate was significantly higher 

for targeted biopsy than systematic biopsy at 20.6% vs 11.7% [177]. The difference was 

even more pronounced for targets deemed to be highly suspicious for cancer on MRI at 

53.8% vs 29.9%. The same group subsequently reported on targeted biopsy performed 

on patients with a prior negative systematic biopsy and found cancer in 37.5% of cases 

and high grade cancer in 11% [178]. Additionally, targeted biopsy was responsible for 

pathological upgrading in 38.9% compared to systematic biopsy alone. Similar results 
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were reported in a later trial where 23.5% of cancers diagnosed as clinically insignificant 

on systematic biopsy were upgraded after targeted biopsy [179]. In a study targeting 

high grade regions of interest, fusion biopsy exhibited a 33% positivity rate in 

comparison to the 7% achieved via systematic biopsy [110]. In another clinical trial, 91% 

of men with prostate cancer had significant cancer when diagnosed via targeted biopsy 

vs 54% with systematic biopsy [180]. Comparable results have been reported for 

numerous biopsy platform [113], [162], [181], [182], [183], [184], [185]. 

Ground-Truth Validation Studies 

Co-registration and targeting error validation studies are vital for fusion devices. 

Without these studies, it is impossible to be confident that targeting is accurate and 

biopsy needles are placed in the right location. Improper targeting can result in false 

negatives, or poor mapping of positive cores to the right location, resulting in possible 

changes to clinical treatment of a patient’s disease. Furthermore, many studies rely on 

phantom studies because they are highly controllable and do not require human or 

animal subjects, however it is worth considering if these phantoms are adequate for 

assessing true targeting error. These phantoms are generally homogenous, and designed 

to mimic prostate shape and acoustic properties, for similar US imaging patterns to 

human tissue. However, this does not necessarily mean these phantoms necessarily 

share similar heterogenous mechanical properties of human tissue, and sources of error 

such as tissue deformation and needle deflection may not be properly represented. In 

general, it is found targeting error increases when moving from phantoms to real 

prostates. At the same time, it can be difficult to assess the true accuracy with prostate 

tissue. For even highly controlled radical prostatectomy studies, the associated error of 

matching a pathology slide with an associated MRI image can be on the order of 1-3mm, 
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which could potentially stack with any targeting errors potentially inflating registration 

errors [175]. Additionally, landmark studies are dependent on a reviewer’s perception 

of the tissue, which can be subconsciously biased if there is an inherent understanding 

of the underlying registration algorithm, or over-report the registration error if a 

reviewer incorrectly pairs two points between MRI and US. Furthermore, targeting error 

is not ubiquitous throughout the whole gland, and superior results are typically obtained 

in the mid-gland where tissue deformation is mitigated compares to the far apex, base, 

or lateral zones of the prostate. As such, it is possible to improve targeting error by 

increasing the sampling density at mid-glad and decreasing the sampling density in 

areas prone to tissue deformation. For this reason, it is important to note not only overall 

targeting accuracy, but also sampling distributions and targeting accuracy in various 

zone of the prostate. In summary, there are inherent weaknesses to all validation 

techniques making it difficult to assess the true targeting error for prostate biopsy 

fusion systems, however, by performing multiple types of validation studies with 

detailed reporting and large sample sizes it is possible to mitigate random error and 

more confidently quantify the targeting accuracy of these systems. 

 

2.4. Micro-Ultrasound 

Micro-ultrasound (microUS) was originally developed as a pre-clinical ultrasound system 

for imaging mice models of human diseases at frequencies between 15-50MHz [186]. 

The system allowed for impressive visualization of mice cardiac activity and embryonic 

development (Figure 15). The system was later translated for use in prostate cancer 

imaging as the ExactVu system (Exact Imaging, Ontario, Canada) (Figure 16). Approved 

by the FDA for prostate biopsy in 2016, the system has demonstrated promising results 
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for prostate cancer visualization in tracked biopsy studies following development of a 

microUS suspicion scoring [16], [17], [18]. The high-resolution ultrasound images allow 

for higher quality prostate imaging over conventional US imaging for direct visualization 

and biopsy of prostate cancer. As such, microUS could represent a low-cost alternative 

or supplement to mpMRI imaging. 

 

2.4.1. System Design 

MicroUS uses a 512-element linear array 29MHz transducer with inter-element spacing 

of 90µm based off of the work of Foster et al [186]. This allows for an axial resolution 

of 70µm in proximal regions of the prostate, encompassing much of the peripheral zone, 

which also accounts for approximately 70% of all prostate cancers [186], [187]. To image 

deeper in the prostate the microUS system uses a distance-based beamforming design 

that images more distal regions of the prostate at lower frequencies creating image 

bands of differing axial resolutions (70µm [proximal] - 100µm [distal]) that comprise the 

full B-mode image. This approach allows for an imaging depth of 6cm at the cost of an 

increased axial resolution. In contrast, conventional US generally has an imaging 

Figure 15: Mouse imaging using microUS allowing for visualization of embryos and the carotid artery [186]. 
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frequency in the 2-15MHz range and an axial resolution as fine as 200µm [16], [186]. The 

superior microUS resolution allows for visualization of prostate features and tumors 

that are not resolvable on conventional US which may facilitate tumor visualization. 

 

2.4.2. PRI-MUS System 

The first prospective randomized clinical trial with microUS against conventional US for 

prostate cancer detection initially had no improvement in cancer detection rates for 

Figure 16: ExactVu micro-ultrasound system created by Exact Imaging. 
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microUS over conventional US guided systematic biopsy for 1113 patients [188].  Using 

retrospective analysis of microUS with 400 tracked biopsies, the first iteration of the 

prostate risk identification using micro-ultrasound (PRI-MUS) suspicion scoring system 

was developed (Figure 17) [18]. This risk identification system was designed to highlight 

indications of PCa on microUS similar to the PI-RADS system for mpMRI. Following initial 

development, this system was used for brief physician training (< 1 hour) and the 

prospective clinical trial was resumed, in which there was an increase in microUS 

sensitivity from 24.6% to 60.8% [18], [188]. However, there was an associated decrease in 

specificity and no improvement in cancer detection rates over conventional US guided 

biopsy [188]. Regardless, the increase in sensitivity from brief training was promising 

and warranted further investigation into microUS. Since initial inception, there has been 

Figure 17: The PRI-MUS scoring system used to highlight suspicious features of prostate cancer on microUS imaging. 
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effort to further refine the PRI-MUS system, particularly for detection of anterior tumors 

[189]. 

 

2.4.3. Existing Studies 

Following development of the PRI-MUS system, follow up studies were performed to 

investigate cancer detection rates, sensitivity, and specificity of microUS related to gold 

standard mpMRI. A multi-center prospective biopsy study by Klotz et al. with 1040 

patients found microUS targeted biopsies had a sensitivity of 94% for PCa compared to 

90% for mpMRI targeted biopsies [16]. Furthermore, both modalities exhibited similar 

specificity for PCa at 22%. This study also highlights the importance of mpMRI as a 

benchmark for evaluation of microUS. Without the mpMRI benchmark a reported 

specificity of 22% for microUS would be concerning. However, since gold standard 

mpMRI also had a similar specificity for PCa (that is often reported between 60-83% [6], 

[7], [8]), it is likely a specificity of 22% is not abnormally low and rather likely due to the 

type of analysis performed. Sensitivity and specificity are highly dependent on the 

number of possible events in a study, so results can fluctuate between studies. This is 

highlighted further in this thesis in chapter 5, but in general as the granularity of an 

analysis increases sensitivity will decrease and specificity will increase. Furthermore, it 

is much easier to record a positive event in a biopsy study (taking a biopsy core) 

compared to a negative event (not taking a core). 

 A blinded prospective biopsy analysis by Ghai et al. found similar cancer 

detection rates between microUS and mpMRI (35% vs 39% respectively) [17]. Between the 

two modalities 67% of mpMRI identified ROIs were also identified on microUS, however 

clinically significant PCa was only present in 58% of the concordant lesions. Interestingly 
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the study found there was no added benefit from systematic biopsy over the 

combination of mpMRI and microUS guided biopsy. This highlights a potential 

synergistic benefit of implementation of the combination of microUS and mpMRI for 

centers that are able to utilize both modalities. 

 After the start of our efforts to investigate microUS there have been additional 

studies investigating the potential of microUS. Callejas et al found microUS was able to 

correctly identify the index lesion cancer in 87% of patients undergoing radical 

prostatectomy for PCa using cognitively aligned quarter-mount pathology for validation 

[190]. Similarly using cognitive alignment of microUS and quarter-mount pathology, 

Pedraza et al found similar sensitivity (68.7% vs 68.6%) and specificity (96.3% vs 97.2%) 

between microUS and mpMRI for index lesion identification in 363 radical prostatectomy 

patients [191]. 

 There is a growing body of evidence that microUS is able to identify PCa with 

similar accuracy to mpMRI. In this thesis we sought to build upon the existing literature 

through rigorous validation of microUS through computational registration to ground 

truth WM pathology with benchmark comparison to mpMRI. 

 

2.5. Deep Learning for Prostate Cancer 

With the explosion of artificial intelligence (AI), there have been numerous applications 

and commercialization of machine learning in prostate cancer imaging, ranging from 

segmentation of prostate capsules, to MRI-US fusion, treatment planning, and prostate 

cancer detection [151], [192]. Due to the prevalence of radical prostatectomy for prostate 

cancer treatment, it is possible to obtain high-quality ground truth for model training 

from surgically removed prostates. Furthermore, MRI-US fusion is common for prostate 
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cancer biopsy, requiring segmentation of prostate capsules on both MRI and US and co-

registration between the two modalities. Additionally with the development of focal 

therapy there has been considerable effort to develop AI derived treatment margins for 

optimizing PCa treatment to minimize treatment impact on impact on patient quality of 

life [192]. 

 

2.5.1. Applications for Cancer Detection on MRI 

There have been a multitude of studies for prostate cancer detection on MRI using 

machine learning [151], [193]. General approaches often focus on image classification 

and follow with lesion localization and delineation [151], [194]. Specific approaches have 

varied but models have obtained impressive AUC values often ranging between 0.8-0.9 

[151]. There are a few publicly available prostate MRI databases such as the PI-CAI 

dataset containing over 10,000 MRI scans from 4 centers. Using this dataset, a multi-

reader study of 62 radiologists from 45 centers was used for benchmark comparison in 

a test set of 400 patients [195]. The AI model was found to have a statistically superior 

AUC compared to the radiologists (0.91 vs 0.86) [195]. At the same specificity of the 

readers, the AI model detected 6.8% more clinically significant cancer, and had 50.4% 

less false positives than the radiologist cohort [195]. 

 Typical approaches for detection and delineation on mpMRI typically employ 

nnU-net as a backbone due to its flexible nature and strong performance for a wide 

variety of medical image segmentation, often outperforming specialized deep-learning 

approaches [196], [197]. Attention network approaches have also demonstrated 

promising results, utilizing whole image classification in conjunction with patch based 

classification to create localization maps of suspected regions of cancer [198]. There has 



71 

 

been numerous demonstrating strong performance of AI and deep learning for PCa 

identification on MRI. Implementation of these models in future work could aid 

radiologists by alleviating much of the inter-reader variability associated with MRI while 

improve PCa detection and patient care. 

 

2.5.2. Applications for Cancer Detection on Micro-Ultrasound 

There have been several studies investigating the utility of machine learning for PCa 

detection on microUS with biopsy validation [82], [199], [200], [201], [202]. The specific 

approaches range from linear discriminant classifiers and support vector machines to 

self-supervised learning with promising AUC values (0.80-0.93) for classification along 

the biopsy track in datasets between 160 to 700 patients. Approaches have 

predominantly relied on weakly labeled microUS patches labeled from biopsy data for 

training and validation. Implementation of confidently labeled data validated from WM 

pathology should allow for a higher quality dataset that could increase training results. 

Additionally, studies have primarily used broadband RF US signals to extract useful 

features for training. Broadband RF data provides substantially more data per image, 

but requires clever approaches for extracting “useful” information and greatly increases 

data storage requirements. 

 Deep learning approaches for cancer detection on microUS are promising. 

Ultimately, there is a lack of labeled datasets for microUS training relative to approaches 

with MRI but efforts are ongoing to address this. In this thesis we work towards that end 

through the development of a high-quality microUS dataset and application of deep 

learning techniques. 
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CHAPTER 3 

Multi-modal Imaging of Prostate Cancer and 

Ex Vivo Ultrasound Scanning 

 

3. Multi-modal Imaging of Prostate Cancer and Ex Vivo Ultrasound Scanning 

3.1. Introduction 

Micro-ultrasound has recently been introduced as a potential low-cost alternative to 

mpMRI for PCa visualization during biopsy. Early studies have demonstrated similar 

performance between microUS and mpMRI for sensitivity (93% vs 94%), specificity (21% 

vs 17%), and cancer detection rates (35% vs 39%) when utilized by expert readers [16], 

[17], [18]. While these studies are promising, they are validated via prostate biopsy which 

provide limited information regarding cancer extent in the prostate. As such, a more 

rigorous investigation of microUS would implement validation against ground truth WM 

pathology, the most comprehensive form of final pathology, with mpMRI as a benchmark 

for the clinical gold standard.  

To perform this investigation, a dataset would need to be collected at an 

institution capable of capturing WM pathology as well as pre-operative mpMRI and 

microUS scans for patients undergoing radical prostatectomy for prostate cancer. 

Unfortunately, at the time of starting this thesis, no such dataset is available. However, 

UCLA is one of the few medical centers in the United States capable of capturing all three 

modalities (microUS, mpMRI, and WM pathology). In this chapter, we detail the creation 

of a clinical trial to allow for rigorous investigation of microUS imaging. The data 
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collected in this trial will be used in the subsequent chapters to quantify the diagnostic 

capability of microUS (chapters 4 & 5) as well as create confidently labeled data for deep 

learning model training (chapter 6). To collect a dataset that could allow for accurate 

registration between the three modalities, there needed to be emphasis on controlled 

data collection. More specifically, the positional information of images needs to be 

tracked at all times. Fortunately, this is routine practice for mpMRI, with the DICOM 

standard, and UCLA routinely processes WM pathology to be aligned with mpMRI. 

However, microUS is recorded as a cine (video) with limited positional information, and 

WM pathology is recorded as a series of physical slides. To address this special care is 

taken in this dataset to capture as much data as possible while preserving positional 

information. Beyond that data also needed to be represented in a way that could also be 

easily reviewed and analyzed retrospectively. To address these issues, microUS and WM 

pathology data were converted into custom DICOM series using custom developed 

MATLAB scripts allowing for retrospective review similar to mpMRI and preserved 

positional information. 

While microUS has demonstrated promise in earlier clinical studies, there is a lack 

of an identifiable contrast mechanism for its improved diagnostic capability over 

conventional US. The PRI-MUS system used to guide suspicion scoring of cancer on 

microUS is validated from tracked biopsies, but there is limited published investigation 

into what these features represent morphologically and why they are visible on microUS 

but not conventional US machines. Due to the costs associated with a clinical trial and 

collecting the dataset needed for this thesis, we wanted to provide a reason for the 

increased diagnostic capability of microUS using quantitative evidence to justify 

continuation of the study. To achieve this, in the last part of this chapter we utilize 
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computer vision to investigate differences in cancer morphology in regions of cancer 

and benign tissue on WM pathology. 

 

3.2. Enrollment 

Eighty-six patients were enrolled into a registered clinical trial (NCT04299620) and UCLA 

institutional review board (IRB) approved study (IRB#19-001136) after providing 

informed consent. To be eligible for enrollment patients had to satisfy the following 

eligibility requirements: 

1. Scheduled to undergo robotic-assisted radical prostatectomy (RALP) at UCLA 

Ronald Reagan hospital with the prostate removed as a whole gland 

2. Prostate biopsy in the last 18 months with at least one core with confirmed 

prostate cancer 

3. An mpMRI scan within a year prior to surgery with adequate scan quality for 

radiologist review 

4. No prior prostate cancer treatment, including hormone therapy, radiation, and 

focal therapy 

5. A prostate size capable of being sectioned in a pathology sectioning mold 

(approximately 110g or less) 

6. A prostate anterior to posterior axis length of no more than 6cm (the maximum 

window size of a microUS image) 

Potential patients were screened weeks in advance of their surgery. If patients were 

deemed to be eligible, they were contacted by a physician who provided the details of 

the study and how it would affect their procedure specifically. Patients were then given 

the opportunity to participate or opt out of the study. If the patient consented, a 
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physician also discussed the procedure with them during pre-operative care on the day 

of surgery. If the patient still consented to participate in the study, necessary enrollment 

forms were signed. 

 

3.3. Data Collection 

Following enrollment into the study, the following groups of data were collected for each 

patient: clinical variables, mpMRI scans, microUS scans (both in vivo and ex vivo), and 

WM pathology data (Figure 18). Each of these are described in detail in the following 

sections. To our knowledge, this was the most comprehensive and controlled dataset 

involving microUS imaging at the time this data was collected. This data would 

ultimately allow us to assess 1) the true accuracy of mpMRI and microUS delineated 

lesions through computational registration to WM pathology with tracked registration 

Figure 18: Clinical trial workflow. 
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error, and 2) create confidently labeled microUS images allowing for deep learning 

classification of prostate cancer. 

 

3.3.1. Clinical Variables 

To frame the results of this study, it is necessary to collect clinical data from every 

patient enrolled. More specifically, prostatectomy patients tend to have more aggressive, 

higher volume tumors than general biopsy cohorts. While we attempted to overcome 

this limitation through paired evaluation using gold-standard mpMRI as a benchmark, it 

is an inherent limitation of the work presented in this thesis. As such, the following 

clinical parameters help frame the results of this work in context, particularly for 

physicians, and are vital for the quality of the dataset. The specific parameters collected 

include the following: 

1. PSA – prostate specific antigen score, higher values generally correlated with 

larger prostates or more higher grade/volume cancer. 

2. PSAd – prostate specific antigen density, equal to PSA divided by prostate volume 

removing the volume dependence of PSA scores. 

3. DRE – digital rectal exam at the time of surgery, positive results are indicative of 

aggressive disease 

4. Age – Older patients are more likely to have later stage prostate cancer 

5. Prostate Volume – Smaller prostates are more easily interrogated by US imaging 

due to attenuation decreasing with pulse length, especially at higher frequencies. 

6. Cancer stage after resection – The extent of tumor involvement in the prostate, 

another indication of the aggressiveness and size of the cancer. 
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3.3.2. Multi-parametric MRI 

As mentioned above, to be eligible for enrollment each patient needed to have a mpMRI 

within a year prior to surgery. As prostate cancer is generally a slow growing cancer, it 

is not expected the tumor would grow significantly over the span of one year. Each 

patient had a T1, T2, DWI, ADC, and DCEI scans comprising their mpMRI in a 3 Tesla 

scanner. An experienced radiologist reviewed each case pre-operatively in accordance 

with standard clinical practice and identified any PI-RADS targets with associated 

suspicion scores. Furthermore, the quality of the MRI scan was also assessed by an 

experience radiologist to ensure adequate image quality prior to enrollment in the study. 

If the MRI occurred at another institution it was re-read by an experienced UCLA 

radiologist. While there is variability in scanning parameters across institutions, the 

UCLA MRIs were generally acquired using consistent scan parameters. The resolution of 

the T2 sequence, the sequence most often used for delineation, is 0.66mm in-plane with 

a through plane spacing of 1.5mm.  

 

3.3.3. Micro-Ultrasound 

In vivo Micro-Ultrasound 

On the day of surgery, each patient received multiple transrectal b-mode microUS scans 

of their prostate following anesthesia but before the start of surgery. Each scan was 

performed by an experienced urologic fellow trained on microUS imaging to ensure 

consistency across scans. First, the urologist positioned the probe at mid-gland in the 

prostate, indicated by the appearance of the urethra in the prostate. The overall gain of 

the images as well as the time gain compensation sliders were adjusted to provide a 

quality image as deemed by a urologist and imaging scientist, and the scan angle was 
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calibrated to align with the urethra. The microUS probe records the roll angle for each 

frame in a scan. Next, the physician oriented the probe to just beyond the anatomical 

right edge of the prostate. Following this, the physician rotated the prostate to the 

anatomical left edge of the prostate over the course of 30 seconds under three different 

imaging presets: small, medium, and large. A cine video was then saved to the US 

machine, at a framerate of 10 frames per second for a maximum of 300 frames, the 

reasoning for the 30 second scan. After a scan was completed, it was reviewed by the 

scanning urologist for quality, if necessary, the scan was repeated. As discussed in the 

background chapter, microUS utilizes three different beam frequencies to image at 

deeper depths of the prostate resulting in bands of frequency windows ranging from 

70µm-100µm for proximal to distal areas for a single image. As such the smaller the 

scan window preset, ranging from 3cm-6cm for small to large presets, the better the 

overall image quality and view of the prostate (Figure 19). The pixel spacing for the three 

imaging presets are Small: 0.03mm/pixel, Medium: 0.04mm/pixel, and Large: 

0.05mm/pixel. It is recommended by the manufacturer to use the smallest possible 

imaging preset that still encompasses the suspected region of cancer. Since the microUS 

images were not interpreted at the time of the scan and to avoid bias at the time of 

Figure 19: Large, medium, and small imaging presets for microUS imaging of the same location in a prostate. The 

prostate capsule is marked by a blue dashed line. By using a smaller imaging preset it is easier for the operator to 

visualize smaller anatomical features due to the larger appearance on the screen. 
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review, each prostate was scanned under all three imaging presets. Later, when the scans 

are interpreted, the reader was provided the option of all three scans. Following image 

collection, the images were exported to a database under a study assigned identifier for 

the patient.  

To allow for ease of interpretation, we developed custom pre-processing scripts 

to convert the microUS cine videos to DICOM image series with embedded pixel spacing 

and angle tracking. In doing so, readers were able to segment, measure, and localize 

various locations in the prostate which would not be possible using a video. Any reviewer 

segmentations were also able to be saved and shared for analysis purposes. Since DICOM 

is generally designed for cartesian coordinates, opposed to the cylindrical coordinates 

of the microUS sweeps, the rotation angle was recorded as the slice location for the 

DICOM metadata. While this allows for visualization during review of a sweep in a DICOM 

viewer, it does not allow for accurate 3D visualization of the prostate in alternative 

imaging orientations as is possible with MRI, an issue that will be discussed in detail in 

chapter 5. 

Figure 20: A) MicroUS image of a prostate (outlined in blue) with visible prostate ducts (outlined in green). B) 

Conventional US image of the same prostate tissue (outlined in blue) with no visible prostate ducts 
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For a very limited number of patients (N=2), it was also possible to acquire 

conventional US scans of the prostate. Following the same process as with the microUS 

system, a Hitachi Noblus ultrasound system and a C41L47RP probe was used to scan the 

prostate at 9MHz just prior to surgery. The prostate was interrogated from anatomical 

right to left and the scans were saved and exported for comparison with microUS. Since 

the probe roll is not tracked on this system, any comparison between conventional US 

and microUS for in vivo imaging relied on visual correlation. Due to operating room time 

constraints and availability of an additional US system for scanning, it was not possible 

to acquire conventional US imaging for more patients. Despite the limited patients with 

conventional US imaging, the direct comparison between microUS and conventional US 

allowed for appreciation of the improved image quality microUS provides and the 

visualization of previously non-resolvable structures. 

Ex vivo Micro-Ultrasound 

Following prostate resection but prior to grossing and sectioning, the prostate was 

imaged in a custom ex vivo microUS scanning system to assist with registration provide 

an aligned imaging orientation relative to WM pathology and mpMRI. The development 

and validation of this system will be covered in detail in the following chapter. Briefly, 

the prostate was placed in a patient specific alignment mold, positioned in the scanning 

tank and imaged in the axial orientation (the same orientation as MRI) allowing for 

straightforward registration between modalities. Using an electronic translation stage, a 

mounted microUS probe scanned the prostate from apex to base. The prostate was 

interrogated in detail using 5 scans per imaging preset (small, medium, large) for a total 

of 15 ex vivo scans. Confined by the 30 second scan limit, the prostate was interrogated 

in one full scan from apex to base at a scan speed of 2.75mm/sec and an imaging spacing 
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of 0.275mm/frame. Additionally, the prostate was interrogated in 4 scans traversing 

approximately the quarter of the distance from apex to base each. These scans were 

translated at a slower speed of 0.65mm/sec and an imaging spacing of 0.065mm/frame. 

These 5 scans were repeated for each imaging preset. Prior to imaging, the prostate was 

aligned to be centrally located in the frame and the overall gain and time gain 

compensation sliders were adjusted to provide a quality image as deemed by a urologist 

and imaging scientist. Following scanning, the images were converted to DICOM series 

as with in vivo microUS based on the controlled location of the translation stage during 

scanning. The 4 quarter scans were also stitched into one complete scan. 

 As with in vivo imaging, ex vivo conventional US imaging was acquired for a 

limited number of patients (N=4). As with microUS, the conventional US system and 

probe were a Hitachi Noblus ultrasound system and a C41L47RP probe. The conventional 

probe was mounted to the translation stage and scanned the prostate at 9MHz from 

apex to base. Cine video sweeps were exported and used for comparison with microUS. 

Since ex vivo imaging is axial, it is possible to compare to WM pathology. An example of 

Figure 21: Comparative images between microUS (left) and conventional US (right) acquired in a custom-built ex vivo 

scanning system. A WM confirmed lesion is visible on microUS only (orange arrows). 
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cancer visualization of WM pathology confirmed cancer on microUS that is not visible 

on conventional US can be seen in Figure 21. 

 

3.3.4. Whole-Mount Pathology 

Following ex vivo imaging, each prostate was processed to create WM pathology slides 

in accordance with routine clinical practice at UCLA. WM pathology is not widely 

available, and there are a limited number of centers in the United States capable of 

capturing this information. Fortunately for this work, UCLA has a robust WM pathology 

processing pipeline that not only allows for it to be created for every patient, but also 

takes special care to section the prostates in the same orientation as MRI using patient 

specific 3D printed sectioning molds. The overall process used at UCLA to create WM 

pathology slides is detailed below. 

Pathology Sectioning Molds 

A few days before surgery, the preoperative T2 MRI of each prostate was delineated by 

an experienced radiologist. Using a MATLAB script, the delineations are converted into 

a 3D model. This virtual model of the patient’s prostate was then subtracted from a 

surgical processing mold template to create patient specific surgical processing mold. 

The mold template has slits running from the apex to base every 4.5mm to provide a 

track for sectioning. The processing mold was then loaded into a slicing application to 

create instructions for 3D printing (gcode). Using fused deposition modeling (FDM) 

based 3D printing, polylactic acid (PLA) was extruded from a 3D printer to create the 

surgical processing mold (Figure 22A). This mold is designed to house the prostate to 

allow for it to be cut in the axial orientation with less error than when sliced by hand 

[167] and is used routinely at UCLA for radical prostatectomy patients. A similar mold 
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creation process, discussed in the following chapter, was used to create alignment molds 

for ex vivo microUS imaging. 

Whole-mount Processing 

Following surgery and ex vivo microUS imaging, the prostate and pathology sectioning 

mold were delivered to a surgical processing laboratory. A brief overview of the WM 

pathology processing provided below.  

To allow for slide orientation, the prostate capsule is stained in the following 

manner: right: black, left: blue, posterior: red, anterior: yellow. The prostate is 

subsequently grossed, removing any fat and seminal vesicles on the prostate. After 

grossing and capsule staining, the prostate is placed into the pathology sectioning mold 

and sliced to create axial cross-sections of the prostate with a thickness of 4.5mm. 

Figure 22: Example of a patient specific pathology sectioning 

mold (A) used to create WM pathology slides (B) aligned in 

the axial orientation. 
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Generally, prostates will have approximately 7 sections. Two of those sections are 

typically used for genetic processing, as such they are not available for WM processing. 

The remaining sections are subsequently placed in a microtome to generate thin slides. 

The slides are stained using hematoxylin and eosin (H&E) for cell and cancer 

visualization (Figure 22B). The slide generation process typically decreases the overall 

cross-sectional area by approximately 15-20% due to fixation, staining, and water loss 

[203]. Beyond that, there is often changes in the prostate shape or loss of tissue during 

the process of generating histology slides. As a result, any registration between WM 

pathology and other imaging modalities needs to account for this decrease in area and 

tissue deformation. Occasionally a microtome of a prostatic cross-section was too large 

to be visualized on one slide. In these instances, the slide was cut in half from posterior 

to anterior and represented as two WM slides. 

WM Pathology Review 

Using a microscope, an experienced genitourinary (GU) pathologist delineated the 

margins of cancer on each WM pathology slide (Figure 22B). The specific Gleason grades 

of each cancer were also recorded. These slides were then oriented anatomically from 

apex to base and captured as a reference image for later orientation. Each slide was then 

scanned digitally at 20X resolution and stored in the imaging database. Similar to 

microUS, all the WM pathology slides for each patient were converted to a DICOM series 

with embedded pixel spacing using a custom MATLAB script. This allows for easy 

visualization of a complete pathology series. For the WM slides that had to be 

represented by two halves, another custom MATLAB script was used to allow for the 

images to be stitched together while also embedding the pixel spacing. 
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3.4. Computer Vision for Prostate Cancer Morphology 

While enrollment and data collection were ongoing, we investigated why microUS could 

be diagnostic for prostate cancer when conventional US is generally non-diagnostic [5]. 

As discussed in the background section, while early studies with microUS have 

demonstrated similar cancer detection rates, sensitivity, and specificity as MRI, there is 

limited explanation or investigation into a rationale for the reported increase in 

diagnostic capability over conventional ultrasound. Drawing from ultrasound physics, 

cancer morphology, and the PRI-MUS scoring system for microUS, we created the 

following hypothesis. The improved diagnostic capability of microUS over conventional 

US can be explained, in part, by the ability of microUS to resolve prostate ducts, which 

are 1) large enough to be resolved on microUS but too small to be resolved on 

conventional US and 2) the presence and size of these prostate ducts is indicative of 

healthy tissue and the absence of ducts is indicative of cancerous tissue. 

 As mentioned, the rationale for this hypothesis comes from multiple areas. First 

the fundamentals of US describe that if a scatter is sufficiently smaller than the 

wavelength of the US pulse (𝑑 ≪ 𝜆), it will scatter in a wide variety of angles (speckle 

pattern) and appear as noise or texture in the US image [74]. Increasing the frequency of 

an US probe, decreases the wavelength of the US beam, resulting in small scatters that 

would be represented as a speckle pattern to generate resolvable reflections that can be 

visualized on US imaging. As such, conventional US typically has a resolution of 200µm 

while microUS has a reported resolution as small as 70µm [16]. Next, prostate cancer 

morphology describes that as Gleason Grade increases there is a general disturbance of 

benign epithelial-stromal relationships. More specifically, intraductal carcinoma 

infiltrates the prostate ducts and adenocarcinoma results in gland crowding resulting in 
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gland compression or, at higher grade, disappearance of prostate ducts [29]. Lastly the 

PRI-MUS scoring system describes the presence of a ductal pattern in a microUS image 

(Figure 20) as indicative of benign tissue [18]. While prostate cancer is multi-faceted and 

its appearance on imaging likely cannot be reduced to the presence or absence of 

prostate ducts, more complex features of prostate cancer are challenging to measure 

and correlate between US imaging and pathology, with reduced prevalence across 

patients compared to the inherent ductal architecture of prostatic tissue. Ultimately, this 

hypothesis sets forth one possible explanation for why microUS may be diagnostic for 

prostate cancer and is an anatomical feature that is quantifiable using WM pathology 

data. 

3.4.1. Methods 

Ten prostatectomy prostates were grossed, sectioned, stained (H&E), and all clinically 

significant PCa lesions were annotated by an experienced pathologist following routine 

clinical practice. The scanned slides were then analyzed using a custom computer vision 

script (MATLAB) to identify and quantify ductal features (Figure 23). Briefly, using the 

annotated lesions, binary masks were made to delineate benign and PCa groups. A color 

thresholding step was then applied to the tissue within each mask to select the white 

space where the prostate ducts are located. Two main features were extracted: the duct 

Figure 23: Annotated prostate WM slides (A) are masked into benign and cancerous regions (B). A color thresholding 

step is then used to separate tissue from ducts (C). The ducts are then extracted and measured (D). 
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equivalent diameter (the diameter of circular region with the same area as the duct), and 

the area of all the ducts in a region divided by the area of the region (ductal ratio).  

 

3.4.2. Results 

A total of 54 slides were processed with 145,150 benign ducts identified. The mean 

equivalent diameter of benign ducts was 155.7 ± 147.8µm (Figure 24A). Additionally, 

9,245 PCa ducts had a mean equivalent diameter of 129.4 ± 94.3µm. The average ductal 

ratio for benign tissue was 0.0863 ± 0.0289 and 0.0392 ± 0.0169 for PCa tissue (Figure 

24B). 

 The average equivalent diameter for both groups (benign: 155.7µm, PCa: 

131.8µm) is smaller than the minimum resolution of conventional US (200µm), but large 

enough to be visualized under microUS (resolution: 70µm). Only 18.3% of benign ducts 

and 12.4% of PCa ducts were larger than 200µm. Furthermore, PCa tissue exhibits an 

Figure 24: A) The equivalent diameter for benign and cancerous prostate ducts. Note, the resolution of conventional 

US is insufficient to visualize most of the ducts. B) The ductal ratio for cancerous tissue is approximately half that of 

benign tissue suggesting utility of ductal ratio for cancer identification (*p-value << 0.001 for two-sample t-test) 
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approximate 50% reduction in ductal ratio indicating a reduced presence of ducts in 

regions of cancer relative to benign tissue. 

 

3.5. Discussion 

Eighty-six patients were enrolled in a clinical trial allowing for the creation of a high-

quality PCa dataset for microUS evaluation against mpMRI and ground truth WM 

pathology. This dataset included a multitude of clinical variables, an mpMRI, in vivo 

microUS, ex vivo microUS, and mold-sliced WM pathology. Ultimately, this dataset is 

distinguishable from others due to effort for preserving positional information in the 

related modalities. Specifically, all modalities, apart from in vivo microUS, are acquired 

in the same orientation as mpMRI, the gold standard diagnostic. In vivo microUS is 

supplemented by ex vivo microUS providing an alternative in the instance in vivo cannot 

be accurately registered to WM pathology. Furthermore, this dataset is validated through 

mold-sliced WM pathology ground truth, the most comprehensive final histology 

available for prostate cancer. The collected data provides the information needed to 

objectively evaluate microUS imaging, as well as accurate data labeling of microUS 

images for model training. 

The results from the computer vision study provide evidence in support of our 

proposed hypothesis, demonstrating microUS has the potential to stratify regions of 

benign tissue from regions of cancerous tissue through the appearance of prostate 

ducts. As mentioned, this is by no means an all-encompassing explanation for prostate 

cancer visualization on microUS but it does identify a microUS visible contrast 

mechanism possibly allowing for the increased diagnostic ability of microUS relative to 

conventional US. It would follow that there are additional morphological markers of 
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prostate cancer that are unidentifiable on conventional US and resolvable on microUS, 

however quantification of these features may require hundreds of patients to identify 

and quantify due to inconsistent presentation across patients. As a result, such an 

investigation is outside the bounds of this thesis, but represents a possible avenue for 

future microUS-histology research. 

 

3.6. Conclusion 

MicroUS has the potential to be a low-cost alternative to mpMRI imaging of prostate 

cancer. However, the majority of clinical studies evaluating the diagnostic ability of 

microUS have relied on biopsy data for validation which do not provide the true margins 

of cancer extent. In this chapter we detail data collection from a clinical trial that will 

provide the necessary information to robustly evaluate the diagnostic ability of microUS.  

With spatially tracked mpMRI, microUS, and WM pathology data, this high-quality 

dataset provides the information necessary to accurately evaluate the diagnostic 

accuracy of both microUS and mpMRI. To support the rationale for this investigation, 

using computer vision and WM pathology data, we identified quantifiable evidence for 

the diagnostic capability of microUS through its visualization of prostate ducts, which 

inversely correlate to cancer. In this chapter, we have collected the necessary data for 

the rest of this thesis as well as provided supporting evidence justifying continued 

investigation into microUS imaging of prostate cancer.  
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Chapter 4 

Ex Vivo Micro-Ultrasound Imaging of Prostate 

Cancer 

 

4. Ex Vivo Micro-Ultrasound Imaging of Prostate Cancer 

4.1. Introduction 

Recently, microUS has been introduced for prostate cancer diagnosis. Commercially 

available machines operate at a much higher frequency (29MHz) than conventional US 

probes, while maintaining an imaging depth of 6cm, allowing for a superior spatial 

resolution of approximately 70µm versus 200µm for conventional ultrasound [16]. The 

matching of microUS readings to 400 tracked biopsies led to the development of the 

Prostate Risk Identification using Micro-Ultrasound (PRI-MUS) grading scale for detecting 

and grading prostate cancer [18]. In preliminary studies microUS has performed 

similarly to MRI and could potentially provide a low cost alternative to MRI for targeted 

biopsies [16].  

MicroUS has demonstrated potential for prostate cancer diagnosis, however, it 

lacks validation to WM pathology, the gold standard. MicroUS utilizes a side fire probe, 

therefore, in vivo imaging is achieved by sweeping the ultrasound plane across the 

prostate in a para-sagittal, fan-shaped pattern. Since WM pathology is acquired in the 

axial orientation, computational registration is challenging even with highly-controlled 

scanning setups [20]. In this chapter we detail the development and validation of a 

scanning system that facilitates accurate in-plane co-registration of ex vivo microUS with 
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WM pathology and MRI. We then use this scanning system to compare the diagnostic 

ability of ex vivo microUS and MRI against WM pathology in a pilot clinical study. 

  

4.2. System Design 

The ex vivo scanning system was designed to interrogate a surgically removed prostate 

under US imaging in the axial orientation from apex to base (Figure 25A). The system is 

mounted to an optical board and designed to scan at a controlled speed allowing for 

position tracking. The three main components of the scanning system are: the probe 

holder, the scanning tank, and the imaging alignment molds. There is also an image 

processing component following data collection to convert the ex vivo microUS scans 

into single DICOM series. Each of these components are covered in more detail in the 

following sub-sections. The ultimate goal of the scanning system is to acquire microUS 

images in the same orientation as WM pathology and mpMRI are acquired allowing for 

co-registration between the modalities. An ideal system would provide clear images of a 

Figure 25: A) Ex vivo scanning system design used to scan the prostate axially from apex to base and B) an example 

image from the ex vivo scanning system. There is pathology confirmed prostate cancer (orange circle) in the left 

peripheral zone (lower right region of the image).  
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prostate with minimal noise artifacts. Through iterative development, we were able to 

refine the US scanning system to provide quality images that ultimately allow for 

evaluation of microUS imaging of PCa (Figure 25B). 

 

4.2.1. Probe Mounting and Translation 

The microUS probe needed to be translated at a controlled speed from the apex to the 

base of the prostate. To achieve this a mechanical translation stage (X-LSQ300B, Zaber 

Technologies) was mounted to an optical board. The translation stage used is a linear 

stage with a built-in controller and supported Python application programming interface 

(API). The stage allows for 300mm of travel, a step size of 50µm, and a maximum load 

of 500N allowing for adequate scan distance and resolution while also being able to 

support a microUS probe, the related mounting components, and any induced forces 

during scanning. Using the API a custom Python script was written to control the 

translation stage. The script provides functionality to move to the mid-gland of the 

prostate prior to scanning to allow for image optimization of probe position and image 

gain. Beyond that it allows for repeated scans from the apex to the base at a translation 

speed of 2.75mm/second or 0.65mm/second giving a respective imaging spacing of 

0.275mm/frame or 0.065mm/second due to the microUS system having a framerate of 

10 frames/second. Due to limitations of the microUS system acquiring a maximum of 

300 frames per cine video, the faster translation speed completes the full travel scan in 

just under 30 seconds allowing the operator time to save the sweep after the scan is 

completed. The slower scan speed follows the same pattern splits the full travel distance 

into 4 periods allowing for scan acquisition in between each scan. For conventional US 
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scanning, the Hitachi system allows for custom scan lengths so the entire scan was 

performed as a continuous 0.65mm/sec translation and saved. 

 In order to align the probe for scanning it needed to be appropriately mounted to 

the translation stage (Figure 26). Two vertical mounting posts were attached to the 

translation stage attached to two horizontal mounting posts via mounting joints. The 

raised horizontal mounting posts were connected to a small optical board allowing for 

Figure 26: A built version of the ex vivo scanning gantry used for preliminary 

testing. The alignment mold, probe holders, and scanning tank were updated in 

later iterations. 
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custom designed US probe holders to be attached. The US probe holders were designed 

to align the US probe in the axial orientation and utilizes unique features on the neck of 

the probe to prevent rotation or misalignment. To create these models a 3D computer-

aided design (CAD) model of the microUS probe is used to extract the probe volume 

from a holder template file. The CAD model is then split into two components with screw 

connection points to secure them to each other with the probe in the middle. The CAD 

models were then 3D printed and screwed into the vertical optical board on the 

mounting system. This process was followed to create a custom holder for the 

conventional US probe. The initial microUS holder was designed without an angle offset, 

however the microUS probe has a canted design at the location of the transducer to ease 

Figure 27: Initial straight mount design (left) resulting in a transducer angle 

mismatch with the prostate. Adding an offset of 30 degrees in the canted 

mount (right) allows for straight on imaging from the transducer.  
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transrectal insertion. As such to allow for the microUS probe to sit parallel to the 

prostate and scan tank wall, it was necessary to add an angled offset to the microUS 

probe holder of approximately 30 degrees (Figure 27). 

 

4.2.2. Scanning Tank 

To allow for adequate interrogation of prostate tissue, we needed to create a conducive 

ultrasound imaging environment. In the preliminary proof of concept efforts, we 

designed and printed a 15x13x11cm PLA tank with a housing for the imaging alignment 

mold. The tank was coated with a silicon rubber spray to increase the absorption of the 

US beam. For agar phantom validation studies, the tank was filled with water to allow 

for US interrogation, but for prostate studies the tank was filled with 0.9% saline for an 

isotonic solution to avoid osmotic tissue degradation during scanning. 

 While these scans allowed for adequate interrogation of the prostate, we 

continued iterative development over the course of the clinical trial to further improve 

scan quality. Specifically, PLA allows for easy prototyping due to its ability to be 3D 

printed, but creates considerable US reflections as a rigid plastic material. To decrease 

ultrasonic reflections, the box was redesigned to allow for room for US absorbent 

material. The absorbent material (AptFlex F28P, Precision Acoustics) is a micro-bubble 

filled sheet made of a polyurethane with small pyramidal structures that decrease 

specular reflections and increase the number of reflections required to transmit back to 

the transducer. The material has a density and speed of sound similar to water to 

promote absorption. All of this results in an echo reduction of approximately 40dB. All 

of the surfaces in the US scanning tank were lined with this material (Figure 25A). To 

further reduce the amount of PLA exposed to the US probe, the size of the housing used 
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to secure the alignment mold was reduced and instead was secured in place by a small 

screw. 

 

4.2.3. Patient Specific Scanning Molds 

To correctly orient the imaging molds during scanning we utilized patient-specific 

imaging alignment mold. Similar to the molds used for WM pathology sectioning, the 

molds are designed to orient the prostate to allow for axial scanning and are constructed 

following the same process. As detailed in chapter 3, to create the mold the prostate 

shape is delineated on MRI and extracted from a template file that is subsequently 3D 

printed. For imaging alignment, only the anterior half of the mold is needed. This orients 

the prostate with the peripheral side facing the transducer allowing for the correct 

imaging plane. 

To further improve the ex vivo scan quality, two different types of imaging 

alignment molds were tested. One mold was a traditional pathology slicing mold made 

of PLA and the other was made of thermoplastic polyurethane (TPU). An agar phantom 

(4%w/v) was scanned in the HRUS scanning gantry using both molds. The subsequent 

image stacks were compared qualitatively and quantitatively to assess the impact of the 

material properties on the imaging artifacts, full width at half maximum (FWHM) at the 

edge of the mold, pixel intensities, signal to noise ratios (SNR), and contrast to noise 

ratios (CNR). A superior mold generates less noise and has sharper edges, generally 

characterized by a short FWHM, high SNR and CNR, and low background pixel intensities. 



97 

 

 A total of 477 matched images were compared between a phantom imaged in 

both PLA and TPU molds (Figure 28). Matched background pixels (N = 96,000) were 

compared between PLA and TPU with the former exhibiting a higher average pixel 

intensity by 27.5±54.8. From a sample of 50 images for each mold, the FWHM was found 

to be 4.6mm±1.1mm for PLA and 1.8mm±0.4mm for TPU, indicating the TPU molds have 

sharper edges under HRUS. For a sample of 100 images, the SNR was found to be 84.2 

and 97.8 for PLA and TPU respectively. The CNR for PLA was 43.3 and 72.5 for TPU. 

These data indicate that TPU molds result in fewer imaging artifacts, sharper edges, 

better signal and contrast to noise ratios. Due to the superior imaging quality, the TPU 

mold was chosen for imaging ex vivo human prostates. Beyond this, the flexible nature 

of TPU molds allows for the prostate to be sutured to the imaging mold to help secure 

it for imaging. 

Figure 28: Comparison of PLA and TPU phantom images. (Red) Background noise within the mold. 

(Blue) Signal from the phantom. (Green) Background noise in the water. (Purple) FWHM across the 

interface between the mold and the water. 
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 To allow for equal comparison between materials in this test, the TPU mold was 

designed and printed the same way as the PLA pathology sectioning molds. After 

confirming the more flexible TPU molds allow for higher quality imaging, the TPU 

imaging alignment molds were further altered to use less material resulting in less 

opportunities for reflection (Figure 29). The pathology sectioning mold needs to have 

slits to allow for the cutting blade, but this is not required for ex vivo imaging alignment. 

As such the mold template was redesigned to not have these slits. The reduced volume 

Figure 29: Example of the anterior half of the PLA pathology 

sectioning mold and TPU imaging alignment mold. The flexible TPU 

provides a superior acoustic environment to the more rigid PLA. 
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of walls within the print as well as utilizing a smaller infill percentage (10%), helped 

diminish US reflections further. 

 The last iterative development to improve ex vivo US imaging was the 

implementation of an US stand-off (Aquaflex, Parker Laboratories). An US stand-off was 

implemented to help with near-field visualization of the prostate, specifically the 

peripheral zone. Using a custom designed stand-off slicer mold, the stand-off was cut in 

Figure 30: Ex vivo imaging mold, scanning gantry, and resulting 

image. The high-quality scans allow for visualization of 

intraprostatic features 
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half to reduce its thickness. It was then sutured to the imaging alignment mold on top 

of the peripheral zone of the prostate. Ultimately all of the iterative develops allowed 

for high quality ex vivo imaging of human prostates following radical prostatectomy 

(Figure 30). 

 

4.2.4. Image Processing 

Following ex vivo scan collection, the files needed to be extracted from the microUS 

machine and converted into a usable file format. Each microUS sweep is saved as a video 

(.bmp) file on the US machine. We created a custom MATLAB script to convert the video 

file to individual image files. Each frame is turned into a DICOM image with embedded 

pixel spacing. Each DICOM image is assigned a position based on the translation speed 

of the scan and the number of images since the start of the scan. However, since the 

microUS video is saved as the prior 30 seconds and is not linked to the movement of the 

translation stage, there is a period at the beginning of each scan where the probe is not 

moving. To account for this, the first image in the series is compared to consecutive 

images following it using image similarity metrics. Once a substantial difference between 

frames is detected, indicating the transducer is moving, the preceding frames are 

trimmed from the series. A script also takes the time a scan was taken and uses it to 

stitch the four consecutive scans together automatically. The resulting DICOM series are 

subsequently available for review, delineation, and analysis. 
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4.3. Co-Registration 

Following development of the scanning system, it was necessary to validate its 

correspondence with WM pathology and MRI. The purpose of the ex vivo scanning 

system is to compare microUS with WM pathology and MRI, and in order to do this a co-

registration process needs to be developed and validated. To this end, the target 

registration error (TRE) of the system was evaluated in two studies: a phantom study 

with embedded fiducials, and a prostate fiducial study using internal prostate 

landmarks. 

4.3.1. Phantom Study 

First, the system and co-registration were validated in a phantom study. To achieve this 

5 prostate mimicking agar phantoms (4%w/v) were created following a process from a 

prior study [167]. Briefly, warm agar solution was poured into a prostate mold with 

needles oriented in specific positions throughout the prostate and placed in a 

refrigerator to cool. Once the agar set, the needles were removed leaving behind tracks 

that serve as fiducial markers. The prostate phantoms were then removed and placed in 

imaging alignment molds and scanned in the gantry with the microUS probe. The 

phantoms were subsequently sliced axially in the full pathology mold and scanned on a 

conventional desktop scanner (MFC-9340CDW, Brother Industries, Ltd. Japan) at 600dpi 

to mimic WM pathology slides. Using a DICOM viewer (Horos, Horos Project), both the 

microUS and desktop scan of the phantom were segmented and the fiducials were 

marked (Figure 31). With the prostate capsule as the basis for co-registration, the 

segmentations were then co-registered via a custom MATLAB script. This was performed 

through a rigid transformation of the sliced phantoms to account for scaling and in-
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plane rotational misalignment, followed by a non-rigid thin-plate spline transformation 

using control points on the prostate capsule to account for non-rigid specimen 

deformation as described by Fei et al. [155]. The in-plane distance between matched 

fiducials on microUS and desktop scans was recorded for each fiducial pair and used for 

determining in-plane TRE. 

 From the 5 agar phantoms, a total of 294 matched fiducial pairs were compared 

from 40 phantom slices (Figure 31). The average in-plane TRE was 1.9mm±1.4mm. This 

is similar to the TRE observed when co-registering axial MRI to WM pathology 

(1.9mm±0.6mm) [167]. 

Figure 31: Phantom study overview. MicroUS phantom images were matched to phantom slices based on recorded 

scan and slice locations. The distance between marked needle track fiducial pairs were measured following co-

registration. 
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4.3.2. Prostatic Fiducial Study 

Following a similar process as the phantom study, imaging data from four prostates 

from the dataset detailed in chapter 3 were used for this evaluation. Specifically, 

following surgery, the prostate was placed in a patient-specific mold, submerged in 

saline in a custom imaging tank, and imaged in the axial plane with a microUS probe 

from apex to base using a translation stage. The prostate was then placed in a 3D printed 

pathology mold and sectioned to produce slides in the same orientation as the MRI and 

microUS scan, as described in chapter 3. Digitally scanned histological slides at 20X 

magnification were created from each specimen. Matched corresponding images from 

Figure 32: Co-registration of microUS (red), WM pathology (blue), and T2 MRI (green). The four corresponding 

landmarks are marked as circles and the distance between microUS and MRI from the corresponding WM landmark is 

used to quantify the target registration error. 
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both T2 MRI and ex vivo microUS were chosen for each histology slide. For each slide 

the prostate capsule was segmented and at least four anatomical landmarks (urethra, 

BPH nodules, cysts, ejaculatory ducts) were marked that were visible in all 3 image sets. 

Using only the prostate capsule segmentations, a rigid registration step followed by a 

thin-plate spline (TPS) non-rigid registration step was performed to co-register each set 

of image triplicates (Figure 32). The in-plane TRE was calculated for each landmark.  

 Matched microUS and MRI images were co-registered to a total of 22 pathology 

slides. A total of 88 anatomical landmarks were evaluated. Based on previously 

published results, the out of plane error between MRI and microUS matched with WM 

pathology slides is expected to be around 1.5-3mm [175]. The TRE following TPS 

registration was 2.16mm ± 1.02mm for microUS and 2.34mm ± 1.35mm for MRI 

demonstrating the developed co-registration process facilitates accurate co-registration 

between microUS, MRI, and WM pathology. 

 

4.4. Pilot Clinical Study 

While the ex vivo scanning system has been validated for registration accuracy in the 

prior sections, ex vivo scanning is in a different imaging environment than the in vivo 

prostatic environment. As such, it is crucial to determine if it is possible to identify PCa 

on ex vivo microUS imaging. If an expert microUS reader is able to identify PCa on ex 

vivo microUS with similar performance to mpMRI, the ex vivo scanning system and 

imaging environment can be deemed sufficient quality for microUS evaluation. 

Furthermore, this will also provide promising evidence for the overall diagnostic 

potential of microUS. However, it is worth stating that the ex vivo imaging environment 

is not indicative of an in vivo imaging environment, and as such there is the possibility 
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it is more favorable for microUS visualization of PCa than an in vivo environment. For 

this reason, an eventual in vivo evaluation of microUS is preferrable. If it is not possible 

to achieve accurate registration, however, ex vivo imaging could potentially provide an 

adequate alterative. To confirm this, we performed a pilot clinical study to assess the 

diagnostic accuracy of ex vivo microUS imaging for PCa and the quality of the ex vivo 

imaging environment. 

 All research involving human subjects was approved by the Institutional Review 

Board. Three patients set to undergo radical prostatectomy were consented and enrolled 

in the study. Using a pre-operative MRI scan with annotated suspicious lesions, custom 

PLA and TPU molds were printed for prostate slicing and imaging respectively. Following 

radical prostatectomy and prior to fixation, the prostate was placed in the anterior half 

of a TPU mold, secured via a suture, and imaged under microUS in the ex vivo scanning 

gantry in the same manner as the phantom scans. After scanning, the prostate was 

placed in the PLA pathology mold and sectioned axially following routine clinical 

protocol. Histology slides were made from each slice and cancerous lesions were 

annotated by an experienced pathologist. The annotated slides were subsequently 

scanned at high resolution (20x). Following a similar process to the phantom experiment, 

the histology slides were then cognitively compared to the microUS scan and pre-

operative MRI to find matched image triplicates. The prostate and visible lesions were 

identified and segmented by separate expert blinded observers for the microUS scan, 

MRI scan, and pathology slides. Following metrics used in similar studies [204], [205], 

the overlap percentage, DICE similarity coefficient (DSC), and centroid distance were 

calculated for each co-registered ROI triplicate. This allows for preliminary analysis of 

the ability of microUS to identify PCa, using MRI imaging as a benchmark.  
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 From 3 subjects, a total of 14 microUS, MRI and pathology image triplicates were 

matched and computationally registered together (Figure 33). Lesions were present on 

11 of the pathology slides with a total of 20 lesions. Of these 20 lesions 13 were 

identified by the microUS observer with only 4 identified on MRI. Overall, 26 lesions 

were delineated on microUS with 18 true positives and 8 false positives. For MRI, 4 true 

positive lesions were delineated. All 3 index lesions were identified on microUS and 2 

out of 3 were identified on MRI. The average distance between the centroids of the true 

positive microUS ROIs and the actual lesions was 10.8mm±7.2mm with 11 out of 26 of 

the ROIs having a centroid distance from the WM ROI of less than 1cm. For MRI the 

average centroid distance was 5.8mm±2.5mm with all 4 ROIs having a centroid distance 

Figure 33: Co-registration of blinded expert delineated regions on ex vivo microUS, WM pathology, and mpMRI. 
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of less than 1cm from the WM ROI. The average overlap percentage and average DSC of 

the true positive microUS and WM ROIs was 54.3%±33.1% and 0.33±0.21 respectively. 

While for MRI the average overlap percentage was 85.1%±17.6% and DSC was 0.61±0.05. 

 

4.5. Discussion 

The goal of this chapter was to develop and validate an ex vivo scanning system to allow 

for in-plane co-registration of microUS and MRI images with WM pathology, for eventual 

comparison of the diagnostic accuracy of microUS versus MRI imaging. 

 The ex vivo scanning system was specifically designed to interrogate surgically 

excised prostates in the axial orientation, allowing for comparison with WM pathology 

and MRI. The system was developed and iteratively improved to create high quality 

microUS images. Implementation of TPU molds offered superior imaging quality to PLA. 

This is likely due to the reduced material stiffness of TPU resulting in a lower acoustic 

impedance difference at both the water-mold interface and the phantom-mold interface. 

Furthermore, use of US absorbent material reduced scattering noise and US stand-offs 

allowed for better interrogation of near field imaging. 

Phantom experiments demonstrated that the developed scanning system 

facilitates in-plane co-registration similar to published values for MRI with a TRE of 

1.9mm±1.4mm. This error is acceptable given that the average biopsy needle deflection 

is 0.9mm and the average registration error for MR-US fusion phantom studies typically 

report a TRE of 2-3mm [21]. However, the phantoms are more rigid than prostate tissue, 

so there may be a larger TRE than was found with the phantoms from increased 

deformation when sectioning. To account for this, we performed a similar study using 

prostatic fiducials after confirming the system had adequate registration with agar 
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phantoms. In which microUS and MRI had average TRE values of 2.16mm ± 1.02mm and 

2.34mm ± 1.35mm respectively. This represents a slight increase in TRE over the 

phantom studies, as expected, but is still within the typical reported TRE range of 

commercial fusion systems. 

Overall, the ex vivo scanning system allowed for detection of prostate cancer with 

65% of distinct lesions and all 3 index lesions correctly identified under microUS. The 

index lesion is the largest and most aggressive tumor and believed to be responsible for 

the progression of prostate cancer making its detection vital for proper disease 

management [43], [44]. Additionally, 6 out of the 7 lesions that microUS failed to detect, 

were small lesions with a cross-sectional area less than 40mm2. The only large lesion 

that was missed by microUS was located in the far anterior of the prostate, indicative of 

a weakness of microUS as there is a distinct loss of resolution in the far anterior of the 

prostate due to shadowing, however this lesion was also missed under MRI. 

The pilot clinical study demonstrated the scanning system and registration 

software presented here are allow for visualization of PCa and co-registration of ex vivo 

microUS with MRI and WM pathology. Ultimately, this facilitates comparison of the 

clinical utility of microUS and MRI using WM pathology as ground truth. However, it 

should be noted that microUS scans were performed ex vivo and is not indicative of a 

clinical scan, while MRI was performed in vivo. In an in vivo setting there are anatomical 

structures which can potentially degrade image quality; however, ex vivo also has 

structures that could also degrade image quality such as the TPU mold and tank. 

The clinical data present here highlight the promise of microUS as an alternative 

to MRI for prostate cancer detection as all 3 index lesions were correctly identified. 

However, this was only an exploratory study with a small sample size (N=3), therefore, 
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accurate metrics for the sensitivity and specificity of microUS cannot be discerned. 

Further work is planned to increase the number of patients and ultimately demonstrate 

the clinical utility of microUS. 

4.6. Conclusion 

The scanning system presented in this chapter facilitates high quality ex vivo microUS 

images and allows for accurate in-plane co-registration of with WM pathology slides. As 

demonstrated in the pilot clinical study, this process enables rigorous assessment of the 

utility of microUS for prostate cancer detection. The ability of an expert reviewer to 

identify PCa on ex vivo microUS is a testament to the quality of ex vivo images as well 

as the promise for microUS as a potential alternative to MRI. The results from this 

chapter provides added confidence microUS has potential to identify PCa and this 

investigation is worth pursuing further.  
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CHAPTER 5 

Evaluation of Native Micro-Ultrasound and 

MRI Imaging 

 

5. Evaluation of Native Micro-Ultrasound and MRI Imaging 

5.1. Introduction 

MicroUS is a promising new modality, however it has not been robustly evaluated against 

mpMRI in clinical studies validated by ground truth histology. Previous studies validated 

with tracked biopsy have demonstrated similar cancer detection rates between microUS 

(35%) and mpMRI (39%) with comparable sensitivities (94% vs 90%) and specificities (22% 

for both) [16], [17], [18]. Although these studies have demonstrated promise for microUS 

imaging, the gold standard evaluation for prostate imaging is validation against ground 

truth whole-mount (WM) pathology slides. Unfortunately, such a study is challenging 

because it is difficult to co-register imaging planes with pathology slides, because the 

former are acquired in a para-sagittal sweep and the latter are axial. Moreover, probe 

rotation is performed manually and thus prone to inconsistent tissue deformation and 

untracked imaging plane translations. Consequently, most studies comparing microUS 

and MRI have relied on cognitive registration of microUS and pathology through 

placement of an ROI into one of 12 corresponding template zones within the prostate 

[191], [206]. Although this approach is sufficient for assessing general consensus 

between modalities, cognitive registration is limiting for the following reasons: 1) Zonal 

placement is subject to reviewer bias and expertise as correlation between non-
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orthogonal, and non-parallel microUS and WM image planes require significant cognitive 

effort and is prone to error 2) Registration error and overall quality of cognitive 

registration is not necessarily consistent across cases and reviewers, thus, specific ROI-

lesion agreement metrics such as dice scores and overlap percentages cannot be 

accurately evaluated 3) Image masks created from cognitive registration are weak labels 

and can diminish the accuracy of predictive AI models for microUS, which would help 

facilitate widespread adoption of microUS. 

Here, we demonstrate computational registration of microUS and MRI to WM 

pathology, with measurable registration accuracy and minimal bias, thus enabling 

rigorous assessment of both imaging modalities. In addition, this process facilitates 

generation of high quality, strongly labelled datasets which will pave the way for the 

development of deep learning models capable of automatically identifying cancerous 

lesions on microUS. We believe such models are a necessary prerequisite to widespread 

adoption of microUS as cognitive analysis of the images is challenging particularly in the 

biopsy setting where time is often limited. In earlier work, our group has validated an ex 

vivo microUS scanning setup and found comparable results between MRI and ex vivo 

microUS for prostate cancer identification through computational co-registration with 

WM pathology [166]. In this work, we build upon our approach with a validated, multi-

step registration process for accurate co-registration of in vivo microUS and mpMRI with 

WM pathology. This approach is then utilized for quantitative analysis and comparison 

of microUS and mpMRI for blinded cancer detection in a clinical study with 15 patients. 

The goal of this study is two parts: 1) validate co-registration of microUS and MRI with 

ground truth WM pathology and 2) determine the diagnostic accuracy of microUS and 

mpMRI in a pilot clinical study. 
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5.2. Methods 

A general overview of the three-step registration process is as follows (Figure 34): After 

para-sagittal microUS images, axial MRI images, and axial WM pathology slides are 

obtained 1) The para-sagittal microUS images are reconstructed and interpolated to align 

with the MRI axial planes 2) The reconstructed microUS images are co-registered to the 

MRI via a 3D registration process based on common landmarks 3) The newly co-

registered microUS and MRI datasets are registered to WM pathology via 2D capsule 

registration. The end result is a series of 3 transformation matrices that transform a 

point in para-sagittal microUS space to “true” sagittal microUS space, then to MRI space, 

and lastly to WM pathology space. Later in the pilot study, reviewers delineate regions 

suspicious for cancer on native microUS and MRI and the aforementioned matrices are 

retrospectively applied to register both datasets to ground truth WM pathology. 

5.2.1. Data Collection 

Fifteen patients set to undergo radical prostatectomy for cancer treatment gave 

informed consent and were enrolled into a registered clinical trial (NCT04299620) and 

UCLA Institutional Review Board approved study (IRB#19-001136). To be eligible for 

enrollment, each patient needed to have an mpMRI of their prostate with an associated 

UCLA radiologist report within a year prior to surgery, biopsy confirmed prostate cancer, 

and no prior treatment. Any radiologist identified PI-RADSv2.1 (Prostate Imaging 

Reporting and Data System) score 3 or higher suspicious regions were exported from 

the mpMRI and stored.  
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In the operating room on the day of surgery, each patient received at least 3 

transrectal microUS sweeps of their prostate at large, medium, and small imaging 

presets prior to the procedure. All microUS scans were performed by the same 

experienced urologist to ensure consistency across patients. Immediately after a scan 

was obtained it was reviewed and, if necessary, repeated to confirm sufficient quality 

and that the entire prostate was captured. After prostatectomy the prostate was placed 

in a patient-specific 3D printed histology alignment mold and sectioned in accordance 

with routine clinical practice at UCLA [207]. These molds are specifically designed to 

section the prostate in the axial orientation to allow for direct comparison between MRI 

Figure 34: Overview of methodology of alignment of microUS images with MRI and WM 

pathology. MicroUS images are acquired in a para-sagittal fan sweep, while MRI is 

acquired in the axial plane. Following prostatectomy, the gland is sectioned in a 

pathology mold to align the WM sections with the MRI axial orientation. The para-

sagittal microUS frames are reconstructed into a “true” sagittal orientation, then 

registered to MRI via a 3D landmark registration. Finally, MRI and microUS are 

registered to WM pathology via a 2D capsule registration. 
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and final pathology. Using a microtome, WM pathology slides were made from each 

section and subsequently scanned at 20X magnification and saved digitally. Cancerous 

lesions were delineated on the WM slides by an experienced genitourinary pathologist. 

In summary, an axial mpMRI scan, a para-sagittal microUS sweep, and axial WM 

pathology slides were acquired from 15 patients (Figure 34).  

 
 

5.2.2. MicroUS Image Plane Reconstruction 

The first step to register the para-sagittal microUS sweep with the axial MRI and WM 

datasets required the microUS image data to be reconstructed into parallel frames. Since 

every frame in an imaging sweep was acquired at a different angle in a para-sagittal 

sweep, the data cannot be loaded into a standard DICOM viewer without losing geometric 

positioning of the frames (Figure 35A). A custom MATLAB (MathWorks) script was used 

to reconstruct the microUS images in the sagittal orientation through positioning in 3D 

space, resampling, and interpolation. The microUS images were obtained as a 300-frame 

sweep from the right to left side of the prostate with each image at a varying angle of 

transducer rotation. The native image frames can be thought of as 2D planes in a 

cylindrical coordinate system rotated around the rectum (x-axis) at a specific angle and 

offset from the center of rotation. To mimic this, a rotation around the x-axis was 

applied to the pixel coordinates of each frame using the stored angle metadata. Due to 

the microUS probe design, there is a 2mm offset from the edge of the US transducer and 

the first row of pixels acquired in the image. To account for this, each image was shifted 

above the x-axis by 2mm prior to rotation. After rotating all the images, empty parallel 

planes with 1mm spacing along the y-axis (sagittal orientation) were populated with any 

image data that lies within y±0.5mm of the plane. A gridded interpolation step was 
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performed to fill any holes in the new image planes. These new images were then saved 

as a DICOM series with embedded pixel spacing and coordinate locations. When loaded 

in a standard DICOM viewer, these reconstructed scans allow for correct visualization of 

the prostate in traditional orientations (axial, sagittal, and coronal) (Figure 35B). 

 

5.2.3. MicroUS to MRI Registration 

Registration Process 

Following microUS image plane reconstruction, the next step is to account for tissue 

deformation and any misalignment from the reconstruction step. During microUS 

interrogation of the prostate, the probe deforms the prostate causing compression of 

Figure 35: A) Loading consecutive images into a DICOM viewer without 

accounting for scan angle results in a warped prostate shape that is not 

representative of the actual gland. B) By accounting for the scan angle and 

imaging offset it is possible to reconstruct sagittal images (blue), that when loaded 

into a DICOM viewer preserve the geometric shape of the gland to facilitate axial 

viewing and 3D reconstruction. 
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the gland in-plane. Furthermore, only the roll (rotation around the x-axis) of the US probe 

was tracked and recorded during scanning, so any pitch, yaw, or translation has not been 

accounted for at this stage. The reconstruction process described in the prior step is 

designed to approximate the shape of the prostate, but a corrective registration step is 

required. To account for this, a landmark registration with MRI was performed. MRI was 

chosen over direct registration to WM pathology due to the superior sampling density 

of MRI and to avoid potentially confounding factors for tissue deformation from WM 

slide shrinkage during fixation and processing. Additionally, WM pathology is generally 

limited to at most 6-7 slides per case with approximately 4.5mm spacing between slides, 

whereas the majority of MRI data was acquired with 1.5mm spacing providing 3 times 

the sampling density registration. 

For microUS to MRI registration, the reconstructed microUS and MR images were 

loaded into 3D Slicer[208] and the microUS sweep was visually aligned to the MRI via 

translation and rotation. Following visual alignment, a landmark based thin-plate spline 

(TPS) registration was performed. Landmark selection was limited to selection of 3 

common points along the urethra at the apex, mid-gland, and base, as well as points 

along the capsule in 3 axial frames in the apex, mid-gland, and base (Figure 36A). 

Registration Accuracy Assessment 

The accuracy of the registration was then assessed by selecting 5 internal landmarks 

(excluding the urethra) and measuring the distance between them to get the target 

registration error (TRE). Landmarks were generally distributed throughout the prostate 

rather than clustered in the same location (e.g., apex, base, mid-gland, left, right). 
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5.2.4. MRI to WM Pathology Registration 

Registration Process 

After microUS registration with MRI, a second registration step is performed to register 

both microUS and MRI with WM pathology. Before this can be done, the WM slides must 

be matched to a specific MRI image. The general location and the order of each histology 

slide is known. However, since the thickness of each histology section is 4.5mm and the 

MRI thickness in our dataset is usually 1.5mm, there are at least 3 possible MRI images 

that could correspond to a given WM slide. To address this, an experienced reviewer 

matched each WM slide to a corresponding MRI slide using the knowledge of the slide 

location, size and shape of the capsule on MRI and WM, anatomical features (e.g., 

urethra, seminal vesicles, BPH nodules, and calcifications), and the relative spacing from 

Figure 36: A) Landmark registration between microUS and MRI. Points along the urethra and the capsule were selected 

to inform the TPS transformation (yellow). The distance between five internal anatomical fiducials (red) were used to 

evaluate TRE. B) Capsule registration between MRI and WM pathology. The distance between fiducials (circles) were 

used to evaluate TRE and the overlap of the transition zone (dashed lines) was used to determine DICE scores. 
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other MRI matched WM slides. After matching all slides, it was confirmed that exactly 

one WM slide was contained within every 3 MRI frames (when MRI slice thickness was 

1.5mm). Following this process, WM slides are able to be matched with an error of 

approximately 1.5mm (or one MRI frame) as reported by an earlier study from our group 

[175].  

Using MRI and WM capsule segmentations, the MRI was co-registered to the WM 

slides through a custom MATLAB script. The registration involved a rigid transformation 

to account for scaling and in-plane rotational misalignment, followed by a non-rigid TPS 

transformation using control points on the prostate capsule to account for specimen 

deformation as performed in earlier studies [155], [209]. 

Registration Accuracy Assessment 

In order to assess registration accuracy, matched image data were assessed by four 

reviewers (3 urologists, 1 imaging scientist). Using a DICOM viewer (Weasis Medical 

Viewer), each of the 15 subjects was reviewed by at least two reviewers and each reviewer 

was randomly assigned a subset of eight cases to review. For each case, reviewers were 

asked to mark up to four common anatomical landmarks as well as outline the transition 

zone and capsule on both MRI and WM for each matched image pair (Figure 36B). The 

MRI was then co-registered to WM for each case and each reviewer. The distance in 

millimeters between identified landmarks was recorded as the TRE, and the dice 

similarity coefficient was calculated from the overlap of the identified transition zones. 

 

5.2.5. Pilot Clinical Study 

Whole Mount Pathology 
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As described earlier, in accordance with normal clinical practice, an experienced 

genitourinary pathologist reviewed the WM pathology slides and identified the prostate 

cancer boundaries as well as the International Society of Urological Pathology (ISUP) 

grade group of the tumors. 

MRI 

For MRI, any delineated PI-RADSv2.1 target from the original mpMRI prior to surgery 

was imported. In addition, using the mpMRI scan, an experienced radiologist with over 

ten years of experience with PI-RADS was asked to delineate any suspicious regions on 

T2 MR images with the knowledge the patient received a prostatectomy for prostate 

cancer (retrospective MRI). This was necessary because the PI-RADSv2.1 protocol 

prioritizes specificity and identification of the center of the index lesion as a triage for 

biopsy. Consequently, this methodology underestimates tumor extent in an effort to 

minimize unnecessary biopsy procedures [13]. However, we are interested in analyzing 

the ability of microUS and MRI to identify the margins of prostate cancer, which is critical 

for treatment decisions and focal therapy planning. Furthermore, given microUS is a 

relatively new imaging modality, there are limited numbers of readers familiar with the 

technology and even fewer expert readers. As a result, the experienced readers available 

for this study had knowledge of the study design and were aware it is validated via WM 

pathology, which is only available for prostatectomy patients. For the above reasons, 

both the MRI and microUS reviewers were aware the patient had a prostatectomy prior 

to review, but were blinded to the WM pathology and other clinical history of the patient 

(e.g., cancer grade, PSA, biopsy results). 

MicroUS 
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For microUS, the same four reviewers in the landmark study reviewed the native microUS 

sweeps and were asked to identify up to two suspicious lesions per subject to ensure 

only the most suspicious regions were annotated. Reviewers had varying levels of 

microUS experience but they all completed an online training module from the microUS 

manufacturer to ensure baseline competency. However, the clinical experience of each 

reviewer varied (number of microUS biopsies performed or observed). Reviewers 1-3 had 

performed or observed over 50 microUS targeted biopsies at the time of review and 

frequently interpret microUS scans, while reviewer 4 had knowledge of the system but 

had not attempted interpretation outside of the training module. Similar to the landmark 

study, each subject was reviewed by at least two reviewers with each reviewer assigned 

to the opposite subset of cases they reviewed in the prior landmark study to avoid any 

previous knowledge bias. As an added precaution, there was also a minimum 90-day 

washout period between reviews to avoid bias. Reviewers were blinded to all clinical 

parameters but were aware the patient had a prostatectomy for prostate cancer, similar 

to prior final histology based studies for microUS [191]. 

Registration 

Following the described registration process, the microUS annotations (Figure 37A) were 

first transformed into a point-cloud and oriented in 3D space in the same manner as the 

reconstruction of the microUS images (Figure 37B). The annotations were then registered 

to MRI via the stored transformation matrices created from the 3D landmark registration 

between microUS and MRI (Figure 37C). After registering microUS annotations with MRI, 

both the MRI and microUS annotations were registered to the WM pathology following 

the rigid and non-rigid MRI to WM capsule registration (Figure 37D). Using density-based 

spatial clustering of applications with noise (DBSCAN), the microUS point-clouds were 
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transformed into outlined regions-of-interest (ROIs). For each review of the 15 cases, 

pixel level detection metrics were quantified, and figures were created for each of the 

WM slides overlaid with the annotations from prospective PI-RADSv2.1 MRI (pMRI), 

retrospective MRI (rMRI), and microUS reads. 

 

5.3. Results 

5.3.1. Data Collection  

Each surgery was performed by one of two high volume surgeons using a robotic 

assisted laparoscopic prostatectomy approach.  The median patient age was 63 [58-68] 

Figure 37: Complete registration process from microUS to WM pathology. A) MicroUS reviewer delineations (red) are 

made on native microUS imaging. B) These markups are turned into a point-cloud and positioned in 3D space similar 

to the image reconstruction. C) The transformation matrices for microUS to MRI registration are applied to the markup. 

D) Lastly, the microUS and MRI (green) delineations are co-registered with WM pathology. 
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(median [IQR]). Median preoperative PSA was 8.8 [6.3-11.3].  The final pathology revealed 

5 patients with organ confined disease (T2), 7 with extra prostatic extension (T3a), and 

3 with seminal vesicle invasion (T3b).  There was a total of 19 significant lesions in the 

patient population. The median ISUP Grade Group was assigned to each lesion. The 

average number of lesions per prostate was 1.6±0.6 (mean ± standard deviation). For the 

index lesion (highest grade and/or largest tumor) the average largest axial dimension 

was 29.4±11.9mm with the following ISUP grade group (GG) distribution: GG2: 8, GG3: 

5, GG4: 1, and GG5: 1.  There were 4 significant secondary lesions, all of which were GG2 

and 5 clinically insignificant GG1 secondary lesions. 

 

5.3.2. MicroUS Image Plane Reconstruction  

A total of 26 different microUS scans were reconstructed (1-2 per patient) with a slice 

thickness of 1mm. On average the reconstructed scan contained 68±8 (mean ± standard 

deviation) images created from the original 300 frame scan. The reconstructed images 

are saved as DICOM files and contain embedded pixel spacing, slice position, and slice 

thickness information allowing for clear visualization of the prostate in the axial sagittal 

Figure 38: Example of a set of microUS images reconstructed in axial, sagittal, and coronal orientations. Sagittal 

images were reconstructed via a MATLAB script allowing for visualization of the axial and coronal planes in a DICOM 

viewer. Sagittal images are of sufficient quality to enable accurate visualization of anatomical features. 
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and coronal planes in any standard DICOM viewer (Figure 38). Images correctly 

represented the shape of the prostate while preserving image quality for visualization 

of anatomical features.  

 

5.3.3. MicroUS to MRI Registration 

Following the registration of the reconstructed microUS scan with T2 MRI, five common 

anatomical landmarks (excluding the urethra) were selected from varying regions of the 

prostate for each of the 26 scans. A total of 130 landmarks were identified and the 

distance between them measured. The resulting average TRE was 2.23±0.08mm (mean ± 

standard error) (Figure 39A). 

 

5.3.4. MRI to WM Pathology Registration 

MRI was co-registered to WM pathology on a subset of 8 patients for each of the 4 

reviewers, for a total of 32 registrations comprised of 159 slides and 472 TRE landmarks. 

Landmarks that were greater than 2 standard deviations outside the mean TRE were 

Figure 39: Distance between anatomical landmarks following microUS to MRI (left), and MRI to WM 

pathology registration (right). 
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removed as they were determined to be a result of incorrect landmark selection. The 

average TRE between landmarks on MRI and WM was 3.20±0.08mm (mean ± standard 

error) (Figure 39B).  In total only 26 landmarks from an original 498 (5%) were excluded. 

The average dice similarity coefficient of the transition zone was 0.84±0.01 (mean ± 

standard error). When comparing reviewers, landmarks were not excluded in order to 

preserve reviewer variability. There was no significant difference between reviewers for 

TRE (p= 0.15) and transition zone dice scores (p = 0.62, Kruskal-Wallis). The combined 

TRE (summation in quadrature) of microUS to WM pathology from the 3 registration 

steps was 3.90±0.11mm.  

 

5.3.5. Pilot Clinical Study 

A total of 32 microUS reviews (8 per reviewer) were registered to the associated MRI and 

subsequently registered to WM pathology. Two examples of registration of microUS and 

Figure 40: Example co-registration outputs of microUS and MRI with WM pathology for two 

cases (A and B). 



125 

 

MRI annotations to WM pathology are shown below (Figure 40). Only clinically 

significant, grade group 2 or greater, lesions were considered for this analysis. Results 

are reported as mean ± standard error where appropriate.  

Due to the rigorous nature of the registration process, analysis can be performed 

at increasing levels of granularity starting at the patient level, then the cross-section 

level and finally the pixel level. At the patient level, a total of 11/15 (73.3%) index lesions 

were identified by pMRI and 12/15 (80%) were identified by rMRI. For each individual 

microUS reviewer: 7/8 (88%), 8/8 (100%), 7/8 (88%), and 4/8 (50%) index lesions were 

identified respectively (Figure 41A). In a combined microUS analysis, where reviewer 4 

was removed, 91.7±4.2% of index lesions were identified (Figure 41B). MRI did not detect 

any index lesions that were not detected by microUS. If any part of an ROI overlapped 

the index lesion it was considered a correct identification. Reviewer 4 was removed from 

combined microUS analysis due to reduced expertise and poor index lesion 

identification. Reviewers 1-3 (2 attending urologists and 1 expert imaging scientist) had 

performed and observed over 50 microUS biopsies at the time of review, whereas 

reviewer 4 (urologic fellow) had not performed any microUS biopsies at the time of 

review. Furthermore, there was a significant decrease between reviewer 4 and the other 

3 reviewers (p < 0.0001, Kruskal-Wallis) when analyzing ROI-tumor overlap. 

 At the cross-section level, a total of 90 clinically significant lesions cross-sections 

(2D slice of a lesion on WM pathology) were present across the 82 WM slides from all 15 

patients. The average ± standard error and median [IQR] area of these lesion cross-

sections was 89.0±11.7mm2 and 37mm2 [1-130] respectively. Of these 90 lesion cross-

sections, pMRI identified 17/90 (18.9%) whereas rMRI exhibited improved performance 

with 33/90 (36.7%). MicroUS had even better performance identifying 85/162 (52.5±0.1%) 
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lesion cross-sections between the three reviewers (Figure 41B). Similar to the index lesion 

analysis, if any ROI overlapped a lesion cross-section it was considered a correct 

identification. Identification of lesion cross-sections provides a metric to assess the 

ability of the imaging modalities to identify tumor extent. 

The following quantitative metrics were analyzed at the pixel level for increased 

granularity and improved margin evaluation which is crucial for focal therapy planning. 

For example, the overlap between an ROI and a cancerous lesion was decided for every 

pixel contained within a lesion or ROI. 

The lesion overlap was defined as: 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (%) = (
𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎 ∩  𝑅𝑂𝐼 𝐴𝑟𝑒𝑎

𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
) 100 

 

The overlap percentage accounts for the amount of a lesion cross-section encapsulated 

by a modality. The average overlap for pMRI, rMRI, and microUS were 7.4±1.9%, 

17.1±2.8% and 22.8±2.4% respectively (Figure 41B). Interestingly, there was a significant 

difference between both microUS and pMRI, and rMRI and pMRI (p < 0.001, Wilcoxon 

rank sum) whereas microUS and rMRI exhibited no statistical difference. This suggest 

that both rMRI and microUS identified significantly more tumor extent than pMRI. The 

reduction in encapsulation between pMRI and rMRI can likely be attributed to the 

primary focus of PI-RADSv2.1 on identifying the core of the index lesion while preserving 

specificity as part of the decision to refer a patient to biopsy. The overlap percentage of 

each modality was also stratified by cross-sectional area to show how tumor size can 

affect diagnostic ability (Figure 41C). As expected, overlap generally improved as lesion 

size increased with pMRI, rMRI, and microUS increasing from 0±0%, 8.9±3.2%, and 

15.2±3.1% to 31.5±7.8%, 50.1±8.8%, and 35.5±5.9% respectively. There was also a 
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significant difference between microUS and pMRI for all but the largest groups of lesions 

(p < 0.05, Wilcoxon rank sum) indicating that microUS may outperform pMRI for tumor 

extent when detecting all but the largest lesions. However, given that there was no 

statistical difference between microUS and rMRI, it is likely that the deficiencies of pMRI 

are not due to limitations of the MRI modality but rather the PI-RADSv2.1 protocol which 

is not designed for optimizing overlap.  

The false positive metric was defined as: 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (%) = (1 −
𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎 ∩  𝑅𝑂𝐼 𝐴𝑟𝑒𝑎

𝑅𝑂𝐼 𝐴𝑟𝑒𝑎
) ∗ 100 

 

This metric accounts for the amount of an ROI that does not overlap a lesion and is 

analogous to the specificity of a modality. False positive percentages were reported 

instead of specificity for the following reasons: 1) To avoid potentially misleading values 

which arise as the pixel level granularity of the analysis results in inflated specificity 

values (approximately 95% for all modalities) when compared to conventional zonal 

based studies [16], [206] 2) To allow for more opportunities for one imaging modality to 

distinguish itself from the other since the area of the ROI is always substantially smaller 

than the benign (negative) area. At 36.2±8.6%, the pMRI false positive ratio was 

significantly better than rMRI (65.4±5.5%) and microUS (73.7±3.0%) (p < 0.01, Wilcoxon 

rank sum). This reflects the prioritization of specificity in the PI-RADSv2.1 protocol. 

Furthermore, only 5/22 (22.7%) of pMRI annotations completely missed a significant 

lesion cross-section, whereas rMRI and microUS had 20/49 (40.8%) and 41/ 107(38.3%) 

respectively. Collectively, this indicates pMRI has superior specificity to both rMRI and 

microUS. Interestingly, microUS and rMRI had similar rates of both false positives and 

completely false ROIs. 



128 

 

Dice scores evaluate the similarity between two ROIs, defined as: 

𝐷𝐼𝐶𝐸 = 2 (
𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎 ∩  𝑅𝑂𝐼 𝐴𝑟𝑒𝑎

𝑅𝑂𝐼 𝐴𝑟𝑒𝑎 + 𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎
) ∗ 100 

 

Since this metric accounts for both false positive regions and false negative regions, it 

is a single metric that represents both sensitivity and specificity. For pMRI, rMRI, and 

microUS the dice scores were 13.9±3.1%, 18.7±3.1%, and 16.6±1.9% respectively (Figure 

41B). There was a significant difference between microUS and pMRI dice scores (p < 0.05, 

Wilcoxon rank sum) indicating microUS allows for better similarity between reviewer 

identified ROIs and true tumor boundaries than pMRI. Similar to overlap percentage, 

dice scores were stratified based on cross-sectional area to analyze how tumor size 

affects diagnostic accuracy. As expected, dice scores generally improved as lesion size 

increased with pMRI, rMRI, and microUS increasing from 0±0%, 1.9±1.3%, and 4.6±1.5% 

to 31.7±7.0%, 44.0±6.1%, and 36.3±3.6% respectively (Figure 41D). 

The sensitivity of each modality was defined as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  (
𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎𝑆𝑙𝑖𝑑𝑒  ∩  𝑅𝑂𝐼 𝐴𝑟𝑒𝑎𝑆𝑙𝑖𝑑𝑒

𝐿𝑒𝑠𝑖𝑜𝑛 𝐴𝑟𝑒𝑎𝑆𝑙𝑖𝑑𝑒
) ∗ 100 

 

Although similar to the lesion overlap percentage, sensitivity was calculated per slide 

rather than per lesion. As such, slides with multiple lesion foci were grouped together. 

For pMRI, rMRI, and microUS the sensitivity was 11.1±2.7, 22.1±3.6%, and 26.7±3.0% 

respectively (Figure 41B). A significant difference was found between pMRI and rMRI, 

and pMRI and microUS (p < 0.01, Wilcoxon rank sum) further indicating the improved 

ability of microUS and rMRI over pMRI for assessing tumor extent. 
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5.4. Discussion 

Conventional US is non-diagnostic for prostate cancer, as such mpMRI is the 

recommended imaging modality for prostate cancer detection [5], [10], [11]. However, 

mpMRI is resource intensive, limiting its use to large centers. High-resolution microUS 

has been introduced as a potential low-cost alternative with promising preliminary 

results. Prior studies have relied on biopsies or cognitive zonal registration with 

histology to compare the diagnostic accuracy of microUS and MRI [191], [206]. 

Figure 41: Assessment of microUS and MRI against WM pathology in a 15-patient clinical study. A) Index lesions 

identified by modality and reviewer. B) Combined reviewer detection metrics for each modality at the patient level (index 

lesions), cross-section level (cross-sections), and pixel level (overlap, false positives, sensitivity, dice score). Lesion 

overlap (C) and dice score (D) for each modality stratified into groups by lesion cross-sectional area. (* indicates p<0.05, 

Wilcoxon rank sum. Error bars are ± one standard error) 
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Computational registration of microUS and MRI with ground truth WM pathology 

facilitates more rigorous comparison of the two imaging modalities, however, to date 

that has not been demonstrated as the native orientation of microUS imaging makes 

direct registration with WM pathology difficult. 

In this work we developed and validated the first multi-step process for co-

registration of microUS, MRI, and WM pathology, and subsequently assessed the ability 

of expert microUS and MRI reviewers to identify prostate cancer against ground truth 

WM pathology. In doing so, we have created a validated methodology that allows for 

rigorous comparison of microUS and MRI, as well as an approach for labeling microUS 

images with ground truth histology for predictive model training. The three-step process 

consists of 1) microUS para-sagittal image reconstruction into the true sagittal 

orientation, 2) 3D alignment and TPS registration of the reconstructed microUS images 

with MRI, and 3) 2D alignment and TPS registration of MRI with WM pathology slides.  

The first step, microUS image reconstruction, approximates the shape of the 

prostate capsule at the time of the US scan. This reduces the magnitude of subsequent 

registration steps, reducing opportunities for misregistration. We have demonstrated it 

is feasible to reconstruct sagittal microUS images from native images acquired from a 

handheld transrectal, para-sagittal sweep of the prostate. The image quality from these 

reconstructions is adequate to identify intraprostatic fiducials such as the urethra, and 

preserves the anatomical prostate shape. Furthermore, since these images are used as 

an intermediary in the registration process, reviewers are able to delineate the native 

microUS images without any loss of image quality. This is an improvement on our prior 

work which required reviewers to delineate ex vivo imaging in order to align with MRI 
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and WM pathology, which is not necessarily representative of the in vivo imaging 

environment [166]. 

In the second step, reconstructed microUS images are co-registered to MRI using 

a landmark TPS registration. This accounts for tissue deformation during microUS 

scanning and possible reconstruction error from limited probe position tracking. 

Intermediate registration to MRI was chosen over direct registration to WM pathology 

for the following reasons: 1) MRI has superior through plane resolution compared to WM 

(1.5mm vs 4.5mm) providing more information for registration 2) MRI is in vivo and 

more representative of the microUS imaging environment than WM slides, and 3) WM 

pathology processing causes the tissue to shrink introducing additional sources of error 

[203]. The measured TRE for microUS to MRI co-registration was 2.23±0.08mm which is 

within the 2-3mm TRE for commercial MRI-US fusion systems [21], [210].  

The third and final step, 2D MRI to WM capsule registration, allows for direct 

comparison with ground truth histology. Since microUS is fused to MRI in step two, the 

MRI to WM transformation matrix can be applied to both MRI and microUS annotations. 

The average TRE for MRI to WM was 3.20±0.08 within the range reported in literature of 

1-5mm[22] resulting in a total registration error of 3.90±0.11mm for microUS to WM 

pathology. The registration accuracy is further validated by the pilot clinical study, 

where MRI and microUS identified 73.3-91.7% of the index lesions, consistent with earlier 

studies [6], [7], [8], [191], [206], [211]. 

After validating each step of the registration process, it was applied to 15 

patients. Each patient had a pre-operative MRI read, a retrospective MRI read, and at 

least two independent microUS reads registered to final pathology.  
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The microUS results emphasize the crucial role of reviewer training and 

experience beyond baseline competency. Notably, reviewer 4, being the least 

experienced, achieved significantly inferior results compared to the other reviewers (p < 

0.0001). This also highlights a potential value of future deep learning models to alleviate 

both inter-reviewer variability and the need for extensive training.  

In the pilot clinical study, microUS demonstrated non-inferiority to both pMRI 

and rMRI for identifying prostate cancer index lesions and tumor extent. Specifically, 

microUS identified a higher percentage of index lesions (91.7±4.2%) compared to pMRI 

(73.3%) and rMRI (80%). It is vital for an imaging modality to identify the index lesion as 

it often drives treatment decisions. MicroUS also identified a higher percentage of lesion 

cross-sections with better overlap (52.5±0.1% and 22.8±2.4%) than both pMRI (18.9% and 

7.4±1.9%) and rMRI (36.7% and 17.1±2.8%). Lesion cross-sections and overlap 

percentages are representative of tumor extent throughout the prostate and are related 

to a modality’s ability to identify tumor margins. Patient treatment decisions can be 

affected by cancer volume and location in the prostate. As such, margin identification is 

important for cancer staging and deciding treatment options, especially for focal therapy 

where only part of the gland is treated.   

MicroUS also performed comparably to rMRI for both sensitivity (26.7±3.0% vs 

22.1±3.6%) and dice scores (16.6±1.9% vs 18.7±3.1%), with both outperforming pMRI 

(11.1±2.7% and 13.9±3.1%). Conversely, MicroUS and rMRI had similarly high false 

positive percentages (73.7±3.0% and 65.4±5.5% respectively) and completely false ROIs 

(38.3% and 40.8% respectively) compared to pMRI (36.2±8.6% and 22.7%). This 

emphasizes that PI-RADSv2.1 is designed to prioritize specificity of MRI at the cost of 

sensitivity to avoid unnecessary biopsies. Perhaps the specificity of microUS, often noted 
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to be worse than pMRI [17], [212], [213] can be increased through the refinement of the 

microUS diagnosis protocol (PRI-MUS) similar to improved iterations of PI-RADS raising 

the specificity of MRI [6]. 

It is worth noting that the recorded results for sensitivity, dice scores, and overlap 

percentage are lower and the false positive percentages are higher than reported in other 

related studies [16], [17], [191], [206]. This can be attributed to the granularity of the 

analysis performed. For these metrics each pixel was treated as a possible true positive, 

false positive, true negative, or false negative event. Any misalignment between regions 

reduces the modalities accuracy allowing for more opportunities for one modality to 

outperform the other, which is important for this study given the limited sample size 

(N=15). Other studies in the space often rely on zonal based analysis, analogous to the 

study by Turkbey et al. [214], where the quantity of possible true positive, false positive, 

true negative, and false negative events are limited to twelve zones. In general, with 

increased granularity, the overlap, sensitivity, and dice scores decrease and false positive 

ratios increase. An example of this can be seen in similar work co-registering WM to MRI 

with a pixel spacing of ~0.6mm, which reported MRI sensitivity and specificity values of 

37% and 97.9% respectively, Whereas traditional zonal MRI studies report sensitivities 

and specificities of 86-92% and 60-83% respectively [6], [7], [8], [192]. To avoid reporting 

potentially misleading values, specificity values of each modality were intentionally not 

reported, and instead the false positive ratio was used as a surrogate for specificity. With 

increased granularity, the specificity for all modalities and all reviewers was 

approximately 95% since it is related to the number of true negative events, and the 

majority of WM slides were comprised of mainly benign tissue. Although the specific 
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results from this study are not directly comparable to other zonal based studies, the 

general trends can be compared.   

The results presented in this study provide good agreement with the larger body 

of literature in the field. Specifically, microUS demonstrated non-inferiority compared 

with MRI for index lesion identification and detection of tumor extent [16], [17], [191], 

[206]. This is particularly important given the reduced cost of microUS compared to 

mpMRI. However, microUS had higher false positive ratios than MRI, similar to other 

studies [17], [212], [213]. Additionally, this study demonstrated reviewer expertise is 

vital for identification of prostate cancer on microUS; a possible reason for earlier 

studies having lower detection rates compared to later studies [16], [17], [188].  

This study also highlights a potentially synergistic relationship with mpMRI and 

microUS, wherein, MRI is used to triage patients for biopsy and identify the index lesion 

and microUS is used during biopsy to identify tumor extent throughout the prostate and 

better inform tumor margins for treatment decisions. MRI is sensitive for index lesion 

cancer and maintains high specificity, making it an excellent system for triaging patients 

for biopsy. However, PI-RADSv2.1 severely underestimates the extent of the lesion in 

patients as reported in this work and in earlier studies[13]. While microUS has reduced 

specificity, this generally would only result in extra biopsy cores rather than performing 

a biopsy on a patient who does not need it. Whereas the improved detection of tumor 

extent under microUS could result in better tumor margin identification. This is 

particularly valuable in an era where focal therapy modalities have been developed with 

the ability to create precise ablation zones and are thus capable of achieving oncologic 

control if tumor margins are evident e.g. focal HIFU [215] or laser ablation with real-time 

monitoring [169], [216].  
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This study also demonstrated retrospective MRI reads with knowledge of existing 

cancer, greatly improved identification of tumor extent over a standard PI-RADSv2.1 

read, while conversely lowering the overall specificity for prostate cancer. This suggests 

tumor margin identification could be improved by re-reading MRI scans after cancer is 

confirmed via biopsy. 

There are a few limitations of this study. The registration process presented here 

is accurate, however, it is not fully automated, requiring WM to MRI matching and 

landmark selection for microUS to MRI registration. This can potentially be improved 

upon with the implementation of algorithms for MRI to WM matching as well as capsule 

and urethra identification. Another potential limitation of the registration process, 

inherent to side-fire transrectal US, is larger prostates will have more signal attenuation 

and larger distances between consecutive images in the anterior regions. This could 

diminish reconstruction quality and registration. However, this may be a minimal factor 

as the largest prostate in this cohort was 108g (20g is average [217]) and the average 

microUS to MRI registration error for this patient was only 0.16mm higher than the total 

average. Moreover, both microUS reviewers correctly identified all significant lesions for 

this patient. Additionally, the diagnostic metrics derived here should be interpreted with 

some caveats. Firstly, the limited sample size (N=15 patients) reduces statistical power 

and also indicates that a broad of spectrum of tumor presentations (size, location, ISUP 

grade group) was not examined. Secondly, the patient cohort consists of only 

prostatectomy patients, an inherent limitation of WM pathology-based studies. As such, 

the patient population likely has more aggressive disease than an equivalent biopsy or 

focal therapy cohort. Additionally, due to the relatively limited number of WM pathology 

slides per prostate and the differences between identifying an ROI and taking an actual 
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biopsy, a correct detection of cancer on microUS or MRI could still lead to a negative 

targeted biopsy core, particularly for transrectal biopsies. For this reason, we avoided 

approximating correct biopsy targets since a core could have been taken from a region 

of an ROI that did not overlap cancer, especially when accounting for tissue deformation 

and needle deflection during sampling. Moreover, microUS reviewers were aware the 

patient had a prostatectomy for prostate cancer due to limited availability of expert 

microUS readers and their knowledge of the study being validated by WM pathology. As 

mentioned earlier, this limitation is present in earlier final pathology based studies 

reported in literature [191]. To account for this limitation, the MRI was also reviewed 

retrospectively with the same knowledge allowing for an equal comparison between 

microUS and MRI. It is also worth noting that the microUS images were effectively 

recorded scans, subsequently the microUS reviewers were not able to utilize potential 

scanning benefits from live US imaging such as variable compression and probe 

translation to further interrogate suspicious tissue. It also may not be indicative of a live 

interpretation in regards to time constraints during an actual biopsy. Furthermore, for 

non-expert reviewers, reading microUS images is challenging, evident from the 

performance of the excluded microUS reviewer. This emphasizes a need for automated 

predictive models for cancer detection to reduce the learning curve and cognitive load 

on physicians when interpreting microUS images during biopsies. 

In contrast to MRI [151], microUS-based AI models for automated tumor detection 

are much earlier in development and typically rely on weakly labeled biopsy data [201], 

[202], [218]. This is largely due to the absence of accurately labeled datasets which have 

been challenging to compile because of the complicated registration process. However, 

the approach that we have presented here greatly alleviates this problem and thus has 
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the potential to spark the development of the requisite AI models that would greatly 

ease the adoption of microUS. 

The registration process presented here has great utility in further characterizing 

the diagnostic capability of microUS. Interest in this area is rapidly growing as evidenced 

by recent publications [16], [17], [191], [206], [212], [213]. In line with these studies, the 

pilot study that we have presented demonstrates that microUS has similar performance 

to MRI for identifying prostate cancer. This growing body of evidence suggests that 

microUS has the potential to be an inexpensive alternative or adjunct to MRI for prostate 

cancer visualization. 

 

5.5. Conclusion 

MicroUS has the potential to greatly reduce the cost of imaging prostate cancer relative 

to MRI. However, direct registration with ground-truth WM pathology is challenging. To 

overcome this, we developed and validated the first methodology for accurate co-

registration of microUS and MRI with WM pathology. The methodology was then 

successfully implemented in a multi-reviewer pilot study which demonstrated microUS 

is non-inferior to MRI for index lesion identification and potentially more sensitive for 

tumor extent. At smaller centers, microUS could be an inexpensive alternative to mpMRI 

for prostate cancer diagnosis. At larger centers, microUS could have a synergistic 

relationship with mpMRI to capitalize on the specificity of MRI for triaging patients for 

biopsy and the improved tumor margin identification of microUS during biopsy. 

However, to preserve diagnostic accuracy it is vital that microUS is used by well trained, 

expert reviewers. Due to the limited sample size of this study, a larger study is required 



138 

 

to confirm these findings, but the conclusions presented here align closely with other 

microUS studies. 
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CHAPTER 6 

Deep Learning for Prostate Cancer 

Classification on Micro-Ultrasound  

 

6. Deep Learning for Prostate Cancer Classification on Micro-Ultrasound 

6.1. Introduction 

MicroUS has recently been introduced as an inexpensive alternative to mpMRI for 

imaging prostate cancer. The device operates at a 29MHz frequency, while conventional 

US is typically around 2-15MHz [186], [219]. Previous studies have demonstrated similar 

diagnostic accuracy between microUS and mpMRI when utilized by an expert reviewer 

[17], [18], [219], [220]. Centers that are able to implement both, can utilize MRI as a triage 

to avoid unnecessary biopsies and microUS to allow for direct visualization and targeting 

of suspicious regions during biopsy potentially avoiding the registration error 

associated with MRI-US fusion approaches [21]. Furthermore, lesions that are missed on 

one modality may be identifiable on the other, potentially reducing any missed cancers. 

While microUS has demonstrated similar diagnostic performance to mpMRI, 

urologists without extensive training and hands-on experience exhibit worse 

performance than expert users [188], [220]. Additionally, new research has shown that 

even expert reviewers have a high-degree of inter-reviewer variability with only an 30% 

agreement between expert reviewers [19]. Furthermore, reading and interpreting 

microUS images during a biopsy in real-time suffers from a substantial increase in 
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cognitive load for the operating physician and limited time available to allocate for 

interpretation compared to a pre-biopsy MRI.  

As such, microUS would benefit greatly from the implementation of deep learning 

models that can localize prostate cancer for the physician. Specifically, accurate deep 

learning models would alleviate the training requirement and inter-reader variability 

through standardization of microUS reads, as well as reduce the cognitive load on the 

physicians through real-time interpretation. Current research in the field is working 

towards this goal, with development of AI classifiers trained on raw RF microUS images 

with weakly labeled biopsy data as the ground truth [82], [199], [200], [201], [202]. These 

studies have exhibited promising results with area under the curve results of 0.80-0.93 

for classification along the biopsy track in datasets between 160 to 700 patients.  

While biopsy data is relatively easy to acquire and allows for fast dataset 

accumulation, there are inherent drawbacks resulting in a weak source of data labels. 

Biopsy data only represents tissue information where it was specifically sampled and 

while it may correlate to the surrounding tissue, it is impossible to objectively identify 

the actual tumor extent within the image. Moreover, the core orientation is commonly 

not preserved or recorded, cores are comprised of combination of benign and cancerous 

tissue, and cores commonly break into multiple pieces during processing. All of this 

combined with biopsy needle deflection and tissue deformation increase the challenges 

associated with cancer localization from biopsy. Due to this, whole-mount (WM) 

pathology from surgically removed prostates provides is generally considered the gold-

standard for cancer localization as it provides much more comprehensive information 

about tumor location and extent in the prostate, allowing for higher quality ground 
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truth. However, WM pathology data is challenging to acquire limiting the availability of 

WM based studies and datasets. 

Additionally, while raw RF data provides more information during an US scan, it 

also increases the file size and complexity of the microUS data, which in turn increases 

processing and model complexity to extract useful RF information. This added 

complexity and processing time creates potential delays for utilization of models during 

a biopsy and creates an additional barrier to eventual adoption by physicians. 

In this chapter we develop the first deep learning microUS classifiers validated on 

ground-truth, mold-sliced, WM pathology and evaluate them against expert readers to 

allow for added clinical context. Building off our prior work, we employ our recently 

developed microUS-WM co-registration methodology to confidently label B-mode 

microUS data for model training and evaluation [220]. The goal of this chapter is to 

demonstrate the potential of microUS classifiers for identification of prostate cancer 

with direct comparison against expert readers, as well as demonstrate the utility of 

confidently labeled data, especially for training models in a limited dataset. To 

accomplish this, we conduct two studies: 1) a preliminary investigation of deep learning 

classifiers with 15 patients 2) a more comprehensive study to confirm the results of the 

preliminary study using 100 patients.  

 

6.2. Data Labeling 

As described in chapter 2, eighty patients set to undergo radical prostatectomy provided 

informed consent and were enrolled into a registered clinical trial (NCT04299620) and 

UCLA approved study (IRB#19-00113). To be eligible for enrollment patients needed to 

have a mpMRI with an associate UCLA radiologist report within one year prior to surgery, 
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and biopsy confirmed prostate cancer. On the day of surgery, a microUS scan of the 

prostate was collected. Following gland resection, the prostate gland was placed in a 

patient specific 3D printed alignment mold and sectioned in accordance with routine 

clinical practice at UCLA. This process is designed to orient prostate sections of 4.5mm 

thickness in the axial orientation for comparison with axial MRI. Using a microtome, WM 

slides were created from each section and scanned digitally. These WM sections were 

subsequently reviewed by an experienced genitourinary pathologist, and the areas of 

cancer were delineated and assigned a grade group (GG). 

Following a similar co-registration process detailed in chapter 4, the native 

microUS data was reconstructed in the true sagittal orientation to allow for registration 

with WM pathology (Figure 42). Briefly, the reconstructed microUS images were created 

Figure 42: All micro-US images reconstructed from native Para-Sagittal sweep to true 

sagittal and axial orientations to facilitate registration with axial whole mount slides 
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through positioning the native microUS images in the approximate orientation they were 

acquired using the recorded angle associated with each image. Serial, parallel images in 

the sagittal orientation were then populated with native microUS data that intersects the 

sagittal image location. The resulting reconstructed microUS images allow 

approximation of the 3D prostate volume and subsequent co-registration with MRI and 

WM. 

Following data collection and microUS reconstruction, a subset (N=24) of the 80 

prostatectomy cases were labeled with the delineated WM lesions via the previously 

developed registration process (Figure 43) [220]. To accomplish this, the WM slides were 

Figure 43: Data labeling process: delineated WM slides (A) are registered to matched MR 

images (B). This process is performed for each WM slide easily visualized in the sagittal plane 

(C). The delineations are then registered to sagittal microUS images (D) allowing for confidently 

labeled images. 
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first matched to an associated MRI image based on the slice location of the MRI scan and 

the recorded location of the WM slice from the sectioning mold and intraprostatic 

fiducials. Next, the WM delineations were registered to the associated MRI through 

prostate capsule-based registration consisting of 1) rigid alignment (alignment, rotation, 

and scaling) and 2) non-rigid alignment (thin-plate-spline transformation) to account for 

tissue deformation. Lastly, the 3D MRI scan was registered to the 3D reconstructed 

microUS images via a landmark-based registration consisting of 1) visual alignment of 

the prostate volumes (alignment and rotation), and 2) a thin-plate-spline registration 

based on common landmarks visible on both MRI and reconstructed microUS. The 

resulting transformation matrices from each registration step were subsequently used 

to map the WM delineated lesions from WM pathology to reconstructed microUS. After 

registration, it was possible to visualize the WM identified lesions on reconstructed 

microUS. Since WM pathology is orthogonal to reconstructed microUS, and it is also 

designed to capture the largest and most aggressive lesions to ensure negative margins 

from surgery, it is possible to represent the extent of the cancerous lesions across 

images despite the gaps between WM slides. Thus, allowing for accurate identification 

of any microUS frames containing cancer. All frames that contained clinically significant 

cancer (GG2 or greater) were labeled as cancerous and images without clinically 

significant cancer were labeled as benign. 

An additional 20 microUS scans of patients with either negative (benign) biopsy 

results (N=14) or only clinically insignificant (GG1) cancer (N=6) were added to 

supplement the dataset to make it more representative of a true patient population 

[221]. Only GG1 and benign biopsy patients were included since an ideal classifier would 

detect only clinically significant cancer, therefore, these patients can be accurately 
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labeled as benign without being affected by cancer localization challenges for biopsy 

data. This data was only used for training because all biopsy data is labeled benign. In 

theory, if a classifier could identify if data was collected from a biopsy patient rather 

than a prostatectomy patient, it would be able to classify tissue as benign through 

confounding means. For this reason, the biopsy patients were used for training purposes 

only and never included in a test set. 

 In summary, a total 100 microUS scans of patients were available for model 

training from the dataset collected in chapter 3. While data was being labeled, there was 

a concurrent effort to perform a preliminary evaluation of deep learning classifiers using 

a subset of patients (N=15) detailed in the following section. These results were then 

ultimately confirmed in a more comprehensive study utilizing the full dataset of 100 

patients. 

 

6.3. Preliminary Evaluation: Deep Learning Classifiers 

6.3.1. Methods 

For each of the 15 patients, the reconstructed microUS images were classified as either 

benign or cancerous depending on if the image contained any points from the WM 

annotation point cloud. Out of the 15 patients, 3 patients (20%) were randomly selected 

as a test set with the remaining 12 saved as the training set. A random sample of 20% of 

the training data was used as the validation set and all images were resized to 256 x 256 

pixels. Utilizing transfer learning to account for limited data, ConvNeXt models were 

fine-tuned on the reconstructed microUS images to classify images as benign or 

cancerous using the fastai and PyTorch Image Models (timm) libraries [222], [223]. Each 
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model utilized Adam optimization and binary cross-entropy loss, but the specific size 

of the model, the learning rate, and the number of epochs varied. After training a simple 

ensemble model was made using the mean prediction of the 5 models. The 5 models 

and the ensemble model were subsequently evaluated against the test set with any 

cancer prediction greater than or equal to 0.5 considered a cancerous classification. The 

true positive, false positive, true negative, and false negative rates were recorded for 

each model. Receiver operating characteristic (ROC) curves were created and the AUC 

was calculated. 

An expert reader (urologist with extensive microUS biopsy experience) and a 

novice reader (urologist without microUS biopsy experience) were also tasked with 

classifying the same dataset as benign or cancerous by delineating any suspicious 

lesions on the native microUS images from the test set. Prior to this, both reviewers 

completed an online training module to ensure baseline competency. The reader 

annotations were then resampled to align with the reconstructed microUS images, and 

any images containing a reviewer delineation were marked as a cancerous classification. 

If a reconstructed image did not contain any delineation, it was considered a benign 

classification. The expert and novice classification results were then compared against 

the fine-tuned ConvNeXt models. 

 

6.3.2. Results 

The median patient age was 63 [58-68] (median [IQR]), with a median preoperative PSA 

of 8.8 [6.3-11.3]. There was a total of 24 distinct lesions with the following grade group 

(GG) distributions from low-grade to high-grade: GG1: 5, GG2: 12, GG3: 5, GG4: 1, GG5: 

1. Native microUS images were acquired in a 300-frame sweep of the prostate. A total of 
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977 reconstructed images with a slice thickness of 1mm were created from all 15 

patients with an average of 65 images per patient. A total of 82 WM slides were collected 

from all 15 patients with approximately 5-6 slides per patient.  

Registration of pathologist delineated cancer was performed for all 15 patients. 

As evaluated in our earlier work, the two-step registration process had a combined 

registration error of 3.90±0.11mm, similar to commercial MR-US biopsy fusion systems 

[21], [220]. From the 977 reconstructed microUS images, 603 images were benign and 

374 images were cancerous. If any points from the delineated point cloud were within 

±0.5mm of the reconstructed slice location, the image was labeled as cancerous. An 

example of labeled data can be seen in Figure 43D. All prostate locations within the 

training set contained both cancerous and benign examples across the 12 patients. 

 After labeling, the dataset was split into training, validation, and test sets. Three 

patients were randomly selected to comprise the test set which consisted of 128 benign 

images and 71 cancerous images. The remaining 12 patients comprised the training and 

validation sets consisting of 475 benign images and 303 cancerous images with a 

random 20% of these images used as a validation set. The ConvNeXt base 22k model 

fine-tuned for 20 epochs with a learning rate of 0.01 had the best performance in the 

validation set, with an error rate of 5.8% and a loss of 0.20 (Table 3).  

Table 3: Model parameters for training and validation set performance. 

TABLE 3 

Model 
Model Parameters and Training Metrics 

Epochs Learning Rate Error Rate Validation Loss 

1)  ConvNeXt Small 1k 5 1E-3 0.142 0.304 

2)  ConvNeXt Small 1k 22 1E-4 0.142 0.325 

3)  ConvNeXt Base 22k 5 1E-3 0.110 0.353 

4)  ConvNeXt Base 22k 20 2E-3 0.103 0.294 

5)  ConvNeXt Base 22k 20 1E-2 0.058 0.200 
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Table 4: Model and human performance against the test set. 

TABLE II 

Model 

Model and Human Reviewer Evaluation on Test Set 

Sensitivity Specificity False Positive Rate 
False Negative 

Rate 

1 0.789 0.648 0.352 0.211 

2 0.775 0.695 0.305 0.225 

3 0.690 0.727 0.273 0.310 

4 0.704 0.711 0.289 0.296 

5 0.789 0.688 0.313 0.211 

Ensemble 0.789 0.727 0.273 0.211 

Expert 0.606 0.805 0.195 0.394 

Novice 0.275 0.853 0.147 0.726 

The five models and an ensemble model were trained and evaluated against the test set 

and human reviewers (Table 4). All models exhibited similar performance but the best 

model was the ensemble model which had a sensitivity of 78.9% and specificity of 72.7%. 

The false positive and false negative rates were 27.3% and 21.1% respectively and the 

AUC of the model was 0.802. The AUC for the five models was: 0.813, 0.789, 0.788, 

0.778, and 0.819 respectively. The receiver operating characteristics of the three models 

Figure 44: Receiver operating characteristics curve for the three models with 

the highest AUC. The models exhibited similar performance to the expert 

reviewer, while outperforming the novice reviewer. 
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with the highest AUC can be seen in Figure 44. The test set confusion matrix for the 

ensemble model and model 5 can be seen in Figure 45. These two models are represented 

due to having the highest sensitivity and specificity (ensemble) and AUC (model 5). 

The novice reader reviewed 2 of the 3 cases in the test set and the expert reader 

reviewed all 3 cases in the test set. The expert reviewer had a sensitivity of 60.6% and a 

specificity of 80.5%, while for the novice reviewer had a sensitivity of 27.5% and a 

specificity of 85.3%. The performance of each reviewer is compared against the highest 

performing model in Table 4 and can be visualized on the ROC curve in Figure 44. 

 

6.3.3. Discussion 

MicroUS has recently been introduced as a potential inexpensive alternative to mpMRI 

for identifying prostate cancer, with early studies demonstrating similar performance 

when interpreted by expert reviewers [17], [109], [220]. However, extensive training is 

required for users to interpret microUS images correctly. Less experienced reviewers 

Figure 45: Confusion matrix of the ensemble model and model 5 for the 

test set. 



150 

 

exhibit substantially inferior performance than expert reviewers making it more difficult 

for new users to adopt the technology. Moreover, as tumor localization is non-trivial, the 

added cognitive load during biopsies may present a barrier to adoption.  

Here, we explore the potential of deep learning to automate prostate cancer 

detection. Using a limited dataset of 15 patients, we registered ground truth, WM-

pathology confirmed lesions to reconstructed microUS images to generate a confidently 

labeled dataset of 977 images for model training and evaluation. Due to limited 

availability of WM data and differences in imaging orientations, confidently labeled 

prostate cancer on microUS imaging is challenging. To our knowledge, this is the first 

work to create a confidently labeled microUS prostate cancer dataset for deep learning 

applications. This is important as high-quality labeled data is vital for creating accurate 

deep learning models. 

Following data labeling and utilizing transfer learning, we trained five deep 

learning models and one ensemble model to classify microUS images as benign or 

cancerous. Evaluation of these models against expert and novice readers on patients that 

were excluded from training was encouraging with AUC values of 0.8. All six models had 

better sensitivity than the novice reviewer when evaluated at a prediction cutoff of 0.5. 

Moreover, through examining the ROC curves, the models achieved improved specificity 

at the same sensitivity as the novice reviewer. In regards to the expert reviewer, the 

models exhibited similar performance, with slightly improved sensitivity and slightly 

diminished specificity. Furthermore, the ROC curves approximately intersect the expert 

reviewer, indicative of similar performance. These results are particularly encouraging 

given these models were trained on a relatively limited dataset indicating that 

performance should improve with the addition of more training data. This also 
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highlights the value of confidently labeled microUS images, as the models were able to 

achieve similar performance to an expert reader despite having limited training data. 

Furthermore, the deep learning models trained in this work were relatively simple, 

consisting of ConvNeXt image net architectures fine-tuned for 5 to 20 epochs. Given 

preliminary models exhibited similar performance to expert reviewers, more complex 

models will likely yield better results. 

 It is worth noting the expert reviewer sensitivity (61%) and specificity (81%) are 

not directly comparable to other microUS studies particularly those focusing on 

biopsies. Here we evaluated a reviewer on every image in the sweep in order to compare 

against a classifier model, providing more opportunities for evaluation per patient than 

biopsy-based studies focusing on targeting cancer foci. As such, biopsy studies have 

higher sensitivity and lower specificity, such as in the work by Klotz et al. (94% and 22% 

respectively) [109]. 

There are some inherent limitations of this work. Firstly, these models were 

tasked with classification and not segmentation. As such it is not possible to confirm 

that model classification is not due to confounding factors. Another limiting factor is 

the small dataset of prostatectomy patients used in this study, which may not be 

generalizable to biopsy patients or patients with types of prostate cancer not 

represented in this dataset. Additionally, the models were trained on non-native, 

reconstructed microUS images. Although the reconstructed images preserve much of the 

native image quality, the models may not be generalizable to native microUS images. We 

plan to address much of these limitations in future work through increasing the size 

dataset, training on native microUS images, as well as training segmentation models for 

cancer delineation. 
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6.4. Expanded Evaluation: Deep Learning vs Experts 

6.4.1. Methods 

Using the 100 patients, three different groups of models were trained: 1) Confident 

models, using the confidently labeled data from the 24 patients co-registered with WM 

pathology, 2) Weak models, using the remaining unlabeled microUS data assigned labels 

by the confident models, and 3) Combined models, using both confident and weakly 

labeled data. Each group of models was evaluated via 3-fold cross validation and the 

results were compared against both expert microUS and MRI reviewers. 

Urologist and Radiologist Review 

In order to set an appropriate benchmark for model evaluation, 3 expert urologist 

readers (extensive microUS biopsy experience) and 1 novice urologist reader 

(experienced urologist with no microUS biopsy experience) were asked to delineate 

cancer on native microUS imaging (not reconstructed microUS) for a randomly assigned 

8 prostatectomy patients out of a subset of 15 patients. Each patient was reviewed by at 

least two readers allowing for cross-validation between patients and reviewers. Due to 

reader availability only 15 out of the 24 prostatectomy patients were reviewed. The 

microUS readers were aware the patient had a prostatectomy for prostate cancer, but 

were blinded to all other clinical variables. Additionally, an expert radiologist reviewed 

each of the same 15 patients associated mpMRI. The MRI was reviewed twice, once prior 

to biopsy without knowledge of the patient having prostate cancer using the standard 

PI-RADSv2 scoring system (pMRI) as a part of routine clinical practice, and once 

retrospectively (rMRI) with the knowledge the patient had a prostatectomy for prostate 
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cancer, the same knowledge as the microUS readers. Since PI-RADSv2 is designed to 

prioritize specificity to avoid unnecessary biopsies, the delineated lesions are often 

much smaller than the true tumor extent. As such, it was important to re-review the MRI 

with a focus on identifying tumor extent to allow for a more direct comparison with 

microUS and associated deep learning models. 

Following reviewer delineation of suspicious lesions, the marked regions of 

interest (ROIs) were registered to reconstructed microUS via the stored transformation 

matrices from data labeling in the previous section. If a reviewer delineation was present 

on a reconstructed microUS image, the image was counted as a reviewer classification 

of cancer. If the image did not contain a reviewer delineation, it was counted as a 

reviewer classification of benign tissue. Evaluation of the reviewer classifications against 

the ground truth results in directly comparable benchmarks for deep learning-based 

classification models. 

Preliminary Training and Confident Models 

A total of 44 reconstructed microUS patient scans were used for confident model 

development, 24 of these patients were confidently labeled prostatectomy patients (924 

benign images, 543 cancerous images) and 20 were biopsy patients (1,308 benign 

images) for a total of 2,775 reconstructed microUS images. All images were converted to 

PNG file types and normalized between 0 to 255 as greyscale images. For 3-fold cross-

validation, the 24 confidently labeled prostatectomy patients were divided into three 

sets of 8 were withheld from training: test sets A, B, and C. Test set A was specifically 

chosen to be the same patients reviewed by the highest performing expert microUS 

reviewer for straightforward comparison. The remaining 16 prostatectomy patients were 

randomly assigned to test sets B and C.  The same 3 test sets were uses across all three 
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groups of models trained (confident, weak, combined). The data distribution can be seen 

in Figure 46. 

For preliminary training, 3 different types of image net models were imported 

using the timm library (ConvNext, ViT, and SwinV2) [223], [224], [225]. These models 

were tasked with classifying reconstructed microUS images as benign or cancerous and 

fine-tuned on 36 patients of reconstructed microUS images (16 prostatectomy and 20 

biopsy) that were compressed to fit to the specifications of each architecture (ConvNext: 

256x350, ViT: 224x224, SwinV2: 256x256). Models were trained using PyTorch for 20 

epochs, a learning rate of 0.01, and binary cross-entropy. A random selection of 20% of 

the images from the 36 patients were selected as a validation set. This was decided over 

withholding entire patients to allow for models to train on more instances of cancer, 

since prostate cancer can appear differently on microUS for different patients, evident 

in the Prostate Risk Identification using Micro-Ultrasound (PRI-MUS) scoring system, and 

the training set being limited to a small dataset of 16 patients containing clinically 

significant prostate cancer. Batch transformations of brightness and contrast were 

randomly applied to every image in the training set to increase the generalizability of 

the data. The models with the lowest validation error and validation loss were selected 

for use in the remainder of the study in an equal voting ensemble. The best performing 

models were the ViT Large model and the SwinV2 Small model. 
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Figure 46: Data distribution for each group of models. The confident 

models (top) were used to label the unlabeled images for the weak 

(middle) and combined (bottom) models. 
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For each test set (A, B, and C) an equal voting ensemble was trained using the 36 

patients not contained in the 8-patient prostatectomy test set. For each ensemble a ViT 

Large and SwinV2 Small model were trained using the same parameters from preliminary 

training, and the mean of the two predications was used as the ensemble prediction. 

These predictions were then evaluated per image against the associated 8 patient test 

that was withheld from training. Receiver operating characteristic (ROC) curves were 

plotted for each of the 3 cross-validation models alongside the results from the human 

reviewers for benchmark comparison. The AUC was also calculated along with the 

sensitivity at a specificity of 0.8. 

Weak Models 

The reconstructed microUS images from the 56 unlabeled prostatectomy patients (N = 

3,411) were assigned labels by each of the 3 confident ensemble models (A, B, and C) 

trained in the prior section. The labels were softened by 0.2 due to possible prediction 

error, resulting in cancer predictions assigned a label of 0.8 and benign predictions 

assigned 0.2. The 20 biopsy patients were also included and assigned a label of 0 as they 

are confirmed benign.  

Each group of labels (A, B, and C) were used to train an equal voting ensemble 

model comprised of a ViT Large and a SwinV2 Small model using the same training 

parameters as the confident models (20 epochs, 0.01 learning rate, brightness and 

contrast batch transforms). As with the confident models, a random sample of 20% of 

the training images were withheld and used as a validation set during training. However, 

these weak models were trained as regression models instead of binary classifiers due 

to labels ranging on a scale of 0-0.8. As such, root mean squared error (RMSE) loss was 

used instead of binary cross-entropy loss. The equal voting ensemble predictions were 
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similarly defined as the mean prediction between the ViT and SwinV2 models. The three 

weak ensemble models were evaluated against their respective 8 patient test set (A, B, 

and C) that was withheld from training for both the weak model and the confident model 

used for labeling. The three 8 patient test sets are the same as the three test sets used 

in the prior section. The 3-fold cross validation results were similarly plotted against the 

benchmark expert reviewers alongside the AUC and sensitivity at a specificity of 0.8. 

Combined Models 

Three combined models (A, B, and C) were trained using a combination of confidently 

labeled data and weakly labeled data. More specifically, the confidently labeled data was 

comprised of the same 16 prostatectomy patients used to train each respective 

confident model (A, B and C). The images labeled as cancer were assigned a label of 1 

and images labeled as benign were assigned a label of 0. As with the weak model training, 

the reconstructed microUS images from the 56 unlabeled prostatectomy patients were 

assigned labels using the classification predictions of the 3 previously trained confident 

models (A, B, and C) to create three sets of labels. Each set of labels was used by its 

respective combined model. For example, combined model A used the data labels 

created by confident model A. As before, each predicted label was softened by 0.2 due 

to possible prediction error, giving images labeled as cancerous a value of 0.8 and images 

labeled as benign a value of 0.2. The 20 benign biopsy patients were also included and 

assigned a label of 0. In summary each training set was comprised of 16 confidently 

labeled prostatectomy patients, 56 weakly labeled prostatectomy patients, and 20 

benign biopsy patients. As mentioned earlier, the same 8 patient test sets from the prior 

sections were used to evaluate the respective combined model and these patients were 

never included in training or in any training of models used to label data for training. 
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As with the weak and confident models, three equal voting ensembles were 

created, each comprised of a ViT Large model and a SwinV2 Small model fine-tuned on 

the respective training data (A, B, and C). The same training parameters as used in the 

confident and weak models were used here (20 epochs, 0.01 learning rate, brightness 

and contrast batch transforms). Additionally, a random sample of 20% of the training 

images were withheld and used as a validation set during training. The combined models 

were trained as regression models using RMSE loss. The mean predictions of the ViT and 

Swin models were used to generate the ensemble prediction. Each combined ensemble 

(A, B, and C), were evaluated against the respective confidently labeled 8 patient test set, 

which was withheld from training and any training of models used to label training data. 

The 3-fold cross validation results were similarly plotted against the benchmark expert 

reviewers alongside the AUC and sensitivity at a specificity of 0.8. 

In summary, three groups of classifiers were trained described by the quality of 

labels used for training: confident, weak, and combined models. Each group was 

subsequently evaluated via 3-fold cross validation of an 8-patient test set with WM 

pathology confirmed labels. The three test sets were the same across each group of 

classifiers and where never included in any training and the related training of any data 

labeling models for the respective subset of models. For example, test set A was withheld 

from confident model A, weak model A, and combined model A. This was repeated for 

test sets B and C. Benchmark classification results were also collected from expert 

reviewers for both MRI and microUS, allowing for direct comparison with model 

classification results. 
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Clinical Evaluation 

To evaluate the potential usefulness of the trained classifiers for guidance in a biopsy 

setting, the highest performing group of classifiers were evaluated on cancer detection 

metrics in the test sets. More specifically, the number of index lesions correctly 

identified was recorded, defined as the largest and most aggressive tumor responsible 

for disease progression. The total number of significant lesions correctly identified, as 

well as the ratio of false positive and false negative classifications per patient were also 

recorded. These metrics were also calculated for the expert reviewers for both MRI and 

microUS allowing for direct comparison. Additionally, results were further stratified by 

scenarios where expert reviewers and the classifiers agreed on a classification and where 

they disagreed to further examine the value of correspondence between the models and 

experts. Lastly, we attempted to evaluate the ability of the model predictions as a 

potential targeted biopsy guide. Using the model predictions, the image with the highest 

cancer prediction was defined as the location for a targeted biopsy. Assuming ideal 

placement of the biopsy core within the image, if the target location overlaps the location 

clinically significant cancer, it was counted as a correct target. If the targeted location 

does not overlap a clinically significant lesion, it was counted as an incorrect target. 

While assuming perfect targeting within an image may not be representative of real 

biopsies, targeted biopsies normally consist of at least 3 cores spread around a region 

of interest. By only analyzing one image, it is safe to assume that if 3 cores were taken 

from 3 locations within an image (i.e. apex, mid-gland, and base), that one of those cores 

would correctly capture the lesion. 
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6.4.2. Results 

MicroUS scans of the prostate from 80 prostatectomy patients and 20 biopsy patients 

were reconstructed from para-sagittal to true sagittal. A total of 6,264 reconstructed 

microUS images (4,956 prostatectomy and 1,308 biopsy) were created from the patient 

scans. Out of the 80 prostatectomy scans, 24 scans were labeled as benign or cancerous 

on a per image basis depending on the co-registered location of WM pathology confirmed 

clinically significant cancer. From these 24 patients, 924 images were benign and 543 

were cancerous. The distribution of cancer and benign images by location across the 24 

patients can be seen in Figure 47. It is worth noting that there was no cancer present on 

the edges of the sweep, this was because these images were outside the prostate, 

however these images are still worth including because an ideal model would be able to 

Figure 47: Cancer distribution by position of reconstructed microUS images for 24 

confidently labeled prostatectomy patients. Scan location goes from anatomical 

right to left with the entire prostate fully represented. A few images on the far right 

and far left are outside of the prostate and always benign. 
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recognize the boundaries of the prostate. There was a total of 32 clinically significant 

lesions and 24 index lesions across the 24 labeled prostatectomy patients. 

Urologist and Radiologist Review 

For the reviewer classifications the 3 expert microUS reviewers had an average sensitivity 

of 0.71±0.06 (0.79, 0.69, and 0.64 respectively). The average reviewer specificity was 

0.83±0.04 (0.80, 0.89, and 0.80 respectively). The urologist with no microUS biopsy 

experience had a sensitivity and specificity of 0.27 and 0.88, highlighting the importance 

of microUS experience for effective review. For MRI the prospective, standard of care, 

PIRADSv2.1 (pMRI) review had a sensitivity of 0.44 and a specificity of 0.97, while the 

retrospective MRI (rMRI) review had a sensitivity of 0.73 and specificity of 0.86. 

Preliminary Training and Confident Models 

For preliminary training varying types of models were trained with varied parameters. 

The top two models from preliminary training by validation set loss and validation error 

rate (Table 5) were selected to create an equal voting ensemble. The ViT Large model and 

SwinV2 Small models had the best performance with a validation set loss of 0.13 for 

both and an error rate of 0.2 and 0.4 respectively. 

Table 5: Preliminary model training used to find a final model. The two models with best performance are bolded. 

Preliminary Model Training 

Model Size Image Size Training Set Validation Loss Validation Error Rate 

ConvNeXt Small 256x350 All 0.14 0.04 

ConvNeXt Small 256x350 Prostatectomy 0.37 0.11 

ViT Small 224x224 Prostatectomy 0.37 0.09 

ViT Small 224x224 All 0.22 0.05 

SwinV2 Small 256x256 Prostatectomy 0.23 0.05 

SwinV2 Small 256x256 All 0.13 0.04 

ViT Large 224x224 All 0.13 0.02 

SwinV2 Large 192x192 All 0.16 0.04 

SwinV2 Base 256x256 All 0.16 0.04 

ConvNeXt Base 256x350 All 0.20 0.03 
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 The 24 patients were divided into 3 test sets of 8 patients for cross-validation. 

Test set A was assigned the same 8 patients reviewed by the highest performing expert 

reviewer, while the remaining 16 cases were randomly assigned to test sets B and C. One 

case in test set B was removed for evaluation due to the patient having a prior 

transurethral resection of the prostate (TURP). This was the only patient in the dataset 

with a TURP and as expected the trained models exhibited poor performance when 

tested on this case. While each group of models did correctly identify the region of 

cancer, the models had poor classification in the regions where the TURP was visible on 

imaging. This case was left in during training for models evaluated on test sets A and C 

in an attempt to improve generalization and was not reviewed by any of the human 

reviewers. 

 Using 3-fold cross validation, the confidently trained models had an average 

sensitivity of 0.72±0.07 (0.82, 0.70, and 0.64 respectively) at a specificity of 0.8.  The 

average AUC value was 0.81±0.04 for the three test sets (0.87, 0.76, and 0.81 

respectively). These results can be visualized in Figure 48 and Table 6. These results 

indicate similar performance relative to the expert microUS reviewers.  
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Table 6: Model and human benchmark performance against the test sets. Each cross-validation group is denoted as 

A, B, and C. 

Test Set Performance 

Model Type Data Group Sensitivity Specificity AUC 

Confident 

A 0.82 0.8 0.87 

B 0.70 0.8 0.76 

C 0.64 0.8 0.81 

Mean 0.72 0.8 0.81 

Weak 

A 0.77 0.8 0.84 

B 0.75 0.8 0.78 

C 0.62 0.8 0.77 

Mean 0.71 0.8 0.80 

Combined 

A 0.79 0.8 0.85 

B 0.78 0.8 0.79 

C 0.58 0.8 0.81 

Mean 0.72 0.8 0.82 

Expert 

1 0.79 0.80  

2 0.69 0.89  

3 0.64 0.80  

Mean 0.71 0.83  

pMRI 0.44 0.97  

rMRI 0.73 0.86  

Novice 1 0.27 0.88  

 

Weak Models 

For the weak models, the sensitivity was 0.71±0.07 (0.77, 0.75, and 0.62 respectively) at 

a specificity of 0.8. The average AUC was 0.80±0.03 across the 3 test sets (0.84, 0.78, 

0.77 respectively). These results can be visualized in Figure 48 and Table 6. These results 

relative to the expert reviewers further support the ability of the confident models to 

correctly classify images, as the training data was labeled by the respective confident 

models that  
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Figure 48: ROC plot of confident, weak, and combined models (top to 

bottom) with benchmark points of expert reviewers. Each curve represents 

one cross-validation model 
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were also blinded to the test set. Models subsequently trained on this model-labeled data 

approach expert level performance. 

Combined Models 

For the combined models, the sensitivity was 0.72±0.10 (0.79, 0.78, and 0.58 

respectively) at a specificity of 0.8. The average AUC was 0.82±0.02 across the 3 test sets 

(0.85, 0.79, 0.81 respectively). These results can be visualized in Figure 48 and Table 6. 

While the three groups of models exhibited similar performance to each other and the 

expert reviewers, the combined classifier had slightly higher performance. Due to this it 

was used to in the subsequent clinical evaluation. 

Clinical Evaluation 

The combined classifiers had the highest sensitivity and AUC of the classifier groups. 

These models correctly classified 22/23 (95.7%) of index lesions and 28/31 (90.3%) of 

the total lesions. Comparatively the benchmark expert microUS reviewers identified 8/8 

(100%) of their respective index lesions and 93.0±5.0% (9/10, 8/9, 10/10) of total lesions 

on microUS. The novice urologist identified 6/8 (75%) of index lesions and 6/9 (66.7%) 

of total lesions. Expert MRI review identified 13/15 (86.7%) and 15/15 (100%) of index 

lesions with 13/18 (72.2%) and 15/18 (83.3%) of total lesions for pMRI and rMRI 

respectively. Furthermore, the classifiers had an average false positive classification of 

7.1 frames per patient and a false negative classification of 7.3 frames per patient, while 

the expert reviewers had 7.0 (8.3, 4.9, 8.0), 1.2, 5.8 false positive classifications per 

patient and 7.0 (5.1, 7.0, 8.9), 12.8, 6.2 false negative classifications for microUS, pMRI, 

and rMRI respectively. Examples of patient specific classifications can be seen in Figure 

49. 
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Stratifying by instances where the expert reviewer and the classifier both 

predicted cancer, there was an average precision of 0.78 (0.81, 0.83, 0.69) for the three 

microUS reviewers. For pMRI and rMRI the precision when the model and reviewer 

Figure 49: Top: Example patient specific plot with model predictions 

(orange dots) and ground truth (blue dots) for each image in a scan. X-

axis is location within parallel sweep through prostate. Bottom: Cancer 

detection results for the deep learning model and expert reviewers. 

Targeted biopsy localization refers to the highest prediction within a scan 

for the model and the center of prediction for the expert reviewers. 
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predicted cancer was 0.98 and 0.81 respectively. Comparatively, the individual precision 

was 0.69 for the classifier, 0.71 (0.70, 0.76, 0.66) for expert microUS reviewers, 0.89 for 

pMRI, and 0.74 for rMRI. Indicating prediction confidence increases classifier 

predictions, particularly for pMRI. 

Evaluating the ability of the microUS classifier to identify a potential targeted 

biopsy location, a total of 19/23 (82.6%) targets captured a clinically significant lesion 

(18 index lesions and 1 non-index lesion) using the maximum of the model predictions. 

Using the center of the positive predictions of the expert reviewers as a comparison, a 

total of 75% (6/8, 7/8, 5/8) of targets correctly localized a clinically significant lesion on 

microUS while 12/15 (80%) and 13/15 (86.7%) targets correctly localized a clinically 

significant lesion on pMRI and rMRI respectively. 

 

6.4.3. Discussion 

In this section, we have developed the first whole image classifier for B-mode microUS 

imaging through co-registration with ground truth WM pathology. We have also 

evaluated the classifier results in context with direct comparison to MRI with an expert 

radiologist, the clinical standard, as well as expert microUS readers.  

In summary, microUS scans were labeled with ground truth WM pathology via a 

previously developed registration process [220]. Any images with confirmed clinically 

significant cancer were labeled as cancerous. Since WM pathology is designed to capture 

the tumor extent and ensure negative margins from surgery, this form of histology 

provides the most accurate possible representation of cancer location. The reported 

registration error from our prior work was 3.90±0.11mm (mean ± standard error), 

similar to the reported registration accuracy of commercial MRI-US fusion devices used 
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for biopsy guidance [21]. However, while unlikely, it is possible that the true extent of 

the cancerous lesions is up to 3-4 images wider or narrower than recorded if the 

registration error is solely in the left to right orientation.  

Following registration, delineations from expert reviewers were registered to the 

reconstructed microUS images and used to determine reviewer image classifications, 

allowing for direct comparison with model classifier results. Additionally, the expert 

microUS reviewers and rMRI review were aware the patients had prostate cancer, due to 

knowledge the study was validated by WM pathology, a common limitation associated 

with WM validated studies [191], [220]. Both pMRI and the model classifiers were blinded 

to the patient having cancer. Additionally, fully benign patient data were added to 

training to make the patient populations more representative of true patient populations 

for the classifier. Between the expert reviewers, rMRI and microUS performed similarly 

as reported in other comparison studies [17], [18], [219], with sensitivities of 0.73 and 

0.71±0.06 with cancer detection rates of 83.3% and 93.0±5.0% respectively. For pMRI, the 

specificity was higher than rMRI and microUS reviewers with a lower overall sensitivity. 

This can be attributed to PIRADS being optimized for specificity while maintaining good 

sensitivity for its use as a triage for biopsy. As a result, PIRADS delineations tend to 

underestimate the true tumor extent while still having high detection rates for index 

lesions as reported in other studies [6], [13], and evident in this study by the lower 

sensitivity (0.44) on the image level while still identifying 86.7% of index lesions. 

For comparison with expert reviewers, we trained 3 different groups of classifier 

models with 3-fold cross validation. Each group of classifiers were trained using a 

different type of data: 1) confident classifiers trained on microUS images that were 

labeled from co-registration with WM pathology, 2) weak classifiers trained on microUS 
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images that were labeled from previously developed confident models, and 3) combined 

models that used a combination of confidently labeled data and weakly labeled data. 

The test sets used to evaluate each model were a subset of confidently labeled data that 

was withheld from training, including the training of models used to create weakly 

labeled data. Each model was comprised of ViT and SwinV2 vison transformer models 

fine-tuned on the microUS data. All three groups of models performed similarly to the 

expert microUS reviewers in terms of sensitivity (0.71-0.72 vs 0.71 respectively) and 

specificity (0.8 vs 0.83 respectively). Furthermore, when analyzed on the patient level, 

the combined models identified a similar percentage of index lesions and total lesions 

as the expert reviewers, emphasizing the potential utility of these models for cancer 

detection. These models could alleviate the training requirement for novice users, 

allowing for urologists not experienced with microUS to achieve expert level detection. 

Perhaps most interestingly, the max prediction of the classifier correctly 

identified clinically significant cancer in 82.6% of the patients. For perspective, the center 

of PIRADS ROIs, the gold standard, captured clinically significant cancer in 80% of 

patients. This is important as the primary role of imaging for prostate biopsy is to guide 

targeted biopsy to confirm prostate cancer. As such, these classifiers could potentially 

be used to identify a targeted biopsy location providing biopsy guidance for urologists 

with a similar accuracy to PIRADS. Furthermore, if the classifier identified images of 

cancer also contain a PIRADS delineated ROI, there is a 98% chance there is clinically 

significant cancer within that image based on the results from this study. 

It is worth noting that the sensitivities and specificities reported here are not 

directly comparable to other studies, but they are directly comparable between the 

reviewers and classifiers within this study. Since sensitivity and specificity are greatly 
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affected by the amount of positive and negative instances, it is vital for the benchmark 

comparisons to be evaluated in the same manner as the model classifications. This can 

further be highlighted by our earlier work which used the exact same reviewer 

delineations but with a more granular evaluation [220]. As a result, the sensitivities were 

much lower and the specificities were much higher than the results from this study 

which were analyzed on the image level and the patient level. However, while the results 

within this study cannot be directly compared to the sensitivity and specificity of other 

studies, the general trends between modalities are comparable. Specifically, microUS 

review having higher sensitivity but lower specificity than PIRADS is commonly reported 

in literature [78], [220]. 

Ultimately, the results presented here highlight the value of confidently labeled 

data and transfer learning for creating quality deep learning models especially for 

limited datasets. The classifiers trained in this study were able to achieve expert level 

performance with up to 100 patients and 6,264 images worth of data. The confident 

models in particular achieved expert level performance with only 36 patients of training 

data. To this end, future work will focus on registering more WM data to the unlabeled 

microUS images within this dataset to improve classifier performance. However, it is 

worth mentioning the weakly labeled data created from the confident models was able 

to train classifiers with expert level performance with 56 patients of weakly labeled data. 

As such the trained confident models could potentially be used to generate larger 

datasets for training and circumvent the time intensive registration process. 

Additionally, the models fine-tuned in this work are pre-trained models developed for 

general image classification. It is likely that the results presented in this work can be 

improved through model optimization in future work. Regardless the models in this 
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work achieved expert level performance, and application of deep learning classifiers for 

microUS warrant further investigation. 

While these results are promising, there are some limitations of this study. Most 

notably, the results of this study will need to be confirmed in a larger dataset with larger 

test sets. Additionally, while reviewers always delineated native imaging on both MRI 

and microUS, the models were trained on reconstructed microUS to allow for more 

straightforward registration with ground truth WM pathology. Due to the reconstruction 

process, the reconstructed images are of slightly lower quality due to interpolation, but 

the images are compressed to either 224x224 or 256x256 for training, so this may not 

have a large impact on model performance. Furthermore, a microUS sweep could 

theoretically be reconstructed during biopsy for model predictions. Regardless, the 

difference between native and reconstructed images for model performance will be 

investigated in future work. Additionally, this study relied on prostatectomy patients for 

WM pathology. As such, the cancer in patients selecting to undergo radical 

prostatectomy is likely larger and more aggressive than an equivalent biopsy cohort. We 

attempted to mitigate this issue through the inclusion of benign biopsy patients as well 

as comparing directly with expert reviewers reviewing the same patient population, but 

ultimately this is inherent to WM based validation studies. Lastly, the models presented 

here are performing whole image classification, and any application of them in a clinical 

setting would depend on the reader to localize cancer within the image. We plan to 

address this in future work with a patch-based classifier that can be used to delineate 

the whole image classifier providing delineated regions of interest. 

In summary the classifiers trained in this work achieved expert level classification 

performance for identification of clinically significant prostate cancer on microUS. 
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Implementation of these classifiers could potentially reduce the training requirement 

for microUS adoption as well as the inter-reader variability between expert readers. 

 

6.5. Conclusion 

Deep learning approaches for prostate cancer detection on microUS have the potential 

to alleviate the training requirement for novice users as well as reduce the cognitive load 

during biopsies. We have demonstrated that transfer learning and confidently labeled 

datasets enable model development despite limited data availability. This is highly 

advantageous as large microUS datasets are not commonly available at this time. 

In this chapter we developed the first whole image microUS cancer classifier 

trained on ground truth WM pathology. Utilizing both high-quality labeled data and 

transfer learning, the fine-tuned vision transformers achieved AUC values of 0.80-0.82 

in three-fold cross validation. The classifiers performed as well as expert reviewers for 

both MRI and microUS with similar sensitivity, specificity, and cancer detection rates in 

an equivalent evaluation. Furthermore, the max prediction of the classifiers 

demonstrated high accuracy for selecting a targeted biopsy location. The results 

presented in this study are promising for future development of deep learning based 

microUS cancer classification, and warrant further investigation using larger datasets. 
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CHAPTER 7 

Conclusions and Future Directions 

 

7. Conclusions and Future Directions 

7.1. Summary 

Multi-parametric magnetic resonance imaging is the gold standard imaging diagnostic 

for visualizing prostate cancer. While effective, mpMRI is expensive, resource intensive, 

requires multiple patient visits, and subject to inter-reader variability. As such it is often 

limited to larger centers. Recently, micro-ultrasound has been introduced as a low-cost 

alternative to mpMRI for PCa visualization during biopsy. While early studies have 

demonstrated similar cancer detection rates, sensitivity, and specificity for prostate 

cancer visualization, there has been limited validation against ground truth WM 

pathology especially using computational co-registration. While cancer detection rates 

and sensitivity for PCa have been promising, there is minimal quantitatively backed 

evidence for the improved PCa detection over non-diagnostic conventional US. Beyond 

that, there is a considerable training requirement to properly interpret microUS images 

and considerable inter-reader variability between expert readers. Ultimately, these 

reasons have limited microUS adoption.  

The purpose of this thesis was a multi-faceted investigation into microUS imaging 

of prostate cancer. This body of work was focused on 1) identifying quantitative 

evidence for the reported diagnostic capability of microUS, 2) rigorously investigating 

the diagnostic potential of microUS imaging through WM pathology validated reader 
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studies, and 3) evaluating the ability of deep learning classifiers to identify PCa on 

microUS using confidently labeled data. 

 In order to investigate microUS imaging, it was first necessary to collect a high-

quality dataset. Through a clinical trial, we collected mpMRI, microUS, and WM pathology 

for patients undergoing radical prostatectomy for prostate cancer. Through careful 

tracking of spatial orientation for each modality, the data provided the opportunity for 

accurate correlation between microUS, mpMRI, and WM pathology. 

 To determine if microUS is capable of identifying prostate cancer, we first 

analyzed prostate cancer morphology on WM pathology. We found the amount of ductal 

anatomy of prostate tissue changes in regions of cancerous tissue, and the majority of 

these ducts are within the resolvable limit of microUS but too small to be resolved on 

conventional US, providing quantifiable evidence for why microUS could potentially 

resolve PCa and conventional US generally cannot. 

 After confirming a reason for the improved diagnostic ability of microUS over 

conventional US, it was necessary to evaluate the performance of human readers with 

comparison to radiologists using mpMRI. However, before this was possible it was 

necessary to develop and validate co-registration techniques to allow for accurate 

evaluation. Two methods were developed, one utilizing ex vivo microUS allowing for 

capsule registration of microUS at the cost of a different imaging environment, and one 

for in vivo microUS utilizing intermediary image reconstruction and three-dimensional 

registration with MRI to allow for capsule registration to WM pathology. Using these 

techniques readers delineated areas of suspected prostate cancer on microUS which was 

registered to ground truth WM along with comparison from radiologist delineated 
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mpMRI. For both instances expert review demonstrated similar performance to MRI for 

PCa delineation. 

 While expert microUS reviewers demonstrated similar performance to 

radiologists on MRI, novice urologist review demonstrated substantially worse 

performance, indicative of the high training requirement. Furthermore, microUS is 

affected by inter-reader variability similar to MRI. For these reasons, microUS would 

stand to benefit from implementation of deep learning solutions. With the development 

of accurate co-registration between microUS and WM pathology, we were uniquely 

positioned to create confidently labeled data for training microUS models. These 

classification models demonstrated similar performance to expert microUS readers in 

multiple evaluations with particularly good performance for identifying sites for 

targeted biopsy. Beyond demonstrating the utility of deep learning for microUS, the 

performance of these models further proves there is information embedded in microUS 

images indicative of prostate cancer as models were able to identify images containing 

cancer with similar accuracy to expert readers. 

 Conclusively, in this thesis we confirmed the diagnostic capability of microUS to 

identify prostate cancer. We provided quantitative evidence for microUS having 

improved diagnostic capability over conventional US, demonstrated expert microUS 

readers are as diagnostic as expert radiologists on mpMRI in a reader study, and proved 

there is objectively visible prostate cancer in microUS images through expert level 

performance of deep learning classifiers. A primary contribution of this thesis is the 

development of an accurate co-registration methodology between microUS, MRI, and WM 

pathology. This provides the vehicle for the other work in this thesis. It allows for direct 

comparison of PCa visualization on microUS and mpMRI validated by ground truth WM 
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pathology. Additionally, it allows for accurate data labeling of microUS images, allowing 

for high-quality training data necessary for the development of microUS classifiers. 

Using the developed co-registration methodology to these ends, this work highlights the 

utility of this methodology and the potential of microUS and related deep learning 

applications for identification of prostate cancer. 

 

7.1.1. Impact on Prostate Cancer Diagnosis 

MicroUS and related application of deep learning models have the potential to greatly 

improve prostate cancer diagnosis. From this thesis we have demonstrated that microUS 

continues to perform similarly to gold standard MRI even under rigorous interrogation 

against WM pathology. We have also demonstrated deep learning classifiers are able to 

identify microUS images containing prostate cancer with similar accuracy to expert 

readers. Ultimately this body of work provides objective evidence that microUS is able 

to identify prostate cancer with similar performance to mpMRI. For smaller centers, 

microUS could be serve as an alternative to MRI. For larger centers, microUS and mpMRI 

could potentially have a synergistic relationship, where mpMRI is used as a triage for 

biopsy and target identification, while microUS is used to directly visualize the MRI 

target or any targets not visible on MRI, alleviating registration error and potentially 

providing better tumor margins. Beyond that, deep learning approaches have the 

potential to alleviate the inherent training requirement for microUS and could reduce 

inter-reader variability between expert readers allowing for standardized microUS 

interpretation. 
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7.2. Future work  

7.2.1. Automated Registration of Micro-Ultrasound and Histology 

In chapter 5 we developed a novel registration methodology to co-register microUS, MRI, 

and WM pathology. This methodology was subsequently validated through TRE studies 

and used to compare visualization of prostate cancer on microUS and MRI imaging. The 

methodology was also used to create confidently labeled microUS images for model 

training. While accurate, a limitation of the registration methodology is the lack of 

complete automation. In order to evaluate larger microUS datasets and create more 

microUS training data, it is necessary to develop a fully automated microUS registration 

pipeline. As such, future work should focus on automation of the registration process 

allowing for faster data processing and labeling. 

To achieve this, a major hurdle will involve deriving transformation matrices for 

alignment and TPS registration of microUS and MRI automatically. In the current 

registration pipeline the transformation matrices are created manually, but in theory 

tissue deformation from scanning on microUS should be similar across patients allowing 

for similar transformation matrices with only small deviations. Based on this, and the 

ability to generate actual correct matrices manually, one possible automation approach 

may be to develop a machine learning based approach to automate registration. The 

proposed model would utilize 3D image volumes of MRI and microUS to fine tune the 

transformation matrices. The accuracy of these predictions could be subsequently 

compared to matrices generated manually as well as by measuring the TRE between 

microUS and MRI similar to the analysis performed in chapter 5. If achieved, this would 

improve upon the registration methodology presented in this work. 
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7.2.2. Automated Segmentation of Prostate Cancer 

The developed deep learning classifiers detailed in chapter 6 demonstrated expert level 

performance for identification of prostate cancer on microUS imaging. The developed 

classifiers also had good performance for correctly selecting a single image for targeted 

biopsy. The promising results from these classifiers encourages further advancement of 

machine learning based detection of prostate cancer on microUS. Currently, the models 

classify images as cancerous or benign. An ideal model would also delineate the cancer 

boundary on images classified as cancerous removing the need for the operator to 

identify the location of cancer for biopsy. 

Before training a model for delineation it will be necessary to create accurate 

masks of the regions of cancer. While WM pathology is the most comprehensive form of 

ground truth available, there are still regions of the prostate between WM slides where 

the location of cancer will need to be interpolated. Since interpolation will be prone to 

error, it is important to account for this in our labels. Similar to the label softening used 

for weakly labeled data in chapter 6, we plan to decrease the strength of a mask as it 

moves away from WM pathology confirmed regions of cancer. This should diminish the 

impact of improperly labeled data while still allowing for the models to learn from 

regions where cancer is likely but not confirmed. Following that, with enough data 

labeling, it should be possible to train a segmentation model to predict cancer on 

previously classified images. It is likely that the models will require a substantial amount 

of data however, so the automated registration process described above would help 

these efforts. Furthermore, implementation of MRI and PSA with microUS could also 

help improve artificial intelligence detection of cancer. 
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