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Abstract

Model-based metabolic flux analysis (MFA) using isotope-labeled substrates has provided great 

insight into intracellular metabolic activities across a host of organisms. One challenge with 

applying MFA in mammalian systems, however, is the need for absolute quantification of nutrient 

uptake, biomass composition, and byproduct release fluxes. Such measurements are often not 

feasible in complex culture systems or in vivo. One way to address this issue is to estimate flux 

ratios, the fractional contribution of a flux to a metabolite pool, which are independent of absolute 

measurements and yet informative for cellular metabolism. Prior work has focused on “local” 

estimation of a handful of flux ratios for specific metabolites and reactions. Here, we perform 

systematic, model-based estimation of all flux ratios in a metabolic network using isotope labeling 

data, in the absence of uptake/release data. In a series of examples, we investigate what flux ratios 

can be well estimated with reasonably tight confidence intervals, and contrast this with confidence 

intervals on normalized fluxes. In a series of examples, we find that flux ratios can provide useful 

information on the metabolic state, and is complementary to estimates of normalized fluxes: for 

certain metabolic reactions, only flux ratios can be well estimated, while for others normalized 

fluxes can be obtained. Simulation studies of a large human metabolic network model suggest that 

estimation of flux ratios is technically feasible for complex networks, but additional studies on 

data from actual isotopomer labeling experiments are needed to validate these results. Finally, we 

experimentally study serine and methionine metabolism in cancer cells using flux ratios. We find 

that, in these cells, the methionine cycle is truncated with little remethylation from homocysteine, 

and polyamine synthesis in the absence of methionine salvage leads to loss of 5-

methylthioadenosine, suggesting a new mode of overflow metabolism in cancer cells. This work 

highlights the potential for flux ratio analysis in the absence of absolute quantification, which we 

anticipate will be important for both in vitro and in vivo studies of cancer metabolism.
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1. Introduction

Assessment of metabolic fluxes in living cells has proven critical for understanding cellular 

metabolism, and may potentially identify state-specific metabolic vulnerabilities in disease, 

including cancer (Duckwall et al., 2013; Gunther et al., 2015). Intracellular metabolic 

activities in living cells are often analyzed using isotope labeling experiments, in which cells 

are exposed to stable isotope-labeled nutrients and the resulting intracellular isotope patterns 

within metabolic products are measured. In model-based metabolic flux analysis (MFA), a 

stoichiometric, atom-level model of a metabolic network is constructed, and a number of 

metabolic fluxes are simultaneously estimated by fitting the model to isotope labeling data. 

To obtain absolute fluxes (in moles per unit time), however, requires absolute quantification 

of nutrient uptake rates, biomass growth, and release of metabolic products, in order to 

constrain the model. In microorganisms such measures are often feasible, as cells can be 

grown on a single carbon source whose uptake can be readily quantified, and biomass rate 

and composition can be measured as well (Sauer et al., 1999; Lange and Heijnen, 2001). 

Consequently, MFA has provided a wealth of information regarding intracellular metabolic 

activities in microorganisms (Tang et al., 2009). In contrast, for mammalian cells, measuring 

uptake and release rates has proven much more challenging (Niklas et al., 2010). While 

uptake rates for major nutrients (glucose, amino acids) can be quantified in cell cultures 

(Kell et al., 2005; Jain et al., 2012), mammalian cells require complex growth medium that 

also contains significant amounts of serum-derived protein and fat-containing lipoproteins 

which are consumed by cells (Commisso et al., 2013; Beloribi-djefa et al., 2016), and are 

more difficult to quantify. Moreover, the biomass generated by proliferating human cells 

varies by cell type, and consists not only of new cellular material, but also extracellular 

matrix proteins deposited on culture dishes and various biosynthesized products released 

into the medium (Xie and Wang, 1994). Finally, for MFA of tissues or tumors in vivo, for 

example in tumor-bearing animals (Marin-Valencia et al., 2012), accurate quantification of 

comprehensive uptake/release measures can prove challenging. In such situations, artificial 

constraints must often be imposed on uptake/release fluxes to perform MFA, and may 

substantially influence the final results. This problem also arises when modeling a subset of 

the metabolic network, since estimates of fluxes crossing the “boundary” of the model are 

then needed for MFA, yet are rarely available.

One potential approach to overcome this limitation is to instead estimate metabolic flux 

ratios, defined as the relative contributions of each reaction feeding into a specific metabolite 

pool, since these ratios do not depend on absolute uptake/release fluxes. If data is available 

for isotope labeling of the metabolite of interest and for all metabolite substrates that feed 

into the specific pool, then flux ratios can be estimated at this metabolite, either from steady-

state (Sauer et al., 1999; Zamboni et al., 2009) or time-course data (Hörl et al., 2013). Since 

isotope distributions are directly related to flux ratios, this “local” approach is relatively 

straightforward and robust. However, usually not all required isotopomers are measurable, 

and although missing data can sometimes be substituted from “proxy” metabolites 

(Rantanen et al., 2008), still only a limited number of flux ratios have been accessible by the 

local method. For example, in the study of Hörl et al. (2013), flux ratios at three TCA cycle 

metabolites could be obtained, while a more extensive recent study using machine learning 
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approaches estimated six flux ratios, including one novel ratio in the glyoxylate shunt 

(Kogadeeva and Zamboni, 2016). In human cells, and in particular in the study of cancer 

metabolism, flux ratios have been used to estimate the relative activity of alternative 

synthesis pathways. This has provided important insights into cellular metabolism: for 

example, the relative contributions of glucose and glutamine to lactate (DeBerardinis et al., 

2007) or lipogenic acetyl-CoA (Metallo et al., 2012) have been proven to be important 

factors in the metabolic reprogramming of cancer cells. Yet, to our knowledge systematic 

estimation of flux ratios in arbitrary metabolic networks has not been performed. It is not 

even clear whether flux ratios are indeed a valid parametrization, that is, if flux ratios 

contain all information about the flux state. Also, we do not know how many flux ratios can 

be well-estimated in large metabolic networks, particularly in central human metabolism, or 

how measurement error propagates to uncertainty about flux ratios in large models.

In this paper, we propose and evaluate a systematic, model-based method for estimating flux 

ratios, as a means of analyzing isotope labeling experiments in the absence of uptake/release 

data. This approach makes use of all available isotopomer information and yields confidence 

intervals for all flux ratios in a metabolic network, also for metabolites that were not 

measured or do not carry labeled atoms, such as metabolic cofactors. We also prove that flux 

ratios are valid parameters of the flux state, in that they are in one-to-one correspondence 

with fluxes normalized to the total release flux. In simulation studies with a large human 

metabolic network, we find that many flux ratios are well-estimated, indicating that studies 

of human cellular metabolism using our approach are at least theoretically feasible. Finally, 

we apply this method to study serine and methionine metabolism in human cancer cells.

2. Methods

2.1. Cell culture

HeLa cells were cultured in six-well plates in RPMI-1640 medium containing either 

unlabeled nutrients (control), 50% U-13C-methionine (Cambridge Isotopes, no. CLM-893-

H), or 50% 1-13C-serine (Cambridge Isotopes no. CLM-1574-H), and supplemented with 

5% fetal bovine serum (Life Technologies) dialyzed using Snakeskin 10K MWCO dialysis 

tubing (Nordic Biolabs, Taby, Sweden, no. 88245-P) to remove additional metabolites. An 

intermediate (50%) amount of tracer was used since this tends to generate more informative 

MIDs for MFA (Möllney et al., 1999). After 48 hours of culture in this medium (at a 

confluence of 85%), wells were rapidly rinsed twice with 500 μL of Hanks balanced salt 

solution (Sigma-Aldrich, St. Louis, no. H6648) and metabolites extracted through the 

addition of 540 μL of precooled 100% methanol. Cells were scraped and transferred to a 1.5 

mL tube. Cell material was subjected to three freeze-thaw cycles whereby the sample tubes 

were partially submerged in an acetone dry ice bath for 45 seconds followed by partial 

submersion in a room temperature water bath. After complete lysis, 200 μL of ice cold 

methanol was added to each sample. Samples were then vortexed for 30 seconds, sonicated 

for 2 minutes and allowed to sit at −20°C for 30 minutes to facilitate protein precipitation. 

Samples were then centrifuged at 14,000 rpm for 10 minutes at 4°C, after which 200 μL of 

supernatant was transferred to new microfuge tubes, dried in vacuo using a vacuum 
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concentrator, and the resulting pellets resuspended in 40 μL of 80:20 methanol:water for 

analysis.

2.2. Mass spectrometry

For liquid chromatography-mass spectrometry (LC-MS), sample volumes were transferred 

to glass 100 μL volume LCMS vials and kept at 4°C in the autosampler compartment until 2 

μl of sample was injected for analysis. Compounds were separated using a Thermo Vanquish 

UPLC coupled to a Thermo QExactive Orbitrap mass spectrometer. Separation was 

performed using a Millipore (Sequant) Zic-pHILIC 2.1 × 150 mm 5 μm column maintained 

at 25°C using a flow rate of 0.3 mL/min and a 15 minute linear gradient starting from 90:10 

acetonitrile: 20mM ammonium bicarbonate pH 9.6 to 45:55 acetonitrile: 20mM ammonium 

bicarbonate pH 9.6. Detection was performed in positive and negative ion modes through 

sequential sample injections using a heated electrospray ionization (HESI) source operated 

at 2.5 kV (negative mode) and 3.5 kV (positive mode), sheath gas flow of 40, auxiliary gas 

flow of 20, sweep gas flow of 2, capillary temperature of 275°C and auxiliary gas heater 

temperature of 350°C. Data was collected using data-dependent tandem MS collection with 

MS1 parameters of 70,000 mass resolution, 100 ms maximum IT time, 3 × 106 AGC 

volume and a mass range of 67 to 1000 m/z, and MS2 parameters of 17,500 mass resolution, 

50 ms maximum IT time, 1 × 105 AGC volume, loop count of 5, isolation window of 0.5 

m/z, NCE of 35 and 10 second dynamic exclusion. LC-MS peaks were assigned metabolite 

identity by matching accurate mass and retention time against pure standards, and further 

confirmed by observing plausible mass isotopomer patterns in tracing experiments. Peak 

areas were obtained from chromatogram data by integrating total intensity within the 

retention time range. Mass isotopomer peaks were manually inspected in labeled samples 

and unlabeled controls. A small false +2 mass isotopomer of serine (ser-L) deriving from an 

unrelated compound was excluded by setting this MI fraction to zero. All experiments were 

performed in triplicate cultures with independent LC-MS analysis.

2.3. Metabolic network models

The metabolic network models used herein were assembled based on a previously described 

reconstruction of the human metabolite network (Duarte et al., 2007), with some 

modifications and simplifications. Complete model descriptions are provided as 

supplementary data. All reactions in each the model were able to carry flux in the forward 

(reference) direction. For the large network model, we also verified that the model is capable 

of biomass synthesis as well as terminal oxidation of all the major nutrients (glucose and 

amino acids) to CO2. The large model comprises 554 reactions, of which 236 were 

reversible, including all transporters; 140 of these cannot carry net flux in the reverse 

direction, but were kept reversible since nonzero exchange flux though these reactions may 

still be possible, and can affect simulated MIDs. Throughout, we use metabolite identifiers 

established by the original reconstruction.

2.4. Atom mappings and isotopomer distributions

Atom mappings for carbon in each reaction in the metabolic network were obtained from 

two previously published data sets (Arita, 2004; Mu et al., 2007). Both data sets were 

translated to InChi canonical numbering, and reactions present in both were verified to 
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agree. Metabolite symmetry information was obtained from the Mu et al. (2007) data set; 

there were 21 rotationally symmetric metabolites in the network. The EMU framework was 

used to generate a system of mass isotopomer balance equations from the atom-level 

network Antoniewicz et al. (2007). Equivalent atom group due to rotational symmetry was 

handled using EMU equivalence classes. Unlabeled network subtrates (nutrients) were 

defined to have an isotopomer distribution  where n is the number 

of atoms in the molecule, nx is the number of 13C atoms in the isotopomer x, and p13 = 

0.0107 is the natural 13C fraction (this corresponds to a binomial MID). Tracer isotopomer 

distributions pT were modeled based on 98% purity (manufacturer’s specificiation) for 

labeled atoms and natural 13C fractions for unlabeled atoms. For the HeLa tracing 

experiemnt, the isotopomer distribution p(x) achieved in fresh medium was then modeled as 

a mixture distribution

where α is the fraction of tracer used (here 50%). EMU balance equations were generated 

using in-house software based on Mathematica v.10 (Wolfram Research), available from the 

authors, and exported as model files in the General Algebraic Modeling System (GAMS) 

format.

2.5. Metabolic flux analysis

Throughout, we performed MFA as previously described (Suthers et al., 2007; Nilsson and 

Jain, 2016) by considering both isotopomers x and fluxes v ≥ 0 as free variables, related by 

the EMU balance constraints denoted as c(v, x) = 0, and minimizing the variance-weighted 

L2 distance to the measured mass isotopomers fractions y,

subject to the constraints c(v, x) = 0, Sv = 0 and v0 = Σj∈R vj fixed to 100, where R indexes 

the release fluxes. Here Σ was diagonal with standard deviations  set as described 

below. The stoichiometry constraint Sv = 0 is needed in addition to c(v, x) = 0 to ensure 

mass balance also for metabolites that are not part of the EMU networks, including 

unlabeled metabolites, cofactors, and non-carbon metabolites. The flux ratios ϕij was then 

obtained from the optimal flux solution via equation (1). Confidence intervals were 

calculated by maximizing/minimizing each parameter (fluxes vj or flux ratios ϕij) subject to 

the MFA constraints and with the objective , where f* is the objective at 

optimum. All nonlinear optimization problems were solved using the CONOPT solver 

(ARKI Consulting & Development A/S, Bagsvaerd, Denmark) controlled via the GAMS 

modeling system.
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For the simulations onthe TCA cycle and large network model, standard deviations σi = 0.1 

were used for all metabolites. The true flux vector was chosen manually to involve all 

reactions of interest (shown in Figure 5). Confidence intervals around the true flux vector 

was examined, so that f* = 0.

For the large network model, compartmentalization was handled by representing each 

measured MI fraction i as a mixture ΣkMikxk, where xk is the corresponding compartment-

specific MI fraction (Nilsson and Jain, 2016). The objective can then be written

The mixing coefficients Mik were considered unknown parameters and were estimated 

jointly with the other parameters. To generate an interesting flux state for simulation with as 

many active pathways as possible, we chose a flux vector v ≥ 0 that brought the ratios ϕij as 

close as possible to  by minimizing (ϕij − ri)2 subject to the stoichiometry 

constraints Sv = 0.

For the methionine/serine experiments, MID measurements from HeLa cells were modeled 

with a standard deviation σi = 0.01 for all isotopomers except 2-ketomethylthioburytate 

(2kmb) for which σ = 0.1 due to uncertainty in measurements. MID measurements from the 

1-13C-serine and U-13C-methionine experiments were combined, and a single flux vector 

was fit to both data sets, as previously described (Leighty and Antoniewicz, 2012). To 

examine possible local minima, we solved this optimization problem 1,000 times, starting 

from distinct initial points obtained as random linear combiniations of a set of flux vectors 

obtained by flux variability analysis (Schilling et al., 2000). From the resulting solution 

vectors v1, …, v1000, a set of smaller candidate solutions C was identified by initializing C = 

{v1, …, v1000} and iteratively removing from C any vector vk that was not “extreme” in any 

dimension, satisfying  for all j. Hence, the vectors v ∈ C cover the 

full range of each flux vj found across all restarts. Similarly, a set of vectors was generated 

to cover the ranges observed for the flux ratio parameters. We then calculated confidence 

intervals for all parameters at all such “extreme” points, and finally took for each parameter 

the union of all intervals obtained, as a conservative estimate.

3. Theory

In this section, we prove some theoretical properties of flux ratios. In particular, we show 

that flux ratios contain all information required to calculate all fluxes in a metabolic 

network, except for a scale factor which turn out to be the total release flux from the system. 

These results demonstrate that flux ratios are indeed a valid parameterization of the flux 

state of any metabolic network.

3.1. Preliminaries

We begin by stating some definitions used throughout. A metabolic network with m 
metabolites and n reactions is described by its m×n stochiometry matrix S, such that Sij < 0 
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if metabolite i is consumed by reaction j, Sij > 0 if metabolite i is produced by reaction j, and 

Sij = 0 otherwise. Throughout, we consider the flux vj through each reaction j to be 

nonnegative, and represent reversible reactions by two fluxes in opposing directions. Uptake 

or release of a metabolite i from/to the surroundings is represented by a column j with a 

single nonzero element Sij = 1 or −1, respectively. Hence, at steady-state we have Sv = 0 due 

to mass balance. We denote the set of feasible fluxes  = {v ≥ 0ΛSv = 0}. We now define 

the flux ratio ϕij as the relative contribution of flux j to the total flux “through” metabolite i,

(1)

Here S+ denotes the (element-wise) positive part, which identifies reactions producing 

metabolite i (Figure 1). Note that by this definition, higher stoichiometries Sij > 1 are 

incorporated into the ratio ϕij, and of course Σj ϕij = 1 for all i.

In isotope labeling experiments, the flux ratios ϕ are directly related to the observed 

isotopomer distributions at steady-state. To see this, consider the molar fraction xik of some 

isotopomer k of a metabolite i, and let  denote the molar fraction of a corresponding 

isotopomer formed by a reaction j that produces i. Then, at steady state, xik is a linear 

mixture over all reactions

(2)

This shows that isotopomer data x provides direct information only about ϕ, not about v. If 

for some metabolite i both xik and all its “parent” isotopomers  can be measured, then we 

can estimate flux ratios ϕij directly from (2) by solving a linear system (Sauer et al., 1999; 

Zamboni et al., 2009).

3.2. Mapping between fluxes and flux ratios

If flux ratios ϕ are a valid parameterization of the flux state, it must be possible to 

reconstruct the flux vector v from ratios ϕ. While equation (1) defines ϕ as a function of v 
that maps the set of feasible fluxes  onto a set of feasible flux ratios Φ = {ϕ(v): v ∈ }, 

this function is clearly not invertible, since ϕ is independent of the magnitude of v, that is, 

ϕ(αv) = ϕ(v) for any scale factor α > 0. However, we will prove that, provided this scale 

factor α is chosen correctly, we can uniquely determine v from any ϕ in Φ, for any metabolic 

network. To establish the scale parameter, it is helpful to augment the metabolic network S 
by adding a “sink” metabolite i = 0, replacing all release fluxes in the original network with 

reactions producing this sink metabolite, and adding a single release flux v0 from the sink, 

which is the sum of all release fluxes. This parametrization is convenient because release 

fluxes can themselves be interdependent, which complicates the analysis. This arrangement 
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is exemplified for a simple network model in Figure 2; in this case v6 and v7 are dependent. 

Then, in the augmented network, the flux v0 together with ϕ (which now includes ratios for 

reactions entering the sink) is sufficient to reconstruct the full vector v.

Theorem 1—The function v ↦ (ϕ, v0) from  to Φ × ℝ+ is one-to-one.

To our knowledge, this result has not been obtained before. The proof and method of 

calculating v for any (ϕ, v0) is given in appendix A. This result shows how to interconvert 

between v and ϕ, and establishes that the sought scale factor α is the total release flux v0. 

Perhaps counter-intuitively, uptake fluxes do not yield a suitable scale factor, due to the 

asymmetry inherent in flux ratios: in the case of a “split” in the metabolic network, the 

associated flux ratios are trivially 1, and contains no information about the absolute fluxes. 

(Note also that uptake and release fluxes are not necessarily equal, because of bimolecular 

reactions like A → B + C.) Another way of stating this result is that the normalized fluxes 

vj/v0 are one-to-one with ϕ. In the remainder of the paper, we will therefore use vj/v0 as our 

measure of flux, and contrast this with the flux ratios ϕ. Note that v0 is always an unknown 

arbitrary constant in our setting.

Finally, we consider the question of how to identify a minimal set of free flux ratios, in 

analogy with free fluxes. Clearly, both v and ϕ are over-parameterized, partly because many 

fluxes vj (on which ϕ depends) are fixed by the mass balance constraint, and also because Σj 

ϕij = 1 for each metabolite i. However, if a given metabolic network has n free fluxes, we 

have found that one can always determine a set of n − 1 free parameters ϕij, so that (ϕ, v0) 

effectively has the same dimension as v. A proof sketch of this fact and a method for 

determining the free flux ratios is provided in appendix B. With this theoretical foundation 

in place, in the rest of the paper we will investigate estimation of ϕ and v/v0 in the presence 

of noise.

4. Results

4.1. Small example network

Since flux ratios have not previously been systematically studied with global, model-based 

MFA, we began by testing our approach on a simple example network (Figure 2). This 

network has 3 free fluxes (including the “sink” flux v0) and 2 free flux ratios. The space of 

possible metabolic states in terms of free fluxes and free flux ratios is shown in Figure 3, 

demonstrating that not all flux ratios correspond to a valid flux vector, due to the mass 

balance constraint. This implies that “local” methods can result in estimates that are 

incompatible with the overall stoichiometry of the net-work. Following Antoniewicz et al. 

(2007), we simulated isotopomer data x from this model for the MID of metabolite C, at the 

flux vector v given in Figure 2A, corrupted with normal distributed noise with a standard 

deviation σ = 0.003 (0.3 mol %). To assess how this noise propagates to uncertainty about 

flux ratios ϕij, we calculated 90% confidence intervals for each parameter as the smallest and 

largest values around the optimal vector compatible with an objective value , 

where  is the 90% quantile of the χ2 distribution with 1 degree of freedom 

(Antoniewicz et al., 2006). For comparison, we also calculated confidence intervals on the 
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fluxes vj normalized to the sink flux v0, in the same manner. The resulting intervals are 

given in Table 1, indicating that in this simple model, it is indeed possible to estimate certain 

flux ratios and also some normalized fluxes from isotopomer data alone.

Interestingly, in this model, flux ratios and normalized fluxes convey complementary 

information. For example, the ratio ϕC2 is well-determined, with 90% confidence interval 

(0.80, 0.92), while the corresponding normalized flux v2 has a wide confidence interval (0.5, 

2.09) due to the poorly estimated exchange flux between metabolites A and C. In this case, 

the CI for ϕC2 remains reasonably tight because ϕC2 = 0.80 already at the lowest value for 

v2. In contrast, the ratio ϕA1 is poorly determined since it is affected by the poorly 

determined flux v3, while the uptake flux v1 is not and remains fairly well estimated with CI 

(0.65, 0.75). The ratios ϕS6 and ϕS7 (which are identical to normalized fluxes v6/v0 and 

v7/v0) are also well estimated, likely because the synthesis of C and D is linked via flux v5. 

Thus, based solely on the MID of metabolite C and the mass balance constraints, one can in 

this case determine the routes of synthesis of C, and also the release flux for C and D 
relative to the total outflux v0.

While it is well known that wide confidence intervals on metabolic fluxes can arise due to 

redundant parameters (Wiechert et al., 1997), this issue has not been considered for flux 

ratios. In this example, confidence intervals for flux ratios were rather wide, particularly 

considering the low measurement noise level of 0.3%. To investigate the source of 

uncertainty, we visualized the objective function f in the space of the free flux ratios ϕA3 and 

ϕS7 (Figure 4). In this parametrization, we see that the region  is in fact a narrow 

“valley”, where ϕA3 contributes nearly all of the uncertainty: at a fixed value for ϕA3, the 

interval for ϕS7 is actually very narrow, but as the two parameters become dependent given 

the MID data x, uncertainty in ϕA3 translates to uncertainty in ϕS7. Hence, wide confidence 

intervals on flux ratios can arise due to dependencies between parameters.

4.2. TCA cycle model

As a more realistic example, we next tested estimation of flux ratios on a model of the TCA 

cycle (Figure 5), a system that has been thoroughly studied with MFA methods (Jones et al., 

2001; Metallo et al., 2009). Our model includes pyruvate and simplified fatty acid (acetate) 

oxidation, citrate export to the cytosol for fatty acid synthesis, and anaplerosis from 

glutamine and pyruvate (via pyruvate carboxylase). This model was chosen as it contains 

some biologically important flux ratios, including citrate synthase vs. reverse aconitase flux 

(reductive carboxylation), which is considered important for fatty acid synthesis in hypoxic 

conditions (Metallo et al., 2012), anaplerosis at oxaloacetate via pyruvate carboxylase, 

which is important in some cancer types (Sellers et al., 2015), and pyruvate uptake vs. 
cycling via malic enzyme, which may be regulated by p53 in senescence (Jiang et al., 2013). 

Our model includes pyruvate and simplified fatty acid (acetate) oxidation, citrate export to 

the cytosol for fatty acid synthesis, and anaplerosis from glutamine and pyruvate (via 

pyruvate carboxylase). A complete specification of the model is provided as supplementary 

material. While the model contains two compartments, this does not confound flux analysis 

in this case since, of the measured variables, only citrate is present in both compartments, 

and its cytosolic MID is identical to the mitochondrial MID.
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We simulated a tracing experiment from this model with U-13C-glutamine as tracer and 

with measurements of citrate, glutamate, malate, pyruvate and succinate MIDs, compounds 

that are readily measurable by LC-MS methods. With these measurements, flux ratios 

cannot be estimated locally, since in each case there is at least one non-measured metabolite, 

so that equation (2) is not solvable. In contrast, we were able to obtain estimates of some 

flux ratios with the global MFA approach (Table 2). For example, we were able to estimate 

at the 90% confidence level that isocitrate dehydrogenase provides at least 75% of α-

ketoglutarate, implying that glutaminase is a minor source of TCA cycle carbon; and that no 

more than 19% of mitochondrial oxaloacetate can derive from pyruvate carboxylate. While 

some confidence intervals are very wide, they still allow us to conclude whether reactions 

must be active, which is not always trivial: for example, we find that at least 21% of acetyl-

CoA must derive from pyruvate dehydrogenase, showing that the reaction is active, even 

though pyruvate was not used as a tracer. For comparison, it was not possible to estimate any 

fluxes vj with good confidence from the isotope data alone and with the sink flux v0 fixed. 

Hence, in this case, global model-based estimation of flux ratios allows us to draw some 

conclusions that would not otherwise be accessible.

4.3. Large human metabolic network model

To test our approach in a large-scale setting that reflects the complexity of mammalian cell 

metabolism, we next performed flux ratio estimation in a large network model of human 

metabolism. A network model was assembled that covers major metabolic routes active in 

cultured human cells, including central carbon metabolism, amino acid, nucleotide and fatty 

acid synthesis and catabolism, as well as synthesis of biomass components such as sterols 

and polyamines (Supplementary dataset S3). The model comprises 453 metabolic reactions 

compartmentalized into the cytosol, mitochondria, peroxisomes and the endoplasmic 

reticulum, with complete cofactor balancing. Of the 465 metabolites in the model, 387 

(83%) contain carbon atoms reachable from substrates and may be informative for MFA. 

The remainder are cofactors not synthesized by the model, including Coenzyme A, NAD, 

NADP, FAD, folate, phosphate groups, and various small inorganic ions. To our knowledge, 

such comprehensive models of mammalian cellular metabolism are yet to be analyzed by 

13C MFA, and it remains unknown what flux ratios could theoretically be estimated by our 

approach.

Fixing the total release flux v0 does not by itself constrain any fluxes in this model, 

indicating that carbon may exit the network in various ways, and that fluxes are not locked 

to the biomass rate as previously found for a large-scale E. coli model (Gopalakrishnan and 

Maranas, 2015). Also, 598 fluxes can participate in internal “cycles” (type III pathways) 

within this network (data not shown), and are therefore unbounded despite fixing v0 

(Schilling et al., 2000). Hence, any fluxes and flux ratios in this model must be estimated 

based on measureable MID data. To provide a realistic assessment, we limited our analysis 

to a set of 99 metabolites that we have found to be measurable with acceptable quality using 

LC-MS. In total, these metabolites comprised 770 mass isotopomers, while there were 395 

free fluxes in the metabolic network (with v0 fixed), suggesting that flux analysis is possible. 

To account for compartmentalization, we modeled measured MIDs as linear mixtures of 

compartment-specific MIDs (see Methods).
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We simulated MID data from this model using U-13C-glucose and U-15C-glutamine as 

tracers, based on a single “true” flux vector v chosen so that all pathways are active at 

comparable rates (see Methods), to ensure that there are “interesting” fluxes and flux ratios 

to estimate. At this flux vector, 3,593 EMUs (82%) and 311 metabolites (84%) were 

enriched for 13C, indicating that glucose and and glutamine carbon can reach a large portion 

of the metabolic network. Unlabeled metabolites were mainly found in pathways of essential 

amino acid and choline catabolism, as might be expected.

We then estimated 90% confidence intervals for all flux ratios and normalized fluxes (with 

v0 fixed to 1) as before, here assuming a measurement standard deviation of 1% 

(Supplementary dataset S4). All intervals were calculated around the true flux vector. Note 

that this analysis covers all fluxes and ratios in the metabolic network, including cofactors 

and other non-carbon metabolites. The distribution of widths of the obtained confidence 

intervals is shown in Figure 6. Of the 1,438 non-trivial flux ratios, 811 (56%) were well-

estimated, having confidence intervals at most than 0.1 wide. Surprisingly, of the 823 

normalized fluxes, 245 (30%) were also well estimated, with interval width < 10% of the 

true flux, even though there were many possible release fluxes. It appears that normalized 

release fluxes themselves are well estimated in this case, indicating that the combination of 

isotopic data and stoichiometry is sufficient to constrain normalized fluxes.

As before, we find that the normalized flux and flux ratio measurements are complementary 

in that some flux ratios are well-estimated while the associated flux is not, and vice versa 

(Figure 6C). Central metabolites with high in-degrees, such as common cofactors like ATP, 

small ions, and central metabolites like glutamate (Figure 6C, GLUN/glu) tend to have tight 

flux ratio intervals, while the flux may be poorly estimated. This is likely because the large 

number of contributing fluxes leads to small flux ratios for each reaction, and hence little 

variation. On the other hand, narrow CIs for normalized fluxes but wide CIs for flux ratios 

may be observed when a certain flux is constrained by mass balance, but other fluxes into 

the same metabolite pool are not; for example, in this simulation this occured for 

mitochondrial alanine transaminase feeding into the mitochondrial pyruvate pool (Figure 

6C, ALT/pyr).

Narrow confidence intervals were obtained also for metabolites that were not directly 

measured. For example, among fluxes entering mitochondrial acetyl-CoA, pyruvate 

dehydrogenase contributed 10% at this flux state (Figure 6C, PDH/accoa), and we obtained 

a CI of 3.7–11%; while each of the eight steps of palmitate oxidation contributed 3%, for a 

total of 24%, and the CI was 7.2–30%, indicating that the relative sources of acetyl-CoA can 

theoretically be well estimated, despite the fact that acetyl-CoA itself was not measured. In 

this case, the corresponding normalized fluxes were also well estimated. Moreover, due to 

stoichiometry constraints, information was obtained also for metabolites that do not 

carry 13C, including turnover of cofactors such as NAD and estimates of energy metabolism. 

For example, mitochondrial respiratory complex I activity was well estimated, likely as it 

depends on major oxidative pathways labeled by glucose and glutamine. Although these 

simulation results depend on a number of assumptions discussed below, taken together, these 

results indicate that it is theoretically possible to obtain rich information about the metabolic 
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state of large networks with global estimation using a flux ratio approach in conjunction 

with common tracers and currently measureable metabolites.

4.4. Methionine and serine metabolism in a human cell line

Metabolism of methionine and serine is important for cancer cells to supply one-carbon 

units for biosynthesis and methylation reactions (Mattaini et al., 2016; Cavuoto and Fenech, 

2012). We therefore chose to experimentally test model-based estimation of flux ratios from 

stable isotope labeling experimentson a metabolic network model of serine/methionine 

metabolism. We performed two parallel labeling experiments using U-13C-methionine and 

1-13C-serine as tracers (see Methods for details). The model used covers major metabolic 

pathways of methionine/serine metabolism (Figure 7A), including the S-adenosylmethionine 

(SAM) cycle, methionine salvage, folate metabolism, and purine synthesis (to account for 

label introduced into the purine ring from serine). In this case, metabolites at the model 

boundaries are represented as uptake/release fluxes. This model is challenging for flux 

estimation, since there are many “boundary” fluxes that cannot be estimated experimentally: 

in the augmented network, 24 metabolites are released via the sink. Measured MIDs from 

nine metabolites were used to fit this model, combining data from both tracer experiments. 

For this model, all metabolites were cytosolic. The model was fitted to data 1,000 times, 

restarting optimization from distinct initial points. An acceptable model fit was achieved in 

93% of restarts, with a chi square statistic of 68.7 (90% bound = 75.5). To be conservative in 

case multiple minima were present, we took as the final confidence intervals the widest 

possible parameters ranges obtained when combining confidence intervals from the multiple 

restarts (see Methods).

For most fluxes and flux ratios, a wide range of values were compatible with an acceptable 

objective, indicating that additional data is needed to constrain the solution, as might be 

expected given the limited measurements available. Yet, 20 nontrivial flux ratios (21%) were 

well estimated (CI width ≤ 10%) in this analysis. On the other hand, nearly all CIs for 

normalized fluxes included zero and so were not informative; this is probably due to 

alternative pathways and the large number of boundary fluxes. Focusing on reactions in the 

SAM cycle and methionine salvage (Figure 7A), we noted that very little methionine was 

synthesized by remethylation from homocysteine, with methionine synthase contributing at 

most 2% of total methionine synthesis. If methionine synthase is coupled to methylation in 

the SAM cycle rather than protein synthesis, then this implies that flux through the SAM 

cycle is small compared to total methionine uptake. Alternatively, the SAM cycle might be 

truncated so that either homocysteine or S-adenosylhomocysteine escapes the cycle, leading 

to a low methionine synthase flux. These results, obtained from a small steady-state 

experiment, are consistent with a recent analysis of the SAM cycle using more extensive 

time-course isotope labeling (Shlomi et al., 2014).

The analysis also indicated that methionine salvage from 5-methylthioadenosine, the other 

major pathway of methionine synthesis in human cells, is not active in these cancer cells, 

with a normalized flux of at most 0.002 (relative to v0 = 1). Active methionine salvage 

should yield an M+1 mass isotopomer in methionine from the U-13C-methionine, which was 

not observed. It is notable that this inference cannot be made by examining methionine and 
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its immediate precursor in the pathway, 2-ketomethylbutyrate (2kmb), since there is 

substantial exchange flux between these metabolites, rendering flux ratios uninformative. 

This result is also intriguing since we did observe 13C labeling of 5-methylthioadenosine 

(5mta), indicating that polyamine synthesis is active, and 5mta has no other known fate in 

human cells besides the methionine salvage pathway (Figure 7A), suggesting that 5mta 

might be discarded from these cells into the culture medium. Consistent with this 

hypothesis, in a follow-up analysis we found that 5mta was clearly present in spent medium, 

but nearly undetectable in the fresh medium, resulting in a 200-fold increase over 48h of 

culture (Figure 7B).

We also found that most of the 1-carbon units entering purine synthesis was from serine, 

with ≥ 97% of 10-formyl-THF derived from this source and at most 3% from an unlabeled 

sources (such as formate obtained from the culture medium), consistent with previous 

reports (Fu et al., 2001). Finally, we estimated that 88–95% of cystathionine, an intermediate 

in cysteine and glutathione synthesis, was synthesized from homocysteine and serine (Figure 

7A). Taken together, these results indicate that, although unique flux vectors cannot be 

determined from limited isotopomer data alone, it is nevertheless possible to estimate some 

parameters in this experimental setting, revealing truncation of the methionine cycle and 

failure to recycle the 5-methylthioadenosine produced in polyamine synthesis.

5. Discussion

In this paper, we have investigated global, model-based estimation of metabolic flux ratios in 

the absence of uptake and release measures. Unlike previously reported methods that 

estimate flux ratios in a local manner (Zamboni et al., 2009; Hörl et al., 2013), our approach 

uses model-based MFA, which lets us take advantage of isotopomer balances and 

stoichimetry constraints to reveal additional flux ratios. Notably, the recently published 

SUMOFLUX method (Kogadeeva and Zamboni, 2016) is model-based as well, but is 

targeted in the sense that particular ratios are selected for analysis, which are then estimated 

by a machine learning method trained on a large number of simulated isotopomers. In 

comparison, our approach relies only on MFA and the well-established profile likelihood 

method to explore confidence intervals for all flux ratios. While the lack of uptake/release 

data renders parameters estimation difficult in many cases, we still find that certain 

parameters can be obtained, and we believe that the examples given herein are representative 

of the experimental data that is realistically available in the cancer metabolism and related 

fields with current metabolomics methods.

We also find that flux ratios and normalized fluxes (scaled to total release flux) convey 

complementary information, as in some cases, isotope data allows normalized fluxes to be 

well estimated, but in other cases only flux ratios can be determined. This is not unexpected, 

as the two measures represent different views of the flux state. Hence, given an isotope 

labeling experiment, it is worth calculating confidence intervals on both parameters. More 

generally, these two measures can be viewed as special cases from the wider class of rational 

functions of fluxes, and there might be other measures in this class that are more natural in a 

specific situation, or that can be estimated with better accuracy. In particular, with careful 

analysis of a specific model it is often possible to choose a reference flux vr so that the ratio 
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vj/vr can be well determined for certain fluxes vj of interest. For example, it is well 

established that in the TCA cycle model (Figure 5), it is feasible to estimate fluxes relative to 

the citrate synthase flux. Choice of reference fluxes, however, depend on the question at 

hand, and this approach does not represent a generally applicable method for analyzing 

larger networks. To our knowledge, no general method is known for parameterizing a 

metabolic network (with flux ratios, reference fluxes, or other representations) to ensure that 

parameters are identifiable, although some progress has been made on identifiability of 

absolute fluxes (Isermann and Wiechert, 2003; Crown et al., 2012). This represents an 

important topic for future studies.

The application of our methodology to serine/methionine metabolism in cancer cells show 

that, although many parameters are not identifiable, it is nevertheless possible to estimate 

key parameters from isotope labeling data alone using model-based analysis. In the serine/

methionine model, based on a small data set consisting of two steady-state tracer 

experiments, we find that the methionine cycle is “truncated” in these cells, with very low 

homocysteine remethylation and methionine salvage, while polyamine syntheisis and the 

transsulfuration pathway that forms cystathonine is active (Figure 7A). These data are 

consistent with more extensive time-course analyses (Shlomi et al., 2014) and suggest a 

mode of “overflow” metabolism in cancer cells, where methyl groups in the form of 5-

methylthioadenosine are not salvaged but discarded into the medium, analogous to the well-

known loss of glucose-derived lactate and glutamine-derived glutamate from cancer cells 

(Jain et al., 2012). Yet, it should be pointed out that accurate estimation of flux ratios in this 

model is subject to a number of caveats. Quantifying mass isotopomer distributions using 

full-scan, high resolution mass spectrometry as done herein (and which is increasingly 

common) is advantageous in that mass isotopomers in a wide variety of metabolites can be 

assessed, which enables analysis of less well understood metabolic systems and helps 

constrain flux solutions by increasing the number of measured variables. However, the 

statistical properties of this data type is not well understood. For example, with orbitrap-

based mass analyzers, low mass isotopomer frequencies are often underestimated, since low 

intensity signals tend to ”drop off” towards zero (Nilsson and Jain, 2016), creating bias and 

possible underestimating variation across replicates. This data may does not satisfy the 

normal distribution assumptions that underlie all metabolic flux analysis methods, including 

confidence interval estimates (Antoniewicz et al., 2006), the chi-square model fit criterion, 

and even the sum-of-squared-residual type of objective function itself. It would be valuable 

to examine the statistical properties of MID data obtained from full-scan instruments in 

more depth, and perhaps consider alternative, more robust model fitting criteria such as L1 

norm methods or regularization techniques, which are common in other fields utilizing 

large-scale model fitting techniques (Tibshirani, 2011).

Our simulation study suggests that estimating normalized fluxes and flux ratios on a large 

scale from mammalian cell cultures is theoretically feasible in the absence of quantitative 

data on metabolite uptake and release, using commonly available tracers and 

experiementally measurable isotopomers. To our knowledge, this is the first study of 

identifiability in a large human metabolic network. A previous analysis of similar scope was 

performed by Gopalakrishnan and Maranas (2015) for E.coli ; in their model, about 2/3 of 

the reactions were completely determined by biomass. This did not occur in our model, 

Nilsson et al. Page 14

Metab Eng. Author manuscript; available in PMC 2017 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



although we did find a surprisingly large fraction (30%) of well-estimated normalized 

fluxes, and this may be due to flux coupling via the biomass reaction. It must be emphasized 

that this simulation study is theoretical, and only addresses how MID measurement error 

propagates to uncertainty in fluxes and flux ratios, assuming that the correct flux vector can 

be found. Although we were able to fit this model to simulated data, achieving an objective 

close to zero (data not shown), it is not known how many local minima might be present. 

Also, a caveat is that our analysis was performed at a flux vector chosen so that most fluxes 

and flux ratios are nonzero, which may not be true in practice — indeed, in the methionine/

serine data set, a number of flux ratios were estimated to be near zero — and identifiability 

may be different in such cases. Moreover, in a real situation, any number of model errors 

might occur that makes such large-scale studies difficult to realize in practice. Nevertheless, 

the present work shows that, with data and conditions typical of isotope experiments in 

cultured cancer cells, it is possible to recover at least partial information on the metabolic 

state using global analysis of flux ratios. Importantly, in contrast to ad hoc manual analysis 

of isotopomer data, the model-based approach generally yields more information, and also 

helps reveal inconsistencies that may otherwise have gone unnoticed. We therefore believe 

that that flux ratio analysis will be an increasingly important tool for cancer metabolism and 

related fields.
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Appendix A. Proof of bijection

Here we prove that the function v ↦ (ϕ, v0) is one-to-one, so that v is always uniquely 

determined by (ϕ, v0). Let S be the m × n stoichimetry matrix of a metabolic network with 

m metabolites and n reactions. First, transform the metabolic network to graph G by 

replacing each reaction having more than 1 substrate and 1 product with an intermediate 

metabolite and associated reactions, as exemplified in Figure A.8A. Next, let L be the 

adjoint graph (line graph) of G, having an edge j → k iff for some metabolite i the edges j 
→ i and i → k are in G. Note that each such edge j → k in L is associated with exactly one 
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flux ratio ψjk = ϕij. In the cases where i was not in the original metabolic network, we may 

(arbitrarily) choose ψjk = 1/di where di is the in-degree of i in G; see Figure A.8B. We now 

have for each reaction j (each node in L) that

where the sum is over all edges j → k exiting node j in L. (For the sink j = 0 this sum is 

zero.) If we now define the matrix

and the vector b = (0 0 · · · v0), then it holds that T(ϕ)v = b. Moreover, for each column k of 

T we have Σj Tjk = 0 because the sum ranges over precisely the flux ratios ψjk = ϕij 

associated with metabolite i, minus 1 for the diagonal element; the exception is columns k 
corresponding to uptake fluxes, for which Σj Tjk = −1. Hence, T is a compartmental matrix. 

Moreover, T cannot contain traps, because the graph G does not. This implies that T is 

invertible (Fife, 1972), and therefore (ϕ, v0) ↦ v is one-to-one, with inverse given by v = 

−T(ϕ)−1b.

Appendix B. Free flux ratios

The flux ratios ϕij are heavily overparameterized. In this section, we outline how to obtain a 

minimal set of free flux ratios, in analogy with free fluxes. First, sinceΣj ϕij = 1, one of the 

ϕij is always redundant. Moreover, for reactions j that yield two or more products, one of the 

associated flux ratios will be redundant, since they derive from the same flux vj. To obtain a 

set of free flux ratios, we must first choose a single ratio ϕij for each reaction j such that v is 

still uniquely determined by the one-to-one mapping v ↔ (ϕ, v0). The choice of which ϕij to 

retain is not entirely arbitrary; to see this, define the bipartite graph G over the m metabolites 

and n reactions in the metabolic network S that has an edge i → j if Sij < 0 and j → i if Sij > 

0, and associate each edge j → i with the ratio parameter ϕij, and each edge i → j with 

the ”throughput” . Then a flux vj can be determined if and only if there exists a 

path in G from vj to the sink v0. Discarding a ratio ϕij from the parameter set corresponds to 

deleting the edge j → i in G. For each reaction j, we must therefore choose a single ratio ϕij 

so that vj remains connected to v0 in G after deleting all other edges j → i′, i′ ≠ i. This is 

always possible, because at least one i must be connected to v0 in G through path that does 

not involve j, and also the operation of deleting an edge cannot break any paths from other 

reactions j to v0, so the reactions j can be processed in any order, and this will always result 

in exactly n remaining ratio parameters ϕij, one for each flux. These n ratios must determine 

the complete ϕ, and therefore they are 1-to-1 with v by Theorem 1. Now, if v is fully 

determined by a set of free fluxes {vj, j ∈ F}∪{v0}, then the corresponding free ratios must 
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be exactly ϕij, j ∈ F, because there must be exactly |F| free ratios, and any ϕik with k ∉ F 
cannot be a free ratio as it determines vk which is not a free flux.

For example, in the toy model, a possible choice of free fluxes within the augmented 

network is {v0, v3, v7}. (In this case, the two release fluxes v7, v8 are linearly dependent.) 

Hence, of the 8 possible flux ratios, only 2 are free parmeters. We may for example choose 

ϕS7 and ϕA3 as free variables, as in Figure 3.
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Figure 1. 
Illustration of notation for fluxes vj, flux ratios ϕij, and summations for a metabolite i. 

Elements  represent reactions entering into metabolite pool i, and elements of 

reactions leaving the pool.
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Figure 2. 
Toy example. (A) Network with flux vector used in simulations indicated. Atoms indicated 

by circles; top, substrate isotopomer used for simulaton experiments. Isotopomers in 

remaining metabolites are not shown. (B) Network as in A, augmented with a sink 

metabolite S, and with fluxes v1, …, v7 indicated (release fluxes R = {6, 7}). Asterisks mark 

a set of free fluxes. (C) Same as B, with flux ratios ϕij indicated at arrowheads. In this 

example metabolites are indexed by letters for clarity.
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Figure 3. 
Feasible fluxes and flux ratios for the sink-augmented network in Figure 2. (A) Portion of 

the feasible set of free fluxes, restricted to [0, 1]3 as indicated by dashed lines. With the sink 

flux v0 fixed, v7 is bounded but v3 is not, due to exchange flux with v4. (B) Set of feasible 

flux ratios (gray area) corresponding to the set in A. Cross indicates an infeasible flux state 

given by ϕA3 = 0.1, ϕS3 = 0.9.
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Figure 4. 
Objective function f(ϕ) for the example of Figure 2, indicated by gray contours. Black region 

indicates the 90% confidence set with . Thick lines at the axes indicate 

the corresponding 90% confidence intervals for ϕA3 and ϕS7.
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Figure 5. 
Simplified view of the TCA cycle model. Numbers indicate the flux vector used to simulate 

data for testing. Gray arrowheads indicate reversible reactions, while fluxes refer to the 

direction of black arrows; exchange fluxes were zero. Pyruvate carboxylase was present in 

the model but zero in the simulated flux state. Citrate lyase was modeled in the cytosolic 

compartment, here shown separated by double gray lines. Asterisks indicate measured 

metabolites. Cofactors and some intermediate steps are not shown; see supplementary 

dataset S1 for full model.
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Figure 6. 
Estimated confidence intervals from human network model. (A) Histogram of width of 

confidence intervals (CIs) for normalized fluxes. (B) Histogram of width of CIs for flux 

ratios. Solid line indicates cumulative density function (CDF). (C) Scatter plot of CI widths 

for normalized fluxes and flux ratios. Examples discussed in text are indicated. GLUN, 

glutaminase; glu, glutamate; PDH, pyruvate dehydrogenase; accoa, acetyl-CoA; ALT, 

alanine transaminase; pyr, pyruvate.
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Figure 7. 
Estimates of flux ratios in methionine/serine metabolism identifies a truncated methionine 

cycle. (A) Simplified view of metabolic network model with estimated parameters. Asterisks 

indicate metabolites with experimentally measured mass isotopomers. Percentages indicate 

90% confidence bounds on flux ratios, other numbers indicate 90% bounds on normalized 

fluxes. See supplementary dataset S5 for full model. (B) Accumulation of 5-

methylthioadenosine (5mta) in spent culture medium. Low values in fresh medium 

demonstrates that 5mta indeed derives from cells.
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Figure A.8. 
(A) Example network from figure 3 transformed to graph form (fluxes have been 

renumbered). (B) the adjoint graph of the graph in A, with flux ratios indicated as edge 

weights.
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Table 2

Selected 90% confidence intervals for flux ratios for the TCA cycle model. Confidence intervals (CI) of flux 

ratios are given for indicated reaction-metabolite pairs, named as in Figure 5. A complete list of intervals is 

given in supplementary dataset S2.

Metabolite Reaction Actual CI Low CI Hi

akg IDH 0.75 1.00

accoa PDH 0.21 1.00

glu GLN 0.97 1.00

oaa PC 0.0 0.19

oaa MDH 0.58 1.00

Metab Eng. Author manuscript; available in PMC 2017 September 19.


	Abstract
	1. Introduction
	2. Methods
	2.1. Cell culture
	2.2. Mass spectrometry
	2.3. Metabolic network models
	2.4. Atom mappings and isotopomer distributions
	2.5. Metabolic flux analysis

	3. Theory
	3.1. Preliminaries
	3.2. Mapping between fluxes and flux ratios
	Theorem 1


	4. Results
	4.1. Small example network
	4.2. TCA cycle model
	4.3. Large human metabolic network model
	4.4. Methionine and serine metabolism in a human cell line

	5. Discussion
	References
	Appendix A. Proof of bijection
	Appendix B. Free flux ratios
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure A.8
	Table 1
	Table 2



